
MASTER THESIS

Bc. Michal Belák

Active learning for Bayesian neural
networks in image classification

Department of Theoretical Computer Science and Mathematical Logic

Supervisor of the master thesis: Ing. Tomáš Šabata
Study programme: Computer Science

Study branch: Artificial Intelligence

Prague 2020

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

I would like to express my most sincere gratitude to my supervisor, Ing. Tomáš
Šabata, for guiding me through my work on this thesis, his insightful advice and
suggestions for improvements. I would also like to thank my family, who gave me
endless support and encouragement throughout my studies.

ii

Title: Active learning for Bayesian neural networks in image classification

Author: Bc. Michal Belák

Department: Department of Theoretical Computer Science and Mathematical
Logic

Supervisor: Ing. Tomáš Šabata, Department of Applied Mathematics, Faculty of
Information Technology, Czech Technical University in Prague

Abstract: In the past few years, complex neural networks have achieved state of
the art results in image classification. However, training these models requires
large amounts of labelled data. Whereas unlabelled images are often readily avail-
able in large quantities, obtaining labels takes considerable human effort. Active
learning reduces the required labelling effort by selecting the most informative
instances to label. The most popular active learning query strategy, uncertainty
sampling, uses uncertainty estimates of the model being trained to select instances
for labelling. However, modern classification neural networks often do not pro-
vide good uncertainty estimates. Bayesian neural networks model uncertainties
over model parameters, which can be used to obtain uncertainties over model
predictions. Exact Bayesian inference is intractable for neural networks, however
several approximate methods have been proposed. We experiment with three such
methods using various uncertainty sampling active learning query strategies.

Keywords: machine learning, active learning, neural networks, Bayesian neural
networks

iii

Contents

Introduction 3

1 Image classification 5
1.1 Traditional methods . 5
1.2 Neural networks for image classification 5

1.2.1 Feed-forward neural networks 6
1.2.2 Convolutional neural networks 8

1.3 Training of neural networks . 11
1.3.1 Maximum likelihood estimation 11
1.3.2 Gradient-based optimization 12
1.3.3 Regularization . 16

1.4 Convolutional neural network architectures for image classification 19
1.4.1 Downsampling . 19
1.4.2 Flattening . 20
1.4.3 Batch normalization . 21

2 Bayesian neural networks 22
2.1 Bayesian statistics . 22

2.1.1 Bayesian inference . 22
2.1.2 Approximate Bayesian inference 23

2.2 Variational inference . 25
2.2.1 Parametric variational inference 25

2.3 Bayesian neural networks . 26
2.3.1 Reparameterization trick 27
2.3.2 Bayes by Backprop . 27
2.3.3 Local reparameterization trick 29

2.4 Dropout as a Bayesian approximation 31
2.4.1 Variational dropout . 32

2.5 Bayesian convolutional neural networks 33
2.5.1 Dropout as a Bayesian approximation in CNNs 33
2.5.2 Bayes by Backprop for CNNs 34

3 Active learning 35
3.1 Scenarios . 35
3.2 Query strategy frameworks . 36

3.2.1 Uncertainty sampling . 36
3.2.2 Query-by-committee . 37
3.2.3 Expected model change 38
3.2.4 Density-weighed methods 38

3.3 Batch-mode active learning . 39
3.4 Active learning in image classification 40

1

4 Uncertainty sampling active learning in Bayesian neural net-
works 42
4.1 Uncertainty estimation in neural networks 42

4.1.1 Uncertainty estimation in Bayesian neural networks 42
4.2 Bayesian active learning by disagreement 43

4.2.1 BatchBALD . 44

5 Experiments 45
5.1 Experiment design . 45

5.1.1 Acquisition functions . 45
5.1.2 Approximate Bayesian inference methods 45
5.1.3 Data . 45
5.1.4 Active learning . 46

5.2 Experiment Setup . 47
5.2.1 Models . 48
5.2.2 Active learning setup . 51

5.3 Results . 53
5.3.1 Bayesian active learning classification on MNIST digits . . 53
5.3.2 Bayesian active learning classification on CIFAR-10 57
5.3.3 Comparison to non-Bayesian methods 61
5.3.4 Training and prediction time 65

Conclusion 67

Bibliography 68

List of Figures 76

List of Tables 78

A Attachments 79
A.1 Implementation . 79

A.1.1 Used technologies . 79
A.1.2 Usage . 79
A.1.3 Project structure . 81

2

Introduction
Image classification is a machine learning task of selecting (or predicting) a class
from a set of classes, given a 2-dimensional input image. Convolutional neural
networks (CNNs) [1] have shown excellent performance at such tasks, surpassing
human performance at many [2], given a large collection of labelled training
images, which can be difficult to obtain in practice.

Active learning addresses the issue of demand for large amounts of labelled
training data by interactively querying a labeller for selected labelled examples
to learn from. Querying the most informative examples can be utilized to reduce
the number of samples required to reach a certain level of model performance
compared to normal supervised learning. Training examples can be chosen ac-
cording to various criteria – active learning frameworks. This thesis focuses on
one particular active learning framework called uncertainty sampling, in which
new training examples are queried from a pool of unlabelled examples according
to the highest uncertainty of predictions of the current model. However, it is dif-
ficult to estimate uncertainty of predictions of traditional neural networks, which
tend to make over-confident predictions.

Bayesian neural networks augment traditional neural networks with Bayesian
inference to infer a posterior probability distribution over parameters of a neural
network given a set of training data. The distribution over model parameters can
be used to obtain a distribution over predictions, which captures the uncertainty.
However, exact Bayesian inference is intractable for practical neural networks due
to the high number of model parameters. Therefore, various methods have been
used to find distributions approximating the true posterior.

Goals
The main goals of the thesis are the following:

1. Review Bayesian neural networks for image classification.

2. Study active learning and uncertainty sampling active learning methodol-
ogy.

3. Compare various approximate Bayesian neural network methods in the set-
ting of uncertainty sampling active learning.

4. Evaluate and compare chosen methods on commonly-used image classifica-
tion datasets in terms of model performance and computational complexity
of training and inference.

Structure
This thesis is divided into five chapters. The first chapter reviews the prob-
lem of image classification. The second chapter introduces Bayesian neural net-
works, convolutional Bayesian neural networks and approximate Bayesian infer-
ence methods for neural networks. The third chapter provides an overview of

3

active learning and reviews uncertainty sampling active learning methods. In
the fourth chapter, we describe how uncertainty estimates can be obtained from
Bayesian neural networks and utilized in uncertainty sampling active learning.
Finally, in the fifth chapter we describe our experiments and present our results.

4

1. Image classification
Classification

Classification is one of the two main task studied in the field of supervised machine
learning, the other one being regression. In classification, the task is to assign (or
predict) the correct class from a given set of classes. Binary classification refers
to a classification problem with two classes (typically referred to as 0 and 1, or
positive and negative) and multi-class classification refers to classification into
more than two classes.

Image classification

Image classification is a special type of classification, where the input data consist
of 2-dimensional images, usually represented as numeric matrices. Images often
contain multiple channels, for example red, green and blue for an RGB color
image. Image classification tasks are typically multi-class.

1.1 Traditional methods
Due to the typically high dimensionality and importance of spatial structure
of images, most common machine learning algorithms, which are suited mainly
for tabular data, tend to perform poorly in image classification tasks. To use
most typical classifiers, such as support-vector machines [3], logistic regression
[4], or decision-tree-based classifiers [5, 6, 7], one typically needs to first extract
features from given images using various computer vision techniques – for example
positions of edges [8, 9], Gabor features [10], scale-invariant feature transform
(SIFT) [11]. However, it may not clear a priori what types of features may be
useful for a given task.

Using many possible types of features can lead to problems with high di-
mensionality of classifier inputs. Therefore, a concept feature reduction is often
employed to select a subset of the most informative features for classification

Nowadays, many of these problems are circumvented by using convolutional
neural networks for image classification, which are capable of automatic feature
extraction, also known as representation learning, where a model is used both to
learn useful features and to classify according to these features.

1.2 Neural networks for image classification
In this section, we introduce methods of image classification based on artificial
neural networks (ANNs). Artificial neural networks are a class of machine learning
models originally inspired by nervous systems of living organisms.

Artificial neural networks are currently one of the most studied and applied
methods in image processing thanks to the ability to learn highly complex non-
linear feature representations.

5

1.2.1 Feed-forward neural networks
In this section we briefly introduce feed-forward neural networks. A feed-forward
neural networks generally consists of neurons connected by directed connections,
which do not form a cycle.

The most basic feed-forward neural network, the perceptron [12], consists
of just a single neuron. A perceptron is a simple binary classification model
classifying into classes {0, 1}. A neuron consists of a vector of weights w, a
bias term b and an activation function f , which in case of the perceptron is the
Heaviside step function:

H(x) =

⎧⎨⎩0, if x ≤ 0
1, if x > 0

.

For an input vector x, the output of a neuron is y = f(w · x + b), where
w · x = ∑︁

i wixi signifies the dot product.
Neurons in more complex feed-forward neural networks are often organized in

one or more disjunct ordered layers. Such networks are commonly referred to as
multi-layer perceptrons. In a multi-layer perceptron, the input of each neuron in
a given layer can only be connected to outputs of neurons in the previous layer,
and conversely, the output can only be connected to the input of the next layer.
The first layer of a feed-forward neural network is called the input layer, the last
layer is called the output layer, and any layers in-between are called hidden layers.
The number of layers is referred to as depth.

An example of a class of artificial neural networks, which are not feed-forward
neural networks, is the class of recurrent neural networks (RNNs) [13, 14, 15],
which contain cyclical connections, often from a cell (similar to a layer in a MLP)
to itself. RNNs are widely used in sequence modelling, and especially, natural
language processing.

Fully-connected layers

There are multiple types of layers which are commonly used in layered feed-
forward neural networks. The most basic type of layer is a fully-connected layer,
where the input of each neuron is connected to the outputs of all neurons in the
previous layer.

The output yj of a single neuron j in the l-th layer Ll is computed as follows:

yj = fj

⎛⎝ ∑︂
i∈Ll−1

wi,jyi + bj

⎞⎠ ,

where wi,j denotes the weight of the connection from the neuron i to the neuron j
and bj. The above computation can be conveniently expressed in matrix notation
as:

yl = fl (Wlyl−1 + bl) ,

where yl is the vector of outputs of the l-th layer, consisting of outputs of all
individual neurons in the l-th layer, y0 = x is the input to the neural network,
Wl is the weight matrix between the l − 1-st layer and l-th layer, bl is the

6

y4 y5 y6

y2y1 y3

x1 x2 x3

y7

w4,7 w5,7 w6,7

W1

Input
layer

Hidden
layer

W2

Output
layer

Figure 1.1: Schematic of a multi-layer perceptron with a single fully-connected
hidden layer.

bias vector of the l-th layer, and fl : R|Ll| → R|Ll| is the element-wise activation
function of the l-th layer.

Figure 1.1 illustrates a feed-forward neural network with 3 fully-connected
layers: an input layer containing 3 neurons, a single hidden layer containing 3
neurons and a single neuron in the output layer. The nodes correspond to neurons,
labelled with the inputs. The connection weights from the input layer are not
labelled; they are summarized in the matrix W1 ∈ R3×3 . The weights to the
output layer are labelled both by the weight matrix and the individual weights:
W2 = [w4,7, w5,7, w6,7].

Activation functions

Examples of commonly used activation functions include:

• linear: f(x) = ax,

• logistic sigmoid: σ(x) = 1
1+e−x ,

• hyperbolic tangent: tanh(x) = 2
1+e−2x − 1 = 2σ(2x)− 1,

• ReLU: ReLU(x) = max(0, x),

• softplus: softplus(x) = ln(1 + ex).

Linear activation is only useful in output layers (in regression models), be-
cause adding a hidden layer with linear activation does not bring any benefit –

7

a composition of linear transformations is a linear transformation, which can be
learned in a single layer.

Sigmoid and hyperbolic tangent functions are very similar in that they squash
the input to a narrow range. Sigmoid activation is typically used in the output
layer of binary classification models, because the output between 0 and 1 can
be interpreted as the estimated probability of the 1-class. Hyperbolic tangent is
more commonly used in hidden layers mostly because it is symmetric, however
it does not solve optimization issued of sigmoid activation in deep architectures
[16].

ReLU (rectified linear unit) [17] is used to introduce non-linearity and is com-
monly used in hidden layers of deep networks. Since the output of ReLU is 0
for any non-positive input value, it can happen during training that a neuron
gets stuck in an inactive state, always outputting 0. Various modifications of
ReLU have been proposed to mitigate this issue, for example LeakyReLU(x) =
max(0.01x, x).

The softplus activation function is a smooth approximation of ReLU com-
monly used in probabilistic models, which will be introduced in later chapters.
The derivative of softplus is the logistic sigmoid function, which is a smooth
approximation of the Heaviside step function – the derivative of ReLU.

Additionally, we introduce an activation function called softmax, which is
applied on the complete output vector of a layer instead of each term separately,
defined as follows:

softmax(z) = softmax([z1, . . . , zn]) =
[︄

ez1∑︁n
i=1 ezi

, . . . ,
ezn∑︁n
i=1 ezi

]︄
. (1.1)

The output vector of a softmax layer in n-class classification consists of n
non-negative numbers with a sum of 1 and is commonly interpreted as an esti-
mated probability of each class. Therefore, softmax is often used in the output
layer of neural networks for multi-class classification. Note that softmax is a
generalization of logistic sigmoid for multiple outputs and the following holds:
σ(x) = softmax([x, 0])1.

1.2.2 Convolutional neural networks
Convolutional neural networks (CNNs), first introduced by LeCun [1], are a spe-
cial type of neural networks used for data with a grid-like spatial or temporal
structure [18]. Examples of such data include time series and other sequences,
which can be thought of 1-dimensional data, or images, which can be thought of as
a 2-dimensional pixel grid, or objects, which can be thought of as a 3-dimensional
voxel grid. As the name suggests, CNNs apply a special type of mathematical
operation called convolution, in contrast to previously mentioned fully-connected
neural networks, which perform matrix multiplication. In addition to convolu-
tion, an operation called pooling is used in almost all CNNs.

8

Convolution operation

Convolution, in its most general form, is an operation on two functions (usually
denoted with an asterisk) f and g, defined as follows:

(f ∗ g)(t) =
∫︂

f(x)g(x− t)dt.

In convolution terminology, the first argument (f in this case) is often referred
to as input, the second argument as kernel or filter and the output as feature map.

For example, if kernel g is a probability density function, then convolving
any input function f with g produces a feature map corresponding to a weighted
average of the values of f .

The continuous convolution operation has a discrete version for functions de-
fined on integers, which is defined as follows:

(f ∗ g)[n] =
∞∑︂

m=−∞
f [n]g[n−m] .

Convolution can also be performed over multiple dimensions at a time. For
example, the 2-dimensional discrete convolution for a 2-dimensional input image
I and a 2-dimensional kernel K is defined as follows:

(I ∗K)[i, j] =
∑︂
m

∑︂
n

I[m, n]K[i−m, j − n] =
∑︂
m

∑︂
n

I[i−m, j − n]K[m, n] ,

where the second equality is due to the commutative property of the convolu-
tion operation. In the above formula, we can observe that the kernel is flipped
in relation to the input, i.e. as the index into the input increases, the index
into the kernel decreases. Convolution is usually defined this way to obtain the
commutative property, which is useful in mathematical proofs, however it is not
necessary in neural networks. Therefore, CNN implementations usually perform
an operation called cross-correlation, which is equivalent to discrete convolution
without flipping the kernel:

(I ∗K)[i, j] =
∑︂
m

∑︂
n

I[i + m, j + n]K[i, j].

The convolution kernel could be of any size up to the size of the input, however,
a kernel smaller than the inputs is normally used, and can be thought of as
overlaying a sliding window over the input and multiplying the corresponding
positions in the input and the kernel, summing up the products to produce a
single output value for each position of the sliding window.

Only positions where the entire kernel sliding window lies within the input
image are considered. This means that the sliding window cannot be placed on
edge positions if the kernel is larger than 1× 1, resulting in a reduced resolution
of the output feature map. Where this effect is undesirable, a method called
padding can be employed. It appends virtual values (typically a constant such as
0) to the edges of the input, allowing the kernel sliding window to visit positions
on the edge.

Finally, the number of positions the sliding window is moved each time is
referred to as stride and it can be different for every spatial dimension. Using a
stride with a value other than 1 results in a reduction of resolution of the output
feature map.

9

Motivation

The main advantages of using the convolution operation for data with spatial
structure, such as images, are the following:

• sparse interactions,

• parameter sharing,

• equivariant representations,

• ability to work with inputs of variable size.

Next we briefly describe each of these concepts. A full description can be found
in a book by Goodfellow et al. [18].

Sparse interactions refer to the fact that each output does not necessarily
depend on all inputs, which is accomplished by using a smaller kernel than the
input. This is in contrast to matrix multiplication used in fully-connected net-
works, where each output depends on all inputs. For example, an input image
might contain millions of pixels, however detection of small local features can be
accomplished by only looking at a small area of a few pixels. The benefits are
mainly reduced number of parameters and required computations. For example,
for an input image of N × N pixels, to produce a feature map of the same size
requires O(N4) operations in a fully connected manner, while a convolution with
a kernel of size K×K requires O(N2K2) operations, since an input image may be
hundreds by hundreds of pixel, compared to commonly used kernel sizes, which
can be for example 5× 5 pixels.

Parameter sharing refers to the property of the convolution operation,
where each parameter is used in multiple outputs. This is once again a contrast
to fully-connected layers, where each parameter is used in the output exactly
once. The parameter sharing used in convolutions allows a convolutional neural
network to learn a single set of parameters to represent a certain concept rather
than learning a separate set of parameters for each position. The benefits lie
mostly in efficiency of model storage and statistical efficiency – being able to
express a given model in fewer parameters.

This type of parameter sharing results in equivariance of convolutional layers
to input translation. Two functions f and g are equivariant iff f(g(x)) = g(f(x))
for all x, or equivalently f ◦ g = g ◦ f . In image processing, this means that if
an image is used as an input of a convolution and then the same image is used,
with every pixel shifted by the same number of positions, the resulting feature
maps will be the same up to the shift between the input images. This property is
particularly beneficial in early layers of a convolutional neural network, where it
is desirable to extract the same simple features – such as edges – in every position
of an input image.

Ability to work with inputs of variable size comes from the fact that a
small local convolution operation is repeated multiple times in an input image,
instead of a global operation such as matrix multiplication, where the size of the
matrix is determined by the size of the input.

10

1.3 Training of neural networks
In general, training of a machine learning refers to the process of finding an
optimal set of parameter values for a given loss function which best fit a given
set of training data.

1.3.1 Maximum likelihood estimation
As most machine learning models, neural networks are usually trained by finding
optimum point estimates for a set of model parameters w using maximum likeli-
hood estimation [19, 18]. Maximum likelihood estimation finds a set of parameters
maximizing a likelihood function P (X; w) (P (X | w) is also used in literature),
so that under the assumed model, the observed data is the most probable.

Let X = {(xi, yi)}N
i=1 be a set of training examples, which are drawn inde-

pendently from an unknown underlying data-generating distribution pdata. For
classification tasks, we assume labels yi to be integer indices of individual classes
and a parametric family of classification models pmodel(. | x; w), parameterized
by a set of parameters w, to output a categorical probability distribution esti-
mating probability of each class, given a feature vector x, with pmodel(c | x; w)
denoting estimated probability of class c. Let p̂data be the empirical data distri-
bution of data observed in the set of training data X. Applying maximum like-
lihood estimation yields a loss function referred to as negative log-likelihood
or cross-entropy loss.

w∗
MLE = arg max

w
pmodel(X; w)

= arg max
w

N∏︂
i=1

pmodel(yi | xi; w)

= arg min
w

N∑︂
i=1
− log pmodel(yi | xi; w)

= arg min
w

E(x,y)∼p̂data [− log pmodel(y | x; w)] (1.2)

= arg min
w

H(p̂data, pmodel(. | .; w))

= arg min
w

DKL(p̂data ∥ pmodel(. | .; w)) ,

where
H(P, Q) = Ex∼P (x) [log Q(x)] ≥ H(P) = Ex∼P (x) [log P (x)]

stands for the cross-entropy between two distributions P and Q, where generally
H(P, Q) ̸= H(Q, P), H(P, Q) ≥ H(P) and H(P, Q) = H(P) iff P (x) = Q(x)
almost everywhere. Further,

DKL(P ∥Q) = Ex∼P (x) log P (x)
Q(x) = Ex∼P (x) [log P (x)− log Q(x)]

= H(P, Q)−H(P) ≥ 0

stands for the Kullback-Leibler (KL) divergence (also called relative entropy) [20]
from a distribution Q to a reference distribution P . KL divergence is commonly

11

used as a measure of difference between two distributions. Analogously to cross-
entropy, DKL(P ∥Q) is in general not equal to DKL(Q ∥P) and DKL(P ∥Q) = 0
iff P (x) = Q(x) almost everywhere.

Finding the optimal set of parameters can be thought of as an optimization
problem of finding the global minimum of a loss function, specifically in the case
of assumed categorical output distribution:

LNLL = 1
N

N∑︂
i=1
− log pmodel(yi | xi; w) = E(x,y)∼p̂data [− log pmodel(y | x; w)] (1.3)

Applying similar reasoning to a model which is assumed to output the mean
of a normal (Gaussian) distribution with a fixed variance gives us the mean
squared error (MSE) loss, which is the default loss function for regression
tasks, defined as:

LMSE = 1
N

N∑︂
i=1

(yi − ŷ(xi; w))2 = E(x,y) ∼ p̂data [(y − ŷ(x; w))2] , (1.4)

where ŷ(x; w) is the output of a model with weights w for input x and labels yi

are real numbers.

1.3.2 Gradient-based optimization
The most commonly used methods of optimizing a given loss function are based
on gradient descent, which involves iteratively computing partial derivatives of a
loss function L w.r.t. to each parameter of a model and adjusting each parameter
by a small amount in the opposite direction of the respective partial derivative.
The gradient descent update rule, performed for each weight wi at each iteration
t is:

wi(t + 1)← wi(t)− α
∂L

∂wi(t)
,

or, using vector and gradient notation:

w(t + 1)← w − α∇w(t)L ,

where α is commonly referred to as learning rate and is a hyper-parameter, mean-
ing that it is not learnt from data. Learning rate can either be constant or change
(decrease) with time according to a pre-determined schedule. Training is typically
divided into epochs, where in each epoch, weight updates for all of the training
examples are performed.

Stochastic and mini-batch gradient descent

Note that in Equations (1.2), (1.3) and (1.4), each of the loss functions is ex-
pressed as an expectation over a training data distribution. Therefore, using an
independently drawn sample from the training data to compute loss and gradient
of the loss provides unbiased estimates of the respective true values. Specially,
computing the gradient from each example individually (sample size 1) is usually
referred to stochastic gradient descent (SGD) [21].

12

An algorithm using a sample of a size between 1 and the size of the whole
dataset (called mini batch) is referred to as mini-batch gradient descent. Mini-
batch size is a hyperparameter. Using larger mini-batches results in lower vari-
ance of computed gradients, but fewer updates for a given number of processed
examples.

Practically, neural networks are typically trained on graphical processing units
(GPUs) or specialized hardware, which are well-suited for batch computation and
using larger batches typically results in faster training given sufficient operating
memory.

SGD is guaranteed to converge to a local optimum of the loss function provided
correct step sizes (learning rates) are used. In particular, a sufficient condition
for convergence is using a sequence of positive learning rates αt at step t such
that [22]

∞∑︂
t=1

αt =∞ and
∞∑︂

t=1
α2

t <∞ .

Backpropagation

Backpropagation (term coined by Rumelhart et al. [23]) is an algorithm used
to efficiently compute partial derivatives of a loss function with respect to each
parameter of a parametric model.

Each layer of a layered feed-forward neural network can be thought of as
a function of inputs and parameters of the layer. Thus, a multi-layered feed-
forward neural network can be thought of as a function composed of individual
layer functions. Since multiplication, addition, all commonly used activation
functions, and other operations, are all differentiable w.r.t. their respective inputs
and parameters, it is possible to compute partial derivatives of a loss function
w.r.t. to every parameter in every layer by repeatedly applying the chain rule.
Let y = f(x), z = g(y) = g(f(x)). The chain rule states:

∂z

∂x
= ∂z

∂y

∂y

∂x

Applying the chain-rule to the loss function of a neural network yields the
backpropagation algorithm. Let

zj(t) =
∑︂

i∈Ll−1

wi,j(t)yi(t) + bi(t)

be the pre-activation potential of neuron j at time t and let

δj(t) = ∂L
∂zj(t)

.

For a weight wi,j and a bias bj we have:

∂L
∂wi,j(t)

= ∂L
∂zj(t)

∂zj(t)
∂wi,j(t)

= δj(t)yi(t)

∂L
∂bj(t)

= ∂L
∂zj(t)

∂zj(t)
∂bj(t)

= δj(t)

13

The error term δj is computed differently for output neurons and for hidden
neurons. For an output neuron j it can be computed directly:

δj(t) = ∂L
∂yj(t)

∂yj(t)
∂zj(t)

= ∂L
∂yj(t)

f ′
j(zj(t))

For a hidden neuron j in hidden layer l:

δj(t) = ∂L
∂yj(t)

∂yj(t)
∂zj(t)

=
∑︂

k∈Ll+1

(︄
∂L

∂zk(t)
∂zk(t)
∂yj(t)

)︄
f ′

j(zj(t))

=
∑︂

k∈Ll+1

(δk(t)wj,k(t)) f ′
j(zj(t)) (1.5)

As we can see in Equation (1.5), to compute δ values for neurons a given layer,
we need to have first computed all δ values for all following layers. The process of
computing δ values (and subsequently partial derivatives w.r.t. to weights) from
the output layer towards the input layer is called backward propagation. Finally,
we can formulate the SGD algorithm using backpropagation to compute gradients
in simple pseudocode:

Algorithm 1: SGD training with backpropagation
Data: learning rate α, training data X, initial weights w(0)

1 t← 0
2 repeat
3 for (x, y) in random permutation of X do
4 Set the output vector of neurons in the input layer y0(t) to the

input x
5 Compute yj(t) for each neuron j
6 Compute loss at the output layer using the correct output y
7 Compute δj(t) for each neuron using backpropagation from the

output
8 wi,j(t + 1)← wi,j(t)− αδj(t)yi(t) for each weight wi,j

9 bj(t + 1)← bj(t)− αδj(t) for each bias bj

10 t← t + 1
11 until convergence;

Momentum

Momentum [24] is a simple modification to the gradient descent algorithm. In
addition to the gradient of the loss function at the current iteration, the weights
are also adjusted in the direction of the gradient in the previous iteration. Let
∆w(t) = w(t + 1) −w(t) denote the change in the weight vector at iteration t.
In case of vanilla SGD ∆w(t) is given by

∆w(t) = −α∇w(t)L .

Momentum also adjusts the weights in the direction of the change in the previous
step:

∆w(t) = −α∇w(t)L + β∆w(t− 1),

14

where the momentum term β controls how much the previous change influences
the current change. Momentum keeps a running exponentially decaying estimate
of the first moment referred to as velocity. Denoting the velocity vector by v, the
momentum update can be equivalently written as:

v(t)← βv(t− 1)− α∇w(t)L
w(t + 1)← w(t) + v(t) .

Using momentum helps convergence by reducing variance of the gradients. To
illustrate a case where momentum is especially effective consider a loss surface
descending in a long and narrow valley with steep sides with an optimum at
the bottom. In such case, the gradients are almost perpendicular to the long
axis of the valley with only a small component aiming in the desired direction
down the valley, which causes the parameters to oscillate back and forth between
the sides of the valley. Momentum dampens the oscillations by averaging out
the large lateral components and summing up the small lengthwise components
of the gradients, which causes the adjustments to gradually point closer to the
direction of the long axis.

Adaptive optimizers

Choosing the learning rate in standard SGD or SGD with momentum can be
difficult, often due to different sensitivity of the loss function in different direc-
tions. Under the assumption that these directions are somewhat aligned with the
axes of the parameters, it is beneficial to use a separate learning rate for each
parameter.

Various adaptive optimizers have been proposed. An early example is the
heuristic called delta-bar-delta [25], which increases the local learning rate for
parameters where the sign of the gradient has not changed from the last iteration,
and decreases it otherwise. More recent optimizers use approaches which maintain
a running estimate of the moments of the gradient. These include AdaGrad [26],
which was later extended to AdaDelta [27], RMSProp (unpublished) and Adam
[28]. Adam is widely used as the default optimizer in various tasks.

The Adam adaptive optimizer [26] maintains a unbiased estimates of the first
moment and the second uncentered moment of the gradients. The estimate of
the second moment is used to scale the global learning rate by a per-parameter
adaptive factor. Algorithm 2 sketches the optimization procedure using Adam.

15

The default values in the algorithm are suggested by the authors of Adam [28].
Algorithm 2: Adam mini-batch optimization

Data: Training data X, parameters w, learning rate α (default 10−3),
momentum β1 (default 0.9), momentum β2 (default 0.999),
constant for numeric stability ϵ (default 10−8)

1 s← 0, r ← 0, t← 0
2 repeat
3 Compute gradient of the loss for a batch of B ⊆ X: g ← ∇wL
4 Update first moment estimate: s← β1s + (1− β1)g
5 Update second moment estimate: r ← β2r + (1− β2)g ⊙ g
6 Apply bias correction: s← s/(1− βt

1), r ← r/(1− βt
2)

7 Update parameters: w(t + 1)← w(t)− α√
r+ϵ

s

8 until stopping criterion;

1.3.3 Regularization
Regularization refers to a set of techniques designed to mitigate overfitting –
a common problem in machine learning. Overfitting refers to the phenomenon
where a model learns to fit a particular empirical training data distribution p̂data

too closely, which may have a negative effect on generalization, or, in statistical
terms, fitting the true data generating distribution pdata (using notation intro-
duced in Section 1.3). Complex models with high capacity and many parameters,
such as neural networks, are able to fit observed data very closely, which makes
susceptible to overfitting if not properly regularized. Developing effective regu-
larization techniques has long been one of the major areas of research in machine
learning and especially deep learning [18].

Early stopping

Due to the iterative nature of neural network training, one of the simplest regular-
ization techniques called early stopping can be utilized. Early stopping involves
stopping of neural network training before parameters have converged to a local
optimum of the loss function. The learned parameters therefore do not fit the
observed training data as closely, which can benefit generalization.

Ensembling

Ensembling or ensemble learning refers to the practice of training multiple models
and combining their respective outputs to obtain an ensemble model with better
predictive performance than each of the constituent models.

Bias-variance tradeoff is a property of machine learning models, whereby
models with lower bias in parameter estimation usually have high estimation
variance and vice versa. High bias is typically due to the the model not fitting
the observed data closely enough – underfitting, while high variance is often due
to the model fitting the noise observed in the training data – overfitting.

A simple way of reducing variance of any general random variable X is to
average multiple independent samples of the variable due to the simple identity
Var

[︂
1
N

∑︁N
i=1 Xi

]︂
= 1

N
Var [X1]. Thus, using a set of independent models decreases

16

Epoch

Er
ro

r

Training error
Validation error

Figure 1.2: Schematic of training and validation error for an iteratively trained
model. The dashed line shows approximately where overfitting starts – validation
error stops decreasing and starts slightly increasing, while training error keeps
slowly decreasing.

variance without increasing bias, theoretically improving predictive performance
of the resulting model.

Although it can be difficult to obtain a set of models with fully independent
predictions, even using an ensemble of highly correlated models can be beneficial.
In case of neural networks, a simple ensemble can be obtained by repeatedly train-
ing the same architecture with different initial parameter values, which ideally
converge to different local optima.

Norm regularization

A common example of regularization technique is a family of regularization tech-
niques called norm regularization, whereby a term representing the norm param-
eter values is added to the loss function. For example, a common norm used for
regularization of neural networks is the L2 norm:

Lreg = L+ λ∥w∥2
2 ,

where L is a loss non-regularized loss such as negative log-likelihood (Equation
(1.3)), λ is a regularization factor and Lreg is the resulting regularized loss which
is optimized. A gradient update of weight wi using L2 regularized loss yields the
following:

wi(t + 1)← α ∗
(︄

∂L
∂wi(t)

+ ∂λ∥w(t)∥2
2

∂wi(t)

)︄
= α ∗

(︄
∂L

∂wi(t)
+ 2λwi(t)

)︄
.

Therefore, L2 normalization is also commonly referred to as weight decay because
when updating a weight, it is decayed towards 0 proportionally to its size. Simi-

17

(a) A neural network be-
fore applying dropout

(b) An example of a
dropout mask applied to
the network

(c) Another example of a
dropout mask applied

Figure 1.3: A neural network without dropout and two examples of a binary
dropout mask applied. Inspired by Figure 1 of [29].

larly, applying L1 normalization (sum of absolute values) results in the following
update:

wi(t + 1)← α ∗
(︄

∂L
∂wi(t)

+ λ sgn(wi(t))
)︄

,

where

sgn(x) =

⎧⎪⎪⎨⎪⎪⎩
−1, if x > 0

0, if x = 0
+1, if x > 0

.

L1 normalization decays each weight towards 0 by a constant amount λ, which
results in many weights becoming exactly 0. On the other hand, L2 regularization
pushes smaller weights towards zero by a proportionally smaller amount, which
results in many weights becoming small in absolute value, but not 0.

Dropout

Dropout refers to a family of regularization techniques, which aim to make neural
networks more robust by injecting random parametric noise into the outputs of
individual layers during training.

The most basic form (and the most widely used), commonly referred to as
binary dropout, or simply dropout, introduced by Srivastava et al. [29] in 2014
(in pre-print since 2012 [30]), injects multiplicative Bernoulli noise into the output
of a layer it is applied to. Injecting Bernoulli noise means randomly selecting a
value of either 0 or 1, which is equivalent to randomly choosing between zeroing-
out and keeping unchanged outputs of individual neurons in the layer.

Dropout rate (probability p of zeroing-out an output in case of binary dropout
or variance in Gaussian dropout) is typically a hyperparameter, however a family
of dropout variants called variational dropout ([31]) make dropout rate a learnable
parameter.

18

Gaussian dropout [29], another common variant of dropout, multiplies outputs
by Gaussian noise with mean of 1 and a variance corresponding to the dropout
rate.

A network with dropout can be seen as an ensemble (with an infinite number
of members in case of continuous dropout noise) of neural networks, where every
possible dropout mask corresponds to a member of the ensemble. Figure 1.3
illustrates two possible members of a dropout ensemble using binary dropout in
a multi-layer perceptron, where dropout is applied to every layer (except the
output). Note that input neurons can be also dropped, which is equivalent to
feature subsampling.

Standard dropout is only applied during training, using the same noise sample
during the forward pass and the backpropagation backward pass. During test-
ing, outgoing weights of layers which use dropout are multiplied by a constant
ensuring the expected value of the outputs remains unchanged between training
and testing.

1.4 Convolutional neural network architectures
for image classification

Architecture of a neural network refers to the arrangement, types and sizes of
layers of the network. The architecture of a neural network can be viewed as a
subset of hyperparameters.

Typical CNNs for image classification follow a common pattern of multiple
convolutional layers interleaved with downsampling layers, which extract increas-
ingly complex features from an input image. This feature extractor component
is then followed by a flattening operation leading into a classifier consisting of
one or more fully-connected layers, with the output layer typically using softmax
activation (Equation (1.1)).

In practice, a convolutional layer has multiple kernels, with each kernel pro-
ducing an output feature map. Each kernel is 3-dimensional (generally (n + 1)-
dimensional for n-dimensional inputs), containing a separate weight matrix for
each input channel. Therefore, a 2D convolution layer with kernels of width W ,
height H, with I input feature maps and O output feature maps has (W ∗ H ∗
C + 1) ∗O parameters, where the additive term 1 is to count biases.

1.4.1 Downsampling
Downsampling is used to progressively reduce spatial dimension of the image,
which helps increase the receptive field (the region of input pixels which affects
the output of a neuron) of each neuron and reduce computational complexity.
Also, as more complex features are extracted, their exact position becomes less
important – the location relative to other features is sufficient.

The two main methods of downsampling are strided convolutions and pooling
layers – most commonly max pooling, which partitions an input image into non-
overlapping rectangular sub-regions and outputs the maximum value for each.
Another common pooling layer is the average pooling layer, which as the name
suggests, output the average value for each sub-region. Pooling layers most com-

19

20

12

8

16

20

14

10

5

5

5

4

2

4

9

1 1

5

5 9

4

0 3

7 10

Figure 1.4: Pooling operations with 2×2 sub-regions. Top: max pooling. Bottom:
average pooling.

monly use a dimension of 2 × 2, halving both spatial dimensions. Figure 1.4
illustrates 2× 2 max pooling and average pooling.

The number of filters of convolutional layer typically increases after each pool-
ing layer. A common scheme for increasing is doubling the number of filters after
each layer, although there are many examples where a different scheme is used
[32].

As more computational power becomes available and more advanced tech-
niques for training large networks are invented, the number of layers in state-
of-the-art CNNs tends to increase. To demonstrate this, let us consider the
winning entry of the ImageNet Large Scale Visual Recognition Challenge [33],
an annual competition in classification using a very large set of images into 1000
non-overlapping classes. The first time the winning entry used CNNs was in 2012
[34], used 8 weight layers. The winner in 2014 [35] used 22 layers and the 2015
winner used 152 layers [2]. The total number of parameters of state-of-the-art
models can reach orders of tens of millions to hundreds of millions [36].

1.4.2 Flattening
Flattening refers to an operation transforming a multi-dimensional (3-dimensional
W ×H×C for 2D images) set of feature maps into a flat (1-dimensional) vector,
which becomes the input vector of the (MLP) classifier in a CNN.

The basic flattening operation simply takes this feature map and serializes it
into a vector of length W ∗H∗C. The problem with this approach is that W ∗H∗C
can be a very large number, which results in a huge number of features arriving
into the classifier. A method called global pooling has been more successful in
deep models. Global pooling is a pooling operation as described above, where
the whole image is treated as a single region. Global average pooling (GAP)
[37] has recently been the most widely used flattening method, while the number
of following fully-connected layers in the classifier has been reduced to just the
output softmax layer [2, 35, 38, 39].

20

1.4.3 Batch normalization
Since the technique called batch normalization (BN) was introduced in 2015 [40],
it has been extensively used in convolutional neural networks. Batch normaliza-
tion dramatically increases training speed of deep CNNs by computing sample
means and variances across a processed batch and normalizing them to fixed
values, which are trainable parameters. Let H be a matrix of activations for
a mini-batch of M examples, with the activations for each example arranged in
rows of the matrix. Batch normalization replaces replaces H with

H ′ = H − µ

σ
,

where the matrix-vector arithmetic is element-wise in each row, i.e. H ′
ij = Hij−µj

σj

and
µ = 1

M

∑︂
i

Hi

σ =
⌜⃓⃓⎷δ + 1

M

∑︂
i

(H − µ)2
i ,

where δ is a small constant for numeric stability. The output is then rescaled by
the trainable parameters of standard deviation γ and mean β to H ′′ = γH ′ +β.
Crucially, all operations leading from the input H to the final output H ′′ are
differentiable and we backpropagate through them.

Batch normalization greatly speeds up training of deep models by stabilizing
the distributions of layer inputs, which makes the loss landscape smoother [41].
In addition, using noisy sample means and variances introduces small random
noise in training, which has a slight regularization effect. Batch normalization is
typically used after each layer before the activation function is applied.

The bias terms are usually omitted in batch-normalized layers because the
mean parameter β of the batch normalization layer supplies the same effect.

21

2. Bayesian neural networks
In this section, we introduce one of the main focuses of this thesis - Bayesian neu-
ral networks, which augment previously described neural networks with Bayesian
statistics.

First, we review the fundamentals of Bayesian statistics. Next, we describe
approximate methods of performing Bayesian statistics and extend maximum
likelihood estimation and interpret it in the framework of Bayesian statistics.
Finally, we present three methods for approximate Bayesian used for neural net-
works and specifics of these methods when used in convolutional neural networks.

2.1 Bayesian statistics
Bayesian statistics is a sub-field of statistics, where probability represents a degree
of belief in an event, as opposed to frequentist statistics, where probability is seen
as the limit of relative frequency of an event as the number of trials approaches
infinity.

2.1.1 Bayesian inference
Our main focus within Bayesian statistics, called Bayesian inference, is used to
update a degree of belief in an event or a hypothesis using the central theorem of
Bayesian statistics – Bayes’ theorem:

P (H | D) = P (D | H)P (H)
P (D) ,

where

• H stands for any hypothesis, which may be influenced by observing data.

• P (H) is referred to as a prior probability or simply prior, representing a
degree of belief in the hypothesis before observing any data.

• P (H | D) is the posterior distribution, which is a degree of belief in a
hypothesis after observing data D.

• P (D | H) is a likelihood function, which represents a probability of observ-
ing particular data under hypothesis H. It can be interpreted as compati-
bility of hypothesis H with observed data.

• P (D) is referred to as marginal likelihood, which is not a function of H
and can therefore be treated as a normalizing parameter when determining
relative probabilities of hypotheses.

A typical task where Bayesian inference is used, which is our case as well, is
to infer a posterior probability distribution of a parametric model after observing
a set of (training) data.

The more commonly used alternative to Bayesian inference is frequentist in-
ference, which maximum likelihood estimation (see Section 1.3.1) is an example

22

of. The main distinction between Bayesian inference compared and frequentist
inference is that using Bayesian inference, a full probability distribution over a set
of parameters is inferred. Whereas frequentist inference treats model parameters
as scalar values by finding a point point estimate of the most likely set of param-
eters, Bayesian inference treats model parameters as random variables, inferring
a joint distribution over model parameters.

To obtain a prediction or posterior predictive distribution of a Bayesian model,
we need to integrate over the inferred distributions of model parameters:

p(ŷ | x;X, α) =
∫︂

p(ŷ | x; w)p(w | X, α) dw = Ew∼p(w|X,α) [p(ŷ | x; w)] (2.1)

where

• w is a set of parameters of a Bayesian model, e.g., weights of a neural
network,

• X = {(x, y)} is a set of observed training data, which were used to infer the
model parameters,

• α is a vector of hyperparameters of the prior distribution over parameters
p(w) = p(w | α). We will sometimes omit conditioning on the hyperpa-
rameters for the sake of brevity.

• x is a feature vector of an example, for which we wish to obtain a prediction,

• ŷ is a prediction of the model.

As we can see in Equation (2.1), we need to perform integration over the
model parameters to obtain a prediction, for which there is often no closed-form
solution. Numerical integration of the posterior can be computationally very
expensive or even intractable for many models, such as neural networks.

A typical way to approximate the integral is to take T samples of concrete
parameter values from the posterior parameter distribution w(i) ∼ p(w | X, α)
and use each sample for prediction, treating the sampled values as parameters
of a frequentist model. The individual samples are then averaged to obtain an
unbiased estimate of the true predictive posterior:

p(ŷ | x;X, α) ≈ 1
T

T∑︂
i=1

p(ŷ | x; w(i)) .

A Bayesian model can also be interpreted as an ensemble of infinitely many
models weighed according the posterior probability.

2.1.2 Approximate Bayesian inference
Since the true Bayesian posterior distribution can be represented by any proba-
bility density function, inferring the true posterior requires optimization over a
space of functions. Exact Bayesian inference thus becomes intractable quickly as
model complexity increases, and therefore needs to be approximated.

23

Maximum a posteriori estimation

The roughest commonly used approximate Bayesian estimator is the maximum
a posteriori (MAP) estimator, which approximates the true distribution using a
point estimate at the mode (the point with the maximum probability density) of
the posterior distribution. Note that in the following derivation, we use notation
introduced in Section 1.3.1:

θ∗
MAP = arg max

w
p(w | X)

= arg max
w

p(X; w)p(w)

= arg max
w

p(w)
N∏︂

i=1
pmodel(yi | xi; w)

= arg min
w

−
N∑︂

i=1
log pmodel(yi | xi; w)− log p(w)

= arg min
x
−E(x,y)∼p̂data [log pmodel(y | x; w)]− log p(w)

= arg min
w

H(p̂data, pmodel(. | .; w))− log p(w)

= arg min
w

DKL(p̂data ∥ pmodel(. | .; w))− log p(w)

Maximum likelihood estimation (see Section 1.3.1) can be interpreted in the
framework of Bayesian statistics as a special case of MAP estimation, where the
prior distribution over parameters p(w) is uniform.

Regularization as MAP estimation

In Section 1.3.3, we introduced norm regularization techniques from the frequen-
tist point of view, where the loss function of models trained by maximum like-
lihood is modified by addition of a penalty term, which penalizes the model
according the norm of the weights. These techniques can be reformulated and
justified in the framework of Bayesian statistics as using MAP estimation with
suitable priors, for example:

• L2 regularization is achieved using a 0-mean Gaussian prior

p(w) = N (w; µ = 0, σ2) ,

where lower variance σ2 of the prior results in a stronger regularization
effect, i.e. regularization factor λ ∝ 1

σ2 ,

• L1 regularization corresponds to a 0-mean Laplacean prior

p(w) = Laplace(w; µ = 0, b) = 1
2b

e− |x−µ|
b

where a lower scale factor b of the prior results in stronger regularization –
regularization factor λ ∝ 1

b2 .

Because the probability density of Laplacean distribution is much higher
around 0 for a given variance, L1 regularization promotes parameter values of
exactly 0 (sparse solutions), while a Gaussian prior merely promotes low abso-
lute values of parameters.

24

2.2 Variational inference
Variational inference is another approximate Bayesian method, which can provide
a much closer approximation of the true Bayesian posterior distribution. We
provide a brief description, while focusing on methods which are applicable to
neural networks. A more detailed description can be found in a review paper by
Blei et al. [42] or a book by Bishop [43].

Variational inference aims to approximate the unrestricted general true pos-
terior distribution P (w | X, α), which is often intractable, by a variational dis-
tribution Q(w) from a restricted set Q of tractable distributions and finding the
distribution closest to the true posterior from this set.

The closeness of Q(w) to P (w | X, α) is usually measured in terms of KL
divergence:

DKL(Q(w) ∥P (w | X, α))→ min
Q∈Q

.

Note that in the above formula, the arguments are reversed compared to the
intuitive order, where the true posterior would be the first term representing
the reference distribution. In that case, however, we would need to compute an
expectation over the true posterior, which is assumed to be intractable.

We already saw an example of variational inference in the maximum a poste-
riori estimator, which is equivalent to variational inference with a delta posterior,
which assigns probability 1 to a particular set of weights (infinite probability
density at the given point) and probability 0 to all other weights.

2.2.1 Parametric variational inference
Parametric variational distribution restricts the variational posterior Q(w | θ)
to a family of parametric distributions over weights w parameterized by a set of
parameters θ.

Parameters θ of are inferred by minimizing the KL divergence between the
approximate variational distribution Q(w | θ) and the true posterior P (w | X, α):

θ∗
V I = arg min

θ
DKL(Q(w | θ) ∥P (w | X, α)) (2.2)

= arg min
θ

∫︂
Q(w | θ) log Q(w | θ)

P (w | α)P (X | w)dw +
∫︂

Q(w | θ) log P (X)dw

(2.3)

= arg min
θ

∫︂
Q(w | θ) log Q(w | θ)

P (w | α)dw −
∫︂

Q(w | θ) log P (X | w)dw (2.4)

= arg min
θ

DKL(Q(w) ∥P (w | α))− Ew∼Q(w|θ) [log P (X|w)] . (2.5)

Note that in Equation (2.5) we expanded the first integral from the previous
equality and left out the second integral from the first equation because∫︂

Q(w | θ) log P (X)dw = log P (X)
∫︂

Q(w | θ)dw = log P (X) ,

which does not depend on θ.
The above derivation yields a loss function, which we refer to as evidence

lower bound or ELBO from here on. Other names of this loss function used in

25

literature include variational lower bound or variational free energy. The ELBO
loss is defined as:

LELBO = −
∑︂

(x,y)∈X

(︂
Ew∼Q(w|θ) [log P (y | x; w)]

)︂
+ DKL(Q(w) ∥P (w | α)) . (2.6)

The name ”evidence lower bound” originates from the equality

log P (X) = LELBO −DKL(Q(w | θ) ∥P (w | X, α))

where the KL divergence term is non-negative, which implies that LELBO is a
lower bound the marginal evidence log-likelihood log P (X).

As we can see, the ELBO loss in Equation 2.6 consists of a sum of two terms:

1. The first term is a data-dependent negative log-likelihood, which is a loss
function resulting from maximum likelihood estimation (Section 1.3.1), with
a slight modification: instead of using a point estimate of the weights, an
expectation over the variational posterior is used. Maximizing this term en-
courages the variational distribution to fit the observed data well by choos-
ing parameters θ which increase probability density q(w | θ) at the mode of
the likelihood function. We will refer to this term as expected log-likelihood
and denote it as LD.

2. The second part is a prior-dependent term, which acts as regularization, en-
couraging parameters to remain close to the prior. A prior is usually chosen
such it promotes model simplicity, such as the Gaussian or the Laplacean
priors mentioned in section 2.1.2. We will denote this term as LC .

Variational inference provides us with a way to perform approximate Bayesian
inference by optimizing a loss function. In other words, it casts inference as an
optimization problem. In cases where the derived ELBO loss function is tractable,
it can be directly optimized for example by gradient descent or other optimization
techniques. However, it might happen that it is still intractable, in which case it
needs to be further approximated, which we will describe in the following sections.

2.3 Bayesian neural networks
Variational inference and particularly parametric variational inference have been
successfully applied to infer distributions over weights of neural network. The
foundations were laid by Hinton and van Camp [44], who interpret the regu-
larization term in Equation (2.6) term as as a term minimizing the amount of
information required to encode weights of the neural network.

A further major contribution was made by Graves [45], who introduced a
stochastic variational gradient-based optimization method, which fits well into
the general framework of neural networks optimized by back-propagation.

A common choice of variational posterior used in Bayesian neural networks is
an independent (fully factorized) Gaussian distribution Q(w | θ) = N (w; µ; σ2)
with parameters θ = {µ, σ} of the same length as the number of weights of the
neural network [45, 44, 46, 47].

Because of the highly complex functional form of practical neural networks,
the predictive posterior is intractable. As a result, the expectation over the

26

posterior distribution in ELBO loss cannot be evaluated analytically, which means
that the ELBO loss function cannot be evaluated analytically, and so cannot the
gradients of the loss function with respect to the parameters of the variational
distribution. Therefore, we need a need a differentiable approximation of the
predictive posterior in order to train the model and use it in prediction.

2.3.1 Reparameterization trick
The näıve Monte Carlo estimator of the expected gradient of a function of weights
w.r.t. the variational parameters is given by the following equation:

∇θ Ew∼q(w|θ) [f(w)] = Ew∼q(w|θ)
[︂
f(w)∇q(w|θ) log q(w | θ)

]︂
≈ 1

T

T∑︂
i=1

f(w(i))∇q(w(i)|θ) log q(w(i) | θ) .

Although this estimator is unbiased, it exhibits high variance, which hurts op-
timization. Kingma and Welling [48] propose a reparameterization reducing the
variance of the estimator, which was originally used in the stochastic latent rep-
resentation layer in variational autoencoders. The same principle can be applied
at a larger scale to the stochastic weights. The proposed reparameterization of
the random variable w ∼ q(w | θ) uses a differentiable deterministic function t
of an auxiliary random noise variable ϵ ∼ r(ϵ) drawn from a simple noise dis-
tribution r: w = t(ϵ, θ). The function t transforms a sample of parameter-free
auxiliary noise and the variational parameters into a sample of weights from the
variational posterior. This allows us to estimate gradients of an expectation over
the variational posterior more efficiently:

∇θ Ew∼q(w|θ) [f(w)] = Eϵ∼r(ϵ) [∇θf(t(ϵ, θ))]

≈ 1
T

T∑︂
i=1
∇θf(t(ϵ(i), θ)) .

Applying the above to the expected log-likelihood term of the ELBO loss yields
an unbiased and differentiable Monte Carlo estimate of the gradient, referred to
by the authors as SGVB (stochastic gradient variational Bayes):

∇θLELBO = ∇θLD +∇θLC

where

∇θLD ≈
1
T

T∑︂
i=1

∑︂
(x,y)∈X

∇θ log p(y | x; w = t(ϵ(i), θ)) = ∇θLSGVB .

2.3.2 Bayes by Backprop
The reparameterization trick was in an algorithm called Bayes by Backprop [46],
which uses Monte Carlo estimates of gradients to develop an algorithm similar to
normal mini-batch gradient descent with backpropagation for parametric varia-
tional inference in fully-connected feed-forward neural networks. Bayes by back-
prop was described using neural networks with an independent Gaussian weight

27

posterior, which can be simply reparameterized using t(ϵ, µ, σ) = µ + σ ⊙ ϵ,
where values in ϵ are independently sampled from the standard normal distribu-
tion N (0, 1). The standard deviation σ of the posterior is parameterized point-
wise as σ = log(1 + exp(ρ)) = softplus(ρ), ensuring that the standard deviation
always remains non-negative. The variational parameters are θ = {σ, ρ}. An-
other proposed parameterization with the desired property of non-negativity of
σ is σ = exp(ρ) [47].

The intractable exact ELBO loss is approximated by taking T samples of
concrete weights and averaging the loss values computed for each particular draw:

LELBO = L(X, θ) ≈ 1
T

T∑︂
i=1

log q(w(i) | θ)− log P (w(i))− log P (X | w(i)) , (2.7)

where the first two terms approximate the KL divergence regularization term
LC . The authors claim that this approximation of the KL divergence performs
no worse in practice than the closed-form solution even in cases where the closed
form exists (for example between a pair Gaussians). A clear advantage is that
it allows the use of a prior, for which there is no simple closed-form solution of
KL divergence between the prior and the Gaussian posterior. In particular, the
authors propose a prior consisting of a scale mixture of two zero-mean diagonal
Gaussians:

P (w | σ1, σ2, π) =
∏︂
j

γN (wj | 0, σ2
1) + (1− γ)N (wj | 0, σ2

2) ,

where σ1 > σ2 and σ2 ≪ 1 and 0 < γ < 1, with the first term providing a heavier
tail and the second term providing a tighter a priori concentration of weights
around 0. There is no known closed-form solution to KL divergence between a
Gaussian and a scale mixture of Gaussians [49]. Experiments performed by the
authors show an improvement in classification when using a scale mixture prior
with grid-optimized hyperparameters compared to a Gaussian prior.

Gradients of this loss w.r.t the variational parameters can be computed using
a backpropagation-like algorithm. One epoch of the optimization is sketched in
Algorithm 3.

Note that the term ∂f(w,θ)
∂w

, which is present in gradients of both mean and
variance parameters, is the gradient calculated by standard backpropagation for
the particular draw of weights. Thus, we can learn the variational parameters
by simply calculating the usual backpropagation gradients, and then scaling and
shifting them as shown.

They also propose a reweighing of the KL divergence regularization term in
the ELBO loss suitable for use with mini-batch gradient descent. Let us consider
splitting the training data into M batches and let Xi denote the i-th batch. Also,
let π ∈ [0, 1]M and ∑︁M

i=1 πi = 1. The general scheme is as follows:

L(Xi, θ) = πiDKL(q(w | θ) ∥P (w | α))− Eq(w|θ) [log P (Xi | w)] ,

which is equivalent to the ELBO loss because ∑︁i L(Xi, θ) = LELBO. The standard
scheme for weighing the KL divergence term would distribute it evenly between
batches in an epoch by setting each πi = 1

M
. Their proposed scheme, which they

28

Algorithm 3: Bayes by Backprop
Data: Training data X, variational parameters θ = {µ, ρ}

1 Sample ϵ ∼ N (0, 1)
2 Let w = µ + softplus(ρ)⊙ ϵ
3 Let f(w, θ) = log q(w | θ)− log P (w)− log P (X | w)
4 Calculate the gradient with respect to the mean

∆µ ←
∂f(w, θ)

∂w
+ ∂f(w, θ)

∂µ

5 Calculate the gradient with respect to the variance parameters ρ

∆ρ ←
∂f(w, θ)

∂w

ϵ

1 + exp(−ρ) + ∂f(w, θ)
∂ρ

6 Update the variational parameters

µ← µ− α∆µ

ρ← ρ− α∆ρ

empirically found to work well, is πi = 2M−i

2M −1 . This scheme assigns high influence
of the complexity cost to the first few mini-batches, while the cost in the last few
mini-batches is highly data-dependent. According to the authors, this property
is especially useful in the beginning of training, where changes to weights due
to the data are slight in the first few mini-batches, only becoming significant as
more data is seen.

The main disadvantage of Bayes by Backprop is that it doubles the number
of parameters compared to an equivalent point-estimate neural network without
increasing the model capacity, which increases computation times and memory
demands. Additionally, obtaining a prediction in practice involves performing
averaging results of multiple forward passes with different samples from the vari-
ational posterior, which drastically increases the prediction time compared to an
equivalent frequentist model.

On the other hand, the Bayesian approach provides a strong regularization
effect and an effective way of estimating and decomposing model uncertainty.
Additionally, the authors demonstrate that by pruning weights minimizing the
signal-to-noise ratio |µi|/σi, it is possible to achieve a pruning ratio of up to 95%
with minimal deterioration of prediction performance.

2.3.3 Local reparameterization trick
Next, we describe a method introduced in 2015 by Kingma et al. [31] called the
local reparameterization trick (LRT). The local reparameterization is an extension
of the reparameterization trick introduced in Section 2.3.1. LRT aims to speed up
training of models with parametric stochastic weights by reducing variance of the
Monte Carlo gradients and also decrease computational cost. It can be applied
to various types of neural networks with stochastic weights, such as Bayes by

29

Backprop, or others, which we introduce further in this chapter.
Consider a dataset X with N examples and and let us estimate the data-

dependent part LD of the ELBO loss using a single mini batch of size M and a
single sample of the posterior weights, auxiliary noise:

LD ≈ LSGVB = N

M

M∑︂
i=1

log p(yi | xi; w(i) = t(ϵ(i), θ)) = N

M

M∑︂
i=1

Li .

Variance of the estimator LSGVB is given by:

Var [LSGVB] = N2

M2

⎛⎝ M∑︂
i=1

Var [Li] + 2
M∑︂

i=1

M∑︂
j=i+1

Cov [Li, Lj]
⎞⎠ (2.8)

= N2
(︃ 1

M
Var [Li] + M − 1

M
Cov[Li, Lj]

)︃
, (2.9)

where the variances and covariances are w.r.t both the empirical training data
distribution and the auxiliary noise distribution r:

Var[Li] = Varϵ(i)∼r(ϵ),(xi,yi)∼X

[︂
log p(yi | xi; w(i) = t(ϵ(i), θ))

]︂
.

As we can see in Equation (2.9), the contribution of the variance Var [Li] to the
total variance decreases with the batch size M . However, the contribution of the
covariances does not decrease with M . According to the authors, the covariance
term can become dominant even for moderately large batch sizes, negating the
variance-reducing property of using larger batch sizes, one of the main motivations
behind mini-batch gradient descent.

In order for the variance to scale as 1/M , which is the case with frequentist
inference, the authors propose a different sampling method, which ensures that
Cov [Li, Lj] = 0. A näıve way of achieving this property is sampling a separate
weight matrix for each example in a mini batch. However, this approach in prac-
tice requires sampling of a very large random tensor, proportional in size to the
number of weights multiplied by the batch size. Sampling such a large random
vector requires a non-trivial amount of time and introduces a large amount of
noise in the training. Additionally, layer operations would need to be performed
with a different set of weights for each example in a batch, negating the compu-
tational efficiency of batch computation.

The sampling method proposed by Kingma et al. [31], called the local repa-
rameterization trick, is based on the observation that the expected log-likelihood
is only influenced by the weights (and the random noise) through the neuron
activations, of which there are normally much fewer compared to the variational
parameters.

Let us consider a single fully-connected layer with a stochastic weight matrix
W , an input batch represented by a matrix A and the stochastic batch activation
represented by a matrix B = AW . For a fully-factorized Gaussian variational
posterior over weights (such as in Bayes by Backprop), the posterior for the
activations B conditioned on the input A is also a fully-factorized Gaussian:

q(wi,j | θ) = N (µi,j, σ2
i,j) =⇒ q(bm,j | A, θ) = N (γm,j, δm,j) ,

where
γm,j =

∑︂
i

am,iµi,j and δm,j =
∑︂

i

a2
m,iσ

2
i,j .

30

or in matrix notation:

Γ = AWµ and ∆ = A2W 2
σ ,

where Wµ denotes the matrix of weight means, Wσ denotes the matrix of stan-
dard deviations of individual weights and matrix powers are element-wise, i.e.
A2 = A⊙A.

Thus, we can sample the random activations instead of sampling the random
weights and using them to compute the activations:

bm,j = γm,j +
√︂

δm,jϵm,j

B = Γ +
√

∆⊙ E ,

where ϵm,j ∼ N (0, 1). The auxiliary random matrix E for a batch of size M
and a layer with O outputs has a dimension of M × O. Note that the sampling
procedure for the activations itself utilizes the reparameterization trick. Note
that this is the reparameterization trick introduced in Section 2.3.1, not the LRT
itself. In comparison, a single sample of the weight posterior requires sampling an
auxiliary noise matrix of dimension I×O, where I is the number of inputs, while
forfeiting the advantage of variance inversely proportional to batch size. Using
an independent weight sample for each example, which is unsuitable for batch
computation, requires sampling a noise tensor of dimension M × I ×O.

To get an intuitive sense of the variance-reducing properties of the local repa-
rameterization trick, consider the estimated gradient with respect to the vari-
ational parameter σ2

i,j using batch size M = 1. Directly sampling the random
weights W , we get

∂LSGVB

∂σ2
i,j

= ∂LSGVB

∂bj

ϵi,jai

2σi,j

.

Using the local reparameterization trick to sample the activations, we get

∂LSGVB

∂σ2
i,j

= ∂LSGVB

∂bj

ϵjai

2
√

δj

.

The latter gradient estimate depends on much fewer noise variables - only one
stochastic variable rather than a noise variable for each element of the input. It is,
therefore, much easier to estimate the influence of the back-propagated gradient
since it depends on much fewer noisy variables. A more rigorous argument can
be found in the original paper [31].

2.4 Dropout as a Bayesian approximation
In 2016, Gal and Ghahramani [50] interpreted dropout (described in Section
1.3.3), which was originally proposed as a regularization technique, within the
Bayesian framework.

The ordinary weight matrices in neural networks are interpreted as variational
parameters and the variational posterior is a distribution over the weight matrices
with columns randomly set to zero, corresponding to setting the activation of a
neuron to zero. The dropout rate remains fixed during training by setting of a
hyperparameter.

31

Let us denote the number of neurons in the layer l for l = 1, . . . , L as Kl and
the base (pre-dropout) matrix of connection weights from the (l − 1)-st layer of
the l-th layer as Ml ∈ RKl−1×Kl . The (stochastic) weight matrix Wl of the l-th
layer is parameterized as:

Wl = Ml diag
(︂
[ϵl,j]Kl

j=1

)︂
ϵl,j ∼ Bernoulli(1− pl) for l = 1, . . . , L, j = 1, . . . , Kl−1 ,

where pl is the dropout rate of the l-th layer.
The approximate predictive posterior is obtained by Monte-Carlo integration

over the weights, which is in practice performed by averaging results of mul-
tiple forward with different dropout noise samples (masks). The technique is
known as Monte-Carlo (MC) dropout. The proposed method does not include
any modifications to the standard frequentist loss function nor does it introduce
any additional parameters or hyperparameters besides the number of samples
used in MC dropout prediction.

A major advantage of this approach is that it can be applied to a wide
range of existing models trained with dropout. Experiments conducted by Gal
and Ghahramani [50] show slightly better results when evaluating models using
Monte-Carlo dropout compared to using standard weights averaging. Using stan-
dard weight averaging, a single forward pass is performed during prediction, where
outgoing weights of layers using dropout are multiplied by suitable constants de-
pending on the dropout rate to maintain identical expected activations as during
training. Although we describe the method specifically for binary dropout using
Bernoulli multiplicative noise (following the original publication), it can also be
applied to other dropout variants, such as Gaussian dropout.

2.4.1 Variational dropout
Variational dropout, proposed by Kingma et al. [31], makes the dropout rate of
Gaussian dropout adaptive to the data as opposed to dropout where the dropout
rate is a hyperparameter fixed during training.

Computing the batch output matrix B of a dropout layer (with any dropout
noise distribution) corresponds to applying element-wise multiplication by an
independently sampled noise matrix E and the input A and multiplying the
result by the weight matrix W :

B = (A⊙ E)W ,

where ϵi,j ∼ r(ϵi,j) is sampled from the dropout noise distribution r.
As shown by Wang and Manning [51], if the elements of the noise matrix are

sampled independently from a Gaussian distribution r = N (1, α), each element
bm,j of the batch output activation matrix B follows a Gaussian distribution
N (γm,j, δm,j) with

Γ = AW and ∆ = αA2W 2 .

The local reparameterization trick can be used to note that the distribution over
activations is equivalent to using stochastic weights, where the posterior of each
weight is independently sampled from a Gaussian:

q(wi,j | θ) = N (θi,j, αθ2
i,j) .

32

The variational parameters are weight means µ (standard scalar weights, if
we ignore variational dropout) and dropout rates α: θ = {µ, α}. Training is
performed by variational inference using the ELBO loss. Weight parameters θ are
trained using maximum likelihood estimation, i.e. by maximizing the expected
log-likelihood Ew∼q(w|θ) LD.

The prior is chosen so that the regularization term DKL(q(w | θ) ∥ p(w)) does
not depend on the pre-dropout weight means µ. The authors show that the
only prior which satisfies this condition is the scale invariant log-uniform prior:
p(log |wi,j|) ∝ c, where c is a constant. This is an improper prior, meaning that
there exists no constant c for which p is a valid probability density function. KL
divergence between the log-uniform prior and the posterior cannot be analytically
computed; the authors derive an approximation, which they claim is extremely
accurate [31]:

DKL(q(wi | θ) ∥ p(wi)) ≈ c + 0.5 log(α) + c1α + c2α
2 + c3α

3 ,

with
c1 = 1.16145124, c2 = −1.50204118, c3 = 0.58629921 .

Molchanov et al. [52] propose a different approximation, which provides a
close approximation for a wider range of dropout rate values α.

The noise parameter α can be used at various levels of granularity. A separate
dropout rate can be learned per layer, per neuron or even per weight [52].

Further, the authors set a constraint α ≤ 1, which corresponds to setting an
upper bound on the posterior variance to be equal to the square of the posterior
mean. This should help avoid local optima with high α, which are difficult to
escape due to the resulting high variance of the gradients. A dropout rate of
1 results in noise with same variance as binary dropout with dropout rate 0.5,
which maximizes the entropy of the multiplicative noise in case of binary dropout,
which in turn maximizes the regularization effect.

2.5 Bayesian convolutional neural networks

2.5.1 Dropout as a Bayesian approximation in CNNs
Gal and Ghahramani, who proposed the Bayesian interpretation of dropout ([50],
Section 2.4) in fully-connected feed-forward neural networks, applied a similar
method to CNNs [53]. They show that their arguments posed for fully-connected
layers with matrix multiplication can be applied to convolutional layers by show-
ing that convolution is equivalent to multiplication by a matrix built by a partic-
ular arrangement of the values in the convolutional kernels and inputs.

They also experimentally demonstrate that classification performance of ex-
isting CNN models pre-trained with dropout can be improved by performing MC
dropout at test time compared to the standard dropout output scaling. Improve-
ment in classification performance is observed when applying MC dropout to
convolutional layers, both compared to no dropout and standard dropout. The
advantage of Monte-Carlo dropout increases as more outputs from more forward
passes are averaged. The performance benefit over standard dropout becomes sig-
nificant at around 20 Monte-Carlo samples, with little additional benefit observed
beyond approximately 80 samples in their experiments.

33

The authors claim that standard dropout is usually not used after convo-
lutional layers; this is no longer true as recent complex CNN architectures have
benefited from adding dropout after convolutional layers [2, 54, 55]. Dropout rates
used after convolutional layers are typically lower (such as 0.1) than dropout rates
used after fully-connected layers (often up to 0.5).

2.5.2 Bayes by Backprop for CNNs
The algorithm Bayes by Backprop [46] (introduced in Section 2.3.2), originally
presented for fully-connected feed-forward neural networks, was extended to re-
current neural networks in 2017 by Fortunato et al. [56] and to convolutional
neural networks in 2018 by Laumann et al. [57, 58].

Their method for CNNs combines the ideas of Bayes by Backprop with an
extension of the local reparameterization trick (described in Section 2.3.3) for
CNNs. Namely, they follow the original Bayes by Backprop algorithm in the
use of a Gaussian posterior over weights, the same estimate of the ELBO loss
(Equation (2.7)) and a similar optimization procedure. One aspect where they
diverge from the original

The variational posterior q over the kernel weights wi,j,h,w is parameterized
as q(wi,j,h,w | θ = {µ, log α}) = N (µi,j,h,w, µi,j,h,wα2

i,j,h,w). There are two marked
differences from the original Bayes by Backprop: first, the variance of the vari-
ational posterior is relative to the mean, where the original Bayes by Backprop
uses a variance independent of the mean, and second, the variance part of the
Gaussian is obtained from the variational by exponentiation instead of using the
softplus function.

As mentioned, Bayesian CNNs as proposed by Laumann et al., also utilize the
idea of the local reparameterization trick, which is modified for use with convolu-
tional layers. Sampling from the 4-dimensional tensor (for 2 spatial dimensions)
of batch output activations B for a 4-dimensional tensor of batch inputs A is
performed as follows:

B = A ∗Wµ + E ⊙
√︂

A2 ∗ (Wα ⊙W 2
µ) ,

where ∗ signifies the usual convolution operation a convolutional layer would
perform on the input batch, Wµ denotes the tensor of kernel means and Wα

signifies the tensor of kernel relative standard deviations. The dimensions of the
tensor of auxiliary noise E are the same as the dimensions of the output activations
B. Tensor powers are element-wise. Note that two full operations of a normal
convolutional layer are performed per input image – one for the mean and one for
the standard deviation – similarly to the local reparameterization trick for a fully-
connected layer with Bayes by Backprop, where two matrix-vector multiplications
are performed per example, i.e. two matrix-matrix multiplications per batch.

34

3. Active learning
Active learning is a machine learning technique where the learner can interac-
tively query an information source, referred to as oracle, to label new data with
correct outputs. The main motivation for active learning is that if a learner is
able to select the most informative training examples to learn from, it should be
able to learn more with less data.

Such a property would be especially useful in tasks, where unlabelled data
is abundant, but labels are expensive to obtain. The focus of this thesis, image
classification, is a good example of such a task. Images are usually readily avail-
able, but obtaining the normally required thousands or millions of labels requires
considerable human effort.

The chapter is organized as follows. First, we describe active learning sce-
narios. An active learning scenario refers to the type of process used to de-
liver unlabelled candidate examples for labelling. Next, we present examples
of commonly-used query strategy frameworks. A query strategy framework is
a class of acquisition functions, which are functional criteria used for evaluat-
ing informativeness of unlabelled examples. Next, we describe batch-mode active
learning, where multiple instances are acquired per iteration. Finally, we review
applications of active learning to image classification tasks.

3.1 Scenarios
Active learning research deals with three main active learning scenarios:

• Membership Query Synthesis [59]. In the membership query synthesis
scenario, the learner may request the oracle to label any instance in the
input space. The learner is thus allowed to generate instances to label de
novo. The main problem with implementing this scenario is that it may
happen that many examples in the input space are out of domain as defined
by the underlying data-generating distribution. For example, synthesizing
an image in a particular domain is a difficult task itself and it often happens
that most randomly generated images cannot be reasonably labelled [60].

• Stream-based selective sampling [61]. Stream-based selective sampling,
also known as sequential active learning, uses unlabelled instances from the
underlying distribution. It is assumed that obtaining an unlabelled instance
from the underlying distribution is inexpensive. Unlabelled instances are
sampled shown to the learner and the learner decides whether or not to ask
for the label of each particular instance. If the learner decides not to label
a presented instance, it is discarded and a new instance is presented in the
next iteration.

• Pool-based sampling [62]. In the pool-based sampling scenario, we as-
sume there is a small set of labelled data L = {(xi, yi)}i to learn from, and
a larger set of unlabelled data U = {xi}i to draw queries from. Once a label
is obtained for an unlabelled sample, it is removed from the unlabelled set
and added to the labelled set. The learner then learns from the extended

35

labelled set and iteratively queries more samples from the unlabelled set to
be labelled. This process is continued until a desired predictive performance
of the model is achieved or a labelling budget is exhausted. Algorithm 4
sketches pool-based active learning in the case where B best instances are
queried in each iteration. Pool-based active learning has been successfully
applied to various machine learning tasks, including image processing tasks
[63, 64, 65, 66].

Algorithm 4: Pool-based batch-mode active learning
Data: Labelled data L, unlabelled pool U , query strategy ϕ(.), query

batch size B
1 repeat
2 θ ← train(L)
3 for b = 1 to B do
4 x∗

b ← arg maxx∈U ϕ(x)
5 yb ← label(x∗

b)
6 L ← L ∪ (x∗

b , yb)
7 U ← U \ (x∗

b , yb)
8 end
9 until stopping criterion;

3.2 Query strategy frameworks
In all the active learning scenarios, the learner needs to be able to evaluate the
informativeness of unlabelled instances. A wide variety of query strategies have
been studied [67]. In this section, we present some common examples. We will
denote the most informative instance according to a query selection algorithm A
as x∗

A.

3.2.1 Uncertainty sampling
Uncertainty sampling [62] is perhaps the most widely-used active learning query
strategy framework. The learner queries the instances where the predictions are
the most uncertain. To measure uncertainty in predictions, it is assumed the
learner outputs a distribution over possible labellings. It is often straightforward
to implement uncertainty sampling query strategies for probabilistic models.

Let P (. | x) refer to the output categorical distribution of the learner and
P (yc | x) refer to the predicted probability of labelling c from the set of possible
labellings (classes) C. Examples of query strategies for multi-class classification
problems include:
• Least confident:

x∗
LC = arg max

x∈U
1− P (ŷ | x) .

The least confident query strategy (also known as variations ratios) selects
the sample where the class predicted by the probabilistic model is assigned
the lowest probability. The value is equivalent to the sum of probabilities
assigned to all the classes except the predicted class and can be interpreted
as the probability of misclassification expected by the model.

36

• Margin sampling:

x∗
M = arg min

x∈U
P (y1̂ | x)− P (y2̂ | x) .

In the above equation, ŷ1 refers to the class with the highest probability
and ŷ2 refers to the class with the second highest probability. Whereas the
least confident strategy ignores the rest of the model output distribution
apart from the predicted class, the margin sampling strategy also takes into
account the second most probable class. The rest of the distribution is still
not taken into account. The motivation behind margin sampling is that
instances where the difference between the first two probabilities is large
are easy to classify, whereas those with a small margin are ambiguous.

• Maximum entropy:

x∗
H = arg max

x∈U
= H[P (. | x))] = −

∑︂
c∈C

P (yc | x) log P (yc | x) .

The maximum entropy takes an information-theoretic approach, using en-
tropy of the output distribution as a measure of uncertainty. In the case of
binary classification, entropy is equivalent to both least confident and mar-
gin sampling, querying the instance which has posterior probability closest
to 0.5.

3.2.2 Query-by-committee
The query-by-committee uncertainty sampling framework [68] is based on main-
taining a committee (also known as an ensemble) of n learners, which are all
trained on the current labelled set L, each representing a different competing
hypothesis. Each member of the committee is allowed to vote on the labellings of
query candidates. The instance where they most disagree is considered the most
informative.

The main premise of query-by-committee is minimizing the set of hypotheses,
which are consistent with the current labelled set L.

There are two main approaches to measuring the amount of disagreement in
a prediction by a committee:

• Vote entropy measures the entropy of the distribution consisting of pre-
dicted labellings by each member of the committee:

x∗
VE = arg max

x∈U
−
∑︂
c∈C

V (yc)
|C|

log V (yc)
|C|

,

where V (yc) is the number of votes that the label c receives, i.e. the number
of committee members which assign the highest probability to class c. Note
that vote entropy is equivalent to maximum entropy uncertainty sampling,
where the output distribution of the committee is constructed by putting
votes of committee members into bins and normalizing the result to pro-
duce a categorical distribution over possible labellings. Unlike uncertainty
sampling, vote entropy can also be used with models which only produce a
single class prediction instead of a full distribution.

37

• Average KL-divergence measures the average disagreement between pre-
dictions of individual committee members and the aggregate prediction of
the committee:

x∗
KL = arg max

x∈U

1
n

n∑︂
i=1

DKL(Pi(. | x) ∥P (. | x)) ,

where Pi(. | x) is the output distribution of the i-th committee mem-
ber consisting of predicted probabilities for each class and P (yc | x) =
1
n

∑︁n
i=1 Pi(yc | x) for each class c is the average prediction of the whole

committee. Kullback-Leibler (KL) divergence is an information-theoretic
measure of difference of two distributions, described in Section 1.3.1.

3.2.3 Expected model change
The expected model change query strategy framework uses an approach based on
decision theory, querying instances, which would most affect the current model,
if it was provided the label for that instance. A typical query strategy in this
framework is the expected gradient length (EGL) [69], which can be used for
models trained by gradient-descent-like optimization algorithms. The learner
queries the instance, which after addition to the labelled set produces the largest
gradient of the loss function.

Let ∇θl(L; θ) be the gradient of the loss function l with respect to the model
parameters θ for the current labelled set L. Let ∇θl(L∪(x, y); θ) be the gradient
after the addition of a new instance x with label y to the labelled set. Since the
correct label y is not known in advance, we take an expectation over the model
posterior:

x∗
EGL = arg max

x∈U

∑︂
c

P (yc | x)∥∇θl(L ∪ (x, yi); θ)∥2.

Note that at query time, ∥∇θl(L; θ)∥ should be very close to zero, since the
model is assumed to have been trained to convergence. Thus, we can use an
approximation ∇θl(L ∪ (x, y); θ) ≈ ∇θl((x, y); θ).

EGL can be computationally expensive if both the feature space and the set
of labellings are large. It is also sensitive to magnitude of features and parameters
– the informativeness of an instance can be over-estimated if one of its features
is large or a corresponding parameter has a large estimated value.

3.2.4 Density-weighed methods
Simple query strategy frameworks like uncertainty sampling, QBC and EGL have
a disadvantage is that they query instances which are ”controversial”, which often
correspond to outliers present in the data. Outliers do not necessarily provide the
maximum amount of information about the underlying data distribution. Such a
situation is illustrated in Figure 3.1. Additionally, outliers may even misrepresent
the underlying data-generating distribution (i.e., be the result of an anomaly or
an erroneous measurement), which may lead the learner astray.

To mitigate this issue, Settles and Craven [70] describe the information density
framework, which extends a base acquisition function ϕA by a term incorporating
a measure of representativeness of the instance. Instances which inhabit dense

38

A

B

Figure 3.1: The circles represent points in the unlabelled pool. The line repre-
sents the decision boundary of a classifier. Outlier point A lies on the decision
boundary, and would therefore be likely queried by uncertainty sampling. How-
ever, point B is likely to provide more information about the underlying data
distribution because it lies in a high-density region of the input space.

regions of the input space are considered to be more representative. Density is
measured by the mean similarity to the other instances in the input space, which
is approximated by the unlabelled set U :

x∗
ID = arg max

x∈U

⎛⎜⎝ϕA(x)×
⎛⎝ 1
|U|

∑︂
xu∈U

sim(x, xu)
⎞⎠β
⎞⎟⎠ .

In the above equation, sim is a function representing similarity between two
instances in a given input space. The second multiplicative term weighs the
informativeness of an instance by the approximate density of the input space
around the instance. The parameter β determines how much the informativeness
of an instance is influenced by the density term.

A disadvantage of the information density is that computing the density for
all samples in U grows quadratically with the number of samples in U . Since the
unlabelled pool is usually relatively large, this could pose a problem. However,
these densities are independent of the base informativeness measure and thus,
the learner, which means that they can be pre-computed once and cached for
later use. The computation of the densities can be sped-up by clustering U and
computing the similarity only to other instances in the same cluster [71].

3.3 Batch-mode active learning
In all of the query strategy frameworks presented in Section 3.2, we considered
querying a single most informative instance. The learner is then typically re-
trained after each query. However, it may slow or expensive to select the instance
to query or to retrain the model after each query. For example, in a pool-based
expected model change framework, it may take a long time to evaluate the ex-
pected gradient over all possible labellings for all examples in a large unlabelled

39

set. In that case, it may be beneficial to query new labels in groups, which is
referred to as batch-mode active learning.

The challenge of batch-mode active learning is selecting the optimal query set
Q. Näıvely choosing the B best instances according to a single-instance query
strategy (sketched for pool-based sampling in Algorithm 4) can be inefficient
because it ignores the overlap in information content among the chosen instances.
In other words, an instance may be informative given the current labelled set, but
may much less informative given the current labelled and other instances in the
same batch. In such case, optimal construction of a batch may require searching
through all possible subsets of the unlabelled set, which may be computationally
infeasible.

A simple heuristic which has been proposed to mitigate the issue with infor-
mation overlap is incorporation of a diversity measure into the query function.
Greedy batch selection where a base query function is weighed by a diversity
term is a popular strategy [67], with minimum distance to instances already in
the batch as an example [72].

3.4 Active learning in image classification
In this section, we provide a brief overview of previous work related to active
learning applied to image classification (and similar) tasks.

As mentioned before, training a well-performing image classifier typically re-
quires large amounts of labelled images. On the other hand, unlabelled images are
usually readily available. As a result, active learning, and specifically, the pool-
based sampling scenario, is well-suited to image classification machine learning
tasks.

One of the first attempts to use active learning for training of neural networks
for image classification was made by Lang and Baum [60], who use membership
query synthesis with human oracles to recognize handwritten digits, similar to
the long-popular dataset MNIST [73].

Joshi et al. [74] explore batch-mode uncertainty sampling with the addition of
an annotation cost term. They use class membership probability estimation for
one-vs-all SVMs for multi-class image classification with pre-computed features
on the Caltech-101 image dataset [75].

Gal et al. [76] apply the Monte-Carlo dropout Bayesian approximation pro-
posed by Gal and Ghahramani [50] (described in Section 2.4) to active learn-
ing image classification on the MNIST digits dataset using a shallow CNN and
image-based skin cancer binary classification using a deeper CNN. They compare
multiple query strategies in the uncertainty sampling framework to a random
baseline in batch-mode pool-based sampling scenario. They also compare their
active learning approach to semi-supervised learning [77, 78].

Beluch et al. [79] compare uncertainty sampling using an ensemble of learners
to MC dropout and a single network in batch-mode pool-based sampling scenario.
They also experiment with a density-weighted method with the weighing by min-
imum distance to instances already in the batch, which is greedily constructed
one instance at a time. They use Euclidean distance between feature vectors
ouput by the last hidden layer of the network as a measure of similarity.

40

Sener and Savarese [80] focus specifically on batch-mode active learning in
large-scale image classification, arguing that traditional strategies primarily used
for single-instance queries are inefficient when used with greedy batch selection.
On the other hand, selection of single instances is impractical due to the complex-
ity of retraining a CNN after each acquisition in large-scale tasks. They define
active learning as a problem of core-set selection, which aims to find a small sub-
set of a larger dataset such that a model learned on this subset performs well on
the entire dataset. The optimal query set is then computed by approximately
minimizing a core-set loss. The core-set loss is a component in decomposition of
the expected loss of the learner over the underlying data-generating distribution
when trained on an initial labelled set combined with a queried set.

41

4. Uncertainty sampling active
learning in Bayesian neural
networks

4.1 Uncertainty estimation in neural networks
Proper estimates of uncertainty of neural networks prediction is important in
many applications, where neural networks serve a critical role [81]. As a practical
example, high confidence predictions could be used without further human inter-
vention, while lower confidence predictions could be further assessed by a human
expert.

As demonstrated by Guo et al. [82], the outputs of modern classification
neural networks with high capacity tend to make highly confident predictions by
assigning high probability to the most probable predicted class. However, the
assigned probability often does not correspond to the true accuracy of predic-
tions. In such case, we say that the predictions are poorly calibrated, specifically
overconfident. Guo et al. experiment with various image classification neural
networks, observing that with increasing model capacity, calibration tends to
deteriorate. Additionally, batch normalization, which is used in some form in
virtually all modern image classification neural networks, seems to further com-
pound the problem of poor calibration.

Classification neural networks output a distribution carrying uncertainty in-
formation, even though it is often unreliable. In comparison, classical regression
neural networks output a single predicted value (or a vector of values), which
carries no uncertainty information. An extension has been proposed for regres-
sion [83], where an additional output head is added to the network predicting the
variance of the output.

4.1.1 Uncertainty estimation in Bayesian neural networks
Compared to frequentist models, Bayesian neural networks model uncertainty
over parameters, which translates into uncertainty over activations and thus pre-
dictions. In theory, a Bayesian neural network (or any Bayesian model) outputs
a full distribution, which captures the uncertainty in the predictions. However,
as discussed throughout Chapter 2, recovering the output distribution exactly
is intractable in most practical cases. Therefore, analogously to obtaining pre-
dictions, we must resort to sampling. The procedure of uncertainty estimation
is thus similar to prediction: T samples of parameters from the posterior are
obtained, each used in a forward pass, yielding a prediction. The set of T predic-
tions is then used to compute a suitable statistic measuring the uncertainty. To
obtain predictions, the mean over the samples is used.

In regression tasks, a natural choice of a measure of uncertainty is the variance
among the individual predictions [84]. In classification tasks, the situation is more
complicated, since each sample from the output distribution is a (categorical)
distribution itself. A simple solution is to average out one of the dimensions of

42

the distribution, yielding a distribution which can be used to quantify uncertainty.
An average over the individual predictions yields a single categorical output

distribution, which can be used for uncertainty estimation by common uncertainty
sampling acquisition functions used in active learning (reviewed in Section 3.2.1).
A drawback of this approach is that taking into consideration only the average
output of a Bayesian model ignores the uncertainty captured by the distribution
over the outputs arising from the uncertainty over the model parameters.

The other possible approach is to take average weighted by predicted values
within each sampled prediction. Uncertainty can then be estimated using the
variance within the T sampled outputs. Let p(t)

c = p(y = c | x; w(t)) be the
estimated probability of class c ∈ C given input x and a particular sample of
model parameters w(t):

σ2 = 1
|C|

∑︂
c∈C

1
T

T∑︂
i=1

(︄
p(t)

c −
1
T

T∑︂
i=1

p(t)
c

)︄2

.

This approach ignores the uncertainty captured by the individual sampled out-
puts, treating each value as a separate regression prediction. Gal et al. [76]
experiment with this function in setting of active learning image classification,
measuring only slight improvement over baseline uniform random acquisition,
while the former approach shows a significant improvement over the random ac-
quisition baseline.

4.2 Bayesian active learning by disagreement
Houlsby et al. [85] propose an extension of the maximum entropy query strategy
for Bayesian models called Bayesian active learning by disagreement (BALD).
Instead of querying the points which maximize the entropy of the output cate-
gorical distribution, BALD acquires instances which maximize the mutual infor-
mation between predictions and model parameters. Let q(w | L) be the posterior
distribution over parameters w of a Bayesian model outputting a (categorical)
distribution y conditioned on the input x and parameters w trained on a labelled
set L. BALD queries training instances according to:

x∗
BALD = arg max I(y; w | x,L)

= H(Ew∼q(w|L) [y | x; w])− Ew∼q(w|L) [H(y | x; w)] .

The first term in the last equality is the entropy of the expected output of the
model, which is the same as in the maximum entropy framework. The second
term is the expected entropy of the output. BALD thus combines uncertainty in
the averaged output with the uncertainty over the space of possible outputs.

Since the expectation over the model posterior is assumed to be intractable,
we resort to approximation by Monte-Carlo sampling. Let y(t) be the categorical
distribution given by individual values of p(t)

c for each class. The BALD score is

43

approximated by T MC samples as

I(y; w | x,L) ≈ H

(︄
1
T

T∑︂
t=1

y(t)
)︄
− 1

T

T∑︂
t=1

H(y(t))

= −
∑︂
c∈C

[︄(︄
1
T

T∑︂
t=1

p(t)
c

)︄
log

(︄
1
T

T∑︂
t=1

p(t)
c

)︄
− 1

T

T∑︂
t=1

p(t)
c log p(t)

c

]︄
.

The BALD query strategy can also be used with an ensemble of point-estimate
models, using outputs of the individual members of the ensemble instead of sam-
ples from a posterior of a Bayesian model [79]. The BALD query strategy can thus
be viewed as belonging to the query-by-committee framework. This is a result
of the observation that a parametric Bayesian model can be seen as an infinitely
large ensemble [29], with every particular sample of parameters representing an
individual member of the ensemble.

4.2.1 BatchBALD
Kirsch et al. [86] propose and extension of the BALD query strategy to explicitly
consider dependencies within samples selected in a batch in batch-mode active
learning (Section 3.3). They note that BALD overestimates the mutual infor-
mation between model a parameters and a batch of instances by using the sum
of individual mutual information values, which counts the information overlap
among the samples multiple times.

The authors present a method of theoretically finding the exact optimal batch
of acquired samples, which is intractable due to the need to enumerate all possible
subsets of unlabelled set. An approximate greedy algorithm is proposed, which
the authors prove to be a (1 − 1/e)-approximation. They show that the BALD
score for a given set is always greater than or equal to the BatchBALD score and
BatchBALD is exactly equivalent to BALD when acquiring batches of size 1.

Experiments are performed by the authors on two common image classifica-
tion benchmark datasets, demonstrating that BatchBALD outperforms ordinary
BALD in setting of batch-mode active learning. In these experimentes, the ad-
vantage of BatchBALD is only slight when using smaller acquisition batch sizes
(e.g., 10) and increases as the size of the acquired batch increases.

44

5. Experiments
The main goal of the experiments is to show whether Bayesian inference improves
the efficiency of active learning and if so which approximate Bayesian inference
method yields the highest improvement. As secondary goals, we compare approx-
imate Bayesian inference methods to a classical neural network with frequentist
inference and compare training and prediction times of the Bayesian network and
the the classical network.

5.1 Experiment design

5.1.1 Acquisition functions
We experiment with all uncertainty sampling acquisition functions mentioned in
Section 3.2.1, namely least confident, margin sampling and maximum entropy.
Additionally, we use the Bayesian-specific uncertainty sampling function BALD
(described Section 4.2.1). These acquisition functions are compared with a base-
line, random sampling, where acquired images are sampled uniformly from the
unlabelled set in each iteration.

5.1.2 Approximate Bayesian inference methods
We compare 3 different types of neural networks with approximate Bayesian
inference:

• Monte Carlo dropout (MCDO) Traditional binary dropout with sam-
pling of dropout masks during prediction, which is described in Section
2.4.

• Variational Gaussian Dropout (VGDO), which is described in Section
2.4.1. We use the variant where a separate dropout rate is learned per
neuron.

• Bayes by Backprop (BBB), which was described in Section 2.3.2. We
use a simple independent Gaussian prior and compute the KL divergence
term using the closed-form solution.

5.1.3 Data
We perform our experiments on two commonly-used dataset used as benchmarks
for image classification – MNIST digits [73] and CIFAR-10 [87].

Table 5.1: Summary of the two datasets used in the experiments.

Dataset Dimensions Channels Classes Train size Test size
MNIST 28× 28 1 10 60 k 10 k
CIFAR-10 32× 32 3 10 50 k 10 k

45

Figure 5.1: Sample of one image from each class in the MNIST dataset.

MNIST digits

MNIST digits is a dataset consisting of greyscale images of handwritten digits.
Each of the 10 classes correspond to a digit in a given image. Each image has
a dimension of 28 × 28 pixels. The training set contains 60,000 images and the
test set contains 10,000 images. Both the training and the test sets are balanced,
i.e. they contain an equal number of images from each class. Figure 5.1 shows a
sample of images from the dataset.

Using the full training dataset, classification on MNIST digits is a relatively
easy task nowadays. Even simple convolutional networks can achieve an error
rate below 0.5% [88], misclassifying only images which are not clearly distin-
guishable even for a human. In this regard, classification with the full MNIST
digits dataset available for training could be considered ”solved”. However, the
dataset is relevant in active learning research, perhaps because learning from a
small subset of the data still poses a challenge.

CIFAR-10

CIFAR-10 contains small 32×32 images from 10 mutually exclusive classes. Each
pixel in an image has red, blue and green channels. Figure 5.2 shows one image
from each of the classes. The training set consists of 5,000 images from each class
for a total of 50,000 images and the training set contains 1,000 images from each
class for a total of 10,000 images.

Classification on the CIFAR-10 dataset is a much more difficult task and an
active area of research, requiring much more complex architectures to achieve
state-of-the-art results. Recent CNN models can achieve an error rate as low as
about 1% without using additional data in training [89] and even below 1% with
pre-training on a larger dataset [90].

5.1.4 Active learning
We use batch-mode pool-based active learning. The training and acquisition
procedure is identical for both datasets.

46

Figure 5.2: One image from each class in CIFAR-10. Top row from left to right:
ship, deer, truck, dog, horse. Bottom row: airplane, automobile, cat, bird, frog.

Initialization

The active learning process starts with a class-balanced small seed labelled set
and a small class-balanced validation set, both chosen as mutually disjoint subsets
of the original training set. The rest of the original training dataset is used as
the unlabelled pool.

Active learning loop

Each iteration of the active learning loop consists of three steps:

1. In the training step, the model is trained on the current labelled training
set until its validation performance converges.

2. In the evaluation step, the trained model is evaluated on the test set. The
test set is used only to evaluate metrics, i.e. it does not influence the trained
models in any way.

3. The acquisition step involves evaluating the acquisition function on each
instance of the current unlabelled set and selecting a small batch of the
most informative instances. The selected instances are assigned labels from
the original dataset and moved from the unlabelled pool to the training set.

The iteration of the active learning loop is repeated until a budget is ex-
hausted. We consider the budget to equal to a chosen number of acquired in-
stances.

5.2 Experiment Setup
To compare the performance of the models, we use use the accuracy metric eval-
uated on the full test set provided with each dataset. We are able to only use
accuracy and omit some of the other commonly-used classification metrics such
as precision, recall, F1-score, etc., because the test sets are class-balanced in both
cases.

47

5.2.1 Models
Because the two datasets are different especially in terms of complexity, we choose
a different CNN architecture for each dataset.

We conceptually divide our models into a feature extractor part, which is
fully convolutional in both cases, and a classifier part, which uses fully-connected
layers. The feature extractor part is deterministic (non-Bayesian), i.e. it always
gives the same output for a given input outside of training. The classifier is
Bayesian and we take multiple samples from posterior to make predictions and
evaluate uncertainty.

We use no data augmentation. The only pre-processing we perform is nor-
malization to a mean of 0 and a standard deviation of 1 across each channel in
the training set, applying the same transformation to the test set, i.e. scaling and
shifting by values computed on the training set.

All models are optimized using the SGD-based Adam adaptive optimizer [28]
(described in Section 11).

Hyperparameter optimization

In active learning, we train the model at a different training set size after each
iteration. The optimal set of hyperparameters could thus be different after each
acquisition mainly due to a different amount of regularization required. However,
hyperparameter optimization is very computationally demanding and is there-
fore not realistic to perform it after every acquisition. It is more realistic to
perform the hyperparameter optimization at pre-determined steps in training set
size. However, this approach still considerably increases the required computation
time, especially when each experiment is run with multiple acquisition functions
and multiple times.

To save computation time, we perform search for the optimal set of hyper-
parameters once for each combination of dataset and approximate Bayesian in-
ference method and at various training set sizes. Pre-searching the parameters
reduces the time for hyperparameter search 25-fold in our case (5 acquisition
functions times 5 runs of each experiment).

Hyperparameter optimization is performed at doubling training set sizes:
50, 100, 200, 400, 800, 1600, 3200 and 6400 instances. Training and valida-
tion datasets for hyperparameter search are randomly chosen as a class-balanced
sample of the original training set. The size of the validation set used in the
optimization is 25% of the training set size with a minimum of 100 instances.

To optimize the models in terms of correctness of predictions as well as good
uncertainty calibration, Brier score [91] evaluated on the validation dataset was
chosen as the metric according to which the best set of hyperparameters is se-
lected. Brier score is equivalent to the mean squared error between the output
probability vectors and the one-hot vector corresponding to the label. Denoting
the output vector for the i-th instance as ŷ(xi) and the one-hot label vector as
yi, brier score on the set X = {(xi, yi)}N

i=1 is defined as

SBrier = 1
N

N∑︂
i=1
∥yi − ŷ(xi)∥2

2 .

48

Table 5.2: Summary of models used for classification on the respective datasets.
The number of weights excludes any uncertainty parameters, e.g. learned dropout
rates in Variational Gaussian dropout.

Dataset Weights Conv Layers FC layers
MNIST 0.51 M 2 2
CIFAR-10 5.03 M 13 2

The search is performed by Bayesian optimization using a Tree of Parzen
estimators [92] surrogate model. Each set run of hyperparameter optimization
uses 500 trials, where each model is trained until convergence on the validation,
after which the Brier score is evaluated on the validation set. The following
hyperparameters are optimized for the individual approximate Bayesian inference
methods.

• Monte Carlo dropout: Dropout rates (between 0.05 and 0.5).

• Variational Gaussian Dropout: Initial dropout rates (between 0.1 and
1) and KL divergence term weight (between 5 × 10−3 and 5). Although
the VGDO dropout rates are learnable parameters, we observe a benefit in
initializing them to suitable values, perhaps due to a slower convergence
rate compared to the weights.

• Bayes by Backprop: Prior standard deviations (between 0.1 and 3) and
KL divergence term weight (between 5× 10−3 and 5).

Additionally, we optimize the learning rate (between 5× 10−4 and 5× 10−2) and
mini-batch size (one of 16, 32, 64 or 128) for each model.

Next, we describe the individual models we use for each dataset. Table 5.2
summarizes the number of parameters, number of convolutional layers and num-
ber of fully-connected layers used in each model.

MNIST digits

For our MNIST digits model, we follow Gal et al. [76], who use a simple model
from a Keras reference implementation1.

Gal et al. slightly modify the architecture from the reference implementation –
we use their modified version and modify it further by adding batch normalization
(BN, described in Section 1.4.3) after every hidden weight layer to speed up
training.

The feature extractor part of our model uses two convolutional layers, each
with kernel size 4 × 4 and 32 filters, each followed by BN and ReLU activation.
The convolutions are followed by a 2×2 max-pooling layer and a flattening layer.
The classifier consists of one hidden fully-connected layer with 128 units, BN
and ReLU activation, leading to the fully-connected output layer with softmax
activation.

In case of binary dropout, we follow in Gal et al. [76] by adding binary
dropout before the two fully-connected classifier layers. Whereas Gal et al. use

1https://github.com/keras-team/keras/blob/master/examples/mnist_cnn.py

49

https://github.com/keras-team/keras/blob/master/examples/mnist_cnn.py

empirically chosen dropout rates, we perform hyperparameter search to set the
individual dropout rates as mentioned. In case of variational Gaussian dropout,
we use 2 VGDO layers, one before each fully-connected layer. In case of Bayes
by Backprop, the two fully-connected classifier layers are BBB layers.

CIFAR-10

For classification on the CIFAR-10 dataset, we use an architecture called Sim-
pleNet [93]. We choose this architecture because of its relative simplicity, both
in terms of implementation and computational demands, while achieving good
classification performance.

The feature extractor part of the architecture consists of 13 convolutional
layers organized in 6 blocks. Each block of convolutions is followed by a 2×2 max-
pooling layer and dropout with probability 0.1, except the last layer convolutional,
after which global max pooling follows. Each convolutional layer uses a stride of
1 and is followed by batch normalization and ReLU activation. The output uses
softmax activation.

The blocks of convolutional are as follows:
1. The first block of convolutional layer starts with one layer of 64 3×3 filters,

which is followed by 3 layers, each with 128 filters and 3× 3 kernel size.

2. The second block consists of 3 convolutional layers, each with 3× 3 filters.
The first two layers in the second block use 128 convolutional filters and
the third one uses 256 filters.

3. The third block consists of two convolutional layers with 3× 3 kernels and
256 filters each.

4. The fourth block consists of a single 3 × 3 convolutional layer with 512
filters.

5. The fifth block consists of two 1 × 1 convolutions, with the first one using
2048 filters and the second one using 256 filters.

6. The final block consists of a single 3× 3 convolution with 256 filters in the
original architecture, which is made to also suit other image classification
dataset. However, since we use a dataset with an input size of 32× 32, the
downsampling from the previous layers results in size of input feature maps
to this layer being 1 × 1. Therefore, we reduce the kernel size to 1 × 1 to
reduce the number of parameters and computations.

The classifier in the original architecture consists of just the output layer,
however we modify it by adding a hidden fully-connected layer with 256 hidden
units followed by BN and ReLU activation. As mentioned before, we use a de-
terministic feature extractor and thus we only apply the dropout layers between
the convolutional layers during training time.

Similarly to the MNIST model, in case of BBB, we use BBB in the last two
hidden layers. In case of VGDO, we put a VGDO layer before each of the two
hidden layers, and similarly in case of binary dropout.

Our implementation is based on an unofficial open-source implementation2.
2https://github.com/Coderx7/SimpleNet_Pytorch

50

https://github.com/Coderx7/SimpleNet_Pytorch

5.2.2 Active learning setup
Initial training set and validation set

For MNIST, the initial seed labelled set is a class-balanced set of 2 instances
per class, i.e., 20 training instances. The validation set consists of 10 instances
per class, i.e. 100 instances. The training and validation sizes follow Gal et al.
[76]. Both the initial training set and the validation are chosen as subsets of the
training set of the original dataset.

For CIFAR, we start with a larger seed set because we observe that with
the very small sets, our model is unable to reliably converge to a validation
performance better than random guessing. Therefore, we use 10 training instances
from each class, i.e. 100 samples and 25 instances per class as the validation set,
which gives a validation set size of 250.

Training

Each active learning iteration starts by training the model on the current training
labelled set until validation loss converges. We consider the loss to have converged
if it has not decreased from the best result seen so far (in the current training
iteration) in 5 successive epochs by a factor of at least 1 + ϵ, where we set ϵ =
5× 10−5.

The training in a given iteration starts with the set of model parameters used
in the previous iteration and continues for between 15 and 20 epochs. The set
of parameters achieving the lowest loss in the current training iteration is kept
and used in further steps. The state of the adaptive optimizer is reset before the
training starts in a given iteration. Retraining from scratch (after resetting of
parameters) until convergence for a number of epochs without an upper bound
is performed only if at least one of the following conditions is satisfied:

• training has not converged within the 20 epochs,

• converged validation performance has not improved compared to the pre-
vious iteration,

• hyperparameters were changed since the last iteration,

• the size of the current training set has increased by 10% or more since the
model was previously retrained from scratch.

The motivation for starting with parameters used in the previous iteration is faster
convergence when only a small amount of data is added to the training set, which
helps reduce the high computational demands of the performed experiments.

Hyperparameters are chosen in each iteration from the pre-optimized sets
according to the lowest ratio between the size of the current training set and a
given training set size used in hyperparameter optimization.

Evaluation

Next is the evaluation step, where metrics are computed on the full test set
(10,000 instances in both datasets). Predictions are obtained by averaging soft-
max model outputs over 40 MC samples. We use a number of samples which is

51

slightly higher than the numbers used in other similar experiments: Gal et al.
[76] use 20 samples, Beluch et al. [79] use 25 samples. The number of samples
is a compromise between extracting as much of the performance potential of the
models as possible and keeping the computation time reasonable. Using more
samples increases the time required to perform the experiments. However, the
increase is not too drastic since a large fraction of the time is spent on repeat-
edly retraining the models, which is largely unaffected by the number of samples
used in evaluation, except for evaluating the performance on the relatively small
validation set after each epoch.

Acquisition

In the acquisition step, the acquisition function is evaluated for each instance in
the current unlabelled set using 40 MC samples. Similarly to evaluation, we use a
relatively high number of samples because the penalty is quite low. The 10 most
informative instances according to the acquisition function are greedily selected
and added to the labelled set.

Stopping criterion

The active learning loop stops when the number of instances in the labelled
training set reaches 5000. This number is limited by the time the experiments
require to perform and availability of hardware.

52

5.3 Results
In this section, we present and discuss the results of our experiments.

5.3.1 Bayesian active learning classification on MNIST
digits

Table 5.3: Average number of labelled instances needed to achieve a given clas-
sification accuracy on the MNIST test set. Bold indicates the best-performing
acquisition function with a given approximate Bayesian method at a given thresh-
old. Underlining indicates the best result at a given threshold among all Bayesian
approximations and acquisition functions.

Accuracy 80% 85% 90% 95% 98% 99%
Bayes Function
MCDO Random 89 130 210 464 2931 N/A

Least conf. 90 131 196 363 890 1961
Margin 80 100 166 288 834 1904
Entropy 122 164 266 432 946 2038
BALD 102 146 204 388 927 2460

VGDO Random 91 139 273 493 3033 N/A
Least conf. 96 124 204 334 792 1970
Margin 82 98 158 292 775 2108
Entropy 103 173 274 413 880 2140
BALD 92 137 246 367 839 2138

BBB Random 94 136 284 696 3740 N/A
Least conf. 102 120 266 442 1080 2300
Margin 80 92 158 360 972 2438
Entropy 116 180 288 486 1154 2356
BALD 115 178 287 528 1141 2458

Table 5.3 summarizes the number of labelled instances needed to achieve chosen
classification accuracy threshold for all combinations of Bayesian approximations
and acquisition functions. Note that in the last column, the ”N/A” values mean
that the given threshold was not achieved with up to 5000 labelled examples, at
which point the experiments were stopped. Figure 5.4 compares all acquisition
functions using each of the approximate Bayesian methods. Figure 5.3 compares
the approximate Bayesian methods using three of the examined acquisition func-
tions: baseline random sampling, margin sampling and BALD. All results are
averaged over 5 runs.

From these results, we can make the following observations:

• Margin sampling slightly outperforms all other acquisition functions at
lower to medium labelled set sizes. The advantage of margin sampling
is the largest at the 90% accuracy threshold. At higher labelled set sizes,
the performance is mostly equalized between the acquisition functions.

53

• At lower labelled set sizes, the advantage of active learning compared to
random acquisition is small. All acquisition functions except Margin are
initially slightly outperformed by random sampling. A possible explanation
is that the first acquisitions by uncertainty sampling acquire many of the
outliers in the data.

• As the number of acquired instances increases, all active learning acquisition
function outperform random sampling. An explanation of this observation
is that once the learner has seen more data, it is able to form a better
representation of the data, which allows it to make better decisions about
which instances might be the most informative.

• Monte Carlo dropout and Variational Gaussian dropout perform generally
similarly to each other in terms of the number of instances to reach given
thresholds, with some exceptions. One such exception is the one region be-
tween about 200 to 400 training instances, where in Figure 5.3b we observe
a dip in performance of VGDO. The problem likely originates in poorly-
chosen hyperparameters for VGDO. Since the hyperparameter search is
stochastic, such occurrence is difficult to prevent.

• Bayes by Backprop performs well at smaller training set sizes, requiring
the fewest examples to achieve 80%, 85% and 90% accuracy with the best-
performing function, which in all three cases is the Margin function. How-
ever, as more training examples are acquired, Bayes by Backprop starts
lagging behind the other Bayesian approximations. Since BBB lags behind
in random acquisition performance similarly to active learning performance,
the problem seems to be generally poorer classification performance of BBB,
not poorly-made acquisitions by BBB.

• In Figures 5.3 and 5.4, we can see occasional dips in the model performance,
which we observed to occur mostly when the training set size modulo the
batch size is small (minimum is 2), where one of the batches is small, which
negatively affects the convergence.

54

0 1000 2000 3000 4000 5000
Number of labelled instances

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 a
cc

ur
ac

y

BALD
Entropy
Least confident
Margin
Random

(a) Monte Carlo Dropout

0 1000 2000 3000 4000 5000
Number of labelled instances

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 a
cc

ur
ac

y

BALD
Entropy
Least confident
Margin
Random

(b) Variational Gaussian Dropout

0 1000 2000 3000 4000 5000
Number of labelled instances

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 a
cc

ur
ac

y

BALD
Entropy
Least confident
Margin
Random

(c) Bayes by Backprop

Figure 5.3: Comparison of active learning classification accuracies after each ac-
tive learning iteration across all the examined acquisition functions on MNIST
digits for each of the individual approximate Bayesian inference methods.

55

0 1000 2000 3000 4000 5000
Number of labelled instances

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 a
cc

ur
ac

y

BBB
MCDO
VGDO

(a) Random

0 1000 2000 3000 4000 5000
Number of labelled instances

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 a
cc

ur
ac

y

BBB
MCDO
VGDO

(b) BALD

0 1000 2000 3000 4000 5000
Number of labelled instances

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 a
cc

ur
ac

y

BBB
MCDO
VGDO

(c) Margin

Figure 5.4: Comparison of active learning classification accuracies after each ac-
tive learning iteration across all the examined approximate Bayesian methods on
MNIST digits using acquisition functions Random, Margin and BALD.

56

5.3.2 Bayesian active learning classification on CIFAR-10
Table 5.4 summarizes the average number of labelled instances needed to achieve
chosen classification accuracy threshold for all combinations of Bayesian approxi-
mations and acquisition functions used in experiments on the CIFAR-10 dataset.
Figure 5.5 shows a comparison of classification accuracies after each acquisition
across all the examined acquisition functions (including the random baseline)
on the CIFAR-10 dataset for each individual approximate Bayesian inference
method. Figure 5.6 shows a comparison of classification accuracies after each
acquisition across all the approximate Bayesian methods using three acquisition
functions: baseline Random sampling, Margin and BALD. The results are aver-
aged over 5 runs.

From these results, we make the following observations:

• None of the examined acquisition functions convincingly outperforms the
random sampling baseline.

• It seems that active learning using MCDO with BALD or Margin acquisition
and VGDO with BALD acquisition start to slightly outperform random
sampling at higher training set sizes. On the other hand, in BBB, BALD is
on two functions which were not able to achieve the 67% accuracy threshold
in all 5 runs.
This hypothesis is consistent with the behavior seen in MNIST – the ad-
vantage of active learning compared to random sampling is much greater
as more data is seen and the learner is thus able to form a better internal
representation of the data. However, it is difficult to conclude whether this
is a spurious occurrence without performing more runs of the experiments
and and/or running the experiments for iterations.

• Bayes by Backprop performs generally worse compared to Monte Carlo
Dropout and Variational Gaussian Dropout in terms of the number of ac-
quisitions needed to reach the given accuracy thresholds. The performance
of MCDO and VGDO is similar to each other.

• The results on CIFAR-10 are noisier than the results on MNIST. The prob-
lem with convergence when one of the batches is small is also more evident.

57

Table 5.4: Average number of labelled instances needed to achieve a given classifi-
cation accuracy on the CIFAR-10 test set. Bold face indicates the best-performing
acquisition function with a given approximate Bayesian method at a given thresh-
old. Underlining indicates the best result at a given threshold among all Bayesian
approximations and acquisition functions.

Accuracy 40% 50% 60% 67%
Bayes Function
MCDO Random 468 1158 2392 4184

Least conf. 504 1234 2354 4274
Margin 498 1086 2308 3858
Entropy 523 1158 2615 4235
BALD 490 1210 2462 3834

VGDO Random 484 1196 2328 4320
Least conf. 472 1210 2490 4442
Margin 482 1074 2360 4222
Entropy 448 1232 2390 4252
BALD 500 1216 2242 4020

BBB Random 602 1512 2764 4393
Least conf. 646 1710 2912 N/A
Margin 612 1508 2692 4222
Entropy 594 1678 2978 4768
BALD 760 1680 3072 N/A

58

0 1000 2000 3000 4000 5000
Number of labelled instances

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 a
cc

ur
ac

y

BALD
Entropy
Least confident
Margin
Random

(a) Monte Carlo Dropout

0 1000 2000 3000 4000 5000
Number of labelled instances

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 a
cc

ur
ac

y

BALD
Entropy
Least confident
Margin
Random

(b) Variational Gaussian Dropout

0 1000 2000 3000 4000 5000
Number of labelled instances

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 a
cc

ur
ac

y

BALD
Entropy
Least confident
Margin
Random

(c) Bayes by Backprop

Figure 5.5: Comparison of acquisition functions in Bayesian active learning. Each
plot shows the accuracy at all acquired training set sizes for one approximate
Bayesian inference method and all examined acquisition functions.

59

0 1000 2000 3000 4000 5000
Number of labelled instances

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

BBB
MCDO
VGDO

(a) Random

0 1000 2000 3000 4000 5000
Number of labelled instances

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 a
cc

ur
ac

y

BBB
MCDO
VGDO

(b) Margin

0 1000 2000 3000 4000 5000
Number of labelled instances

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 a
cc

ur
ac

y

BBB
MCDO
VGDO

(c) BALD

Figure 5.6: Comparison of approximate Bayesian inference methods in Bayesian
active learning. Each plot shows shows the accuracy at every acquired training
set size for all approximate Bayesian inference using a single acquisition function:
random baseline, BALD or Margin.

60

5.3.3 Comparison to non-Bayesian methods
In this section, we compare Monte Carlo dropout to a non-Bayesian neural net-
work with the same architecture and hyperparameters as the MC dropout net-
work. The goal is to show whether the improvement in performance using active
learning compared to the random baseline can be attributed to the Bayesian
nature of the models.

The non-Bayesian neural network makes standard dropout predictions, which
means that dropout is disabled when making predictions. We compare the model
using all the acquisition functions used in the experiments with Bayesian neural
networks including random sampling and excluding BALD, which is specific to
Bayesian models. Except for the different model, the experiment setup is identical
to the the setup used in the experiments with Bayesian neural networks.

MNIST digits

Table 5.5 summarizes the average of numbers of instances required to reach given
accuracy thresholds on the MNIST test set, comparing the non-Bayesian model
with the Monte Carlo dropout model. From these results, we can make the
following observations:

• Uncertainty sampling active learning significantly outperforms baseline ran-
dom sampling on the MNIST digits dataset even when using a non-Bayesian
model.

• The non-Bayesian standard dropout model performs no worse than the
Monte Carlo dropout model. It even slightly outperforms Monte Carlo
dropout, especially as more data is seen.

• The comparison between the acquisition functions in the non-Bayesian
model is very similar to the MC dropout model: Margin performs the
best, closely followed by Least confident and Entropy. The performance
of all the acquisition functions (except random) equalizes as the models
approach perfect classification.

Table 5.5: Comparison of average number of labelled instances needed to achieve
a given accuracy on the MNIST digits test set between a non-Bayesian neural
network (Classical) and a neural network using MC dropout

Accuracy 80% 85% 90% 95% 98% 99%
Type Function
Classical Random 90 132 190 456 2572 N/A

Least conf. 94 126 182 326 812 1724
Margin 72 98 144 286 776 1672
Entropy 106 146 226 422 880 1820

MC dropout Random 89 130 210 464 2931 N/A
Least conf. 90 131 196 363 890 1961
Margin 80 100 166 288 834 1904
Entropy 122 164 266 432 946 2038

61

CIFAR-10

Table 5.5 summarizes the average of numbers of instances required to reach given
accuracy thresholds on the CIFAR-10 test set, comparing the non-Bayesian model
with the Monte Carlo dropout model.

Similarly to MNIST digits, we can see that the non-Bayesian model performs
approximately equally to the Bayesian MC dropout model.

Table 5.6: Comparison of average number of labelled instances needed to achieve
a given classification accuracy on the CIFAR-10 test set between a non-Bayesian
model (Classical) and a model using MC dropout.

Accuracy 40% 50% 60% 67%
Type Function
Classical Random 404 1110 2270 4262

Least conf. 478 1184 2422 4100
Margin 420 1100 2264 3862
Entropy 530 1212 2484 4154

MC Dropout Random 468 1158 2392 4184
Least conf. 504 1234 2354 4274
Margin 498 1086 2308 3858
Entropy 523 1158 2615 4235

In conclusion, we observe no clear advantage in using Monte Carlo dropout
compared to standard dropout prediction in uncertainty sampling active learning.
Since Monte Carlo dropout performs similarly to variational Gaussian dropout
and better than Bayes by Backprop, we conclude that our experiments show
no advantage in using Bayesian neural networks compared to classical neural
networks in setting of uncertainty sampling active learning.

Uncertainty calibration

To investigate why the Bayesian neural networks do not seem to perform better
than the classical neural networks, we investigate the uncertainty calibration of
the individual models. We explore the uncertainty given by the score used in the
least confident strategy and the error, which is the sum of predicted probabilities
of all classes, except the most probable one, i.e. one minus the probability of the
most probable class.

The error rate is evaluated on the test set and is a complement to the ac-
curacy. The uncertainty is evaluated on the unlabelled part of the training set.
Even though these are two different sets, they both represent a large sample of
the underlying data-generating distributions. However, the unlabelled training
set becomes more and more biased towards ”easier” instances as the acquisition
process continues. Since all the results carry the same bias, we believe they still
provide a reasonable comparison. An unbiased estimate could be obtained by
evaluating the uncertainty on the test set, however this was not measured in the
original experiments and re-running the experiments to obtain these measure-
ments was unfortunately not possible.

The results are shown in Figure 5.7 for MNIST digits and in Figure 5.8 or
CIFAR-10. Each point in the scatter plots is obtained using the model at one

62

iteration of the active learning loop. More specifically, each point corresponds to
the average uncertainty on the unlabelled part of the training on one axis and
the true error rate evaluated on the test set on the other axis. Points from all 5
experiment runs are used.

The plots also show a line representing the identity function, which is optimal
– the closer the points lie to the line, the better the calibration. Points above the
line correspond to models which make under-confident predictions on average and
points below the correspond to models which make over-confident predictions on
average.

We can see that on MNIST, the predictions are relatively well-calibrated and
that the predictions of the variational dropout model show the best calibration,
with the non-Bayesian model closely behind. On the other hand, the MC dropout
model shows the worst calibration. Note that the predictions of the standard
dropout and the Monte Carlo dropout models are under-confident more often
than over-confident, which is atypical in neural networks.

On CIFAR-10, all the types of models are similarly over-confident in their
predictions.

Table 5.7 compares the expected calibration error among all the Bayesian
models and the non-Bayesian models on both datasets. The expected calibration
error [94] is the mean absolute error between the uncertainties and the true error
rates, averaged over all points.

63

(a) Standard Dropout (non-Bayesian) (b) Monte Carlo Dropout

(c) Variational Gaussian Dropout (d) Bayes by Backprop

Figure 5.7: Calibration plots of each model type on the MNIST digits dataset.
Each point corresponds to one iteration of the active learning loop The orange
line shows the identity function, which corresponds to perfect calibration.

64

(a) Standard Dropout (non-Bayesian) (b) Monte Carlo Dropout

(c) Variational Gaussian Dropout (d) Bayes by Backprop

Figure 5.8: Calibration plots of each model type on the CIFAR-10 dataset. Each
point corresponds to one iteration of the active learning loop The orange line
shows the identity function, which corresponds to perfect calibration.

Table 5.7: Expected calibration errors of all model types on both datasets.

Classical MCDO VGDO BBB
MNIST 0.0120 0.0151 0.0117 0.0133
CIFAR-10 0.317 0.285 0.283 0.343

5.3.4 Training and prediction time
Table 5.8 summarizes the training and prediction times per batch for each ap-
proximate Bayesian inference method and the standard dropout model measured
on both MNIST and CIFAR-10. The results are averaged over 5000 batches. The
measurements were carried out on a server with an Intel Xeon E5-2650v4 GHz
CPU clocked at 2.2 GHz, 256 GB DDR4 RAM, an Nvidia Tesla V100 16 GB GPU
using CUDA version 9.0 and Ubuntu 16.04 operating system.

65

We can see that the increase in training time of the Bayesian models is not
dramatic compared to the frequentist model. The increase is more pronounced
in MNIST, where a larger fraction the of weights are subject to approximate
Bayesian inference. During prediction, the increase in time of the Bayesian models
over the classical models is much more pronounced. The increase in prediction
time of Monte Carlo dropout compared to standard dropout is only approximately
4-fold in CIFAR-10 and 16-fold in MNIST despite taking 40 samples. The reason
is that the feature extractors we used are not Bayesian and thus a single forward
pass without Monte Carlo sampling is used in the feature extractor. We can
also see that all the Bayesian models work well with large batches. The increase
in training time per batch between batch size 128 and 32 is around 10 to 15%,
similarly to the non-Bayesian models.

Also note that in case of Bayes by Backprop, the prediction time for MNIST
is actually higher than the prediction time for CIFAR-10. This is because in
the MNIST model, we have more parameters in the last two Bayesian fully-
connected layers compared to the CIFAR-10 model. This is because the CIFAR-
10 model uses global pooling at the end of the feature extractor, while the MNIST
model flattens the spatial dimensions, which are 11× 11 at the end of the feature
extractor, which means that the classifier receives 11 ∗ 11 ∗ 32 features, compared
to 256 input features received by the CIFAR-10 classifier. The MNIST Bayes by
Backprop model has almost 497 thousand uncertainty parameters compared to
the CIFAR-10 Bayes by Backprop model, which has approximately 68 thousand
uncertainty parameters.

Table 5.8: Means and standard deviations of model training prediction times per
batch over 5000 batches. All values are in milliseconds. The prediction times are
measured using 40 forward passes for the Bayesian models and a single forward
pass for the classical non-Bayesian model, same as in the other experiments. The
training times are measured at batch sizes 32 and 128 and the prediction times
are measured at a batch size of 32.

Dataset Type Train @ 32 Train @ 128 Pred @ 32
MNIST Classical 3.95± 0.42 4.40± 0.49 0.75± 0.03

MCDO 4.05± 0.47 4.63± 0.53 12.2± 0.45
VGDO 6.43± 0.76 7.15± 0.61 22.8± 0.93
BBB 7.21± 0.94 8.02± 0.89 35.7± 3.86

CIFAR-10 Classical 18.3± 1.89 20.8± 1.78 3.03± 0.26
MCDO 18.6± 1.97 21.3± 2.06 13.4± 0.53
VGDO 22.1± 3.00 24.8± 2.38 25.4± 1.10
BBB 20.7± 2.50 22.7± 2.33 31.4± 1.12

66

Conclusion
The goal of this thesis was to survey neural networks and methods for approximate
Bayesian inference in neural networks for image classification and evaluate these
methods in setting of uncertainty sampling active learning.

In the thesis, we reviewed neural networks and neural networks for image
classification, three approximate Bayesian inference methods and some of their
specifics when used in convolutional networks. Next, we reviewed active learning
and uncertainty sampling active learning using Bayesian neural networks. Finally,
we performed experiments where we compared all three reviewed approximate
Bayesian inference methods using four different active learning acquisition func-
tions and a random sampling baseline. We compared the results of the Bayesian
models to non-Bayesian models. The following conclusions can be made from the
results of the experiments:

• Active learning on image classification shows considerable improvement
compared to baseline random sampling on MNIST digits, where supervised
classification is a relatively easy task. On CIFAR-10, which is a harder
dataset, active learning performs similarly to random sampling.

• We have found no improvement using any of the examined approximate
Bayesian inference methods compared to a classical non-Bayesian neural
network. On the MNIST digits dataset, we found the non-Bayesian model
to perform slightly better than all the Bayesian models. On CIFAR-10,
Bayesian and non-Bayesian networks perform similarly.

Future work
The main natural continuation of our work would be performing more similar
experiments, which we we were unable to do due to very high computational
demands. Possibilities for further experiments include:

• more runs of each experiment to obtain more reliable results,

• experimenting on additional datasets – both image classification datasets
and other types of datasets, such as sequence labelling, regression or other
computer vision tasks,

• running the experiments for more iterations of acquisition, especially for
more complex datasets, such as CIFAR-10 in our case,

• using other acquisition functions, for example density-weighed methods or
other batch-mode acquisition functions,

• evaluating the possible benefits of using approximate Bayesian inference in
the whole neural network as opposed to just a few layers at the end of the
network at the end, as was done in our experiments.

67

Bibliography
[1] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E

Howard, Wayne Hubbard, and Lawrence D Jackel. Backpropagation ap-
plied to handwritten zip code recognition. Neural computation, 1(4):541–551,
1989.

[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition, 2015.

[3] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Mach.
Learn., 20(3):273–297, September 1995.

[4] J.S. Cramer. The origins of logistic regression. Tinbergen Institute, Tinbergen
Institute Discussion Papers, 01 2002.

[5] Leo Breiman, Joseph H Friedman, R. A. Olshen, and C. J. Stone. Classifi-
cation and regression trees. 1983.

[6] Tin Kam Ho. Random decision forests. In Proceedings of the Third Inter-
national Conference on Document Analysis and Recognition (Volume 1) -
Volume 1, ICDAR ’95, page 278, USA, 1995. IEEE Computer Society.

[7] Jerome H. Friedman. Stochastic gradient boosting. Comput. Stat. Data
Anal., 38(4):367–378, February 2002.

[8] John Canny. A computational approach to edge detection. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, PAMI-8:679 – 698, 12
1986.

[9] Irwin Sobel. An isotropic 3x3 image gradient operator. Presentation at
Stanford A.I. Project 1968, 02 2014.

[10] Hans Feichtinger and Georg Zimmermann. Gabor Analysis and Algorithms,
pages 123–170. 01 1998.

[11] David G Lowe. Object recognition from local scale-invariant features. In
Proceedings of the seventh IEEE international conference on computer vision,
volume 2, pages 1150–1157. Ieee, 1999.

[12] Frank F. Rosenblatt. The perceptron: a probabilistic model for information
storage and organization in the brain. Psychological review, 65 6:386–408,
1958.

[13] John J Hopfield. Neural networks and physical systems with emergent collec-
tive computational abilities. Proceedings of the national academy of sciences,
79(8):2554–2558, 1982.

[14] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9:1735–80, 12 1997.

68

[15] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. Learning phrase representations
using RNN encoder-decoder for statistical machine translation. CoRR,
abs/1406.1078, 2014.

[16] Yann LeCun, Léon Bottou, Genevieve B. Orr, and Klaus-Robert Müller.
Efficient backprop. In Neural Networks: Tricks of the Trade, This Book
is an Outgrowth of a 1996 NIPS Workshop, page 9–50, Berlin, Heidelberg,
1998. Springer-Verlag.

[17] Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted
boltzmann machines. In Proceedings of the 27th International Conference
on International Conference on Machine Learning, ICML’10, page 807–814,
Madison, WI, USA, 2010. Omnipress.

[18] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. The
MIT Press, 2016.

[19] Ronald A Fisher. On the mathematical foundations of theoretical statistics.
Philosophical Transactions of the Royal Society of London. Series A, Con-
taining Papers of a Mathematical or Physical Character, 222(594-604):309–
368, 1922.

[20] S. Kullback and R. A. Leibler. On information and sufficiency. Ann. Math.
Statist., 22(1):79–86, 03 1951.

[21] Herbert Robbins and Sutton Monro. A stochastic approximation method.
Ann. Math. Statist., 22(3):400–407, 09 1951.

[22] Xiaoyu Li and Francesco Orabona. On the convergence of stochastic gradi-
ent descent with adaptive stepsizes. In Kamalika Chaudhuri and Masashi
Sugiyama, editors, Proceedings of Machine Learning Research, volume 89
of Proceedings of Machine Learning Research, pages 983–992. PMLR, 16–18
Apr 2019.

[23] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learn-
ing representations by back-propagating errors. nature, 323(6088):533–536,
1986.

[24] Ning Qian. On the momentum term in gradient descent learning algorithms.
Neural Netw., 12(1):145–151, January 1999.

[25] Robert A. Jacobs. Increased rates of convergence through learning rate
adaptation. Neural Networks, 1:295–307, 1988.

[26] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods
for online learning and stochastic optimization. Journal of Machine Learning
Research, 12(61):2121–2159, 2011.

[27] Matthew D. Zeiler. Adadelta: An adaptive learning rate method. ArXiv,
abs/1212.5701, 2012.

69

[28] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic op-
timization. In Yoshua Bengio and Yann LeCun, editors, 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015, Conference Track Proceedings, 2015.

[29] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Research, 15(56):1929–1958,
2014.

[30] Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever,
and Ruslan Salakhutdinov. Improving neural networks by preventing co-
adaptation of feature detectors. CoRR, abs/1207.0580, 2012.

[31] Diederik P. Kingma, Tim Salimans, and Max Welling. Variational dropout
and the local reparameterization trick. 2015.

[32] Dongyoon Han, Jiwhan Kim, and Junmo Kim. Deep pyramidal residual net-
works. 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 6307–6315, 2016.

[33] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A
Large-Scale Hierarchical Image Database. In CVPR09, 2009.

[34] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet clas-
sification with deep convolutional neural networks. In Advances in neural
information processing systems, pages 1097–1105, 2012.

[35] C. Szegedy, Wei Liu, Yangqing Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolu-
tions. In 2015 IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 1–9, 2015.

[36] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He.
Aggregated residual transformations for deep neural networks. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages
1492–1500, 2017.

[37] Min Lin, Qiang Chen, and Shuicheng Yan. Network in network, 2013.

[38] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. Densely
connected convolutional networks. In 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 2261–2269, 2017.

[39] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for
convolutional neural networks, 05 2019.

[40] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. CoRR, abs/1502.03167,
2015.

70

[41] Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry.
How does batch normalization help optimization? In Advances in Neural
Information Processing Systems, pages 2483–2493, 2018.

[42] David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference:
A review for statisticians. Journal of the American statistical Association,
112(518):859–877, 2017.

[43] Christopher M. Bishop. Pattern Recognition and Machine Learning (Infor-
mation Science and Statistics), chapter 10. Springer-Verlag, Berlin, Heidel-
berg, 2006.

[44] Geoffrey E. Hinton and Drew van Camp. Keeping the neural networks sim-
ple by minimizing the description length of the weights. In Proceedings of
the Sixth Annual Conference on Computational Learning Theory, COLT ’93,
page 5–13, New York, NY, USA, 1993. Association for Computing Machin-
ery.

[45] Alex Graves. Practical variational inference for neural networks. In J. Shawe-
Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q. Weinberger, editors,
Advances in Neural Information Processing Systems 24, pages 2348–2356.
Curran Associates, Inc., 2011.

[46] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wier-
stra. Weight uncertainty in neural networks. In Proceedings of the 32nd
International Conference on International Conference on Machine Learning
- Volume 37, ICML’15, page 1613–1622. JMLR.org, 2015.

[47] Kumar Shridhar, Felix Laumann, Adrian Llopart Maurin, Martin Olsen, and
Marcus Liwicki. Bayesian convolutional neural networks with variational
inference. 2018.

[48] Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2013.

[49] J. . Durrieu, J. . Thiran, and F. Kelly. Lower and upper bounds for approx-
imation of the kullback-leibler divergence between gaussian mixture models.
In 2012 IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), pages 4833–4836, 2012.

[50] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation:
Representing model uncertainty in deep learning. In Proceedings of the 33rd
International Conference on International Conference on Machine Learning
- Volume 48, ICML’16, page 1050–1059. JMLR.org, 2016.

[51] Sida I. Wang and Christopher D. Manning. Fast dropout training. In Pro-
ceedings of the 30th International Conference on International Conference
on Machine Learning - Volume 28, ICML’13, page II–118–II–126. JMLR.org,
2013.

[52] Dmitry Molchanov, Arsenii Ashukha, and Dmitry P. Vetrov. Variational
dropout sparsifies deep neural networks. In ICML, 2017.

71

[53] Yarin Gal and Zoubin Ghahramani. Bayesian convolutional neural networks
with Bernoulli approximate variational inference. In 4th International Con-
ference on Learning Representations (ICLR) workshop track, 2016.

[54] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In Edwin
R. Hancock Richard C. Wilson and William A. P. Smith, editors, Proceedings
of the British Machine Vision Conference (BMVC), pages 87.1–87.12. BMVA
Press, September 2016.

[55] Mingxing Tan and Quoc V Le. Efficientnet: Rethinking model scaling for
convolutional neural networks. arXiv preprint arXiv:1905.11946, 2019.

[56] Meire Fortunato, Charles Blundell, and Oriol Vinyals. Bayesian recurrent
neural networks. CoRR, abs/1704.02798, 2017.

[57] Felix Laumann, Kumar Shridhar, and Adrian Llopart Maurin. Bayesian
convolutional neural networks. CoRR, abs/1806.05978, 2018.

[58] Kumar Shridhar, Felix Laumann, and Marcus Liwicki. A comprehensive
guide to bayesian convolutional neural network with variational inference.
CoRR, abs/1901.02731, 2019.

[59] Dana Angluin. Queries and concept learning. Machine learning, 2(4):319–
342, 1988.

[60] Kenneth Lang and Eric Baum. Query learning can work poorly when a
human oracle is used, 1992.

[61] Les E. Atlas, David A. Cohn, and Richard E. Ladner. Training connec-
tionist networks with queries and selective sampling. In D. S. Touretzky,
editor, Advances in Neural Information Processing Systems 2, pages 566–
573. Morgan-Kaufmann, 1990.

[62] David D. Lewis and William A. Gale. A sequential algorithm for training
text classifiers. In Proceedings of the 17th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR
’94, page 3–12, Berlin, Heidelberg, 1994. Springer-Verlag.

[63] Cha Zhang and Tsuhan Chen. An active learning framework for content-
based information retrieval. Trans. Multi., 4(2):260–268, June 2002.

[64] Simon Tong and Edward Chang. Support vector machine active learning for
image retrieval. In Proceedings of the Ninth ACM International Conference
on Multimedia, MULTIMEDIA ’01, page 107–118, New York, NY, USA,
2001. Association for Computing Machinery.

[65] X. Li and Y. Guo. Adaptive active learning for image classification. In
2013 IEEE Conference on Computer Vision and Pattern Recognition, pages
859–866, 2013.

[66] A. J. Joshi, F. Porikli, and N. Papanikolopoulos. Multi-class active learning
for image classification. In 2009 IEEE Conference on Computer Vision and
Pattern Recognition, pages 2372–2379, 2009.

72

[67] Burr Settles. Active learning literature survey. Computer Sciences Technical
Report 1648, University of Wisconsin–Madison, 2009.

[68] H. S. Seung, M. Opper, and H. Sompolinsky. Query by committee. In
Proceedings of the Fifth Annual Workshop on Computational Learning The-
ory, COLT ’92, page 287–294, New York, NY, USA, 1992. Association for
Computing Machinery.

[69] Burr Settles, Mark Craven, and Soumya Ray. Multiple-instance active learn-
ing. In J. C. Platt, D. Koller, Y. Singer, and S. T. Roweis, editors, Advances
in Neural Information Processing Systems 20, pages 1289–1296. Curran As-
sociates, Inc., 2008.

[70] Burr Settles and Mark Craven. An analysis of active learning strategies
for sequence labeling tasks. In Proceedings of the Conference on Empiri-
cal Methods in Natural Language Processing, EMNLP ’08, page 1070–1079,
USA, 2008. Association for Computational Linguistics.

[71] Hieu T. Nguyen and Arnold Smeulders. Active learning using pre-clustering.
In Proceedings of the Twenty-First International Conference on Machine
Learning, ICML ’04, page 79, New York, NY, USA, 2004. Association for
Computing Machinery.

[72] Klaus Brinker. Incorporating diversity in active learning with support vector
machines. In Proceedings of the Twentieth International Conference on In-
ternational Conference on Machine Learning, ICML’03, page 59–66. AAAI
Press, 2003.

[73] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324,
1998.

[74] Ajay Joshi, Fatih Porikli, and Nikolaos Papanikolopoulos. Multi-class active
learning for image classification. pages 2372–2379, 06 2009.

[75] Li Fei-Fei, Rob Fergus, and Pietro Perona. One-shot learning of object
categories. IEEE Trans. Pattern Anal. Mach. Intell., 28(4):594–611, April
2006.

[76] Yarin Gal, Riashat Islam, and Zoubin Ghahramani. Deep bayesian active
learning with image data. CoRR, abs/1703.02910, 2017.

[77] Olivier Chapelle, Bernhard Schlkopf, and Alexander Zien. Semi-Supervised
Learning. The MIT Press, 1st edition, 2010.

[78] Antti Rasmus, Mathias Berglund, Mikko Honkala, Harri Valpola, and Tapani
Raiko. Semi-supervised learning with ladder networks. In Advances in neural
information processing systems, pages 3546–3554, 2015.

[79] W. H. Beluch, T. Genewein, A. Nurnberger, and J. M. Kohler. The power
of ensembles for active learning in image classification. In 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 9368–9377,
2018.

73

[80] Ozan Sener and Silvio Savarese. Active learning for convolutional neural
networks: A core-set approach, 2017.

[81] Dario Amodei, Chris Olah, Jacob Steinhardt, Paul F. Christiano, John
Schulman, and Dan Mané. Concrete problems in AI safety. CoRR,
abs/1606.06565, 2016.

[82] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibra-
tion of modern neural networks. In Proceedings of the 34th International
Conference on Machine Learning - Volume 70, ICML’17, page 1321–1330.
JMLR.org, 2017.

[83] D. A. Nix and A. S. Weigend. Estimating the mean and variance of the
target probability distribution. In Proceedings of 1994 IEEE International
Conference on Neural Networks (ICNN’94), volume 1, pages 55–60 vol.1,
1994.

[84] Felix Laumann, Kumar Shridhar, and Adrian Llopart Maurin. Bayesian
convolutional neural networks. CoRR, abs/1806.05978, 2018.

[85] Neil Houlsby, Ferenc Huszar, Zoubin Ghahramani, and Máté Lengyel.
Bayesian active learning for classification and preference learning. CoRR,
abs/1112.5745, 2011.

[86] Andreas Kirsch, Joost van Amersfoort, and Yarin Gal. Batchbald: Effi-
cient and diverse batch acquisition for deep bayesian active learning. CoRR,
abs/1906.08158, 2019.

[87] Alex Krizhevsky. Learning multiple layers of features from tiny images.
University of Toronto, 05 2012.

[88] Patrice Y. Simard, Dave Steinkraus, and John C. Platt. Best practices for
convolutional neural networks applied to visual document analysis. In Pro-
ceedings of the Seventh International Conference on Document Analysis and
Recognition - Volume 2, ICDAR ’03, page 958, USA, 2003. IEEE Computer
Society.

[89] Tal Ridnik, Hussam Lawen, Asaf Noy, and Itamar Friedman. Tresnet: High
performance gpu-dedicated architecture. arXiv preprint arXiv:2003.13630,
2020.

[90] Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica
Yung, Sylvain Gelly, and Neil Houlsby. Big transfer (bit): General visual
representation learning, 2019.

[91] GLENN W. BRIER. Verification of forecasts expressed in terms of proba-
bility. Monthly Weather Review, 78(1):1–3, 1950.

[92] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algo-
rithms for hyper-parameter optimization. In Proceedings of the 24th Inter-
national Conference on Neural Information Processing Systems, NIPS’11,
page 2546–2554, Red Hook, NY, USA, 2011. Curran Associates Inc.

74

[93] Seyyed Hossein HasanPour, Mohammad Rouhani, Mohsen Fayyaz, and
Mohammad Sabokrou. Lets keep it simple, using simple architectures
to outperform deeper and more complex architectures. arXiv preprint
arXiv:1608.06037, 2016.

[94] Mahdi Pakdaman Naeini, Gregory F Cooper, and Milos Hauskrecht. Ob-
taining well calibrated probabilities using bayesian binning. In AAAI, page
2901–2907, 2015.

75

List of Figures

1.1 Schematic of a multi-layer perceptron with a single fully-connected
hidden layer. 7

1.2 Schematic of training and validation error for an iteratively trained
model. The dashed line shows approximately where overfitting
starts – validation error stops decreasing and starts slightly in-
creasing, while training error keeps slowly decreasing. 17

1.3 A neural network without dropout and two examples of a binary
dropout mask applied. Inspired by Figure 1 of [29]. 18

1.4 Pooling operations with 2 × 2 sub-regions. Top: max pooling.
Bottom: average pooling. 20

3.1 The circles represent points in the unlabelled pool. The line rep-
resents the decision boundary of a classifier. Outlier point A lies
on the decision boundary, and would therefore be likely queried by
uncertainty sampling. However, point B is likely to provide more
information about the underlying data distribution because it lies
in a high-density region of the input space. 39

5.1 Sample of one image from each class in the MNIST dataset. . . . 46
5.2 One image from each class in CIFAR-10. Top row from left to right:

ship, deer, truck, dog, horse. Bottom row: airplane, automobile,
cat, bird, frog. 47

5.3 Comparison of active learning classification accuracies after each
active learning iteration across all the examined acquisition func-
tions on MNIST digits for each of the individual approximate
Bayesian inference methods. 55

5.4 Comparison of active learning classification accuracies after each
active learning iteration across all the examined approximate Bayesian
methods on MNIST digits using acquisition functions Random,
Margin and BALD. 56

5.5 Comparison of acquisition functions in Bayesian active learning.
Each plot shows the accuracy at all acquired training set sizes
for one approximate Bayesian inference method and all examined
acquisition functions. 59

5.6 Comparison of approximate Bayesian inference methods in Bayesian
active learning. Each plot shows shows the accuracy at every ac-
quired training set size for all approximate Bayesian inference using
a single acquisition function: random baseline, BALD or Margin. 60

5.7 Calibration plots of each model type on the MNIST digits dataset.
Each point corresponds to one iteration of the active learning loop
The orange line shows the identity function, which corresponds to
perfect calibration. 64

76

5.8 Calibration plots of each model type on the CIFAR-10 dataset.
Each point corresponds to one iteration of the active learning loop
The orange line shows the identity function, which corresponds to
perfect calibration. 65

77

List of Tables

5.1 Summary of the two datasets used in the experiments. 45
5.2 Summary of models used for classification on the respective datasets.

The number of weights excludes any uncertainty parameters, e.g.
learned dropout rates in Variational Gaussian dropout. 49

5.3 Average number of labelled instances needed to achieve a given
classification accuracy on the MNIST test set. Bold indicates
the best-performing acquisition function with a given approximate
Bayesian method at a given threshold. Underlining indicates the
best result at a given threshold among all Bayesian approximations
and acquisition functions. 53

5.4 Average number of labelled instances needed to achieve a given
classification accuracy on the CIFAR-10 test set. Bold face indi-
cates the best-performing acquisition function with a given approx-
imate Bayesian method at a given threshold. Underlining indicates
the best result at a given threshold among all Bayesian approxi-
mations and acquisition functions. 58

5.5 Comparison of average number of labelled instances needed to
achieve a given accuracy on the MNIST digits test set between
a non-Bayesian neural network (Classical) and a neural network
using MC dropout . 61

5.6 Comparison of average number of labelled instances needed to
achieve a given classification accuracy on the CIFAR-10 test set
between a non-Bayesian model (Classical) and a model using MC
dropout. 62

5.7 Expected calibration errors of all model types on both datasets. . 65
5.8 Means and standard deviations of model training prediction times

per batch over 5000 batches. All values are in milliseconds. The
prediction times are measured using 40 forward passes for the
Bayesian models and a single forward pass for the classical non-
Bayesian model, same as in the other experiments. The training
times are measured at batch sizes 32 and 128 and the prediction
times are measured at a batch size of 32. 66

78

A. Attachments

A.1 Implementation

A.1.1 Used technologies
The software used to perform the experiments is implemented in Python (version
3.8.3). The following Python libraries were used:

• PyTorch1 (1.5.1) is used to build, train and evaluate the neural networks
and run the required computations using GPU acceleration.

• Torchvision2 (0.6.0) contains extension of PyTorch specialized for computer
vision. It is used to load the datasets used in the experiments.

• NumPy3 (1.19.0) is used to process multi-dimensional arrays.

• Pandas4 (1.0.5) is used to store, load and process results of the experiments.

• hyperopt5 (0.2.4) is used to perform Bayesian hyperparameter optimization.

• Jupyter Notebook6 (6.1.5) is used to explore the results of the experiments.

• Seaborn7 (0.10.1) and Matplotlib8 (3.2.2) are used to create plots of the
results.

A.1.2 Usage
In this section, we describe how to run the experiments. The instructions below
are

Installation

The project uses Poetry for Python dependency management. Installation in-
structions for Poetry can be found at https://python-poetry.org/docs/. The
required dependencies are specified in the file pyproject.toml in the root project
directory. The required dependencies can also be manually installed using other
tools, such as Conda or Pip. To install the required dependencies using Poetry,
run
poetry i n s t a l l

1https://pytorch.org/
2https://pytorch.org/docs/stable/torchvision/index.html
3https://numpy.org/
4https://pandas.pydata.org/
5https://github.com/hyperopt/hyperopt
6https://jupyter.org/
7https://seaborn.pydata.org/
8https://matplotlib.org/

79

https://python-poetry.org/docs/
https://pytorch.org/
https://pytorch.org/docs/stable/torchvision/index.html
https://numpy.org/
https://pandas.pydata.org/
https://github.com/hyperopt/hyperopt
https://jupyter.org/
https://seaborn.pydata.org/
https://matplotlib.org/

in the project root. This will create a Poetry Python environment and install all
the required dependencies in it. To run a command within the created environ-
ment, use
poetry run <command>

For example, to run Python within the Poetry environment, run
poetry run python

Alternatively, it possible to issue the following command:
poetry s h e l l

Running this command spawns a shell with the poetry environment activated.
In this shell, the prefix poetry run can be omitted when running commands
required to be run within the project environment.

Running the experiments

The experiments are run using the script main active.py located in the project
root directory. The script hyperparams.py located in the root folder is used to
perform hyperparameter search. To see available options for the scripts, run
poetry run python <s c r i p t > −−help

Hyperparameter optimization can be run for example using the following com-
mand:
poetry run python hyperparams . py −−datase t mnist

−−net mnistnet
−−bayes vgdo
−−n t r a i n 20
−−n va l 10

The following is an example of a command which can be used to run the active
learning experiments:
poetry run python main act ive . py −−datase t c i f a r

−−net s implenet
−−bayes dropout
−−f unc t i on margin
−−n i n i t i a l 10
−−n va l 25
−−max labe l l ed 5000

The experiment measuring training and prediction time can be run using the
following command:
poetry run python main time . py −−datase t mnist

−−net mnistnet
−−bayes bbb
−−b s t r a i n 32 128
−−bs pred 32
−−n batches 5000

80

A.1.3 Project structure
In this section, we describe the structure of the project. The project is organized
in four packages. Additionaly, the directory notebooks contains notebooks used to
explore the results of the experiments. To view the notebooks, use the following
command to start a Jupyter notebook server and open a Jupyter notebook client
in your browser
poetry run jupyte r notebook

Next, we briefly describe each of the four packages the project consists of.

Active learning

The package active learning contains an implementation of pool-based sampling
active learning and the query functions used in our experiments.

Modules

The package modules contains PyTorch modules, which implement the non-
standard layers used in our experiments. It contains three (Python) modules:

• The module bbb contains Bayes by Backprop layers without the local repa-
rameterization trick.

• The module bbb lrt contains Bayes by Backprop layers with the local repa-
rameterization trick.

• The module vgdo contains implements Variational Gaussian dropout.

Models

The package models contains the models used in our experiments. It contains
four sub-packages:

• The package bbb contains models using Bayes by Backprop (using the local
reparameterization trick)

• The package determ contains the non-Bayesian standard dropout models.

• The package dropout contains Monte Carlo dropout models.

• The package vgdo contains model using Variational Gaussian dropout.

Utils

The package utils contains various utilities for training models. The notable
modules in this package are:

• The module train contains wrappers for training Bayesian PyTorch models
and implements the stopping convergence criteria.

• The module elbo implements the Evidence Lower Bound loss used in vari-
ational inference.

81

• The module hyperparam provider loads and provides model hyperparame-
ters for use during training.

• The module logging supports saving of experiment results while the exper-
iments are running.

82

	Introduction
	Image classification
	Traditional methods
	Neural networks for image classification
	Feed-forward neural networks
	Convolutional neural networks

	Training of neural networks
	Maximum likelihood estimation
	Gradient-based optimization
	Regularization

	Convolutional neural network architectures for image classification
	Downsampling
	Flattening
	Batch normalization

	Bayesian neural networks
	Bayesian statistics
	Bayesian inference
	Approximate Bayesian inference

	Variational inference
	Parametric variational inference

	Bayesian neural networks
	Reparameterization trick
	Bayes by Backprop
	Local reparameterization trick

	Dropout as a Bayesian approximation
	Variational dropout

	Bayesian convolutional neural networks
	Dropout as a Bayesian approximation in CNNs
	Bayes by Backprop for CNNs

	Active learning
	Scenarios
	Query strategy frameworks
	Uncertainty sampling
	Query-by-committee
	Expected model change
	Density-weighed methods

	Batch-mode active learning
	Active learning in image classification

	Uncertainty sampling active learning in Bayesian neural networks
	Uncertainty estimation in neural networks
	Uncertainty estimation in Bayesian neural networks

	Bayesian active learning by disagreement
	BatchBALD

	Experiments
	Experiment design
	Acquisition functions
	Approximate Bayesian inference methods
	Data
	Active learning

	Experiment Setup
	Models
	Active learning setup

	Results
	Bayesian active learning classification on MNIST digits
	Bayesian active learning classification on CIFAR-10
	Comparison to non-Bayesian methods
	Training and prediction time

	Conclusion
	Bibliography
	List of Figures
	List of Tables
	Attachments
	Implementation
	Used technologies
	Usage
	Project structure

