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Introduction
Consider a stochastic differential equation whose coefficients are known up to a
unknown parameter. Suppose we observe a trajectory of a solution of the equa-
tion. The task to estimate the unknown parameter using the observed trajectory
is called the problem of parameter estimation and it is the topic of this Thesis.

In the Thesis we consider a finite dimensional linear stochastic equations driven
by a Volterra process. Volterra processes, introduced in Alòs, Mazet and Nualart
[1], have risen to popularity in the recent years. Results concerning existence and
regularity of solutions of stochastic differential equations driven by a Volterra pro-
cess were given in Bonaccorsi and Tudor [3], Čoupek and Maslowski [7], Čoupek,
Maslowski and Ondreját [8], Čoupek, Maslowski and Šnupárková [9] and Čoupek
[6]. Some articles, instead of a general Volterra process, consider the special
cases such as fractional Brownian motion (fBm). Linear stochastic equations in
a Hilbert space with a cylindrical fractional Brownian motion are considered by
Duncan, Maslowski and Pasik-Duncan in [10] and [12] where some results on
the continuity and space regularity of sample paths are given and large time be-
haviour of solutions is investigated. Similar results for a bilinear equation were
established by the same authors in [11]. For other works concerning stationarity
and large-time behavior of the solutions see e.g. Maslowski and Nualart [18],
Maslowski and Šnupárková [21] or Šnupárková [25].

Returning to the problem of parameter estimation, from the pioneer works
of Koski, Akademi and Loges [15] and Huebner and Rozovskii [14] who consid-
ered Wiener process as the source of noise, most of recent literature deals with
the noise in the form of a fractional Brownian motion. For example the work
of Cialenco, Lototsky and Posṕı̌sil [10] deals with space asymptotics for a max-
imum likelihood estimator. The work of Maslowski and Posṕı̌sil [19] proves the
strong consistency of the minimum contrast (MC) estimator considering fBm
with trace-class covariance operator as a driving noise. The work of Balde, Es-
Sebaiy and Tudor [2] deals with the least squares estimators constructed from
the one-dimensional projection of the mild solution to the linear SPDEs driven
by fBm and the work of Maslowski and Tudor [22] deals with the same problem
but consider an cylindrical fBm as a source of noise. For the results concerning
an asymptotic normality of the MC estimator see e.g. [16].

In this Thesis, in order to derive a strongly consistent estimators we employ
a method based on ergodicity used in [19], where an infinite-dimensional stochas-
tic differential equation with fractional Brownian motion as a noise is considered.
In the Thesis we consider only finite-dimensional case, but we (at least in the
beginning) allow the noise to be any α-regular Volterra process. Firstly, we
present conditions found in [6] under which a strongly stationary solution ex-
ists. Secondly, we find conditions under which the strongly stationary solution is
ergodic. As a corollary we obtain a similar ergodic-like result for any solution.
We employ these ergodic results to obtain the desired estimators. In order for
our main results to not be a special case of results from [19] we slightly general-
ize our setting and consider a stochastic differential equation with a mixed noise.
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Theorem 23 and Theorem 24 are thus a partial generalization of results from [19].

The structure of the Thesis is as follows. In Section 1 we introduce an α-regular
Volterra process and a we present a construction of stochastic integral of deter-
ministic functions with respect to an α-regular Volterra process. In the rest of the
first chapter we deal with various properties of the integral which will be needed
in the following chapters.

In Section 2 we present the results concerning a linear stochastic differential
equation of the form

dXt = AXt dt+ Φ dBt, t ≥ 0,
X0 = x0.

Firstly, we discuss the solution of the equation under consideration. Secondly, we
present the results of [6] concerning the existence of a strictly stationary solution.
Lastly, following [19], we show the ergodicity of a strictly stationary solution and
as a corollary we obtain a similar ergodic result for an arbitrary solution.

In Section 3 we slightly generalize the setting and results of Section 2. We
consider a stochastic differential equation of the form

dXt = AXt dt+
p∑

i=1
Φi dBi

t, t ≥ 0,

X0 = x0,

and obtain results analogous to those of Section 2. Ergodic results from this
chapter are the key ingredient needed in the last chapter.

In the last Section 4 we will consider an equation from Section 4 with added
multiplicative parameter in the drift, i.e.

dXt = γAXt dt+
p∑

i=1
Φi dBi

t, t ≥ 0,

X0 = x0,

with the unknown parameter γ. Following [19] and using the results from previ-
ous chapters we derive a strongly consistent estimators of γ.

The novelty of the Thesis consists in the new proof of ergodicity for stationary
solution (Theorem 15). Also the results in Section 3 can probably be considered
as new, although they are a rather straightforward generalization of results de-
scribed in Section 2. As a result of this generalization, the estimators derived in
Section 4 partially extend the results found in [19].

The results contained in the Thesis are closely related to GACR grant project
no. 19-07140S.
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1. Volterra processes
In this preliminary chapter we deal with the definition of a Volterra process, with
the definition of a stochastic integral with respect to a Volterra process and we
derive properties of such integrals. Most results in this chapter can be found in
[5] and [6]. See also [1] and [3].

1.1 Definition and basic properties
We start with the definition of a Volterra process.

Definition. A function K : R2 → R, (t, r) ↦→ K(t, r) satisfying

1. K(t, r) = 0 on {t < r},

2. ∀r ∈ R : limt→r+ K(t, r) = 0,

3. ∀r ∈ R : K(·, r) is continuously differentiable on (r,∞),

4. there exists an α ∈ (0, 1
2) and C ∈ (0,∞) such that⏐⏐⏐⏐⏐∂K∂t (u, r)

⏐⏐⏐⏐⏐ ≤ C(u− r)α−1

on {r < u}

is called an α-regular Volterra kernel.

The following lemma will be often needed later.

Lemma 1 ([6], Lemma 2.1). Let K be an α-regular Volterra kernel. Define

ϕ(u, v) =
u∧v∫

−∞

∂K

∂t
(u, r)∂K

∂t
(v, r) dr.

Then for u ̸= v we have ϕ(u, v) ≤ cα|u− v|2α−1 for some cα ∈ (0,∞).

Proof. Claim follows by using 4. from the definition of K and the substitution
z = v−r

u−r
.

Now for s1, t1, s2, t2 ∈ R define

R(s1, t1, s2, t2) =
∫
R

(K(t1, r) −K(s1, r)) (K(t2, r) −K(s2, r)) dr.

For s1 < t1 and s2 < t2 we set

R(s1, t1, s2, t2) :=
t1∫

s1

t2∫
s2

ϕ(u, v) du dv

and previous lemma implies that R(s1, t1, s2, t2) is finite.
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Definition. A stochastic process b = (bt, t ∈ R) is a two-sided α-regular Volterra
process, if b0 = 0 P-a.s., b is centred and

E(bt1 − bs1)(bt2 − bs2) = R(s1, t1, s2, t2)

for every s1, t1, s2, t2 ∈ R.

Remark ([6], Remark 2.2). An α-regular Volterra process has a version with
locally ε-Hölder continuous trajectories for every ε ∈ (0, α). In the sequel we
always work with this continuous version.

The following is an example of a Gaussian α-regular Volterra process. For the
proofs of statements in the example see e.g. [5], Example 1.26.

Example 1.1.1 (Two-sided fractional Brownian motion). Take H ∈ (0, 1). The
two-sided fractional Brownian motion (fBm) with the Hurst index H is defined
as a stochastic process BH = (BH

t , t ∈ R) which is continuous centred Gaussian
process with BH

0 = 0 P-a.s. and with a covariance function

E
[
BH

s B
H
t

]
= 1

2
(
|s|2H + |t|2H − |s− t|2H

)
, s, t ∈ R.

The existence and properties of BH are well-known. Assume that H > 1
2 . Let

cH =
(

H(2H − 1)
B(2 − 2H,H − 1

2)

) 1
2

where B(·, ·) is the Beta function. Let

KH(t, r) =

⎧⎪⎨⎪⎩cH

t∫
r
(u− r)H− 3

2 du, −∞ < r < t,

0, elsewhere.

Then BH is a two-sided (H− 1
2)-regular Volterra process with the (H− 1

2)-regular
Volterra kernel KH and the ϕH function from Lemma1 is of the form

ϕH(u, v) = H(2H − 1)|u− v|2H−2.

Furthermore, BH has stationary and reflexive increments.

1.2 Wiener integration
We now proceed with the definition of the integral with respect to an α-regular
Volterra process. In what follows we identify function equal almost everywhere.
Let b = (bt, t ∈ R) be a two-sided α-regular Volterra process. Denote E(R) the
set of R-valued step functions defined on R, i.e. f ∈ E(R) if and only if

f(t) =
n∑

j=1
fj1[tj−1,tj)(t), t ∈ R,
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for some n ∈ N, f1, . . . , fn ∈ R, t0, . . . , tn,∈ R, t0 < · · · < tn. Define the linear
map i : E(R) → L2(Ω;R) by

i

⎛⎝ n∑
j=1

fj1[tj−1,tj)(t)
⎞⎠ :=

n∑
j=1

fj

(
btj

− btj−1

)
.

Define a linear operator K∗ : E(R) → L2(R;R) by

(K∗f) (r) :=
∞∫
r

f(u)∂K
∂t

(u, r) du, f ∈ E(R), r ∈ R.

Assume, that K∗ is injective. For f ∈ E(R) it holds that

∥i(f)∥L2(Ω;R) = ∥K∗f∥L2(R;R) .

Indeed, we have that

∥i(f)∥2
L2(Ω;R) = E

⏐⏐⏐⏐⏐
n∑

i=1
fi(bti

− bti−1)
⏐⏐⏐⏐⏐
2

=
n∑

i=1

n∑
j=1

fifjE(bti
− bti−1)(btj

− btj−1)

=
n∑

j=1

n∑
i=1

fjfiR(ti−1, ti, tj−1, tj)

=
n∑

j=1

n∑
i=1

fjfi

∫
R

(K(ti, r) −K(ti−1, r)) (K(tj, r) −K(tj−1, r)) dr

=
∫
R

⏐⏐⏐⏐⏐
n∑

i=1
fi (K(ti, r) −K(ti−1, r))

⏐⏐⏐⏐⏐
2

dr =
∫
R

⏐⏐⏐⏐⏐⏐⏐
n∑

i=1
fi

ti∫
ti−1

∂K

∂t
(u, r) du

⏐⏐⏐⏐⏐⏐⏐
2

dr

=
∫
R

⏐⏐⏐⏐⏐⏐
n∑

i=1

∫
R

fi1[ti−1,ti)(u)∂K
∂t

(u, r) du

⏐⏐⏐⏐⏐⏐
2

dr =
∫
R

⏐⏐⏐⏐⏐⏐
n∑

i=1

∞∫
r

fi1[ti−1,ti)(u)∂K
∂t

(u, r) du

⏐⏐⏐⏐⏐⏐
2

dr

=
∫
R

⏐⏐⏐⏐⏐⏐
∞∫
r

f(u)∂K
∂t

(u, r) du

⏐⏐⏐⏐⏐⏐
2

dr =
∫
R

(K∗f)2 (r) dr = ∥K∗f∥2
L2(R,R) .

On E(R) we define an inner product ⟨·, ·⟩D by

⟨f, g⟩D = ⟨K∗f,K∗g⟩L2(R;R).

Denote D(R;R) the completion of E(R) under ⟨·, ·⟩D and extend K∗ from E(R) to
D(R;R). Denote this extension again by K∗. This extends i to a linear isometry
between D(R;R) and closed linear subspace of L2(Ω;R). The set D(R;R) is
called the set of admissible integrands and, for f ∈ D(R;R), the random variable
i(f) is called the stochastic integral of f with respect to the Volterra process b.
We use the notation ∫

f db :=
∫
f(r) dbr := i(f).

In order to a better specification of admissible integrands we will need the fol-
lowing definition and the theorem which follows it.
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Definition. Let β ∈ (0, 1), p ∈
[
1, 1

β

)
, f ∈ Lp(R;R). We then define an operator

Iβ
+ by

(Iβ
+f)(x) = 1

Γ(β)

x∫
−∞

f(t)(x− t)β−1 dt, x ∈ R

and call it the (left-sided) Riemann-Liouville fractional integral of f of order β
on R.

Theorem 1 (Hardy-Littlewood inequality). Let 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, β ∈
(0, 1). The operator Iβ

+ is a bounded operator from Lp(R;R) to Lq(R;R) if and
only if p ∈

(
1, 1

β

)
and q = p

1−βp
.

Proof. See e.g. [13], Theorem 4.

The following result gives us a better understanding of D(R;R).

Theorem 2 ([5], Proposition 1.9). The space L
2

1+2α (R;R) is continuously embed-
ded in D(R;R).

Proof. Let f ∈ E(R). We show that ∥f∥D ≤ C ∥f∥
L

2
1+2α

for a suitable constant
C > 0 depending only on α. We have

∥f∥2
D = ∥K∗f∥2

L2(R;R) =
∫
R

|K∗f |2(r) dr =
∫
R

⏐⏐⏐⏐⏐⏐
∞∫
r

f(u)∂K
∂t

(u, r) du

⏐⏐⏐⏐⏐⏐
2

dr

=
∫
R

∞∫
r

∞∫
r

f(u)f(v)∂K
∂t

(u, r)∂K
∂t

(v, r) du dv dr

=
∫
R

∫
R

u∧v∫
−∞

f(u)f(v)∂K
∂t

(u, r)∂K
∂t

(v, r) dr du dv

=
∫
R

∫
R

f(u)f(v)ϕ(u, v) du dv.

Now we use Lemma 1 to get

≤ cα

∫
R

∫
R

|f(u)||f(v)||u− v|2α−1 du dv

= 2cα

∫
R

v∫
−∞

|f(u)||f(v)||u− v|2α−1 du dv

= 2cα

∫
R

|f(v)|
⎛⎝ v∫

−∞

|f(u)|(v − u)2α−1

⎞⎠ dv

≤ 2cα

⎛⎝∫
R

|f(v)|
2

1+2α dv
⎞⎠ 1

2 +α
⎛⎜⎝∫

R

⎛⎝ v∫
−∞

|f(u)|(v − u)2α−1 du
⎞⎠ 2

1−2α

dv

⎞⎟⎠
1
2 −α

.
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Finally, we can use the Hardy-Littlewood inequality to get

= 2cα

(
∥f∥2

L
2

1+2α (R;R)

) 1
2 +α

Γ(2α)
(I2α

+ |f |
2

L
2

1−2α (R;R)

) 1
2 −α

≤ 2cα

(
∥f∥2

L
2

1+2α (R;R)

) 1
2 +α

Γ(2α)
(
Cα ∥|f |∥2

L
2

1+2α (R;R)

) 1
2 −α

= C ∥f∥2
L

2
1+2α (R;R)

,

where C depends only on α. We have shown the desired inequality

∥f∥D ≤ C ∥f∥
L

2
1+2α

. (∗)

Now, take f ∈ L
2

1+2α (R;R). Then there exists a sequence {fn} such that fn ∈
E(R), n ∈ N and fn → f in L

2
1+2α . By the inequality (∗), {fn} is Cauchy in

D(R;R) and by completeness thereof there is f̃ ∈ D(R;R) such thatf̃ − fn


D(R;R)

→ 0. Now we can identify f with f̃ .

In the sequel we identify f ∈ L
2

1+2α (R;R) with its image f̃ in D(R;R) under
the map from the previous theorem. Therefore any f ∈ L

2
1+2α (R;R) is now inte-

grable. Also, whenever we have a sequence fn ∈ E(R), n ∈ N such that fn → f

in L
2

1+2α (R;R) we have i(fn) → i(f) in L2(Ω;R).

In the previous theorem we showed the inequality

∥f∥D = ∥K∗f∥L2(R;R) ≤ C ∥f∥
L

2
1+2α (R;R)

for any f ∈ E(R). Now take f ∈ L
2

1+2α (R;R) and find a sequence {fn} of functions
from L

2
1+2α (R;R) such that fn → f in L

2
1+2α (R;R). Then

∥K∗f∥L2(R;R) = ∥f∥D(R;R) ≤ ∥f − fn∥D(R;R) + ∥fn∥D

≤ ∥f − fn∥D(R;R) + C ∥fn∥
L

2
1+2α (R;R)

−−−→
n→∞

C ∥f∥
L

2
1+2α (R;R)

,

since we identified f and f̃ . Therefore, for any f ∈ L
2

1+2α (R;R) we have that

∥f∥D = ∥K∗f∥L2(R;R) ≤ C ∥f∥
L

2
1+2α (R;R)

. (1.1)

We thus have the same inequality holding for a larger set of functions, i.e. for
any f ∈ L

2
1+2α (R;R).

Definition. Let −∞ < s < t < ∞. If f is a function defined only on (s, t] we
identify f with the function f ∗, defined on R, where

f ∗(t) =
{
f(t) : t ∈ (s, t]
0 : elsewhere

and similarly for functions defined only on (s, t), [s, t) and [s, t]. Now, for
f ∈ L

2
1+2α (s, t;R) we define the definite integral is,t(f) by

is,t(f) :=
t∫

s

f db :=
t∫

s

f(r) dbr := i(1[s,t)f).
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Remark. Since b is centred, for f1 ∈ L
2

1+2α (R;R) we have E (i(f1)) = 0 and for
f2 ∈ L

2
1+2α (s, t;R) we have E (is,t(f2)) = 0. If b is moreover Gaussian, then both

i(f1) and is,t(f2) are Gaussian.
In what follows we state some properties of stochastic integrals driven by a

Volterra process.
Theorem 3 ([5], Proposition 1.14). Let −∞ < a < b < c < ∞ and f ∈
L

2
1+2α (a, c;R). Then

c∫
a

f(s) dbs =
b∫

a

f(s) dbs +
c∫

b

f(s) dbs.

Proof. We have
c∫

a

f(s) dbs =
∫
1[a,c)(s)f(s) dbs =

∫ (
1[a,b)(s) + 1[b,c)(s)

)
f(s) dbs

=
∫
1[a,b)(s)f(s) dbs +

∫
1[b,c)(s)f(s) dbs

=
b∫

a

f(s) dbs +
c∫

b

f(s) dbs.

Lemma 2 ([5], Lemma 1.13). The extended operator K∗ : D(R;R) → L2(R;R)
satisfies

(K∗f) (r) =
∞∫
r

f(u)∂K
∂t

(u, r) du

for almost every r ∈ R and every f ∈ L
2

1+2α (R;R).

Proof. Take f ∈ L
2

1+2α (R;R) and a sequence {fn} of simple functions from E(R)
such that fn → f in L

2
1+2α (R;R). Then by (1.1) we getK∗f −

∞∫
·

f(u)∂K
∂t

(u, ·) du


L2(R;R)

≤ ∥K∗f − K∗fn∥L2(R;R) +


∞∫
·

fn(u)∂K
∂t

(u, ·) du−
∞∫
·

f(u)∂K
∂t

(u, ·) du


L2(R;R)

≤ C ∥f − fn∥
L

2
1+2α (R;R)

+


∞∫
·

(fn(u) − f(u))∂K
∂t

(u, ·) du


L2(R;R)

.

The first term converges to zero as n → +∞ trivially. The fact that the second
term converges to zero follows from the proof of Theorem 2.
Theorem 4 ([5], Proposition 1.14). Let s1 < t1, s2 < t2, f ∈ L

2
1+2α (s1, t1;R) and

g ∈ L
2

1+2α (s2, t2;R). Then

⟨is1,t1(f), is2,t2(g)⟩L2(Ω;R) =
t2∫

s2

t1∫
s1

f(u)g(v)ϕ(u, v) du dv,

where ϕ is defined in Lemma 1.

9



Proof. Denote f̂ = 1[s1,t1)f and ĝ = 1[s2,t2)g. Then similarly as in Theorem 2 and
using the previous lemma we have that

⟨is1,t1(f), is2,t2(g)⟩L2(Ω;R) =
⟨
i(f̂), i(ĝ)

⟩
L2(Ω;R)

=
⟨
K∗f̂ ,K∗ĝ

⟩
L2(R;R)

=
∫
R

∫
R

f̂(u)ĝ(v)ϕ(u, v) du dv =
t2∫

s2

t1∫
s1

f(u)g(v)ϕ(u, v) du dv.

Definition. Let m ∈ N. An Rm-valued stochastic process Y = (Yt, t ∈ R) is said
to have

1. stationary increments if for every n ∈ N, si, ti ∈ R, si < ti, i = 1, . . . , n and
for all h ∈ R we have

Law(Yt1+h − Ys1+h, . . . , Ytn+h − Ysn+h) = Law(Yt1 − Ys1 , . . . , Ytn − Ysn).

2. reflexive increments if for every n ∈ N, si, ti ∈ R, si < ti, i = 1, . . . , n we
have

Law(Yt1 − Ys1 , . . . , Ytn − Ysn) = Law(Y−s1 − Y−t1 , . . . , Y−sn − Y−tn).

A weak convergence of probability measures will be denoted by w∗
−→.

Theorem 5 ([6], Proposition 2.1). Let f ∈ L
2

1+2α

loc ([0,∞);R) and let b have sta-
tionary and reflexive increments. Then ∀t > 0 we have

t∫
0

f(t− s) dbs
D=

t∫
0

f(s) dbs
D=

0∫
−t

f(−s) dbs.

Proof. Take f =
n∑

j=1
fj1[tj−1,tj) ∈ E(R). Then i0,t(f) =

n∑
j=1

fj

(
btj

− btj−1

)
. Denote

g(s) = f(t− s). Then

g =
n∑

j=1
fj1(t−tj ,t−tj−1]

and, since we identified function equal almost everywhere,

i0,t(g) =
n∑

j=1
fj

(
bt−tj−1 − bt−tj

)
.

From stationarity and reflexivity of increments we get that

Law
(
bt−t0 − bt−t1 , . . . , bt−tn−1 − bt−tn

)
= Law

(
b−t0 − b−t1 , . . . , b−tn−1 − b−tn

)
= Law

(
bt1 − bt0 , . . . , btn − btn−1

)

10



and hence Law (i0,t(f)) = Law (i0,t(g)). Now, consider f ∈ L
2

1+2α

loc ([0,∞);R) arbi-
trary. We fix t > 0 and we again denote g(u) = f(t−u). We find a sequence of el-
ementary functions {fn} such that fn → f in L

2
1+2α (0, t;R). Let gn(u) = fn(t−u).

Clearly gn → g in L
2

1+2α (0, t;R). Then

Law
⎛⎝ t∫

0

fn(s) dbs

⎞⎠ w∗
−−−→
n→∞

Law (i0,t(f))

=
Law

⎛⎝ t∫
0

gn(s) dbs

⎞⎠ w∗
−−−→
n→∞

Law (i0,t(g)) .

This proves the first equality. The other equalities are proved similarly.

Definition. Let B = (Bt, t ∈ R) be an Rm valued stochastic process, B =
(B(i))m

i=1 and let B(1), . . . , B(m) be independent two-sided α-regular Volterra pro-
cesses, all with the same kernel K. We then call B an m-dimensional α-regular
Volterra process.

Define

D(R;Rm×m) :=
{
G = (Gij)m

i,j=1 : R → Rm×m|Gij ∈ D(R;R), i, j = 1, . . . ,m
}
.

We again call D(R;Rm×m) the set of admissible integrands. For G ∈ D(R;Rm×m)
and B m-dimensional α-regular Volterra process we define

i(G) :=
∫
G dB :=

∫
G(r) dBr :=

⎛⎝ m∑
j=1

∫
Gij(r) dB(j)

r

⎞⎠m

i=1

.

Sufficient condition for G to be integrable is G ∈ L
2

1+2α (R;Rm×m). Definite inte-
gral is defined naturally, i.e. for G ∈ L

2
1+2α

loc (R;Rm×m) and a < b we define

ia,b(G) :=
b∫

a

G dB :=
b∫

a

G(r) dBr :=
⎛⎝ m∑

j=1

b∫
a

Gij(r) dB(j)
r

⎞⎠m

i=1

.

In what follows we derive a formula for a covariance of two stochastic integrals
driven by Volterra processes. Recall the notion of uncorrelated stochastic pro-
cesses.

Definition. Centred stochastic processes X = (Xt, t ∈ R) and Y = (Yt, t ∈ R)
are uncorrelated if ∀s, t ∈ R : EXtYs = 0.

The following lemma is a slight modification of Proposition 1.18 from [6].

Lemma 3. For j = 1, 2 assume that b(j) is a one-dimensional αj-regular Volterra
process. Assume that b(1) and b(2) are uncorrelated. Let a, b, c, d ∈ R, a < b, c <

d, f ∈ L
2

1+2α1 (a, b;R), g ∈ L
2

1+2α2 (c, d;R). Then

E

⎡⎣ b∫
a

f(u) db(1)
u

d∫
c

g(u) db(2)
u

⎤⎦ = 0.
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Proof. For f, g simple the claim is obvious. Indeed, we have

E

⎡⎣ b∫
a

f(u) db(1)
u

d∫
c

g(u) db(2)
u

⎤⎦ = E

⎡⎣( n∑
i=1

fi(b(1)
ti

− b
(1)
ti−1)

)⎛⎝ k∑
j=1

gj(b(2)
sj

− b(2)
sj−1

)
⎞⎠⎤⎦

=
n∑

i=1

k∑
j=1

figj

(
Eb(1)

ti
b(2)

sj
− Eb(1)

ti−1b
(2)
sj

− Eb(1)
ti
b(2)

sj−1
+ Eb(1)

ti−1b
(2)
sj−1

)
= 0.

For f, g general, we find simple functions {fn}n∈N and {gn}n∈N such that fn → f

in L
2

1+2α1 (a, b;R) and gn → g in L
2

1+2α2 (c, d;R). Denote by i1 the integral from a
to b with respect to b(1) and denote by i2 the integral from c to d with respect to
b(2). Recall equation (1.1) which in our notations states that for j = 1, 2 we have
that

∥f∥Dj
=
K∗

jf


L2(R;R)
≤ Cj ∥f∥

L
2

1+2αj (R;R)
,

where ∥·∥Dj
and K∗

j are from the definition of ij and Cj is some constant (de-
pending only on αj). Then we have

E

⎡⎣ b∫
a

f(u) db(1)
u

d∫
c

g(u) db(2)
u

⎤⎦ = Ei1(f)i2(g) = ⟨i1(f), i2(g)⟩L2(Ω;R)

= ⟨i1(f) − i1(fn) + i1(fn), i2(g) − i2(gn) + i2(gn)⟩L2(Ω;R)

≤ ∥i1(f) − i1(fn)∥L2(Ω;R) ∥i2(g) − i2(gn)∥L2(Ω;R)

+ ∥i1(fn)∥L2(Ω;R) ∥i2(g) − i2(gn)∥L2(Ω;R) + ∥i2(gn)∥L2(Ω;R) ∥i1(f) − i1(fn)∥L2(Ω;R)

+ ⟨i1(fn), i2(gn)⟩L2(Ω;R)

= ∥f − fn∥D1
∥g − gn∥D2

+ ∥fn∥D1
∥g − gn∥D2

+ ∥gn∥D2
∥f − fn∥D1

+ 0
≤ C1 ∥f − fn∥

L
2

1+2α1
C2 ∥g − gn∥

L
2

1+2α2

+ C1 ∥fn∥
L

2
1+2α1

C2 ∥g − gn∥
L

2
1+2α2

+ C2 ∥gn∥
L

2
1+2α2

C1 ∥f − fn∥
L

2
1+2α1

,

which goes to zero as n → +∞.

Now it is easy to show the formula for a covariance of two stochastic integrals
driven by Volterra processes.
Theorem 6. Let s1, t1, s2, t2 ∈ R, s1 < t1, s2 < t2, G ∈ L

2
1+2α (s1, t1;Rm×m) and

H ∈ L
2

1+2α (s2, t2;Rm×m). Then

Cov
⎛⎝ t1∫

s1

G dB,
t2∫

s2

H dB
⎞⎠ =

t2∫
s2

t1∫
s1

G(u)H∗(v)ϕ(u, v) du dv.

Proof. Take i, j ∈ {1, . . . ,m}. We have⎛⎝Cov
⎛⎝ t1∫

s1

G dB,
t2∫

s2

H dB
⎞⎠⎞⎠

ij

= Cov

⎛⎜⎝
⎛⎝ t1∫

s1

G dB
⎞⎠

i

,

⎛⎝ t2∫
s2

H dB
⎞⎠

j

⎞⎟⎠
= Cov

⎛⎝ m∑
k=1

t1∫
s1

GikB
(k),

m∑
l=1

t2∫
s2

HjlB
(l)

⎞⎠
=

m∑
k=1

m∑
l=1

Cov
⎛⎝ t1∫

s1

GikB
(k),

t2∫
s2

HjlB
(l)

⎞⎠ .
12



By Lemma 3 the cross-terms are all zero. Thus

=
m∑

k=1
Cov

⎛⎝ t1∫
s1

GikB
(k),

t2∫
s2

HjkB
(k)

⎞⎠
=

m∑
k=1

t2∫
s2

t1∫
s1

Gik(u)Hjk(v)ϕ(u, v) du dv =
t2∫

s2

t1∫
s1

m∑
k=1

Gik(u)Hjk(v)ϕ(u, v) du dv

=
t2∫

s2

t1∫
s1

m∑
k=1

Gik(u)H∗
kj(v)ϕ(u, v) du dv =

t2∫
s2

t1∫
s1

(G(u)H∗(v))ij ϕ(u, v) du dv.

Theorem 7. For j = 1, 2 assume that B(j) is an m-dimensional αj-regular
Volterra process. Assume that B(1) and B(2) are uncorrelated. Let s1, t1, s2, t2 ∈
R, s1 < t1, s2 < t2, G ∈ L

2
1+2α1 (s1, t1;Rm×m) and H ∈ L

2
1+2α2 (s2, t2;Rm×m). Then

Cov
⎛⎝ t1∫

s1

G dB1,

t2∫
s2

H dB2

⎞⎠ = 0,

where 0 is a zero m×m matrix.

Proof. Take i, j ∈ {1, . . . ,m}. As before we have⎛⎝Cov
⎛⎝ t1∫

s1

G dB1,

t2∫
s2

H dB2

⎞⎠⎞⎠
ij

=
m∑

k=1

m∑
l=1

Cov
⎛⎝ t1∫

s1

GikB
1(k)
,

t2∫
s2

HjlB
2(l)

⎞⎠
and by Lemma 3 the right hand size is zero.

Lemma 4. For a, b ∈ R, a < b,G ∈ L
2

1+2α (a, b;Rm×m) we have the following
equality and inequality:


b∫

a

G dB


2

L2(Ω;Rm)

=
b∫

a

b∫
a

⟨G(u), G(v)⟩Rm×m ϕ(u, v) du dv

≤ C ∥G(s)∥2
L

2
1+2α (a,b;Rm×m)

,

where C is a positive constant depending only on α, a and b.

Proof.


b∫
a

G dB


2

L2(Ω;Rm)

= E


b∫

a

G dB


2

Rm

= E

⎡⎢⎣ m∑
i=1

⎛⎝ b∫
a

G dB
⎞⎠2

i

⎤⎥⎦
=

m∑
i=1

E

⎛⎝ m∑
j=1

b∫
a

Gij dB(j)

⎞⎠2

=
m∑

i=1

m∑
j=1

m∑
k=1

E

⎛⎝ b∫
a

Gij dB(j)
b∫

a

Gik dB(k)

⎞⎠
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By Lemma 3 and Theorem 6 we get

=
m∑

i=1

m∑
j=1

E

⎛⎝ b∫
a

Gij dB(j)
b∫

a

Gij dB(j)

⎞⎠
=

m∑
i=1

m∑
j=1

b∫
a

b∫
a

Gij(u)Gij(v)ϕ(u, v) du dv

=
b∫

a

b∫
a

m∑
i=1

m∑
j=1

Gij(u)G∗
ji(v)ϕ(u, v) du dv

=
b∫

a

b∫
a

m∑
i=1

(G(u)G∗(v))iiϕ(u, v) du dv =
b∫

a

b∫
a

Tr(G(u)G∗(v))ϕ(u, v) du dv

=
b∫

a

b∫
a

⟨G(u), G(v)⟩Rm×m ϕ(u, v) du dv.

This proves the equality. As for the inequality we can write

≤
b∫

a

b∫
a

∥G(u)∥Rm×m ∥G(v)∥Rm×m ϕ(u, v) du dv

and to finish the proof we can follow the exact same steps as in the proof of
Theorem 2.

The final theorem of this chapter is the stochastic version of the theorem by
Fubini.

Theorem 8 (Stochastic Fubini’s theorem). Let (E, µ) be a measurable space
equipped with a finite measure µ. Let

G : (E × [a, b],B(E) ⊗ B([a, b])) → (Rm×m,B(Rm×m)

be measurable. Let B be a two sided α-regular Rm-valued Volterra process and
assume that ∫

E

⎛⎝ b∫
a

∥G(x, s)∥
2

1+2α

Rm×m ds
⎞⎠α+ 1

2

dµ(x) < +∞.

Then

∫
E

⎛⎝ b∫
a

G(x, s) dBs

⎞⎠ dµ(x) =
b∫

a

⎛⎝∫
E

G(x, s) dµ(x)
⎞⎠ dBs, P − a.s.

Proof. For the proof of a more general statement see [5], Proposition 2.21.
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2. Stochastic differential
equations
In this chapter we will consider the equation

dXt = AXt dt+ Φ dBt, t ≥ 0,
X0 = x0,

(SDE)

where A,Φ ∈ Rm×m are real matrices, x0 is an Rm-valued random variable (called
the initial condition) and B is a two-sided m-dimensional α-regular Volterra pro-
cess.

Firstly, we will discuss the solution to (SDE) and its properties. Secondly, we will
present the result from [6] which gives us a condition under which there exists
an initial condition x∞ such that the solution with x∞ as an initial condition is
a strictly stationary process. Finally, following [19], we will discuss ergodicity.

2.1 Solution and its properties
Firstly, we will define what we mean by a solution to (SDE).

Definition. A continuous Rm-valued stochastic process X = (Xt, t ≥ 0) satisfy-
ing

Xt = x0 +
t∫

0

AXs ds+ ΦBt (2.1)

for all t ≥ 0 P-almost surely is called a solution to (SDE).

To show the uniqueness of the solution we will need the following

Theorem 9 (Grönwall’s lemma). Let I ⊂ R be an interval, s ∈ I and ε > 0.
Let ϱ, ξ : I → [0,+∞) be a non-negative functions. Let ξ be continuous and
ϱ ∈ L1

loc(I) be locally integrable. Assume that

ξ(t) ≤ ε+

⏐⏐⏐⏐⏐⏐
t∫

s

ξ(r)ϱ(r) dr

⏐⏐⏐⏐⏐⏐
holds for all t ∈ I. Then for all t ∈ I it holds that

ξ(t) ≤ ε exp
⎛⎝⏐⏐⏐⏐⏐⏐

t∫
s

ϱ(r) dr

⏐⏐⏐⏐⏐⏐
⎞⎠ .

Moreover, if

ξ(t) ≤

⏐⏐⏐⏐⏐⏐
t∫

s

ξ(r)ϱ(r) dr

⏐⏐⏐⏐⏐⏐
holds for all t ∈ I we have that ξ = 0 on I.
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Proof. See [24], Theorem D.1.

Now we can give an expression for the solution and show its uniqueness.
Theorem 10. Equation (SDE) admits a unique solution of the form

Xx0
t = eAtx0 +

t∫
0

eA(t−s)Φ dBs, t ≥ 0.

Proof. Firstly we show the uniqueness. Let Xx0 and Y x0 be two solutions to
(SDE). Then from the definition of the solution we have that for all t ≥ 0 it
P -a.s. holds that

Xx0
t − Y x0

t =
t∫

0

A(Xx0
s − Y x0

s ) ds.

Hence for almost all ω ∈ Ω it holds that

∥Xx0(t, ω) − Y x0(t, ω)∥Rm ≤
t∫

0

∥A∥Rm×m ∥Xx0(s, ω) − Y x0(s, ω)∥Rm ds

and the uniqueness follows from Grönwall’s lemma, since Xx0 and Y x0 are con-
tinuous. Define

X̂x0
t := eAtx0 +

t∫
0

eA(t−s)Φ dBs, t ≥ 0.

Since the map s ↦→ eA(t−s)Φ is in L
2

1+2α

loc (R;Rm×m) the X̂x0 is a well-defined
process. We show that X̂x0 is a solution to (SDE). We plug X̂x0 into the right
hand side of Equation (2.1). Take t ≥ 0. We have

x0 +
t∫

0

AX̂x0
s ds+ ΦBt = x0 +

t∫
0

A

⎛⎝eAsx0 +
s∫

0

eA(s−r)Φ dBr

⎞⎠ ds+ ΦBt

= x0 +
t∫

0

AeAsx0 ds+
t∫

0

s∫
0

AeA(s−r)Φ dBr ds+ ΦBt

= x0 + (eAt − 1)x0 +
t∫

0

s∫
0

AeA(s−r)Φ dBr ds+ ΦBt.

By the stochastic Fubini’s theorem, i.e. Theorem 8, we P-a.s. have that
t∫

0

s∫
0

AeA(s−r)Φ dBr ds =
t∫

0

t∫
r

AeA(s−r)Φ ds dBr =
t∫

0

t∫
r

d
ds
(
eA(s−r)Φ

)
ds dBr

=
t∫

0

[
eA(s−r)Φ

]t
s=r

dBr =
t∫

0

(
eA(t−r) − I

)
Φ dBr =

t∫
0

eA(t−r)Φ dBr − ΦBt.

Continuing the calculations from before we find out that

x0 + (eAt − 1)x0 +
t∫

0

s∫
0

AeA(s−r)Φ dBr ds+ ΦBt

= eAtx0 +
t∫

0

eA(t−r)Φ dBr − ΦBt + ΦBt = X̂x0
t .
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We have thus verified the equation Equation (2.1) with Xx0 = X̂x0 and that
completes the proof.

Remark. Assume that B is Gaussian. Assume that either x0 ∈ Rm is determin-
istic or x0 : Ω → Rm is Gaussian and independent of B. Then the solution Xx0

is also Gaussian.

The following lemma gives an alternative expression for the convolution inte-
gral

t∫
0
eA(t−s)Φ dBs. The idea of the lemma and its proof come from [20], Propo-

sition 3.1.

Lemma 5. Let

Zt =
t∫

0

eA(t−s)Φ dBs, t ≥ 0.

Then

Zt =
t∫

0

AeA(t−s)ΦBs ds+ ΦBt

holds for all t ≥ 0 P-a.s.

Proof. From the previous theorem we see that Z is the solution to (SDE) with
the initial condition x0 = 0. Therefore, by the definition of a solution, we have
that

Zt = A

t∫
0

Zs ds+ ΦBt,

for all t ≥ 0 P-a.s. Let L(t) =
t∫

0
Zs ds. Then

d
dtL(t) = Zt = A

t∫
0

Zs ds+ ΦBt = AL(t) + ΦBt, t > 0,

L(0) = 0.

But this is an ordinary differential equation with the (only) solution

L(t) =
t∫

0

eA(t−s)ΦBs ds, t ≥ 0.

Therefore we have

Zt = AL(t) + ΦBt =
t∫

0

AeA(t−s)ΦBs ds+ ΦBt

for all t ≥ 0 P-a.s.
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2.2 Stationary solution
In this chapter we present a sufficient conditions for the existence of such initial
condition x∞ that the solution Xx∞ is a strictly stationary process. We also
compute the covariance function of the stationary solution.

Theorem 11 ([6], Proposition 3.6). Assume that B has stationary and reflexive
increments. Assume that ∫ ∞

0

eAuΦ
 2

1+2α

Rm×m
du < ∞. (2.2)

Then there exists x∞ ∈ L2(Ω;Rm) such that (Xx∞
t , t ≥ 0) is a strictly stationary

process.

Proof. Let xn =
0∫

−n
e−AsΦ dBs for all n ∈ N. We show that {xn}n∈N is Cauchy in

L2(Ω;Rm). Take n, k ∈ N, n > k. Using the Lemma 4 we find out that

∥xn − xk∥2
L2(Ω;Rm) =


0∫

−n

e−AsΦ dBs −
0∫

−k

e−AsΦ dBs


2

L2(Ω;Rm)

=


−k∫

−n

e−AsΦ dBs


2

L2(Ω;Rm)

≤ C

⎛⎝ −k∫
−n

e−AuΦ
 2

1+2α

Rm×m
du
⎞⎠1+2α

= C

⎛⎝ n∫
k

eAuΦ
 2

1+2α

Rm×m
du
⎞⎠1+2α

≤ C

⎛⎝ ∞∫
k

eAuΦ
 2

1+2α

Rm×m
du
⎞⎠1+2α

,

which under our assumption tends to zero as n, k → ∞, n > k. Therefore there
exists x∞ ∈ L2(Ω;Rm) such that xn → x∞ in L2(Ω;Rm). Take k ∈ N and h ∈ R.
Denote by l.i.m.

n→∞
(limit in the mean) the limit in L2(Ω;Rm). We then have

Xx∞
t+h = l.i.m.

n→∞

⎛⎝eA(t+h)xn +
t+h∫
0

eA(t+h−s)Φ dBs

⎞⎠
= l.i.m.

n→∞

⎛⎝eA(t+h)
0∫

−n

e−AsΦ dBs +
t+h∫
0

eA(t+h−s)Φ dBs

⎞⎠
= l.i.m.

n→∞

⎛⎝ t+h∫
−n

eA(t+h−s)Φ dBs

⎞⎠ .
Denote by Bh

s = Bh−s, s ∈ R the process B shifted in time by h. Then

Law
(
Xx∞

t1+h, . . . , X
x∞
tk+h

)
= w∗- lim

n→∞
Law

⎛⎜⎝ t1+h∫
−n

eA(t1+h−s)Φ dBs, . . . ,

tk+h∫
−n

eA(tk+h−s)Φ dBs

⎞⎟⎠
= w∗- lim

n→∞
Law

⎛⎜⎝ t1∫
−n−h

eA(t1−s)Φ dBh
s , . . . ,

tk∫
−n−h

eA(tk−s)Φ dBh
s

⎞⎟⎠ .
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Since for a fixed h ∈ R it holds that n → ∞ ⇐⇒ n+ h → ∞ we have

= w∗- lim
n→∞

Law
⎛⎝ t1∫

−n

eA(t1−s)Φ dBh
s , . . . ,

tk∫
−n

eA(tk−s)Φ dBh
s

⎞⎠
and using a stationarity of increments we get

= w∗- lim
n→∞

Law
⎛⎝ t1∫

−n

eA(t1−s)Φ dBs, . . . ,

tk∫
−n

eA(tk−s)Φ dBs

⎞⎠
= Law

(
Xx∞

t1 , . . . , Xx∞
tk

)
,

which concludes the proof.

Before we state some remarks concerning previous theorem we introduce the
concept of exponential stability.

Definition. We say that
(
eAt, t ≥ 0

)
is exponentially stable if there exist con-

stants M,a > 0 such that the estimateeAt

Rm×m

≤ Me−at

holds for any t ≥ 0.

We follow up with two remarks concerning Theorem 11.

Remark. Assume that
(
eAt, t ≥ 0

)
is exponentially stable. Then

∫ ∞

0

eAuΦ
 2

1+2α

Rm×m
du ≤ ∥Φ∥

2
1+2α

Rm×m M
2

1+2α

∞∫
0

e− 2a
1+2α

u du < +∞.

Therefore, exponential stability is a sufficient condition for (2.2) to hold.

Remark. Assume that B is Gaussian. Denote by l.i.m.
n→∞

(limit in the mean) the
limit in L2(Ω;Rm). By construction from Theorem 11, the stationary solution
Xx∞ can be written as

Xx∞
t = eAtx∞ +

t∫
0

eA(t−s)Φ dBs = l.i.m.
n→∞

⎛⎝eAt

0∫
−n

e−AsΦ dBs +
t∫

0

eA(t−s)Φ dBs

⎞⎠
= l.i.m.

n→∞

t∫
−n

eA(t−s) dBs

for any t ≥ 0 P-a.s. Since
t∫

−n
eA(t−s) dBs is Gaussian for all n ∈ N it follows that

the stationary solution Xx∞ is Gaussian .

The following theorem gives us the formula for covariance of the stationary
solution. The idea for the theorem comes from [16], Lemma 5.1.
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Theorem 12. Under the assumptions of the previous theorem we have that

Cov (Xx∞
t , Xx∞

0 ) = eAtCov (x∞, x∞) +
0∫

−∞

t∫
0

eA(t−u)ΦΦ∗e−A∗vϕ(u, v) du dv

holds for any t ≥ 0.

Proof. Denote by l.i.m.
n→∞

(limit in the mean) the limit in L2(Ω;Rm). We have that

Cov (Xx∞
t , Xx∞

0 ) = Cov
⎛⎝eAtx∞ +

t∫
0

eA(t−s)Φ dBs,

0∫
−∞

e−AsΦ dBs

⎞⎠
= Cov

(
eAtx∞, x∞

)
+ Cov

⎛⎝ t∫
0

eA(t−s)Φ dBs, l.i.m.
n→∞

0∫
−n

e−AsΦ dBs

⎞⎠
= eAtCov (x∞, x∞) + lim

n→∞
Cov

⎛⎝ t∫
0

eA(t−s)Φ dBs,

0∫
−n

e−AsΦ dBs

⎞⎠ .
Using Theorem 6 we can continue with

= eAtCov (x∞, x∞) + lim
n→∞

0∫
−n

t∫
0

eA(t−u)ΦΦ∗e−A∗vϕ(u, v) du dv

= eAtCov (x∞, x∞) +
0∫

−∞

t∫
0

eA(t−u)ΦΦ∗e−A∗vϕ(u, v) du dv,

which completes the proof.

2.3 Ergodicity
In this chapter we will deal with the notion of ergodicity. The results of this part
of the Thesis are crucial in deriving strongly consistent parameter estimators
which will be the content of the last chapter. In this chapter we will show that
under certain conditions the strictly stationary solution, constructed in Theorem
11, is ergodic. As a corollary we will obtain obtain similar result for any initial
condition. This strongly follows [19], where the fractional Brownian motion as a
driving process is considered.

Firstly, recall the famous Birkhoff’s theorem and the definition of ergodic process.

Theorem 13 (Birkhoff’s theorem). Let (Xt, t ≥ 0) be an Rm-valued strictly
stationary stochastic process on (Ω,F ,P). Then for every measurable function
f : Rm → R such that E|f(X0)| < +∞ there exists a measurable function ξ :
Ω → R such that

lim
T →∞

1
T

T∫
0

f(Xt) dt = ξ, P- a.s.
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Definition. An Rm-valued strictly stationary stochastic process (Xt, t ≥ 0) is
said to be ergodic, if ξ from the previous theorem satisfies

ξ = E [f(X0)] , P- a.s.

To show that a given stochastic process is ergodic is in general not easy, but
for the Gaussian processes we have the following sufficient condition.

Theorem 14. Let Y = (Yt, t ≥ 0) be an Rm-valued strictly stationary Gaussian
stochastic process. Let R(t) := Cov(Yt, Y0). If ∥R(t)∥Rm×m → 0 as t → +∞, then
Y is ergodic.

Proof. See e.g. [23].

The following theorem gives us ergodicity for a strictly stationary solution.

Theorem 15. Assume that B is a Gaussian process with stationary and reflexive
increments. Assume that (eAt, t ≥ 0) is exponentially stable. Then the strictly
stationary solution (Xx∞

t , t ≥ 0) is ergodic.

Proof. Our assumptions imply that Theorem 11 and Theorem 12 hold. Strictly
stationary solution Xx∞ is therefore well-defined (by Theorem 11) and we have a
formula for its covariance (by Theorem 12). Because B is Gaussian we have that
Xx∞ is Gaussian and we can use Theorem 14. It therefore suffices to show that

lim
t→+∞

∥Cov (Xx∞
t , Xx∞

0 )∥ = 0.

We use the formula for the covariance matrix from Theorem 12. For t ≥ 0 we
have

∥Cov (Xx∞
t , Xx∞

0 )∥ =

=

eAtCov (x∞, x∞) +
0∫

−∞

t∫
0

eA(t−u)ΦΦ∗e−A∗vϕ(u, v) du dv


≤
eAt

 ∥Cov (x∞, x∞)∥ +
0∫

−∞

t∫
0

eA(t−u)ΦΦ∗e−A∗vϕ(u, v)
 du dv

≤ Me−at ∥Cov (x∞, x∞)∥ +
0∫

−∞

t∫
0

|ϕ(u, v)|
eA(t−u)

 ∥Φ∥ ∥Φ∗∥
e−A∗v

 du dv.

The first term on the right hand side converges to 0 as t → +∞. Recall that for
any m×m matrix B we have ∥B∗∥ = ∥B∥ and also

(
eB
)∗

= eB∗
. Thus

e−A∗v
 =

e(−vA)∗ =
(e−vA

)∗ =
e−vA

 =
e−Av

 .
Using again the inequality from Lemma 1 we can estimate the second term fur-
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ther. We get

0∫
−∞

t∫
0

|ϕ(u, v)|
eA(t−u)

 ∥Φ∥ ∥Φ∗∥
e−A∗v

 du dv

≤ cα ∥Φ∥2
0∫

−∞

t∫
0

|u− v|2α−1
eA(t−u)

 e−Av
 du dv

≤ cα ∥Φ∥2 M2
0∫

−∞

t∫
0

(u− v)2α−1e−a(t−u)e−a(−v) du dv

= cα ∥Φ∥2 M2e−at

0∫
−∞

t∫
0

(u− v)2α−1ea(u+v) du dv

= cα ∥Φ∥2 M2e−at

∞∫
0

t∫
0

(u+ v)2α−1ea(u−v) du dv.

Next we use the Fubini’s theorem and the fact that for u, v > 0 we have
(u+ v)2α−1 ≤ u2α−1. We get

e−at

∞∫
0

t∫
0

(u+ v)2α−1ea(u−v) du dv = e−at

t∫
0

∞∫
0

(u+ v)2α−1ea(u−v) dv du

= e−at

t∫
0

eau

∞∫
0

(u+ v)2α−1e−av dv du ≤ e−at

t∫
0

eauu2α−1
∞∫

0

e−av dv du

= 1
a
e−at

t∫
0

eauu2α−1 du.

It remains to show that

e−at

t∫
0

eauu2α−1 du → 0, t → +∞.

Clearly

e−at

t∫
0

eauu2α−1 du = e−at

1∫
0

eauu2α−1 du+ e−at

t∫
1

eauu2α−1 du

and the first term on the right hand side converges to 0 as t → +∞. As for the
second term we can use the L’Hôpital’s rule to get

lim
t→+∞

t∫
1
eauu2α−1 du

eat
= lim

t→+∞

eatt2α−1

aeat
= lim

t→+∞

t2α−1

a
= 0

which completes the proof.

Before we proceed to the main theorem of this chapter we will need the fol-
lowing estimate.
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Lemma 6. For almost all ω ∈ Ω and all ε > 0 there exists a constant K(ε, ω)
such that

∥B(t, ω)∥Rm ≤ εt2 +K(ε, ω)

holds for all t ≥ 0.

Proof. The proof of a spacial case of B being the fractional Brownian motion
can be found in [20], Lemma 2.6. The proof of the general case can be done by
mimicking the cited proof.

We set µ∞ = Law(x∞). We can thus write

E [f(Xx∞
0 )] = E[f(x∞)] =

∫
Rm

f(y) dµ∞(y).

Under the assumptions of Theorem 15 we have an ergodic stationary solution.
That means that

lim
T →+∞

1
T

T∫
0

f(Xx∞
t ) dt =

∫
Rm

f(y) dµ∞(y), P − a.s.,

holds for every measurable function f : Rm → R such that E|f(x∞)| < +∞. We
will now show the same type of convergence for any initial condition x0 under a
suitable Lipschitz-like condition on f .

Theorem 16. Let the assumptions of Theorem 15 hold. Let f : Rm → R be
masurable and such that E|f(x∞)| < +∞. Moreover, let f satisfy the following
condition: there exist constants L > 0 and d ∈ Z, d ≥ 0 such that

|f(x) − f(y)| ≤ L ∥x− y∥Rm

(
1 + ∥x∥d

Rm + ∥y∥d
Rm

)
, x, y ∈ Rm.

Then

lim
T →+∞

1
T

T∫
0

f(Xx0
t ) dt =

∫
Rm

f(y) dµ∞(y), P − a.s.

holds for any initial condition x0.

Proof. Throughout this proof a norm without a subscript is understood as a norm
in Rm, i.e. ∥·∥ = ∥·∥Rm . The desired convergence is equivalent to⏐⏐⏐⏐⏐⏐ 1T

T∫
0

f(Xx0
t ) dt−

∫
Rm

f(y) dµ∞(y)

⏐⏐⏐⏐⏐⏐ → 0

as T → +∞ P-a.s. Clearly⏐⏐⏐⏐⏐⏐ 1T
T∫

0

f(Xx0
t ) dt−

∫
Rm

f(y) dµ∞(y)

⏐⏐⏐⏐⏐⏐
≤

⏐⏐⏐⏐⏐⏐ 1T
T∫

0

f(Xx0
t ) dt− 1

T

T∫
0

f(Xx∞
t ) dt

⏐⏐⏐⏐⏐⏐+
⏐⏐⏐⏐⏐⏐ 1T

T∫
0

f(Xx∞
t ) dt−

∫
Rm

f(y) dµ∞(y)

⏐⏐⏐⏐⏐⏐
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and the second term on the right hand side converges to 0 as T → +∞ P-a.s
thanks to Birkhoff’s theorem and Theorem 15. As for the first term we have⏐⏐⏐⏐⏐⏐ 1T

T∫
0

f(Xx0
t ) dt− 1

T

T∫
0

f(Xx∞
t ) dt

⏐⏐⏐⏐⏐⏐ ≤ 1
T

T∫
0

|f(Xx0
t ) − f(Xx∞

t )| dt

≤ L

T

T∫
0

∥Xx0
t −Xx∞

t ∥
(
1 + ∥Xx0

t ∥d + ∥Xx∞
t ∥d

)
dt

≤ L

T

T∫
0

eAt

Rm×m

∥x0 − x∞∥
(
1 + ∥Xx0

t ∥d + ∥Xx∞
t ∥d

)
dt

≤ L

T
∥x0 − x∞∥M

T∫
0

e−at dt+ L

T
∥x0 − x∞∥M

T∫
0

e−at
(
∥Xx0

t ∥d + ∥Xx∞
t ∥d

)
dt

and the first term on the right hand side converges to 0 as T → +∞ P-a.s. It
remains to show that

1
T

T∫
0

e−at
(
∥Xx0

t ∥d + ∥Xx∞
t ∥d

)
dt → 0

as T → +∞ P-a.s. We have

∥Xx0
t ∥d + ∥Xx∞

t ∥d

≤

⎛⎝eAtx0

+


t∫

0

eA(t−s)Φ dBs


⎞⎠d

+
⎛⎝eAtx∞

+


t∫

0

eA(t−s)Φ dBs


⎞⎠d

=
d∑

k=0

(
d

k

)(eAtx0

d−k
+
eAtx∞

d−k
) 

t∫
0

eA(t−s)Φ dBs


k

≤
d∑

k=0

(
d

k

)
Md−ke−a(d−k)t

(
∥x0∥d−k + ∥x∞∥d−k

) 
t∫

0

eA(t−s)Φ dBs


k

.

Furthermore, using Lemma 5 we have


t∫
0

eA(t−s)Φ dBs


k

=


t∫

0

AeA(t−s)ΦBs ds+ΦBt


k

≤

⎛⎝ t∫
0

AeA(t−s)ΦBs

 ds+∥ΦBt∥

⎞⎠k

=
k∑

l=0

(
k

l

)⎛⎝ t∫
0

AeA(t−s)ΦBs

 ds
⎞⎠l

∥ΦBt∥k−l

=
k∑

l=1

(
k

l

)⎛⎝ t∫
0

AeA(t−s)ΦBs

 ds
⎞⎠l

∥ΦBt∥k−l + ∥ΦBt∥k ,

P-a.s. By Hölder inequality (with p = l) the right hand side may be estimated
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by

≤
k∑

l=1

(
k

l

)
tl−1

t∫
0

AeA(t−s)ΦBs

l
ds ∥ΦBt∥k−l + ∥ΦBt∥k

≤
k∑

l=1

(
k

l

)
∥A∥l

Rm×m ∥Φ∥k
Rm×m ∥Bt∥k−l tl−1

t∫
0

eA(t−s)
l

∥Bs∥l ds+ ∥ΦBt∥k

≤
k∑

l=1

(
k

l

)
∥A∥l

Rm×m ∥Φ∥k
Rm×m ∥Bt∥k−l tl−1M l

t∫
0

e−al(t−s) ∥Bs∥l ds+ ∥ΦBt∥k .

Setting
Ck,l := Md−k

(
∥x0∥d−k + ∥x∞∥d−k

)
∥A∥l

Rm×m ∥Φ∥k
Rm×m M

l

we have that
1
T

T∫
0

e−at
(
∥Xx0

t ∥d + ∥Xx∞
t ∥d

)
dt

≤ 1
T

T∫
0

e−at
d∑

k=0

k∑
l=1

(
d

k

)(
k

l

)
Ck,le

−a(d−k)ttl−1 ∥Bt∥k−l

t∫
0

e−al(t−s) ∥Bs∥l ds dt

+ 1
T

T∫
0

e−at
d∑

k=0

(
d

k

)
Ck,0e

−a(d−k)t ∥Bt∥k dt

=
d∑

k=0

k∑
l=1

(
d

k

)(
k

l

)
Ck,l

1
T

T∫
0

e−a(1+d−k)ttl−1 ∥Bt∥k−l

t∫
0

e−al(t−s) ∥Bs∥l ds dt

+
d∑

k=0

(
d

k

)
Ck,0

1
T

T∫
0

e−a(1+d−k)t ∥Bt∥k dt.

What remains to show is that
1
T

T∫
0

e−a(1+d−k)ttl−1 ∥Bt∥k−l

t∫
0

e−al(t−s) ∥Bs∥l ds dt → 0

as T → +∞ P-a.s. and that

1
T

T∫
0

e−a(1+d−k)t ∥Bt∥k dt → 0

as T → +∞ P-a.s. We will show only the first convergence as the second one is
analogous and simpler. To show this we are going to work pathwise and utilize
the previous Lemma 6. Using this lemma we take ω ∈ Ω such that

∥B(t, ω)∥ ≤ t2 +K(1, ω).
Then

t∫
0

e−al(t−s) ∥B(s, ω)∥l ds ≤
t∫

0

e−al(t−s)(s2 +K(1, ω))l ds

=
t∫

0

e−al(t−s)
l∑

i=0

(
l

i

)
s2iK(1, ω)l−i ds =

l∑
i=0

(
l

i

)
K(1, ω)l−i

t∫
0

e−al(t−s)s2i ds
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and similarly

∥B(t, ω)∥k−l ≤
(
t2 +K(1, ω)

)k−l
=

k−l∑
j=0

(
k − l

j

)
t2jK(1, ω)k−l−j.

Therefore

1
T

T∫
0

e−a(1+d−k)ttl−1 ∥B(t, ω)∥k−l

t∫
0

e−al(t−s) ∥B(s, ω)∥l ds dt

≤
l∑

i=0

k−l∑
j=0

(
l

i

)
K(1, ω)l−i

(
k − l

j

)
K(1, ω)k−l−j 1

T

T∫
0

e−a(1+d−k)ttl−1t2j

t∫
0

e−al(t−s)s2idsdt.

Lastly, we will use twice the L’Hôpital’s rule to calculate the limit:

lim
T →+∞

T∫
0
e−a(1+d−k)ttl−1+2j

t∫
0
e−al(t−s)s2i ds dt

T

= lim
T →+∞

e−a(1+d−k)TT l−1+2j
T∫
0
e−al(T −s)s2i ds

1

= lim
T →+∞

T∫
0
ealss2i ds

ea(1+d−k+l)TT 1−l−2j

= lim
T →+∞

ealTT 2i

a(1 + d− k + l)ea(1+d−k+l)TT 1−l−2j + (1 − l − 2j)T−l−2jea(1+d−k+l)T

= lim
T →+∞

e−a(1+d−k)T T 2i

a(1 + d− k + l)T 1−l−2j + (1 − l − 2j)T−l−2j

= 0,

because 0 ≤ k ≤ d. In the view of Lemma 6 we have shown the desired conver-
gence for almost all trajectories and thus finished the proof.
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3. SDEs with a mixed noise
Results in this chapter are a straightforward generalization of results from the
previous chapter. The reason we do not omit the previous chapter is for clarity
reasons. Throughout this chapter we will consider the equation

dXt = AXt dt+
p∑

i=1
Φi dBi

t, t ≥ 0,

X0 = x0,

(3.1)

where p ∈ N, A ∈ Rm×m is a real matrix, x0 is an Rm-valued random variable
and for each i ∈ {1, . . . , p} we have that Φi ∈ Rm×m is a real matrix and Bi is
a two-sided m-dimensional αi-regular Volterra process. Furthermore, we assume
that B1, . . . , Bp are independent.

3.1 Solution, its properties and the strictly sta-
tionary solution

Firstly we define what we mean by a solution to equation (3.1).

Definition. A continuous Rm-valued stochastic process X = (Xt, t ≥ 0) satisfy-
ing

Xt = x0 +
t∫

0

AXs ds+
p∑

i=1
ΦiBi

t

for all t ≥ 0 P-almost surely is called a solution to equation (3.1).

We have the following formula for a solution.

Theorem 17. Equation (3.1) admits a unique solution of the form

Xx0
t = eAtx0 +

p∑
i=1

t∫
0

eA(t−s)Φi dBi
s, t ≥ 0.

Proof. This can be shown in the exactly the same way as in the proof of Theorem
10.

Remark. Assume that for each i ∈ {1, . . . , p} we have that Bi is Gaussian.
Assume that either x0 ∈ Rm is deterministic or x0 : Ω → Rm is Gaussian and
independent of all Bi. Then the solution Xx0 is also Gaussian.

The following theorem gives us a strictly stationary solution.

Theorem 18. Assume that for each i ∈ {1, . . . , p} we have that Bi has stationary
and reflexive increments. Assume that for all i ∈ {1, . . . , p} we moreover have
that ∫ ∞

0

eAuΦi
 2

1+2α

Rm×m
du < ∞. (3.2)

Then there exists x∞ ∈ L2(Ω;Rm) such that (Xx∞
t , t ≥ 0) is a strictly stationary

process.
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Proof. Following the lines of the proof of Theorem 11 we let

xn =
p∑

i=1

0∫
−n

e−AsΦi dBi
s

for all n ∈ N. We show that {xn}n∈N is Cauchy in L2(Ω;Rm). Take n, k ∈ N, n >
k. We again find out that

∥xn − xk∥2
L2(Ω;Rm) =


p∑

i=1

−k∫
−n

e−AsΦi dBi
s


2

L2(Ω;Rm)

≤
p∑

i=1


−k∫

−n

e−AsΦi dBi
s


2

L2(Ω;Rm)

≤
p∑

i=1
Ci

⎛⎝ ∞∫
k

eAuΦi
 2

1+2α

Rm×m
du
⎞⎠1+2α

,

which under our assumption tends to zero as n, k → ∞, n > k. The rest of the
proof can be carried in the same way as the proof of Theorem 11.

The same remarks as in the previous chapter apply.

Remark. Firstly, note that the exponential stability of
(
eAt, t ≥ 0

)
is again suf-

ficient for (3.2) to hold. Secondly, assume that for every i ∈ {1, . . . , p} we have
that Bi is Gaussian. By construction from Theorem 18 we have that

Xx∞
t = l.i.m.

n→∞

⎛⎝ p∑
i=1

t∫
−n

eA(t−s)Φi dBi
s

⎞⎠ ,
holds for any t ≥ 0 and it follows that Xx∞ is Gaussian.

We again have a formula for the covariance of a strictly stationary solution:

Theorem 19. Under the assumptions of the previous theorem we have that

Cov (Xx∞
t , Xx∞

0 ) = eAtCov (x∞, x∞)+
p∑

i=1

0∫
−∞

t∫
0

eA(t−u)Φi
(
Φi
)∗
e−A∗vϕi(u, v) du dv.

Proof. Denote by l.i.m.
n→∞

(limit in the mean) the limit in L2(Ω;Rm). We have that

Cov (Xx∞
t , Xx∞

0 ) = Cov
⎛⎝eAtx∞ +

p∑
i=1

t∫
0

eA(t−s)Φi dBi
s,

p∑
j=1

0∫
−∞

e−AsΦj dBj
s

⎞⎠
= Cov

(
eAtx∞, x∞

)
+ Cov

⎛⎝ p∑
i=1

t∫
0

eA(t−s)Φi dBi
s, l.i.m.

n→∞

p∑
j=1

0∫
−n

e−AsΦj dBj
s

⎞⎠
= eAtCov (x∞, x∞) + lim

n→∞
Cov

⎛⎝ p∑
i=1

t∫
0

eA(t−s)Φi dBi
s,

p∑
j=1

0∫
−n

e−AsΦj dBj
s

⎞⎠
= eAtCov (x∞, x∞) + lim

n→∞

p∑
i=1

p∑
j=1

Cov
⎛⎝ t∫

0

eA(t−s)Φi dBi
s,

0∫
−n

e−AsΦj dBj
s

⎞⎠ .
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Theorem 7 implies that

= eAtCov (x∞, x∞) + lim
n→∞

p∑
i=1

Cov
⎛⎝ t∫

0

eA(t−s)Φi dBi
s,

0∫
−n

e−AsΦi dBi
s

⎞⎠ .
Finally, Theorem 6 gives us

= eAtCov (x∞, x∞) + lim
n→∞

p∑
i=1

0∫
−n

t∫
0

eA(t−u)Φi
(
Φi
)∗
e−A∗vϕi(u, v) du dv

= eAtCov (x∞, x∞) +
p∑

i=1

0∫
−∞

t∫
0

eA(t−u)Φi
(
Φi
)∗
e−A∗vϕi(u, v) du dv.

3.2 Ergodicity
We have the following ergodic theorems.
Theorem 20. Assume that for each i ∈ {1, . . . , p} we have that Bi is a Gaussian
process with stationary and reflexive increments. Assume that (eAt, t ≥ 0) is
exponentially stable. Then the strictly stationary solution (Xx∞

t , t ≥ 0) is ergodic.
Proof. Throughout this proof all norms ∥·∥ are understood as norms in Rm×m.
Using Theorem 14 it suffices to show that

lim
t→+∞

∥Cov (Xx∞
t , Xx∞

0 )∥ = 0.

We use the expression for the covariance matrix from Theorem 12. For t ≥ 0 we
have

∥Cov (Xx∞
t , Xx∞

0 )∥ =

=

eAtCov (x∞, x∞) +
p∑

i=1

0∫
−∞

t∫
0

eA(t−u)Φi
(
Φi
)∗
e−A∗vϕi(u, v) du dv


≤
eAt

 ∥Cov (x∞, x∞)∥ +
p∑

i=1

0∫
−∞

t∫
0

eA(t−u)Φi
(
Φi
)∗
e−A∗vϕi(u, v)

 du dv.

The first term converges to 0 as t → +∞ due to exponential stability. The fact
that the second term converges to 0 as t → +∞ have been shown in the proof of
Theorem 15.
Theorem 21. Let the assumptions of Theorem 20 hold. Let f : Rm → R be
masurable and such that E|f(x∞)| < +∞. Moreover, let f satisfy the following
condition: there exist constants L > 0 and d ∈ Z, d ≥ 0 such that

|f(x) − f(y)| ≤ L ∥x− y∥Rm

(
1 + ∥x∥d

Rm + ∥y∥d
Rm

)
, x, y ∈ Rm.

Then

lim
T →+∞

1
T

T∫
0

f(Xx0
t ) dt =

∫
Rm

f(y) dµ∞(y), P − a.s.

for all x0 ∈ Rm.

29



Proof. We can mimic the proof of Theorem 16 until the point where it remains
to show that

1
T

T∫
0

e−at
(
∥Xx0

t ∥d + ∥Xx∞
t ∥d

)
dt → 0

as T → +∞ P-a.s. Now we have that

∥Xx0
t ∥d + ∥Xx∞

t ∥d

≤

⎛⎝eAtx0

+


p∑

i=1

t∫
0

eA(t−s)Φi dBi
s


⎞⎠d

+
⎛⎝eAtx∞

+


p∑

i=1

t∫
0

eA(t−s)Φi dBi
s


⎞⎠d

=
d∑

k=0

(
d

k

)(eAtx0

d−k
+
eAtx∞

d−k
) 

p∑
i=1

t∫
0

eA(t−s)Φi dBi
s


k

≤
p∑

i=1

d∑
k=0

(
d

k

)
Md−ke−a(d−k)t

(
∥x0∥d−k + ∥x∞∥d−k

) 
t∫

0

eA(t−s)Φi dBi
s


k

.

The rest of the proof can be completed in the same way as the proof of Theorem
16.
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4. Parameter estimation
In this chapter we consider the stochastic differential equation from the previous
section with added multiplicative parameter in the drift. We use the results from
previous chapters in order to derive two strongly consistent estimators of the
unknown parameter. As the main tool we employ the ergodic results from the
previous section. This mimics the approach from [19] where the authors consid-
ered an infinite-dimensional analogy to our equation and a fractional Brownian
motion as a noise. We will specify the differences between the above article and
this Thesis later in this chapter.

Consider the equation

dXt = γAXt dt+
p∑

i=1
Φi dBi

t, t ≥ 0,

X0 = x0,

(4.1)

where γ > 0 is the unknown scalar parameter, p ∈ N, A ∈ Rm×m is a real matrix,
x0 is an Rm-valued random variable and for each i ∈ {1, . . . , p} we have that
Φi ∈ Rm×m is a real matrix. As in the beginning of the previous chapter we start
with the following basic assumption about the noise:

0. Assume that for i ∈ {1, . . . , p} we have that Bi is a two-sided m-dimensional
αi-regular Volterra process. Furthermore, assume that B1, . . . , Bp are in-
dependent.

These assumptions are the same as those at the begining of the previous chapter.
In order for the results of Theorem 18, Theorem 19, Theorem 20 and Theorem
21 to be valid we, as in the previous chapter, add the following assumptions:

1. For all i ∈ {1, . . . , p} we have that Bi has stationary and reflexive incre-
ments.

2. We assume the exponential stability, i.e.eAt
 ≤ Me−at, t ≥ 0,

holds for some a,M > 0.

3. We assume that Bi is a Gaussian process for all i ∈ {1, . . . , p}.

Under all these assumptions we have the following results from the previous
chapter. The solution to (4.1) is

Xx0
t = eγAtx0 +

p∑
i=1

t∫
0

eγA(t−s)Φi dBi
s, t ≥ 0.

For x0 ∈ Rm deterministic the solution Xx0 is a Gaussian process. For the initial
condition

xγ
∞ = l.i.m.

n→∞

p∑
i=1

0∫
−n

e−γAsΦi dBi
s

31



the solution Xxγ
∞ is a strictly stationary Gaussian process and most importantly

the Xxγ
∞ is ergodic.

In order to estimate γ we will utilize the following simple lemma.

Lemma 7. Let Y = (Y1, . . . , Ym)∗ : Ω → Rm be a random variable with E[Y ] = 0
and µ = Law (Y ) its probability law. Let z ∈ Rm. Then∫

Rm

∥y∥2
Rm dµ(y) = Tr Cov(Y, Y )

and ∫
Rm

⟨y, z⟩2
Rm dµ(y) = ⟨Cov(Y, Y )z, z⟩Rm .

Proof. We have that∫
Rm

∥y∥2
Rm dµ(y) = E ∥Y ∥2

Rm =
m∑

i=1
EY 2

i =
m∑

i=1
Var(Yi) = Tr Cov(Y, Y )

and similarly for the second equality.

Set µγ
∞ = Law(xγ

∞) and f(x) = ∥x∥2
Rm , x ∈ Rm. Then we can use Theorem

21 to get

lim
T →+∞

1
T

T∫
0

∥Xx0
t ∥2

Rm dt =
∫
Rm

∥y∥2
Rm dµγ

∞(y) = Tr Cov(xγ
∞, x

γ
∞), P-a.s.

Moreover, we have

Cov(xγ
∞, x

γ
∞) = Cov

⎛⎝l.i.m.
n1→∞

p∑
i=1

0∫
−n1

e−γAsΦi dBi
s, l.i.m.

n2→∞

p∑
j=1

0∫
−n2

e−γAsΦj dBj
s

⎞⎠
= lim

n1→∞
lim

n2→∞

p∑
i=1

p∑
j=1

Cov
⎛⎝ 0∫

−n1

e−γAsΦi dBi
s,

0∫
−n2

e−γAsΦj dBj
s

⎞⎠
= lim

n1→∞
lim

n2→∞

p∑
i=1

Cov
⎛⎝ 0∫

−n1

e−γAsΦi dBi
s,

0∫
−n2

e−γAsΦi dBi
s

⎞⎠ .
Since Bi has stationary and reflexive increments we can use Theorem 5 to get

= lim
n1→∞

lim
n2→∞

p∑
i=1

Cov
⎛⎝ n1∫

0

eγAsΦi dBi
s,

n2∫
0

eγAsΦi dBi
s

⎞⎠
= lim

n1→∞
lim

n2→∞

p∑
i=1

n2∫
0

n1∫
0

eγAuΦi
(
Φi
)∗
eγA∗vϕi(u, v) du dv

=
p∑

i=1

∞∫
0

∞∫
0

eγAuΦi
(
Φi
)∗
eγA∗vϕi(u, v) du dv

= 1
γ2

p∑
i=1

∞∫
0

∞∫
0

eAuΦi
(
Φi
)∗
eA∗vϕi

(
u

γ
,
v

γ

)
du dv.
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Now, suppose we have

ϕi

(
u

γ
,
v

γ

)
= ψi(γ)ϕi(u, v) (4.2)

for some function ψi : (0,+∞) → (0,+∞). It follows that

Cov(xγ
∞, x

γ
∞) = 1

γ2

p∑
i=1

ψi(γ)Qi,

where

Qi =
∞∫

0

∞∫
0

eAuΦi
(
Φi
)∗
eA∗vϕi (u, v) du dv

does not depend on the unknown γ. This gives us

lim
T →+∞

1
T

T∫
0

∥Xx0
t ∥2

Rm dt =
p∑

i=1

ψi(γ)
γ2 TrQi, P-a.s.

Provided the function
γ ↦→

p∑
i=1

ψi(γ)
γ2 TrQi

has a continuous inverse, call it ψ̃, we get

ψ̃

⎛⎝ 1
T

T∫
0

∥Xx0
t ∥2

Rm dt
⎞⎠ → γ

as T → +∞ P-a.s. and thus we get a strongly consistant estimator of γ. Let
us return to equation (4.2). Under our assumptions, it turns out equation (4.2)
implies that Bi is self similar.

Definition. Let X = (Xt, t ∈ R) be a stochastic process. We say that X is
self-similar, if there exists a function g such that ∀t ∈ R and ∀a > 0 we have that

Xat
D= g(a)Xt .

We assumed that
Bi

t ∼ N(0,Var(Bi
t)), t ∈ R.

For simplicity assume now that Bi is one dimensional and t ≥ 0. Assume that
equation (4.2) holds. Recalling the definition of Volterra process we have

Var(Bi
t) = E

[
Bi

tB
i
t

]
= R(0, t, 0, t) =

t∫
0

t∫
0

ϕi(u, v) du dv.

Then

Var(Bi
at) =

at∫
0

at∫
0

ϕi(u, v) du dv = a2
t∫

0

t∫
0

ϕi(au, av) du dv

= a2

ψi(a)

t∫
0

t∫
0

ϕi(u, v) du dv = a2

ψi(a)Var(Bi
t).

33



Therefore
Bi

at
D= a√

ψi(a)
Bi

t

and Bi is self-similar. If Bi is m-dimensional, it is composed of m indepen-
dent one-dimensional self-similar Volterra processes, all with the same function
ϕi, and it follows it is self-similar. To summarize, to obtain an estimator of γ
we assume that (4.2) holds. This, combined with the previous assumptions on
Bi, implies that each Bi is self-similar. Therefore, we assume that each Bi is
centred continuous Gaussian process starting from zero with stationary (and re-
flexive) increments and that Bi is self-similar. Recall the following well-known
characterization of a (two-sided) fractional Brownian motion.
Theorem 22. Let X = (Xt, t ∈ R) be a continuous centred self-similar Gaussian
process with stationary increments and with X0 = 0, P-a.s. Then X is a fractional
Brownian motion.
Proof. See e.g. [17], Proposition 3.8.

In the rest of this chapter we will therefore assume that for each i ∈ {1, . . . , p}
the Bi is a two-sided Fractional Brownian motion with the Hurst parameter
Hi ∈

(
1
2 , 1

)
. To emphasize this we will write BHi in place of Bi. For BHi we have

ϕHi
(u, v) = Hi(2Hi − 1)|u− v|2Hi−2

and thus

ϕHi

(
u

γ
,
v

γ

)
= Hi(2Hi − 1)

⏐⏐⏐⏐⏐uγ − v

γ

⏐⏐⏐⏐⏐
2Hi−2

= 1
γ2Hi−2ϕHi

(u, v).

The following simple lemma will be used later.
Lemma 8. Let Q ∈ Rm×m be a non-zero, symmetric and positive semidefinite
matrix. Then Tr(Q) > 0.
Proof. Assume that Tr(Q) = 0. For z ∈ Rm we have

⟨Qz, z⟩Rm =
m∑

i=1

m∑
j=1

Qijzizj = 2
∑

1≤i<j≤m

Qijzizj.

Since Q ̸= 0 we have that Qkl ̸= 0 for some indexes k < l. Now take z̃ :=
ek − sgn(Qkl)el, where ei = (0, . . . , 0, 1, 0, . . . , 0)∗ and the 1 is the i-th coordinate.
Then

⟨Qz̃, z̃⟩Rm = 2Qklz̃kz̃l = −2 sgn(Qkl)Qkl < 0.
Therefore Q is not a positive semidefinite matrix.

Before we state the two main theorems of this Thesis we for clarity repeat our
final set of assumptions. We consider the equation

dXt = γAXt dt+
p∑

i=1
Φi dBHi

t , t ≥ 0,

X0 = x0,

(4.3)

where γ > 0 is the unknown scalar parameter, p ∈ N, A ∈ Rm×m is a real matrix,
x0 is an Rm-valued random variable and for each i ∈ {1, . . . , p} we have that
Φi ∈ Rm×m is a real matrix.
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(A1) For each i ∈ {1, . . . , p} the BHi is a two-sided fractional Brownian motion
with the Hurst parameter Hi ∈

(
1
2 , 1

)
and BH1 , . . . , BHp are independent.

(A2) The (eAt, t ≥ 0) is exponentially stable.

Let us return to the article [19] which this chapter mimics. In this article the
authors considered the Equation 4.3 with p = 1 and within an infinite-dimensional
setting. In case of p = 1 the following two theorems from this Thesis are a finite-
dimensional versions of Theorem 5.2 and Theorem 5.1 from [19]. In case of p ≥ 2
the following two theorem provide a partial extension of the results from [19].

Theorem 23. Let Xx0 be a solution to (4.3). Assume that (A1) and (A2) hold.
Assume that there is i ∈ {1, . . . , p} such that Φi ̸= 0. Then

γ̂T = ψ̃

⎛⎝ 1
T

T∫
0

∥Xx0
t ∥2

Rm dt
⎞⎠ → γ

as T → +∞ P-a.s., (i.e., the estimator γ̂T is strongly consistent,) where ψ̃ is the
inverse function (which exists) to

γ ↦→
p∑

i=1

TrQi

γ2Hi
, γ > 0,

where

Qi =
∞∫

0

∞∫
0

eAuΦi
(
Φi
)∗
eA∗vϕHi

(u, v) du dv.

Proof. Firstly, note that Φi ̸= 0 implies that Qi ̸= 0. Indeed, we find x ∈ Rm

such that
(Φi)∗

x
2

Rm
> 0. We have

⟨Qix, x⟩Rm =
+∞∫
0

+∞∫
0

⟨(
Φi
)∗
eA∗vx,

(
Φi
)∗
eA∗ux

⟩
Rm

ϕHi
(u, v) du dv.

We also have that

lim
[u,v]→[0,0]

⟨(
Φi
)∗
eA∗vx,

(
Φi
)∗
eA∗ux

⟩
Rm

=
(Φi

)∗
x
2

Rm
> 0. (∗∗)

Take ε ∈ (0,
(Φi)∗

x
2

Rm
). Thanks to (∗∗) we can find δ > 0 such that

⟨(
Φi
)∗
eA∗vx,

(
Φi
)∗
eA∗ux

⟩
Rm

> ε
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holds for all u, v ∈ (0, δ]. Then

⟨Qix, x⟩Rm ≥ ε

δ∫
0

δ∫
0

ϕHi
(u, v) du dv

+
δ∫

0

+∞∫
δ

⟨(
Φi
)∗
eA∗vx,

(
Φi
)∗
eA∗ux

⟩
Rm

ϕHi
(u, v) du dv

+
+∞∫
δ

δ∫
0

⟨(
Φi
)∗
eA∗vx,

(
Φi
)∗
eA∗ux

⟩
Rm

ϕHi
(u, v) du dv

+
+∞∫
δ

+∞∫
δ

⟨(
Φi
)∗
eA∗vx,

(
Φi
)∗
eA∗ux

⟩
Rm

ϕHi
(u, v) du dv.

The last three term on the right hand side are all non-negative thanks to the fact
that any covariance matrix is positive semidefinite. To be more precise we for
instance have that

δ∫
0

+∞∫
δ

⟨(
Φi
)∗
eA∗vx,

(
Φi
)∗
eA∗ux

⟩
Rm

ϕHi
(u, v) du dv

=
⟨⎛⎝ δ∫

0

+∞∫
δ

eAuΦi
(
Φi
)∗
eA∗vϕHi

(u, v) du dv
⎞⎠x, x⟩

Rm

= lim
n→∞

⟨⎛⎝ δ∫
0

n∫
δ

eAuΦi
(
Φi
)∗
eA∗vϕHi

(u, v) du dv
⎞⎠x, x⟩

Rm

and by Theorem 6

= lim
n→∞

⟨
Cov

⎛⎝ n∫
δ

eAsΦi dBHi
s ,

δ∫
0

eAsΦi dBHi
s

⎞⎠x, x⟩
Rm

≥ 0

since any covariance matrix is positive semidefinite. Thanks to
δ∫
0

δ∫
0
ϕHi

(u, v) du dv > 0 we have ⟨Qix, x⟩Rm > 0 which implies that Qi ̸= 0.
Using Lemma 8 we get Tr(Qi) > 0. Now, as before we utilize Theorem 21 with
f(y) = ∥y∥2

Rm and we use Lemma 7 to get

lim
T →+∞

1
T

T∫
0

∥Xx0
t ∥2

Rm dt = 1
γ2

p∑
i=1

Tr
⎛⎝ ∞∫

0

∞∫
0

eAuΦi
(
Φi
)∗
eA∗vϕHi

(
u

γ
,
v

γ

)
du dv

⎞⎠
= 1
γ2

p∑
i=1

1
γ2Hi−2 Tr

⎛⎝ ∞∫
0

∞∫
0

eAuΦi
(
Φi
)∗
eA∗vϕHi

(u, v) du dv
⎞⎠ =

p∑
i=1

TrQi

γ2Hi
.

The function
γ ↦→

p∑
i=1

TrQi

γ2Hi
, γ > 0,
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is strictly monotone, continuous and non-zero. It therefore has a continuous
inverse. Call this inverse ψ̃. Then

γ̂T = ψ̃

⎛⎝ 1
T

T∫
0

∥Xx0
t ∥2

Rm dt
⎞⎠ → γ

as T → +∞ P-a.s.

In case of p = 1 the function ψ̃ can be expressed and the estimator has the
form

γ̂T =
(

TrQ1
1
T

∫ T
0 ∥Xx0

t ∥2
Rm dt

) 1
2H

.

Theorem 24. Let Xx0 be a solution to (4.3). Assume that (A1) and (A2) hold.
Let z ∈ Rm be such that for some i ∈ {1, . . . , p} we have ⟨Qiz, z⟩Rm > 0, where
Qi is as in the previous theorem. Then

γ̃T = ψ̃

(
1
T

∫ T

0
⟨Xx0

t , z⟩2
Rm dt

)
→ γ

as T → +∞ P-a.s., (i.e., the estimator γ̂T is strongly consistent,) where ψ̃ is the
inverse (which exists) to

γ ↦→
p∑

i=1

⟨Qiz, z⟩Rm

γ2Hi
, γ > 0.

Proof. The proof is very similar to the proof of the previous theorem. We again
use Theorem21 with f(x) = ⟨x, z⟩2

Rm and Lemma 7 to get

lim
T →+∞

1
T

∫ T

0
⟨Xx0

t , z⟩2
Rm dt = ⟨Cov(xγ

∞, x
γ
∞)z, z⟩Rm =

⟨( p∑
i=1

1
γ2Hi

Qi

)
z, z

⟩
Rm

=
p∑

i=1

1
γ2Hi

⟨Qiz, z⟩Rm ,

P-a.s. Since all Q1, . . . , Qp are positive semidefinite matrices and for some i ∈
{1, . . . , p} we have ⟨Qiz, z⟩Rm > 0, the function

γ ↦→
p∑

i=1

⟨Qiz, z⟩Rm

γ2Hi
, γ > 0,

is again strictly monotone, continuous and non-zero and thus it again has a
continuous inverse. This finishes the proof.

In case of p = 1 the function ψ̃ can be expressed and the estimator has the
form

γ̃T =
(

⟨Q1z, z⟩Rm

1
T

∫ T
0 ⟨Xx0

t , z⟩2
Rm dt

) 1
2H

.

Remark. The difference between estimators γ̂T and γ̃T is as follows. In order
to employ the estimator γ̂T we usually need to observe the whole m-dimensional
trajectory of Xx0 for we need to know its norm. On the other hand, if we for
instance only observe the k-th coordinate of a trajectory, k ∈ {1, . . . ,m}, then
(provided that for some i ∈ {1, . . . , p} we have ⟨Qiek, ek⟩Rm > 0) we can still use
the estimator γ̃T .
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Conclusion
We opened the Thesis with the definition and basic properties of α-regular
Volterra processes and presented the construction of Wiener-like integral of deter-
ministic function with respect to an α-regular Volterra process. We also presented
various properties of this integral. In Section 2 we considered a linear stochastic
differential equation driven by an α-regular Volterra process B. We started with
no restrictions on B. In order to obtain the existence of a strictly stationary
solution we assumed B to have stationary and reflexive increments. We assumed
that B is Gaussian and showed the ergodicity of the strictly stationary solution
and we obtained a similar result for any solution. In Section 3 we generalized the
results for equations with a mixed noise. In Section 4 we added a parameter to
the stochastic differential equation considered in Section 3. In order to utilize the
results of the first three chapters we assumed our noise to be self-similar. The as-
sumptions we employed on the noise throughout the Thesis implied that it must
be a fractional Brownian motion. Under the assumption that the noise is a fBm
we derived two strongly consistent estimators. The strong consistency of these
estimators have already been shown in [19] under slightly different assumptions.
However, our setting of a mixed noise at least partially extends these results.
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List of symbols
N = {1, 2, . . . }, set of natural numbers
R set of real numbers
Rm set of m-dimensional real vectors
Rm×n set of m× n dimensional matrices
A∗ (conjugate) transpose of the matrix A, see 2. below
Tr(A) trace of square matrix A, see 3. below
I identity matrix
⟨·, ·⟩Rm standard (Euclidean) inner product in Rm, see 4. below
∥·∥Rm Euclidean norm in Rm, see 4. below
∥·∥Rm×n Hilbert-Schmidt norm in Rm×n, see 5. below
B(X) Borel σ-algebra of matrix space X
Lp(U ;V ) see 6. and 7. below
Lp

loc(U ;V ) see 6. and 7. below
l.i.m.
n→∞

limit in L2(Ω;Rm)
w∗
−→ weak convergence of probability measures

Further notes
1. We identify Rm with Rm×1 i.e. vectors are understood as column vectors.

2. A∗ = (Aji)n m
j=1,i=1 ∈ Rn×m for A = (Aij)m n

i=1,j=1 ∈ Rm×n.

3. Tr(A) =
m∑

i=1
Aii for A = (Aij)m

i,j=1 ∈ Rm×m.

4. For x = (x1, . . . , xm)∗, y = (y1, . . . , ym)∗ ∈ Rm we have

⟨x, y⟩Rm =
m∑

i=1
xiyj and ∥x∥Rm =

√
⟨x, x⟩Rm =

√ m∑
i=1

x2
i .

5. ∥A∥Rm×n =
√

Tr(AA∗) =
√

m∑
i=1

n∑
j=1

A2
ij for A = (Aij)m n

i=1,j=1 ∈ Rm×n.

6. Let (Ω,F ,P) be a probability space and 1 ≤ p < +∞. The Lp(Ω;Rm) is the
space of equivalence classes of Rm-valued random variables X : Ω → Rm

such that

∥X∥Lp(Ω;Rm) :=
⎛⎝∫

Ω

∥X∥p
Rm dP

⎞⎠ 1
p

< +∞.

7. Let −∞ ≤ a < b ≤ +∞ and 1 ≤ p < +∞. The space Lp(a, b;Rm×n) is the
space of equivalence classes of measurable functions f : [a, b] → Rm such
that

∥f∥Lp(a,b;Rm) :=

⎛⎜⎝ ∫
[a,b]

∥f∥p
Rm×n

⎞⎟⎠
1
p

< +∞.
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The space Lp
loc(a, b;Rm×n) is the space of equivalence classes of measurable

functions f : [a, b] → Rm such that for any K, K being a compact subset
of [a, b], we have ⎛⎝∫

K

∥f∥p
Rm×n

⎞⎠ 1
p

< +∞.

We set
Lp(R;Rm×n) := Lp(−∞,+∞;Rm×n)

and
Lp

loc(R;Rm×n) := Lp
loc(−∞,+∞;Rm×n).
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[19] Maslowski B., Posṕı̌sil J., Ergodicity and parameter estimates for infinite-
dimensional fractional Ornstein-Uhlenbeck process, Applied Mathematics and
Optimization. 57, pp. 401-429., 2008

[20] Maslowski B., Schmalfuß B., Random dynamical systems and stationary
solutions of differential equations driven by the fractional Brownian motion,
Stochastic Anal. Appl. 22, pp. 1577-1607, 2004.
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