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Abstract
The literature related to Value at Risk estimation is rich in general. However,
majority of papers written on this subject concentrates on the unconditional
non-parametric or parametric approach to VaR modelling. This thesis focuses
on direct conditional VaR estimation using quantile regression. Thereby im-
posing no restrictions on the return distribution. We use daily volatility mea-
surements for individual stocks in S&P 500 index and quantile regress them on
one-day ahead returns of the entire index. Depending on the quantile selected
this estimation produces different confidence levels of Value at Risk. In order
to minimize complexity of the final model, regularization methods are applied.
To the author’s knowledge this specific methodology has not yet been applied
in any paper. The main objective is to investigate whether this approach is
able to produce sound VaR estimates comparable with different methods usu-
ally applied. Our result suggests that quantile regression extended with lasso
regularization can be used to produce sound one-day-ahead Value at Risk es-
timates.
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Abstrakt
Literatura na téma Value at Risk (hodnota v riziku) je obecně bohatá. Nicméně
většina prací napsaná na toto téma se soustředí nepodmíněné parametricé a
neparametrické modelování VaR. Tato práce se zabývá na přímé modelování
podmíněčného VaR pomocí kvantilové regrese. Tato metoda nepředjímá žádná
omezení pro rozdělení výnosů. V práci používáme výpočty denní volatility
pro všechny akcie v indexu S&P 500 a pomocí kvantilové regrese dále modelu-
jeme podmíněčný VaR pro celý burzovní index. Pro určení optimálního počtu
nezávyslých proměnných používáme metod regularizace. Autor práce si dále
neni vědom žádné podobné práce zpracované na toto konkrétní téma. Hlavní
cíl práce zpočívá ve zkoumání zdali je možné touto metodou dosáhnout us-
pokojivých VaR odhadů, které budou srovnatelné s jinými, běžně používanými,
metodami. Závěry této práce ukazují, že kvantilová regrese použitá společně s
lasso regularizací může být použitá pro výpočet jednodenního Value at Risku.
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Chapter 1

Introduction

Financial risk management is becoming one of the main domains of financial
markets. One of methods for evaluating market risk is Value at Risk (VaR).
It has gained its popularity due to its simple idea and implementation. VaR
estimation is convenient as it summarizes the potential loss over specified time
horizon in just a single number. The probability of losses exceeding this num-
ber is expressed with τ , where τ is usually set as 0.01 or 0.05. The origins of
risk measurements in form of adequate capital requirements can be traced back
to early 20th century. However, Value at Risk was not introduced to public
until 1994. Sir Dennis Weatherstone, a former chairman of J.P.Morgan, and his
team developed and publicized a system called RiskMetrics. Ultimately, the
value of proprietary VaR measures was recognized by the Basel Committee,
which authorized their use by banks for performing regulatory capital calcula-
tions (Holton 2002). Nowadays, some of VaR estimations are still based on the
assumption of normality in returns. These returns series usually exhibit condi-
tional heteroskedasticity and unconditional normality. Under the assumption
of normally distributed returns the estimation of VaR corresponds to the esti-
mation of conditional volatility for specified τ . This can be accomplished by
models for conditional heteroskedasticity as introduced by Engle (1982) and
then extended by Bollerslev (1986). Nonetheless, there is evidence of returns
series being not exactly normally distributed (Rydberg 2000). The distribution
of returns tends to be negatively skewed with excess kurtosis and fat tails. This
fact can result in failure of VaR models based on Gaussian distribution which
is especially troublesome during times of increased market turmoil. For this
reason there was need to develop models capable of capturing the real nature
of returns distribution more accurately.
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The objective of this paper is to compare a Value at Risk estimation ob-
tained from conditional volatility models and Value at Risk estimated utilizing
the quantile regression approach. Both models will be based on daily returns
on S&P 500 index from 1999 to 2020. Quantile regression, firstly introduced by
Koenker & Bassett (1978) is a type of regression analysis. Where the method of
least squares is able to estimate the conditional mean of the dependent variable,
quantile regression estimates conditional quantiles. This approach is robust to
extremely large shocks and is possible to conduct without any specifications on
the underlying distribution. This makes quantile regression well suited for esti-
mating Value at Risk. However the efficiency of the QR as with any regression
is highly dependent on selected regressors. Our estimated VaR models will be
further tested using standard backtesting procedures.

The rest of the paper is organized as follows. In Chapter 2 we present
the theoretical framework. That includes introducing the concept of VaR to-
gether with current estimation approaches. We then follow with presenting
the thought behind quantile regression together and lasso regularization meth-
ods. Lastly Chapter 2 elaborates on backtesting methods. Chapter 3 concerns
with empirical application. We present dataset that we will be using for our
analysis with brief summary of its most notable aspects. Then we elaborate
on model selection, present the models estimated together with backtesting
results. Conclusion of this paper can be found in Chapter 4.



Chapter 2

Theoretical Framework

We start the chapter by presenting the reader with theory used in this paper.
We elaborate on the notion of Value at Risk from practical and statistical point
of view. In addition we present approaches to its calculation supplemented by
their advantages and shortcomings. Then we proceed with the introduction
of quantile regression and its connection to computation of Value at Risk.
Further we continue with part concerning lasso regularization method. Finally,
we provide the reader with basic backtesting methods applied in this work.

2.1 Value at Risk
The origins of Value at Risk can be traced back to NYSE capital require-
ments in early 20s. After the introduction of portfolio theory by Markowitz in
early 1950s theorist started to develop basic mathematics techniques for VaR
measurements. By the 1980 markets have become more volatile and the need
for development of more sophisticated VaR measurements have arisen. This
has been slowly accomplished due to the availability of increased processing
power of computers and larger datasets of historical prices. In the early 1990s
J.P.Morgan publicized its RiskMetrics service which made VaR available to
professionals and institutions. Ultimately, the VaR has been recognized by the
Basel Committee as a mean of regulatory capital calculation (Holton 2002).

Value at Risk is an assessment of potential loss of a portfolio over a specified
time horizon for a given confidence interval under normal market conditions
Jorion (1996). It is therefore a conditional quantile of an asset returns dis-
tribution. Let us have a series of n identically and independently distributed
random variables of financial returns {rt}T

t=1. Let F (r) be the cumulative dis-
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tribution function of these returns, F (r) = P (rt < r|Ft−1) conditional on the
information set Ft−1. Let us assume that {rt} is a random process

rt = µ + εt

εt = ztσt, zt ∼ iid(0, 1)

where σ2 = E(z2
t |Ft−1) and zt has conditional distribution function G(z),

G(z) = P (zt < z|Ft−1). Then VaR with a given confidence level τ ∈ (0, 1),
expressed by V aR(τ), is defined at the τ quantile of the distribution of financial
returns:

F (V aR(τ)) = P (rt < −V aR(τ)|Ft) = τ

or equivalently:
V aR(τ) = inf{v|P (rt < v) = τ}

In the Figure 2.1 we see VaR depicted on normal distribution of returns. The
curve represents profit-loss probability density function. The shaded area on
the left represents τ% of the total area under the curve. The VaR is determined
by the distance of 100*τ percentile from zero.

Figure 2.1: Value at Risk on Return Distribution

Source: BMEClearing

There are two ways how to estimate this quantile. The first is to invert
the distribution function of returns F (r). The second way is to invert the
distribution function of innovations, with regard to G(z) and to estimate σ2

t .

V aR(τ) = F −1(τ) = µ + σtG
−1(τ)

Therefore, in estimating VaR we need to first specify F (r) or G(r). There
are several methods in estimating these functions. Namely non-parametric,
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parametric and semi-parametric. Further, we describe these methods focusing
on strengths and shortcoming of each of them.

2.1.1 Non-parametric methods

The non-parametric approach of estimating Value at Risk does not make strong
assumptions about the distribution of returns. The essence of this method
is looking at the past data and use them to estimate empirical distribution
function, which is subsequently used to calculate the VaR. Non-parametric
assumptions are based on the assumption that the near future will be similar
to the past. Non-parametric methods involve for example Historical Simulation
or Monte Carlo simulation. Both of these methods are relatively non-restrictive.

Historical simulation approach is a very common non-parametric method.
It looks at the historical returns and uses them to estimate the distribution
function F (r). V aR(τ) is then the τth quantile of this distribution. We can use
different time spans and return intervals to estimate the empirical distribution
of financial returns. The fact that this method is not based on any particular
distribution assumption makes it possible to account for fat tails, skewness
and other non-Gaussian characteristics of observed return distribution. This
inference of distribution makes this method also very easy to implement. This
can however turn out to be treacherous. Since our VaR is calculated merely
on past observations we can expect the VaR to be overestimated if our data is
taken in times of unusually high volatility and vice versa. Historical simulation
also fails to alter the amount of Value at Risk in times of unexpected market
turmoil as swiftly as parametric models. That is due to the fact that recent
observations are given the same weight as any other observation in our data
set. We would thus need a large amount of new and eccentric observations to
change our VaR.

Monte Carlo simulation is a general and very flexible approach although
more computationally demanding. It is based on simulations of returns ac-
cording a certain type of distribution. VaR is then calculated as a selected
quantile from these simulated processes.
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2.1.2 Parametric methods

Variance-covariance & RiskMetrics

Parametric approach, sometimes called analytical, is a simple and straightfor-
ward way of estimating Value at Risk. It measures risk by fitting a distribution
of returns on historical data and then estimating VaR from the fitted curve.
Parametric approach assumes that the innovations and/or the returns of port-
folio follow a Gaussian distribution. Under this assumption, the VaR in an
1 − τ% level of confidence is computed as:

V aR(τ) = µ + σpG−1(τ)

where G−1(τ) is the τ -quantile of standard normal distribution. σp is a con-
ditional standard deviation of a portfolio. It is calculated using a variance-
covariance matrix Σ for all assets and the vector of the weights x of all assets
in the portfolio. Using spectral decomposition the variance of the portfolio is
thus estimated as σ̂2

p = x′Σx.
Another parametric method of VaR calculation is the RiskMetrics system

by J.P.Morgan (JP Morgan, Reuters 1996). Its computation is the same as
above but the way of estimating σp differs. The RiskMetrics uses an exponential
weighted moving average model to estimate the portfolio variance. The formula
is specified as follows with λ = 0.94 and window size N set as 74.

σ2
p = (1 − λ)

N−1∑︂
n=0

λj(εt−n)2

Although both of these approaches are fairly neat, they have some major
imperfections. The first being the fact that it assumes the financial returns to
be normally distributed. There has been empirical evidence that these returns
are not exactly normal. Returns tend to be negatively (left) skewed with fat
tails and a peak. This results in underestimation of risk which, in the case of
unexpected loss, can have immense consequences (Rydberg 2000).

Second problem concerns the underlying model used for modelling volatility.
Although it is capable to capture some volatility features such as volatility
clustering, it cannot account for other characteristics. For example the leverage
effect or asymmetry volatility (Black & Scholes 1976), (Pagan & Schwert 1990).

Another drawback is that the assumption of independent and identically
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distributed returns has not been observed in empirical measurements (Hansen
1994).

There has been several attempts to remedy these imperfections. Either by
using more sophisticated models that are able to capture the true nature of un-
derlying volatility. Some that is in line with real life observations. This includes
families of volatility models such as GARCH, stochastic volatility models or re-
alised volatility models. Or also by investigating different distribution functions
which correspond more to the distribution of returns observed in the financial
markets.

Volatility models

Volatility models can be divided into three groups. The GARCH family models,
the stochastic volatility models and realised volatility models. In this paper we
will discuss only GARCH family models as the rest is beyond the scoop of this
paper and would provide no use in our empirical research.

Engle (1982) was the first one to introduce a new class of stochastic pro-
cess called autoregressive conditional heteroskedastic (ARCH) processes. These
are zero mean, serially uncorrelated processes with nonconstant variances con-
ditional on the past, but constant unconditional variances. Bollerslev (1986)
further extended the ARCH model into Generalized Autoregressive Conditional
Heteroskedasticity (GARCH) model. It allows the conditional variance to be
dependent not only an the past values of error terms but also on the past values
of its own lag. The fundamental GARCH(p, q) model is given as

rt = µ + εt

εt|Ft−1 ∼ N(0, σ2
t )

σ2
t = α0 +

q∑︂
i=1

αiε
2
t−i +

p∑︂
j=1

βjσ
2
t−j.

Where Ft−1 denotes the information set up to time t − 1. The one step
ahead GARCH(p, q) conditional variance is given by

σ2
t+1 = α0 +

q∑︂
i=1

αiε
2
t−i +

p∑︂
j=1

βjσ
2
t−j. (2.1)

Also p ≥ 0 and q > 0. Since variance is positive it must also hold
αi ≥ 0, ∀i ∈ {0, . . . , q}. Parameter α = ∑︁q

i=1 αi measures the extent to which
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a volatility shock today feeds through into next period’s volatility. It usually
ranges between 0.05 (for a relatively stable market) and 0.1 (for a volatile mar-
ket). Parameter β = ∑︁p

j=1 βj usually ranges between 0.85 and 0.98 with higher
values being associated with lower α (Alexander 2008). Sum α+β measures the
rate at which persistence of volatility dies over time. As shown by Chan (2010)
persistence of volatility which does not die over time occurs when this sum-
mation is equal to one. Under this scenario, unconditional variance becomes
infinite. For this reason the parameters should also be further constrained such
that ∑︁q

i=1 αi +∑︁p
j=1 βj < 1 to imply weak stationarity.

Although GARCH model is able to capture volatility clusters, it is inca-
pable of differencing between positive and negative shocks. It only takes into
account squared residuals. In real world volatility increases at a higher pace
when returns are negative rather than positive. There are dozens of non-linear
models proposed for solving this drawback such as EGARCH, TGARCH, ect.
On the other hand there has been empirical evidence that these models are
unable to provide substantially better results in estimating conditional volatil-
ity and subsequently Value at Risk than the most basic GARCH(1,1) model.
Preferably with student’s t-distribution (Orhan & Köksal 2012), (Hansen &
Lunde 2005).

2.1.3 Semiparametric methods

Semiparametric approach is a relatively new methodology for calculating VaR.
They concentrate on modelling merely the tail of the return distribution in
contrast with modelling the whole distribution. One of these methods is a
quantile regression approach which will be further detailed in separate chapter.

2.1.4 Criticism

The thought behind Value at Risk is fairly simple. Nevertheless, that has
been one of the main sources of its criticism. Since VaR reduces all available
information used for the model into just one number we can expect loosing
possibly relevant information. We see that VaR does not provide us with the
extent of losses which might follow after breaking of the VaR estimate. We are
only endowed with information about the potential expected loss which might
happen with its associated probability with which this will not be exceeded.
This can cause false sense of safety and incorrect interpretation of prevailing
risks. However, we can overcome this obstacle with estimating VaR for high
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confidence levels. We could also possibly aid this issue with a Conditional
VaR estimate. This method calculates the expected loss in a case where VaR
threshold has been breached (Longin 2001).

As with every model trying to explain real world VaR, estimates are highly
dependant on model assumptions. If they are not in line with reality, or are
slightly off, the produced VaR can turn out to be imprecise or misleading. VaR
estimates could therefore be followed by other risk management techniques to
obtain wider overview of possible exposures.

Nonetheless, VaR is still a very popular method applied in risk management.
The aim of this thesis is not to asses whether VaR is appropriate method
as such, but to determine the suitability of our techniques developed for its
calculation. Therefore, we will not take these limitations into consideration as
they do not constitute the primary objective of this work.

2.2 Quantile Regression
Nowadays, regression based on minimizing sum of squares is the most widely
used in various empirical applications. In contrast with classical ordinary least
square regression, which explains expected or conditional expected value, quan-
tile regression focuses on explaining quantile (or conditional quantile) function
of independent variable Qτ (yi). Because of that, we are able to capture much
more complex information about statistical dependence between the depen-
dent and independent variables. This information would have been lost by
concerning only on conditional expected value.

2.2.1 Definition

Quantile regression differs from OLS in the way which conditional characteristic
of rt we observe. Let take the financial returns rt and explanatory variables
xtp. In the realm of discrete variables the standard OLS regression model for
the average response is

E(rt) = β0 + β1xt1 + · · · + βnxtn, t = 1, . . . , T, n = 1, . . . , N. (2.2)

T represent the length of the returns time series and N is the total amount
of regressors. The coefficients βn’s are estimated by solving the least squares



2. Theoretical Framework 10

minimization problem

min
β0,...,βn

T∑︂
t=1

(︄
rt − β0 −

N∑︂
n=1

βnxtn

)︄2

. (2.3)

In contrast, the regression model for quantile level τ of the response is

Qτ (rt) = β0(τ) + β1(τ)xt1 + · · · + βn(τ)xtn (2.4)

and the βj(τ)’s are estimated by solving the minimization problem

min
β0(τ),...,βn(τ)

T∑︂
t=1

ρτ

(︄
rt − β0(τ) −

N∑︂
n=1

xtnβj(τ)
)︄2

(2.5)

where ρτ (r) = τ max(r, 0) + (1 − τ) max(−r, 0). The function ρτ (r) is referred
to as the check loss because its shape resembles a check mark as shown in
Figure 2.2. For each quantile level τ , the solution to the minimization problem
yields a distinct set of regression coefficients. We note that τ = 0.5 corresponds
to median regression and 2ρ0.5(r) is the absolute value function (Rodriguez &
Yau 2007).

Figure 2.2: Quantile Regression ρ Function

Source: Koenker & Hallock (2001)

2.2.2 Volatility estimation

In this section we tackle the problem of estimating capital asset price volatility
from easily available public data. Garman & Klass (1980) formulated improved
estimators of volatility employing the opening (O), high (H), low (L) and closing
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(C) prices. Among several estimators examined they found that most efficient1

estimator of volatility is

σ2
t ≡ 0.511(ut − dt)2 − 0.019[ct(ut + dt) − 2utdt] − 0.383c2

t (2.6)

where ut = Ht − Ot, dt = Lt − Ot, ct = Ct − Ot.

2.3 Lasso Regularization
Tibshirani (1996) proposed a new method for estimation in linear models -
the lasso (least absolute shrinkage and selection operator). It minimizes the
residual sum of squares subject to the sum of absolute value of the coefficients
being less than a constant. In contrast with other regularization methods, such
as ridge regression, it tends to produce some coefficients that are exactly zero
and are subsequently completely omitted from regression.

2.3.1 Definition

If we were to perform OLS with minimizing sum of squares we could encounter
two drawbacks. First being that the OLS can produce model with low bias but
large variance. Sometimes it is suitable to shrink some parameters to zero and
for a slight increase of bias reduce variance substantially. With this approach we
can avoid overfitting and thus improve the overall prediction accuracy. Second
obstacle with classical OLS is in its interpretation. Sometimes we would be
better off with smaller amount of regressors but with stronger dependency on
the explained variable.

Let us consider dataset (rt, xtn), t = 1, 2, . . . , T , n = 1, . . . N , where rt is the
regressand for the tth observation. Letting β̂ = (β1̂, β2̂, . . . , βn̂), the regression
parameter after regularization are defined as

(β0̂, β̂) = arg min

⎧⎨⎩
T∑︂

t=1

(︄
rt − β0 −

∑︂
n

βnxtn

)︄2
⎫⎬⎭ , subject to

∑︂
n

|βn| ≤ k

(2.7)

1By examining Garman & Klass (1980) we see that they were able to produce even
slightly better estimator than the one in 2.6. They accomplished this by incorporating the
fraction of the day that trading is closed into the estimator formula
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or, equivalently, we minimize

T∑︂
t=1

(︄
rt − β0 −

∑︂
n

βnxtn

)︄2

+ λ
∑︂

n

|βn|. (2.8)

Here k ≥ 0 is a prespecified tuning parameter that determines the amount of
regularisation. Further, let βo

n̂ be the full OSL estimates and let k0 = ∑︁ |βo
n̂|.

Then values k < k0 will shrink the solutions of these coefficients towards zero.
Some coefficients may be exactly equal to zero.

Orthonormal design

To further understand nature of the shrinkage can apply orthogonal design
case. Let X bet the T × N matrix with tnth entry xtn, and suppose that
XT X = I.2 The solution of minimization problem in (2.7) is then

βn̂ = sign(βo
n̂)(|βo

n̂| − γ)+ (2.9)

where γ is determined by the condition ∑︁ |βn̂| = k. In the orthonormal design,
the regularization selects p of the largest coefficients in absolute value and sets
the rest to zero. For some λ from (2.8) this is equivalent to setting

βn̂ =

⎧⎪⎨⎪⎩βo
n̂ if |βo

n̂| > λ

0 otherwise.
(2.10)

Geometry of Lasso

The main difference between lasso and ridge regression is the left hand side
of the constraint in 2.7 or 2.8 which is set as |βn| and β2

n respectively. The
constraint region defined by |βn| is a rotated square for lasso (a). In the case
of ridge regression the constraint β2

n is a circle (b). This situation is illustrated
in Figure 2.3. We see two elliptical contours which are both centred at an OLS
estimate β̂. The solution for lasso is the contour line which touches the rotated
square. This may sometimes happen at a corner. This situation results in a
coefficient which is equal to zero. On the other hand, if we consider the ridge
regression, we see that that there is no counter line that could intercept the
circle exactly in corner without intersecting some other part of the circle. Thus,
parameters of ridge regression almost never shrink all the way down to zero.

2I - the identity matrix
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Figure 2.3: Estimation Picture for (a) Lasso and (b) Ridge Regressions

Source: Tibshirani (1996)

2.3.2 Regularization parameter

Determining the proper value for the regularization parameter λ from formula
2.8 is an important part in ensuring that the model performs well. Tibshirani
(1996) further presents three methods for estimation of the lasso regularization
parameter. Cross-validation, generalized cross-validation and analytical unbi-
ased estimate of risk. In this paper we will cover only the first method as it
is the most convenient and the only one we will be applying in our empirical
research.

Suppose we have observations (R, X) = (rt, xtn) which are drawn from an
unknown distribution and

R = η(X) + ε (2.11)

where E(ε) = 0 and Var(ε) = σ2. The mean-squared error of an estimate η̂(X)
is defined by

MSE = E[η̂(X) − η(X)]2. (2.12)

It is the expected value value taken over the joint distribution of X and R,
with η̂(X) fixed. A similar measure is the prediction error of η̂(X) given by

PE = E[R − η̂(X)]2 = ME + σ2. (2.13)

We can estimate the prediction error for the lasso using k-fold cross-validation.
The lasso is indexed in terms of the normalized parameter s = t∑︁

βo
ĵ

, and the
prediction error is estimated for a series of values of s from zero to one. The
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value of ŝ yielding the lowest estimated PE is then selected as a regularization
parameter.

2.3.3 Penalized quantile regression

In this part we combine quantile regression together with regularization. The
first part of Equation 2.14 is a quantile regression formula from 2.2. The lasso
constraint is given similarly as in 2.7.

min
β0(τ),...,βn(τ)

T∑︂
t=1

ρτ

(︄
rt − β0(τ) −

N∑︂
n=1

xtnβj(τ)
)︄2

, subject to
∑︂

n

|βn| ≤ k (2.14)

For further details we refer to Koenker & Mizera (2014).

2.4 Backtesting
At the start of this chapter we introduced different VaR estimation approaches.
Since there are drawbacks in each of these methods sound ways of evaluating
the risk estimates produced were needed. Naturally, if a risk model does not
predict risk accurately, its applicability is questionable. It is thus important
to test the quality of models developed with proper techniques. Backtesting
is a statistical procedure for validating a set of VaR estimates. Jorion (2001)
refers to these checks as "reality checks". If we have confidence level for VaR of
99%, we expect that an exemption should on average occur once in every 100
observations.

The idea behind backtesting is to look at the hit sequence It(τ). It is defined
as

It(τ) =

⎧⎪⎨⎪⎩1, if rt < −V aR(τ)

0, if rt ≥ −V aR(τ).
(2.15)

It(τ) is basically a column of ones and zeros. If an exemption happens on the
tth day, the tth value in the hit sequence is set as one. If no exemption occurs
the value is zero. We further see that whether hit happens or not is conditional
on the VaR confidence interval that we are modelling.

During backtesting we need to determine whether our model satisfies two
properties. Firstly, we need to control the number of exceptions (unconditional
coverage). We see that ∑︁T

i=1 It is the sum of exemptions and T is the number
of observations. Their ratio represents our so called failure rate. In an ideal
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situation the failure rate would correspond to the confidence interval of our
VaR. If our model is accurate then the failure rate should converge to the
frequency of tail loses, p = (1 − c), as sample size increases (Jorion 2001). This
idea can be written as E[It(τ)] = P [It(τ) = 1] = τ. If P [It(τ) = 1] > τ the
risk is underestimated and if the probability is lesser than τ then the risk is
overestimated.

Secondly, we need the sequence of hits at two different dates Ip(τ) and Iq(τ)
to be independently distributed for p ̸= q (conditional coverage). That is so
because we expect the exemptions to occur randomly and independently on
each other. Clusters of hits could signal a functional problem in our model
even if was not priorly rejected by conditional coverage tests. Thus, in order
to consider our VaR model accurate, the hit sequence obtained from it should
satisfy both unconditional and conditional coverage tests.

2.4.1 Unconditional coverage

Unconditional coverage tests look solely at the failure rate. That is the pro-
portion of hits among all VaR estimates. They do not account for the time
when the exemptions occur. If the fraction of exemptions is larger than our
confidence interval τ , the model overestimates the risk. On the other hand, if
the fraction is smaller the model underestimates the risk. Therefore we must
conduct statistical analysis to determine whether the amount of errors is in rea-
sonable bounds or not. Since each trading day either produces a VaR violation
or not the sequence of hits is more commonly known as Bernoulli trial. The
number of exemptions x = ∑︁T

i=1 It follows a binomial probability distribution:

f(x) =
(︄

T

x

)︄
px(1 − p)T −x (2.16)

With the number of observation increasing, we can approximate the binomial
distribution with a normal distribution

z = x − pT√︂
p(1 − p)T

≈ N(1, 0) (2.17)

where pT is the expected number of exemptions and
√︂

p(1 − p)T being the
variance of exemptions.
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Kupiec test

A widely used unconditional coverage test was presented by Kupiec (1995).
Kupiec’s test (sometimes POF-test)3 measures whether the amount of exemp-
tions is acceptable. Under the null hypothesis of the model being correct the
number of failures follows the binomial distribution with the H0 for Kupiec-test
being

H0 : p = p̂ = x

T
(2.18)

We then use a likelihood-ratio test to examine whether the observed failure
rate x/T significantly differs from our expected failure rate p. The test statistic
is constructed as

LRP OF = −2ln

⎛⎜⎜⎜⎝ (1 − p)T −xpx[︃
1 −

(︃
x

T

)︃]︃T −x (︃ x

T

)︃x

⎞⎟⎟⎟⎠ . (2.19)

Under the H0, LRP OF is asymptomatically χ2 distributed with one degree
of freedom. So if the value of test statistic exceeds the critial value of χ2 we
reject the null hypothesis and the model is considered to be inaccurate.

TUFF test

Kupiec (1995) suggested another type of unconditional backtesting. The TUFF
(time until first failure) test looks at the time v it takes until the first hit occur.
Since errors happen independently, the number of periods until first hit occurs
should be consistent with the VaR confidence level. The test statistic is similar
to the POF test and takes form of likelihood ratio

LRT UF F = −2ln

⎛⎜⎝ p(1 − p)v−1(︂
1
v

)︂ (︂
1 − 1

v

)︂v−1

⎞⎟⎠ . (2.20)

The test statistic LRT UF F is again χ2 distributed with one degree of free-
dom. If the test statistic is lower than the critical region then the model is
accepted. However, some argue that the test actually provides low power in
identification of bad VaR models (Hass 2001). For example, if we measured
99% VaR and we conducted the test with 95% confidence interval χ2

0.95, any
number v between 7 and 438 would still result in not rejecting the model. This

3Proportion of Failures
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interval is proportionally the same for every VaR level. Because of its easy
application the test can be mostly used just as a preliminary for selection of
really bad models. In these cases the usage of further tests would most likely
result in rejecting the model after all.

2.4.2 Conditional coverage

Unconditional coverage tests focus merely on the number of exceptions pro-
duced in the model. In reality we are also curious about the time when these
exceptions occurred. A good VaR model should be able to capture the time
periods of increased volatility in a way that the following exemptions happen
independently of each other. Clustering of exemptions can cause large losses as
these events will tend to be more disastrous than just one exemption once in a
while (Christoffersen & Pelletier 2004). Therefore tests for conditional cover-
age were developed in order to examine not only the number of exemptions but
also the conditional dependence of exemptions on each other. In this subsection
we present two conditional coverage tests. Interval forecast test developed by
Christoffersen (1996) and the mixed Kupiec test introduced by (Hass 2001).

Christoffersen’s interval forecast test

Christoffersen (1998) introduced a test to examine whether the probability
of observing an exception depends on the time when the exception occurred.
Christoffersen’s interval forecast (CIF) test similarly to Kupiec test uses of log-
likelihood but the test is extended by a separate statistic in order to account
for the independence of exemptions in time.

Let us define numbers nkl with their outcome, which is summarized in Table
2.1.

nkl =
n∑︂

i=2
1[Yi−1 = k, Yi = l], k, l ∈ {0, 1} (2.21)

Table 2.1: CIF Contingency Table

Yi−1 = 0 Yi−1 = 1
Yi = 0 n00 n10 n00 + n10

Yi = 1 n01 n11 n01 + n11

n00 + n01 n10 + n11 n
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Further, we define probabilities

π0 = n01

n00 + n01
, π1 = n11

n10 + n11
, π = n01 + n11

n00 + n01 + n10 + n11
.

π0 is the probability of having a failure on period t, given that no failure
occurred on period t − 1. π1 represents the probability of having a failure on
period t given that no failure occurred on period t − 1. π is the probability
of having a failure on period t. If the model is accurate, the the probabil-
ity of exemption should not depend on the previous observation. And hence
probabilities π0 and π1 should be equal.

The test statistic for independence is given by:

LRCIF = −2ln

(︄
(1 − π)n00+n10 πn01+n11

(1 − π0)n00 πn01
0 (1 − π1)n10 πn11

1

)︄

= −2ln

(︄(︃
π

π0

)︃n01 (︃ π

π1

)︃n11 (︃ 1 − π

1 − π0

)︃n00 (︃ 1 − π

1 − π1

)︃n10)︄ (2.22)

Now we can combine the Christoffersen’s CIF statistic and Kupiec POF test
statistic to obtain a conditional coverage mixed test statistic LRCC . With it
we can test for independence of errors and failures rate together. This statistic
is asymptotically χ2 distributed with two degrees of freedom.

LRCC = LRP OF + LRCIF (2.23)

This test is only constructed to measure dependency between two consecu-
tive days. In real life there is a chance that dependence between two successive
observations would not be enough to capture the conditional interconnection
of errors. Therefore Christoffersens’s test might not be adequate method for
capturing the dependence between all exemptions. To do so we can utilize the
next test presented.

Haas’s Test

Hass (2001) argues that the dependence of observations between two days is too
weak to find significant interconnection. Therefore he proposes an enhanced
test for capturing more general forms of time dependence of errors. This test is
called Mixed Kupiec’s Test or Haas’s Time Between Failures (TBFI) test. Lets
take time between failures as vi, i = 2, . . . , n, which is the duration between
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i-th and i−1th failure. Also let v1 be the first failure. Then the H0 is the event
of failures being independent of each other and the test statistic is written as

LRT BF I = −2ln
n∑︂

i=2

⎛⎜⎝ p(1 − p)vi−1(︂
1
vi

)︂ (︂
1 − 1

vi

)︂vi−1

⎞⎟⎠ (2.24)

Under H0 the test statistic is asymptotically χ2 distributed with n degrees of
freedom. We can again combine the statistic with Kupiec’s POF test to obtain
combined statistic for coverage and independence - the mixed Kupiec’s test
statistic - which is again χ2 distributed with n + 1 degrees of freedom.

LRT BF = LRP OF + LRT BF I (2.25)



Chapter 3

Empirical Research

After introducing the underlying theory in the last chapter, we proceed with
the main objective of this thesis, which is the empirical research. In this chap-
ter we apply the previously mentioned methodologies and models to calculate
VaR on S&P 500 stock index. The two models used for VaR estimation that
we will be comparing are firstly the GARCH model, which estimates the con-
ditional volatility. And secondly, the quantile regression model, which models
the particular quantile of returns of S&P 500 that we are interested in. This
is done by expressing the return on one day as a linear combination of daily
volatilities of all stocks in the index on the day before. The calculation of these
daily volatilities was described in Section 2.2.2.

The main research objective is to examine under which conditions can we
use quantile regression for estimation of Value at Risk. The reason of selecting
GARCH model as a benchmark was its easy implementation and the fact that
it is usually able to provide reasonably accurate results. We then use both
models to calculate VaRs with 95% and 99% confidence intervals. We can
also encounter calculations of VaR for different confidence intervals such as
90%. However, we decided to omit on these levels as the two levels used in
this work are the ones most commonly used in practice and literature. We
then use the in-sample backtests from part 2.4 to evaluate their individual
performance. We have decided to consider only in-sample performance as out-
of-sample performance evaluation is beyond the scope of this paper.

The rest of this chapter is organized as follows. In the first section, we
introduce the market data we are dealing with. In the second part we provide
the reader with regression results for moth models. In the case of GARCH we
further use both normal and t-distribution for errors to estimate the volatility
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and calculate the VaRs parametrically. This method was described in Section
2.1.2. Since the quantile regression models the 1st and 5th quantile directly we
do not need to make any assumptions about the underlying distribution. At
the end of this chapter we elaborate on the backtesting procedure and test their
performance of VaR estimated using in-sample backtests from part 2.4. Lastly,
we summarize our empirical findings and summarize the overall performance
of our models.

3.1 Data Description
We work with dataset that contains daily open, high, low, and closing (OHLC)
prices of S&P 500 stock index obtained from Yahoo Finance. Its is further
important to choose appropriate length of data for our analysis. Since we are
aiming on examination of tail behaviour which are from definition rare we need
to have enough observations of this kind. By taking the dataset of 21 years we
are able to incorporate times of increased volatility from both dot-com bubble
and the Great Recesion. The time span of our data set is from 5/5/1999 to
5/5/2020 and contains overall 5284 observations.

For our purposes, the daily data are transformed to daily continuously com-
pounded returns. This is because financial time series are usually exposed to
exponential growth, and thus log transformation can smooth out (linearise)
the time series. The greater is the volatility over multiple holding periods the
greater is the difference between arithmetic (non-log) and geometric (log) re-
turns (Hudson & Gregoriou 2010). The daily rate of continuously compounded
returns rt is given using the daily closing prices Ct by the relation

rt = log
(︄

Ct

Ct−1

)︄
. (3.1)

In the next figure we see closing prices 3.1(a) and log-returns 3.1(b) calculated
using the formula for returns from Equation 3.1. Both of the time series are
plotted for the full time period.

There are several stylized facts exhibited by financial volatility. It is gen-
erally found that return distributions of financial assets tend to exhibit phe-
nomena called volatility clusters i.e. periods of higher (lower) volatility tend
to be clustered together (Cont 2005). In the Figure 3.1(b) we can easily see
volatility clustering during times of increased market turmoil. At the start we
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Figure 3.1: S&P500

(a) Closing prices (b) Log-returns

Source: Author’s computations.

see large cluster as a result of the dot-com bubble together with another events
accompanying the start of the century. In the middle we spot a large increase
in volatility during the financial crisis started in 2008. The period of increased
volatility at the end of our sample is due to 2020 stock market crash during
the coronavirus pandemic.

Figure 3.2: S&P500 Compounded Returns

(a) Descriptive statistics
Statistic S&P 500

Observations 5284
Mean 0.00014

Median 0.00014
Std. dev 0.01251
Minimum −0.1277

Maximum 0.10957
Skewness −0.3601

Ex. kurtosis 10.9937

(b) Log-returns density

Source: Author’s computations.

Another of these facts is a tendency to observe leptokurtic distributions
with fatter tail than in the case of normal distribution. The returns distri-
bution further exhibit positive excess kurtosis. We can confirm these findings
by reviewing Figure 3.2(a) which summarizes descriptive statistics of S&P log-
returns distribution.

We further applied Augmented Dickey-Fuller test and rejected the null hy-
pothesis of unit root presence with p-value lesser than 0.01. To test normality
we we employed Jarque-Bera test. As expected we were able to reject the
null with p-value indistinguishable from zero. We also used Ljung-box test
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to check if autocorrelation exists in squared residuals after using ARMA(p, q)
model. If there was no autocorrelation we would not need to use GARCH as
ARMA would be sufficient. To determine the order of GARCH model we used
Bayesian information criterion which resulted in (p, q) = (1, 1). AIC yielded
order of (3,3) and in order to decrease complexity we employed the BIC result.
Above all that, since we expect to find serial autocorrelation of high orders
the choice is practically identical. The p-value from Ljung-box test on squared
residuals from ARMA(1,1) was once again indistinguishable from zero and thus
ARCH effects are present. A similar test we could have applied is ARCH LM
test, however with such strong results from Ljunx-box we find no need to use
it.

3.2 Regression Results
In this section we present the regression results both for GARCH and QR
models. We present the estimated parameters together with model selection
process.

GARCH

Since GARCH(1,1) is usually considered to be reasonably good model in de-
scribing conditional volatility we decided to use it as a bedrock for comparison.
The selection of autoregressive p and moving average q parameters was tested
using Akaike information criterion with values ranging from one to three. De-
spite GARCH(1,1) scoring as the second best - only beated by GARCH(1,2)
- we still decided to use it. The AIC confirmed that the model is reasonably
good and we can further simplify the overall complexity by selecting a model
with fewer parameters. Complete results of the model selection are in Table
A.1 in appendix. Table 3.1 provides estimates of parameters α0, α1 and β1 of
GARCH model. All parameters are statistically significant. The parameter α1

is estimated as 0.12. It measures the extent to which a volatility shock today
feeds through into next period’s volatility. Estimation of β1 yields the result
of 0.86 which is large in magnitude but anticipated for this kind of data. It
shows that large changes in the volatility will affect future volatilities for a long
period of time since the decay is slower. The sum of coefficients α1 + β1 = 0.98
measures the rate at which the volatility effect dies over time. If the sum was
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equal to one we would observe presence of volatility which does not die over
time. Under this scenario, unconditional variance becomes infinite.

Table 3.1: Estimation Results for GARCH(1,1) Model

Dependent variable:
log-returns

α0 0.000588∗∗∗

(0.000109)
α1 0.121636∗∗∗

(0.010154)
β1 0.863421∗∗∗

(0.010456)

Observations 5,281
Log Likelihood −17,050.72

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Source: Author’s computations.

Quantile Regression

The exact model we will be using for our quantile estimation is similar to
Equation 2.2. However, since we are trying to predict one-day ahead returns rt

we need to shift our regressors back in time by one day. Since the time span of
our data is 21 years we encounter a problem. Some stock from S&P 500 were
nor in the index for the full time or some these companies did not even existed
for the whole time period. We solve this problem by only considering stock
that were in the index for the full time period. Altogether these are 212 stocks
represented by xn. Hence our quantile regression model is described with with
Equation 3.2 with τ = {0.05, 0.01}; n = 1, . . . , 212; t = 1, . . . 5284.

Qτ (rt+1) = β0(τ) + β1(τ)xt1 + · · · + βn(τ)xtn (3.2)

Since the number of independent variables and coefficients for quantile re-
gression is large we present the results in appendix. Firstly, we start with the
regression of the 5th conditional quantile of returns. The estimated coefficients
are presented in Table A.2 in Appendix. There are altogether 96 coefficients
including the intercept. The absolute difference of all coefficients is −0.0288.
Hence, if the volatility of each stock were the same the 95% VaR would be
2.88%. Meaning that there would be only 5% chance that the returns of S&P



3. Empirical Research 25

on one particular day would be less than -2.88%. The volatilities were estimated
using the methodology in Section 2.2.2.

However, the volatility estimation of each stock is hardly the same for all
of or them. This is what makes the VaR estimation change in time. The value
of any particular coefficient is hard to interpret without knowing the particular
volatilities. For example we could look at the estimated coefficient of AT&T (T)
of −0.00399 and compare it to Omnicom Group (OMC) which was estimated
as 0.00102. If both stocks had the same volatility on one day, the AT&T would
outweigh Omnicom Group and increase the Value at Risk. However, if the
volatility of Omnicom Group was four times larger the VaR would neutralize.
Because of that we take the average volatilities of all stocks left after lasso
regularization and multiply them with their estimated coefficients. From Table
A.4 we see that these final products are ordered roughly the same as the original
coefficients. That is in line with what we would expect and the changes in order
are caused by larger or smaller average volatilities of each individual stock.

The estimated coefficients for the first conditional quantile are available in
Table A.3 in Appendix. The model estimated 72 coefficients including inter-
cept. The sum of all coefficients is −2.0889 which is surprisingly almost the
same as the case of the fifth quantile. This indicates that the main difference
between first and fifth quantile must be a difference between stock selected for
both regressions.. If we take into consideration the assumption that first quan-
tile should be lower than the fifth quantile, the stock left after regularization
should on average have larger volatilities. That difference in volatilities would
generate larger VaRs.

The selection of the regularization parameter λ was firstly done using the
techniques described in Section 2.3.2. We firstly estimated λ in the framework
of OLS regression with lasso regularization and tenfold cross validation. The
range of parameters left in the models was from 110 (min MSE) to 60 (esti-
mation within 1SE of MSE). We further utilized these finding in selection of
our tuning parameter in the regularized quantile regression. In the Figure A.2
in Appendix we see two graphs for 95% (a) and 99% (b) confidence intervals.
Each of these figures plots different λ values on x the axis. For each of these
values we plotted the standard deviation of the VaR estimate on the left ver-
tical axis (black circles). On the right vertical axis (red triangles) we have the
number of parameters left in the model after regularization. We can clearly see
the negative relationship of both standard deviation and number of parameters
on λ. Firstly, we see decreasing number of coefficients as λ increases. That is
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exactly how we expect the model to work according to Section 2.3.1. Further,
wee see that the standard deviation of the VaR estimates is larger when we
have more parameters in the model. Similar difference in standard deviations
can be spotted if we compare the VaRs on Figures 3.5 and 3.6. The VaR esti-
mates for QR tend to oscillate more when compared to the VaR estimates by
GARCH model. This may be caused by the intrinsic properties of both meth-
ods. Whereas GARCH basically regresses only on two independent variables,
the QR has in our cases more that 70 parameters. This increased number or
regressors might be responsible for larger volatility of VaR estimates as the re-
gression is more prone to overtiffing. As was pointed out, rapid changes in VaR
line suggest considerable changes in volatilities or in the way VaR is estimated.
Since the way of estimation is still the same we can account the differences to
changes in volatilities. On the contrary, if the VaR line seems to be too smooth
our model is probably not adjusting for changes adequately. That might be
the case of GARCH. It is complicated to decide if some of these scenarios actu-
ally occurred considering only the chart. As λ we selected 0.0012 for the fifth
quantile and 0.0006 for the first quantile. It is interesting that the more tailed
the modelled quantile is, the less of regularization is needed to leave a similar
amount of independent variables in the model. That can be seen if we compare
standard deviation of the two figures. The shapes are very close to each other
but have the x axis with λ scaled differently.

3.3 VaR Estimation
In this section we use calculated conditional volatilities from GARCH model
described above and results from QR to estimate one-day Value at Risk. We
calculate these predictions for 95% and 99% confidence levels. Calculation
method for GARCH is done with approach described in subsection 2.1.2. VaR
derived from QR is directly calculated as a result of regression equation from
subsection 3.2. We will consider only in-sample performance as out-of-sample
performance evaluation is beyond the scope of this paper.

In Figures 3.3 and 3.4 we plotted 95% VaR calculated from GARCH and
QR respectively. Blended version of these two charts can be found in appendix
Figure A.1. When we consider the VaR-QR 3.3 we see that it tends to be
more volatile than the VaR calculated from GARCH 3.4. It might seem like
the quantile regression approach overestimates risk. That can be considered as
more conservative though also requiring higher amount of available resources.
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These need to be put aside and making them idle could result in lost profits. On
the other hand, if we consider Figure A.1 we see that the VaR-QR is usually
within bound of Value at Risks from GARCH model calculated employing
normal and student’s t-distribution.

Figure 3.3: 95% VaR-QR Calculation

Source: Author’s computations.

Figure 3.4: 95% VaR-GARCH Calculation

Source: Author’s computations.

It is also worth noting that the volatility of Value at risk using quantile
regression is largely dependent on the regularization parameter λ. This pa-
rameter was described in 2.3, specifically Equation in 2.8. The smaller the
regularization we apply the larger the volatility of Value at Risk is. This is
probably caused by increased number of regressors left in the model. If we try
to fit large number of independent variables on returns, the model results with
overfitting even if the number of observations is more than ten times bigger.
Let us now consider Figure A.2. The two figures depict negative relationship
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between λ on x axis. And on the left y axis in red we have the standard devi-
ation of Value at Risk estimates in red. On the right vertical axis we have the
number of coefficients that were left after regularization for each λ. The left
Figure A.2(a) represents the 95% VaR and the right Figure A.2(b) represents
99% VaR.

Figure 3.5: 99% VaR-QR Calculation

Source: Author’s computations.

To correctly estimate whether the model is overfitted or not we would need
to divide our dataset on two parts and perform in-sample and out-of-sample
analysis. If the model was truly overfitted the values of VaR in out-of-sample
would not pass backtesting procedures. This analysis is however beyond the
scope of this paper. Nevertheless, this work can serve as a foundation for
further research.

Figure 3.6: 99% VaR-GARCH Calculation (Norm and Std.t Distributed)

Source: Author’s computations.
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3.4 Backtesting
In this section we present and analyse the results of backtesting tests described
in Section 2.4. The table 3.2 summarizes the results of our in-sample backtest-
ing with 95% confidence interval VaR in the left column and 99% confidence
interval VaR in the right column. We will firstly start the examination of 95%
VaR together with analysing stock that were left in the QR after regularization.
Then we provide the reader with similar analysis made for 99% VaR.

In the case of the 95% confidence interval all TUFF tests which look at the
time until first failure are unable to reject neither of our three models. The
failure rate of the QR is 4.66%. That can be considered a little strict when
calculating VaR and means that the model underestimates risk. However this
is still in reasonable bounds as shown with POF test with p-value of 0.249. The
failure rate of 5.25% is similar in the case of GARCH with normal distribution
for residuals. In this case the model tends to overestimate risk. However,
the POF p-value of 0.417 is even larger than in the QR case. The GARCH
model with t-distributed residual has failure rate of 12.1%. In order for the
model to pass in the POF test, the test statistic would need to be lower than
3.841. However, our POF test statistic exceeds this value severalfold. Because
of such high inaccuracy in early stage of backtesting, we will discard the model
from further discussion as it is far from being optimal for VaR estimation.
Next, the CIF test statistic representing the Christoffersen’s Interval Forecast
test does not exclude any model from further analysis. For QR as well as
GARCH are the p-values sufficiently high. The conditional coverage mixed
(CC) test, which is a combination of POF statistic and CIF statistic, serves as
a test for independence of errors and failure rate together. Again we see that
both QR and GARCH models pass this test with p-values of 0.272 and 0.721
respectively. Even though that the p-value of QR is smaller, we cannot say
that one model performed particularly better than the other. We can only talk
about rejecting a model if a LM statictic exceeds particular χ2

0.95 value. If that
does not happen, we treat the models as being equally correct. All of three
Hass’s tests (TBFI) reject the null hypothesis of failures being independent
on each other. This implies that failures are not independent and our model
could be inaccurate. It is worth noting that since all of Christoffersen’s test
did not discover dependence between two subsequent days, there might be a
more complex form of dependence in the hit sequence.

Now we focus on the Value at Risk estimation for 99% confidence interval.
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Table 3.2: VaR Backtesting Results

95% VaR-GARCH (n) 99% VaR-GARCH (n)
1. violation after 6 perios 1. violation after 51 periods
PoF 5.25% PoF 1.91%

value χ2
0.95 p-value value χ2

0.95 p-value
TUFF1 1.0977 3.841 0.294 TUFF 0.3715 3.841 0.543
POF2 0.6584 3.841 0.417 POF 35.046 3.841 0.000
CIF3 0.0219 3.841 0.882 CIF 1.7737 3.841 0.183
CC4 0.6803 5.991 0.712 CC 36.819 5.991 0.000
TBFI5 316.82 239.4 0.004 TBFI 185.26 125.5 0.000
TBF6 317.89 240.4 0.004 TBF 220.306 126.6 0.000

95% VaR-GARCH (t) 99% VaR-GARCH (t)
1. violation after 6 perios 1. violation after 51 periods
PoF 12.1% PoF 1.80%

value χ2
0.95 p-value value χ2

0.95 p-value
TUFF 1.0977 3.841 0.294 TUFF 0.3715 3.841 0.543
POF 410.23 3.841 0.000 POF 27.525 3.841 0.000
CIF 0.0355 3.841 0.851 CIF 2.3348 3.841 0.126
CC 410.27 5.991 0.000 CC 29.859 5.991 0.000
TBFI 1211.7 700.0 0.000 TBFI 163.85 118.6 0.000
TBF 1621.9 701.0 0.000 TBF 191.38 119.9 0.000

95% VaR-QR 99% VaR-QR
1. violation after 51 perios 1. violation after 168 periods
PoF 4.66% PoF 1.04%

value χ2
0.95 p-value value χ2

0.95 p-value
TUFF 1.2769 3.841 0.258 TUFF 0.3252 3.841 0.568
POF 1.3278 3.841 0.249 POF 0.0905 3.841 0.764
CIF 1.2743 3.841 0.259 CIF 1.1579 3.841 0.4231
CC 2.6021 5.991 0.272 CC 1.2484 5.991 0.050
TBFI 313.49 210.7 0.002 TBFI 325.10 210.7 0.000
TBF 314.82 211.6 0.003 TBF 325.18 211.6 0.001

1 Time Until First Failure - See Equation 2.20 for Definition
2 Proportion of Failures - Def: 2.19
3 Christoffersen’s Interval Forecast - Def: 2.22
4 Proportion of Failures & Christoffersen’s Interval Forecast - Def: 2.23
5 Time Between Failures - Def: 2.24
6 Proportion of Failures & Time Between Failures - Def: 2.25

Source: Author’s computations.

The failure rate for QR is only 1.04%. That is very close to the expected
value of 1%. This was further confirmed by the POF statistic which measures
whether the observed failure rate significantly differs from our expected failure
rate. The p-value for this test is 0.76. In the case of GARCH the failure rate is
almost 2%. Specifically, 1.91% for normally distributed residuals and 1.80% for
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t-distributed residuals. We observe, that while the residuals for the 5th quantile
were better described by normal distribution, in the case of 1st quantile we spot
better performance with the t-distributed residuals. The Christoffersen’s tests
for independence between two continuous days did not reject any model. Now
we look at the CC test. It is a sum of POF and CIF statistic with two instead of
one degree of freedom. In both cases of GARCH we see that the POF statistic
is way too high because of larger amount of hits than expected. As a result,
the mixed statistic CC results in rejecting null and the model does not pass
the test of joint conditional and unconditional coverage. However in the case
of QR the join test did not reject the null. With the p-value of 0.42 we can
be confident that the model hit series exhibited both properties of conditional
and unconditional coverage. The TBF test examining multiple day dependence
result in rejecting the null in all three cases.



Chapter 4

Conclusion

This thesis compares two volatility models that are able to detect volatility
clustering and predict time-varying volatility accordingly. We then evaluated
them based on their in-sample predicting power of risk measure Value at Risk.
In our analysis we focused on VaR estimation modelled directly via quantile
regression. In the quantile regression formula we regressed the return of one
day on stock volatilities the day before. To test the prediction power of the
VaR-QR we decided to use a GARCH model as a benchmark. We used normal
and student-t distribution of residuals in the GARCH model.

The first part of this work deals with theoretical framework. It summarizes
all methodology that is essential for further analysis. We introduced the con-
cept of Value at Risk and its estimation. Then we followed with examining
the quantile regression together with regularization techniques and backtesting
methods. In the applied part we calculated VaR of S&P500 stock index us-
ing the two methodologies mentioned above. Lastly, we conducted in-sample
backtesting to evaluate the performance of both models and compared them
to each other.

The goal of this thesis was to show whether we can estimate Value at Risk
using this particular quantile regression approach. Since we do not know of any
paper providing application implementing QR VaR estimation accompanied
with lasso regularization, we were interested in showing whether we can produce
VaR estimates at least as good as the ones produced by classical GARCH
model. We conducted our research for 95% and 99% confidence interval. Our
backtesting results show that in the 95% case the QR and normal GARCH
estimates were both equally sound. In the case of 99% confidence interval we
noticed that GARCH model with t-distribution performed better than the one
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with normal distributed residuals. However, it was still inferior to the quantile
regression model which performed the best.

Even though our QR models in some case outperformed the benchmark
GARCH, there is still some room for improvement in future work. One of the
flaws in our QR models is undoubtedly high volatility in its VaR estimates. This
problem could be solved through more rigorous methods of model selection. If
we also wanted to test the performance of our models more thoroughly it would
be suitable to perform also out-of-sample backtesting. Besides these, there are
many extensions to both of these models that could be applied. Especially the
methodology used during regularization.



Bibliography

Alexander, C, (2008): “Market Risk Analysis, Pricing, Hedging and Trading Fi-
nancial Instruments.” John Wiley & Sons : pp. 283

Bollerslev T. (1986): “Generalized Autoregressive Conditional Heteroskedastic-
ity.” Journal of Econometrics 31: pp. 307–327

Black, F. & Scholes, M. (1976): “Taxes and the pricing of options.” The Journal
of Finance 32(2): pp. 319–332

Cont, R. (2005): “Volatility Clustering in Financial Markets: Empirical Facts and
Agent–Based Models.” Appeared in Long memory in economics by Kirman &
Teyssiere

Engle, R.F. (1982): “Autoregressive Conditional Heteroscedasticity with Estimates
of the Variance of United Kingdom Inflation.” Econometrica 50(4): pp. 987–1007

Garman, M.B., Klass, M.J. (1980): “On the Estimation of Security Price Volatil-
ities from Historical Data.” The Journal of Business 53(1): pp. 67–78

Hansen, B. (1994): “Autoregressive Conditional Density Estimation.” International
Economic Review 35(3): pp. 705–30

Hansen, P.R. & Lunde, A. (2005): “A forecast comparison of volatility models:
does anything beat a GARCH(1,1)?” Journal of Applied Econometrics 20(7):
pp. 873–889

Hass, M. (2001): “New Methods in Backtesting.” Financial Engineering, Research
center caesa, Bonn

Holton, G.A. (2002): “History of Value-at-Risk: 1922-1998.” Method and
Hist of Econ Thought, University Library of Munich, Germany Availible:
https://EconPapers.repec.org/RePEc:wpa:wuwpmh:0207001 [Accessed: 17-Apr-
2020]



Bibliography 35

Hudson, R. & Gregoriou, A. (2010): “Calculating and Comparing Security Re-
turns is Harder than you Think: A Comparison between Logarithmic and Simple
Returns.” International Review of Financial Analysis 38

Chan, N.H. (2010): “Time Series: Applications to Finance with R and S-Plus.”
Wiley, 2 edition: pp. 210

Christoffersen, P. & Pelletier, D. (2004): “Backtesting Value-at-Risk: A
Duration-Based Approach.” Journal of Financial Econometrics 2: pp. 84–108

Jorion, P. (1996): “Risk:Measuring the Risk in Value at Risk.” Financial Analysts
Journal 52(6): pp. 47–56

Jorion, P. (2001): “Value at Risk, The :New Benchmark for Managing Financial
Risk.” McGraw-Hill, 2nd edition

JP Morgan & Reuters (1996): “RiskMetricsTM - Technical Document.” [On-
line] Availible: https://www.msci.com/documents/10199/5915b101-4206-4ba0-
aee2-3449d5c7e95a [Accessed: 16-Apr-2020]

Koenker, R. (2017): “Quantile regression 40 years on.” Annual Review of Economics
9: pp. 155–176

Koenker, R. & Bassett, G. (1978): “Regression Quantiles.” Econometrica 46(1):
pp. 33–50

Koenker, R. & Hallock, K. F. (2001): “Quantile Regression.” Journal of Eco-
nomic Perspectives 15(4): pp. 143–156

Koenker, R. & Mizera, I. (2014): “Convex Optimization in R.” Journal of Statis-
tical Software 40(5)

Kupiec, P. (1995): “Techniques for Verifying the Accuracy of Risk Management
Models.” Finance and Economics Discussion Series 95-24

Longin, F. (2001): “Beyond the VaR.” Journal of Derivatives 8(4): pp. 36–48

Orhan, M. & Köksal, B. (2012): “A comparison of GARCH models for VaR
estimation.” Expert Systems with Applications 39(3): pp. 3582–3592

Pagan, A. & Schwert, G. (1990): “Alternative models for conditional stock volatil-
ity.” Journal of Econometrics 45(1-2): pp. 267–290



Bibliography 36

Rodriguez, R.N. & Yao, Y. (2007): “Five Things You Should Know about
Quantile Regression.” Paper SAS525-2017, Florida State University, Availible:
https://support.sas.com/resources/papers/proceedings17/SAS0525-2017.pdf [Ac-
cessed: 27-Jul-2020]

Rydberg, T.H. (2000): “Realistic Statistical Modelling of Financial Data.” Inter-
national Statistical Review 68(3): pp. 233–258

Tibshirani, R. (1996): “Regression Shrinkage and Selection via the Lasso.” J. R.
Statist. Soc. B 58(1): pp. 267–288



Appendix A

Apendix

Table A.1: Akaike Information Criteria for GARCH(p,q)

p
q 1 2 3

1 -34060.58 -34062.25 -34034.98
2 -34051.50 -33931.26 -34054.49
3 -34035.56 -34053.94 -34052.28

Source: Author’s computations.

Figure A.1: 95% VaR-QR-GARCH calculation

Source: Author’s computations.
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Figure A.2: Lambda, Std. Deviation and Number of Coefficients

(a) of 95 % VaR (b) of 99 % VaR

Source: Author’s computations.

Table A.2: 95 % QR Parameters
No. Ticker Coefficient GICS.Sector No. Ticker Coefficient GICS.Sector

1 PGR 0.00420 Financials 49 AON -0.00019 Financials
2 GPS 0.00321 Consumer Discretionary 50 MDT -0.00021 Health Care
3 EBAY 0.00301 Consumer Discretionary 51 ETR -0.00026 Utilities
4 BAC 0.00252 Financials 52 K -0.00028 Consumer Staples
5 TSN 0.00183 Consumer Staples 53 IBM -0.00033 Information Technology
6 PHM 0.00178 Consumer Discretionary 54 HAS -0.00034 Consumer Discretionary
7 SCHW 0.00171 Financials 55 HBAN -0.00035 Financials
8 IFF 0.00163 Materials 56 ES -0.00036 Utilities
9 DTE 0.00159 Utilities 57 MTB -0.00037 Financials

10 HOG 0.00156 Consumer Discretionary 58 CAH -0.00045 Health Care
11 HIG 0.00146 Financials 59 HON -0.00046 Industrials
12 CSX 0.00144 Industrials 60 WY -0.00052 Real Estate
13 DHI 0.00135 Consumer Discretionary 61 CAG -0.00054 Consumer Staples
14 ALL 0.00121 Financials 62 FITB -0.00064 Financials
15 OMC 0.00102 Communication Services 63 PNC -0.00067 Financials
16 TAP 0.00092 Consumer Staples 64 IPG -0.00067 Communication Services
17 KSS 0.00091 Consumer Discretionary 65 LIN -0.00068 Materials
18 BEN 0.00084 Financials 66 SWK -0.00070 Industrials
19 CVS 0.00080 Health Care 67 HRB -0.00072 Consumer Discretionary
20 ADSK 0.00072 Information Technology 68 DHR -0.00073 Health Care
21 WBA 0.00071 Consumer Staples 69 GL -0.00075 Financials
22 SNA 0.00061 Industrials 70 CCL -0.00078 Consumer Discretionary
23 CMS 0.00054 Utilities 71 LMT -0.00083 Industrials
24 UNH 0.00052 Health Care 72 BSX -0.00097 Health Care
25 TROW 0.00052 Financials 73 FE -0.00116 Utilities
26 SHW 0.00045 Materials 74 NWL -0.00119 Consumer Discretionary
27 SLB 0.00041 Energy 75 ABT -0.00120 Health Care
28 SBUX 0.00035 Consumer Discretionary 76 SO -0.00153 Utilities
29 MSI 0.00035 Information Technology 77 UNM -0.00156 Financials
30 ROK 0.00033 Industrials 78 EMR -0.00162 Industrials
31 COP 0.00033 Energy 79 DUK -0.00168 Utilities
32 PPL 0.00031 Utilities 80 TFC -0.00171 Financials
33 WAT 0.00027 Health Care 81 PEG -0.00179 Utilities
34 GWW 0.00021 Industrials 82 NKE -0.00179 Consumer Discretionary
35 AZO 0.00016 Consumer Discretionary 83 NEM -0.00183 Materials
36 KLAC 0.00015 Information Technology 84 TGT -0.00187 Consumer Discretionary
37 AES 0.00014 Utilities 85 ORCL -0.00195 Information Technology
38 STT 0.00012 Financials 86 WFC -0.00222 Financials
39 JWN 0.00009 Consumer Discretionary 87 KEY -0.00223 Financials
40 EIX 0.00008 Utilities 88 intercept -0.00239
41 PH 0.00007 Industrials 89 USB -0.00263 Financials
42 VLO 0.00007 Energy 90 PFE -0.00280 Health Care
43 BF-B 0.00002 Consumer Staples 91 CVX -0.00300 Energy
44 QCOM -0.00004 Information Technology 92 WMT -0.00311 Consumer Staples
45 WMB -0.00012 Energy 93 APA -0.00321 Energy
46 LUV -0.00017 Industrials 94 T -0.00399 Communication Services
47 ADM -0.00018 Consumer Staples 95 MSFT -0.00443 Information Technology
48 MS -0.00018 Financials 96 BAX -0.00501 Health Care

Source: Author’s computations.
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Table A.3: 99 % QR Parameters
No. Ticker Coefficient GICS.Sector No. Ticker Coefficient GICS.Sector

1 PPL 0.00730 Utilities 37 WMB -0.00032 Energy
2 COP 0.00730 Energy 38 MCD -0.00033 Consumer Discretionary
3 XEL 0.00628 Utilities 39 JPM -0.00035 Financials
4 GPS 0.00479 Consumer Discretionary 40 IP -0.00040 Materials
5 TSN 0.00339 Consumer Staples 41 TGT -0.00040 Consumer Discretionary
6 MAS 0.00324 Industrials 42 HRB -0.00045 Consumer Discretionary
7 OMC 0.00301 Communication Services 43 AMGN -0.00050 Health Care
8 PGR 0.00295 Financials 44 CMI -0.00050 Industrials
9 TXT 0.00270 Industrials 45 MS -0.00051 Financials

10 DHI 0.00252 Consumer Discretionary 46 IPG -0.00052 Communication Services
11 GPC 0.00209 Consumer Discretionary 47 FE -0.00081 Utilities
12 DTE 0.00184 Utilities 48 DE -0.00093 Industrials
13 CSCO 0.00156 Information Technology 49 IBM -0.00098 Information Technology
14 ITW 0.00154 Industrials 50 OXY -0.00125 Energy
15 BSX 0.00153 Health Care 51 DIS -0.00129 Communication Services
16 BF-B 0.00131 Consumer Staples 52 TJX -0.00136 Consumer Discretionary
17 TAP 0.00117 Consumer Staples 53 EMR -0.00159 Industrials
18 PHM 0.00097 Consumer Discretionary 54 LOW -0.00184 Consumer Discretionary
19 ADSK 0.00087 Information Technology 55 EXC -0.00186 Utilities
20 AMAT 0.00083 Information Technology 56 MSFT -0.00219 Information Technology
21 MSI 0.00073 Information Technology 57 NEM -0.00247 Materials
22 KEY 0.00069 Financials 58 ORCL -0.00255 Information Technology
23 QCOM 0.00065 Information Technology 59 Intercept -0.00259
24 HOG 0.00059 Consumer Discretionary 60 MRO -0.00308 Energy
25 GWW 0.00054 Industrials 61 HBAN -0.00363 Financials
26 KSS 0.00049 Consumer Discretionary 62 APA -0.00364 Energy
27 UNH 0.00040 Health Care 63 DUK -0.00367 Utilities
28 CNP 0.00026 Utilities 64 GL -0.00379 Financials
29 AZO 0.00008 Consumer Discretionary 65 CVX -0.00387 Energy
30 XOM 0.00005 Energy 66 LUV -0.00418 Industrials
31 MAR 0.00002 Consumer Discretionary 67 CAG -0.00430 Consumer Staples
32 WAT 0.00001 Health Care 68 BAX -0.00657 Health Care
33 MTB -0.00007 Financials 69 WFC -0.00699 Financials
34 PEG -0.00022 Utilities 70 WMT -0.00739 Consumer Staples
35 KMB -0.00024 Consumer Staples 71 WY -0.00867 Real Estate
36 TFC -0.00025 Financials 72 SO -0.01465 Utilities

Source: Author’s computations.
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Table A.4: 95 % QR Parametres & Volatilities Product
NO. Ticker Value Security No. Ticker Value Security
2 GPS 14.33 Gap Inc. 56 ES -1.35 Eversource Energy
1 PGR 13.03 Progressive Corp. 61 CAG -1.4 Conagra Brands
8 IFF 12.54 Intl Flavors & Fragrances 49 AON -1.41 Aon plc
10 HOG 10.9 Harley-Davidson 50 MDT -1.41 Medtronic plc
11 HIG 10.53 Hartford Financial Svc.Gp. 52 K -1.42 Kellogg Co.
9 DTE 9.79 DTE Energy Co. 48 MS -1.47 Morgan Stanley
4 BAC 9.35 Bank of America Corp 64 IPG -2.03 Interpublic Group
3 EBAY 8.49 eBay Inc. 54 HAS -2.06 Hasbro Inc.
17 KSS 8.31 Kohl’s Corp. 51 ETR -2.09 Entergy Corp.
26 SHW 7.93 Sherwin-Williams 67 HRB -2.32 H&R Block
7 SCHW 7.69 Charles Schwab Corporation 72 BSX -2.87 Boston Scientific
5 TSN 7.59 Tyson Foods 62 FITB -2.98 Fifth Third Bancorp
14 ALL 7.21 Allstate Corp 69 GL -3 Globe Life Inc.
6 PHM 6.83 PulteGroup 58 CAH -3.34 Cardinal Health Inc.
15 OMC 6.53 Omnicom Group 68 DHR -3.42 Danaher Corp.
35 AZO 6.47 AutoZone Inc 60 WY -3.47 Weyerhaeuser
20 ADSK 5.87 Autodesk Inc. 59 HON -3.67 Honeywell Int’l Inc.
13 DHI 5.69 D. R. Horton 70 CCL -4.33 Carnival Corp.
22 SNA 5.48 Snap-on 74 NWL -4.56 Newell Brands
16 TAP 5.39 Molson Coors Brewing Company 57 MTB -4.57 M&T Bank Corp.
24 UNH 5.25 United Health Group Inc. 75 ABT -4.58 Abbott Laboratories
12 CSX 4.64 CSX Corp. 53 IBM -4.63 Int. Business Machines
19 CVS 4.57 CVS Health 76 SO -5.45 Southern Company
21 WBA 4.47 Walgreens Boots Alliance 73 FE -5.73 FirstEnergy Corp
29 MSI 4.22 Motorola Solutions Inc. 82 NKE -6.1 Nike
25 TROW 4.06 T. Rowe Price Group 66 SWK -6.21 Stanley Black & Decker
27 SLB 3.93 Schlumberger Ltd. 77 UNM -6.38 Unum Group
34 GWW 3.85 Grainger (W.W.) Inc. 65 LIN -6.53 Linde plc
30 ROK 3.63 Rockwell Automation Inc. 87 KEY -6.56 KeyCorp
18 BEN 3.6 Franklin Resources 63 PNC -6.61 PNC Financial Services
33 WAT 3.2 Waters Corporation 81 PEG -7.17 Public Serv. Enterprise Inc.
31 COP 2.08 ConocoPhillips 80 TFC -8.11 Truist Financial
36 KLAC 1.68 KLA Corporation 85 ORCL -8.2 Oracle Corp.
23 CMS 1.67 CMS Energy 78 EMR -9.52 Emerson Electric Company
28 SBUX 1.14 Starbucks Corp. 86 WFC -10.17 Wells Fargo
38 STT 1.06 State Street Corp. 90 PFE -10.62 Pfizer Inc.
32 PPL 0.99 PPL Corp. 89 USB -11.24 U.S. Bancorp
41 PH 0.76 Parker-Hannifin 79 DUK -11.34 Duke Energy
39 JWN 0.56 Nordstrom 71 LMT -11.74 Lockheed Martin Corp.
42 VLO 0.48 Valero Energy 83 NEM -12.49 Newmont Corporation
37 AES 0.44 AES Corp 84 TGT -14.56 Target Corp.
40 EIX 0.43 Edison Int’l 94 T -17.01 AT&T Inc.
43 BF-B 0.05 Brown-Forman Corp. 96 BAX -20.05 Baxter International Inc.
44 QCOM -0.33 QUALCOMM Inc. 92 WMT -22.1 Walmart
45 WMB -0.54 Williams Cos. 95 MSFT -25.39 Microsoft Corp.
46 LUV -0.64 Southwest Airlines 91 CVX -27.88 Chevron Corp.
47 ADM -0.73 Archer-Daniels-Midland Co 93 APA -33.91 Apache Corporation
55 HBAN -0.78 Huntington Bancshares 88 intercept

Source: Author’s computations.
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