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Introduction
One of the central notions in physics is the idea of symmetry. This idea that the
laws of physics stay the same even when we change our viewpoint has been a
driving concept ever since the days of Galileo and has become the basis of mod-
ern physics. In particle physics we encounter symmetry especially in the form
of a gauge theory, theory which is described by a Lagrangian that is invariant
under local transformations represented by a Lie group. These transformations
represent the symmetries between the particles and in order to keep the the-
ory invariant to these symmetries, we have to introduce new fields called gauge
bosons into the theory. This adds challenges to quantization of the theory, since
the introduced fields are generally tied up by constraints and we have to use
new formalisms, known as the Becchi-Rouet-Stora-Tyutin (BRST) and Batalin-
Vilkovisky formalisms to efficiently quantise such theory.

The ordinary gauge theory however deals only with point-like particles and
many theories concerned with the unification of gravity with the Standard Model
(SM), such as the string theory or spin foam models predict the existence of
higher-dimensional elementary structures. In order to treat these structures in
gauge theory, we have to develop a more general formalism encompassing point-
like particles as well as higher dimensional ones. This is the purpose of higher
gauge theory. In the higher gauge theory we deal with such problems by categori-
fying the mathematical structures previously used to describe the ordinary gauge
theories. A typical example we will cover in this thesis is a group, which we first
describe in terms of category theory and then provide an additional structure by
promoting the category into a 2-category.

The higher gauge theory is a very young and very active field of study - most
of the advances in the field have taken place in the last few decades. It is also
an inspiration for development of new mathematics. Notably it has driven the
exploration of L∞-algebras and has been a driving force in the inquiries into the
(∞, 1)-categories. However, since the theory is generally described by concepts
of mathematics that are usually unknown to the high energy physics community,
so it is still relatively undeveloped and there is still a vast space of possible
applications in the theories beyond the SM and in condensed matter physics. In
this thesis we would thus like to give a gentle introduction to the theory of higher
gauges for ordinary high energy physicists.

We will cover the physical background of the theory, namely the BRST formal-
ism and mathematical prerequisites necessary to understand the language of the
theory. We will introduce two different mathematical approaches to higher gauge
theory and draw parallels between between them. In particular we will cover
2-groups and L∞-algebras, which serve to describe the higher gauge theories and
show that in the special case of the BF theory they give identical results.
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1. Becchi-Rouet-Stora-Tyutin
formalism
In this chapter we will describe the physical background for higher gauge theory.
As we have mentioned in the Introduction, in order to quantise more complicated
gauge theories, we first have to develop a framework that will efficiently describe
the gauge theories and their symmetries. In this chapter we will introduce two
such frameworks. The first one will be the Becchi-Rouet-Stora-Tyutin framework,
which will expose a symmetry present even after the gauge has been fixed. The
BRST formalism is suited to deal with the higher gauge theories, since it provides
a natural L∞-algebra structure, which we will describe in the following chapters,
however it fails for symmetries which are open off-shell. In order to treat such
symmetries we would have to introduce a so called Batalin-Vilkovisky formalism,
which deals with these problems by adding new fields - so called ’antifields’ -
for each field in the theory. Since the BRST formalism will fully suffice for our
purposes, we will not cover the BV formalism.

Our exposition will follow a treatment by Weinberg (Weinberg, 1996). A more
detailed approach can be found for example in (Gomis et al., 1995).

1.1 Non-Abelian Gauge Theories
We will first very briefly revise the theory of non-abelian gauge theories, setting
up notation for a following section.

We say that a theory is invariant under a transformation, when the Lagrangian
L (ψ) of the theory is invariant under the infinitesimal transformation of the fields
ψl(x)

δψl(x) = iϵα(x)(tα) m
l ψm(x) (1.1)

where (tα) m
l is a constant matrix representation of the transformation group and

ϵα(x) is a real infinitesimal parameter. The transformation group will generally
be a Lie group G, and the representation will thus satisfy

• Commutation relations:

[tα, tβ] = iCγ
αβtγ (1.2)

• Jacobi identity:

[[tα, tβ] tγ] + [[tγ, tα] tβ] + [[tβ, tγ] tα] = 0 (1.3)

Additionally, in order for the Lagrangian to be invariant with respect to the
transformations, we will have to introduce gauge fields that transform as

δAβ
µ = ∂µϵ

β + iϵαCβ
γαA

γ
µ (1.4)

and change the derivatives ∂ into covariant derivatives

Dµ = ∂µ− iAβ
µ(x)t (1.5)
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In order to satisfy the gauge invariance, the Lagrangian of our gauge invariant
theory cannot contain mass terms of the gauge field, so the gauge field will be
represented only throuugh the covariant derivatives and the gauge field-strength
tensors Fα

µν defined as follows

F γ
µν := ∂µA

γ
ν − ∂νA

γ
µ + Cγ

αβA
α
µA

β
ν (1.6)

The invariant Lagrangian density will then be a function of the fields, their co-
variant derivatives and the field-strength tensors

L = L (Fα
µν , ψ,Dψ) (1.7)

and the action S[ψ] is
S [ψ] =

∫
d4xL (1.8)

where we integrate over four dimensional spacetime.
We can quantise the theory in the path integral formalism using the De Witt-

Faddeev-Popov method, in which the vacuum expectation value of a time-ordered
product of gauge-invariant operators OA,OB, · · · is equal to the ratio

⟨T {OA,OB, · · · }⟩V = I(T {OA,OB, · · · })
I(1) (1.9)

I(T {OA,OB, · · · }) :=
∫
µ(ϕ)T {OA,OB, · · · } eiS(ϕ)δ(F (ψ)) det(MF P (ψ))

(1.10)

where ϕn(x) are now a set of ordinary and gauge fields; we will denote the space
of all ϕ as F; µ(ϕ) is a measure in the space of ordinary and gauge fields

µ(ϕ) =
∏
n,x

dϕn(x) =
⎡⎣∏

l,x

dψl(x)
⎤⎦ [ ∏

α,µ,x

dAµ
α(x)

]
. (1.11)

The δ is a functional analogue of the δ-distribution. F is a gauge fixing function
F : F → Lie(G) from the space of fields to the Lie algebra of the gauge group G
, such that each point in F−1(0) represents a different orbit of G. The δ(F (ϕ))
thus serves as a restriction of the field space F to a particular choice of gauge.
Finally the MF P is the Fadeev-Popov matrix defined as

(MF P )αx,βy (ϕ) = δFα(ϕϵ;x)
δϵβ(y) (1.12)

where ϕϵ is the field ϕ transformed by a gauge transformation with parameters
ϵβ(x).

As has been proven for example in (Weinberg, 1996), the path integral in
equation (1.10) is independent of the gauge-fixing functional Fα. However we
still have to fix the gauge in order to integrate only over physical degrees of
freedom.

Since it is easier to calculate the path integral I in the form of a Gaussian,
we will further take a Fourier transformation of the δ(F (ϕ))

δ(F ) = exp

(
− i

2ξ

∫
d4xFα(x)Fα(x)

)
(1.13)
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with a real parameter ξ. For the purposes of the BRST formalism it is better
to rewrite the equation (1.13) as a Fourier integral over so-called ’Nakanishi-
Lautrup’ fields

δ(F ) =
∫ [∏

α,x

dhα(x)
]

exp
[
iξ

2

∫
hαhα

]
exp

[
i
∫
d4xFαhα

]
(1.14)

We can also express the Fadeev-Popov determinant as a path integral

det(MF P ) ∝
∫ [∏

α,x

dωα(x)
] [∏

α,x

dω∗
α(x)

]
exp

(
i
∫
d4xd4yω∗

α(x)ωβ(y) (MF P )αx,βy

)
(1.15)

where we introduce new fields ωα. These fields have to be fermionic for theF
integral to be proportional to det(MF P ) and are scalar with respect to Lorentz
transformation. However as can be proven in the BRST formalism, these fields
cannot appear in initial or final states and appear only as virtual particles, which
is why they can have integer spin and still be fermionic. We call these fields the
ghost and antighost fields and introduce the ghost number equal +1 for ωα and
−1 for ω∗

α and 0 for all other fields. The ghost number is then conserved at every
vertex.

Defining
∆α(x) :=

∫
d4y (MF P )αx,βy ωβ(y) (1.16)

we can further rewrite relation (1.15) as

det(MF P ) ∝
∫ [∏

α,x

dωα(x)
] [∏

α,x

dω∗
α(x)

]
exp

(
i
∫
d4xω∗

α(x)∆α(x)
)

(1.17)

Using the equations (1.14 - 1.17) in the relation (1.10) we finally get

IMOD(T {OA,OB, · · · }) :=
∫
µ(ϕ, ω, ω∗, h)T {OA,OB, · · · } eiSMOD(ϕ,ω,ω∗,h)

(1.18)
with the modified action SMOD[ϕ, ω, ω∗, h] is now

SMOD[ϕ, ω, ω∗, h] =
∫
d4x

(
L + ω∗

αΛα + hαFα + ξ

2hαhα

)
(1.19)

1.2 BRST formalism
The De Witt-Faddeev-Popov method has a great disadvantage - since we have
to choose the gauge in order to quantise the theory, we lose the explicit gauge
invariance of the theory. This poses problems when proving the renormalisability
of the theory, since after choosing the gauge we do not know which counterterms
to the ultraviolet divergences are restricted by the gauge symmetry. Also the De
Witt-Faddeev-Popov method introduces unphysical ghost fields and it is hard to
prove that they only appear as virtual particles. A remedy to these problems is
the BRST formalism. This formalism introduces a so called BRST symmetry,
which is present even after fixing a gauge.
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We define the BRST symmetry as a global symmetry, parametrised by an
infinitesimal constant θ that anticommutes with fermionic fields and with ω and
ω∗. The BRST transformation has a form

δθψ = itαθωαψ (1.20)
δθAαµ = θDµωα = θ[∂µωα + CαβγAβµωγ] (1.21)
δθω

∗
α = −θhα (1.22)

δθωα = −1
2θCαβγωβωγ (1.23)

δθhα = 0 (1.24)

To see that the action in equation (1.19) is invariant, we will first note that
when acting on ordinary fields ψ and on gauge fields Aαµ, the BRST symmetry
is in fact a gauge symmetry with a parameter

ϵα(x) = θωα(x) (1.25)

Since the original Lagrangian L is only a function of the original fields ψ, their
covariant derivations Dψ and of the gauge field strengths Fα

µν : L (Fα
µν , ψ,Dψ), it

will be automatically invariant to the BRST transformation

δθ

∫
d4xL = 0 (1.26)

To prove that the rest of the action SMOD is invariant to the BRST transfor-
mation, we first define a BRST operator s as

δθF := θsF (1.27)

for arbitrary functional F (ψ,A, ω, ω∗, h) of fields. As is shown in (Weinberg,
1996), this operator is nilpotent

s(sF ) = 0 (1.28)

for any functional F (ψ,A, ω, ω∗, h).
Next we note that using the definition (1.16), the BRST transformation ap-

plied to the gauge-fixing function F is

δθFα(x) =
∫ δFα(x)

δϵβ(y)

⏐⏐⏐⏐⏐
ϵ=0

θωβ(y)d4y (1.29)

= θ
∫

(MF P )αx,βy ωβ(y)d4y (1.30)

= θ∆α(x) (1.31)

Using the transformation rules (1.22) and (1.24) we can thus rewrite the last
three parts of the modified action SMOD as∫

d4x
(
ω∗

α∆α + hαFα + 1
2ξhαhα

)
=
∫
d4x

(
s
(
ω∗

αFα + 1
2ξω

∗
αhα

))
= sΨ (1.32)

where we have introduced the gauge-fixing fermion Ψ

Ψ :=
∫
d4x

(
ω∗

αFα + 1
2ξω

∗
αhα

)
(1.33)
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We can thus rewrite the modified action SMOD as

SMOD =
∫
d4xL + sΨ (1.34)

and since the BRST operator is nilpotent, we have shown that the modified action
SMOD is BRST-invariant.

The equation (1.34) also shows, that the gauge-fixing fermion Ψ can be
changed by sΨ′ for an arbitrary functional Ψ′ of fields leaving the physical con-
tents of the theory unchanged.

We can also define a new fermionic BRST charge Q via the BRST transfor-
mation of any field Ψ

δθΨ = i[θQ,Ψ] = iθ[Q,Ψ]∓ (1.35)

In terms of the BRST operator s we thus have

isΨ = [Q,Ψ] (1.36)

Since the BRST operator s is nilpotent, we have

0 = −ssΨ = [Q, [Q,Ψ]∓]∓ = [Q2,Ψ]− (1.37)

for all fields Ψ. This means that the BRST charge is either zero or proportional
to the unit operator. However since Q2 has a non-zero ghost number we have

Q2 = 0 (1.38)

The BRST charge thus acts as a derivation in the space of BRST fields. We
will see later that the existence of this operator, together with the graded vector
structure of the space of fields ensures that we can express the BRST field space
as a L∞-algebra.
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2. Mathematical prerequisites
Higher gauge theory has many mathematical facets and can be viewed via differ-
ent mathematical formulations. In this section we will introduce the mathemati-
cal apparatus that will allow us to view the theory in a crossed-module formalism
and from a point of view of L∞-algebras. The former one is a special case of
a much higher and more abstract formalism of much more abstract and elegant
categorified groups and the theory of the nonabelian gerbes - see for example
(Aschieri et al., 2004). However to give a proper introduction to these concepts,
this thesis would have to be made into a book. In order to keep the thesis within
reasonable bounds, we have instead decided to show, that these crossed modules
are in fact in an one-to-one correspondence to L∞-algebra generated strictly in
degrees 1 and 2. In the next chapter we will then apply the L∞-algebra for-
malism to a special case of homotopy Maurer-Cartan action and show that the
results obtained in the formalism of categorified groups can be obtained also in
the L∞-algebra.

2.1 Category theory
Category theory is a very abstract part of mathematics, even to such an extent
that the mathematicians pursuing categories have an endearing term ’abstract
nonsense’ for many of its parts. It abstracts the notion of relationships between
objects as arrows and studies the properties such arrows and relationships between
arrows and relationships between relationships between arrows, and so on . . . have.
Here we will only provide a very brief and very incomplete review of the parts
of category theory needed to attempt to understand the higher gauge theories.
An interested reader can find much more complete surveys of this wonderful part
of mathematics in e.g. (Mac Lane, 2013) for general introduction to the subject
and in (Cisinski, 2019) for an introduction of higher categories in the context of
homotopical algebras.

Definition 1. A category C consists of:

• a collection of objects: Ob(C)

• for each X, Y ∈ Ob(C) a set of arrows from X to Y, denoted C(X, Y ) or
HomC(X, Y )

• for each X, Y, Z ∈ Ob(C) and each arrow f ∈ C(X, Y ) and g ∈ C(Y, Z),
there is a composition of arrows gf ∈ C(X,Z)

• for each X ∈ Ob(C) there is an arrow 1X ∈ C(X,X) called the identity on
X

which satisfy the following two axioms:

• associativity: for each f ∈ C(W,X), g ∈ C(X, Y ) and h ∈ C(Y, Z):
(hg)f = h(gf)

• identity: for each X, Y ∈ Ob(C) and each f ∈ C(X, Y ): f1X = 1Y f = f

8



We will frequently use diagrams to visualise the concepts of category theory.
In these diagrams the arrows f ∈ C(X, Y ) will be depicted as

Y X
f
←←

so that the composition of arrows takes natural form

Z Y
f
←←

X
g

←← = Z X
fg
←←

The arrows in the category theory have many names. Ususally they are called
either arrows or morphisms and in this thesis we will use both of the terms
interchangeably. For an arrow:

Y X
f
←←

we will call X the source of f and Y the target of f .
The most natural example of category is a category of sets Set, where the

objects are sets and the morphisms are functions. We distinguish two kinds of
categories - small and large ones. The small categories are the ones for which the
set of objects and the sets of morphisms are all small, i.e. they are a real set and
not a proper class. The large categories are all the others. In this treatise we will
deal only with the small categories for simplicity.

We will also denote the set of all arrows in the category C by HomC .

Definition 2. A category where each arrow f has an inverse arrow f−1, such
that ff−1 = f−1f = 1 is called a groupoid.

The simplest but by no means only example of a groupoid is a group. If we
take a groupoid with a single object X, we can take the arrows f, g ∈ C(X,X)
as the elements of the group with a group multiplication being the composition
of the arrows fg ∼ f · g. With the association law and the identity element we
will recover all the group axioms.

To make the concept of categories useful we should add some maps between
the categories. These maps will respect the identity arrows and composition of
arrows in categories and will be called functors.

Definition 3. A functor F from a category C into category C ′ consists of

• a map between objects Ob(C) and Ob(C ′) of the categories:

F :Ob(C) → Ob(C ′)
X ↦→ F (X)

• a map which associates an arrow F (f) ∈ HomC′ to each arrow in f ∈
HomC so that:

◦ for all f ∈ C(A,B) and g ∈ C(B,C) F (gf) = F (g)F (f) for a covariant
functor and F (gf) = F (f)F (g) for a contravariant one.

◦ for all X ∈ Ob(C) F (1X) = 1F (X)
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A functor will be a very important part of discussion, since we can express
many objects as functors from one category to another, with the categories en-
coding the properties of the object. Unless explicitly specified, we will always
presume a functor to be a covariant one.

An example of a functor could be a functor from a group G to Set, which
encodes the action of a group on a particular set.

We can view a category as a set endowed with composable maps between
the elements of the set. We could take the concept further and add composable
maps between the morphisms in the category. If we require that all possible
compositions define unambiguous morphisms, we end up with a 2-category.

Definition 4. A strict 2-category C consists of

• a collection of objects Ob(C) also called 0-cells

• for all objects X, Y in Ob(C) a set of morphisms C(X,Y) also called 1-cells,
the elements of which f ∈ C(X, Y ) we will visualise as

Y X

f

↙↙

• for any pair of morphisms f, g in C(X, Y ) a set of 2-morphisms - arrows be-
tween the morphisms, also called 2-cells which we will label by Greek letters
and we will visualise each 2-cell α : f ⇒ g as

Y X

g

↖↖

f

↙↙
α↓↓

• for any pair of 0-cells f ∈ C(X, Y ) and g ∈ C(Y, Z) a composition fg ∈
C(X,Z)

Z Y

f

↙↙
X

g

↙↙ = Z X

fg

↙↙

• for any triplet of 0-cells f, g, h ∈ C(X, Y ) and any pair of 2-cells α : f ⇒ g
and β : g ⇒ h a vertical composition β · α:

Y X

f

↙↙ g←←

h

↖↖

α
↓↓

β
↓↓

= Y X

f

↙↙

h

↖↖ β·α
↓↓

• for any quadruplet of 0-cells f, f ′ ∈ C(X, Y ) and g, g′ ∈ C(Y, Z) and any
pair of 2-cells α : f ⇒ f ′ and β : g ⇒ g′ a horizontal composition β ◦ α :
gf ⇒ g′f ′:

Z Y

g

↙↙

g′

↖↖ β↓↓ X

f

↙↙

f ′

↖↖ α↓↓ = Z X

gf

↙↙

g′f ′

↖↖ β◦α
↓↓
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• for any 0-cell X ∈ Ob(C) an identity 1-cell 1X ∈ C(X,X) acting as identity
for composition of 1-cells

• for any identity 1-cell 1X ∈ C(X,X) an identity 2-cell 11X
acting as iden-

tity in horizontal composition of 2-cells

• for any identity 1-cell f ∈ C(X, Y ) an identity 2-cell 1f acting as identity
in vertical composition of 2-cells

with the compositions satisfying the interchange law:

• for any quadruple of 2-cells we require (α · α′) ◦ (β · β′) = (α ◦ β) · (α′ ◦ β′)

We will again use the terms 1-cell and morphism and 2-cell and 2-morphism
interchangeably. We will adopt the notation from the simple categories and for
a 2-cell:

Y X

g

↖↖

f

↙↙
α↓↓

we will call f the source of α and g the target of α.
This definition may seem a bit long-winded, but all it says is that all the

possible map compositions are unique and that for each type of composition there
exists a identity element.We can also view the set of morphisms in the definition as
a category itself with 2-morphisms as morphisms, with vertical composition being
composition of morphisms and endowed with a functor of horizontal composition
◦ : C(B,C) × C(A,B) → C(A,C).

In a similar fashion we could create the n-categories, which have morphisms,
2-morphisms, . . . , up to n-morphisms, with all the compositions unique and with
identities with respect to every composition.

As an example of a 2-category we will use the familiar groupoid. First we will
define it and then we will show its properties

Definition 5. A 2-groupoid is a 2-category such that

• for each 1-cell f ∈ C(X, Y ) there is an inverse 1-cell f−1 such that ff−1 =
1Y and f−1f = 1X

• for each 2-cell α : f ⇒ g there is a vertical inverse 2-cell α−1
vert such that

α · α−1
vert = 1g and α−1

vert · α = 1f

From the interchange law and the two conditions in definition 5 we may infer
that every 2-cell α : f ⇒ g with f ∈ C(X, Y ) also has a horizontal inverse α−1

hor

such that α−1
hor ◦ α = 11X

and α ◦ α−1
hor = 11X

.
An example of 2-groupoid is a 2-group, a 2-groupoid with one object. We will

later prove that this 2-group is in fact equivalent to a crossed module. We will
however first have to define both of them.

On this example we can see a general method of creating higher structures
- we take an ordinary object, we define it in terms of a category and then we
promote the category to a n-category and generalise the rules (e.g. existence of
an inverse morphism) that defined the object. However the example we have
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shown is not the most elegant way to express the higher algebraical structures,
since in this form we still retain the strict equalities from the definition of a
group. A much more elegant way is to define the higher structures via a so called
’vertical categorification’, where we allow the aforementioned equalities to hold
only up to isomorphism. Using the vertical categorification on our example of
groups would lead to so-called ’weak groups’. Unfortunately the mathematical
formalism behind the vertical categorification is out of the scope of this thesis, so
we will refer an interested reader to a more complete literature, for example this
article (Baez and Lauda, 2003).

2.2 Crossed modules
Crossed modules were first introduced by J. H. C. Whitehead (Whitehead, 1946)
in the context of homotopy theory. It soon became apparent that they are a very
helpful tool even outside the scope of homotopy theory. In 1976 R. Brown and C.
B. Spencer (Brown and Spencer, 1976) proved that they are in fact equivalent to
2-groups as we will show here. We will use the crossed modules in the following
chapter in a description of BF theory.

Definition 6. A crossed module (G,H, t, α) consists of

• two groups - G and H

• an action of G on H, which is an automorphism1:

α : G → Aut(H)

• a group homomorphism t : H → G satisfying

◦ (equivariance with respect to conjugation): for each g ∈ G and each
h ∈ H we have t(α(g)(h)) = gt(h)g−1

◦ (Peiffer identity) for each h, h′ ∈ H we have α(t(h))h′ = hh′h−1

The most simple example of a crossed module is a group G with a normal
subgroup N, with the maps t being the inclusion

t := i : N → G

and α being an action of the group elements of G on the elements of N.
Let us show that that the crossed modules are equivalent to 2-groups, that

is - we can reproduce the structure of a 2-group from a structure of a crossed
module and vice versa.

Let us first see that each 2-group G can encode a crossed module.
Since each arrow in a 2-groupoid has an inverse arrow, the set of 1-cells HomG

is clearly a group, with a group operation being the composition of 1-cells f, f ′ ∈
HomG. Since the 2-group has only one element, we will now depict it as a dot •:

• •
f
←← •

f ′
←← = • •

ff ′
←←

1An automorphism of a group is a bijective homomorphism of a group with itself.
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We can thus identify the set HomG with the group G from a definition 6.
As the group H from the definition 6 we will take the 2-cells with the source

being the identity 1•:

• •

1•

↙↙

t(η)

↖↖ η
↓↓

As a group operation we will use the horizontal composition of the 2-cells:

• •

1•

↙↙

t(η◦η′)

↖↖ ηη′
↓↓

= • •
1•

↙↙

t(η)

↖↖ η
↓↓ •

1•

↙↙

t(η′)

↖↖ η′
↓↓

This, together with the existence of a horizontal inverse η−1
hor makes H into a

group.
As the group homomorphism we will take a mapping that assigns to each

2-cell η its target:

• •

1•

↙↙

t(η)

↖↖ η
↓↓

From the horizontal composition law, we can see that t : H → G is in fact a
group homomorphism:

t(ηη′) = t(η)t(η′). (2.1)
As the action α from the definition 6 we take a horizontal conjugation of

elements η ∈ H by identity 2-cells 1g:

α(g)(η) = 1g ◦ η ◦ 1g−1 (2.2)

This maps each η with a target t(η) to α(g)(η) with a target gt(η)g−1:

α(g) : • •

1•

↙↙

t(η)

↖↖ η
↓↓

↦−→ • •
g

↙↙

g

↖↖ 1g↓↓ •
1•

↙↙

t(η)

↖↖ η
↓↓ •

g−1

↙↙

g−1

↖↖ 1g−1
↓↓

It follows trivially that the horizontal conjugation is in fact a group homo-
morphism

α(gg′) = α(g)α(g′). (2.3)
Since for each pair η, η′ ∈ H there is an element η′′ = η ◦ η′−1

vert such that

η = η′′η′

we find that this action is onto.
Using the equation (2.3) with g′ = g−1, we find that

α(g)(η) = α(g)(η′) ⇒ η = η′

so the action is also one-to-one and thus an automorphism of H.

13



From the diagram

• •
g

↙↙

g

↖↖ 1g↓↓ •
1•

↙↙

t(η)

↖↖ η
↓↓ •

g−1

↙↙

g−1

↖↖ 1−1
g↓↓ = • •

1
↙↙

t(α(g)(η))

↖↖ α(g)(η)↓↓

we can infer that the group homomorphism t : H → G is equivariant with respect
to the action α.

The last step is showing that the group homomorphism t and the action α
satisfy the Peiffer identity. We prove this by taking η ◦ η′ ◦ η−1

hor for any η, η′ ∈ H:

• •

1•

↙↙

t(η)

↖↖ η
↓↓

•

1•

↙↙

t(η′)

↖↖ η′
↓↓

•

1•

↙↙

t(η−1)

↖↖ η−1
hor↓↓

we can decompose each η as 11• · η:

• •

1•

↙↙ t(η)←←

t(η)

↖↖

η

↓↓

1t(η)
↓↓

thus getting

• •

1•

↙↙ t(η)←←

t(η)

↖↖

η

↓↓

1t(η)
↓↓

•

1•

↙↙ 1•←←

t(η)

↖↖

11•
↓↓

η

↓↓

•

1•

↙↙ t(η−1)←←

t(η−1)

↖↖

η−1

↓↓

1t(η−1)
↓↓

Using the interchange law, we can first compose the 2-cells horizontally getting:

• •

1•

↙↙ 1•←←

t(ηη′η−1)

↖↖

11•

↓↓

α(t(η))(η′)
↓↓

Which shows that the Peiffer identity

α(t(η))η′ = ηη′η−1
hor (2.4)

holds. We have thus shown that each 2-group encodes a crossed module.
With this framework in place it is much easier to show that each crossed

module encodes a 2-group G. We take a single-object 2-category and identify the
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morphisms of the 2-group G with the elements of the group G. From the group
structure of G we see that the composition of the morphisms is associative and
unital and that there is an inverse morphism for each morphism present. Next
we identify the pairs (g, h) ∈ G×H with 2-morphisms η(g, h). Each 2-morphism
is then defined as

η(g, h) : g ↦→ t(h)g (2.5)
We may also view each 2-morphism as a pair of 2-morphisms:

• •
1•

↙↙

t(h)

↖↖ h↓↓ •
g

↙↙

g

↖↖ 1g↓↓

Vertical composition of η(g, h) and η(g′, h′) is then given by:

η(g, h) · η(g′, h′) = η(g′, hh′). (2.6)

From the group properties of H it follows that the vertical composition is
unital and associative.

We can infer the horizontal composition from the following diagrams using
the Peiffer identity:

• •

1•

↙↙

t(h)

↖↖ h↓↓ •

g

↙↙

g

↖↖ 1g↓↓ •

1•

↙↙

t(h′)

↖↖ h′
↓↓ •

g′

↙↙

g′

↖↖ 1g′
↓↓

= • •

1•

↙↙

t(h)

↖↖ h↓↓ •

g

↙↙

g

↖↖ 1g↓↓ •

1•

↙↙

t(h′)

↖↖ h′
↓↓ •

g−1

↙↙

g−1

↖↖ 1g−1
↓↓ •

g

↙↙

g

↖↖ 1g↓↓ •

g′

↙↙

g′

↖↖ 1g′
↓↓

= • •

1•

↙↙

t(h)

↖↖ h↓↓ •

1•

↙↙

t(α(g)(h′))

↖↖ α(g)(h′)↓↓ •

gg′

↙↙

gg′

↖↖ 1gg′
↓↓

= • •

1•

↙↙

t(hα(g)(h′))

↖↖ hα(g)(h′)
↓↓

•

gg′

↙↙

gg′

↖↖ 1gg′
↓↓

The horizontal composition of η(g, h) and η(g′, h′) is then given by:

η(g, h) ◦ η(g′, h′) = η(gg′, hα(g)(h′)) (2.7)

From the group properties of G and H we again see that the horizontal composi-
tion is unital and associative. We have thus shown that there is a crossed module
encoded in every 2-group and vice versa.

Having shown that the cross modules and 2-groups are equivalent, we can
now use cross modules to define Lie 2-groups.
Definition 7. A Lie 2-group is a 2-group G with the associated cross-module
(G,H, t, α), where the groups G and H are Lie groups and the maps t : H → G
and α : G → Aut(H) are smooth.
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2.3 L∞-algebras
The history of L∞-algebras is closely tied up with the study of structure of BRST
complex. They were first introduced in 1992 by B Zwiebach in (Zwiebach, 1993).
The L∞-algebras present a structure that generalises the Lie algebras - they
are in fact ∞-categorifications of Lie algebra. In this section we will introduce
the mathematical tools necessary to express these algebras through differential
Z-graded vector spaces. We will also show how the Q-manifold encode such a L∞-
algebra. First we will however have to introduce sheaves and differential graded
vector spaces.

2.3.1 Sheaves
We fist define sheaves. These can be defined either via étale bundles or via
functors. We will use the definition via functors as it is much more flexible and
it shows the previously mentioned concepts of category theory.

Definition 8. Let X be a topological space. A presheaf F on X is a functor with
values in a category C given by the following:

1. for each open subset U ∈ X there is an object F (U) in C

2. for each inclusion of open sets V ⊂ U there is a morphism resV,U : F (U) →
F (V ) in C called a restriction morphism such that

(a) for all open subsets U of X resU,U is the identity 1U

(b) for all open subsets W,V, U of X, such that W ⊂ V ⊂ U we have

resW,V ◦ resV,U = resW,U

For an object s ∈ F (U) define the restriction in C to an open subset V ⊂ X
as s|V := resV,U(s).

We can also define presheaf much more elegantly by defining fist the category
of open sets on X to be the posetal2 category O(X) with

• objects are open sets of X

• morphisms are inclusions

With such a definition a C-valued presheaf is the contravariant functor from O(X)
to C. This definition is much more elegant, however it obscures the substance of
presheafs, contained in the restriction maps.

Definition 9. A sheaf S is a presheaf with values in the category of sets satisfying:

1. (Locality:) If (Ui)i∈I is an open covering of an open subset U ⊂ X and if
s, t ∈ F (U) are such that:

s|Ui
= t|Ui

for all i ∈ I then s = t.
2A posetal category P is a category in which for each pair of objects X, Y ∈ Ob(P ) the set

of homomorphisms P (X, Y ) contains at most one element.
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2. (Gluing:) If (Ui)i∈I is an open covering of an open subset U ⊂ X and if for
each i ∈ I we have a section si ∈ F (Ui) such that for each pair i, j

si|Ui∩Uj
= sj|Ui∩Uj

then there exists a section s ∈ F (U) called a gluing such that

s|Ui
= si

A presheaf satisfying only the first condition is called a separated presheaf or
a monopresheaf.

A typical example of a sheaf is the set of smooth functions C∞(X) from
a topological space X to real numbers with a restriction map being a literal
restriction of functions. If we take a Ck-manifold M then the sheaf of k-times
differentiable functions OM is called a structure sheaf of the manifold.

2.3.2 Graded vector spaces and graded differential alge-
bras

Another piece of the L∞-algebra puzzle are the graded vector spaces. These vector
spaces introduce an additional structure in a form of grading - the possibility of
decomposing the vector space into a direct sum of smaller vector spaces. This
additional structure allows us to introduce graded commutative product along
with graded Poisson structure and thus provides us with an elegant way of for
example including fermionic operators in mathematical formalism of the quantum
field theory.

Graded vector fields are of great use in beyond the standard model theories,
such as supersymmetry, where a Z2-graded vector space is used to describe the
physical space (Gates Jr et al., 2001).

Definition 10. Let us have a collection of real vector spaces (Vi)i∈Z.

• A Z-graded vector space is a direct sum V = ⨁
k∈Z Vk.

• A non-zero element v ∈ V which belongs to a single vector space Vi is said
to be homogeneous of degree i.

• A graded basis (vi)i is a sequence of elements of V such that every subse-
quence (vij

)j∈Z of all elements of degree k is a basis of Vk

• We define a map
|.| : V → Z

assigning degree i to a homogeneous element vi ∈ Vi.

• We define a degree shift by l ∈ Z as

V [l] =
⨁
k∈Z

(V [l])k where (V [l])k := Vk+l (2.8)

Note that this means that if the only non-trivial part of V was Vk for some
k ∈ Z, then the degree-shifted space V [l] will consist only of vectors of degree
k − l, since only V [l]k−l = Vk is non-trivial.
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• Given two Z-graded vector spaces V and W , their direct sum V ⊕ W is
defined with

(V ⊕W )k = (Vi ⊕Wi)

• Given two Z-graded vector spaces V and W , their tensor product V ⊗W is
defined with

(V ⊗W )k =
⨁
l∈Z

(Vl ⊗Wk−l)

• Given two Z-graded vector spaces V and W , we say that a map f : V → W
is homogeneous of degree k ∈ Z if f(Vi) ⊂ Wi+k. We denote the degree of a
map f by |f |.

• A morphism of Z-graded vector spaces is a linear map of degree 0.

In this thesis we will consider only finite Z-graded vector spaces, for which
dimVi < ∞ for all i ∈ Z.

A typical example of a Z-graded vector space is a space of polynomials, with
the homogeneous elements of degree consisting of homogeneous polynomials. We
will also see in the next chapter, that the space of fields in the BRST formalism
is naturally expressed as a graded vector field, with the ghost number having the
meaning of degree of homogeneous element.

Definition 11. A graded commutative algebra A is a Z-graded vector space that
is also an associative unital commutative algebra with the product A × A → A
being graded commutative, that is for all a1, a2 ∈ A homogeneous we have

a1a2 = (−1)|a1||a2|a2a1 (2.9)

An example of a graded commutative algebra is a space of differential forms
on a manifold X: Ω•(X) endowed with an exterior product ∧.

We can also identify the space Ω•(X) with the space C∞(T [1]X), the space of
smooth functions from the tangent bundle of X shifted by 1. We can thus identify
the forms dxα with the coordinate functions ξα on the shifted vector bundle. ‘

Definition 12. A differential graded commutative algebra (A, d) is a graded
commutative algebra endowed with a derivation d - a set of differential derivations
dk : Ak → Ak+1 of homogeneous degree 1. These derivations satisfy

dk+1 ◦ dk = 0 (2.10)

and the obey the graded Leibniz rule

d(a1a2) = (da1)a2 + (−1)|a1|a1(da2) (2.11)

for all a1, a2 ∈ A with a1 being homogeneous of degree |a1|.

Proceeding with our previous example, the graded commutative algebra of
differential forms on a manifold X can be endowed with an exterior derivative d,
making Ω•(X) into a differential graded commutative algebra. Using the notation
from previous example, the space C∞(T [1]X) can be endowed with a differential
structure as well by introducing the vector field Q = ξα ∂

∂ξα .
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Definition 13. A morphism f : (A, d) → (A′, d′) between two differential graded
algebras (A, d) and (A′, d′) is a collection of maps fk : Ak → A′

k with k ∈ Z of
degree 0 which for all k ∈ Z satisfy

f ◦ d = d ◦ f (2.12)

Definition 14. An isomorphism f : (A, d) → (A′, d′) is an invertible morphism
between two differential graded algebras (A, d) and (A′, d′).

Given a graded vector space V , we define the real tensor algebra of V, denoted
as T (V ) or ⨂• V as ⨂•V := R ⊕ V ⊕ (V ⊗ V ) ⊕ · · · (2.13)

We can define the totally graded symmetric subalgebra of ⨂• V as⨀•V := R ⊕ V ⊕ (V ⊙ V ) ⊕ · · · (2.14)

and totally graded antisymmetric subalgebra⋀•V := R ⊕ V ⊕ (V ∧ V ) ⊕ · · · (2.15)

In this setting for a graded-symmetric vector a1 ⊙ a2 ∈ V ⊙ V we have

a1 ⊙ a2 = (−1)|a1||a2|a2 ⊙ a1 (2.16)

We will denote the k-fold totally symmetric product of the graded vector space
as ⨀kV (2.17)
and similarly for k-fold totally antisymmetric product and k-fold tensor product.

Definition 15. We define the symmetric and antisymmetric Koszul signs of a
permutation σ ϵ(σ; v1, . . . , vi) and χ(σ; v1, . . . , vi) by equations

v1 ⊙ · · · ⊙ vi = ϵ(σ; v1, . . . , vi)vσ(1) ⊙ · · · ⊙ vσ(i) (2.18)

and
v1 ∧ . . . ∧ vi = χ(σ; v1, . . . , vi)vσ(1) ∧ . . . ∧ vσ(i) (2.19)

for all vj in a graded vector space V.

2.3.3 Z-graded manifolds
We still need to give a few more definitions, before we construct the Z-graded
manifold. First we need to give a definition of ideal and the local ringed space.

Definition 16. For a ring (R,+, ·) let (R,+) be its additive group.

• A subset I is called a left ideal if:

– (I, +) is a subgroup of (R,+)
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– for all r ∈ R and all x ∈ I: rx ∈ I

• A right ideal I is defined analogously with all x ∈ I and r ∈ R satisfying
xr ∈ I. A two-sided ideal is a left ideal that is also a right ideal.

• A unit ideal of a ring R is an ideal consisting the whole ring R.

• A proper ideal is an ideal I of R such that I is not a unit ideal.

• A maximal ideal of a ring (R,+, ·) is a proper ideal I for which there is no
other J such that I ⊂ J .

Definition 17. A ringed space M is a pair (|M |,SM) where |M | is a topological
space and SM is a sheaf of rings on |M | called the structure sheaf of M .

Definition 18. A locally ringed space is a ringed space (|M |,SM), such that all
stalks3 of SM have unique maximal ideals.

Definition 19. A Z-graded ringed space M is a ringed space for which the struc-
ture sheaf SM is also a associative unital graded-commutative Z-graded ring.

Definition 20. A morphism of Z-graded ringed spaces f : (|M |, A) → (|N |, B)
is a pair of mappings (|f |, f ∗), where

• |f | : |M | → |N | is a morphism of topological spaces

• f ∗ : A → B is a collection of morphisms (fV )V ⊂|N | fV : B(V ) → A(f−1(V ))

A morphism of Z-graded local ringed spaces f : (|M |, A) → (|N |, B) is a mor-
phism for which the comorphism f ∗ preserves the maximal ideals

Definition 21. Let (|M |, A) and (|N |, B) be graded locally ringed spaces. We
say that these spaces are locally isomorphic, if for each point x ∈ |M | there is an
open neighbourhood U ⊂ |M | and an open set V ⊂ |N | such that there exists an
isomorphism of graded locally ringed spaces fV : (U,A|U) → (V,B|V ).

We can now finally define a Z-graded manifold.

Definition 22. A real Z-graded manifold is a ringed space M = (|M |,SM) where
|M | is a real topological manifold, such that for each point x ∈ |M | there is an
open neighbourhood U ⊂ |M | of x and an open set U ′ ⊂ Rn, and VU ′ a locally
free Z-graded sheaf of C∞

U ′ modules on U ′45, such that

(U,SM |U) ∼= (U ′,
⨀•V∗

U ′ ⊗ C∞
U ′). (2.20)

3We will not define stalks here, since their construction requires direct limits, which are very
abstract and would add nothing of value to this thesis. An intuitive notion of stalks is that they
are the contents of sheaf when restricted to a single point x of the underlying topological space
X. We construct them as limit of restrictions to a sequence of neighbourhoods of the point x
with each successive neighbourhood being contained in the previous one.

4 Once again, we will not define a locally free sheaf, since the details are not very illuminating
to the mater at hand. We can intuitively visualise it as a direct sum of structure sheafs
mentioned under the definition 9.

5 C∞
U ′ module is a module of C∞ functions from U ′ to real numbers, in our case with added

gradation.
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We will denote the set of Z-graded functions from the definition as

C∞(U) := ⨀•V∗
U ′ ⊗ C∞

U ′ (2.21)

With this definition we see that the sheaf SM looks locally as a set of smooth
graded functions from the neighbourhood U to real numbers. If we set U ′ = Rn

and take a set of generators ξα of⨀•V∗
U ′ , we can express the elements f of C∞(Rn)

formally as infinite polynomials in the generators ξα with the smooth functions
f0, fα, fαβ, . . . ∈ C∞(Rn) as coefficients:

f(x, ξ) = f0(x) + ξαfα(x) + 1
2!ξ

αξβfαβ(x) + · · · (2.22)

We can thus formally decompose the set C∞(U) as

C∞(U) ∼=
⨁
k∈Z

C∞
k (M). (2.23)

into a direct sum of homogeneous functions of degree k.

2.3.4 Vector fields on differential manifolds
With the definition of a Z-graded manifold in place, we can construct vector fields
on them. The vector fields on a graded manifold are defined analogously to vector
fields on ordinary manifolds - we define them through as maps from the set of
functions C∞(M) on the graded manifold M satisfying a version of Leibniz’s law.
We however add the graded structure to it and we thus end up with the graded
Leibniz law.
Definition 23. A vector field Xk

V on a Z-graded manifold of degree k is a graded
derivation Xk

V : C∞(M) → C∞(M), such that for all f, g ∈ C∞(M) homoge-
neous, the graded Leibniz law holds:

Xk
V (fg) = Xk

V (f)g + (−1)k|f |fXk
V (g) (2.24)

We shall write V ecM for the set of all vector fields on a Z-graded manifold M .
As a simple example of a graded vector field, we have the Euler vector field

Υ which is defined for any homogeneous f ∈ C∞(M) as

Υf = |f |f. (2.25)
The Euler vector field is a homogeneous vector field of degree 0.
Definition 24. A homological vector field V ∈ V ecM is a vector field of degree
+1, which commutes with itself under the graded commutator

[Q,Q] = 2Q2 = 0 (2.26)

Definition 25. A Q-manifold is a Z-graded manifold M endowed with a with a
homological vector field Q.

As an example take Z-graded manifold G concentrated in degree 1, that is Z-
graded manifold obtained by shifting an ordinary vector space g by -1: G = g[1].
Let ξα be the coordinates on the

If we enhance the Z-graded manifolds with a homological vector field Q and
add an additional symplectic structure, we also get for a manifold with degree
k ̸= −1 the vector field Q is Hamiltonian.
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2.3.5 L∞-algebras
We have finally enough data to define the L∞-algebras and to show how they
relate to the Q-manifolds.

Definition 26. A L∞-algebra consists of

• a Z-graded vector space L

• for each positive integer n a multilinear totally graded antisymmetric map

µn : L× · · · × L → L (2.27)

of homogeneous degree 2 − n which satisfies the higher Jacobi identities:∑
j+k=i

∑
σ∈Sh(j;i)

χ(σ; ℓ1, . . . , ℓi)(−1)kµk+1(µj(ℓσ(1), . . . , ℓσ(j)), ℓσ(j+1), . . . , ℓσ(i)) = 0

(2.28)
where χ(σ; ℓ1, . . . , ℓi) is the graded Koszul sign defined in 2.19 and Sh is the set of
all (j; i) shuffles σ - that is premutations σ of {1, . . . , i} such that the first j and
the last (i− j) images are ordered: σ(1) < · · · < σ(j) and σ(j+ 1) < · · · < σ(i).

The higher Jacobi identities provide us with a generalisation of Jacobi identi-
ties. Setting i = 1, we get

µ1(µ1(ℓ)) = 0 (2.29)
and setting i = 2 we get

µ1(µ2(ℓ1, ℓ2)) = µ2(µ1(ℓ1), ℓ2) + (−1)|ℓ1|µ2(ℓ1, µ1(ℓ2)) (2.30)

telling us that µ1 is a differential respecting the product µ2.
For i = 3 we get a higher Jacobi identity:

−µ1(µ3(ℓ1, ℓ2, ℓ3) =µ2(µ2(ℓ1, ℓ2), ℓ3) + (−1)|ℓ1|(|ℓ2|+|ℓ3|)µ2(µ2(ℓ2, ℓ3), ℓ1)
+ (−1)|ℓ2|(|ℓ1|+|ℓ3|)µ2(µ2(ℓ1, ℓ3), ℓ2)

(2.31)

we see that if we set µi = 0 for i ≥ 3 we recover a Lie algebra. Thus the
L∞-algebra is a generalisation of a Lie algebra.

The L∞-algebras are connected in a way to Q-manifolds. To see this we take
the Q-manifold concentrated in degrees 1, . . . , n. Such a Q-manifold necessarily
has the form L[1] with L = ⨁0

k=−n Lk being a graded vector space. Let us have ξα

as the local coordinates of the degree |ξα|. The most general homological vector
field Q can be obtained in the form

Q =
n∑

i=1

(−1) 1
2 i(i+1)

i! ξα1 · · · ξαif β
α1,···αi

∂

∂ξβ
(2.32)

where f β
α1,···αi

are constants.
If we now take the basis τα of L with the homogeneous degree |τα| = 1 − |ξα|,

we may define the higher product in terms of the constants f β
α1,···αi

:

µi(τα1 , . . . , ταi
) := f β

α1,···αi
τβ (2.33)

As has been shown in (Jurčo et al., 2019b), the condition Q2 then implies that
the higher products defined in equation (2.33) satisfy the higher Jacobi identities.
We can therefore recover a L∞-algebra structure from the Q-manifolds.
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Definition 27. A L∞-algebra endowed with a graded symmetric non-degenerate
bilinear pairing

⟨−,−⟩L : L× L → R (2.34)

which for all i ∈ N for al homogeneous ℓ1, . . . , ℓi+1 ∈ L satisfies

⟨ℓ1, µi(ℓ2, . . . , ℓi+1)⟩L = (−1)i+i(|ℓ1|L+|ℓi+1|L)+|ℓi+1|L
∑i

j=1 |ℓj |L⟨ℓi+1, µi(ℓ1, . . . , ℓi)⟩L

(2.35)
is called a cyclic L∞-algebra.

For a future reference we note that the L∞-algebra (L, µ) can form a ten-
sor product with a commutative differential graded algebra (A, d), so that the
product is a L∞-algebra. To form this tensor product we define

L̂ =
⨁
k∈Z

(A⊗ L)k where (A⊗ L)k =
⨁

i+j=k

Ai ⊗ Lk. (2.36)

For a homogeneous element a⊗ ℓ of L̂ we thus have

|a⊗ ℓ|L̂ = |a|A + |ℓ|L (2.37)

We define the higher product µ̂ on L̂ as

µ̂1(a1 ⊗ ℓ1) := da1 ⊗ ℓ1 + (−1)|a1|Aa1 ⊗ µ1(ℓ1) , (2.38)

µ̂(a1 ⊗ ℓ1, . . . , ai ⊗ ℓi) := (−1)i
∑i

j=1 |aj |A+
∑i

j=2 |aj |A
∑j−1

k=1 |ℓk|L × (2.39)
× (a1 · · · ai) ⊗ µi(ℓ1, . . . , ℓi) (2.40)
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3. Higher gauge theories
In the previous chapters we have shortly revised the physical and mathematical
background of the higher gauge theories. In this chapter we will put all the tools
we have introduced to work and show, how the higher gauge theories rise from
the formalism. In particular we will shortly revise the Maurer Cartan theory and
show how it connects with the physical content of quantum field theories.

3.1 Maurer-Cartan Theory
In the first chapter we have revised the BRST formalism. In the process we have
introduced a new fermionic BRST charge QBRST , defined in terms of the BRST
symmetry

δθΨ = i[θQ,Ψ] = iθ[Q,Ψ]∓ (3.1)

This operator has a ghost number +1 and satisfies

Q2 = 0 (3.2)

It thus closely resembles the homological vector field Q from the previous chapter
and if we identified the underlying structure of fields with a Z-graded manifold,
we could use the formalism developed in the previous chapter to express the gauge
symmetries of the theory in L∞-algebras.

This can easily be done - if we take a look at the (anti-)commutation relations
between the fields and the BRST operator and fact, that only the ghost fields
have a non-zero ghost number, we can assign a ghost number 0 to the bosonic
gauge fields, a ghost number 1 to the fermionic ghost fields, ghost number 2 to
the bosonic ghosts of ghosts, that arise from the symmetries of ghosts and so on.

To identify the physical relationships with their mathematical counterparts
we use the equations for Q in the contracted form:

Qa = −
∑
l≥1

1
l!µ(a, . . . , a) (3.3)

in this form the fields a have to have the homogeneous degree |a|L∞ + |a|gh = +1,
where |a|gh is the ghost degree and |a|L∞ is the L∞degree of the field. We can
thus identify the L∞ degree as |a|L∞ = 1 − |a|gh. Therefore the gauge fields have
the L∞ degree equal 0, the ghost fields to -1 and so on.

Since we have identified the BRST field space along with the BRST operator
with the L∞-algebra, we can now express the theory of gauge transformation in
the framework, which is natural to the L∞-algebras. This framework is called the
Homotopy Maurer-Cartan Theory.

As we have seen before, we can identify the gauge potential a as an element
with the L∞degree +1. We also define the gauge transformations as

δc0a =
∑
l≥0

1
l!µl+1(a, . . . , a, c0) (3.4)
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We can similarly define the higher gauge transformations as

δc−k−1c−k =
∑
l≥0

1
l!µl+1(a, . . . , a, c−k−1) (3.5)

We will further define the curvature f ∈ L2 as

f :=
∑
l≥1

1
l!µl(a, . . . , a) (3.6)

Using the higher Jacobi identities we find that the curvature satisfies the
Bianchi identity ∑

l≥0

1
l!µl+1(a, . . . , a, f) (3.7)

From (3.4) we see that the gauge transformations of the curvature are of form

δc0f =
∑
k≥0

1
k!µk+2(a, . . . , a, f, c0) (3.8)

and using the higher Jacobi identities once again we see that

[δc0 , δc′
0
]a = a

∑
l≥0

1
l!µi+2(a, . . . , a, c0, c

′
0) +

∑
l≥0

1
l!µl+3(a, . . . , a, f, c0, c

′
0) (3.9)

We thus see that the equations close only if

f = 0 (3.10)

We will call the gauge potentials satisfying the equation

f :=
∑
l≥1

1
l!µl(a, . . . , a) = 0 (3.11)

the Maurer-Cartan elements.
The equations of motion f = 0 can serve as a constraint for finding the action

functional that determines the content of the theory. We will without any further
deductions give the Maurer-Cartan action for a cyclic L∞-algebra and

SMC :=
∑
l≥1

1
(l + 1)!⟨a, µl(a, . . . , a)⟩ (3.12)

3.1.1 Comparison of Maurer-Cartan and BF theories
In their work Baez and Huerta (Baez and Huerta, 2011) have introduced the
so-called BF theory. They give the action of the theory in terms of an integral
over a 4-dimensional manifold M of a 1-form A and a 2-form B

SBF (A,B) =
∫

M
tr(B ∧ F ) (3.13)

where F = dA + A ∧ A is a curvature. Baez and Huerta then give an intuitive
argument, that the theory is described in terms of a crossed module (G,H, t, α)
called the tangent 2-group TG with the properties:
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• G is a Lie group

• H is a Lie algebra g of the group G

• α is the adjoint representation of G

• t is trivial

The action from equation (3.13) is fairly simple and leads to the equations of
motion

B. + [A,B] = 0 F = 0. (3.14)

Since the L∞-algebras contain as a special case of L = L0 + L−1 the algebra
of the 2-group (Jurčo et al., 2019a), we can directly compare the BF theory with
a special case of Maurer Cartan theory. In this subsection we will thus attempt
to compare the two theories - we will give an action for the case of a L∞-algebra
concentrated in degrees 0 and -1 with a higher product µ3 trivial.

The basic part of the Maurer Cartan theory is a L∞-algebra. In our thesis
we will use as an example the L∞-algebra to be a tensor product of the de Rham
complex (Ω•(X), d

∫
) of forms on a 4-dimensional manifold X without boundary

and a finite-dimensional cyclic L∞-algebra L = L0 ⊕ L−1.
First let us take a homogeneous field of degree +1 as our gauge field. Since we

take the L∞-algebra to be a product of the de Rham complex and a L∞algebra
L = L0 ⊕ L−1, we can decompose the field into fields A ∈ Ω1(M,L0) and B ∈
Ω2(M,L−1) as shown in equation (2.36). We thus have

a = A+B (3.15)

In order to write the action we will first express the higher products of a with
itself. Using the equation (2.38), we can express µ1(a) as

µ̂1(a) = µ̂1(A+B) = −µ1(A) + dA+ µ1(B) + dB (3.16)

Since the L degree of µ1 is +1,the field A has the L-degree 0 and the L∞-algebra
has no homogeneous part L+1 it is necessarily µ1(A) = 0 and thus

µ̂1(a) = dA+ µ1(B) + dB (3.17)

Using the same rationale we find that for µ2 with L degree 0 we have µ2(B,B) = 0
and for µ3 with degree −1 we have µ3(A,A,B) = µ3(A,B,B) = µ3(B,B,B) = 0.
By the same reasoning all the higher products µi with i > 3 are trivial. Using
equation (2.39) we thus have:

µ̂2(a, a) = µ2(A,A) + 2µ2(A,B) (3.18)
µ̂3(a, a, a) = −µ3(A,A,A) (3.19)

Inserting these equations into the action (3.12) we get the Maurer-Cartan
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action

SMC =
∫

X

{1
2⟨A+B, dA+ µ1(B) + dB⟩ + 1

3!⟨A+B, µ2(A,A) + 2µ2(A,B)⟩

− 1
4!⟨A+B, µ3(A,A,A)⟩

}
(3.20)

=
∫

X
⟨A, 1

2 (dA+ µ1(B) + dB) + 1
3!µ2(A,A) + 2

3!µ2(A,B) − 1
4!µ3(A,A,A)⟩

+
∫

X
⟨B, 1

2 (dA+ µ1(B)dB) + 1
3!µ2(A,A) + 2

3!µ2(A,B) − 1
4!µ3(A,A,A)⟩

(3.21)

Since we integrate over four dimensional space, all the terms with a total
degree other than 4 will vanish

SMC =
∫

X
⟨A, 1

2dB + 2
3!µ2(A,B) + 1

4!µ3(A,A,A)⟩

+
∫

X
⟨B, 1

2dA+ 1
2µ1(B) + 1

3!µ2(A,A)⟩
(3.22)

We can now use the cyclicity of the inner product on the L∞-algebra together
with anticommutativity of the forms∫

X
⟨A, 1

2dB + 2
3!µ2(A,B)⟩ = −1

2

∫
X

⟨dB,A⟩ + 2
3!

∫
X

⟨B, µ2(A,A)⟩ (3.23)

Integrating the first term on the right hand side of equation (3.23) by parts
and inserting the result into equation (3.22) be finally obtain the action

SMC =
∫

X
⟨B, dA+ 1

2µ2(A,A) + µ1(B)⟩ + 1
4!

∫
X

⟨A, µ3(A,A,A)⟩ (3.24)

We can now compare the action we received with the action of the BF theory.
First we note that, since the differential crossed modules correspond to the 2-term
L∞-algebras L = L−1⊕L0 with a higher product µ3 trivial. Setting µ3 = 0 the last
term on the right hand side (RHS) of equation (3.24) will vanish. We have also
mentioned in the beginning of this chapter, that the BF action corresponds to a
crossed module with a trivial homomorphism t. This means that the penultimate
term on the RHS of the equation 3.24 will also vanish, since the homomorphism t
corresponds to the higher product µ1. As expected, we thus get the same action
as was described by the crossed module TG.
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Conclusion
In this thesis we have given a short account of higher gauge algebras. We have
described the physical background of the theory and shown that there is a so-
called BRST symmetry, which induces a fermionic charge QBRST of ghost degree
+1. We have show that this charge is nilpotent, and thus the space of fields
endowed with the BRST charge can be interpreted as a Q-manifold.

We have then introduced the mathematical concepts necessary to describe
the higher gauge theories. We have shortly revised category theory and defined
a strict 2-category and 2-group. We have defined a crossed module and we have
shown that the crossed module and 2-group are equivalent.

We have given a short introduction to the Q-manifolds, introducing all the
necessary mathematical apparatus that is needed in order to define them.

We have defined L∞-algebras and we have shown how they correspond to the
Q-manifolds.

Then we have shortly described the Maurer-Cartan homotopy theory and
how it is introduced in terms of the BRST complex. We have shown that in
the special case of two term L∞-algebra with single non-trivial higher product µ2
and a 4-dimensional timespace we recover the BF action from the Maurer-Cartan
action. This is a clear consequence of the one-to-one correcpondence between the
aforementioned two-term L∞-algebra and the tangent 2-group TG, in terms of
which the BF theory is defined.
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