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Abstract

In the thesis, we address two issues (Part I and Part II) connected with lengths
of proofs: Kreisel’s conjecture, and the complexity of several systems of non-
classical propositional logics. Kreisel’s conjecture is a long open problem con-
cerning the number of steps in proofs in Peano arithmetic. The problem is not
solved here, but we present natural modifications of PA where Kreisel’s conjec-
ture is false. Namely the theory PA(−), obtained by extending PA with a new
function symbol minus, the theory of integers Z, and others. The exposition
closely follows the paper [9]. We then apply a similar reasoning to propositional
logic. We construct a natural yet startling propositional proof system, FI, a
systems in which many tautologies are provable in a constant number of steps.
More exactly, for every n there exists c s.t. every tautology with at most n
variables is provable in FI in c proof-lines. We proceed to prove non-constant
lower bounds for FI and to analyse similar phenomena in other logics.

In the second part, we prove lower bounds on the sizes of proofs in cer-
tain systems of modal logic, namely K4, S4, Gödel-Löb’s logic, and intuition-
istic propositional calculus. For those systems, we give examples of tautologies
A1, A2, . . . s.t. every proof of Ai in the system must be of exponential size
(in terms of the size of Ai). We also give various speed-up relations between
systems of modal logic, and between classical and intuitionistic propositional
calculi. Speed-up between intuitionistic and classical propositional calculus il-
lustrates how the excluded middle principle simplifies propositional proofs. The
main results were given in [10] and [11], but we give independent and simpler
proofs here.
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Introduction

The traditional topics of mathematical logic are the study of provability and
definability. In the former case we want to know which sentences are provable
in a proof system, in the latter, which concepts are expressible in a language.
The purpose of the inquiry is to establish the strength and limits of the tools
we use in science and mathematics, as well as to compare strength of different
logical systems. The questions can be refined: we may ask how difficult it is to
prove or define something in a proof system or a language. As the basic measure
of the complexity of a proof we take its size. Instead of asking whether a sentence
is provable or not, we take a provable sentence and ask what is the size of its
shortest proof in the proof system. One motivation for such an investigation
is the comparison of efficiency of proof systems. For we can have two proof
systems P and Q which prove the same theorems, but in P the proofs are much
shorter than in Q. From a logical point of view the systems are equivalent, but
not so from the practical one. Similarly, we may consider sizes of definitions in
various languages.

The practical aspect conveys a philosophical point. For the meaning of words
is to be explained from their use better than their denotation, especially if, as
in mathematics, the denotation is obscure or dubious. And the use of many
words and language tools is not only to express new facts, but to make commu-
nication more efficient. There are even concepts whose main purpose is such:
abbreviations and definitions. To explain those by merely stating the definiens
would be missing their purpose. Their function is to shorten expressions and
arguments. The function can be formally described by comparing the efficiency
of the system which does and that which does not allow definitions. I believe
that in this way the study of complexity of proofs and expressions can help to
explain and describe the use of concepts in mathematics and natural language.

Example 1 - Grandmother and the use of definitions.

We often use concepts that can be defined from other concepts, or which are
even introduced by explicit definitions. ”Grandmother”, for example. Whenever
we use the word ”grandmother” we could equivalently use the phrase ”a mother
of ones’ father or ones’ mother”. That, however, would be too cumbersome.
We should also note that in our language we are allowed to iterate the definition,
and speak about ”greatgrandmother”, ”greatgreatgrandmother” etc. How much
can expression or proofs be shortened by the use of definitions? Mathematically,
we can investigate the following questions:

1. Let us have a language L and we extend it to the language L+ equipped
with the possibility to introduce new words by means of definitions. How
much shorter can be the expressions in L+ than in L?

2. Let us have a proof system P and we extend it to the system P+ equipped
with the possibility to introduce new words by means of definitions. How
much shorter can be the proofs in P+ than in P?
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Mathematically, the problems are of a special interest when L is taken as
the language of propositional logic, ∧,∨,¬, and P as the basic proof system
axiomatising classical propositional logic, the so called Frege system. 1) then
corresponds to the problem of separating Boolean circuits from Boolean formu-
las, and 2) to separating Frege and extended Frege system. The former problem
is a basic open problem of Boolean complexity, and the latter a basic open
problem of propositional proof complexity (see [25] and [15] ). If L resp. P is a
first-order language resp. the usual system of classical predicate logic, the an-
swers to the problems will depend on whether identity ”=” is present, whether
function symbols are allowed, as well as on some extralogical assumptions.

Example 2 - natural numbers.

Do numbers, and in what sense, exist? is a question which obscures the far
more interesting question How are numbers used? It cannot be maintained
that natural numbers are logically redundant, for there are contexts where the
use of natural numbers cannot be eliminated. On the other hand, there are
contexts, and perhaps the principal ones, where this is possible, such as ”John
has two sheep” or ”the third king of Bohemia”1. In elementary contexts, natural
numbers behave like certain logical abbreviations; this has lead some to the belief
that they are ontologically redundant - they do not denote an object, and do
not express a new fact2. Nevertheless they are used, by physicists, architects,
carpenters, and all who ever counted or measured anything. One of their many
functions, even in contexts where they are logically redundant, is to shorten
expressions and arguments. This is achieved in at least two ways. First, in the
direct shortening of formulas, as in the case ”John has three hundred sheep”.
Second, when one discerns a numerical structure in a real life problem, the
problem can often be solved more efficiently on the abstract level, as a problem
about natural numbers. A purely mathematical problem, say 3 + 5 =?, can be
identified in a concrete situation, the equation

3 + 5 = 8

can be computed by mathematical means and applied again to the situation.
I believe that even if all other uses of natural numbers were lost and forgot-

ten, their aforementioned application would still give an excellent justification
for their presence in language.

Proof complexity and computational complexity

A different motivation for the study of lengths of proofs is the connection with
computational complexity ; and perhaps it is for this reason that the problem
has attracted so much attention. Computability theory has provided an exact
mathematical definition of the concept of algorithm. We can meaningfully ask

1We can say ”There exist sheep A and B, A 6= B, which belong to John”
2Namely Wittgenstein in Tractatus. However, Tractatus contains one of the most pene-

trating analysis of the use of natural numbers.
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which problems are solvable by an algorithm, and which are not. This question,
too, can be refined: we can ask whether a problem is solvable efficiently. An
efficient algorithm is usually understood as an algorithm which requires poly-
nomial time to find the answer (polynomial in terms of the size of its input).
The purpose of computational complexity is to delimit the class of efficiently
solvable problems. This is the heart of the fundamental P versus NP problem.
One of the many formulations of the problem is the following:
(?) Does there exist an algorithm which would decide in a polynomial time
whether a classical propositional formula is a tautology?
On the other hand, the basic open question of proof complexity is the following:
(??) Does there exist a propositional proof system in which all classical propo-
sitional tautologies have polynomial size proofs?
The expected answer to both of these questions is ”no” and the connection is
that if (??) has a negative answer then also (?) has. Hence to solve the problem
(??) would imply the solution to the P versus NP problem.

However, it is not very likely that P versus NP problem would be solved
by means of proof complexity. So far the interaction between proof and compu-
tational complexity was mainly one way: the results and methods of computa-
tional complexity were applied in proof complexity. The connection between the
fields rather shows that the problems of proof complexity are not artificial ques-
tions of solitary logicians, and it gives an explanation why the questions in proof
complexity are difficult. Moreover, the study of complexity of particular proof
systems gives a certain evidence for believing our computability conjectures.
We can also hope that one day some techniques of proof complexity would be
applicable also in computational complexity, and proof complexity would finally
repay its debt to computational complexity.
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PART I

1 Kreisel’s conjecture

There are two main measures of complexity of a proof: its size, i.e., the total
number of symbols, and the number of proof-lines. From the computational
point of view, size is the more important of the two characteristics, for it is
the size which determines how difficult it is for a machine (and presumably for
the human mind) to verify the correctness of the proof. The number of proof
lines is also an important measure, if only because in this perspective we meet
new, interesting and often very surprising phenomena. Moreover, the number
of proof lines is a lower bound on the size of a proof and hence the number of
proof lines can give an information about the size of a proof.

A famous problem connected to the number of proof-lines is Kreisel’s Con-
jecture (KC) (as quoted in [8]):
Let ∀nψ(n) be a sentence of PA. Assume that there is some k s.t. for every n
ψ(n) is provable in PA in k steps. Then ∀nψ(n) is provable in PA.
Similarly, we could formulate KC for any formal system S related to arithmetic.
The peculiarity of KC lies in the fact that it depends not so much on the logical
strength of S, i.e., on how many propositions are provable in S, but on the
length of proofs in S and, in particular, on the structure of terms in S. So
far, it has been shown that for some theories obtained by weakening3 of PA,
KC is true. Parikh [21] has shown that KC is true in the theory obtained
by replacing the binary function symbols for multiplication and addition by
ternary predicates in PA; the result has been extended by Miyatake [19] to the
case where also + is present as a function symbol. Baaz and Pudlák [1993]
proved KC for the theory IΣ1.4 Kraj́ıček and Pudlák [14] proved that KC
holds for any finitely axiomatised theory. On the other hand, we can find trivial
examples of theories where KC is false, e.g., one obtained by adding every
instance of an undecidable Π1-sentence as an axiom. Yukami [26] has shown,
using the Matyasievich theorem, that KC is false when we add to PA all the true
equations of the form n·m = n ·m. We will present more natural theories where
KC is false: the system PA(−) differs from PA only in containing an additional
function symbol, minus. The theory Z has exactly the same language as PA
but it is a natural axiomatisation of the theory of integers. We will show that
in those systems we can find k s.t. every sentence of the form n ·m = n ·m is
provable in k steps, which implies that KC is false (as follows from Yukami’s
argument). The systems PA(q) and PA(N) will be obtained by weakening
the systems PA(−) and Z respectively. Here, KC will be disproved without
determining such an upper bound for multiplication, i.e., without bounding
proof lengths of the equation n ·m = n ·m.

3In the sense of having longer proofs.
4However, only with the scheme of minimum and the axioms of identity.
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Kreisel’s conjecture is a problem which significantly depends on the function
of terms in proofs. Our inability to decide KC (and many related problems,
as illustrated in Section 1.3 ) highlights the fact how little we understand this
function. Our construction in PA(−) and Z shows that function symbols can
be much more powerful than one would expect. This also hints at the possibility
that KC is false even in PA. If, after all, KC is true then the results show that
the proof must concentrate on the specific properties of PA. In the proof it must
be relevant that the functions definable by terms in PA are provably increasing,
polynomial etc. We cannot hope for a proof that would work independently on
the function symbols used, and thus we cannot hope to solve KC by some clever
general argument.

Let us first introduce some notation:

1. PA will denote the usual Peano arithmetic.

2. Let T be a theory, ψ a formula and k a number. Then

T `k ψ

states that ψ is provable in T in k steps.

3. We assume that identity is formalised using the schemes of identity, i.e.,
infinitely many axioms

x = y → t(z/x) = t(z/y)

for every term of PA and

x = y → (ψ(z/x) ≡ ψ(z/y))

for every formula of PA 5.

4. We shall be dealing with terms recursively defined by a given rule. Those
terms will be denoted Qn, Qn

m, . . . where the indices range over natural
numbers. For example, Sn(0) will denote the term S(S(. . . S(0))) where
the S’s occur n times (this term will be also denoted by n). If ψ(Qn) is a
formula containing the depicted recursive term then

T `b ψ(Qn)

is an abbreviation for the statement ’there exists k such that for every
n, T `k ψ(Qn)’. Similarly for a greater number of terms possibly with a
greater number of indices. As an example we state the following important
lemma (see [26]):

5On the other hand, for the purposes of our construction it would be sufficient to axiomatise
identity with the finite list of axioms of the type x = y → S(x) = S(y), and similarly for
the other function and predicate symbols. The reason is that an important fragment of the
identity schema is derivable from the scheme of induction in a fixed number of steps.
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Lemma 1 PA `b Sn(y) + x = Sn(y + x) and hence PA `b x + Sn(y) =
Sn(x+ y).

Proof. Let ψ(y, x) denote the formula Sn(y)+x = Sn(y+x). The proof is by
induction with respect to x. If x = 0 then ψ(y, 0) = Sn(y) + 0 = Sn(y+ 0) and
PA `b ψ(y, 0). Let us show that PA `b ψ(y, x) → ψ(y, S(x)). Assume ψ(y, x).
Then we have Sn(y) + S(x) = S(Sn(y) + x) = S(Sn(y + x)) = Sn(S(y + x)) =
Sn(y + S(x)) and hence also ψ(y, S(x)). QED

The following can be obtained from [26] and so we just sketch the proof:

Theorem 2 Let T be a consistent recursively axiomatised theory which contains
the language of PA and extends PA. Assume that there is k ∈ ω s.t. for every
n,m ∈ ω the formula

n ·m = n ·m

is provable in T in k steps. Then KC is false in T .

Proof. By the Matyasievich theorem we can find terms of PA, t1(x, y1, . . . yl)
and t2(x, y1, . . . yl) s.t. the formula

ψ(x) := ∀x∃y1, . . .∃yl t1(x, y1, . . . yl) = t2(x, y1, . . . yl)

is true and undecidable in T . From Lemma 1 every equation of the form n +
m = n+m is provable in a bounded number of steps. This, together with the
assumption of the theorem, gives an upper bound for the proofs of the instances
ψ(n). QED

1.1 The theory PA(−)

The theory PA(−) is obtained by adding to PA a new binary function symbol
’−’ and the axiom

∀x∀y∀z (x− y = z) ≡ (x = y + z ∨ (x < y ∧ z = 0)),

and extending the scheme of induction to the language of PA(−). We are going
to prove the following theorem:

Theorem 3 There exists k ∈ ω such that for every n,m,
PA(−) `k S

n(0) · Sm(0) = Sn·m(0), or shortly

PA(−) `b S
n(0) · Sm(0) = Sn·m(0)

Corollary There is a number k and a formula ψ(x) in the language of PA
such that for every n PA(−) `k ψ(Sn(0)) but PA(−) 6` ∀x ψ(x).

The point of the construction is the following. For a large term T we are
sometimes able to decide in a small number of steps whether it is equal to zero
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or one, as will be seen below. The information whether a term equals zero or
not does not seem very useful. It may become so if we have a term q(x, y)
s.t. q(x, y) = 0 iff x 6= y. For then if we show that q(t1, t2) 6= 0, in a small
number of steps, then we also have t1 = t2 in a small number of steps. Minus,
as introduced here, enables us to find a term with such a property.

Let the expression t1 4 t2 be an abbreviation for ((t1 − t2) + (t2 − t1)). We
observe the following:

Lemma 4 The following is provable in PA(−):

1. (x+ z) 4 (y + z) = x 4 y,

2. (x 4 y = 0) ≡ (x = y),

3. (1− (x 4 y) = 0) ≡ (x 6= y).

Let Tn
m(x) denote the term

Sm(0) · Sn(x) 4 Sn·m(Sm(0) · x).

We will show that PA(−) `b 1 − Tn
m(0) 6= 0, which immediately implies

PA(−) `b S
m(0) · Sn(0) = Sn·m(0).

For terms t1 and t2 we shall write t1 ∼ t2, if the terms t1 and t2 are identical.
t[t1/t2] will denote the term obtained by replacing all the occurrences of t1 in t
by t2.

Lemma 5 1. PA(−) `b S
m(0) · S(x) = Sm(Sm(0) · x).

2. Tn
m(S(x))[Sm(0) · S(x)/Sm(Sm(0) · x)] ∼ Tn+1

m (x), for every n.

3. PA(−) `b ∀x Tn
m(x) = Tn

m(0) and hence
PA(−) `b T

n
m(0) 6= 0 → ∀xTn

m(x) 6= 0.

Proof. 1) With the use of Lemma 1 we obtain Sm(0) · S(x) = Sm(0) · x +
Sm(0) = Sm(Sm(0) · x+ 0) = Sm(Sm(0) · x).

2) By inspection.
3) It is sufficient to prove Tn

m(S(x)) = Tn
m(x) in a bounded numbers of steps,

the statement then follows by induction. The following equivalences are proved
in a bounded number of steps by the use of Lemma 1 and the statement 1).

Tn
m(S(x)) = Sm(0) · Sn(S(x)) 4 Sn·m(Sm(0) · S(x))

= Sm(0) · S(Sn(x)) 4 Sn·m(Sm(Sm(0) · x))
= (Sm(0) · Sn(x) + Sm(0)) 4 Sn·m(Sm(Sm(0) · x))
= (Sm(0) · Sn(x) + Sm(0)) 4 Sn·m(Sm(Sm(0) · x) + 0)
= (Sm(0) · Sn(x) + Sm(0)) 4 (Sn·m(Sm(0) · x) + Sm(0))
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By Lemma 4 part 1) we conclude

Tn
m(S(x)) = Sn(x) · Sm(0) 4 Sn·m(Sm(0) · x)

QED

Lemma 6 Let t, t1, t2 be terms. Then the implication t1 = t2 → t = t[t1/t2] is
provable in PA(−) in three steps.

Proof. Let z be a variable not occurring in t and let t′ := t[t1/z]. Let x1, x2

be variables not occurring in t′. The implication x1 = x2 → t′[z/x1] = t′[z/x2]
is an axiom of identity. Applying substitutions x1/t1 and x2/t2 we obtain t1 =
t2 → t′[z/t1] = t′[z/t2]. But t′(z/t1) ∼ t and t′(z/t2) ∼ t[t1/t2]. QED

Let Q(y, x) denote the term

y
��

+
@@ 1− Tn−1

m (x)

��

+
@@ 1− Tn−2

m (x)

��

...
��

+
@@ 1− T 0

m(x)

Lemma 7

PA(−) `b Q(y + (1− Tn
m(x)), x) = Q(y, S(x)) + (1− T 0

m(x))

and hence

PA(−) `b Q(y + (1− Tn
m(x)), x) = Q(y, S(x)) + 1

Proof. Let t1 be the term Sm(0) ·S(x) and t2 be the term Sm(Sm(0) ·x). Let
us show that

(?) (Q(y, S(x)) + (1− T 0
m))[t1/t2] ∼ Q(y + (1− Tn

m(x), x).

We have

Q(y, S(x)) + (1− T 0
m(x)) ∼

y
��

+
@@ 1− Tn−1

m (S(x))

��

+
@@ 1− Tn−2

m (S(x))

��

...
��

+
@@ 1− T 0

m(S(x))

��

+
@@ 1− T 0

m(x)

Hence
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(Q(y, S(x))+(1−T 0
m(x)))[t1/t2] ∼

y
�
�

+
@
@ 1− Tn−1

m (S(x))[t1/t2]

��

+
@@ 1− Tn−2

m (S(x))[t1/t2]

��

...
��

+
@@ 1− T 0(S(x))[t1/t2]

��

+
@@ 1− T 0

m(x)[t1/t2]

But T 0
m(x) does not contain t1 and by Lemma 5, T k

m(S(x))[t1/t2] ∼ T k+1
m (x).

Hence

(Q(y, S(x))+(1−T 0
m(x)))[t1/t2] ∼

y
��

+
@@ 1− Tn

m(x)

�
�

+
@
@ 1− Tn−1

m (x)

��

...
��

+
@@ 1− T 1

m(x)

�
�

+
@
@ 1− T 0

m(x)

which is the term Q(y + (1− Tn
m(x)), x) and hence (?) is verified.

By the previous Lemma and Lemma 5, part 1, we finally obtain

PA(−) `b Q(y + (1− Tn
m(x)), x) = Q(y, S(x)) + (1− T 0

m(x))

The other part of the proposition follows from the fact that PA(−) `b T
0
m(x) =

0. QED

Proof of Theorem 3: We reason in PA(−). Assume that Sm(0) · Sn(0) 6=
Sm·n(0). Then Tn

m(0) 6= 0 and, by Lemma 5, for every x, Tn
m(x) 6= 0. Then, by

Lemma 4, part 3, 1 − Tn
m(x) = 0 for every x. The previous lemma then gives

the equality
(?) Q(y, x) = Q(y, S(x)) + 1.

Let y := 0. By induction we can prove that for every z,

(??) Q(0, 0) = Q(0, z) + z.

If z = 0 we have Q(0, 0) = Q(0, 0)+0 which is true. Assume that the statement
holds for z, i.e., Q(0, 0) = Q(0, z)+z. From (?) we have Q(0, z) = Q(0, S(z))+1
and hence Q(0, 0) = Q(0, S(z)) + 1 + z = Q(0, S(z)) + S(z).

But the proposition (??) implies that Q(0, 0) ≥ z for every z, which is
impossible. QED
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1.1.1 The theory PA(q)

Let q be a function symbol of arity ≥ 1. The theory PA(q) will be the theory
obtained by adding the symbol q to the language of PA and extending the
scheme of induction to the language of PA(q). Hence the only axioms describing
the properties of q in PA(q) are those given in the induction and the identity
schemes.

Theorem 8 There is a number k and a formula ψ(x) in the language of PA(q)
such that for every n PA(q) `k ψ(Sn(0)) but PA(q) 6` ∀x ψ(x).

Proof. Assume that q is a binary function. The sentence

∀x∀y∀z (q(x, y) = z) ≡ (x = y + z ∨ (x < y ∧ z = 0))

will be denoted as SUBTR[q]. As in Theorem 2 we can find a formula ψ′(x)
in the language of PA such that ∀x ψ(x) is not provable in PA (and hence in
PA(q)), but the instances are provable in a bounded number of steps, if we have
an upper bound on proof-lengths for the equations n ·m = n ·m. Let ψ(x) be
the formula

SUBTR[q] → ψ′(x)

In every instance of the formula we can assume SUBTR[q] and use q in place
of minus as in the previous section. Hence we obtain PA(q) `b ψ(Sn(0)).
The sentence ∀x ψ(x) is not provable in PA(q), since PA(q) is a conservative
extension of PA and the formula SUBTR[q] is satisfiable (i.e., every model of
PA can be expanded to the model of PA(q) + SUBTR[q]).

If q has an arity bigger than two, we can use the term q(x, y, 0, . . . 0) instead.
Assume that q is a unary function symbol. In PA we have a binary term

OP coding pairs of natural numbers. The previous argument can be applied to
the term q(OP (x, y)). QED

1.2 The theory of integers

The function minus, as introduced in section 1.1, is quite different from the
functions definable by terms in PA. Not only it is not increasing but it is also
very ’discontinuous’. Note that with minus we have definitions by cases on
terms: if we have functions f1, f2, g1, g2 defined by terms then we also have a
term in PA(−) which defines the function h such that h(x) = f1(x), if g1(x) ≤
g2(x), and h(x) = f2(x) otherwise.6 We defined minus in this way because we
wanted to have a theory with the same universe as PA. However, this property
of minus is not essential in the proof of Theorem 3. We will now show that
a similar argument can be applied to the theory of integers, where minus is
definable in the natural way.

The theory of integers, Z, is the theory with constant 0, function symbols
S,+, · and predicates <,≤,=. The axioms are the following7:

6Observe that h(x) = f1(x)(1− (g1(x)− g2(x))) + f2(x)(1− ((g2(x) + 1)− g1(x))).
7We take the leisure to write x > y (≥ y) instead of y < x (≤ x) and abbreviate the

bounded quantifiers in the usual way
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Q1 : ∀x∀y(S(x) = S(y)) → x = y

Q3′ : ∀x∃y S(y) = x

Q4 : ∀x x+ 0 = x

Q5 : ∀x∀y x+ S(y) = S(x+ y)

Q6 : ∀x x · 0 = 0

Q7 : ∀x∀y x · S(y) = x · y + x

R8 : ∀x < 0∃y > 0 x+ y = 0

D9 : ∀x∀y x ≤ y ≡ x < y ∨ x = y

L10 : ∀x ≥ 0 S(x) > 0

L11 : ∀x x < 0 ≡ ¬(x ≥ 0))

L12 : ∀x∀y (x < y ≡ ∃z > 0 y = x+ z)

and the scheme of induction

IND: (ψ(0) ∧ (∀x ≥ 0 ψ(x) → ψ(S(x))) → ∀x ≥ 0 ψ(x)

The axioms Q1 -Q7 determine the behaviour of S,+ and ·; they are the axioms
of PA except for the modified axiom Q3′. R8 is the key axiom relating positive
and negative numbers. D9 is a definition of ≤. The axioms L10-L11 can be
equivalently replaced by axioms asserting that < is a linear ordering and that
x < S(x). The motivation for choosing our axiomatisation is the following:
axioms preceding L12, except for the definition D9, use the relations <, ≤ only
in the context x < 0, x ≤ 0 etc., i.e., we employ only the property ’to be a
positive (non-negative) number’. The axiom L10 asserts that the successor of
a non-negative number is positive, the axiom L11 says that every number is
either positive or non-positive and not both. It is just the last axiom which
determines the exact properties of <. Note that there is no function symbol for
minus in Z and that the scheme of induction applies only to positive numbers.

Lemma 9 Let ψ be a formula in the language of Z. Then the following are
provable in Z:

IND1 (ψ(0) ∧ ∀x ≥ 0(ψ(x) → ψ(S(x)) ∧ ∀x < 0(ψ(S(x)) → ψ(x))) → ∀xψ(x)

IND2 ((ψ(0) ∧ (∀xψ(x) ≡ ψ(S(x))) → ∀xψ(x)

Proof. It is sufficient to prove part one, the other follows immediately. Reason
within Z. Assume that i) ψ(0), ii) (∀x ≥ 0 ψ(x) → ψ(S(x)) and iii) ∀x <
0 ψ(S(x)) → ψ(x). From i), ii) and IND we obtain ∀x ≥ 0 ψ(x). By L11 it
is sufficient to show that ∀x < 0 ψ(x). The following can be easily proved by
induction (and the axioms Q4, Q5):
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Claim. ∀x∀y ≥ 0 x+ S(y) = S(x) + y

Let ψ′(x) be the formula

∀z < 0 z + x = 0 → ψ(z),

where z does not occur freely in ψ. Let us show that ∀x ≥ 0 ψ′(x). If x = 0 then
then there is no z < 0 s.t. z + x = 0, and the statement holds. Assume that
ψ(x) is true for x ≥ 0. Let us show that ψ(Sx) is true. Let z < 0 be such that
z + S(x) = 0. Then S(z) + x = 0 and, by the inductive assumption, we have
ψ(S(z)) (if S(z) ≥ 0, use the first part of the proposition, and if S(z) < 0, use
the inductive assumption) . From iii) we have ψ(z). Hence ψ′(S(x)) is true and
therefore also ∀x ≥ 0 ψ′(x). This, together with axiom R8, gives ∀x < 0 ψ(x).
QED

The next proposition serves mainly to convince the reader of the soundness
of the system Z.

Proposition 10 The following formulae are provable in Z:

1. i) x 6= S(x), ii) x + y = y + x, iii) (x + y) + z = x + (y + z),
iv) y + z = x + z ≡ y = x, v) x · (y + z) = x · y + x · z, vi) x · y = y · x,
vii) (x · y) · z = x · (y · z)

2. i) ∀x∀y∃!z x = y + z, ii) (x ≥ 0 ∧ y ≥ 0) → x+ y ≥ 0,
iii) (x ≤ 0 ∧ y ≤ 0) → x+ y ≤ 0

3. i) ¬x < x, ii) x < y ∨ y < x ∨ x = y, iii) (x < y) ∧ (y < z) → (x < z),
iv) ¬(x < y ∧ y < x)

4. i) ∀x∀y(x > 0 ∧ y > 0 ∨ x < 0 ∧ y < 0) → x · y > 0, ii) x · x ≥ x.

5. ∃!z∀x x · z + x = 0

Proof. For 1) proceed as in PA but use IND2 where appropriate. We will
prove part ii), the rest is similar. (In order to prove i) note that the statement
S(0) 6= 0 follows from L10 and L11.) Let us first prove that for all x, 0+x = x.
Let ψ(x) be the formula 0 + x = x. If x = 0 the formula holds because of
Q4. Let us show that ψ(x) iff ψ(S(x)), for every x. Assume ψ(x). Then
0 + S(x) = S(0 + x) = S(x) and ψ(S(x)) holds. Assume ψ(S(x)). Then
0 + S(x) = S(x) and so S(0 + x) = S(x). By Q1 we have 0 + x = x and
ψ(x) holds. By IND2 we then obtain ∀xψ(x). Let now ψ(x) be the formula
∀y x+ y = y+ x. If x = 0, the formula holds as shown. As in the previous case
we can prove that ψ(x) iff ψ(S(x)), for every x and hence ∀xψ(x) holds.

2) The first proposition is straightforward, the second one requires the axiom
L10. The next one uses the axiom L11.

3) If x < x then there is z > 0 such that x = x+ z. But then (x = x+ 0 =
x+ z) and by 1), iv) we have z = 0. But that is impossible, by axiom L11. The
rest follows from the statements already proved.
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4) Easy.
5) Let z0 be such that S(z0) = 0. Then x·S(z0) = 0. But x·S(z0) = x·z0+x.

If on the other hand x · z + x = 0 for every x then also S(0) · z + S(0) = 0 and
hence S(0) · S(z) = 0. But S(0) · S(z) = S(z) and hence S(z) = 0. Therefore
z = z0. QED

We are now going to prove the following theorem:

Theorem 11 There is k such that for every n,m, Z `k Sn(0) · Sm(0) =
Sn·m(0), or shortly

Z `b S
n(0) · Sm(0) = Sn·m(0)

Corollary There is a number k and a formula ψ(x) in the language of Z such
that for every n Z `k ψ(Sn(0)) but Z 6` ∀x ≥ 0 ψ(x).

Lemma 12 Let T be a theory such that ∃zψ(z) is provable in T . Let T ′ be the
extension of T by a new constant c and the axiom ψ(c). Then there exists a
function p : ω → ω with the following property: if ξ is a formula in the language
of T such that T ′ `k ξ then T `p(k) ξ.

Hence if S is a set of formulae in the language of T and k ∈ ω is such that
T ′ `k ξ for every ξ ∈ S then there is j ∈ ω s.t. T `j ξ, for every ξ ∈ S.

Proof. The first part is easy and the other follows. QED

The lemma shows that we can, without significantly shortening the proofs,
extend the language of Z by new constant symbols. By Proposition 10 part 5
we can thus work in the system Z(-1) obtained by adding a new constant -1 to
the language of Z together with the axiom

∀x x · (-1) + x = 0

The expression t1− t2 will be an abbreviation for t1 +(-1).t2 The expression
t1 ⊕ t2 will be an abbreviation for t1 · t1 + t2 · t2.

Lemma 13 The following formulae are provable in Z:

1. (x+ z)− (x+ z) = x− y

2. x− y = 0 ≡ x = y

3. (0⊕ 0) = 0.

4. (x⊕ y) ≥ 0

5. x 6= 0 → (y ⊕ x > y).
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Proof. 1)-3) are easy.
4) and 5) follow from Proposition 10, part 4. QED

Let Tn
m(x) denote the term

Sm(0) · Sn(x)− Sn·m(Sm(0) · x).

We will show that Z `b T
n
m(0) = 0, which immediately implies Z `b S

m(0) ·
Sn(0) = Sn·m(0).

The proof proceeds similarly to the one in Section 1.1.

Lemma 14 1. Z `b S
m(0) · S(x) = Sm(Sm(0) · x)

2. Tn
m(S(x))[Sm(0) · S(x)/Sm(Sm(0) · x)] ∼ Tn+1

m (x), for every n.

3. Z `b ∀x Tn
m(x) = Tn

m(0).

Proof. As in Lemma 5 QED

LetQ(y, v, x) denote the term

y
��

⊕
@@

v − Tn−1
m (x)

��

⊕
@@

v − Tn−2
m (x)

��

...
��

⊕
@@

v − T 0
m(x)

The following is proved as in Lemma 7:

Lemma 15

Z `b Q(y ⊕ (v − Tn
m(x)), v, x) = Q(y, v, S(x))⊕ (v − T 0

m(x))

and hence

Z `b Q(y ⊕ (v − Tn
m(x)), v, x) = Q(y, v, S(x))⊕ v.

Proof of Theorem 9: We reason in Z. Assume that Sm(0) · Sn(0) 6= Sm·n(0).
Therefore Tn

m(0) 6= 0. Let v0 := Tn
m(0). We have v0 − Tn

m(0) = 0 and v0 6= 0.
By Lemma 14 part 3, v0 − Tn

m(x) = 0 for every x.
The previous lemma then gives

Q(y ⊕ 0, v0, x) = Q(y, v0, S(x))⊕ v0.

14



Let y := 0. Then we obtain (Lemma 13, part 3)

(?) Q(0, v0, x) = Q(0, v0, S(x))⊕ v0.

By induction with respect to z we can prove that for every z ≥ 0 and for every
x

Q(0, v0, x) ≥ z.

If z = 0, the proposition follows from Lemma 13, part 4 (since Q(0, v0, x) has
the form t1 ⊕ t2.) Assume the statement holds for z ≥ 0. From (?) and Lemma
13, part 5, and the fact that v0 6= 0 we have Q(0, v0, x) > Q(0, v0, S(x)). By the
inductive assumption Q(0, v0, x) ≥ z for every x and hence Q(0, v0, S(x)) ≥ z.
HenceQ(0, v0, x) > Q(0, v0, S(x)) impliesQ(0, v0, x) > z andQ(0, v0, x) ≥ S(z).
But that is impossible. QED

1.2.1 The theory PA(N)

Let N(x) be a unary predicate. The expressions ∀x ∈ N ψ(x), ∃x ∈ N ψ(x)
will abbreviate the formulae ∀x N(x) → ψ(x), ∃x N(x)∧ψ(x) respectively. Let
ψ be a formula of PA. Then the relativisation of ψ will be the formula obtained
by replacing the quantifiers ∀x, ∃x by ∀x ∈ N , ∃x ∈ N respectively. The theory
PA(N) will be the theory obtained by adding the unary predicate N to the
language of PA. Its axioms - besides induction - will be the relativisations of
axioms of PA, and the induction being replaced by the scheme

(ψ(0) ∧ (∀x ∈ N (ψ(x) → ψ(S(x)) → ∀x ∈ N ψ(x),

where ψ is any formula of PA(N).
The intended meaning of the predicate N is ’is a natural number’. In this

reading, PA is equivalent to the theory PA(N) plus the axiom ∀x N(x). At
the same time the theory PA(N) can be extended to a theory equivalent to Z,
by adding only a finite number of axioms. This fact is used in the following
theorem.

Theorem 16 There is a formula ψ(x) in the language of PA(N) and a number
k such that for every n, PA(N) `k ψ(Sn(0)) but PA(N) 6` ∀x ∈ N ψ(x).

Proof. The proof is similar to the proof of Theorem 8. Let κ be the conjunc-
tion of the axioms of Z, apart from induction, and the sentence ∀x N(x) ≡ x ≥
0. Let ψ′(x) be as in Theorem 8 and let ψ(x) denote the formula

κ→ ψ′(x).

The theory PA(N) + κ is equivalent to Z. This is true even in the sense of
conserving the lengths of proofs: the lengths of proofs in Z and PA(N)+κ differ
at most by a constant. As shown above Z `b ψ

′(Sn(0)) and hence PA(N) `b

ψ(Sn(0)). The formula ∀x ∈ N(x) ψ(x) is not provable in PA(N), for PA(N)
is conservative over PA. QED
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1.3 A weakening of KC and the structure of constant
terms

A weakening of Kreisel’s conjecture, which we call ’The Very Weak Kreisel’s
Conjecture’, VWKC, can be obtained as follows:

Let k ∈ ω. Assume that for every constant term C of PA the formula ψ(C) is
provable in PA in k steps. Then the formula ∀xψ(x) is provable in PA.

The VWKC immediately follows from KC, and it seems very straightforward.
However, we are unable to prove (or disprove) even such a weak statement. This
highlights the fact how little we know about the possible use of terms in PA. A
related problem of this kind is the following:

Are all true equations of the form C1 = C2, where C1 and C2 are constant
terms, provable in PA in a bounded number of steps?

This problem, too, seems quite straightforward: it seems enough to take for C
a sufficiently large and chaotic term. But this is not the case. It can be shown
that true equations of the form C = 0, ¬(C = 0), C = 1, ¬(C = 1), for a
constant term C, can be proved for even ’very large’ and ’very chaotic’ terms
in a bounded number of steps.8 Hence we cannot easily rule out the alternative
that all true formulas of the form C = 0, ¬(C = 0), C = 1, ¬(C = 1), and even
all true equations, can be proved in a bounded number of steps.

To end on a happier note, there is at least something that can be proved
easily:

Observation. For every k there are (non constant) terms t1 and t2 s.t. the
equation t1 = t2 is true but cannot be proved in PA in k steps. An example of
such equation is

(. . . ((x+ y1) + y2) . . .+ yn) = x+ (. . . ((y1 + y2) + y3) . . .+ yn),

for a sufficiently large n. In other words, the equation asserts commutativity of
a large sum. The proof of this fact would proceed like the proof in Section 2.2.

8Namely, for terms C s.t. every subterm of C has value 0 or 1. This will be apparent from
Section 2.
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2 Propositional proof systems with identity

We have seen that in arithmetic, many non-trivial propositions are provable
even in a constant number of steps, if we are granted a sufficiently rich term
structure. A similar phenomenon can occur in propositional logic, if are allowed
to use the identity axiom

ξ ≡ ξ′ → ψ(p/ξ) ≡ ψ(p/ξ′),

or the identity rule
ξ ≡ ξ′

ψ(p/ξ) ≡ ψ(p/ξ′)
.

For in this case, formulas behave in a similar way like terms. We will investigate
propositional proof system with the identity axiom, FI, and with the identity
rule, FIr. We will prove quite a surprising result, that in the systems all tau-
tologies with a bounded number of variables are provable in a bounded number
of steps9. However, the identity rule is much weaker than the identity axiom,
and we will show that FI has an unbounded speed-up over FIr (with respect
to the number of proof-lines). In fact, FI is an optimal system in a certain class
of systems, called generalised Frege systems (see Section 2.3). On the other
hand, identity axiom may seem more natural because it is sound in most logics.
Non-classical logics with identity rule will be considered in Section 2.2.2.

2.1 Constant upper bounds on number of proof-lines

Let us have a fixed language L of propositional logic. We can assume that it
contains the constants 0 and 1, and the usual logical connectives →,¬,∧,∨,≡.
We assume that F is a particular propositional proof system having the form
of a Frege system. The usual textbook axiomatisation of propositional logic is a
kind of Frege system. In general, Frege system is defined as follows. Frege rule
is an inference of the form

ψ1(p1, . . . pk), . . . ψn(p1, . . . pk)
ψ(p1, . . . pk)

s.t. for any truth assignment to the variables p1, . . . pk, if ψ1, . . . ψn are true
then so is ψ. An application of a Frege rule is a substitution of formulas for the
variables p1, . . . pk, i.e. the inference

(Fr) ψ1(ξ1, . . . ξk), . . . ψn(ξ1, . . . ξk)
ψ(ξ1, . . . ξk)

Frege system is a finite list of Frege rules which is complete, i.e., every tautology
is derivable in the system.

The identity axiom is a formula of the form
9This result has been first proved in [3].
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(Id) ξ ≡ ξ′ → ψ(p/ξ) ≡ ψ(p/ξ′),

where ξ, ξ′ and ψ are arbitrary formulas. The system F augmented with the
identity axiom will be called Frege system with identity, FI. Frege system with
identity is not a Frege system.

A formula ψ will be called a closed formula, if it does not contain proposi-
tional variables; hence ψ contains only logical connectives and 0 or 1.

Lemma 17 If F `c ξ(p) then F `c ξ(p/ψ). In particular, there are c1, c2 s.t.
for any formula ψ, F `c1 ψ ≡ ψ, F `c2 ((¬ψ → 0) → ψ etc.

Proof. It is sufficient to replace every formula ξi(p) in the F -proof of ξ by the
formula ξi(p/ψ). We thus obtain an F -proof of ξ(p/ψ) of equal length. QED

Lemma 18 Let p⊕ q be the abbreviation for p ≡ ¬q. Then

F ` p⊕ 1 ≡ ¬p and F ` ¬p→ (q ⊕ p ≡ q).

Proof. Trivial. QED

Theorem 19 There exists c ∈ ω s.t. for every closed formula ψ, if ψ is a
tautology then FI `c ψ. The c is determined by the particular properties of FI.

Proof. Let the language of F be formed by the connectives λ1, . . . λk with
arities r1, . . . rk respectively. We will imagine closed formulas as trees in the
usual way. The depth of a formula is the length of the longest branch; hence 0
and 1 have depth zero. Every formula of depth one has the form

λi(a1, . . . ari
), i = 1, . . . k

where a1, . . . ari = 0, 1. Those formulas will be denoted µ1, . . . µm (note that
m =

∑
i=1,...k 2ri). For i = 1, . . .m, µ?

i will be either the formula 0 or 1, 0 if the
truth value of µi is zero and 1 if the truth value is one.

Let ψ be a given closed formula. We shall construct a proof of ψ of length
c s.t. the c does not depend on the choice of ψ. Instead of the phrase ’there is
a c s.t. FI `c ξ and c is independent on ψ’, we shall write simply

FI `b ξ,

where ξ is assumed to be determined by ψ in a particular way (as will be clear
later).

Assume that ψ is a tautology and ψ has depth n. Let us construct a sequence
of formulas ψn, ψn−1, . . . ψ0 s.t. ψi has depth i. First, ψn := ψ. Assume that ψl,
l = n, . . . 1, has been constructed. Then ψl−1 is obtained from ψl by replacing
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all the formulas µi in ψl by µ?
i , j = 1, . . .m. We see that for every l = 1, . . . n,

if ψl has truth value one then ψl−1 has truth value one. Since ψ is a tautology,
we have ψ0 = 1.

For every ψi, i = n . . . 1, let us define the formula θi with m propositional
variables p1, . . . pm as follows: θi is obtained from ψi by replacing all the occur-
rences of µj in ψi by pj , j = 1, . . .m.

Thus we immediately obtain

θi(p1/µ1, . . . pm/µm) = ψi, i = n, . . . 1(1)

But also, from the definition of ψi,

θi(p1/µ
?
1, . . . pm/µ

?
m) = ψi−1, i = n, . . . 1(2)

Let us now have the formula

∆(q, p1, . . . pm) :=

q
�
�

⊕
@
@
θn

��

⊕
@@

θ2

��

...
��

⊕
@@

θ1

From the equation (1) we obtain

∆(q/(q⊕ψn), p1/µ
?
1, . . . pm/µ

?
m) =

q
��

⊕
@@

ψn

��

⊕
@@

ψn−1

��

...
��

⊕
@@

ψ1

�
�

⊕
@
@
ψ0

From the equation (2) we obtain

∆(q, p1/µ1, . . . pm/µm)⊕ ψ0 =

q
��

⊕
@@

ψn

�
�

⊕
@
@
ψn−1

��

...
��

⊕
@
@
ψ1

��

⊕
@@

ψ0
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which together gives

∆(q/(q ⊕ ψn), p1/µ
?
1, . . . pm/µ

?
m) = ∆(q, p1/µ1, . . . pm/µm)⊕ ψ0.(3)

By Lemma 17 we have

FI `b ∆(q/(q ⊕ ψn), p1/µ
?
1, . . . pm/µ

?
m) ≡ ∆(q, p1/µ1, . . . pm/µm)⊕ ψ0,(4)

Every formula of the form µj ≡ µ?
j , j = 1, . . .m is provable in FI. Hence,

applying the identity axioms m times, we obtain

FI `b ∆(q, p1/µ1, . . . pm/µm) ≡ ∆(q, p1/µ
?
1, . . . pm/µ

?
m),(5)

Combining (4) and (5), we have

FI `b ∆(q/(q ⊕ ψn), p1/µ
?
1, . . . pm/µ

?
m) ≡ ∆(q, p1/µ

?
1, . . . pm/µ

?
m)⊕ ψ0,(6)

Hiding the occurrences of pi/µ
?
i and using the fact that ψn = ψ and ψ0 = 1, we

can write that
FI `b ∆(q ⊕ ψ) ≡ ∆(q)⊕ 1.(7)

By Lemma 18
FI `b ∆(q ⊕ ψ) ≡ ¬∆(q).(8)

From Lemma 18 ¬ψ → (q ⊕ ψ ≡ q) is provable in a bounded number of steps.
Hence, by the axiom of identity, we have

FI `b ¬ψ → (∆(q ⊕ ψ) ≡ ∆(q)).(9)

But (8) and (9) yields

FI `b ¬ψ → (¬∆(q) ≡ ∆(q)),(10)

and hence
FI `b ψ,

since ∆(q) ≡ ¬∆(q) is a contradiction (Lemma 17). QED

Lemma 20 There exists a constant d s.t. for every ψ if FI `c ψ(p/0) and
FI `c ψ(p/1), then

FI `c.d ψ(p).

Proof. The axioms of identity state

(p ≡ 1) → (ψ(p) ≡ ψ(p/1))

and
(p ≡ 0) → (ψ(p) ≡ ψ(p/0)).
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Since (p ≡ 1) ∨ (p ≡ 0) is a tautology then

(ψ(p) ≡ ψ(p/0)) ∨ (ψ(p) ≡ ψ(p/1))

is a tautology provable in a number of steps independent on ψ. Assuming that
both ψ(p/1) and ψ(p/0) are provable in c steps, then we can find a k independent
on ψ s.t.

FI `2c+k ψ(p).

It is now sufficient to take d := 2 + k. QED

Theorem 21 There exists c ∈ ω s.t. for every tautology ψ with n variables

FI `cn+1 ψ.

Proof. Let c be the constant from Theorem 19 and d the constant from the
previous Lemma. By induction with respect to n let us prove that ψ is provable
in c.dn steps in FI. If n = 0 the proposition holds by the Theorem 19. Let ψ be
a tautology with n + 1 variables. Assume that ψ contains a variable p. If ψ is
a tautology then both ψ(p/0) and ψ(p/1) are tautologies with n variables. By
the inductive assumption

FI `c.dn ψ(p/0) and FI `c.dn ψ(p/1).

Then, by the previous Lemma

FI `c.dn+1 ψ(p).

Finally, we set c := max(c, d). QED

The statement can be proved also in FIr; we give the following version:

Theorem 22 For every n there exists c s.t.

FIr `c ψ,

for any tautology ψ with n variables.

Proof. The proof is analogous to that for FI. Let us just state the main
points. In FIr we do not have Lemma 20, and the procedure of Theorem 19
must be repeated directly for the n-variable case. Let the variables p1, . . . pn

be fixed. Let A = α1, . . . αm, m = 2n, be the set of DNF formulas that can be
formed from the variables, s.t. any formula in variables p1, . . . pn is equivalent
to some αi. For any connective λ of arity r and β1, . . . βm ∈ A we can find
α ∈ A s.t.

λ(β1, . . . βr) ≡ α

is a tautology. Moreover, there is a c s.t. all such tautologies are provable in c
steps. The argument of Theorem 19 can be repeated with α1, . . . αm in place of
the truth-values 0, 1, using identity rules in place of axioms where appropriate.
(Note that this requires writing the formulas θ1 . . . θn in reverse order in ∆.)
QED
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2.2 Non-constant lower bounds

It is now apparent that proving even non-constant lower bounds in FI and FIr
may not be a trivial matter. Not too difficult, though. We want to apply the
results of this section to a variety of systems, and hence we state the theorems in
quite a general form. The reader may want first to have a look at the applications
in 2.2.1 and 2.2.2.

Let us first introduce several definitions.

1. A language L is a finite list of logical connectives and infinitely many
propositional variables. Formulas of L are defined in the usual way,

2. A logic P is a set of formulas in a fixed language L s.t. the set is closed
under substitutions of formulas for propositional variables. Formulas in
P are P -tautologies. We shall also assume that P is non-degenerate, that
not all formulas are P -tautologies. The term ”logic” is intended to include
classical and intuitionistic propositional logic, and modal logic.

3. L+ is obtained by adding to L an infinite list of second-order variables
X,Y, Z . . ., infinitely many for every arity. Hence variables will be either
propositional variables p, q, r . . .(1-variables) or second-order variables (2-
variables) X,Y, Z . . .. Second-order formula (2-formula) is defined induc-
tively as follows:

(a) Every 1-variable is a 2-formula,

(b) if f is a logical connective or 2-variable of arity n and ξ1 . . . ξn are
2-formulas then f(ξ1, . . . ξn) is 2-formula.

A substitution is a function σ from variables to 2-formulas s.t. for a 2-
variable X of arity n, σ(X) has arity ≥ n. For a 2-formula ψ, ψσ is defined
by induction as follows:

(a) pσ = σ(p) for a 1-variable p.

(b) if ψ = X(ξ1, . . . ξn), X is n-ary variable and σ(X) = µ(p1, . . . pm),
where µ is a formula andm ≥ n, then ψσ = µ(ξσ

1 , . . . ξ
σ
n , pn+1, . . . pm).10

(c) if ψ = β(ξ1, . . . ξn), β is n-ary logical connective then ψσ = β(ξσ
1 , . . . ξ

σ
n).

A 2-formula ξ will be called a substitution instance of a 2-formula ψ, if
there exists a substitution σ s.t. ξ = ψσ.

4. Generalised Frege rule for P is a rule of the form

A1(X1, . . . Xk), . . . Am(X1, . . . Xk)
B(X1, . . . Xk)

,

where A1, . . . Am, B are 2-formulas not containing 1-variables, s.t. the
rule is sound. That is, for any substitution of 1-formulas for 2-variables, if

10Some fixed ordering on the 1-variables must be assumed in this case.

22



A1, . . . An are P -tautologies then B is also a 2-tautology. An application
of the rule is a substitution of 1-formulas for the 2-variables in the rule,
an inference of the form

(GFr) A1(σ(X1), . . . σ(Xk)) . . . Am(σ(X1), . . . σ(Xk))
B(σ(X1), . . . σ(Xk))

,

Frege rule for P is a generalised Frege rule which contains 2-variables of
zero arity only.

5. Frege system for P is a finite list of Frege rules which is complete, i.e.,
every P -tautology is derivable by means of the rules. Similarly, generalised
Frege system for P is a finite complete set of generalised Frege rules.
FI and FIr are examples of generalised Frege systems for classical logic
(other examples are given in 2.3). Note that generalised Frege system can
prove only the formulas in L; second order variables appear only in the
formulation of rules and not in their application.

6. Let S be a generalised Frege system. Then S+ is the extension of S to
2-formulas. S+ has the same rules like S except that they can be applied
to 2-formulas as well. S+-tautology is a 2-formula derivable in S+. Hence
S+, as opposed to S, does prove 2-formulas. Note that two different
generalised Frege systems for the same logic can produce different sets of
2-tautologies (see 2.2.1).

We are now to prove the following theorem:

Theorem 23 Let S be a generalised Frege system. Then there exists c ∈ ω
s.t. for every tautology ψ if S `k ψ then ψ is a substitution instance of a
S+-tautology χ which contains at most c.k variables.

Lemma 24 1. Let ψ be a S+-tautology and δ a variable of arity m which oc-
curs in ψ. Then there exists a connective or 2-variable f different from δ of
arity n ≥ 1 s.t. in ψ occurs a formula of the form
f(µ1, . . . , µj , δ(λ1, . . . λm), µj+1, . . . µn−1). Formulas of this particular form
will be written as fδ(µ1 . . . µn−1, λ1, . . . λm).

2. Let f and δ be as in part 1). Let ξ be a formula and Y a variable of arity
n− 1 +m not occurring in ξ. Then there exists a unique formula ξ with
the following properties

(a) ξ = ξ(Y/fδ).

(b) ξ does not contain a subformula of the form fδ(µ1 . . . µn−1, λ1, . . . λm).

Proof. 1) It is sufficient to take an uppermost occurrence of δ in ψ, when ψ
is understood as a tree growing from the root downwards. Since ψ is a S+-
tautology, it cannot have the form ψ = δ(λ1, . . . λm), for otherwise the logic
would be degenerate.
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2) Existence of ξ satisfying the properties is clear. Uniqueness follows from
the fact that f and δ are different. QED

Let δ be a variable. We shall say that δ is critical in an S+ application of
generalised Frege rule of the form (GFr), if σ(Xi) has the form δ(µ1, . . . µm) for
some i = 1, . . . k. A variable will be called critical in S+-proof K if it is critical
in some step of the proof.

Lemma 25 1. There exists d s.t. every S+ proof K with k proof-lines con-
tains at most d.k critical variables.

2. Let K be a S+ proof of ψ with k proof-lines. Assume that a variable X
occurs in ψ and is not critical in K. Let ψ be as in Lemma 24, part 2).
Then S+ `k ψ.

Proof. 1) is clear. 2). Let K = ξ1 . . . ξk, ξk = ψ. It is sufficient to verify that
K = ξ1, . . . ξk is a FI2 proof. But that is easy. QED

Proof of Theorem 23. We will prove a more general statement, that there exists
c ∈ ω s.t. for every 2-formula ψ if S+ `k ψ then ψ is a substitution instance of
a S+-tautology χ which contains at most c.k variables. Let d be the constant
from Lemma 25, part 1). We will proceed by induction with respect to the size
of ψ, where size is simply the number of symbols in ψ. Assume that `k ψ. If
ψ has at most d.k variables, or is of size at most d.k, the proposition is true
trivially. Assume that ψ contains more than d.k variables and K be a proof of
ψ with k proof-lines. By Lemma 25, part 1), there is a variable δ occurring in
ψ which is not critical in K. By part 2) of the Lemma, ψ has a proof with k
proof lines. But ψ has a smaller size than ψ and by the inductive assumption
there exists a tautology χ with d.k variables s.t. ψ is a substitution instance of
χ. Since ψ is a substitution instance of ψ then ψ is also a substitution instance
of χ. This completes the proof.QED

Theorem 23 is intended to give lower bounds for tautologies containing many
propositional variables. It is quite powerless if the tautology contains, say, one
variable, for then the tautology itself satisfies the conclusion of the Theorem.
This does not matter, if we are interested in the systems FI and FIr (Theorems
21 and 22). However, in the case of systems like intuitionistic or modal logic a
different consideration is necessary.

Let S be a Frege system for a logic P . We will assume that the language of S
contains the symbol ≡ which has some basic properties: p ≡ p is a P -tautology,
and S contains the rules

X ≡ Y

Y ≡ X
,

X ≡ Y, Y ≡ Z

X ≡ Z
,

X,X ≡ Y

Y
,

or some rules with the same function. Moreover, assume that the identity rule
is sound over P . Then SIr will be the system S plus the identity rule. If T
is a set of formulas we will write that T ` ψ, if ψ is provable in SIr using the
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formulas in T as axioms. In particular, if T contains ξ ≡ ξ′ than the formula
can be used as a premiss of an identity rule.

Let ξi, i ∈ I be a list of formulas s.t. ξi ≡ ξj is not a P tautology for any
i, j ∈ I, i 6= j, and let pi, i ∈ I be a list of variables. Then ψ(ξi/pi, i ∈ I) will be
defined as follows (we abbreviate ψ(ξi/pi, i ∈ I) by ψ?):

1. if S ` ψ ≡ ξi for some i ∈ I then ψ? := pi.

2. Otherwise, if ψ has the form λ(ψ1, . . . ψn) for a logical connective λ, we
let ψ? := λ(ψ?

1 , . . . ψ
?
n). If ψ is a variable or a constant we let ψ? = ψ.

Proposition 26 Let S be a Frege system for logic P . Then there exists c ∈ ω
with the following properties: let SIr `k ψ. Let ξi, i ∈ I and pi, i ∈ I be as
above, where the variables pi do not occur in ψ. Let T be the theory containing
all formulas of the form pj ≡ θ(ξi/pi, i ∈ (I \ {j})), for j ∈ I and θ provably
equivalent to ξj in S. Then

T `c·k ψ(ξi/pi, i ∈ I).

Proof. For a formula γ, let γ? be an abbreviation for γ(ξi/pi, i ∈ I). First,
let us note the following:
Claim. For a formula α(q1, . . . qm) of size n and β1, . . . βm arbitrary formulas

T `O(n) (α(β1, . . . βm))? ≡ α(β?
1 , . . . β

?
m)

The claim is proved easily by induction over the depth of α.
We must show that if K = γ1 . . . γl is a SIr proof then every γ?

1 . . . γ
?
l can

be proved over T using at most c · l steps, for a constant c whose size will be
clear from the following. Proceed by induction with respect to l.

Assume that the last inference in K is an application of a Frege rule

A1(σ(X1), . . . σ(Xk)), . . . Am(σ(X1), . . . σ(Xk))
B(σ(X1), . . . σ(Xk))

.

By the assumption the formulas (A1(σ(X1), . . . σ(Xk)))?, . . . (Am(σ(X1), . . . σ(Xk))?

are provable in c · (l − 1) steps. From the Claim also the formulas
(A1(σ(X1)?, . . . σ(Xk)?)), . . . , Am(σ(X1)?, . . . σ(Xk)?) are provable over T us-
ing additional inferences whose number depends only on the size of A1, . . . Am.
Hence we are allowed to use the inference

A1(σ(X1)?, . . . σ(Xk)?), . . . Am(σ(X1)?, . . . σ(Xk)?)
B(σ(X1)?, . . . σ(Xk)?)

.

The statement then follows by another application of the Claim to the formula
B. Altogether, we proved γ?

l in c · (l−1)+ s steps, where s depends on the used
Frege rule only.
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Assume that the last inference was an identity rule

θ1 ≡ θ2
∆(q/θ1) ≡ ∆(q/θ2)

.

As above, it is sufficient to simulate the inference

θ?
1 ≡ θ?

2

(∆(q/θ1))? ≡ (∆(q/θ2))?
.

From the definition of ∆(q/θ1))? and (∆(q/θ2))? and the fact that S ` θ1 ≡ θ2
we can find a formula Γ(q) s.t.

(∆(q/θ1))? = Γ(q/θ?
1) and (∆(q/θ1))? = Γ(q/θ?

2).

Hence it is sufficient to apply the rule

θ?
1 ≡ θ?

2

(Γ(q/θ?
1) ≡ Γ(q/θ?

2)
.

Again, the inference requires only a bounded number of additional steps. QED

2.2.1 FI and FIr

We shall now apply Theorem 23 to give specific examples of tautologies not
provable in FI and FIr in a bounded number of steps. This requires to give
a semantic specification of FI+ and FIr+ tautologies. Although the systems
FI and FIr are formalisations of the same logic, the sets FI+ and FIr+ are
different. This fact will be used to separate the systems. We will also see that
the system FI+ is complete with respect to the natural interpretation of 2-
formulas. This fact will be used in Section 2.3 to show that FI is an optimal
generalised Frege system for classical propositional logic.

The system FI+ is obtained by extending the language of propositional
logic by second-order variables. Its tautologies can be defined as the formulas
derivable by means of propositional logic, and the axioms

ξ ≡ ξ′ → X(. . . , ξ, . . .) ≡ X(. . . , ξ′, . . .),

for any 2-variable X and any 2-formulas ξ and ξ′.
Similarly, the system FIr+ can be characterised by the rule

ξ ≡ ξ′

X(. . . , ξ, . . .) ≡ X(. . . , ξ′, . . .)
.

Proposition 27 1. A 2-formula is FI+ tautology iff it is a propositional
tautology for any interpretation of 2-variables as truth-functions.

2. If a 2-formula is FIr+ tautology then it is K tautology for any interpre-
tation of 2-variables as K formulas.
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Proof. It is easy to see that FI+-tautologies are true in the interpretation.
For the converse, assume that we have a 2-formula Γ which is a propositional
tautology for any interpretation of 2-variables as truth-functions. Assume, for
simplicity, that Γ contains only a single 2-variable X. Let X have arity n. There
are 2n possible truth-functions of arity n. Let α1, . . . α2n be some L-formulas in
variables p1, . . . pn defining the Boolean functions. Then for every i = 1, . . . 2n

the formula Γ(X/αi) is a 1-tautology. Let αi ∼ X be an abbreviation for the
conjunction of 2n formulas

αi(σ(p1), . . . σ(pk)) ≡ X(σ(p1), . . . σ(pk)),

for every assignment σ to the variables p1, . . . pn. Using the identity axiom, one
can prove

(αi ∼ X) → (Γ(X/αi) ≡ Γ(X))

for every i = 1, . . . 2n. Since Γ(X/αi) is 1-tautology, we also obtain

FI+ ` (αi ∼ X) → Γ(X).

Finally,
FI+ `

∨
i=1,...2n

αi ∼ X

is a tautology. This, together with the previous formula, completes the proof.
Part 2) is easy. QED

Theorem 28 Let ξn(q) be the formula

(. . . ((q ∧ p1) ∧ p2) . . .) ∧ pn.

Then

1. there is no c ∈ ω s.t. FI `c ξ
n(q) → q for every n.

2. there is no c ∈ ω s.t. FIr `c q ≡ q′ → ξn(q) ≡ ξn(q′) for every n.

Proof. For part 1) assume the opposite. Then, by Theorem 23, for a suffi-
ciently large n ξn(q) → q is a substitution instance of an FI+ tautology θ1 with
< n variables. Inspecting the form of ξn(q) → q, we can conclude that it is a
substitution instance of FI+ tautology of the form

(. . . ((X(ξm) ∧ pm+1) ∧ pm+2) . . .) ∧ pn → q,

for some 0 ≤ m ≤ n. Setting the variables p1, . . . pn to 1, and applying the
identity axiom, we obtain that

X(q) → q

is an FI+ tautology. But that is not the case, for the formula is not a proposi-
tional tautology if we interpret X as the constant function 1.
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The argument for part 2) is similar. We then obtain that

q ≡ q′ → X(q) ≡ X(q′)

is an FIr+ tautology. But if we interpret X as 2 of the logic, the formula is
not K tautology. QED

2.2.2 Some non-classical logics

We will now show that Theorem 22 is false, if we add the identity rule to
modal logic K or intuitionistic propositional logic. We will give examples of
tautologies with only two propositional variables which cannot be proved in
a bounded number of steps in the systems. The reason is the following: in
classical logic we can form only finitely many non-equivalent formulas from a
finite list of variables. That is the essence of Theorem 22. In K, however, the
formulas 2p,22p . . . are not equivalent. Similarly, by the result in [20] there
are infinitely non-equivalent intuitionistic formulas in one variable.

The system K of modal logic will be introduced in Section 3, and for IL we
take the Hilbert style axiomatisation of intuitionistic logic given in Section 4.
The system KIr resp. ILr is the system K resp. IL plus the identity rule.

Theorem 29 1. Let ηn(q) be the formula

(. . . ((q ∧2p) ∧22p) . . .) ∧2np.

Then there is no c ∈ ω s.t. KIr `c η
n(q) → q for every n.

2. Let αi, i ∈ ω be a sequence of IL formulas with one variable s.t. IL 6`
αi ≡ αj for i 6= j. Let ηn(q) be the formula

(. . . ((q ∧ α1) ∧ α2) . . .) ∧ αn.

Then there is no c ∈ ω s.t. ILr `c η
n(q) → q for every n.

Proof. Part 1). We shall apply Proposition 26. Assume that the formulas
are provable in a bounded number of steps. Let ξi be the formula 2ip and let
pi, i ∈ ω and T be as in the Proposition. Let δn(q) be the formula (. . . ((q ∧
p1)∧ p2) . . .)∧ pn. By the Proposition, the formulas δn(q) → q can be proved in
a bounded number of steps from the theory T . For a modal formula A, let A0

denote the formula obtained by deleting all the boxes in A. We can see that if
KIr `k A then FI `k A0. Let T0 be the theory {A0, A ∈ T}. Since δn(q) → q
does not contain modalities, it is provable from T0 in FI in a bounded number of
steps. Since a bounded length proof can use only a bounded number of formulas
from T , for every n there exists a subset Fn of T of a bounded size s.t.

Fn ` δn(q) → q
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in a bounded number of steps. Since we now work in FI, we have also∧
Fn → (δn(q) → q).

By Theorem 23 the formula is then a substitution instance of a FI+ tautology
with a bounded number of variables. As in Theorem 28 we can show that this
is impossible.

Part 2) is similar. QED

2.3 Speed-up and Generalised Frege systems

In Section 2.2 we have defined the notion of a generalised Frege system for a
logic P . We will now briefly consider generalised Frege systems for classical
propositional logic, or simply generalised Frege systems. Let us first give few
examples.

Examples of generalised Frege systems.

1. Frege system with identity, FI, with the axiom

X ≡ X ′ → Z(X) ≡ Z(X ′).

2. FIr, Frege system with identity rule

X ≡ X ′

Z(X) ≡ Z(X ′)

3. Frege system with generalisation axiom, Fg, i.e., F plus the axiom

(Y (0) ∧ Y (1)) → Y (X)

and also Frege system with generalisation rule Fgr, i.e., the rule

Y (0) ∧ Y (1)
Y (X)

.

Substitution Frege system. Substitution Frege system SF is defined as a
Frege system F plus the rule

ψ(p)
ψ(p/ξ)

.

Strictly speaking, SF is not a generalised Frege system. This is because we
forbid the occurrence of first-order variables in the formulation of a generalised
Frege rule. This could be remedied by modifying the definition of generalised
Frege system by allowing propositional variables, while requiring that in an ap-
plication of a rule we are allowed to substitute for 1-variables only 1-variables.
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However, such a modification is not necessary, for any such ”generalised” gen-
eralised Frege rule can be simulated by a generalised Frege rule. In the specific
case of SF we will see in Proposition 31 that SF is equivalent to F (in the sense
of the Proposition).

Let P1 and P2 be generalised Frege systems (in the same language L).

1. We say that P1 l-simulates P2, if there exists a function g : ω → ω s.t. for
every formula ψ if P2 `k ψ then P1 `g(k) ψ.

2. We say that P1 and P2 are l-equivalent, if P1 l-simulates P2 and P2 l-
simulates P1.

3. If P1 l-simulates P2 and P1 and P2 are not l-equivalent, we say that P1

has an unbounded speed-up over P2.

The notion of l-simulation relates to number of proof lines and not to size of
proofs in the respective systems. Note that in the definition of l-simulation we
make no assumption concerning the growth of g: the function may very well be
exponential or faster.

In the sense of l-simulation, the system FI is optimal in the class of gener-
alised Frege systems:

Theorem 30 FI l-simulates any generalised Frege system.

Proof. Let us say that a generalised Frege system is proper, if the only rule
with a non-empty assumption is modus ponens. In other words, it consists of
modus ponens and a finite list of axioms.
Claim 1. Every generalised Frege system is l-simulated by some proper gener-
alised Frege system.
Assume that we have a generalised Frege rule

(?) A1, . . . Am

B
.

Let us show that

(??)
∧

i=1,...m

Ai → B

is a tautology for any substitution σ of 1-formulas for the 2-variables. Without
loss of generality we can assume that for any 2-variable X of arity r the arity
of σ(X) is r. In particular, if X has arity zero then σ(X) is the constant 0 or
1. Assume that we have such a substitution and that (??) is not a tautology.
Then there is a truth assignment to propositional variables s.t. σ(

∧
i=1,...mAi)

is true and σ(B) is false. However, since we do not allow propositional variables
in the formulation of a generalised Frege rule, and by the property of σ, the
formulas σ(

∧
i=1,...mAi) and σ(B) do not contain any propositional variables.
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Hence σ(
∧

i=1,...mAi) is a tautology. But that contradicts the assumption that
the rule (?) was sound. Hence every generalised Frege rule can be replaced by
a generalised Frege axiom, without significantly increasing lengths of proofs.
Claim 2. Every proper generalised Frege system is l-simulated by FI.
Let S be a proper generalised Frege system. By Proposition 27 every generalised
Frege axiom, as being a tautology for any substitution of 1-formulas for 2-
variables, is an FI+ tautology. Let c be a constant s.t. every generalised Frege
axiom of S is provable in at most c steps in FI+. Clearly, if FI+ `c A and σ is
a substitution of 1-formulas for 2-variables then FI `c σ(A). Hence also every
instance of an axiom in S is provable in FI in c steps. This completes the proof
of the proposition. QED

The other speed-up relations can be summarised as follows:

Proposition 31 1. SF and F are l-equivalent.

2. FIr has an unbounded speed-up over F .

3. FI has an unbounded speed-up over FIr.

4. The systems FI, Fg and Fgr are l-equivalent.

Proof. 1). We can transform a SF proof into a tree-like form, with an ex-
ponential increase of the number of proof-lines. In a tree-like proof, we can
eliminate the substitution p/ξ by replacing all preceding occurrences of p by ξ.

2). It is a well-known fact that there are closed tautologies which do not have
bounded length proofs in F . (E.g., ¬ . . .¬1, where the number of negations is
even. See [16]) However, all closed tautologies are provable in FI in a bounded
number of steps.

3). Consider the formulas from Theorem 28, part 2). The formulas are
instance of the identity axiom and hence they can be proved in FI in one step.
By the Theorem, they cannot be proved in a bounded number of steps in FIr.

4). It is sufficient to prove that Fgr l-simulates FI. Hence we must show
that the scheme of identity is provable in Fgr in a bounded number of steps.
Consider the formula Γ(p, q)

p ≡ q → ψ(p) ≡ ψ(q).

Then every substitution of 0, 1 for the variables p, q in Γ results in a tautology
which is provable in F in a bounded number of steps. (Either the consequent
is trivially true or the antecedent trivially false.) We can apply twice the gen-
eralisation rule to obtain

ξ ≡ ξ′ → ψ(ξ) ≡ ψ(ξ′).

QED
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PART II

3 Modal logic

The object of proof complexity is to determine how efficient various proof sys-
tems are in proving their theorems. This leads to the basic problem of finding
lower bounds on sizes of proofs in the systems, which can be formulated as
follows:

For a proof system Q and a function g : ω → ω find (or decide whether it exists)
a sequence of Q-tautologies ψ1, ψ2, . . . such that for every i ∈ ω every Q-proof
of ψi must have size at least g(|ψi|).11

The answer to the problem, as well as its importance, will of course depend on
the particular system Q and function g. For example, in the case of predicate
calculus, the problem has an affirmative solution for any recursive function g,
and the lower bounds are even more radical if Q contains some arithmetic.
In the case of weak proof systems, like propositional calculus, the problem is
more subtle and much more difficult. For such systems, the question is to find
an exponential (or at least superpolynomial) lower bound. Until now, such a
lower bound has been proved only for artificial proof systems, namely resolution
and Frege systems of bounded depth. The difficulty of the problem has the
same reason for it is particularly interesting: its connection to computational
complexity and the question whether NP = coNP (resp. PSPACE = coNP .)
By the theorem of Cook and Reckhow, if we show that every propositional
system has a superpolynomial lower bound then NP 6= coNP .

We will prove an exponential lower bound on the number of proof lines in the
basic system of modal logic, K. We will then extend the result to other systems
of modal logic, as well as to intuitionistic propositional calculus (in Section 4).
The lower bound is not reached directly, but rather by showing that K has a
form of monotone interpolation. The idea of monotone interpolation is to apply
the seminal results in circuit complexity of Razborov [23], and Alon-Boppana
[1] and others, to proof-complexity. Alon and Boppana have shown that every
monotone circuit C (i.e., a circuit which contains only ∧-gates, ∨-gates and no
¬-gates) which separates the set of k+1-colorable graphs, Colork+1, and graphs
with clique of size k, Cliquek, (i.e., it is a circuit which outputs 1, if the graph
is k + 1-colorable, 0, if the graph has k-clique, and anything if neither applies)
must be of exponential size. The implication

(?) ”if a graph has a clique of size k + 1 then it is not k-colorable”
can be formulated as a propositional tautology. Hence in order to find an
exponential lower bound for a propositional proof system P , it is sufficient to
show that from a P -proof of (?) of size n one can extract a monotone circuit

11|ψi| means the size of ψi, i.e., the number of symbols in ψi. Likewise, the size of a proof
is the total number of symbols in the proof.
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of size polynomial in n separating Colork+1 and Cliquek. This approach has
been first applied by Kraj́ıček [16] to obtain a lower bound for resolution. In
the case of K, we rephrase (?) by inserting 2 here and there to obtain a modal
tautology (see Theorems 7 and 10 for the exact formulation), and we show that
every K-proof of the modified (?) with n distributivity axioms gives a monotone
circuit separating Colork+1 and Cliquek of size approximately n2.

3.1 Monotone interpolation for K

The system of modal logic K is obtained by adding the symbol 2 to proposi-
tional logic. In addition to propositional rules and axioms, K contains the rule
of generalisation

A

2A
and the axiom of distributivity

2(A→ B) → (2A→ 2B).

The generalisation rule and distributivity axiom will be called modal rules of
K. We shall be interested in bounding the number of applications of modal
rules in proofs of K, and hence the specific axiomatisation of the underlying
propositional logic is immaterial.

The characteristic set of clauses of a K proof.
From the point of view of pure propositional logic, the symbol 2A is simply
a new propositional variable. The modal rules of K can be seen as imposing
additional structure on those variables. Let us ask what structure is imposed on
the variables by modal axioms in a proof. We will see that the relations between
those variables, as imposed by a K proof, can be represented in a simple way
by means of Horn clauses.

Let S be a K proof. We shall define the characteristic set of clauses for S,
CS , as follows:

1. if a generalisation rule
A

2A

occurs in S, we put the clause {2A} in CS ,

2. if a distributivity axiom 2C → (2A→ 2B) occurs in S, where C = A→
B, we put the clause {¬2C,¬2A,2B} in CS .

We can see that CS is a set of Horn clauses and CS never contains a negative
clause (i.e. a clause of the form {¬p1, . . .¬pk}). |CS | is equal to the number of
applications of modal rules in S.

Let us first state a general property of a set of Horn clauses. For an assign-
ment σ to variables V , Vσ will denote the set of clauses {{v}; v ∈ V, σ(v) = 1}.
The total size of a set of clauses C is the sum of sizes of clauses in C.
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Proposition 1 1. Let D be a set of Horn clauses s.t. in D occurs no negative
clause. Let Y be a set of negative singular clauses. Assume that D, Y is
not satisfiable. Then there exists C ∈ Y s.t. D, C is not satisfiable.

2. Let D be a set of Horn clauses of total size n and not containing a negative
clause. Let V be a set of variables and p a variable. Then there exists a
monotone circuit C in variables V of size O(n2) s.t. for every assignment
σ of V , C = 1 iff

D, Vσ, {¬p}

is not satisfiable.

Proof. 1). Let us have a resolution refutation of D∪Y ; it contains only Horn
clauses. It is easy to see that we can transform the refutation to a tree-like
refutation whose last step is a resolution of some clause in Y . I.e., the last step
has the form

{v}, {¬v}
∅

,

for some {¬v} ∈ Y . When resolving a negative clause with a Horn clause, we
obtain a negative clause. Hence in the resolution proof of the clause {v} no
clause of Y could have been used and D ∪ {¬v} is not satisfiable.

2). Without loss of generality we can assume that p 6∈ V . For the definition
of flowgraph and the relation between flowgraphs and monotone circuits see page
37. Let us represent a set of Horn clauses D, containing no negative clauses,
as a flowgraph F . (We stipulate that this implies that an empty clause is not
in D.) The vertices of F will be the variables in D. Assume that D does not
contain a clause of size one. If D is empty we let C := 0 . If D 6= ∅, for a clause
{¬q1, . . .¬qk, q} in D we shall put a gate from q1, . . . qk to q in F . Let σ be an
assignment to V . Clearly, Fσ(p) = 1 iff

D, Vσ, {¬p}

is unsatisfiable. By Proposition 5 there exists a monotone circuit C in vari-
ables V of size O(n2) s.t. C(σ(V )) = Fσ(p). Then C = 1 iff D, Vσ, {¬p} is
unsatisfiable.

If D contains clauses of size one, let V1 be the set of variables occurring as
a singular clause in D and let D>1 be the set of clauses of size > 1 in D. If
p ∈ V1 we set C := 1. Otherwise, let C>1 be the circuit constructed from D>1

as above. The circuit C is then obtained from C>1 by setting the variables V1

to 1 in C>1. QED

For a formula α, 2A will be called an immediate modal subformula of α,
if 2A has an occurrence in α not in a range of any modality. Then α can be
uniquely written as

β(2A1, . . .2Ak, s1, . . . sl),

where 2Ai are its immediate modal subformulas and s1, . . . sl are variables hav-
ing non-modalised occurrences in α, and β is a propositional formula. A truth
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assignment σ to all the immediate modal subformulas and variables occurring
in α in a non-modal context induces a truth assignment Θσ to α. We define
Θσ(α) as the Boolean value of the formula

β(σ(2A1), . . . σ(2Ak), σ(s1), . . . σ(sl)).

Lemma 2 Let S = A1, . . . An be a K proof.

1. Let B1, . . . Bk, B be formulas. Assume that

CS , {2B1}, . . . {2Bk}, {¬2B}

is not satisfiable. Then ∧
i=1,...k

2Bi → 2B

is a K tautology.

2. Assume that σ is an assignment to all immediate modal subformulas in S
and the non-modalised variables in S. Assume that σ satisfies CS. Then

Θσ(Ai) = 1

for every i = 1, . . . n.

Proof. Let FS be the set of distributivity axioms and the conclusions 2A of
generalisation rules used in S. The definition of CS and Θσ directly implies the
following:
(?) Let σ be an assignment to the immediate modal subformulas in FS. Then σ
satisfies CS iff the formulas in FS are true in the assignment Θσ.
The proof is then immediate. If CS , {2B1}, . . . {2Bk}, {¬2B} is not satisfiable
then the formula

(
∧
FS ∧

∧
i=1,...k

2Bi) → 2B

is a tautology which is provable merely by propositional logic. Moreover, the
formulas FS are K tautologies and hence∧

i=1,...k

2Bi → 2B

is a K tautology.
2). By (?) the formulas in FS are satisfied by Θσ. Hence the modal rules in

S are satisfied by Θσ. Since the definition of Θσ commutes with the definition
of logical connectives, also the propositional axioms and rules are satisfied by
Θσ. QED

Let 2A1, . . .2Ak be the immediate modal subformulas of α. An assignment
σ to the variables V = 2A1, . . .2Ak will be called consistent with respect to α,
if there exists a K model M s.t. M |= α and M |= 2Ai iff σ(2Ai) = 1.
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Lemma 3 Let 2A1, . . .2Ak be the immediate modal subformulas of α. Let S
be a K proof of

α→ (2β1 ∨2β2).

Let V = 2A1, . . .2Ak. Let σ be a consistent assignment to V with respect to α.
Then the set of clauses

CS , Vσ, {¬2β1}, {¬2β2}

is not satisfiable.

Proof. Let Yσ := {{¬v}; v ∈ V, σ(v) = 0}. Let us first show that

D := CS , Vσ, Yσ, {¬2β1}, {¬2β2}

is not satisfiable. Assume, for the sake of contradiction, that ρ is an assignment
satisfying D. Then σ ⊆ ρ. Let M be a model s.t. M |= α and M |= 2Ai iff
σ(2Ai) = 1. Let s be the list of variables occurring in a non-modal context in
S. Let ρ′ be the assignment to s s.t. ρ′(s) = 1 iff M |= s. Let σ′ := ρ ∪ ρ′.
We can assume that σ′ is defined on all immediate modal subformulas and non-
modalised variables in S. By Lemma 2, the assignment Θσ′ satisfies all the
steps in S. Moreover, we can see that Θσ′(α) = 1, Θσ′(2β1) = Θσ′(2β2) = 0,
and hence Θσ′(α→ (2β1 ∨2β2)) = 0, which is a contradiction.

Let us show that also CS , Vσ, {¬2β1}, {¬2β2} is not satisfiable. The clauses
from Yσ, {¬2β1}, {¬2β2} are the only negative clauses in D. Hence, by Proposi-
tion 1, there exists C ∈ Yσ, {¬2β1}, {¬2β2} s.t. CS , X,C is not satisfiable. Let
us show it is one of {¬2β1}, {¬2β2}. Assume the contrary. Then C = {¬2Aj}
for some Aj , j ∈ 1, . . . k. Then, by part 1) of Lemma 2,

K `
∧

2Ai∈Vσ

2Ai → 2Aj .

But M |=
∧

2Ai∈Vσ
2Ai and M |= 2Aj which is a contradiction. QED

For a circuit C, [C] will denote an equivalent Boolean formula, i.e., some
formula defining the same Boolean function.

Theorem 4 Let S be a K proof of the formula

α→ (2β1 ∨2β2).

Let 2A1, . . .2Ak be the immediate modal subformulas of α. Assume that S
contains n modal rules. Then there exist monotone circuits C1 and C2 of size
O(n2) in k variables s.t. the following are K tautologies:

1. α(2A1, . . .2Ak, s) → [C1](2A1, . . .2Ak) ∨ [C2](2A1, . . .2Ak),

2. [C1](2A1, . . .2Ak) → 2β1, and [C2](2A1, . . .2Ak) → 2β2.
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Proof. Let CS be the characteristic set of clauses for S. The total size of CS

is ≤ 3n, since every clause in CS has size at most three. Let V = 2A1, . . .2Ak.
Let C1 be the circuit of size O(n2) in variables V from Proposition 1 s.t. for
any assignment σ to V , C1 = 1 iff CS , Vσ, {¬2β1} is unsatisfiable. Similarly for
C2 and β2.

Let us show that α(2A1, . . .2Ak, s) → [C1](2A1, . . .2Ak)∨[C2](2A1, . . .2Ak)
is a K tautology. Let M be a K model s.t. M |= α and let σ be an assignment
to V s.t. σ(2Ai) = 1 iff M |= 2Ai. By Lemma 3, CS , Vσ, {¬2β1}, {¬2β2}
is unsatisfiable. Hence C1(σ(V )) = 1 or C2(σ(V )) = 1 and hence M |=
[C1](2A1, . . .2Ak) or M |= [C2](2A1, . . .2Ak).

Let us show that 1) is a K tautology. Assume that M |= [C1](2A1, . . .2Ak)
and let σ be as above. Then, by definition of C1, CS , Vσ, {¬2β1} is unsatisfiable.
Hence, by Lemma 2 part 1) ∧

σ(2Ai)=1

2Ai → 2β1

is aK tautology. But the conjunction on the left hand side contains the formulas
true in M and hence also M |= 2β1. QED

Remark. Note that we do not restrict the formulas α, β1 and β2 in any way. In
particular, α is allowed to contain non-modalised variables, negations of modal
subformulas, and nested modalities. However, the important applications of the
Theorem are in the case when the formulas have quite a simple form.

Corollary Let α(2p1, . . .2pk, s) → (2β1(p, r1)∨2β2(p, r2)) be a K tautology,
where α(p1, . . . pk, s), β1 and β2 do not contain any modalities. Assume that S is
a proof of the tautology with n modal rules. Then there exist monotone circuits
C1 and C2 of size O(n2) in variables p with the following properties: for any
assignment σ to the variables p

1. if α(p, s) is true (for some assignment to s) then C1(p) = 1 or C2(p) = 1,

2. if C1(p) = 1 resp. C2(p) = 1 then β1 resp. β2 is true (for any assignment
to r1 resp. r2.)

Proof. Follows from the previous theorem and the fact that if A is a K tau-
tology then the propositional formula A0, obtained from A by deleting all the
boxes, is a classical tautology. QED

Flowgraphs and monotone circuits

A flowgraph F is a directed graph with edges uniquely labelled by subsets of
vertices in the following fashion. For a vertex a of F , Pred(a) will denote the set
of vertices b s.t. there is an edge from b to a. We than require that there exists
a disjoint partition of Pred(a) into sets X1, . . . Xk s.t. for every i = 1, . . . k and
b ∈ Xi the edge from b to a is labelled by Xi. The set of edges from Xi to a
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will be called a gate from Xi to a. The intended function of a gate from Xi to
a is that if all the vertices in X are ”true” then the vertex a is also ”true”.

Let us have a fixed subset V of the vertices of F . Let σ be a 0, 1-assignment
to the vertices V . A possible solution of a flowgraph G is a 0, 1-assignment ρ to
the vertices of G s.t.

1. if σ(v) = 1 then ρ(v) = 1, for v ∈ V ,

2. for every a and a gate from X to a , if ρ(b) = 1 for every b ∈ X then
ρ(a) = 1.

The solution of F for σ is the 0, 1 - assignment Fσ to vertices of F s.t. for
every vertex a, Fσ(a) = 0 iff there exists a possible solution ρ s.t. ρ(a) = 0. We
can see that a vertex a is assigned 1 in Fσ iff there exists at least one gate from
X to b s.t. Fσ(b) = 1 for all b ∈ X. Hence Fσ is the minimum possible solution
of F for σ.

The following proposition shows that flowgraphs can be simulated by mono-
tone circuits.

Proposition 5 Let F be a flowgraph with n edges. Let a be a vertex in F .
Then there exists a monotone circuit C in variables V of size O(n2) s.t. for
every assignment σ to V

C(σ(V )) = Fσ(a).

Proof. We will first show that we can find an acyclic flowgraph F ? of size
O(n2) s.t. for any assignment σ to V , Fσ(a) = F ?

σ (a). Assume that F has k
vertices a1, . . . ak. Hence k ≤ 2n, as we can assume that F does not contain
isolated vertices.

The construction is straightforward: for every vertex a of F , we introduce k
copies a1, . . . ak. The flowgraph F ? will have k2 vertices aj , a ∈ F , j = 1 . . . k
and the gates will be defined as follows:

1. For every j = 1, . . . k− 1 and for every a ∈ F we put in F ? a gate from aj

to aj+1.

2. For every j = 1, . . . k−1 and a gate from X to a in F , we add a gate from
Xj := {bj , b ∈ X} to aj+1 in F ?.

Finally, we identify the vertices v1 of F ? with v for v ∈ V and we identify the
vertex a of M with its copy ak in F ?. Clearly, F ? contains O(n2) edges and
Fσ(a) = F ?

σ (a) for any assignment.
The construction gives an acyclic flowgraph s.t. there are no edges leading

to the vertices in V . It is now sufficient to prove that for such a flowgraph F
with n edges and a vertex a of F there exists a monotone circuit C of size O(n)
s.t. C(σ(V )) = Fσ(a) for any σ. To a vertex v ∈ V we will assign the circuit v,
and to a leaf of a different kind the constant 0. Assume that for a vertex b ∈ F
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we have assigned circuits Cd to all d ∈ Pred(b). For a gate from X ⊆ Pred(b)
to b, let CX be the circuit

∧
d∈X Cd. Then we assign to b the disjunction of CX ,

for all gates from X to b. Such a circuit has size O(n) and has the required
property. QED

3.1.1 Model theoretic reading of the proof

The original proof of monotone interpolation for K was based on a model the-
oretic construction (see [10]). Let us here sketch the main points. We want to
count only the applications of distributivity axioms in a K proof, hence we can
work in the theory K0

5 which does not contain the distributivity axiom. If Γ is
the set of distributivity axioms used in K-proof of ψ then∧

Γ → ψ

is a K0
5 -tautology. Hence, in order to show that n is a lower bound on the

number of applications of distributivity in a proof of ψ, it is sufficient to show
that for every set Γ of distributivity axioms s.t. |Γ| < n,

∧
Γ → ψ is not K0

5 -
tautology. The theory K0

5 has a very simple model theory, and this question is
then resolved model-theoretically. In models of K0

5 we interpret 2 over a set G,
which is a set of sets of truth assignments. Distributivity axioms impose G to
be closed on intersections and supersets, i.e., they require G to be a filter. In
order to find a model in which

∧
Γ → ψ is false, it is sufficient to find G which

looks like a filter enough to make the axioms in Γ true without making true
ψ. It should be observed that the model construction is intimately related to
Karchmer’s formulation of Razborov’s proof of lower bound on monotone circuit
size, see [13].

The theory K0
5. The theory K0

5 will have, in addition to the propositional
rules, the rules of generalisation and transparency

(G)
A

2A
, (T )

A ≡ B

2A ≡ 2B

and the axiom scheme

(V ) 2((A1 ∧2B) ∨ (A2 ∧ ¬2B)) ≡ (2A1 ∧2B) ∨ (2A2 ∧ ¬2B)

By means of the strange looking axiom (V ) every formula of K0
5 can be trans-

formed to a formula of modal depth one. Its role is to simplify models of K0
5 ,

and in principle it is dispensable.

The relevant connection between K0
5 and K is following:

Proposition 1. Let A be a K tautology. and let Γ be the set of distributivity
axioms occurring in a K proof of A. Then

∧
Γ → A is a K0

5 tautology.
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Models for K0
5. Let U denote the set of all possible truth assignments to

propositional variables (i.e., U is infinite). Let G ⊆ P (U) be fixed. For v ∈ U
and a modal formula A we define that

v 
 A

by induction as follows:

1. For a variable p, v 
 p, if p is assigned 1 in v.

2. We let v 
 A1 ∧ A2 iff v 
 A1 and v 
 A2. We let v 
 ¬A iff not v 
 A,
and similarly for other connectives.

3. Finally, assume that the relation u 
 A has been defined for any u ∈ U .
Let

[A] := {u ∈ U ;u 
 A} .

Then let v 
 2A iff [A] ∈ G.

Let v ∈ U , G ⊆ P (U). The pair 〈v,G〉 is a model for K0
5 , if U ∈ G. (The

requirement U ∈ G corresponds to the rule of generalisation.)

Proposition 2. K0
5 is sound and complete with respect to K0

5 models, i.e.,
for every formula A, K0

5 ` A iff for every K0
5 model M , M |= A.

G and distributivity axioms. Note that, using the transparency rule, the
distributivity axiom 2(A → B) → (2A → 2B) can be replaced by a pair of
axioms of the form

1. 2A ∧2B → 2(A ∧B)

2. 2A→ 2(A ∨B)

If A and B do not contain modalities then the axioms impose the following
conditions on G:

1. X,Y ∈ G → X ∩ Y ∈ G

2. X ∈ G, X ⊆ Y → Y ∈ G

In other words, distributivity axioms require G to be a filter.

3.2 Examples of hard K tautologies

We shall now use the corollary of Theorem 4 to give particular examples of hard
K tautologies.
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Example 1. - α(2p, s) → 2β.

Assume that α(p, s) and β(p, r) are formulas containing no 2. We will say that
a circuit C in variables p interpolates α and β, if for any assignment σ to p

1. if α(p, s) is true (for some assignment to s) then C(p) = 1,

2. if C(p) = 1 then β(p, r) is true (for any assignment to r.)

We will say that a formula α is monotone in p, if it can be transformed to
a DNF form where no negation is attached to a variable in p, and that the sets
of variables p, s, r.

Proposition 6 Let α(p, r) be a propositional formula monotone in p and let
β(p, s) be a propositional formula.

(1) If α(p, r) → β(p, s) is a propositional tautology then α(2p, r) → 2β(p, s)
is a K-tautology.

(2) Assume that
α(2p, r) → 2β(p, s)

is provable in K with n distributivity axioms. Then there exists a mono-
tone circuit of size O(n2) which interpolates α(p, r) and β(p, s).

Proof. 1). Note that if α(p, s) → β(p, s) is a classical tautology then there
exists a monotone formula γ(p) s.t. i) α(p, s) → γ(p) and ii) γ(p) → β(p, s) are
propositional tautologies. Hence also α(2p, s) → γ(2p) and 2γ(p) → 2β(p, s)
are K tautologies, the former by substituting 2p for p in i) and the latter by
applying generalisation and distributivity to ii). On the other hand, since γ is a
monotone formula, then also γ(2p) → 2γ(p) can be proved in K by successive
use of K tautologies 2A ◦2B → 2(A ◦B), where ◦ = ∧,∨.

2) is an immediate application of Corollary of Theorem 4 for β1 := β, β2 :=⊥.
QED

Let
Cliquek

n(p, r)

be the proposition asserting that r is a clique of size k on the graph represented
by p. Let

Colork
n(p, s)

be the proposition asserting that s is a k-coloring of the graph represented by p.
To be exact, p = pi1i2 , i1, i2 = 1, . . . n, r = rij , s = sij , i = 1, . . . n, j = 1, . . . k.
Cliquek

n(p, r) is the formula∧
j

∨
i

rij ∧
∧
i

∧
j1 6=i2

(¬rij1 ∨ ¬rij2) ∧
∧

i1 6=i2,j1,j2

(ri1j1 ∧ ri2j2 → pi1i2)
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and Colork
n(p, s) is the formula∧

i

∨
j

sij ∧
∧

i1,i2,j

(pi1i2 → (¬si1j ∨ ¬si2j)),

where the indices i range over 1, . . . n and j over 1, . . . k.

Theorem 7 Let

Θk
n := Cliquek+1

n (2p, r) → 2(¬Colork
n(p, s)).

If k :=
√
n then every K-proof of the tautology Θk

n contains at least

2Ω(n
1
4 )

modal rules.

Proof. Assume that Θk
n has a K-proof with m modal rules. By the previous

proposition, there is a monotone interpolant C of Cliquek
n(p, r) and ¬Colork

n(p, s)

of size O(m2). By [1], every such circuit has size at least 2Ω(n
1
4 ). Hence

m ∼
√

2Ω(n
1
4 )) ∼ 2Ω(n

1
4 ). QED

Remark. One could obtain a hard K tautology of the form α(2p, s) → 2β
also by exploiting the gap between monotone and general circuits, as in Section
4. The same applies to the tautologies of the form offered in Example 2.

Example 2-
∧

(2p ∨2q) → (2β1 ∨2β2).

If β is a propositional formula in variables p, r, p = p1, . . . pn and q = q1, . . . qn
then β(p/¬q, s) will denote the formula obtained by substituting ¬qi for pi,
i = 1, . . . n, in β. We may also write simply β(¬q, s) if the meaning is clear.

Lemma 8 Let β1 = β1(p, r1) and β2 = β2(q, r2) be propositional formulas,
p, q, r1, r2 disjoint. Let p = p1, . . . pn and q = q1, . . . qn. Assume that β1 is
monotone in p or β2 is monotone in q. Assume that

β1(p, r1) ∨ β2(¬p, r2)

is a classical tautology.

(1) Then
∧

i=1,...n(pi ∨ qi) → β1(p, r1) ∨ β2(q, r2) is a classical tautology.

(2) Let M,N be subsets of {1, . . . n} s.t. M ∪N = {1, . . . n}. Then one of the
following is a classical tautology:∧

i∈M

pi → β1(p, r1), or
∧
i∈N

qi → β2(q, r2).
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Proof. 1). Assume that, for example, β2 is monotone in q. Then∧
i=1,...n

(pi → qi) → (β2(p, r2) → β2(q, r2))

is a tautology. Hence also∧
i=1,...n

(¬pi ∨ qi) → (β2(p, r2) → β2(q, r2))

and ∧
i=1,...n

(pi ∨ qi) → (β2(¬p, r2) → β2(q, r2))

are tautologies. From the assumption that

β1(p, r1) ∨ β2(¬p, r2)

is a tautology we obtain that also∧
i=1,...n

(pi ∨ qi) → (β1(p, r1) ∨ β2(q, r2))

is a tautology.
2). Let M and N be fixed. Clearly,∧

i∈M

pi ∧
∧
i∈N

qi →
∧

i=1,...n

(pi ∨ qi)

is a tautology and, by 1),∧
i∈M

pi ∧
∧
i∈N

qi → (β1(p, r1) ∨ β2(q, r2))

is a tautology. Since β1 and β2 contain no common variables, and β1, resp. β2

does not contain the variables q, resp. p then either
∧

i∈M pi → β1(p, r1) or∧
i∈N qi → β2(q, r2) is a tautology. QED

Proposition 9 Let β1 = β1(p, r1) and β2 = β2(q, r2) be propositional formulas,
p, q, r1, r2 disjoint. Let p = p1, . . . pk and q = q1, . . . qk. Assume that β1 is
monotone in p or β2 is monotone in q. Assume that

β1(p, r1) ∨ β2(¬p, r2)

is a classical tautology.

1. Then ∧
i=1,...k

(2pi ∨2qi) → (2β1(p, r1) ∨2β2(q, r2))

is K- tautology.
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2. Moreover, if the tautology has a K-proof with n distributivity axioms then
there exists a monotone circuit C(p) of size O(n2) which interpolates
¬β2(¬p, r2) and β1(p, r1).

Proof. Let us first show that the formula is a tautology. The assumption∧
i=1,...k(2pi ∨ 2qi) can be transformed to a disjunction of conjunctions of the

form ∧
i∈M

2pi ∧
∧
i∈N

2qi

such that M ∪ N = {1, . . . k}. Hence it is sufficient to show that for such M
and N

(?)
∧

i∈M

2pi ∧
∧
i∈N

2qi → (2β1 ∨2β2)

is a tautology. By the previous Lemma either
∧

i∈M pi → β1 or
∧

i∈N qi → β2

is a classical tautology. In the first case clearly
∧

i∈M 2pi → 2β1 is a tautology
and hence also (?) is. Similarly in the latter case.

From corollary of Theorem 4 there exist monotone circuits D1 and D2 in
variables p, q of size O(n2) s.t. for any assignment

(1) (D1(p, q) = 1) → β1,

(2) (D2(p, q) = 1) → β2

and if the assignment satisfies
∧

i=1,...k(pi ∨ qi) then

D1(p, q) = 1 ∨D2(p, q) = 1.

This in particular gives

(3) D1(p,¬p) = 1 ∨D2(p,¬p) = 1.

Let C(p) := D1(p, 1, . . . 1) and C ′(q) := D2(1, . . . 1, q). Since in (1) β1 does not
contain q, we have

(4) (C(p) = 1) → β1(p, r1).

Similarly, by replacing q by ¬p in (2) we have

(5) (C ′(¬p) = 1) → β2(¬p, r2).

Since D1 and D2 are monotone, (3) gives

D1(p, 1, . . . 1) = 1 ∨D2(1, . . . 1,¬p) = 1

and hence

(6) C(p) = 1 ∨ C ′(¬p) = 1.
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Let us show that the circuit C interpolates ¬β2(¬p, r2) and β1(p, r1). By (4) it is
sufficient to prove that if for some assignment ¬β2(¬p, r2) is true then C(p) = 1.
But if ¬β2(¬p, r2) is true then by (5) C ′(¬p) = 0 and, by (6), C(p) = 1. QED

Theorem 10 Let

Θk
n :=

∧
i=1,...n

(2pi ∨2qi) → 2¬Colork
n(p, s) ∨2¬Cliquek+1

n (¬q, r).

If k :=
√
n then very K-proof of the tautology Θk

n contains at least

2Ω(n
1
4 )

modal rules.

Proof. We shall apply Proposition 9 on the formulas β1 := ¬Colork
n(p, s)

and β2 := ¬Cliquek+1
n (¬q, r). First, β2 is monotone in q since Clique(p, r) is

monotone in p. Second, β1(p, s) ∨ β2(q/¬p, r) is a classical tautology, since
β2(q/¬p, r) = ¬Cliquek+1

n (p/¬¬p, r) is classically equivalent to ¬Cliquek+1
n (p, r)

and
¬Colork

n(p, s) ∨ ¬Cliquek+1
n (p, r)

is a classical tautology. Hence Θk
n is a K tautology. Assume that it has an K

proof with m modal rules. Then there exists a monotone circuit C in variables
p of size O(m2) which interpolates ¬β2(q/¬p, r) and β1. Since ¬β2(q/¬p, r)
is classically equivalent to Cliquek+1

n (p, r), C interpolates Cliquek+1
n (p, r) and

¬Colork
n(p, s). By the result in [1] every such circuit must have size at least

2Ω(n
1
4 ). Hence m ≥

√
2Ω(n

1
4 ) ∼ 2Ω(n

1
4 ). QED

3.3 Counting the number of distributivity axioms and the
number of generalisation rules in K

It will be noted that Theorem 4 is true also if we count only the number of
distributivity axioms in a K proof. This would be achieved by assigning all
singular clauses in the characteristic set of clauses of a proof (corresponding ex-
actly to the conclusions of generalisation rules) to 1, and applying the argument
to such a restricted characteristic set. This fact corresponds to the intuition
that it is the distributivity axiom which is responsible for complexity of modal
proofs. It may therefore seem surprising that the same is true when the size of
generalisation rules is considered, as we will show here.

Let A be a set of formulas. cl(A) will denote the smallest set s.t.

1. A ⊆ cl(A)

2. if A, A→ B ∈ cl(A) then also B ∈ cl(A).
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In other words, cl(A) is the closure of A under modus ponens.
For a proof S, the set of generalised formulas of S, GS , will be the set of

formulas A s.t. the rule
A

2A

occurs in S. The generalisation size of S will be the total size of GS , i.e., the
sum of sizes of formulas in G. For a formula A let us introduce a fresh variable
〈A〉.

Lemma 11 Let G and A = {A1, . . . Ak} be sets of formulas, the total size of
G ∪ A being n. Let B be a formula. Then there exists a monotone circuit C
in variables V = 〈A1〉, . . . 〈Ak〉 of size O(n2) s.t. for any assignment σ of V ,
C = 1 iff

B ∈ cl(G,Vσ),

where Vσ := {Ai ∈ A;σ(〈Ai〉) = 1}.

Proof. Let us represent the set G∪A by a flowgraph F of size n. Its vertices
will be the subformulas of formulas in G and A. For a vertex of F of the form
A → B we connect A and A → B to B by a gate. Clearly, for an assignment
σ to V , B ∈ cl(G,Vσ) iff Fσ(B) = 1, and the statement then follows from
Proposition 5. QED

Lemma 12 1. Let G be a finite set of K tautologies. Let A be a finite set
of formulas. Assume that B ∈ cl(G ∪ A). Then∧

A ∈A
2A→ 2B

is a K tautology.

2. Let S = A1, . . . An be a K proof. Let A be a set of formulas. Let σ
be a truth assignment to all immediate modal subformulas and variables
occurring in non modal context in S s.t. σ(2A) = 1 iff A ∈ cl(A, GS).
Then

Θσ(Ai) = 1

for i = 1, . . . n (Θσ is defined as in Lemma 2).

Proof. 1). Let X be a finite set of formulas. Define cli(X), i ∈ ω as follows:
cl0(X) := X and cli+1(X) is the set of all formulas B for which there exists a
formula C s.t. C → B,C ∈ cli(X). Then cl(X) =

⋃
i∈ω cli(X). By induction

with respect to i one can prove that if B ∈ cli(X) then
∧

A∈X 2A → 2B is
a tautology. For i = 0 it is trivial. If B ∈ cli+1(X) then there exists a C s.t.
C → B,C ∈ cli(X), and hence

∧
A∈X 2A → 2C and

∧
A∈X 2A → 2(C → B)

are tautologies. Hence
∧

A∈X 2A → 2B is a tautology, using the axiom of
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distributivity. If X = G ∪ A where G is a set of K tautologies we obtain that
also

∧
A ∈A 2A→ 2B is a K tautology.

2). It is easy to see that Θσ satisfies all the axioms and rules S. The general-
isation rule is satisfied trivially (all the conclusions are assigned 1 by definition).
Distributivity axioms are satisfied by the definition of cl. Propositional rules
and axioms are satisfied since Θσ commutes with propositional connectives. QED

Lemma 13 Let α be a formula and let A = A1, . . . Ak be its immediate modal
subformulas, let V = 〈A1〉, . . . 〈Ak〉. Let S be a K proof of

α→ (2β1 ∨2β2).

Let σ be a consistent assignment to V with respect to α. Then either β1 or β2

is in cl(GS ∪ Vσ).

Proof. As in Lemma 3. QED

Theorem 14 Let S be a K proof of the formula

α→ (2β1 ∨2β2).

Let 2A1, . . .2Ak be the immediate modal subformulas of α, having total size k.
Assume that the total size of formulas generalised in S is n. Then there exist
monotone circuits C1 and C2 in variables v1, . . . vk of size O(n + k)2 s.t. the
following are K tautologies:

1. α(2A1, . . .2Ak, s) → [C1](2A1, . . .2Ak) ∨ [C2](2A1, . . .2Ak),

2. [C1](2A1, . . .2Ak) → 2β1, and [C2](2A1, . . .2Ak) → 2β2.

Proof. As in Theorem 4. QED

3.4 Applications to other modal systems

3.4.1 K4 and Gödel-Löb’s logic

The system K4 is the system K plus the axiom

2A→ 22A.

Gödel-Löb’s logic is obtained by extending K4 by one more axiom

2(2A→ A) → 2A.

In the proof of Theorem 4 we used only the fact that the characteristic set of
clauses of a modal proof is a set of Horn clauses not containing negative clauses,
and the clauses have a bounded size. These assumptions are equally satisfied
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in the systems K4 and Gödel-Löb logic and some others. For example, the K4

axiom
2A→ 22A

receives the clause
{¬2A,22A}.

The theorem and its corollary12 hold also for those systems without modifica-
tion. The same argument applies also to the system

K + 22 ⊥ .

That is remarkable since the system is in NP .
However, let us here reduce lower bounds for those systems to the lower

bound for K. The following Proposition is also remarkable for other reasons: it
shows that in a K proof of a tautology of modal depth one we can assume, as
far as the number of applications of modal rules is concerned, that in the proof
we use only formulas of modal depth one. Second, it shows that there is no
speed-up between K4, Gödel-Löb’s logic and K on tautologies of modal depth
one, when the number of modal rules is considered.

Proposition 15 Let A be a tautology of K, K4, or Gödel-Löb’s logic of modal
depth one. If A has has a proof with n modal rules than A has a K proof with
O(n) modal rules. Moreover, the proof is such that all the formulas in the proof
have modal depth one.

Proof. For a formula A, let A? denote the formula obtained by deleting all
the boxes in A which are in a range of another 2, and let A0 be the formula
obtained by deleting all the boxes. Then B0 is a propositional formula and B?

is a formula of modal depth one. First note that if A is a K4 tautology then A0

is a propositional tautology. Second, let us prove the following:
Claim. If A has K4 proof with n modal rules then A? has a K proof with n
modal rules, all of which have modal depth one.
Let S = A1, . . . Ak, Ak = A be a proof of A with n modal rules. Let Γ be the
set of distributivity axioms, the K4 axioms and the conclusions of generalisation
rules used in S. Then |Γ| = n. Let S? = A?

1, . . . A
?
k and Γ? = {γ?, γ ∈ Γ}. Then

|Γ?| ≤ n. It is easy to see that every formula in S? is provable from Γ? by means
of propositional logic only. Moreover, ifB is an axiom of distributivity thenB? is
also an axiom of distributivity. The translation od aK4 axiom (2B → 22B)? is
the propositional tautology 2B0 → 2B0. If 2B is a conclusion of generalisation
rule then B is K4 tautology and (2B)? = 2B0, where B0 is a propositional
tautology. Hence 2B0 is provable by the single modal inference

B0

2B0
.

12However, note that the proof of the corollary would need a modification in the case of
Gödel-Löb’s logic and K + 22 ⊥.
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Altogether, every formula in Γ? is provable in K using at most one modal rule,
each of modal depth one.

The statement for K and K4 follows from the Claim and the fact that
A? = A for a modal depth one formula. For Gödel-Löb’s logic the translation
must be slightly modified. We let A0 be the formula obtained by replacing all
the immediate modal subformulas in A by the constant 1. A? is then obtained
by replacing every immediate modal subformula 2B of A by 2B0. Then B0 is
a propositional formula and B? is a formula of modal depth one. Note that if
A is a Gödel-Löb’s tautology then A0 is a propositional tautology. The proof
then proceeds in a similar way. QED

Corollary The theorems 4, 7 and 10 are true also in K4 and Gödel-Löb’s logic.

3.4.2 S and S4

S resp. S4 is the logic K resp. K4 plus the modal rule

2ψ → ψ.

As will be shown in Theorem 20 there is an exponential speed-up between S
and K. However, in the case of monotone formulas such as the ones needed in
the lower bound the systems are equivalent (as far as the number of modal rule
modal rules is concerned).

For a formula ψ, ψs will be the usual translation of S to K, i.e. ps := p,
(ψ1 ∧ ψ2)s := ψ1

s ∧ ψ2
s and similarly for other connectives, and mainly

(2ψ)s := 2ψ ∧ ψs.

Lemma 16 Let ψ be S resp. S4 tautology. Then ψs is K resp. K4 tautology.
Furthermore, if ψ has a S-proof resp. S4 proof with n modal rules then ψs has
a K resp. K4 proof with at most O(n) modal rules.

Proof. The part for S is easy. For S4 observe that the S4 modal rule 2A→
22A translates to

(2As ∧As) → (2(2As ∧As) ∧2As ∧As),

which is provable in K4 using no more than, say, ten modal rules. QED

Proposition 17 Let α be a propositional formula monotone in p = p1, . . . pn

and β1, β2 propositional formulas. Let

Θ := α(2p1, . . . ,2pn) → (2β1 ∨2β2).

Then if Θ has a S-proof resp. S4 proof with n modal rules then Θ has K-proof
with O(n) modal rules. (α may contain non-modalised variables,)
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Proof. We will prove the proposition for S, the part for S4 follows similarly
from the previous Lemma and Proposition 15.

Assume that Θ has S-proof with n modal rules. Then Θs has K-proof with
O(n) modal rules, where

Θs = α(2p1 ∧ p1, . . . ,2pn ∧ pn) → (2β1 ∧ β1 ∨2β2 ∧ β2).

Hence also
Θ2 := α(2p1 ∧ p1, . . . ,2pn ∧ pn) → (2β1 ∨2β2)

has a K-proof with O(n) modal rules. Substituting throughout the proof 2pi

for pi, i = 1, . . . n, we obtain that also

Θ3 := α(22p1 ∧2p1, . . . ,22pn ∧2pn) → (2β1(p/2p) ∨2β2(p/2p)

has aK proof withO(n) modal rules. From the Claim in the proof of Proposition
15, the formula Θ?

3 is K-tautology and has a K-proof with at most n modal
rules. However,

Θ?
3 = α(2p1 ∧2p1, . . . ,2pn ∧2pn, r) → (2β1 ∨2β2).

Hence Θ?
3 is equivalent to Θ using just propositional rules. Therefore Θ has

K-proof with O(n) modal rules. QED

Corollary The theorems 7 and 10 are true also in K4 and Gödel-Löb’s logic.

3.4.3 K4.5 and some speed-up relations

The theory K4.5 is the theory K4 plus the axiom

¬2ψ → 2¬2ψ.

Our results do not apply to K4.5 (and hence to S5). It can be shown that
tautologies of Theorems 7 and 10 a) require only a polynomial number of modal
rules in K4.5 and b) have a polynomial size proof assuming that certain classical
tautologies have polynomial size Frege proofs. The same applies to all other hard
tautologies mentioned above. This is no coincidence; it can be shown there exists
a certain simulation between K4.5 and classical Frege system. Namely, to every
K4.5 tautology A one can in polynomial time assign a classical propositional
tautology Ac s.t. A has a K4.5 proof with a polynomial number of proof-lines
iff Ac has a classical Frege proof with a polynomial number of proof-lines. (See
[12]). Hence to prove a lower bound on the number of proof-lines in K4.5 is as
difficult as to prove lower bound in extended Frege system.

We will show that a variant of the tautology of Theorem 7 has a polynomial-
size proof in K4.5. Since this variant has only exponential proofs in K or K4,
this implies that there is an exponential speed-up between K4.5 and K resp. K4

on tautologies of modal-depth one.
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Lemma 18 Let A be a K-tautology of modal depth one. Assume that the vari-
ables r = r1, . . . rk do not occur in A in a modal context. Assume that A(2r)
has a K-proof with n modal rules. Then A has a K-proof with O(n+ k) modal
rules.

Proof. Let ξ(r/1) be an abbreviation for ξ(r1/1, . . . rk/1) for r = r1, . . . rk.
For a formula η of modal depth one, let η? denote the formula obtained by
replacing every 2ξ in η by

2ξ(r/1) ∧ ξ(r).

Let S = A1, . . . Am be the proof of A(2r). As in Proposition 15 we can easily
show that A?

m = (A(2r))? is provable in K using O(n) modal rules. However,

(2ri)? = 21 ∧ ri

and 21 is provable using only one generalisation, and hence (2ri)? ≡ ri is
provable using only one generalisation rule. Hence also the equivalence

(ψ(2r))? ≡ ψ(r)

using only k modal rules. Altogether, A is provable with O(n+ k) modal rules.
QED

Theorem 19 There exists a K-tautology Θ of modal depth one s.t. every K-
proof of Θ contains exponential number of proof-lines, but Θ has a polynomial-
size proof in K4.5.

Proof. Let Θ be the tautology

Cliquek+1
n (2p,2r) → 2(¬Colork

n(p, s)).

Hence Θ differs from the tautology of Theorem 7 only by the substitution r/2r.
By the previous lemma, the tautology has only proofs with exponential number
of proof-lines in K. Let us show that it has a polynomial-size proof in K4.5.

The proposition Clique is written in such a way that all the negations in
Clique are attached to variables r. Note that in K4.5 we can prove

(¬)2ri ∧ (¬)2rj → 2((¬)2ri ∧ (¬)2rj)
2η ∧ (¬)2rj → 2(η ∧ (¬)2rj)

where (¬) means that the negation may be absent. Similarly when exchanging
∧ for ∨. This implies that

(?) Cliquek+1
n (2p,2r) → 2Cliquek+1

n (p,2r)

can be proved by a linear-size proof in K4.5. However, the propositional impli-
cation

Cliquek+1
n (p, u) → ¬Colork

n(p, s)
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can be proved by a polynomial size proof in a classical Frege system, as shown
in [5]. Hence also

Cliquek+1
n (p,2r) → ¬Colork

n(p, s)

has a polynomial-size proof. Using one distributivity, also

2Cliquek+1
n (p,2r) → 2(¬Colork

n(p, s))

has a polynomial-size proof. This, together with (?) gives a polynomial-size
proof of Θ in K4.5. QED

The importance of the Theorem 19 lies in the fact that it gives speed-up
on formulas of modal-depth one. A speed-up on formulas of modal-depth one
can be obtained also between S on the one hand, and the systems K, K4 and
Gödel-Löb’s logic on the other. The same trick can probably be applied to show
speed-up relations between the other systems on general modal formulas.

Theorem 20 Let P be K, K4, or Gödel-Löb’s logic. Then S has an exponential
speed-up over P on formulas of modal-depth one. More exactly, there exists a
sequence of formulas provable both in P and S s.t. they have linear-size proofs
in S but every proof in P must be exponential.

Proof. We know that there exists a sequence of K-tautologies A1, A2, A3, . . .
which have only exponential-size proofs in P . Let λ be the formula 2p→ p, for
a variable p not occurring in Ai, i = 1, 2, . . .. Let us have the sequence

A1 ∨ λ, A2 ∨ λ, A3 ∨ λ, . . . .

Clearly, the formulas have linear-size proofs in S. It is easy to show that the
sequence has only exponential-size proofs in P : for a formula η, let η? denote
the formula obtained by replacing every occurrence of the variable p in a modal
context by 1, and every occurrence of p in a non-modal context by 0 in η. As in
Proposition 15 we can show that if η has a proof in P with n modal rules then
η? has a proof in P with n modal rules. But

(Ai ∨ λ)? = Ai ∨ (21 → 0),

which is - using just one generalisation - equivalent to Ai. QED

52



4 Intuitionistic logic

In this section we prove an exponential lower bound for intuitionistic proposi-
tional calculus IL. The presentation is closely related to that for modal logic.
In particular, we prove that IL has a form of effective monotone interpolation
property. Weaker results in this direction were reached earlier by Buss, Mints
and Pudlák (see [ 6], [7] and [22]). The results presented here were first proved
in [11], via translation of IL to K (see Section 4.1.1). The proof given here is
direct, and it resembles the traditional methods.

As a remarkable consequence we obtain an exponential speed-up between
intuitionistic and classical propositional calculus. We present relatively natural
examples of IL tautologies which have polynomial size classical proofs, but only
exponential size IL proofs. This can be taken as a nice illustration of how the
law of excluded middle simplifies proofs. The other side of the coin is that our
results cannot be extended to classical logic. So far, lower bounds for systems
of classical propositional logic were achieved for artificial proof systems only,
like resolution and bounded-depth Frege. The problem of proving lower bounds
for the usual axiomatisation of classical propositional logic, the so called Frege
system, is one of the basic open problems of proof complexity. And we leave
it unchallenged. From the formulation of the proof of lower bound for IL, it
is apparent that the method does not generalise to classical logic. (See also
Section 4.3.)

4.1 Monotone interpolation for IL

We will use a Gentzen style axiomatisation of intuitionistic logics. In a sequent
Γ ⇒ ∆, Γ and ∆ are understood as sets of formulas. The axioms are A ⇒ A
and ⊥⇒ A. The inferences will be the cut

Γ ⇒ ∆, A, Γ, A⇒ ∆
Γ ⇒ ∆

,

the weakening
Γ ⇒ ∆

Γ,Σ ⇒ ∆,Π
,

and the inferences

LEFT RIGHT

Γ, A⇒ ∆
Γ, A ∧B ⇒ ∆

,
Γ, B ⇒ ∆

Γ, A ∧B ⇒ ∆
Γ ⇒ A

Γ ⇒ A ∨B
,

Γ ⇒ B

Γ ⇒ A ∨B

Γ, A⇒ C, Γ, B ⇒ C

Γ, A ∨B ⇒ C

Γ ⇒ A, Γ ⇒ B

Γ ⇒ A ∧B
,

Γ ⇒ A,∆, Γ, B ⇒ ∆
Γ, A→ B ⇒ ∆

Γ, A⇒ B

Γ ⇒ A→ B
,
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An IL proof of a formula A is a proof of the sequent ⇒ A. The total sequent
size of a proof S is the sum of |Γ|+ |∆| for sequents Γ ⇒ ∆ in S. The sizes of
formulas in S are not considered in the total sequent size of S.

Let us also state the usual Hilbert style axiomatisation of IL. The only rule
of inference is modus ponens

A, A→ B

B

The axioms are the following:
Ax1 A→ (B → A)
Ax2 (A→ (B → C)) → ((A→ B) → (A→ C))
Ax3 ⊥→ A
Ax4, Ax5 A ∧B → B, A ∧B → A
Ax6 (A→ (B → C)) → (A ∧B → C)
Ax7, Ax8 A→ A ∨B, B → A ∨B
Ax9 (B → A) → ((C → A) → (B ∨ C → A))

The relation between Hilbert style and Gentzen style axiomatisation is the
following:

Proposition 21 Let A be a formula. Then the sequent ⇒ A has a proof in the
Gentzen style calculus for IL iff A is provable in Hilbert style calculus for IL.
Moreover, if A has a Hilbert style proof with n proof lines then ⇒ A has a proof
of total sequent size O(n), and vice versa.

Characteristic set of clauses of IL proof.
As before, we shall now define a characteristic set of clauses CS for an IL proof
S. We shall consider only the right introduction rules of S. Recall that for a
formula A, 〈A〉 denotes a new propositional variable. For any use of a right rule
in S whose conclusion has the form

A1, . . . Ak ⇒ B

we put in CS the clause

{¬〈A1〉, . . .¬〈Ak〉, 〈B〉}.

We can see that CS is a set of Horn clauses, containing no negative clause. |CS | is
equal to the number of right inferences in S, and the total size of CS corresponds
to the total sequent size of S.

We will now show that a truth assignment satisfying the set of characteristic
clauses of a proof can be extended to a truth assignment satisfying the sequents
in S. Let A be a formula. For the logical connectives ◦ = ∧,∨,→ the respective
Boolean operations will be denoted ◦B = ∧B ,∨B ,→B . Assume that σ is a truth
assignment to variables 〈B〉 for all subformulas B of A. Then the assignment
Θσ(A) will be defined as follows:
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1. Θσ(p) = σ〈p〉, for p a variable, Θσ(⊥) = 0,

2. Θσ(B ◦ C) = σ〈B ◦ C〉 ∧B (Θσ(B) ◦B Θσ(C))

We can see that for any σ

i). Θσ(⊥) = 0,

ii). Θσ(A) = σ〈A〉 ∧B Θσ(A), and

iii). Θσ(A ◦B) ≤ Θσ(A) ◦B Θσ(B)

Moreover, from ii) we obtain that if σ satisfies the clause {¬〈A1〉, . . .¬〈Ak〉, 〈A〉}
then

iv) mini=1,...k Θσ(Ai) ≤ σ〈A〉.

We shall say that a sequent Γ ⇒ ∆ is satisfied by Θσ iff minA∈Γ Θσ(A) ≤
maxA∈∆ Θσ(A), where minimum of empty set is one and the maximum zero.

Lemma 22 Let S = Π1, . . .Πn be an IL proof.

1. Let B1, . . . Bk and B be formulas. Let CS , {〈B1〉}, . . . {〈Bk〉}, {¬〈B〉} be
unsatisfiable. Then ∧

i=1,...k

Bi → B

is an IL tautology.

2. Let σ be an assignment to all variables 〈B〉 s.t. B is a subformula of some
formula in S. Assume that σ satisfies CS. Then every Πi in S is satisfied
by Θσ.

Proof. 1) is clear. (Compare with Lemma 2. )
2). The axiom A ⇒ A is satisfied trivially, and ⊥⇒ A is satisfied because

of the condition i). Let us show that for a rule in S if its premiss is satisfied by
Θσ then so is its conclusion. For weakening and cut rule the statement holds
trivially. As remarked in iii), we have Θσ(A ◦ B) ≤ Θσ(A) ◦B Θσ(B). This
implies that the left introduction rules are satisfied by Θσ, for any σ. Assume
that σ satisfies CS and let us have an instance of a right introduction rule in S.
For example, let us take the rule

Γ, A⇒ B

Γ ⇒ A→ B
.

Let a := minγ∈Γ Θσ(γ). By the assumption we have

(?) min(a,Θσ(A)) ≤ Θσ(B)

and we want to show that
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(??) a ≤ Θσ(A→ B) = σ〈A→ B〉 ∧B (Θσ(A) →B Θσ(B)).

From (?) we have a ≤ Θσ(A) →B Θσ(B). Since σ satisfies CS , it also satisfies
the clause {¬〈γ〉, γ ∈ Γ, 〈A→ B〉} and from iv) we obtain that a ≤ σ〈A→ B〉,
which implies (??). The other rules are analogous. QED

A formula α will be called monotone, if it contains only the connectives ∧
and ∨.

Lemma 23 Let S be an IL proof of the formula α → (β1 ∨ β2), where α is a
monotone formula in variables p. Let σ be a 0, 1-assignment to p s.t. α is true
under σ. Let Vσ be the set of clauses of the form {〈γ〉}, where γ is a subformula
of α true under the assignment σ. Then

CS , Vσ, {¬〈β1〉}, {¬〈β2〉}

is not satisfiable.

Proof. Assume that ρ is an assignment which satisfies CS , Vσ, {¬〈β1〉}, {¬〈β2〉}.
We can assume that ρ is defined on all subformulas of formulas in S. From
the definition of Θρ we obtain that Θρ(α) = 1, Θρ(β1) = Θρ(β2) = 0 and
Θρ(α→ (β1 ∨ β2)) = 0. But that contradicts the previous Lemma. QED

Theorem 24 Let α be a monotone formula in variables p of size k. Assume
that S is an IL proof of the tautology

α→ β1 ∨ β2.

Assume that the total sequent size of S is n. Then there exist monotone circuits
C1 and C2 of size O(n2 + k) in variables p s.t. the following are IL tautologies:

1. α→ [C1] ∨ [C2],

2. [C1] → β1, and [C2] → β2.

Proof. Let V be the set of variables of the form 〈γ〉, where γ is a subformula
of α. Let q := 〈β1〉, r := 〈β2〉. The total size of CS is ≤ n. Let Cq be a monotone
circuit in variables V of size O(n2) s.t. for any assignment σ to V , Cq = 1 iff
C, Vσ, {¬q} is unsatisfiable, where Vσ = {{v} ∈ V ;σ(v) = 1}. Let C1 be the
circuit obtained by substituting γ for 〈γ〉 in Cq. It is a monotone circuit in
variables p, and we can assume that it has size O(n2 + k). Similarly for Cr and
C2. The proof then proceeds like that of Theorem 4. QED
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4.1.1 Translating IL to K

Another way how to prove lower bound for IL would be to reduce it to the lower
bound for K. We can give a translation of intuitionistic logic to K s.t. for any
intuitionistic tautology A its translation At is a K tautology. The translation is
not in general faithful, it may happen that At is a tautology without A being so.
Also, the translation is not polynomial. However, there is a polynomial (linear)
relation between the number of proof-lines in an intuitionistic proof of A and
number of modal rules in K-proof of At.

For an intuitionistic formula A of IL, its translation At to K is defined as
follows:

1. pt = 2p and ⊥t=⊥.

2. (A→ B)t = 2A ∧At → 2B ∧Bt.

3. (A ∨B)t = (2A ∧At) ∨ (2B ∧Bt).

4. (A ∧B)t = At ∧Bt.

We can think of the translation as a combination of three different translations:
a) the Gödel translation from IL to S4, b) the translation from S4 to K4,
i.e., (2A)t = 2At ∧ At, and c) the translation from K4 to K which was em-
ployed in [10] and Proposition 15, based on deleting all boxes which are in a
scope of another 2. In the following proposition we think about Hilbert style
axiomatisation of IL (for a proof see [11]):

Proposition.

(1) If A is IL-tautology then At is K-tautology.

(2) If A has IL-proof with n proof-lines then At has a K-proof with O(n)
modal rules.

Let us show how the proposition can be used to prove Theorem 25. The
translation of the IL tautology of the form

(?)
∧

i=1,...k

(pi ∨ qi) → β1 ∨ β2

is the K formula (1)

(2(
∧

i=1,...k

(pi ∨ qi)) ∧
∧

i=1,...k

(2pi ∨2qi)) → 2(β1 ∨ β2) ∧ (2β1 ∧ βt
1 ∨2β2 ∧ βt

2).

This implies, using no modal rules,

(2) (2(
∧

i=1,...k

(pi ∨ qi)) ∧
∧

i=1,...k

(2pi ∨2qi)) → (2β1 ∨2β2).
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However, ∧
i=1,...k

(2pi ∨2qi) → 2(
∧

i=1,...k

(pi ∨ qi))

is provable in K with O(k) distributivity axioms. Hence from (1) we can prove

(3)
∧

i=1,...k

(2pi ∨2qi) → (2β1 ∨2β2).

using O(k) modal rules. Applying the proposition, we obtain that if (?) is
provable in IL with n proof-lines then (3) is provable in K with O(n+k) modal
rules. This allows us to reduce the hard IL tautology to the hard K tautology,
given in Example 2, in Section 3.2.

4.2 Hard IL tautologies

4.2.1 Interpolation style tautologies

Proposition 25 Let β1 = β1(p, r1) and β2 = β2(q, r2) be propositional formu-
las, p, q, r1, r2 disjoint. Let p = p1, . . . pk and q = q1, . . . qk. Assume that β1

is monotone in p or β2 is monotone in q. Assume that

β1(p, r1) ∨ β2(¬p, r2)

is a classical tautology.

1. Then ∧
i=1,...k

(pi ∨ qi) → (¬¬β1) ∨ (¬¬β2)

is IL-tautology.

2. If the tautology has a Hilbert style IL proof with n proof lines then there ex-
ists a monotone circuit C(p) of size O((n2+k) which interpolates ¬β2(¬p, r2)
and β1(p, r1).

Proof. Let us first show that the formula is a tautology. The assumption∧
i=1,...k(pi∨qi) can be transformed to an intuitionistically equivalent disjunction

of conjunctions of the form ∧
i∈M

pi ∧
∧
i∈N

qi

such that M ∪ N = {1, . . . k}. Hence it is sufficient to show that for such M
and N

(?)
∧

i∈M

pi ∧
∧
i∈N

qi → (¬¬β1 ∨ ¬¬β2)
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is an intuitionistic tautology. By Lemma 8 either
∧

i∈M pi → β1 or
∧

i∈N qi → β2

is a classical tautology. In the first case

(
∧

i∈M

pi → ¬¬β1)

is an intuitionistic tautology, since the double negation enables to reproduce the
classical proof in IL. The latter case is similar.

Part 2) follows from Theorem 24 in a similar way to the proof of Proposition
9. QED

As in Section 3.2 we now apply the proposition to the formulas Clique and
Color.

Corollary Let p = p1 . . . pn and q = q1, . . . qn and let p, q, r, s be disjoint,
v := p, q, r, s. Let

Θk
n :=

∧
i=1,...n

(pi ∨ qi) → (¬Colork
n(p, s) ∨ ¬Cliquek+1

n (p/¬q, r)).

Then Θk
n is an IL-tautology. If k :=

√
n then every IL-proof of the tautology

Θk
n contains at least

2Ω(n
1
4 )

proof-lines.
Proof. As in Corollary of Proposition 10. Note that we omit the double nega-
tion infront of ¬Clique resp. ¬Color, since ¬A and ¬¬¬A are intuitionistically
equivalent. QED

4.2.2 Tautologies based on the gap between monotone and general
circuits

We are now going to present a different kind of a hard IL tautology. The basis is
still the possibility of extracting a monotone circuit from an intuitionistic proof,
but the construction no longer deserves the title ”monotone interpolation”. As-
sume that we have a classical formula α(p) which defines a monotone Boolean
function f , where α itself is allowed to be non-monotone (i.e., may contain nega-
tions). In classical propositional logic we can find a tautology asserting that α
does indeed define a monotone function. The most transparent formulation is
the tautology

(?)
∧

i=1,...n

(pi → qi) → (α(p) → α(q)).

One might conjecture that a proof of (?) must have size at least Cm(f), the
size of a smallest monotone circuit C computing f . This seems likely because
the first-hand strategy for proving (?) is by constructing a monotone circuit
computing f . Furthermore, if NP 6= coNP then some tautologies of the form

59



(?) are hard also in F , for the problem of deciding whether a circuit (or even
a formula) defines a monotone function is coNP -complete.13 Hence in order to
obtain a hard tautology of the form (?) it would be sufficient to find a formula
α s.t. i) α defines a monotone Boolean function f , ii) α has a polynomial size,
and iii) Cm(f) is exponential. It should not deter us that an example of such
a formula is not known, for there are examples of circuits with such properties,
and it is only a technical detail to rephrase (?) for a circuit. Whether this
strategy can give hard tautologies for classical Frege systems will be discussed
in Section 4.3.2. On the other hand, the approach is successful in intuitionistic
logic. It is sufficient to formulate (?) with disjunctions rather than implications
and we obtain tautologies with exponential lower bounds on the number of proof
lines in IL.

The major difference between this approach and that of monotone interpo-
lation is the following: if we want to obtain a lower bound on proofs by means
of monotone interpolation, we need more than just the fact that a monotone
function f cannot be computed by a small monotone circuit. We must employ
the full statement of Razborov’s theorem that for given monotone functions g, h
s.t. g ≤ h (i.e., g(x) ≤ h(x) on every input) there is no small monotone circuit
defining a function f s.t. g ≤ f ≤ h.14 In the setting of this section, it is
sufficient to assume that f is not computable by a small monotone circuit. The
additional, also non-trivial, fact required is that f is computable by a small
general circuit.

Proposition 26 Assume that α(p) is a propositional formula which defines a
monotone Boolean function f(p). Let p = p1, . . . pk and q = q1, . . . qk. Then the
formula ∧

i=1,...k

(pi ∨ qi) → (¬¬α(p) ∨ ¬α(¬q))

is an IL-tautology. Moreover, if the tautology has a Hilbert style IL proof with n
proof-lines then there exists a monotone circuit of size O(n2+k) which computes
f .

Proof. We shall apply Proposition 25. Let us check the assumptions of the
Theorem for β1 := α(p) and β2 := ¬α(p/¬q). Since α defines a monotone
function then β1 is monotone in p. (Recall that β1 is monotone in p if it can
be transformed, classically, to a DNF form with no negations attached to p.)
Since

(?) β2(q/¬p) = ¬α(¬¬p)
then β1(p)∨β2(q/¬p)) is classically equivalent to α(p)∨¬α(p) which is a classical
tautology. Hence Γ :=

∧
i=1,...k(pi ∨ qi) → (¬¬β1 ∨ ¬¬β2) is IL-tautology and

13To see that the problem is in coNP is easy. For coNP -completeness note that the formula
¬p ∧A(q) is monotone iff A(q) is a contradiction.

14On the other hand, note that if f ∈ NP ∩ coNP , as is the case of the perfect matching
function, then a bound on Cm(f) is indeed sufficient.
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if Γ has a proof in IL with n proof-lines then then there exists a monotone
circuit C of size O(n2 + k) which interpolates ¬β2(q/¬p) and β1(p). But since
β1(p) = α(p) and from (?) ¬β2(q/¬p) is equivalent to α(p) then C interpolates
α(p) and α(p), and hence it computes f . In the statement of the proposition
we write ¬α(¬q) instead of ¬¬¬α(¬q). QED

As remarked above, Proposition 26 does not yet give a lower bound for IL for
we do not have an example of a function f definable by a small Boolean formula
but not by a small monotone circuit. In order to avoid this obstacle, we will
now code circuits with formulas. Let C be a circuit in variables p s.t. the ∧-
and ∨-gates have fan-in two. We shall define a formula [C(p)]15 which asserts
that C outputs 1 on variables p. For any gate a of C let us have a variable ra.
If a is a leaf (i.e., a variable in p) we let ra := a. Otherwise we assume that the
variables ra, a ∈ C and p are mutually different. The condition for a will be the
formula Ma s.t.

1. if a = ¬b then Ma := (ra ≡ ¬rb),

2. if a = b ∧ c then Ma := (ra ≡ (rb ∧ rc)) and

3. if a = b ∨ c then Ma := (ra ≡ (rb ∨ rc))

Let c be the output gate of C. Then [C(p)] will be the formula∧
a∈C

Ma → rc,

where the conjunction ranges over the gates in C. When we write e.g. [¬C(¬q)]
as below, we mean the result of application of a similar procedure to the circuit
¬C(¬q) (the gates being coded by different variables then those of C(p).)

Proposition 27 Assume that C(p) is a circuit which defines a monotone Boolean
function f(p). Let p = p1, . . . pk and q = q1, . . . qk. Then the formula

Γ :=
∧

i=1,...k

(pi ∨ qi) → (¬¬[C(p)] ∨ ¬¬[¬C(¬q)])

is an IL tautology. Moreover, if the tautology has an IL proof with n dis-
tributivity axioms then there exists a monotone circuit of size O((n2 + k) which
computes f .

Proof. To show that the formula is IL tautology follows by an analogous
argument as in Proposition 25. Let us assume that Γ has an IL-proof S with n
proof-lines. Let α(p) be a formula defining f . For a gate a of C, let γa(p) be a
formula equivalent to the circuit Ca. Similarly for a formula δa(q) and a gate a
of the circuit D(q) := ¬C(¬q). If c resp. d are the output gates of C resp. D,

15The [C] here is different from [C] in Theorem 24
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we can assume that γc = α(p) and δd = ¬α(¬q). Substituting throughout S γa

for ra, a ∈ C, and δa for ra, a ∈ D, we obtain an IL-proof of

∆ := Γ(ra/γa)a∈C(ra/δa)a∈D

with n proof-lines. Let

λ1(p) :=
∧

a∈C

Ma(ra/γa)a∈C

and
λ2(q) :=

∧
a∈D

Ma(ra/δa)a∈D.

Then ∆ is equal to∧
i=1,...k

(pi ∨ qi) → (¬¬(λ1(p) → α(p))) ∨ (¬¬(λ2((q)) → ¬α(¬q))).

Clearly, λ1 and λ2 are classical tautologies and hence the formulas

β1(p) := λ1(p) → α(p)

and
β2(q) := λ2(q) → ¬α(q)

satisfy the assumptions of Proposition 24 (compare with Proposition 26). Hence
there is a monotone circuit E(p) of size O((n2 + k) which interpolates ¬β2(¬p)
and β1(p). Since λ1 and λ2 are classical tautologies then both β1(p) and ¬β2(¬p)
are equivalent to α(p) and hence E computes f . QED

Corollary There exists a sequence γn, n ∈ ω of IL tautologies of size n s.t.
every IL-proof of γn has at least 2Ω(n

1
4 ) proof-lines.

Proof. By [24] and [17] there exists a monotone function f computable by a
polynomial circuit C s.t. every monotone circuit computing f has at least the
size 2Ω(n

1
4 ). Apply the Proposition to the circuit C. QED

4.3 Classical logic

In this section we state what is now obvious, that there is an exponential speed-
up between classical and intuitionistic systems of propositional logic. This
follows from the fact that the tautology of Corollary of Proposition 25 has a
polynomial-size classical proof. We also prove something less obvious, that tau-
tologies of the form of Proposition 27 have polynomial-size classical proofs, if C
is taken as a particular circuit computing the perfect matching function.
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4.3.1 Speed-up between classical and intuitionistic propositional cal-
culi

We will define the system of classical propositional logic, the Frege system F ,
as the system IL, in the Hilbert style axiomatisation, plus the axiom

¬¬A→ A.

Theorem 28 Let Θk
n be the IL tautology of Corollary of Proposition 25. If

k :=
√
n then every IL-proof of the tautology Θk

n contains an exponential number
of proof-lines but Θk

n has a polynomial size classical proof.

Proof. In order to show that Θk
n has a polynomial size classical proof it is

sufficient to prove that

¬Cliquek+1
n (p, s) ∨ ¬Colork

n(p, r)

has a polynomial-size Frege proof. But that follows from [5]. QED

Remark. Now that we have an exponential lower bound for intuitionistic cal-
culus, a speed up between classical and intuitionistic logic could be trivially
obtained as follows: let Θi, i ∈ ω be any sequence of IL-tautologies s.t. Θi have
only exponential proofs in IL. Let us consider the sequence

Γi := (¬¬p→ p) ∨Θi.

Then Γi have linear size classical proofs. Moreover, by [6], if IL ` A ∨ B
then IL ` A or IL ` B, and the proof of A resp. B has a polynomial size
with respect to the size of the proof of A ∨ B. Since IL 6` ¬¬p → p then Γi

have only exponential size proofs in IL. In this way one can obtain speed up
between IL and any stronger proof system. However, such a speed-up is not
very informative. Let us now show that a more natural speed-up occurs also
between IL and Gödel-Dummet’s logic.

Fuzzy logic. Gödel-Dummett’s logic is the system IL plus the axiom

(A→ B) ∨ (B → A).

It is one of the basic systems of fuzzy logic. We can find polynomial size proofs
of tautologies of Corollary of Theorem 25. The tautology in the corollary has
the form ∧

i=1,...n

(pi ∨ qi) → (¬¬β1(p, s) ∨ ¬¬β2(q, r)),

and ∧
i=1,...n

(pi ∨ qi) → (β1(p, s) ∨ β2(q, r))

has a polynomial classical proof. In Gödel-Dummett logic

(¬¬(A ∨B)) → (¬¬A ∨ ¬¬B)
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is a tautology. Hence it is sufficient to prove∧
i=1,...n

(pi ∨ qi) → ¬¬(β1(p, s) ∨ β2(q, r)).

The tautology has a polynomial size proof since the double negation enables to
reproduce the classical proof even in IL.

4.3.2 Short Frege proofs of tautologies based on the gap between
monotone and general circuits

One might conjecture that we could employ classical analogies of the tautologies
in Proposition 27, i.e., tautologies of the form16

(?)
∧

i=1,...n

(pi → qi) → (C(p) → C(q))

for a circuit C computing a monotone Boolean function f , to find lower bounds
for classical propositional systems. However, we will show that the tautology
asserting monotonicity of a particular circuit defining the perfect matching func-
tion has a polynomial size Frege proof. Since we have a quasipolynomial lower
bound for monotone circuits computing the perfect matching function, we con-
clude that there is no polynomial function relating the size of Frege proof of
(?) and Cm(f). In order to completely frustrate the possibility of finding lower
bounds for F by means of (?), we would like to find polynomial size Frege proofs
for a circuit defining a monotone function f s.t. the gap Cm(f)/C(f) is expo-
nential. Unfortunately, we know only one example of such a function (namely
the one obtained from [24]), and the complexity of the algorithm does not invite
formalisation.

The perfect matching problem. Let G ⊆ U × V be a bipartite graph
on U = u1, . . . un, V = v1, . . . vn. A matching M is a set of vertex disjoint
edges of G. M is a perfect matching, if |M | = n. G will be represented by
propositional variables pij , i, j = 1, . . . n s.t. there is an edge in G connecting
ui and vj iff pij = 1. The perfect matching function fPM is the function in
variables p = pij , i, j = 1, . . . n, s.t. fPM (p) = 1 iff the graph represented by p
has a perfect matching. fPM is a monotone function. By the result of Razborov
[23] every monotone circuit computing fPM must have a superpolynomial size.
On the other hand, there is a polynomial time algorithm deciding whether a
bipartite graph G has a perfect matching, and hence there are polynomial size
circuits computing fPM .

Recall the coding of circuits from Section 4.2.2. For circuits C1, . . . Cn and
a formula A

A(C1, . . . Cn)

16In F we would understand (?) as containing the conditions Ma for gates of C(p) and C(q)
in the assumption.
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will be an abbreviation for ∧
a∈Ci,i=1,...n

Ma → A(r1, . . . rn),

where r1, . . . rn are variables representing the outputs of C1, . . . Cn. Hence the
gate definitions are always placed in the assumption of the whole proposition.
For a list of variables q, Cq will denote the list of circuits indexed by the formulas
q. Let A = A(p, q) be a formula. We will say that circuits Cq in variables p

1. solve the problem A, if

(?) A(p, q) → A(p, Cq)

is a tautology, and

2. solve the problem A polynomially in F , if the circuits have polynomial size
and (?) has a polynomial size Frege proof.

Moreover, the function fA(p) will be the Boolean function s.t. for any assign-
ment to the variables p, fA(p) = 1 iff there exists an assignment to q s.t. A(p, q)
is true.

As opposed to the previous notation, we shall say that A(p, q) is monotone
in p if A contains only the binary connectives ∧, ∨, and negations do not occur
in front of variables p.

Lemma 29 Let A = A(p, q) be a formula, r = r1, . . . rk, p = p1, . . . pk. Assume
that circuits Cq in variables p solve the problem A. Then

(1) the circuit C(p) := A(p, Cq(p)) computes the function fA(p).

(2) Assume in addition that Cq solve the problem A polynomially in F and
that A is monotone in p. Then the tautology

(?)
∧

i=1,...n

(pi → ri) → (C(p) → C(r))

has a polynomial size Frege proof in F .

Proof. (1) is clear.
(2) We must show that

(?)
∧

i=1,...n

(pi → ri) → (A(p, Cq(p)) → A(r, Cq(r))

has a polynomial size Frege proof . Since A(p, q) is monotone in p, we obtain a
linear Frege proof of
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(i)
∧

i=1,...n

(pi → ri) → (A(p, Cq(p)) → A(r, Cq(p)).

Since the circuits Cq solve the problem A polynomially in F , we have a polyno-
mial Frege proof of

(ii) A(r, Cq(p)) → A(r, Cq(r)),

which together with (i) gives a polynomial size Frege proof of (?). (Note that
(?) contains all the circuit gate conditions in its assumption.) QED

Let p = pij , i, j = 1, . . . n and q = qij , i, j = 1, . . . n. Then the formula

MATCH(p, q)

is the formula asserting that q is a matching on the graph represented by p, i.e.,
the formula∧

i,j

(¬qij ∨ pij) ∧
∧

i,j1 6=j2

(¬qij1 ∨ ¬qij2) ∧
∧

i1 6=i2,j

(¬qi1j ∨ ¬qi2j),

where the indices range over 1, . . . n. The formula

PMATCH(p, q) :=
∧
i

∨
j

qij ∧MATCH(p, q)

is the formula asserting that q is a perfect matching. In the Appendix, we will
sketch the construction of circuits Cq which polynomially solve the problem
PMATCH in F . This will give the following theorem:

Theorem 30 There is a circuit C which computes the perfect matching func-
tion s.t. the tautology ∧

i,j=1,...n

(pij → qij) → (C(p) → C(q))

has a polynomial size Frege proof. Hence (to match the formulation of Proposi-
tion 27) also the tautology∧

i,j=1,...n

(pij ∨ qij) → ([C(p)] ∨ [¬C(¬q)])

has a polynomial size Frege proof.

Proof. Follows from the previous lemma and the fact that there exist circuits
Cq which solve the problem PMATCH(p, q) polynomially in F , as will be shown
in the Appendix. QED
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Appendix

The algorithm

Let us first outline the algorithm for finding a perfect matching in a graph. For
a matching M and a vertex v, we will say that v is matched if v ∈ V ert(M).
Similarly, an edge e is matched if e ∈M . A path P inG will be called alternating
if it alternates between matched and unmatched edges and the first vertex is
unmatched. An alternating path will be called augmenting if it ends by an
unmatched vertex, too.

The algorithm constructs a sequence of matchings M0, . . .Mn, Mi having
size i. Let M0 := ∅. At the stage i+ 1, find an augmenting path P for Mi and
let Mi+1 := (Mi \ P ) ∪ (P \Mi).

An augmenting path for a matching M in G can be found as follows. Let
u ∈ U be an unmatched vertex in G and define a sequence of sets of vertices
Uu

0 , U
u
1 , . . . U

u
n ⊆ U , V u

1 , . . . V
u
n ⊆ V .

Uu
0 := {u}

V u
i+1 := {a ∈ V ert(G),∃b ∈ Uu

i 〈a, b〉 ∈ G \M}, i = 0, . . . n− 1
Uu

i+1 := {a ∈ V ert(G),∃b ∈ V u
i 〈a, b〉 ∈M}, i = 1, . . . n− 1.

Clearly, for every a ∈ V u
k resp. a ∈ Uu

k there exists an alternating path of length
2k−1 resp. 2k from u to a. Hence if we find a and k = 1, . . . n s.t. a ∈ V u

k and a
is unmatched, then there is an augmenting path from u to a. Moreover, we can
easily construct the path: we can find a′ ∈ Uu

k−1 s.t. 〈a′, a〉 ∈ G is unmatched.
Again there is an alternating path of length 2k − 2 from u to a′, and we can
find some a′′ ∈ V u

k−2 s.t. 〈a′′, u〉 ∈ G is matched etc. until we reach u.
A set X ⊆ U will be called critical in G, if |X| > |G(X)|, where G(X) ⊆ V

is the image of X over the graph G. The correctness of the algorithm can be
proved using
Hall’s theorem:
G has a perfect matching iff G does not have a critical set.
It can be easily shown that the sets Uu

i , V
u
i constructed above either define an

augmenting path, or
X :=

⋃
i=0,...n

Uu
i

is a critical set. For if Y :=
⋃

i=0,...n V
u
i then i) Y = G(X), from the definition,

and ii) |Y | = |(X \ {u})| = |X| − 1, since every vertex of Y is matched to some
vertex in X \ {u}.

Therefore if G has a perfect matching then there is no critical set, and the
algorithm extends the matching Mi to Mi+1, i < n.

The formalisation

There exist polynomial formulas Countkn(p1, . . . pn) asserting that exactly k of
the variables p = p1, . . . pn are true s.t. their expected properties have polysize
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Frege proofs in F (see [5]). This enables the formalisation of basic counting
arguments in F .

The formula MATCHk(p, q) will be an abbreviation for

MATCH(p, q) ∧ Countkn(
∨

j=1,...n

qij , i = 1, . . . n).

For a vertex a, the formula MATCHEDa(q) will be an abbreviation for∨
j=1,...n qij , if a = ui ∈ U , and

∨
j=1,...n qji, if a = vi ∈ V .

A path of odd length 2k−1 in a bipartite graph on U and V which starts in
some a1 ∈ U can be represented by a sequence a1, . . . ak ∈ U and b1, . . . bk ∈ V
s.t. the path contains edges 〈al, bl〉 and 〈bl, al+1〉. Let f = fij , i, j = 1, . . . n
and g = gij , i, j = 1, . . . n be fresh variables. Let a = ui, b = vj be vertices.
Then the formula

PATH2k−1
ab (p, f, g)

will be the formula asserting that f and g represent a path from a to b of length
2k − 1, i.e., the assertion that i) f and g are onto one-to-one partial functions
from 1, . . . n to 1, . . . k, and f1i = 1, gkj = 1, and ii) for every i′, j′ = 1, . . . n,
and l = 1, . . . k − 1, if fi′l = 1 and gj′l = 1, or gj′l = 1 and fi′l+1 = 1, then
pi′j′ = 1.

In a similar fashion, we can introduce the formulas PATHk
ab(p, f, g) for k

even, and hence in general
PATHk

ab(p, f, g)

is a formula asserting that f and g represent an odd path from a to b of length
k. Similarly, we introduce the formula

ALTPATHk
ab(p, q, f , g),

asserting that f and g represent an alternating path of odd length from a to b
w.r. to the matching q. By means of MATCHEDa(q) we can introduce

AUGPATHk
ab(p, q, f , g),

a formula asserting that f and g represent an augmenting path from a to b w.r.
to the matching q. Finally,

AUGPATH(p, q, f , g)

is the disjunction of all AUGPATHk
ab(p, q, f , g).

For a list of formulas A = Aij , i, j = 1, . . . n Dom(A), will be the list of n
formulas

∧
iAi1, . . .

∧
iAin.

CRIT(p, r),

will be the formula asserting that the set X := {ui ∈ U ; ri = 1} is a critical set
in the graph represented by p. More exactly, if r = r1, . . . rn, it is a disjunction
of conjunctions of the form Countk

n(r1, . . . rn)∧Countj
n(Dom(ri∧pij)), for j < k.
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Lemma 1 shows that the easy direction of Hall’s theorem has a short F -proof:

Lemma 1 The formula

PMATCH(p, q) → ¬CRIT(p, r)

has a polynomial size Frege proof.

Proof. Assume PMATCH(p, q) and CRIT(p, r). Then we obtain a negation
of pigeonhole principle which has a short Frege refutation. QED

Lemma 2 There are polynomial circuits Cf and Dg in variables p, q s.t. the
following has polynomial size Frege proof:

MATCH(p, q) → (AUGPATH(p, q, Cf , Dg) ∨ CRIT(p,Dom(Cf ))).

Proof. Recall the sets Ua
0 , . . . U

a
n and V u

0 , . . . V
a
n . For a ∈ U , we can find

polynomial size circuits Es
au, s = 0, . . . n, u ∈ U , and F s

av, s = 1, . . . n, v ∈ U ,
s.t. Es

au = 1 iff u ∈ Ua
s and Es

av = 1 iff v ∈ V a
s , and moreover, the analogons of

the defining relations between Ua
i and V a

i have polynomial Frege proofs. The
proof is then a straightforward formalisation of the above informal argument.
QED

Lemma 3 There exist circuits Cq in variables p, q, f , g s.t. the following has
polynomial size Frege proof:

MATCHk(p, q) → (MATCHk+1(p, Cq) ∨ CRIT(p,Dom(Cq))).

Proof. The following is a simple counting argument in F : if M is a matching
of size k and P is an augmenting path then (P \M) ∪ (M \ P ) is a matching
of size k + 1. The statement of the Lemma then follows from the previous one.
QED

Let us recall the matchings M0, . . .Mn from our description of the algorithm.
Using the circuits from Lemma 2 and Lemma 3, we can find polynomial circuits
Ck

q (p) s.t. there are short Frege proofs of

MATCHk(p, Ck
q ) ∨ CRIT(p,Dom(Ck

q ))),

i.e., they either define a matching of size k, or a critical set. Since MATCHn(p, q)
is equivalent to PMATCH(p, q), we also have circuits Cq and polynomial Frege
proofs for

PMATCH(p, Cq) ∨ CRIT(p,Dom(Cq))).

Finally, from Lemma 1 it follows that

PMATCH(p, q) → PMATCH(p, Cq)

has a polynomial size Frege proof, and hence the circuits Cq solve the problem
PMATCH(p, q) polynomially in F .
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