
DOCTORAL THESIS

Peter Kálnai

Compact modules over nonsingular
rings

Department of Algebra

Supervisor of the thesis: doc. Mgr. et Mgr. Jan Žemlička, Ph.D.
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0. Introduction
This dissertation is based on the following four works (note that the Schwabacher
numbering from now on refers to the articles exclusively):

(i) Kálnai P., Žemlička J.: Products of small modules, Commentat. Math.
Univ. Carol. 55, No. 1, 2014, pp. 9–16.

(ii) Kálnai P., Žemlička J.: Compactness in Abelian categories, J. Algebra 534,
15 September 2019, pp. 273–288.
DOI: 10.1016/j.jalgebra.2019.05.037

(iii) Kálnai P., Žemlička J.: Self-injective von Neumann regular rings and
Köthe’s Conjecture, arXiv:1912.12159, 2019.

(iv) Kálnai P.: Generalizations of projectivity and supplements revisited for su-
perfluous ideals, Comm. Algebra 47, No. 1, 2019, pp. 88–100.
DOI: 10.1080/00927872.2018.1468897

This introduction serves for summarizing the main results of the thesis. For
non-explained terminology we refer to standard monographs [1, 2, 6].

The first and the second chapter are tightly connected and deal with the
product closure in classic module categories and complete abelian categories,
respectively. In the following parts we go through the structure and results of (i)
and (ii).

If we start with the definition of a small module M as the functorial compact-
ness condition, namely that the covariant functor HomR(M,−) commutes with all
direct sums of modules, then we quickly arrive at the equivalent characterization
that such modules are not unions of strictly increasing chains of submodules.
Now it is obvious that finitely generated modules are always small. Rings are
called right steady if small and finitely generated modules coincide. Regarding
the closure properties, homomorphic images of small modules are also small and
finite direct sums of small modules remain small, but an infinite direct sum of
arbitrary non-zero modules is never small. (i, Lemma 1.2.1) shows there is a cor-
respondence between small modules over a ring and over its ring extension when
the extension is not too far, i.e. it is small over the base ring.

In terms of commutativity with any direct sums, the contravariant functor
HomR(−,M) behaves a little bit differently, cf. [3], . The equivalent characteri-
zations of compactness split in this dual case into a hierarchy of strict implications
dependent on the cardinality of commuting families. The strongest hypothesis
assumes arbitrary cardinalities and it leads to the class of so called slim modules
(also known as strongly slender), which is a subclass of the most general class
of ℵ1-slim modules (also called as slender), which involves only commutativity
with countable families. The cardinality of a non-zero slim module is greater
than or equal to any measurable cardinal (and the presence of such cardinality
is also a sufficient condition for existence of a non-zero slim module) and that
the class of slim modules is closed under coproducts. Thus, the absence of a
measurable cardinal ensures that there is at least one non-zero slim module and
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in fact, abundance of them. On the other hand, if there is a proper class of mea-
surable cardinals then there is no such object like a non-zero slim module. This
motivated the question in the dual setting, namely if the class of small modules
is closed under products, denoted from now on as the DSP property.

The closure properties of the class of non-singular rings satisfying DSP in-
clude factor rings and maximal right ring of quotients, (i, Lemma 1.2.2, Propo-
sition 1.2.3). Recall that simple rings are an example of a class of non-singular
rings and there is a deep statement saying that the right maximal ring of quo-
tients of a right non-singular ring is a Von Neumann regular ring, shortly a VNR
ring, and it is right self-injective. Therefore we are able to restrict our attention
to the case of simple self-injective VNR rings. Many details about the structure
of such ring construction is presented in [6, Chapter XII.].

Corollary 1.2.4. If R is simple ring satisfying DSP, then Qmax(R) satisfies DSP
as well.

We say that a (general) ring R is right purely infinite if there is a right ideal
K ≤ R such that K ≃ R(ω) as right R-modules, i.e., there is an exact sequence
0 → R(ω) → R in Mod-R. Note that a self-injective VNR ring is defined as
purely infinite in [2, Definition, p.116] if it contains no nonzero directly finite
central idempotents. By [2, Theorem 10.16(a), (d)] it contains itself as a right
ideal isomorphic to a countably generated free module, therefore it is purely
infinite in the previous general sense.

Several set-theoretical notions and facts are needed in the final part, namely
that each Ulam-measurable cardinal is greater or equal to the first measurable
cardinal, every measurable cardinal is strongly inaccessible and finally, it is con-
sistent with ZFC that there is no strongly inaccessible cardinal, (i, Fact 1.1.4).

If we assume a potential counterexample of the DSP property for an infinite
system of small modules over a right self-injective purely infinite VNR ring, then
we infer in (i, Lemma 1.3.3) that the system can not be countable and there exists
a subset of the index set on which there is a non-principal prime ideal. This leads
immediately to the following theorem.

Theorem 1.3.4. Let R be a right self-injective right purely infinite VNR ring.
Then the following holds:

(i) A countable product of small R-modules is small.

(ii) If there exists a system (Mα | α < κ) of small R-modules such that the
product ∏︁

α<κMα is not small, then there exists an uncountable cardinal
λ < κ and a countably complete ultrafilter on λ.

The existence of a counterexample over a uncountable system of small modules
now leads to a countably complete ultrafilter. By the facts from set theory, we get
that there exists a measurable cardinal which is strongly inaccessible. Plugging in
the set-theoretical assumptions yields the desired closure property under arbitrary
products.

Corollary 1.3.5. Let R be a non-Artinian right self-injective, right purely infinite
VNR ring. If we assume that there is no strongly inaccessible cardinal, then the
class of all small R-modules is closed under direct products.
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An object C of an abelian category closed under coproducts and products
is said to be compact if the covariant functor Hom(C,−) commutes with all
direct sums i.e. there is a canonical isomorphism between Hom(C,⨁︁ D) and⨁︁ Hom(C,D) in the category of abelian groups for every system of objects D.
The concept of compactness presents an easy way to replace finitely generated
modules in general abelian categories. Nevertheless, the clear form of the cate-
gorical definition is a reason why compact objects can be applied as a useful tool
also in categories containing finitely generated objects in the standard sense.

For a class C in a complete abelian category A, we say that A is ∏︁ C-compactly
generated if there is a set G of objects from A that generates A and the product
of any system of objects in G is C-compact. Note that G consists only of C-
compact objects. (ii, Lemma 2.3.1) then states that a cokernel of the compatible
coproduct-to-product morphism is C-compact for countable families of objects.
This is a clear analogy of (i, Lemma 1.3.2(ii)) stated in the classic module category
over a right purely infinite self-injective ring.

If we similarly assume a potential counterexample of the compactness property
for a family of C-compact objects in a ∏︁ C-compactly generated category, then we
infer in (ii, Lemma 2.3.2) that the system can not be countable and there exists
a subset of the index set on which there is a non-principal prime ideal:

Corollary 2.3.3. Let A be a ∏︁ C-compactly generated category. Then the fol-
lowing holds:

(i) A product of countably many C-compact objects is C-compact.

(ii) If there exists a system M of cardinality κ of C-compact objects such that
the product ∏︁ M is not C-compact, then there exists an uncountable cardinal
λ < κ and a countably complete non-principal ultrafilter on λ.

Theorem 2.3.4. Let A be a ∏︁ C-compactly generated category, M a family of C-
compact objects of A. If we assume that there is no strongly inaccessible cardinal,
then every product of C-compact objects is C-compact.

Next, let us move to the results of (iii), which leverages the structure of right
self-injective VNR rings as well. Recall that such ring can be uniquely decom-
posed as a product of rings of three types, Type I, Type II and Type III with
the first two types of two more possible subtypes: directly finite (Types If and
IIf ) or purely infinite ((Types I∞, II∞ and III). Moreover, if such VNR ring is
prime (simple), then there it could be of exactly one such (sub)type. VNR rings
are semiprimitive, which means their Jacobson radical is nil, and therefore there
are no nil one-sided ideals. We say that an element is principally nilpotent if the
right ideal it generated is nil and obviously this definition is left-right symmetric
and the property withstands two-sided multiplication by any element from the
ring. Thus, VNR rings contain no non-zero principally nilpotent elements.

The famous Köthe’s Conjecture affirmatively assumes that a ring with no
non-zero two-sided nil ideal necessarily contains no non-zero one-sided nil ideal.
Several important classes of rings are known to satisfy Köthe’s Conjecture like all
right Noetherian rings, PI-rings, and rings with right Krull dimension. However,
the question if the conjecture holds generally is still open. The most famous
translations of the conjecture use the language of associative rings without unit
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and include statements like ”the matrix ring Mn(R) is nil for every nil ring R”,
”R[x] is not left primitive for every nil ring R”, ”every ring which is a sum of a
nilpotent subring and a nil subring is nil” or ”R[x] is Jacobson radical for every
nil ring R”. Over any countable field F , Agata Smoktunowicz proved that there
is a nil F -algebra R1 such that R1[x] need not to be nil [4, Corollary 13] and a
nil F -algebra R2 such that R2[x, y] need not to be Jacobson radical [4, Corollary
14]. These two results are therefore approximations of a negative solution for
Köthe’s Conjecture. The author later improved the result in the sense that there
is a nil algebra R3 with the polynomial ring R3[x1, x2, x3, y1, y2, y3] containing a
non-commutative free F -algebra of rank two [5, Theorem 1.3].

We say that a unital associative ring satisfies the condition (NK) if it contains
two nil right ideals whose sum is not nil. Then Köthe’s Conjecture is equivalent
to the property that there exists no ring satisfying the condition (NK) or equiva-
lently if there exist two principally nilpotent elements whose sum is not nilpotent
(obviously (NK) is the most negative approximation of the conjecture’s solution
one could imagine). It is possible to make the following reduction in consider-
ing (NK) rings, implying that Köthe’s Conjecture holds if and only if there is
no countable generated F -algebra satisfying (NK) for either F = Q or F = Zp
where p is a prime number (iii, Corollary 3.1.9).

Proposition 3.1.8. Let R be a ring satisfying (NK). Then there exists a subring
S of R generated by two elements ξ, υ, an F -algebra A and an epimorphism of
rings φ : S → A such that the following conditions hold:

(K1) either F = Q or F = Zp where p is a prime number,

(K2) x = φ(ξ) and y = φ(υ) are principally nilpotent generators of A, and x+ y
is a minimal non-nilpotent element,

(K3) xA+ yA = J (A) is the unique maximal right ideal of A.

Despite the absence of principally nilpotent elements in VNR rings, it is still
possible to translate Köthe’s Conjecture into a certain structural question about
simple right self-injective VNR rings. Indeed, the existence of a countable ring
satisfying (K1)–(K3) (and being local by (iii, Lemma 3.1.7)) can be considered
as a subring of a self-injective simple VNR ring either Type IIf or Type III. So
it means that principally nilpotent elements of an (NK) ring lose their property
by being embedded into certain VNR rings. In the proof of the main theorem,
we first observe that an (NK) ring can not be embedded in a VNR ring Type If ,
because such overrings can be chosen Artinian, leading to a contradiction with
(iii, Lemma 3.1.13). If we start with a potential overring either Type I∞ or II∞,
then we will be able to find a desired VNR ring either Type IIf or III, leaving
the latter two types only possibilities for such overring.

Theorem 3.2.3. If there is a ring satisfying (NK) then there exists a countable
local subring of a suitable self-injective simple VNR ring of type either IIf or III
that also satisfies (NK).

Finally, in (iv) we provide results about several statements than are weaker
than Koethe’s Conjecture and that turn out to be equivalent. The statements
are related to a mathematical problem that have already enjoyed much interest:
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Lazard’s Conjecture, a hypothesis denying the existence of a non-finitely gener-
ated projective module with the finitely generated radical factor. First proved
affirmatively for commutative rings but then Gerasimov and Sakhaev constructed
a ground-breaking and in many aspects of ring and module theory a very misbe-
haved counterexample turning the conjecture negative. We extend results that
are true for radical factors to factors by any superfluous ideal, i.e. an ideal con-
tained in the Jacobson radical.

To obtain the goal, four ideal-related generalizations and objects are needed:
the ideal-superfluity, projective ideal-covers, the ideal-projectivity, and an ideal-
supplement. We provide examples of objects demonstrating that these notions
are generally not redundant (iv, Example 4.1.4), (iv, Example 4.1.7), (iv, Exam-
ple 4.1.11) and (iv, Example 4.1.15).

Definition 4.1.1. A submodule N of M decomposes M (or shortly is DM in
M) if there is a summand S of M such that S ⊆ N and M = S + X, whenever
N + X = M for a submodule X of M . A submodule N of M is called PDM in
M if there is a projective summand S of M such that S ⊆ N and M = S + X,
whenever N +X = M for a submodule X of M .

We say that a submodule N of a right module M is I-superfluous, denoted
N ≪I M , if N ⊆ MI and N is PDM in M .

Definition 4.1.5. A pair (P, f) is called a projective I-semicover of M if P is
projective and f : P → M is an epimorphism such that ker(f) ⊆ PI.

A pair (P, f) is called a projective I-cover of M if it is a projective I-semicover
of M and ker(f) is DM in P .

Definition 4.1.8. An R-module P is I-semiprojective if for every epimorphism
f : X → Y such that Y I = 0 and every morphism φ : P → Y there is a
homomorphism g : P → X such that φ = f ◦ g. A right R-module P is I-
projective if for all right R-modules X and Y , every R-epimorphism f : X → Y
and every homomorphism φ : P → Y there exists a homomorphism g : P → X
such that (f ◦ g − φ)(P ) ≪I Y .

Definition 4.1.13 (Ideal supplements). We call a submodule G of an R-module
M an I-supplement submodule if there is a submodule K of M such that K+G =
M and K ∩G ≪I G.

Recall that Köthe’s Conjecture could be also expressed in extensibility of
nilpotency from the nil radical to the matrix ring over the nil radical. Nil ideals
admit idempotent-lifting and so a connection with the condition (L3′) of the
following theorem starts to appear.

Theorem 4.4.3. The following conditions are equivalent:

(L1’) for every n ∈ N, any direct summand of a right R-module R(n)/I(n) has a
projective I-cover

(L2’) for every n ∈ N, if P ′ is a direct summand of (R/I)(n), then there is a
direct summand P of R(n) such that P ′ = P + I(n)/I(n)(≃ P/PI)

(L3’) Mn(I) is lifting in Mn(R) for every n ∈ N
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(L4’) every direct summand of a finitely generated right R-module with a projec-
tive I-cover has a projective I-cover.

Plugging in all the generalized notions we arrive at the following characteri-
zation which was previously proved for the edge case I = J (R).

Theorem 4.5.2. The following is equivalent:

(1) every I-supplement in a finitely generated projective R-module P is a direct
summand

(2) every finitely generated I-(semi)projective R-module is projective

(3) every finitely generated flat R-module M with projective R/I-module
M/MI is projective

(4) for every projective R-module Q, if the ideal factor Q/QI is finitely gener-
ated then Q is finitely generated

The statement (4) evokes Lazard’s Conjecture parametrized by any superflu-
ous ideal. It is obvious that for the trivial case I = 0 each of the four conditions
(1), (2), (3), (4) holds true and therefore also their equivalence does. Various
authors in the past already observed that (2) is true for any I contained in the
Baer radical β(R) and (4) is true if I is a nilpotent ideal.

The ideal-projectivity in a finitely generated projective module resp. ideal
supplements in a finitely generated module are redundant with respect to the
classic definitions if the chosen ideal admits idempotent-lifting up to all its matrix
rings.

Proposition 4.5.3. Let R be a ring satisfying the conditions of Theorem 4.4.3.
Then the condition (4) in Theorem 4.5.2 holds true.

It is well known that the Levitzki radical of a ring is an ideal which admits such
lifting of idempotents, thus satisfies the equivalent conditions of Theorem 4.5.2.
Unfortunately, the question whether the nil radical provides the counterexample
for the statements is not resolved yet. However, non-existence of such counterex-
amples for this ideal would yield an approximation of a positive solution of Köthe’s
Conjecture. This observation and the complexity of the Gerasim-Sakhaev’s con-
struction suggest that finding such counterexample is at least as hard as finding
one to the conjecture itself.
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1. Products of small modules
It is easy to verify that every finitely generated module M satisfies the natural
compactness condition that the covariant functor HomR(M,−) commutes with all
direct sums of modules. Nevertheless, there are known large classes of infinitely
generated modules satisfying that condition, for instance every uncountable union
of a chain of finitely generated modules forms an infinitely generated example.
Every module M satisfying that functorial compactness condition is called small
in this paper.

It is well known that a finite direct sum of small modules is small in general
and infinite direct sum of arbitrary nonzero modules is not small. Nevertheless,
the case of product of small modules is rather more complicated. In the work
[9] it is proved that over each ring which contains a right ideal isomorphic to a
2-generated free module (hence there exists a right ideal isomorphic to infinitely
generated free module) every injective module is small. As the class of all injective
modules is closed under all direct products, that observation leads to the natural
question formulated explicitly in [2, Remark 3.2] whether there exists a ring
R such that the class of all small right modules over R is closed under direct
products.

The main objective of the present paper is to give a partial answer to that
question, dependently on a model of set theory. We use for that purpose mainly
tools and methods developed in the works [1, 5, 6, 8, 9, 11, 13], which study
properties of classes of all small modules for some particular classes of rings.

Recall that a ring is called right steady if every small (right) module is finitely
generated. Obviously, a ring over which every product of small modules is small is
very far from being steady. Before we start searching rings over which small right
modules are closed under direct products, we prove first that we may restrict our
consideration to the case of simple self-injective VNR rings (Proposition 1.2.3).
Our main result (Theorem 1.3.4) prove necessary condition on set theory which
holds true if over a right self-injective right purely infinite ring there exists non-
small product o small modules. As that set theoretical condition contradicts to
the hypothesis that there is no strongly inaccessible cardinal, which is consistent
with ZFC, we can easily see that under the hypothesis of non-existence of a
strongly inaccessible cardinal the class of all small module is closed under products
(Theorem 1.3.5).

1.1 Preliminaries
Throughout the paper, a ring R means an associative ring with unit, a module
is a right R-module and an ideal means a two-sided ideal. We say that R ⊆ Q
is a ring extension if R is a subring of Q, note that Q has a natural structure of
R-algebra. E(M) denotes an injective envelope of an arbitrary module M . We
say that a module M is (less than, at most) κ-generated if the least cardinality
of any set of generators is (less than, at most) κ and we write gen(M) = κ (< κ,
≤ κ).

As we have remarked, a module M is said to be small whenever the natural Z-
monomorphism ⨁︁

i<ω HomR(M,Ni) → HomR(M,
⨁︁

i<ωNi) is surjective for every
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system of modules (Ni | i < ω). We will usually deal with the following equivalent
condition of smallness:

Fact 1.1.1. [8, Lemma 1.2] A module is small if and only if it is not a union of
a strictly increasing infinite countable chain of submodules.

We will use freely an easy consequence of the Lemma 1.1.1 that any factor of
small module is small. Observation that every union of an uncountable strictly
increasing chain of finitely generated modules forms an infinitely generated small
module naturally leads to the useful definition of a λ-reducing module for an
infinite cardinal λ as a module M such that every at most λ-generated submodule
is contained in some finitely generated submodule of M . Recall that the classes
of all small as well as λ-reducing modules are closed under homomorphic images
and finite (direct) sums [12, Proposition 1.3].

The following elementary observations about λ-reducing modules are used
freely in the sequel.

Lemma 1.1.2. Let λ ≤ κ be infinite cardinals and M an infinitely generated
κ-reducing module. Then:

(i) M is small and λ-reducing,

(ii) gen(M) > κ,

(iii) M contains a κ+-generated κ-reducing submodule,

(iv) M contains an ω1-generated ω-reducing submodule.

We define the singular submodule Z(MR) := {m ∈ M | rannR(m) ⊆e R} of
a module M , where rannR(−) denotes an annihilator and U ⊆e V means that U
is an essential submodule of V , i.e. U ∩ W = 0 implies W = 0 for a submodule
W of V .

We say that a ring R is right non-singular, if Z(RR) = 0, R is called (Von
Neumann) regular if for every x ∈ R there exists y ∈ R such that x = xyx, and
R is right self-injective, provided it is injective as a right module over itself. We
observe that simple rings form examples of non-singular rings. As a fact we state
a deep statement about their maximal right rings of quotients. For a definition
of maximal right ring of quotients and other properties of this notion we refer to
[7].

Fact 1.1.3 ([7], Proposition XII.2.1). The maximal right ring of quotients
Qmax(R) of a right non-singular ring R is a right self-injective VNR ring and it
is injective as a right R-module.

Description and examples of self-injective VNR rings is given in [3, Chapters
9,10].

Finally, recall several set-theoretical notions and facts which we will need in
the final part of this paper. A filter on a set X is a non-empty family of non-
empty subsets of X closed under finite intersections and supersets. An ultrafilter
on X is a filter which is not properly contained in any other filter on X. We say
that a filter F is λ-complete, if ⋂︁ G ∈ F for every subsystem G ⊆ F such that
| G |< λ and F is countably complete, if it is ω1-complete. A cardinal λ is said to
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be measurable if there exists a λ-complete non-principal ultrafilter on λ and it is
Ulam-measurable if there exists a countably complete non-principal ultrafilter on
λ. A regular cardinal κ is strongly inaccessible if 2λ < κ for each λ < κ.

Theorem 1.1.4. The following holds:

(i) Every Ulam-measurable cardinal is greater or equal to the first measurable
cardinal.

(ii) Every measurable cardinal is strongly inaccessible.

(iii) It is consistent with ZFC that there is no strongly inaccessible cardinal.

Proof. (i) [10, Theorem 2.43.].
(ii) [10, Theorem 2.44.].
(iii) [4, Corollary IV.6.9].

1.2 Non-singular rings with DSP
We say that a ring R satisfies the condition DSP if every product of an arbitrary
family of small R-modules is small. Let us start with an easy observation which
states correspondence between small modules over a ring and over its extension.

Lemma 1.2.1. Let R ⊆ Q be a ring extension, M be a Q-module and QR be
small as an R-module. Then M is a small Q-module if and only if it is a small
R-module.

Proof. Assume that M is a small Q-module. Let M = ⋃︁
i<ωMi for a countable

chain of R-submodules M0 ⊆ M1 ⊆ . . . . We put Ni = {m ∈ M | mQ ⊆ Mi} for
each i < ω. Obviously, N0 ⊆ N1 ⊆ . . . forms a chain of Q-submodules of M and
Ni ⊆ Mi for every i < ω. Let m ∈ M . Since (mQ)R is a homomorphic image of
the small R-module QR, there exists n such that mQ ⊆ Mn. Thus M = ⋃︁

i<ωNi.
Now, by the hypothesis there exists n < ω such that Nn = M , hence Mn = M
and M is small R-module by Lemma 1.1.1.

The converse is clear, because every Q-module has also a natural structure of
an R-module.

The next assertion describes closure properties of the class of all rings satis-
fying DSP.

Lemma 1.2.2. Let R satisfy DSP.

(i) Every injective right R-module is small.

(ii) If R is a right non-singular ring with the maximal right ring of quotients
Q, then Q satisfies DSP.

(iii) Every factor ring of R satisfies DSP.

11



Proof. (i) Let ER be an injective R-module. Then there exists a cardinal κ
and a surjective homomorphism π : R(κ) → E. Since the canonical embedding
R(κ) → Rκ is injective, π can be extended to an epimorphism Rκ → E by the
injectivity of E. Since (RR)κ is small by the hypothesis, the module E is a
homomorphic image of a small module and therefore small as well.

(ii) By Fact 1.1.3 QR is injective, so by (i) it is small as an R-module. Thus
every product of small Q-modules is small as an R-module by the hypothesis and
Lemma 1.2.1, hence it is a small Q-module.

(iii) Since every (small) module over any factor ring have a natural structure
of a (small) R-module, the assertion is clear.

Now, we are able to show that searching of rings satisfying DSP may be
restricted to the case of simple self-injective VNR rings.

Proposition 1.2.3. If a ring R satisfies DSP and I is a maximal two-sided
ideal, then R/I is (right) non-singular and Qmax(R/I) is a non-artinian right
self-injective simple ring satisfying DSP.

Proof. As R/I is simple, it is (right) non-singular, hence Qmax(R/I) is right self-
injective by Fact 1.1.3. By applying Lemma 1.2.2(ii), Qmax(R/I) satisfies DSP,
hence it is non-artinian. Finally, let J be a nonzero ideal of Qmax(R/I). Since
R is essential in Qmax(R/I)R, the intersection R/I ∩ J is a nonzero ideal of R.
Thus 1 ∈ R/I ⊆ J and J = Qmax(R/I).

Corollary 1.2.4. If R is simple ring satisfying DSP, then Qmax(R) satisfies DSP
as well.

1.3 Self-injective rings
We say that a ring R is right purely infinite if there is a right ideal K ≤ R such
that K ≃ R(ω) as right R-modules, i.e., there is an exact sequence 0 → R(ω) → R
in Mod-R.

It is easy to see that the endomorphism ring of an infinite-dimensional vector
space forms an example of a right purely infinite VNR ring. Recall that there
exist right purely infinite, simple, self-injective VNR rings [3, Example 10.11].
Moreover, note that every simple self-injective VNR ring which is not directly
finite is purely infinite by [3, Proposition 10.21].

First recall a key fact about the smallness of injective modules.

Fact 1.3.1. [9, Example 2.8] Every injective module over a right purely infinite
ring is small.

Lemma 1.3.2. Let κ be an infinite cardinal, R be a right purely infinite self-
injective ring and (Mα | α < κ) be a system of R-modules.

(i) If Mα is ω1-reducing for every α < κ, then ∏︁
α<κMα is ω1-reducing as well,

(ii) if κ = ω, then ∏︁
α<ωMα/

⨁︁
α<ωMα is ω1-reducing,

(iii) the product of any system of finitely generated modules is ω1-reducing.
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Proof. Put M = ∏︁
α<κMα. For any product ∏︁

α<κMα denote by να : Mα →∏︁
α<κMα the natural embedding and πα : ∏︁

α<κMα → Mα the natural projection.
Similarly we define νJ and πJ for any subset of κ.
(i) Note that ∏︁

α<κR
(nα) ∼= Rκ is injective for all finite nα, hence ω1-reducing

by Fact 1.3.1. Fix a countable set D := {mn | n < ω} ⊆ M . By hypothesis on
Mα, for each α < κ there is some finitely generated submodule Fα of Mα such
that {πα(mn) | n < ω} ⊆ Fα and there is some nα such that we can write Fα as
a factormodule of a finitely generated free R-module R(nα). Hence D ⊆ ∏︁

α<κ Fα
and the exact sequence ∏︁

α<κR
(nα) → ∏︁

α<κ Fα → 0 shows that the middle term is
a factor-module of an ω1-reducing R-module, hence it is itself ω1-reducing. Then
there exists a finitely generated submodule F of ∏︁

α<κ Fα such that D ⊆ F (⊆ M).
(ii) Put S = ⨁︁

α<ωMα. Fix a countable set D := {mn | n < ω} ⊆ M and for
each α < ω define (a finitely generated) R-module Gα = ∑︁

j≤α πα(mj)R . Observe
that D ⊆ S + ∏︁

α<ω Gα. By (i) ∏︁
α<ω Gα is ω1-reducing, hence a factor-module∏︁

α<ω Gα+S/S is also ω1-reducing. Then there exists a finitely generated module
F ⊆ ∏︁

α<ω Gα(⊆ M) such that mn + S ∈ F + S/S for all n < ω.
(iii) As finitely generated modules are ω1-reducing, (iii) is a direct consequence

of (ii).

Let I be a non-empty system of subsets of a set X. We recall that I is said
to be an ideal if it is closed under subsets (i.e. if A ∈ I and B ⊆ A, then B ∈ I)
and under finite unions, (i.e. if A,B ∈ I , then A ∪ B ∈ I). I is a prime ideal
if it is a proper ideal and for all subsets A, B of X, A ∩ B ∈ I implies A ∈ I
or B ∈ I. If Y ⊆ X, the system P(Y ) of all subsets of Y forms an ideal on X
which is called principal. We say that the set I | Y = {Y ∩A | A ∈ I} is a trace
of I on Y .

It is easy to see that the trace of an ideal is also an ideal and that I is a prime
ideal if and only if for every A ⊆ X, A ∈ I or X\A ∈ I. Moreover, a principal
prime ideal on X is of the form P(X \ {x}) for some x ∈ X. Note that there
is a dual one-to-one correspondence between ultrafilters and prime ideals on X
defined by I ↦→ P(X)\I for an ideal I.

Lemma 1.3.3. Let R be a right purely infinite right self-injective ring and let
(Mα | α ∈ I) be a family of small modules. Let M = ∏︁

α∈IMα be the direct
product and assume that M is not small, namely M = ⋃︁

n<ωNn for a countable
strictly increasing chain of submodules (Nn | n < ω). Denote An = {J ⊆ I |∏︁
α∈JMα ⊆ Nn} and A = ⋃︁

n<ω An. Then the following holds:

(i) An is an ideal for each n,

(ii) A is closed under countable unions of sets,

(iii) there exists n < ω for which A = An,

(iv) there exists a subset I0 ⊆ I such that the trace of A on I0 is a non-principal
prime ideal.

Proof. (i) Obviously ∅ ∈ An and because M is not small, I ̸∈ An. The closure
of An under subsets is obvious by the definition. The closure of An under finite
unions follows from the decomposition ∏︁

α∈J∪KMα = ∏︁
α∈JMα ⊕ ∏︁

α∈K\JMα ⊆
Nn.
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(ii) First we show that A is closed under countable unions of pairwise dis-
joint sets. Let Kj ∈ A be pairwise disjoint subsets of I for all j < ω. We
show that there exists k < ω such that Kj ∈ Ak for each j < ω. Assume by
contradiction that for every n < ω there exists (possibly distinct) i(n) such that
Ki(n) /∈ An. Hence there is fn ∈ ∏︁

α∈Ki(n)
Mα for which νKi(n)(fn) /∈ Nn. Since∏︁

j<ω fjR = ⋃︁
n<ω

(︂∏︁
j fjR ∩Nn

)︂
is small by Lemma 1.3.2(iii) there is k < ω such

that νKi(k)(fk) ∈ ∏︁
j<ω fjR ⊆ Nk, a contradiction.

Put Pj = ∏︁
α∈Kj

Mα for j < ω. We have proved that there is some k < ω
such that Pj ⊆ Nk and it follows that ⨁︁

j<ω Pj ⊆ Nk. Let P = ∏︁
j<ω Pj =∏︁

j

∏︁
α∈Kj

Mα. As P/⨁︁
j<ω Pj is small by Lemma 1.3.2(i) there exists some l ≥ k

such that P = ⋃︁
j<ω(P ∩Nj) ⊆ Nl.

Now let Jj, j < ω be any system of subsets of I and put J0 = K0 and
Ji = Ki\

⋃︁
j<iKj for i > 0. So ⋃︁

j<ω Jj = ⋃︁
j<ωKj and by the preceding we get

the result.
(iii) Assume that A ̸= An for every n. Then there exists a sequence (Jj ∈

A\Aj | j ∈ ω). By (ii) J := ⋃︁
j<ω Jj ∈ A and there is some n < ω such that

J ∈ An. Since Jj ⊆ J ∈ An for each j < ω, we obtain a contradiction.
(iv) We will show that there exists I0 ⊆ I such that for every K ⊆ I0, K ∈ A

or I0\K ∈ A. Assume that such I0 does not exist. Then we may construct a
countably infinite sequence of disjoint sets (Ki | i < ω) where Ki are non-empty
for i > 0 in the following way: Put K0 = ∅ and J0 = I0. There exist disjoint sets
Ji+1, Ki+1 ⊂ Ji such that Ji = Ji+1 ∪ Ki+1 where Ji+1, Ki+1 /∈ A. Now, for each
n ≥ 1 there exists gn ∈ ∏︁

α∈Kn
Mα such that νKn(gn) /∈ Nn which contradicts to

the fact that ∏︁
n<ω gnR ⊆ Nm for some m < ω (cf. the proof of (ii)).

Finally, assume that the trace of A on I0 is principal. Since it is a prime
ideal, there exists i ∈ I0 such that A | I0 = P (I0 \ {i}). Thus I0 \ {i} ∈ An. Now∏︁
j∈I0\{i} Mj ⊆ Nn for some n and {i} ∈ A, so I0 ∈ A | I0 a contradiction.

Theorem 1.3.4. Let R be a right self-injective right purely infinite ring. Then
the following holds:

(i) A countable product of small R-modules is small.

(ii) If there exists a system (Mα | α < κ) of small R-modules such that the
product ∏︁

α<κMα is not small, then there exists an uncountable cardinal
λ < κ and a countably complete ultrafilter on λ.

Proof. (i) Follows immediately from Lemma 1.3.3(iii).
(ii) Suppose M = ∏︁

α∈IMα is not a small module. Then by Lemma 1.3.3(iv)
there exists I0 ⊆ I and a non-principal prime ideal A0 on I0 which is closed under
countable unions of sets by Lemma 1.3.3(ii). If we define F = {I0 \ A | A ∈ A0}
then F forms a countably complete non-principal ultrafilter on I0.

Before we prove our main result, which combines the last theorem and set-
theoretical assertions, note that the hypothesis is consistent with ZFC by Theo-
rem 1.1.4(iii).

Theorem 1.3.5. Let R be a non-artinian right self-injective, right purely infinite
ring. If we assume that there is no strongly inaccessible cardinal, then the class
of all small R-modules is closed under direct products.
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Proof. If the product of an uncountable system of small modules is not small, then
by Theorem 1.3.4(ii) there exists a countably complete ultrafilter on λ. Hence
there exists a measurable cardinal µ ≤ λ by Theorem 1.1.4(i), which is strongly
inaccessible by Theorem 1.1.4(ii).
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2. Compactness in abelian
categories
An object C of an abelian category A closed under coproducts is said to be
compact if the covariant functor A(C,−) commutes with all coproducts, i.e. there
is a canonical isomorphism between A(C,⨁︁ D) and ⨁︁ A(C,D) in the category of
abelian groups for every system of objects D. The foundations for a systematic
study of compact objects in the context of module categories were laid in 60’s
by Hyman Bass [1, p.54]. The introductory work on the theory of dually slender
modules goes back to Rudolf Rentschler [13] and further research of compact
objects has been motivated by progress in various branches of algebra such as
the theory of representable equivalences of module categories [2, 3], the structure
theory of graded rings [9], and almost free modules [14].

From the categorically dual point of view discussed in [7], commutativity of the
contravariant functor on full module categories behaves a little bit differently. The
equivalent characterizations of compactness split in this dual case into a hierarchy
of strict implications dependent on the cardinality of commuting families. The
strongest hypothesis assumes arbitrary cardinalities and it leads to the class of so
called slim modules (also known as strongly slender), which is a subclass of the
most general class of ℵ1-slim modules (also called as slender), which involves only
commutativity with countable families. It is proved in [7] that the cardinality of
a non-zero slim module is greater than or equal to any measurable cardinal (and
the presence of such cardinality is also a sufficient condition for existence of a non-
zero slim module) and that the class of slim modules is closed under coproducts.
Thus, the absence of a measurable cardinal ensures that there is at least one
non-zero slim module and in fact, abundance of them. On the other hand, if
there is a proper class of measurable cardinals then there is no such object like a
non-zero slim module. This motivated the question in the dual setting, namely
if the class of compact objects in full module categories (termed also as dually
slender modules) is closed under products. Offering no surprise, set-theoretical
assumptions have helped to establish the conclusion also in this case.

The main objective of this paper is to refine several results on compactness.
The obtained improvement comes from transferring behavior of modules to the
context of general abelian categories. In particular we provide a generalized
description of classes of compact objects closed under products that was initially
exposed for dually slender modules in [10]. Our main result shows that the class of
all C-compact objects of a reasonably generated category is closed under suitable
set-theoretical assumption:
Theorem 2.3.4. Let A be a ∏︁ C-compactly generated category, M a family of C-
compact objects of A. If we assume that there is no strongly inaccessible cardinal,
then every product of C-compact objects is C-compact.

Note that this outcome is essentially based on the characterization of non-C-
compactness formulated in Theorem 2.1.5. Dually slender and self-small modules
(which may be identically translated as self-dually slender) form naturally avail-
able instances of compact and self-compact objects (see e.g. [5] and [4]). For
unexplained terminology we refer to [8, 12].
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2.1 Compact objects in abelian categories
Let us recall basic categorical notions. A category with a zero object is called
additive if for every finite system of objects there exist the product and coproduct
which are canonically isomorphic, every Hom-set has a structure of abelian groups
and the composition of morphisms is bilinear. An additive category is abelian
if there exist a kernel and a cokernel for each morphism, monomorphisms are
exactly kernels of some morphisms and epimorphisms are cokernels. A category
is said to be complete (cocomplete) whenever it has all limits (colimits) of small
diagrams. Finally, a cocomplete abelian category where all filtered colimits of
exact sequences preserve exactness is Ab5. For further details on abelian category
see e.g. [12].

From now on, we suppose that A is an abelian category closed under arbitrary
coproducts and products. We shall use the terms family or system for any discrete
diagram, which can be formally described as a mapping from a set of indices to a
set of objects. Assume M is a family of objects in A. Throughout the paper, the
corresponding coproduct is designated (⨁︁ M, (νM | M ∈ M)) and the product
(∏︁ M, (πM | M ∈ M)). We call νM and πM as the structural morphisms of the
coproduct and the product, respectively.

Suppose that N is a subfamily of M. We call the coproduct (⨁︁ N , (νN |
N ∈ N )) in A as the subcoproduct and dually the product (∏︁ N , (πN | N ∈ N ))
as the subproduct. Note that there exist the unique canonical morphisms νN ∈
A (⨁︁ N ,

⨁︁ M) and πN ∈ A (∏︁ M,
∏︁ N ) given by the universal property of the

colimit ⨁︁ N and the limit ∏︁ N satisfying νN = νN ◦ νN and πN = πN ◦ πN for
each N ∈ N , to which we refer as the structural morphisms of the subcoproduct
and the subproduct over a subfamily N of M, respectively. The symbol 1M is
used for the identity morphism of an object M .

We start with formulation of two introductory lemmas which collects several
basic but important properties of the category A. The lemmas express rela-
tions between the coproduct and product over a family using their structural
morphisms.

Lemma 2.1.1. Let A be a complete abelian category, M a family of objects of
A with all coproducts and N ⊆ M. Then

(i) There exist unique morphisms ρN ∈ A(⨁︁ M,
⨁︁ N ), µN ∈ A(∏︁ N ,

∏︁ M)
such that ρN ◦ νM = νM , πM ◦ µN = νM if M ∈ N and ρN ◦ νM = 0,
πM ◦ µN = 0 if M /∈ N .

(ii) For each M ∈ M there exist unique morphisms ρM ∈ A(⨁︁ M,M) and
µM ∈ A(M,

∏︁ M) such that ρM ◦νM = 1M , πM ◦µM = 1M and ρM ◦νN = 0,
πN ◦ µM = 0 whenever N ̸= M . If ρM and µM denote the corresponding
morphisms for M ∈ N , then µN ◦ µN = µN and ρN ◦ ρN = ρN for all
N ∈ N .

(iii) There exists a unique morphism t ∈ A(⨁︁ M,
∏︁ M) such that πM ◦ t = ρM

and t ◦ νM = µM for each M ∈ M.

Proof. (i) It suffices to prove the existence and uniqueness of ρN , the second claim
has a dual proof.
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Consider the diagram (M | M ∈ M) with morphisms (˜︁νM | M ∈ M) ∈
A(M,

⨁︁ N ) where ˜︁νM = νM for M ∈ N and ˜︁νM = 0 otherwise. Then the claim
follows from the universal property of the coproduct (⨁︁ M, (νM | M ∈ M)).

(ii) Note that for the choice N := ⨁︁(M) ≃ M we have νM = 1M and the
claim follows from (i).

(iii) We obtain the requested morphism by the universal property of the
product (∏︁ M, (πM | M ∈ M)) applying on the cone (⨁︁ M, (ρM | M ∈ M))
that is provided by (ii). Dually, there exists a unique t′ ∈ A(⨁︁ M,

∏︁ M) with
t′ ◦ νM = µM . Then

πM ◦ (t ◦ νM) = ρM ◦ νM = 1M = πM ◦ µM = πM ◦ (t′ ◦ νM),

hence t ◦ νM = µM by the uniqueness of the associated morphism µM and t = t′

because t′ is the only one satisfying the condition for all M ∈ M.

We call the morphism ρN (µN ) from (i) as the associated morphism to the
structural morphism νM (πM) over the subcoproduct (the subproduct) over N .
For the special case in (ii), the morphisms ρM (µM) from (ii) as the associated
morphism to the structural morphism νM (πM). Let the unique morphism t be
called the compatible coproduct-to-product morphism over a family M. Note that
this morphism need not be a monomorphism, but it is in case A is an Ab5-
category [12, Chapter 2, Corollary 8.10]. Moreover, t is an isomorphism if the
family M is finite.

Lemma 2.1.2. Let us use the notation from the previous lemma.

(i) For the subcoproduct over N , the composition of the structural morphism
of the subcoproduct and its associated morphism is the identity. Dually for
the subproduct over N , the composition of the associated morphism of the
subproduct and its structural morphism is the identity, i.e. ρN ◦νN = 1⨁︁

N
and πN ◦ µN = 1∏︁

N , respectively.

(ii) If t ∈ A (⨁︁ N ,
∏︁ N ) and t ∈ A (⨁︁ M,

∏︁ M) denote the compatible coprod-
uct
-to-product morphisms over N and M respectively, then the following dia-
gram commutes: ⨁︁ N νN →→

t
↓↓

⨁︁ M ρN →→

t
↓↓

⨁︁ N

t
↓↓∏︁ N µN →→

∏︁ M πN →→
∏︁ N

(iii) Let κ be an ordinal, (Nα | α < κ) be a disjoint partition of M and for
α < κ let Sα := ⨁︁ Nα, Pα := ∏︁ Nα. Denote the families of the limits and
colimits like S := (Sα | α < κ), P := (Pα | α < κ). Then ⨁︁ M ≃ ⨁︁ S and∏︁ M ≃ ∏︁ P where both isomorphisms are canonical, i.e. for every object
M ∈ M the diagrams commute:

M
νM →→

νM

↓↓

Sα

νSα

↓↓⨁︁ M ≃ →→
⨁︁ S

∏︁ P ≃ →→

πPα

↓↓

∏︁ M
πM

↓↓

Pα
πM →→M
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Proof. (i) The equality ρN ◦ νN = 1⨁︁
N is implied by the uniqueness of the

universal morphism and the equalities (ρN ◦ νN ) ◦ νN = ρN ◦ νN = νN and
1⨁︁

N ◦ νN = νN for all N ∈ N . The equality πN ◦ µN = 1∏︁
N is dual.

(ii) We need to show that t ◦ νN = µN ◦ t. For all N ∈ N , (πN ◦ t) ◦ νN =
ρN ◦ νN = 1N by Lemma 2.1.1(iii), (ii). But πN ◦ µN = 1N , hence µN = t ◦ νN
by the uniqueness of µN . If µN ∈ A(N,∏︁ N ) denotes the unique homomorphism
ensured by Lemma 2.1.1(ii), then the last argument proves that µN = t ◦ νN .
Thus

(t ◦ νN ) ◦ νN = t ◦ (νN ◦ νN) = t ◦ νN = µN = µN ◦ µN = µN ◦ (t ◦ νN) =
= (µN ◦ t) ◦ νN

and the claim follows from the universal property of the coproduct (⨁︁ N , (νN |
N ∈ N )). The dual argument proves that πN ◦ t = t ◦ ρN .

(iii) A straightforward consequence of the universal properties of the coprod-
ucts and products.

Let us suppose that M is an object in A and N is a system of objects of
A. As the functor A(M,−) on any additive category maps into Hom-sets with a
structure of abelian groups we can define a mapping

ΨN :
⨁︂

(A(M,N) | N ∈ N ) → A(M,
⨁︂

N )

in the following way:
For a family of mappings φ = (φN | N ∈ N ) from ⨁︁ (A(M,N) | N ∈ N )

let us denote by F a finite subfamily such that φN = 0 whenever N /∈ F and
let τ ∈ A(M,

∏︁ N ) be the unique morphism given by the universal property of
the product (∏︁ N , (πN | N ∈ F)) applied on the cone (M, (φN | N ∈ N )), i.e.
πN ◦ τ = φN for every N ∈ N . Then

ΨN (φ) = νF ◦ ν−1 ◦ πF ◦ τ

where ν ∈ A(⨁︁ F ,∏︁ F) denotes the canonical isomorphism.
Note that the definition ΨN (φ) does not depend on the choice of F . Recall

an elementary observation which plays a key role in the definition of a compact
object.

Lemma 2.1.3. The mapping ΨN is a monomorphism in the category of abelian
groups for every family of objects N .

Proof. If ΨN (σ) = 0, then σ = (ρN ◦ σ)N = (0)N , hence ker(ΨN ) = 0.

Applying the currently introduced categorical tools we are ready to present
the central notion of the paper. Let C be a subclass of objects of A. An object
M is said to be C-compact if ΨN is an isomorphism for every family N ⊆ C, M is
compact in the category A if it is Ao-compact for the class of all objects Ao, and
M is self-compact if it is {M}-compact. Note that every object is {0}-compact.

First we formulate an elementary criterion of identifying C-compact object.

Lemma 2.1.4. If M is an object and C a class of objects in A, then the following
are equivalent:
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(1) M is C-compact,

(2) for every N ⊆ C and f ∈ A(M,
⨁︁ N ) there exists a finite subsystem F ⊆ N

and a morphism f ′ ∈ A(M,
⨁︁ F) such that f = νF ◦ f ′.

(3) for every N ⊆ C and every f ∈ A(M,
⨁︁ N ) there exists a finite subsystem

F contained in N such that f = ∑︁
F∈F

νF ◦ ρF ◦ f .

Proof. (1) → (2): Let N ⊆ C and f ∈ A(M,
⨁︁ N ). Then there exists a ΨN -

preimage φ of f , hence there can be chosen a finite subsystem F ⊆ N such
that

f = ΨN (φ) = νF ◦ ν−1 ◦ πF ◦ τ,

where we use the notation from the definition of the mapping ΨN . Now it remains
to put f ′ = ρF ◦ f and utilize Lemma 2.1.1(ii) to verify that

νF ◦ f ′ = νF ◦ ρF ◦ f = νF ◦ ρF ◦ νF ◦ 1⊕F ◦ ν−1 ◦ πF ◦ τ = f.

(2) → (3): Since ρF ◦ νF = 1⨁︁
F by Lemma 2.1.1(ii), we obtain that

νF ◦ ρF ◦ f = νF ◦ ρF ◦ νF ◦ f ′ = νF ◦ f ′ = f.

Moreover, νF ◦ ρF = ∑︁
F∈F

νF ◦ ρF , hence

f = νF ◦ ρF ◦ f =
∑︂
F∈F

νF ◦ ρF ◦ f.

(3) → (1): If we put φF := ρF ◦ f for F ∈ F and φN := 0 for N /∈ F and
take φ := (φN | N ∈ N ), then it is easy to see that f = ΨN (φ) hence ΨN is
surjective.

Now, we can prove a characterization, which generalizes equivalent conditions
well known for the categories of modules. Note that it will play similarly impor-
tant role for the categorical approach to compactness as in the special case of
module categories.

Theorem 2.1.5. The following conditions are equivalent for an object M and a
class of objects C:

(1) M is not C-compact,

(2) there exists a countably infinite system Nω of objects from C and
φ ∈ A(M,

⨁︁ Nω) such that ρN ◦ φ ̸= 0 for every N ∈ Nω,

(3) for every system G of C-compact objects and every epimorphism
e ∈ A(⨁︁ G,M) there exists a countable subsystem Gω ⊆ G such that f c ◦ e ◦
νGω ̸= 0 for the cokernel f c of every morphism f ∈ A(F,M) where F is a
C-compact object.

Proof. (1) → (2): Let N be a system of objects from C for which there exists
a morphism φ ∈ A(M,

⨁︁ N ) \ im(ΨN ). Then it is enough to take Nω as any
countable subsystem of the infinite system (N ∈ N | ρN ◦ φ ̸= 0).
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(2) → (3) Let G be a family of C-compact objects and e ∈ A(⨁︁ G,M) an
epimorphism. If N ∈ Nω, then (ρN ◦ φ) ◦ e ̸= 0, hence by the universal property
of the coproduct ⨁︁ G applied on the cone (N, (ρN ◦φ◦e◦νG | G ∈ G)) there exists
GN ∈ G such that A(GN , N) ∋ ρN ◦ φ ◦ e ◦ νGN

̸= 0. Put Gω = (GN | N ∈ Nω),
where every object from the system G is taken at most once, i.e. we have a
canonical monomorphism νGω ∈ A (⨁︁ Gω,

⨁︁ G).
Assume to the contrary that there exist a C-compact object F and a morphism

f ∈ A(F,M) such that f c ◦ e◦νGω = 0 where f c ∈ A(M, cok(f)) is the cokernel of
f . Let N ∈ Nω and, furthermore, assume that ρN ◦φ◦f = 0. Then the universal
property of the cokernel ensures the existence of a morphism α ∈ A(cok(f),N)
such that α ◦ f c = ρN ◦ φ, i.e. that commutes the diagram:

F

f
↓↓⨁︁ Gω

νGω →→
⨁︁ G e →→M

φ
→→

fc

↓↓

⨁︁ Nω

ρN

↓↓

cok(f) α →→ N

Thus (ρN ◦φ)◦e◦νGω = (α◦f c)◦e◦νGω = 0, which contradicts the construction
of Gω. We have proved that ρN ◦ (φ ◦ f) ̸= 0 for each N ∈ Nω, hence φ ◦ f ∈
A(F,⨁︁ N ) \ im(ΨNω). We get the contradiction with the assumption that F is
C-compact, thus f c ◦ e ◦ νGω ̸= 0.

(3) → (1): If M is C-compact itself, then the system G = (M) and the identity
map e on M are the counterexamples for the condition (3).

Corollary 2.1.6. If A contains injective envelopes E(U) for all objects U ∈ C,
then an object M is not compact if and only if there exists a (countable) system
of injective envelopes E in A of objects of C for which ΨN is not surjective for
some subsystem N of C.

Proof. By the previous proposition, it suffices to consider the composition of φ ∈
A(M,

⨁︁ Nω) \ im ΨNω where Nω implies that M is not C-compact together with
the canonical morphism ι ∈ A (⨁︁ Nω,

⨁︁ E), where we put E := (E(N) | N ∈ Nω).

2.2 Classes of compact objects
Let us denote by A a complete abelian category and C a class of some objects of
A. First, notice that several closure properties of the class of C-compact objects
are identical to the closure properties of classes of dually slender modules since
these follow from the fact that the contravariant functor A(−,⨁︁ N ) commutes
with finite coproducts and it is left exact. We present a detailed proof of the
fact that the class of all C-compact objects is closed under finite coproducts and
cokernels using Theorem 2.1.5.

Lemma 2.2.1. The class of all C-compact objects is closed under finite coproducts
and all cokernels of morphisms α ∈ A(M,C) where C is C-compact and M is
arbitrary.
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Proof. Suppose that ⨁︁n
i=1 Mi is not C-compact. Then by Theorem 2.1.5 there

exist a sequence (Ni | i < ω) of objects and a morphism φ ∈ A(⨁︁n
i=1 Mi,

⨁︁
j<ωNj)

such that ρj ◦ φ ̸= 0 for each j < ω. Since ω = ⋃︁n
i=1{j < ω | ρj ◦ φ ◦ νi ̸= 0}

there exists i for which the set {j < ω | ρj ◦ φ ◦ νi ̸= 0} is infinite, hence Mi is
not C-compact by applying Theorem 2.1.5.

Similarly, suppose that αc is the cokernel of α ∈ A(M,C), where cok(α) is
not C-compact, and φ ∈ A(cok(α),⨁︁j<ω Nj) for (Ni | i < ω) satisfies ρj ◦ φ ̸= 0
for every j < ω. Then, obviously, ρj ◦ φ ◦ π ̸= 0 for each j < ω and so C is not
C-compact again by Theorem 2.1.5.

Lemma 2.2.2. If M is an infinite system of objects in A satisfying that for each
M ∈ M there exists C ∈ C such that A(M,C) ̸= 0, then ⨁︁ M is not C-compact.

Proof. It is enough to take N = (CM | M ∈ M) where A(M,CM) ̸= 0 and apply
Theorem 2.1.5(2)→(1).

We obtain the following consequence:

Corollary 2.2.3. Let M be a system of objects of A. Then ⨁︁ M is C-compact
if and only if the system {M ∈ M | ∃C ∈ C : A(M,C) ̸= 0} is finite.

Proof. Put K = {M ∈ M | ∃C ∈ C : A(M,C) ̸= 0}. Then we have the canonical
isomorphism A(⨁︁ K,⨁︁ N ) ∼= A(⨁︁ M,

⨁︁ N ) for every system N of objects of
C, hence ⨁︁ K is C-compact if and only if ⨁︁ M is so. Furthermore, ⨁︁ K is not
C-compact by Lemma 2.2.2 whenever K is infinite.

If ⨁︁ M is C-compact, then ⨁︁ K and every M ∈ M is C-compact by
Lemma 2.2.1, hence K is finite. On the other hand, if K is finite and all objects
M ∈ M are C-compact, then ⨁︁ K is C-compact by Lemma 2.2.1, hence ⨁︁ M is
C-compact as well.

Let us confirm that relativized compactness behaves well under taking finite
unions of classes and verify with an example that this closure property can not
be extended to an infinite case.

Lemma 2.2.4. Let C1, . . . , Cn be a finite number of classes of objects and let
C ∈ A. Then C is ⋃︁n

i=1 Ci-compact if and only it C is Ci-compact for every i ≤ n.

Proof. The direct implication is trivial. If C is not ⋃︁n
i=1 Ci-compact, there exists

a sequence (Ci | i < ω) of objects of ⋃︁n
i=1 Ci with a morphism φ ∈ A(C,⨁︁j<ω Cj)

such that ρj ◦ φ ̸= 0 for every j < ω by Theorem 2.1.5(1)→(2). Since there
exists k ≤ n for which infinitely many Ci’s belong to Cj we can see that C is not
Ck-compact by Theorem 2.1.5(2)→(1).

Example 2.2.5. Let R be a ring over which there is an infinite set of pairwise
non-isomorphic simple right modules. Any non-Artinian VNR ring serves as
an example where the property holds. Suppose that A is the full subcategory of
category consisting of all semisimple right modules, which is generated by all
simple modules. Fix a countable sequence Si, i < ω, of pairwise non-isomorphic
simple modules. Then the module ⨁︁

i<ω Si is {Si}-compact for each i but it is not⋃︁
i<ω{Si}-compact.
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Recall that an object A is cogenerated by C it there exist a system N of objects
of C and a monomorphism in AA(A,∏︁ N ). Relative compactness of an object is
preserved if we close the class under all cogenerated objects.
Lemma 2.2.6. Let Cog(C) be the class of all objects cogenerated by C. Then
every C-compact object is Cog(C)-compact.
Proof. Let us suppose that an object C is not Cog(C)-compact and fix a sequence
B := (Bi | i < ω) of objects of Cog(C) and a morphism φ ∈ A(C,⨁︁ B) such
that ρj ◦ φ ̸= 0 for each j < ω which exist by Theorem 2.1.5(1)→(2). Since
Cog(C) is closed under subobjects we may suppose that ρj ◦φ are epimorphisms.
Furthermore, for every j < ω there exists a non-zero morphism τj ∈ A(Bj, Tj)
with Tj ∈ C. Form the sequence T := (Ti | i < ω). Let τ be the uniquely defined
morphism from A(⨁︁ B,⨁︁ T ) satisfying τ ◦νj = νj ◦τj. Then ρj ◦τ ◦νi = ρj ◦νi◦τi
which is equal to τi whenever i = j and it is zero otherwise, hence ρi ◦ τ ◦νi ◦ρi =
ρi ◦ τ by the universal property of ⨁︁ B. Finally, since ρi ◦ φ is an epimorphism
and τi is non-zero, τi ◦ ρi ◦ φ ̸= 0 and so

ρj ◦ τ ◦ φ = ρi ◦ τ ◦ νi ◦ ρi ◦ φ = ρi ◦ νi ◦ τi ◦ ρi ◦ φ = τi ◦ ρi ◦ φ ̸= 0

for every i < ω. Thus the composition τ ◦ φ implies that C is not C-compact
again by Theorem 2.1.5(2)→(1).

A complete abelian category A is C-steady, if there exists an A-projective
C-compact object G which finitely generates the class of all C-compact objects,
i.e. for every C-compact object F there exists n ∈ N and an epimorphism h ∈
A(G(n), F ). A is said to be steady whenever it is an Ao-steady category for the
class Ao of all objects of A.
Example 2.2.7. Let R be a ring and let A = Mod-R denote the category of all
right R-modules. Recall that a module M ∈ A is called small if it is compact in
the category A. If R is a right steady ring, i.e. a ring over which every small
module is finitely generated (for details see e.g. [5]), then A is a steady category.

Furthermore, in [9, Theorem 1.7] it was proved that a locally Noetherian
Grothendieck category is steady.

Recall that an object A is simple if for every B ∈ Ao, any non-zero morphism
from A(A,B) is a monomorphism and an object is semisimple if it is isomorphic
to a coproduct of simple objects. A category is called semisimple if all its objects
are semisimple. We characterize steadiness of semisimple categories.
Lemma 2.2.8. Let A be a semisimple category, S be a representative class of
simple objects and suppose that every object S ∈ S is compact. Then A is steady
if and only if S is finite.
Proof. Note that all objects of A are projective and if and any nonzero φ ∈
A(S, T ) for S, T ∈ S is an isomorphism. Moreover, if S ′ is a subsystem of S then⨁︁ S ′ is compact if and only if S ′ is finite.

Suppose that A is steady. Then there exists a compact object A isomorphic
to ⨁︁ S ′ for a finite system of simple objects S ′, which finitely generates the class
of all compact objects, in particular all simple objects. Since A(A, S) ̸= 0, there
exists i ∈ I such that Si ∼= S for each S ∈ S, hence I is finite. If S is, on the
other hand, finite, it is easy to see that A = ⨁︁ S finitely generates A, and so A
is steady.
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Example 2.2.9. Let A be a category of semisimple right modules over a ring
with an infinite set of pairwise non-isomorphic simple right modules as in Exam-
ple 2.2.5. Then A is a semisimple category which is not steady by Lemma 2.2.8.
On the other hand, if the ring R is right steady, which is true for example for
each countable commutative VNR ring, then the category of all right R-modules
is Mod-R steady.

We say that a complete abelian category A is ∏︁ C-compactly generated if there
is a set G of objects of A that generates A and the product of any system of objects
in G is C-compact. Note that G consists only of C-compact objects.

Lemma 2.2.10. If E is a C-compact injective generator of A such that there
exists a monomorphism m ∈ A(E(ω), E), then A is ∏︁ C-compactly generated.

Proof. It follows immediately from Theorem 2.1.5(3)→(1).

Example 2.2.11. Let R be a right self-injective, purely infinite ring. Then E :=
R is an injective generator and there is an embedding 0 → R(ω) → R. By the
previous lemma, the category Mod-R is ∏︁ C-generated.

2.3 Products of compact objects
We start the section by an observation that the cokernel of the compatible
coproduct-to-product morphism over a countable family is C-compact where C
is a class of objects in an abelian category A. This initial step will be later
extended to families regardless of their cardinality.

Lemma 2.3.1. Let A be ∏︁ C-compactly generated and let M be a countable family
of objects in A. If t ∈ A (⨁︁ M,

∏︁ M) is the compatible coproduct-to-product
morphism, then cok(t) is C-compact.

Proof. As for a finite M there is nothing to prove, suppose that M = (Mn | n <
ω). Let G be a family of objects of A such that every product of a system of
objects in G is C-compact and let e ∈ A(⨁︁ G,∏︁ M) be an epimorphism, which
exists by the hypothesis. Let tc be the cokernel of t. Then both tc and e′ := tc ◦ e
are epimorphisms and tc◦t = 0. We will show that for every countable subsystem
Gω of G there exists a C-compact object F and a morphism f ∈ A(F, cok(t)) such
that A (⨁︁ Gω, cok(f)) ∋ f c ◦ e′ ◦ νGω = 0 for the cokernel f c ∈ A(cok(t), cok(f)).
By Theorem 2.1.5 this yields that cok(t) is C-compact.

Since for any finite Gω ⊆ G it is enough to take F := ⨁︁ Gω and f := e′ ◦ νGω ,
we may fix a countably infinite family Gω = (Gn | n < ω) ⊆ G. For each n < ω
put Gn = (Gi | i ≤ n) and let πGn ∈ A (∏︁ Gω,

∏︁ Gn) and πMn ∈ A (∏︁ M,Mn)
denote the structural morphisms, and let u−1 ∈ A (∏︁ Gn,

⨁︁ Gn) be the inverse of
the compatible coproduct-to-product morphism u ∈ A (⨁︁ Gn,

∏︁ Gn) that exists
for finite families.

First, let us fix n ∈ ω and we prove that νGk
= νGn ◦ u−1 ◦ πGn ◦ µGk

for each
k ≤ n. Let νGk

∈ A(Gk,
⨁︁ Gn) be the structural morphism of the coproduct ⨁︁ Gn,

u ∈ A(⨁︁ Gω,
∏︁ Gω) the canonical coproduct-to-product morphism, and µGk

∈
A(Gk,

∏︁ Gn) the associated morphism to the product ∏︁ Gn. Since νGn ◦νGk
= νGk
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and µGk
= u◦ νGk

(by Lemma 2.1.1(iii)), then we immediately infer the following
equalities from Lemma 2.1.2(ii) :

νGk
= νGn ◦ νGk

= νGn ◦ (u−1 ◦ u ◦ νGk
) = (νGn ◦ u−1) ◦ u ◦ νGk

=
= (νGn ◦ u−1) ◦ (πGn ◦ u ◦ νGn) ◦ νGk

= (νGn ◦ u−1) ◦ πGn ◦ u ◦ νGk
=

= (νGn ◦ u−1) ◦ πGn ◦ µGk

Now, if we employ the universal property of the product (∏︁ M, (πMn | n < ω))
with respect to the cone (∏︁ Gω, (πMn ◦ e ◦ νGn ◦ u−1 ◦ πGn | n < ω)), then there
exists a unique morphism α ∈ A(∏︁ Gω,

∏︁ M) such that the middle non-convex
pentagon in the following diagram commutes :

Gk

µGk

↘↘νGk →→

1Gk

⨁︁ Gω u →→
∏︁ Gω

πGn

↓↓

πMn ◦α

↘↘

α

↘↘

⨁︁ M
t
↓↓

Gk νGk

→→

1Gk

⨁︁ Gn

νGn

↑↑

u
≃
→→

νGω ◦νGn

↓↓

∏︁ Gn Mn
∏︁ M

tc

↓↓

πMn←←

Gk ˜︁νGk

→→
⨁︁ G

πMn ◦e
→→

e

→→

cok(t)

Then for each k ≤ n we deduce that
πMn ◦ (α ◦ µGk

− e ◦ ˜︁νGk
) = πMn ◦ (α ◦ µGk

− e ◦ νGω ◦ νGn ◦ u−1 ◦ πGn ◦ µGk
) =

= (πMn ◦ α− πMn ◦ e ◦ νGω ◦ νGn ◦ u−1 ◦ πGn) ◦ µGk
= 0

and α ◦µGn = e ◦ ˜︁νGn for every n < ω is yielded as the number n was fixed. Note
that ∏︁ Gω is C-compact by the hypothesis. Now, consider f c the cokernel of the
morphism f = tc ◦ α ∈ A (∏︁ Gω, cok(t)). Then

0 = f c ◦ tc ◦ (e ◦ ˜︁νGn − α ◦ µGn) =
= f c ◦ tc ◦ e ◦ ˜︁νGn − f c ◦ tc ◦ α ◦ µGn = f c ◦ e′ ◦ ˜︁νGn

hence 0 = f c ◦ e′ ◦ ˜︁νGn = f c ◦ e′ ◦ νGω ◦ νGn for every n < ω, which finishes the
proof.

Let I be a non-empty subset of P(X), the power set of a set X. We recall
that I is said to be

– an ideal if it is closed under subsets (i.e. if A ∈ I and B ⊆ A, then B ∈ I)
and under finite unions, (i.e. if A,B ∈ I , then A ∪B ∈ I),

– a prime ideal if it is a proper ideal and for all subsets A, B of X, A∩B ∈ I
implies that A ∈ I or B ∈ I,

– a principal ideal if there exists a set Y ⊆ X such that I = P(Y ), the power
set of Y .

The set I | Y = {Y ∩ A | A ∈ I} is called a trace of an ideal I on Y .
Note that the trace of an ideal is also an ideal and that I is a prime ideal if

and only if for every A ⊆ X, A ∈ I or X \ A ∈ I. Moreover, a principal prime
ideal on X is of the form P(X \ {x}) for some x ∈ X.

Dually, a set F ̸= ∅ of non-empty subsets of X is said to be
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– a filter if it is closed under finite intersections and supersets,

– an ultrafilter if it is a filter which is not properly contained in any other
filter on X,

We say that a filter F is λ-complete, if ⋂︁ G ∈ F for every subset G ⊆ F such that
|G| < λ and F is countably complete, if it is ω1-complete.

Note that there is a one-to-one correspondence between ultrafilters and prime
ideals on X defined by I ↦→ P(X) \ I for an ideal I.

Let M be a family of objects. Then there exits a set of indices I such that
M = (Mi | i ∈ I), i.e. there exists a bijection between objects of the family
M and the set I. Since families of objects seem to be more convenient for a
reader than using indexed sets, we will keep the notation. Thus in the sequel,
we will understand families as sets in the described sense since we need to apply
set-theoretical properties.

Now, we are able to generalize [10, Lemma 3.3].

Proposition 2.3.2. Let A be a ∏︁ C-compactly generated category, M a family
of C-compact objects of A and N = (Nn | n < ω) a countable family of objects of
C. Suppose that ΨN is not surjective and fix φ ∈ A(∏︁ M,

⨁︁ N ) \ im ΨN . If we
denote In = {J ⊆ M | ρNk

◦ φ ◦ µJ = 0 ∀k ≥ n} and I = ⋃︁
n<ω In ⊆ P(M),

then the following holds:

(i) In is an ideal for each n,

(ii) I is closed under countable unions of subfamilies,

(iii) there exists n < ω for which I = In,

(iv) there exists a subfamily U ⊆ M such that the trace of I on U forms a
non-principal prime ideal.

Proof. Let G be a set of C-compact objects satisfying that every product of a
system of objects in G is C-compact, which is guaranteed by the hypothesis.

(i) Obviously, ∅ ∈ In and In is closed under subsets. The closure of In under
finite unions follows from Lemma 2.1.2(iii) applied on the disjoint decomposition
J ∪K = J ∪(K\J ), i.e. from the canonical isomorphism ∏︁ J ∪K ∼=

∏︁ J ×∏︁ K\J .
(ii) First we show that I is closed under countable unions of pairwise disjoint

sets. Let Kj, j < ω be pairwise disjoint subfamilies of I and put K = ⋃̇︁
j<ωKj.

Let Ki := ∏︁ Ki. We show that there exists k < ω such that Kj ∈ Ik for each
j < ω. Assume that for all n < ω there exist possibly distinct i(n) such that
Ki(n) /∈ In. Hence ρNl(n)◦φ◦µKi(n) ̸= 0 for some l(n) ≥ n and there is a C-compact
generator Gn ∈ G and a morphism fn ∈ A(Gn, Ki(n)) with ρNl(n) ◦φ◦µKi(n) ◦fn ̸= 0.
Set K′ := (Ki(n) | n < ω).

Put Gω := (Gj | j < ω) and denote by (∏︁ Gω, (πGj
| j < ω)) the product

of Gω and by µGj
∈ A (Gj,

∏︁ Gω), j < ω, the associated morphisms given by
Lemma 2.1.1(i). Then the universal property of the product ∏︁ K′ applied to the
constructed cone gives us a morphism f ∈ A (∏︁ Gω,

∏︁ K′) such that fn ◦ πGn =
πKi(n) ◦ f , hence

fn = fn ◦ πGn ◦ µGn = πKi(n) ◦ f ◦ µGn = πKi(n) ◦ µKi(n) ◦ fn
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Since ∏︁ Gω is C-compact by the hypothesis there exists arbitrarily large m < ω
such that ρNl(m) ◦ φ ◦ µK′ ◦ f = 0 where µK′ ∈ A (∏︁ K′,

∏︁ M) is the associated
morphism to πK′ ∈ A(∏︁ M,

∏︁ K′) over the subcoproduct of K′. Hence

ρNl(m) ◦ φ ◦ (µKi(m) ◦ fm) = ρNl(m) ◦ φ ◦ µK′ ◦ f ◦ µGm = 0,

a contradiction.
We have proved that there is some n < ω such that ρNk

◦ φ ◦ µKj
= 0

for each k ≥ n and j < ω, and without loss of generality we may suppose
that n = 0. Denote by tc the cokernel of the compatible coproduct-to-product
morphism t ∈ A (⨁︁ K,∏︁ K). As φ ◦ µK ◦ t = 0, the universal property of the
cokernel ensures the existence of the morphism τ ∈ A(cok(t),⨁︁ N ) such that
φ ◦ µK = τ ◦ tc. Hence there exists n < ω such that ρNk

◦ φ ◦ µK = 0 for each
k ≥ n since cok(t) is C-compact by Lemma 2.3.1, which proves that K ⊆ In.

To prove the claim for whatever system (Jj | j < ω) in I is chosen, it remains
to put J0 = K0 and Ji = Ki \ ⋃︁

j<i Kj for i > 0.
(iii) Assume that I ≠ Ij for every j < ω. Then there exists a countable

sequence of families of objects (Jj ∈ I \ Ij | j ∈ ω). By (ii) we get J :=⋃︁
j<ω Jj ∈ I and there is some n < ω such that J ∈ In. Having Jn ⊆ J ∈ In

leads us to a contradiction.
(iv) We will show that there exists a family U ⊆ M such that for every

K ⊆ U ,K ∈ I or U \ K ∈ I. Assume that such U does not exist. Then we may
construct a countably infinite sequence of disjoint families (Ki | i < ω) where Ki

are non-empty for i > 0 in the following way: Put K0 = ∅ and J0 = M. There
exist disjoint sets Ji+1,Ki+1 ⊂ Ji such that Ji = Ji+1∪Ki+1 where Ji+1,Ki+1 ̸∈ I.
Now, for each n ≥ 1 there exists a compact generator Gn ∈ G and a morphism
fn ∈ A(Gn,

∏︁ Kn) such that ρNk
◦φ◦µKn ◦fn ̸= 0 for some k > n. This contradicts

to the fact that ∏︁
n<ω Gn is C-compact (hence ρNk

◦φ ◦ µKn ◦ fn ◦ πn = 0 starting
from some large enough k < ω).

The trace of I on U is a prime ideal and assume that it is principal, i.e. it
consists of all subfamilies of U excluding one particular index U ∈ U , so I |
U = P(U\{U}) ∈ I. On the other hand, U is C-compact itself, which implies
{U} ∈ I. This yields I | U containing U , a contradiction.

As a consequence of Proposition 2.3.2 we can formulate a generalization of
[10, Theorem 3.4]:

Corollary 2.3.3. Let A be a ∏︁ C-compactly generated category. Then the fol-
lowing holds:

(i) A product of countably many C-compact objects is C-compact.

(ii) If there exists a system M of cardinality κ of C-compact objects such that
the product ∏︁ M is not C-compact, then there exists an uncountable cardinal
λ < κ and a countably complete nonprincipal ultrafilter on λ.

Proof. (i) An immediate consequence of Proposition 2.3.2(iii).
(ii) Let M be a system of cardinality κ of C-compact objects and suppose

that ∏︁ M is not a C-compact object. Then there exists a countable family N
such that ΨN is not surjective. By Lemma 2.3.2(iv) there exists a subfamily
U ⊆ M such that the trace of I on U forms a non-principal prime ideal which
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is closed under countable unions of families by Lemma 2.3.2(ii). If we define
V = P(U) \ (I | U) then V forms a countably complete non-principal ultrafilter
on U . It is uncountable by applying (i).

Before we formulate the main result of this section which answers the question
from [6] for abelian categories, let us list several set-theoretical notions and their
properties guaranteeing that the hypothesis of the theorem is consistent with
ZFC.

A cardinal number λ is said to be measurable if there exists a λ-complete
non-principal ultrafilter on λ and it is Ulam-measurable if there exists a count-
ably complete non-principal ultrafilter on λ. A regular cardinal κ is strongly
inaccessible if 2λ < κ for each λ < κ. Recall that

• [15, Theorem 2.43.] every Ulam-measurable cardinal is greater or equal to
the first measurable cardinal;

• [15, Theorem 2.44.] every measurable cardinal is strongly inaccessible;

• [11, Corollary IV.6.9] it is consistent with ZFC that there is no strongly
inaccessible cardinal.

Theorem 2.3.4. Let A be a ∏︁ C-compactly generated category, M a family of C-
compact objects of A. If we assume that there is no strongly inaccessible cardinal,
then every product of C-compact objects is C-compact.

Proof. Suppose that the product of an uncountable system of C-compact objects
is not C-compact. Then Corollary 2.3.3(ii) ensures the existence of a countable
complete ultrafilter on λ. Thus there exists a measurable cardinal µ ≤ λ, which
is necessarily strongly inaccessible.
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[10] Kálnai, P., Žemlička, J.: Products of small modules, Commentat. Math.
Univ. Carol. 55, No. 1, 2014, pp. 9–16.

[11] Kunen, K., Set theory: an introduction to independence proofs, North Hol-
land, Amsterdam, 1980.

[12] Popescu N.: Abelian categories with applications to rings and modules, 1973,
Boston, Academic Press.

[13] Rentschler, R.: Sur les modules M tels que Hom(M,−) commute avec les
sommes directes, C.R. Acad. Sci. Paris, 268, 1969, pp. 930–933.

[14] Trlifaj, J.: Strong incompactness for some nonperfect rings, Proc. Amer.
Math. Soc. 123, 1995, pp. 21–25.

[15] Zelenyuk, E.G., Ultrafilters and topologies on groups, de Gruyter Exposi-
tions in Mathematics 50, de Gruyter, Berlin 2011.

30



3. Self-injective von Neumann
regular rings and Köthe’s
Conjecture
In the famous paper [8], Gottfried Köthe asked whether a ring with no non-zero
two-sided nil ideal necessarily contains no non-zero one-sided nil ideal. The affir-
mative answer to this question is usually referred as Köthe’s Conjecture. Despite
of plenty established equivalent reformulations of it and many known particular
classes of rings satisfying it, a general answer on this question is not known. The
original formulation and most famous translations of Köthe’s Conjecture use the
language of associative rings without unit. Recall several of them [10, 16, 5] (see
also [14, 15, 17]):

• the matrix ring Mn(R) is nil for every nil ring R,

• R[x] is Jacobson radical for every nil ring R,

• R[x] is not left primitive for every nil ring R,

• every ring which is a sum of a nilpotent subring and a nil subring is nil.

The present paper deals with its characterization in terms of unital rings,
namely, we say that a (unital associative) ring satisfies the condition (NK) if it
contains two nil right ideals whose sum is not nil. Köthe’s Conjecture is then
equivalent to the property that there exists no ring satisfying the condition (NK)
[11, 10.28]. Recall that the conjecture holds for all right Noetherian rings [11,
10.30], PI-rings [3] and rings with right Krull dimension [12].

The main goal of this text is to translate properties of a potential coun-
terexample for Köthe’s Conjecture to a certain structural question about simple
self-injective Von Neumann regular rings. Our main result, Theorem 3.2.3, shows
that existence of a ring satisfying (NK) implies existence a countable local ring
satisfying (NK) which is a subring of a self-injective simple VNR ring either Type
IIf or Type III.

As it was said, all rings in this paper are supposed to be associative with unit.
An ideal means a two-sided ideal and C-algebra is any ring R with a subring C
contained in the center of R. A (right) ideal I is called nil whenever all elements
a ∈ I are nilpotent, i.e. there exists n such that an = 0. A ring R is said to
be Von Neumann regular (VNR) if for every x ∈ R there exists y ∈ R such that
x = xyx. A VNR ring is called abelian regular provided all its idempotents are
central. For non-explain terminology we refer to [6] and [18].

3.1 Algebras over Q and Zp
Let R be a ring, a ∈ R, and I an ideal. The element a is said to be nilpotent
modulo I provided there exists n such that an ∈ I, and a is principally nilpotent
provided that the right ideal aR is nil. Note that then also the left ideal generated
by a is nil, a ∈ J (R) and each αaβ ∈ R is principally nilpotent as well for every
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α, β ∈ R. We say that a is a minimal non-nilpotent element of R if a is not
nilpotent and a is nilpotent modulo J for every non-zero ideal J . It is easy to see
that a ring satisfies (NK) if there exist two principally nilpotent elements whose
sum is not nilpotent.

Example 3.1.1. Every non-zero element of any commutative domain is minimal
non-nilpotent.

First, we make two elementary observations on generators of algebras satisfy-
ing (NK) and on the existence of minimal non-nilpotent elements:

Lemma 3.1.2. Let R be a C-algebra satisfying the condition (NK). Then there
exists a C-subalgebra S of R generated by two elements x, y such that both x and
y principally nilpotent in S, but x+ y is not nilpotent.

Proof. Since there exist two nil right ideals K and L of R such that K + L is
not nil, there exists elements x ∈ K and y ∈ L such that x + y is not nilpotent.
If S denotes a C-subalgebra of R generated by {x, y}, then xS and yS are nil
right ideals, as xS ⊆ xR and yS ⊆ yR. Clearly, every principal nilpotent element
belongs to the Jacobson radical.

Lemma 3.1.3. Let R be a ring and a ∈ R. If a is not nilpotent, then there exists
a prime ideal I such that a+ I is a minimal non-nilpotent element of the factor
ring R/I.

Proof. Let us take a maximal ideal I that does not contain any power of a, which
exists by Zorn’s Lemma. Obviously a is not nilpotent modulo I and it is nilpotent
modulo J for every ideal J ⊃ I. Since for any ideals U and V such that I ⊂ U, V
there exist m,n ∈ N satisfying am ∈ U and an ∈ V , hence am+n ∈ UV . Now, it
is clear that UV ̸⊆ I, thus I is a prime ideal.

As the consequence we can easily see that, if the class of all F -algebras satisfy-
ing the (NK) condition is non-empty, then we can choose countably-dimensional
one:

Corollary 3.1.4. If F is a field and R is an F -algebra which satisfies (NK), then
there exists an F -subalgebra A of R satisfying (NK) such that dimF (A) ≤ ω.

Recall that the fact that the Jacobson radical of a countably-dimensional
algebra over an uncountable field is nil implies that there is no F -algebra satisfying
(NK) over uncountable field F [1, Corollary 4]. It implies that for search of
algebras over a field satisfying (NK) we can restrict our attention just to countable
fields and to algebras of countable cardinality. Nevertheless, we will show below
that it is enough to research existence of general rings satisfying (NK) in the class
of countable generated algebras either over the field of rational numbers or over
field Zp for a prime number p.

Lemma 3.1.5. Let R be a C-algebra generated by two principally nilpotent el-
ements x, y such that x + y is not nilpotent. Then there exits a prime ring S
satisfying (NK) and a surjective ring homomorphism π : R → S such that π(C)
is a commutative domain, S is π(C)-algebra generated by principally nilpotent el-
ements π(x), π(y) contained in J (S), and π(x)+π(y) is a minimal non-nilpotent
element.
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Proof. Let I is a prime ideal such that x+y+I is a minimal non-nilpotent element
of the factor ring R/I which exists by Lemma 3.1.3. Put S = R/I and denote by π
the canonical projection R → S. Then π(C) ∼= C/C∩I is a commutative domain
and π(x), π(y) generates S as a π(C)-algebra. Obviously, π(x) +π(y) = x+ y+ I
is a minimal non-nilpotent by the construction and homomorphic images of nil
right ideals π(xR) = π(x)S, π(yR) = π(y)S are nil.

Given a ring R, we denote by CR the subring generated by the unit of R.
Since CR is isomorphic either to Z or to Zn for an integer n ∈ N and R has the
natural structure of CR-algebra, we obtain the following immediate consequence
of the Lemmas 3.1.2, 3.1.5:

Corollary 3.1.6. If there exists a ring satisfying (NK), then there exists an alge-
bra satisfying (NK) over either Z or Zp for some prime number p ∈ N generated
by two principally nilpotent elements.

Before we formulate claim that we can deal with Q-algebras instead of Z-
algebras we make the following easy observation:

Lemma 3.1.7. Let F be a field and R be an F -algebra generated by two princi-
pally nilpotent elements x, y such that x+ y is not nilpotent.

Then R is a local ring satisfying (NK) with J (R) = xR + yR = Rx+Ry .

Proof. Since x and y are principally nilpotent, xR + yR,Rx + Ry ⊆ J (R).
Observe that R = F +xR+yR = F +Rx+Ry which implies R/(xR+yR) ∼= F ,
hence J (R) ⊆ xR + yR,Rx+Ry.

Proposition 3.1.8. Let R be a ring satisfying (NK). Then there exists a subring
S of R generated by two elements ξ, υ, an F -algebra A and an epimorphism of
rings φ : S → A such that the following conditions hold:

(K1) either F = Q or F = Zp where p is a prime number,

(K2) x = φ(ξ) and y = φ(υ) are principally nilpotent generators of A, and x+ y
is a minimal non-nilpotent element,

(K3) xA+ yA = J (A) is the unique maximal right ideal of A.

The F -algebra A satisfies (NK) and if R is a PI-algebra then A can be taken as
a PI-algebra.

Proof. Since R has a structure of CR-algebra, we can take a subring S generated
by principally nilpotent elements ξ, υ such that ξ + υ is not nilpotent which is
ensured by Lemma 3.1.2. Moreover, by Lemma 3.1.7 we may suppose that ξ + υ
is a minimal non-nilpotent element and CS ∼= Z or CS ∼= Zp. For each integer
p ∈ N let µp : S → S be the S-endomorphism induced by multiplication by p and
note that ker(µp) is an ideal for an arbitrary p.

First, suppose that there exists a prime number p such that ker(µp) ̸= 0. Since
ξ+υ is minimal non-nilpotent, it follows by the hypothesis that there exists n ∈ N
for which (ξ + υ)n ∈ ker(µp), i.e. p(ξ + υ)n = 0. Put

x′ = ξ(ξ + υ)n, y′ = υ(ξ + υ)n ∈ ker(µp),
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and denote by S ′ a CS-subalgebra of S generated by {x′, y′}. Since px′ = 0 = py′

and p is not an invertible element, we get that pS ′ = pC ̸= C, hence C/pC ∼= Zp
and we may identify C/pC and Zp. Furthermore, assume that (x′ + y′)k ∈ pS ′

for some k. Then there exists c ∈ C such that (x′ + y′)k = pc because pS ′ = pC,
and so

0 ̸= (ξ + υ)2k(n+1) = (x′ + y′)2k = (pc)2 = p(x′ + y′)kc = 0,

a contradiction. Hence (x′ +y′)k /∈ pS ′ for all k. Note that S ′/pS ′ is (Zp ∼=)C/pC-
algebra generated by principally nilpotent elements x′ + pS ′ and y′ + pS ′ with
non-nilpotent x′ + y′ + pS ′. So there exists a prime factor of S ′/pS ′ which is Zp-
algebra satisfying (K2) by Lemma 3.1.5, which satisfies also (K3) by Lemma 3.1.7.
Because the constructed homomorphism φ : S → A is a composition of surjective
homomorphisms, it is an epimorphism.

Now, suppose that ker(µp) = 0 for all primes p, hence SZ is a torsion-free
abelian group. Denote by E(SZ) the injective envelope of SZ as a Z-module.
Since every endomorphism of SZ can be extended to an endomorphism of E(SZ)
and multiplication by each element of S can be viewed as an endomorphism of
SZ, there exist x, y ∈ EndZ(E(SZ)) such that x(s) = ξ ·s and y(s) = υ ·s for every
s ∈ S. As SZ is torsion-free, EndZ(E(SZ)) has a natural structure of a Q-algebra.
Let us denote by A its Z-subalgebra generated by x and y, by A its Q-subalgebra
generated by x and y and by i : A → A the inclusion homomorphism. Note that
a map ψ : A → S defined by the rule ψ(α) = α(1) provides correctly defined
isomorphism of Z-algebras such that ψ(x) = ξ and ψ(y) = υ. Furthermore, it is
easy to see that i ◦ ψ−1 : S → A is a ring epimorphism.

Finally, if r ∈ A, there exists m ∈ Z \ {0} for which rm ∈ A which implies
that there is k ∈ N such that mk(xr)k = (xrm)k = 0. As EndZ(E(SZ)) is a
torsion-free abelian group, (xr)k = 0 which shows that x is a principal nilpotent
element. The same argument applied on y proves that y is principal nilpotent as
well. Now A is Q-algebra satisfying (K2) and (K3) again by Lemmas 3.1.5 and
3.1.7.

To prove the addendum, suppose that R is a PI-ring and note that the class
of PI-algebras is closed under taking subrings and factor rings. Thus F -algebras
A are PI-algebras for finite fields F . If F = Q we can see that A ∼= Q ⊗A which
is polynomial by [19, Theorem 6.1].

The previous claim easily allows to restrict reformulation of Köthe’s Conjec-
ture due to Krempa [10, Theorem 6] just to fields Q and Zp:

Corollary 3.1.9. Köthe’s Conjecture holds if and only if there is no countable
generated F -algebra satisfying (NK) for either F = Q or F = Zp where p is a
prime number.

Applying an old Amitsur’s result we can reprove a well-known fact that PI-
rings satisfies Köthe’s Conjecture. Let us first state a general result by Braun
extending previous works in [13, 9].

Fact 3.1.10. [3, Theorem 5] The Jacobson radical of a finitely generated PI-
algebra over a Noetherian commutative ring is nilpotent.

Proposition 3.1.11. There is no PI-ring satisfying (NK).
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Proof. Let us assume that R is a PI-ring satisfying (NK). Then by Proposi-
tion 3.1.8 there exists a 2-generated PI-algebra A over a field F with the Jacobson
radical of A not nil, hence we get a contradiction with Fact 3.1.10.

Since an algebra over a field is easily embeddable into a VNR ring, we are
able to find a prime VNR extension of algebras constructed in Proposition 3.1.8.

Lemma 3.1.12. An algebra A satisfying the conditions (K1)–(K3) from Propo-
sition 3.1.8 is embeddable into a countable prime VNR ring R such that J∩A ̸= 0
for each nonzero ideal J of R.

Proof. As A is an algebra over a field F , there exists a canonical embedding ν of
A into the endomorphism ring EndF (A). Note that EndF (A) is a VNR F -algebra
and for each x ∈ EndF (A) fix an element yx such that xyxx = x. Now we will
construct by induction a chain of subrings R′

i ⊂ R′
i+1 ⊂ · · · ⊂ EndF (A). We put

R′
1 = ν(A) and if R′

i is defined, R′
i+1 is an F -subalgebra of EndF (A) generated

by the set R′
i ∪ {yx | x ∈ R′

i}. Then R′ = ⋃︁
i∈NR

′
i is a countable VNR F -algebra

containing ν(A) ≃ A as an F -subalgebra.
Fix a maximal ideal M of R′ such that M ∩ A = 0. Then the map a →

a + M,a ∈ A induces an embedding of A into a countable VNR ring R′/M .
We may identify A with the image of the embedding. Note that if I, J are two
nonzero ideals of R′/M , then the intersection I ∩A resp. J ∩A forms a nonzero
ideal of A. Since A is prime, 0 ̸= (I ∩A)(J ∩A) ⊂ IJ , hence R := R′/M is prime
too.

We finish the section with a technical lemma due to [7]:

Lemma 3.1.13. Let R be a subring of a ring Q. If Q satisfies (ACC) on right
annihilators, then every non-zero nil right ideal of R contains a non-zero nilpotent
right ideal.

Proof. As R also satisfies (ACC) on right annihilators, the result is proved in [7,
Lemma 1].

3.2 Self-injective VNR rings
Before we present a construction of self-injective VNR rings containing rings
satisfying (NK), we need to recall several notions and structural results concerning
self-injective VNR rings. Let R be a VNR ring. An idempotent e is called abelian
if the ring eRe is abelian regular and e is directly finite if the ring eRe is directly
finite [6, p.110], i.e. xy = 1 implies yx = 1 for all x, y ∈ eRe. A self-injective VNR
ring R is purely infinite if it contains no nonzero directly finite central idempotent
and it is

• Type I if every nonzero right ideal contains a nonzero abelian idempotent
[6, 10.4],

• Type II if every nonzero right ideal contains a nonzero directly finite idem-
potent [6, 10.8],

• Type III if it contains no nonzero directly finite idempotent.
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Moreover, R is Type If (Type IIf ) provided it is Type I (Type II) and directly
finite. Next, R is Type I∞ (Type II∞) if it is Type I (Type II) and purely infinite.
Recall the structural decomposition of self-injective VNR rings:

Fact 3.2.1. [6, Theorem 10.22] Every self-injective VNR ring is uniquely a direct
product of rings Type T = If , I∞, IIf , II∞, and III. In particular, each prime
self-injective VNR ring is exactly one type from T .

Let R be a right self-injective VNR ring. Define a function µ on non-singular
injective right R-modules as follows: for an injective non-singular module M , if
there exists a non-zero central idempotent e such that Me = 0, then µ(M) = 0.
Otherwise set µ(M) to be the smallest infinite cardinal α such that Mf does not
contain a direct sum of α nonzero pairwise isomorphic submodules for some non-
zero central idempotent f [6, p.143]. If R is moreover prime and α is a cardinal,
then we set

H(α) := {r ∈ R | µ(rR) ≤ α}

Fact 3.2.2. [6, Corollary 12.22] Let R be a prime, right self-injective VNR ring
either Type I or Type II. Then the rule α → H(α) defines a lattice isomorphism
between the lattice of non-zero two-sided ideals and the cardinal interval [ω, µ(R)].

Theorem 3.2.3. If there is a ring satisfying (NK) then there exists a countable
local subring of a suitable self-injective simple VNR ring of type either IIf or III
that also satisfies (NK).

Proof. Let A be a prime F -algebra over a field F with two principally nilpotent
generators x and y satisfying the conditions (K1)–(K3), which exists by Propo-
sition 3.1.8 (x = φ(ξ) and y = φ(υ) are images of the constructed epimorphism
φ from the proposition and x+ y is a minimal non-nilpotent element). Let R be
a countable prime VNR ring extension of A ensured by Lemma 3.1.12. Denote
by Q := Qmax(R) the maximal right ring of quotients of R. Let I, J ⊆ Q be two
non-zero ideals of Q. Since R is essential in QR by [18, Corollary 2.3] and both I,
J are right R-submodules of Q, then 0 ̸= (I ∩R)(J ∩R) ⊆ IJ , hence Q is prime.
By Fact 3.2.1 we get that Q is exactly one of type from T .

Assume that Q is Type If . Then it is Artinian by [6, Corollary 10.3], hence
Q satisfies (ACC) on right annihilators. By applying Lemma 3.1.13 we obtain a
non-zero nilpotent right ideal K ′ ⊆ K in any nil right ideal K of R, which is in
contradiction to the fact that R is prime.

Suppose that Q is of type I∞ or II∞. Note that Q does not contain any
uncountable direct sum of right ideals since QR is an essential extension of a
countable ring R, i.e. µ(QQ) ≤ ω1. Moreover, it is purely infinite, so by [6, The-
orem 10.16](a)→(d), QQ contains a countably generated free submodule which
yields µ(QQ) ̸= ω, thus µ(QQ) = ω1. By Fact 3.2.2 (cf. also [4, Theorem 7.3]), Q
contains exactly one nontrivial ideal H(ω). As I = H(ω) ∩ A is a nonzero ideal
of A by Lemma 3.1.12 and x+ y is a minimal non-nilpotent element of A by the
condition (K2) in Proposition 3.1.8, there exists n ∈ N such that (x + y)n ∈ I.
Also (x+ y)nx, (x+ y)ny ∈ (x+ y)nQ = eQ∩ I for an idempotent e ∈ H(ω). Put
ξ := (x + y)nx, υ := (x + y)ny and let B denote the F -subalgebra of eQe gen-
erated by elements ξe and υe and ˜︁B denote the F -subalgebra of Q generated by
elements ξ and υ. We claim that the elements ξe and υe are principally nilpotent
in B and that ξe+ υe is not nilpotent, hence B satisfies (NK).
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Indeed, since ˜︁B ⊆ eQ, we can see that e ˜︁B = ˜︁B and so B = ˜︁Be = e ˜︁Be. Hence
every element from the right ideal (ξe)B of B has the form ξ˜︁be for some element˜︁b ∈ ˜︁B. Because ξ and υ are principally nilpotent in A, so in ˜︁B as well, there
exists k ∈ N such that

(︂
ξ˜︁b)︂k = 0. As eξe = ξe we get

(︂
ξ˜︁be)︂k

=
(︂
ξ˜︁b)︂k e = 0.

This proves that ξe is a principally nilpotent element. The argument for υe is the
same. Finally, (ξe+ υe)k = (x+ y)k(n+1)ek ̸= 0 because (x+ y)k(n+1)ek(x+ y) =
(x+ y)k(n+1)+1 ̸= 0.

Because xQ is a direct summand of an injective module QQ, it is directly finite
for any x ∈ H(ω) by [6, Proposition 5.7]. Thus eQe ≃ EndQ(eQ) is directly finite
by [6, Lemma 5.1] and right self-injective by [6, Corollary 9.3]. Clearly, eQe is
prime and it contains the subalgebra B which is local and satisfies the condition
(NK) by Lemma 3.1.7.

Recall from the initial part of the proof that eQe can not be Type If . So
we have proved that there exists a prime right self-injective VNR ring eQe being
Type either IIf or III which contains a local ring satisfying (NK). Finally note
that if Q is Type IIf , then it is simple by [6, Proposition 9.26] and, if Q is of
Type III then it is simple by [6, Theorem 12.21].

Observe that a non-Artinian self-injective simple VNR ring Type IIf or Type
III is necessarily uncountable because it contains an infinite set of orthogonal
idempotents.

We conclude the paper by examples of self-injective simple VNR rings Type
IIf or III:

Example 3.2.4. Let F be a field and U be a non-principal ultrafilter on N.
Put R = ∏︁

n∈NMn(F ) and I = {r ∈ R | (∃U ∈ U)(∀i ∈ U)πi(r) = 0} where
πi : R → Mi(F ) denotes the natural projection. Then I is a maximal ideal of
R, hence R/I forms a simple self-injective VNR ring Type IIf by [6, Theorem
10.27].

Example 3.2.5. [6, Example 10.11] Let F be a field, Q = EndF (F (ω)) and
M = {x ∈ Q | dimF (xF (ω)) < ω}. Then Q/M is a simple VNR ring. If R is the
maximal right ring of quotients of Q/M then R is a simple self-injective VNR
ring Type III.
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4. Generalizations of Projectivity
and Supplements Revisited for
Superfluous ideals
This study is motivated by two mathematical problems in ring theory that have
already enjoyed interest and a detailed treatment. The first one is so called
Lazard’s Conjecture originated in [11]. The conjecture was denying existence of a
non-finitely generated projective module with the finitely generated radical factor
and it was supported affirmatively by commutative rings. In [6], Gerasimov and
Sakhaev constructed a breaking counterexample of a ring, here and subsequently
denoted RΣ, that proved the opposite. Even more characteristics of the ring and
its module category were revealed later in [4]. The ring itself is the universal
localization of a 2-generated monomial algebra k⟨x, y⟩ over a field with the single
relation yx = 0 factored out. The counterexample is very far from being well-
behaved in many more aspects of ring and module theory. It leads to additional
anomalies, like a projective module with a J (R)-supplement that is not a direct
summand; a J (R)-projective module being non-projective; or a projective J (R)-
semicover that is not a projective cover.

The proofs are technical and elementary in nature. Most of the time, well-
known techniques that work for the Jacobson radical are adapted to any super-
fluous ideal (i.e. an ideal contained in the Jacobson radical). To achieve the goal,
we reintroduce four ideal-related generalizations and objects that extend classic
properties and objects from the module theory. We start with defining the ideal-
superfluity that extends the familiar property of being a superfluous submodule
in a module. Recall that a submodule N of a module M is said to be superflu-
ous in M , denoted N ≪ M , if N + L ̸= M for any proper submodule L of M .
After that, we continue with a generalized version of projective covers, so called
projective ideal-covers, that were established in [1]. The authors proved that pro-
jective covers are in agreement with projective J (R)-covers. One immediately
gets that projective ideal-covers are characterized by the ideal-superfluity of their
kernels. Therefore, these two generalizations work together similarly like their
classic counterparts do. Next, we recall the definition of the ideal-projectivity
which makes good sense for arbitrary ideals (and was mentioned in [13] for the
first time). Finally, we shall introduce an ideal-related version of a supplement,
an ideal-supplement. The classic definition says that a submodule G of a module
M is a supplement in M if there is a submodule K of M with K + G = M
and G is minimal in the set {G′ ≤ M | K + G′ = M}, see [8, Introduction].
This holds if and only if there exists a submodule K with K + G = M and
K ∩ G ≪ G. The supplement generalization is based on the ideal-superfluity of
the latter intersection.

An extensive account of material concerning this topic and the proof of the
main theorem for I = J (R) can be found in [16], [13] and [8]. Addressing
the details below, we will be able to prove the equivalence of the following four
conditions:

(1) every I-supplement in a finitely generated projective R-module is a direct
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summand,

(2) every finitely generated I-(semi)projective R-module is projective,

(3) every finitely generated flat R-module M with projective R/I-module
M/MI is projective,

(4) for every projective R-module Q, if Q/QI is finitely generated then Q is
finitely generated.

The result is an extension of the well-known fact proved previously for the edge
case I = J (R). The statement (4) evokes Lazard’s Conjecture parametrized by
any superfluous ideal. Considering the trivial case I = 0, it is obvious that each of
the four conditions (1), (2), (3), (4) holds true and therefore also their equivalence
does. In [13, Corollary 3.5] it was proved that (2) is true for any I contained in the
Baer radical β(R). It is easy to see that (4) is true if I is a nilpotent ideal, since
the canonical projection Q → Q/QI is then a projective cover for any projective
module Q. It will turn out that ideal projectivity in a finitely generated projective
module resp. ideal supplements in a finitely generated module are redundant with
respect to the classic definitions if the chosen ideal admits idempotent-lifting up
to all its matrix rings. The Levitzki radical L of a ring is an ideal that does so.

This brings us to the second mathematical problem - the famous Köthe’s Con-
jecture. One of its notable characterization is expressed in extensibility of nilpo-
tency to elements of matrix rings over the nil radical, [10]. Unfortunately, we have
not resolved the question yet whether the nil radical provides counterexamples
of modules for (1)–(4). However, non-existence of such counterexamples for this
ideal would yield an approximation of a positive solution of Köthe’s Conjecture.
This suggests that finding such counterexample is at least as hard as finding one
to the conjecture itself. One is left to definitely avoid classes of rings where this
is not achievable, e.g. right noetherian rings, algebras over uncountable fields,
monomial algebras, right Goldie rings, rings with right Krull dimension etc. Also
the complexity of the RΣ construction furthermore emphasizes the difficulties to
accomplish the task.

4.1 Preliminaries
We assume through the whole paper that R is an associative ring with unity and
I denotes a superfluous ideal of R, i.e. I is contained in the Jacobson radical
J (R). For a right module M over the ring R we call the right module M/MI
(M/MJ (R))) the ideal (the radical) factor of M .

Definition 4.1.1 (Ideal-supefluity). A submodule N of M decomposes M (or
shortly is DM in M) if there is a summand S of M such that S ⊆ N and
M = S +X, whenever N +X = M for a submodule X of M .

A submodule N of M is called PDM in M if there is a projective summand S
of M such that S ⊆ N and M = S +X, whenever N +X = M for a submodule
X of M .

We say that a submodule N of a right module M is I-superfluous, denoted
N ≪I M , if N ⊆ MI and N is PDM in M .
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The definition of a submodule that decomposes a module comes from [1, Defi-
nition 3.1] and it is also called a partial summand of the module in [2, p.1882].
Obviously, every submodule that is PDM in a module also decomposes the mod-
ule and the notions coincide for submodules of projective modules. The zero
submodule witnesses the PDM property for every superfluous submodule. It is
straightforward that N ≪I M implies N ≪J (R) M for any submodule N of M .

The next lemma shows basic properties of the ideal-superfluity. For the case
I = J (R), it gives nothing new than the classic definition at least within the
scope of projective modules. Moreover, we will freely use the following intuitive
fact through the text: if G, H are submodules of M , then G ≪I M together with
H ⊆ G imply H ≪I M .

Lemma 4.1.2. Let M be a right R-module and G be a submodule of M . Then

(i) G ≪J (R) M implies G ≪ M .

(ii) G ≪ M and G ⊆ MI if and only if G ≪I M .

(iii) if M satisfies Rad(M) = MJ (R), then G ≪ M implies G ≪J (R) M .

(iv) if M is finitely generated, then G ⊆ MI implies G ≪I M .

Proof. (i) Let G ≪J (R) M and let X be any submodule of M with X +G = M .
Then there is a witnessing projective summand S of M such that M = S + X
and S ⊆ G (⊆ Rad(M)). Since M = S ⊕ Y for some submodule Y of M , we get

Rad(M) = Rad(S ⊕ Y ) = Rad(S) ⊕Rad(Y ) ⊆ S ⊕Rad(Y ) ⊆ Rad(M)

and Rad(S) ⊕ Rad(Y ) = S ⊕ Rad(Y ). By the modularity of the lattice of sub-
modules of M we get

S = (Rad(S) +Rad(Y )) ∩ S = Rad(S) + (Rad(Y ) ∩ S) = Rad(S)

and by projectivity of S, S = 0 and M = X.
(ii) If G is superfluous in M , then the zero submodule witnesses that G is

PDM in M . The assumption on the inclusion then implies the conclusion.
(iii) Follows from (ii) for I = J (R).
(iv) Follows from (ii) by the fact that Rad(M) ≪ M for a finitely generated

M .

Lemma 4.1.3. The relation ≪I on submodules is:

(i) preserved under sums, i.e. N1, N2 ≪I M implies N1 +N2 ≪I M .

(ii) preserved under taking homomorphic images, cf. [9, Lemma 1.1].

Proof. The relation ≪ on submodules satisfies the conditions, therefore by the
characterization in Lemma 4.1.2(ii) also ≪I satisfies them.

Here is a basic example that ≪ and ≪J (R) do not coincide.

Example 4.1.4. Consider Z the ring of integers and Q as a Z-module. Then
Rad(Q) = Q as Q does not have any maximal submodules, but Z ̸⊆ QJ (Z) = 0.
Therefore Z ≪ Q but Z ̸≪J (R) Q.
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The generalization of projective covers using ideals contained in the Jacobson
radical of a ring are provided as they appeared in [1, Definition 3.5]. The defini-
tion of a projective J (R)-semicover gives the same as the familiar notion if the
projective module is finitely generated.

Definition 4.1.5. (Projective ideal-(semi)covers) A pair (P, f) is called a pro-
jective I-semicover of M if P is projective and f : P → M is an epimorphism
such that ker(f) ⊆ PI.

A pair (P, f) is called a projective I-cover of M if it is a projective I-semicover
of M and ker(f) is DM in P .

Proposition 4.1.6. (i) A right module M has a projective J (R)-cover if and
only if M has a projective cover.

(ii) Let M be a module. A projective module P with a homomorphism f : P →
M is a projective I-cover of M if and only if f in an epimorphism and
ker(f) is I-superfluous in P .

Proof. (i) Proved in [1, Proposition 3.6].
(ii) Note that PDM and DM submodules coincide in any projective module

P , in particular it holds for its submodule ker(f).

Example 4.1.7. Let RΣ be the Gerasimov-Sakhaev counterexample ([6], [4]) and
let P be a non-finitely generated projective module such that P/PJ (RΣ) is finitely
generated. Then PJ (RΣ) = Rad(P ) ̸≪ P and πPJ (RΣ) : P → P/PJ (RΣ) is a
projective J (RΣ)-semicover that is not a projective cover. In particular, PJ (RΣ)
is neither PDM or DM in P .

The ideal-projectivity was initially introduced in [13, Definition 3.1] and later
reused in [8]. In these original papers, an ideal-semiprojective module was called
just ideal-projective. However, we prefer to add the prefix semi- to suggest the
relation in the similar fashion like projective ideal-semicovers have towards pro-
jective ideal-covers. By the same token, we add the prefix in the definition of
radical-semiprojective modules. They are a weaker version of radical-projective
modules introduced in [8, Definition 2.1].

Definition 4.1.8 (Ideal-(semi)projectivity). An R-module P is I-semiprojective
if for every epimorphism f : X → Y such that Y I = 0 and every morphism
φ : P → Y there is a homomorphism g : P → X such that φ = f ◦ g:

P

φ
↓↓

∃ g

↙↙

X
f
→→ Y →→ 0

A right R-module P is I-projective if for all right R-modules X and Y , every
R-epimorphism f : X → Y and every homomorphism φ : P → Y there exists a
homomorphism g : P → X such that (f ◦ g − φ)(P ) ≪I Y .

Lemma 4.1.9. Let M be a module. Then M is I-semiprojective if and only if
for every epimorphism f : X → Y and every homomorphism φ : M → Y there
exists a homomorphism g : M → X such that (φ− f ◦ g)(M) ⊆ Y I.
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Proof. Let M be I-semiprojective and let f : X → Y be an epimorphism and
φ : M → Y a homomorphism. Denote by π : Y → Y/Y I the canonical projection.
Because (Y/Y I)I = 0, by I-semiprojectivity of M there exists a homomorphism
g : M → X such that π ◦ φ = (π ◦ f) ◦ g, and so π ◦ (φ − f ◦ g) = 0. Then
(φ− f ◦ g)(M) ⊆ ker(π) = Y I as required.

Let f : X → Y be an epimorphism with Y I = 0 and let φ : M → Y be
arbitrary. By the assumption there is a homomorphism g : M → X such that
(f ◦ g − φ)(M) ⊆ Y I. But Y I = 0, so g also witnesses the I-semiprojectivity of
M .

Definition 4.1.10. An R-module P is called radical-semiprojective or radical-
projective if for all right R-modules X and Y , every R-epimorphism f : X → Y
and every homomorphism φ : P → Y there exists a homomorphism g : P → X
such that (f ◦ g − φ)(P ) ⊆ Rad(Y ) or (f ◦ g − φ)(P ) ≪ Y respectively.

Obviously, all ideal- and radical-projective modules are ideal- and radical-
semiprojective, respectively. Ideal-projective modules are radical-projective. Pro-
jective modules are exactly 0-projective modules. In [8, Proposition 2.8] it was
proved that a finitely generated module is J (R)-semiprojective if and only if M
is radical-projective. It is false for modules that are not finitely generated.

Example 4.1.11. Let F [[x]] be the ring of formal power series over a field F .
Then there exists a J (F [[x]])-semiprojective module that is not radical-projective
(in particular not J (F [[x]])-projective) [8, Example 3.11].

For the ring RΣ, the right ideal xRΣ is a (finitely generated) radical-projective
module that is not projective [8, Example 3.6].

Proposition 4.1.12. Let M be a finitely generated right R-module.

(i) M is I-semiprojective if and only if M is I-projective.

(ii) M is I-(semi)projective if and only if for the canonical projection π : M →
M/MI there exists a finitely generated module F and a pair of homomor-
phisms α : M → F and β : F → M such that π = π ◦ β ◦ α.

Proof. (i) Let f : X → Y be an epimorphism and let φ : M → Y . The goal is to
find some g : M → X with (φ−f ◦g)(M) ≪I M . Because φ(M)(⊆ Y ) is finitely
generated, by Lemma 4.1.2(iv) it is enough to proof that (φ − f ◦ g)(M) ⊆ Y I.
Let us consider the epimorphism π ◦ f : X → Y/Y I and the homomorphism
π ◦φ : M → Y/Y I. Because (Y/Y I)I = 0, there is a homomorphism g : M → X
with π ◦ φ = π ◦ f ◦ g. Then (φ− f ◦ g)(M) ⊆ ker(π ◦ φ) = φ(M)I.

(ii) Let M be I-semiprojective. Because M is finitely generated, there exists
a finitely generated free module F and a surjective homomorphism β : F → M .
From (M/MI)I = 0 we get a homomorphism α : M → F with (π ◦ β) ◦ α = π.

On the other hand, let f : X → Y be an epimorphism with Y I = 0 and let
φ : M → Y be arbitrary. Let πk : MI → M be the inclusion homomorphism,
π ◦ πk = 0. Then φ(MI) = φ(M)I ⊆ Y I = 0 and φ ◦ πk = 0. From the
universal property of the cokernel M/MI there exists ψ : M/MI → Y such that
ψ ◦π = φ. The assumption supplies a finitely generated free module F and a pair
of homomorphisms β : F → M and α : M → F with π = π◦(β◦α). Applying the
projectivity of F for the diagram consisting of the epimorphism f : X → Y and

44



a homomorphism ψ ◦π ◦β : F → M/MI it follows that there is a homomorphism
ρ : F → M/MI such that the triangle commutes. Then

(f ◦ ρ) ◦ α = (ψ ◦ π ◦ β) ◦ α = ψ ◦ π = φ

and g := ρ ◦ α is witnessing the I-semiprojectivity of M .

We now provide a formulation of an ideal-supplement that works well in the
edge case: a J (R)-supplement coincides with a supplement within projective
modules. Note that direct summands are exactly 0-supplements.

Definition 4.1.13 (Ideal supplements). We call a submodule G of an R-module
M an I-supplement submodule if there is a submodule K of M such that K+G =
M and K ∩G ≪I G.

Lemma 4.1.14. Let M be a module and G be a submodule of M . If G is a J (R)-
supplement then G is a supplement. Moreover, if G satisfies Rad(G) = GJ (R),
then also the reverse implication holds.

Proof. The first part follows by Lemma 4.1.2(i).
Assume that G is a supplement of a submodule K in M . Then K + G = M

with K ∩ G ≪ G and applying the assumption on G, Lemma 4.1.2(ii) gives
K ∩G ≪J (R) G. We conclude that G is a J (R)-supplement.

Example 4.1.15. (i) The Weyl algebra W over the complex numbers is a simple
domain, therefore J (W ) = 0. In [12, Thorem 6.2], an indecomposable non-
uniserial module Z of length 3 was constructed with a minimal submodule T and
two intermediate, ⊆-incomparable submodules X,Y . Then Rad(Z) = T ̸= 0 and
X is a supplement in Z, that is not a J (W )-supplement. Clearly, X + Y = Z,
X ∩ Y = T and T ≪ X.

(ii) Consider the ring RΣ. Then xRΣ is a supplement but not a direct sum-
mand [8, Example 3.6].

4.2 Relations between ideal generalizations
In this section we prove the equivalence of (1) and (2). In fact, we pass even
further and prove it for arbitrarily generated modules. In [8, Corollary 3.4], the
author managed to get the same for the special case I = J (R). Again, recall that
I is any two-sided ideal of a ring R that is contained in J (R). All ideal-dependent
notions in the sequel refer to this ideal implicitly.

Lemma 4.2.1. Let M be an I-projective right R-module and G an I-supplement
in M . Then

(i) there exists an endomorphism γ of M with γ(M) = G,

(ii) G is I-projective

Proof. (i) By the hypothesis, there is a submodule K of M such that K+G = M
and K ∩ G ≪I G ≃ M/K. Denote G := G/G ∩ K and let ρ : G → G and
π : M → G be the natural projections. By the ideal-projectivity of M there is γ :
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M → G with (π−ρ◦γ)(M) ≪I G. Now (ρ◦γ)(M) + (π−ρ◦γ)(M) = π(M) = G
implies (ρ ◦ γ)(M) = G. Then γ(M) + ker(ρ) = G. But ker(ρ) = G ∩ K ≪I G,
which by Lemma 4.1.2(i) means also ker(ρ) ≪ G. It follows that γ(M) = G.

(ii) By (i) there is an epimorphism γ : M → G. Since M is I-projective, there
is ϵ with (f ◦ ϵ− φ ◦ γ)(M) ≪I Y and we put ϵ = ϵ ↾ G:

M

γ
↓↓

ϵ

↓↓

G

φ
↓↓

ϵ

↙↙

X
f
→→ Y →→ 0

First we observe that

(f ◦ ϵ) ◦ (1G − γ)(G) = (f ◦ ϵ) ◦ (1G − γ)(γ(G)) =
= (f ◦ ϵ) ◦ (γ − γ2)(G) ⊆ (f ◦ ϵ)(K ∩G)

Then we have:

(φ− f ◦ ϵ)(G) = (φ− f ◦ ϵ)(γ(G)) =
= (f ◦ ϵ− f ◦ ϵ ◦ γ + φ ◦ γ − f ◦ ϵ)(G) ⊆
⊆ f ◦ (ϵ− ϵ ◦ γ)(G) + (φ ◦ γ − f ◦ ϵ)(G) =
⊆ (f ◦ ϵ)(K ∩G) + (φ ◦ γ − f ◦ ϵ)(G)

because the first summand is I-superfluous in (f ◦ ϵ)(G) and the second is con-
tained in the I-superfluous submodule of Y . Lemma 4.1.3(i) is now applied,
(φ− f ◦ ϵ)(G) ≪I Y .

Recall that [8, Corollary 2.7(i)] states this radical equality Rad(M) = MJ (R)
for any radical-projective module M . But any supplement submodule G of a
radical-projective module is radical-projective too by [8, Corollary 2.7(ii)]. In
particular, radical-projective modules can not provide an example of a supplement
submodule that is not a J (R)-supplement, cf. Lemma 4.1.14.

Lemma 4.2.2. If a right R-module M is I-projective then there is an
I-supplement submodule G of a free right R-module F and an epimorphism ψ :
M → G with ker(ψ) ≪I M .

Proof. Let M be I-projective. There is a free module F and an epimorphism
α : F → M and we can find β : M → F with (1M − α ◦ β)(M) ≪I M . Set G :=
(β◦α)(F ) and ψ := β. The inclusions ker(β) ⊆ ker(α◦β) ⊆ (1M−α◦β)(M) ≪I M
imply ker(β) ≪I M .

We show that G is an I-supplement of ker(α) in F . First observe that F =
G + ker(α) because α ◦ β is surjective. To conclude this part, it is enough to
show that kerα ↾ G ≪I G. Note that β(kerα ◦ β) = ker(α ↾ G). Indeed, let
g ∈ β(ker(α◦β)), then obviously α(g) = 0. On the other hand, let g′ ∈ G∩ker(α).
Then there is m ∈ M with β(m) = g′. But (α◦β)(m) = α(g′) = 0 and this yields
m ∈ ker(α ◦ β). Now apply the homomorphism β on ker(α ◦ β) ≪I M and use
Lemma 4.1.3(ii).
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Corollary 4.2.3. The following is equivalent:

(1’) every I-supplement in a projective R-module P is a direct summand

(2’) every I-projective R-module is projective

Proof. (2′) → (1′): Let G be an I-supplement of P . By Lemma 4.2.1(i), there
exists an epimorphism γ : P → G and by Lemma 4.2.1(ii), G is I-projective. But
(2’) implies that G is projective. This yields G is a direct summand of P .

(1′) → (2′): Let M be I-projective. By Lemma 4.2.2 there exists an I-
supplementG of a free module F and an epimorphism ψ : M → G with ker(ψ) ≪I

M . By (1’), G is a direct summand of F , therefore projective itself and ψ splits.
Then ker(ψ) is a direct summand and, at the same time, it is superfluous. This
yields ker(ψ) = 0 and M(≃ G) is projective.

4.3 Lifting projectives modulo superfluous ide-
als

In this section we prove the equivalence between (3) and (4). The techniques used
here heavily rely on those in [5] where just the case I = J (R) was discussed. For
two projective modules P and Q, if there exists a homomorphism α : P/PI →
Q/QI then there exists a homomorphism f : P → Q such that πQ ◦ f = α ◦ πP
where πQ : Q → Q/QI, πP : P → P/PI are the canonical projections. We say
that f is a lift of α.

Proposition 4.3.1. The following holds:

(i) Let P , Q be projective right R-modules and let α : P/PI → Q/QI be an
R/I-homomorphism. Let f be a lift of α. If α is a pure monomorphism,
then f is a pure monomorphism.

(ii) Let P ′ ⊕ Q′ ≃ (R/I)(X) be a decomposition of a free R/I-module into two
projective summands and denote π : (R/I)(X) → P ′ the canonical projec-
tion. Then there exists a flat MR of projective dimension ≤ 1 with the ideal
factor isomorphic to P ′ via α, an epimorphism ψ : R(X) → M such that
α ◦ (ψ ⊗R R/I) = π if and only if there exists a projective Q with the ideal
factor isomorphic to Q′.

Proof. Adapting the proof of [5, Proposition 6.1] and [5, Proposition 6.3].

Fact 4.3.2. A finitely generated, countably presented flat right R-module M has
projective dimension ≤ 1.

Proof. Proved in [11, Théorème 3.2].

Proposition 4.3.3. If (R/I)(n) = P ′ ⊕Q′, then the following is equivalent:

(L1) there exists a finitely generated flat module MR such that the ideal factor of
M is isomorphic to P ′

(L2) there exists a finitely generated, countably presented flat module MR such
that the ideal factor of M is isomorphic to P ′
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(L3) there exists a projective QR such that the ideal factor of Q is isomorphic to
Q′

(L4) there exists a finitely generated flat RN such that the ideal factor of N is
isomorphic to HomR(Q′, R/I)

(L5) there exists a finitely generated, countably presented flat RN such that the
ideal factor of N is isomorphic to HomR(Q′, R/I)

(L6) there exists a projective RP such that the ideal factor of P is isomorphic to
HomR(P ′, R/J (R))

Proof. The equivalence of (L3) and (L6) is proved in [7, Theorem 2.9]. The
equivalence of (L3) and (L1) is a special case of Proposition 4.3.1(ii) together
with Fact 4.3.2. The rest of equivalences are acquired by applying the previous
two to the opposite ring Rop.

Lemma 4.3.4. Let M be a finitely generated flat right R-module and let P be
projective. If γ : P → M is a projective I-cover of M , then γ is an isomorphism.
Moreover, if P is finitely generated and the ideal factor of P isomorphic to the
ideal factor of M , then M ≃ P .

Proof. The first part follows by adapting the proof of [5, Lemma 7.2].
To proof the addendum, we follow the proof of [5, Proposition 7.3]. Let

α : P/PI ≃ M/MI be the isomorphism. Because P is projective, there exists a
homomorphism f : P → M such that πM ◦ f = α ◦ πP where πM : M → M/MI,
πP : P → P/PI are the canonical projections. Then ker(f) ⊆ PI. Since P
is finitely generated, Lemma 4.1.2(iv) implies ker(f) ≪I P . Now (P, f) is a
projective I-cover of M . By the previous part, f is an isomorphism and M is
projective.

Now we employ the previous pieces to provide the equivalence of (3) and (4).

Corollary 4.3.5. Every finitely generated flat R-module M with projective R/I-
module M/MI is projective if and only if for every projective R-module Q, the
finitely generated ideal factor Q/QI implies Q is finitely generated itself.

Proof. Let Q be projective and the ideal factor Q/QI be finitely generated. There
is a split short exact sequence 0 → Q/QI

α→ (R/I)(n) → C → 0 for some n ∈ N.
Let f : Q → R(n) be a lift of α. By Proposition 4.3.1(i), f is a pure monomor-
phism. Denote by M the cokernel of f . Then M is a finitely generated flat R-
module with M ⊗R R/I isomorphic to C which is a direct summand of (R/I)(n).
By the assumption, M is projective. We have that f is a split monomorphism
and Q is finitely generated.

Let M be a finitely generated flat module such that the ideal factor of M is
projective. So M/MI⊕Q′ ≃ (R/I)(k) for some k ∈ N and a projective right R/I-
module Q′. By Proposition 4.3.3, (L1) → (L3), there exists a projective module
QR such that Q/QI ≃ Q′. Because Q′ is finitely generated, the assumption
yields that Q is finitely generated. Then M ⊕ Q is a finitely generated flat
module such that its ideal factor is isomorphic to (R/I)(k). By the addendum of
Proposition 4.3.4, M ⊕ Q is isomorphic to R(k), which leads to the projectivity
of M .
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4.4 Lifting idempotents in matrix rings
In this part we aim for a characterization that relates idempotent lifting in matrix
rings and existence of projective ideal-covers of direct summands. It will turn out
later that the equivalent conditions in the characterization, denoted (L1′)–(L4′),
are sufficient for (1)–(4) to hold, but not necessary. Recall that a two-sided ideal
I is lifting or idempotents lift modulo I if for any element a ∈ R with a2 − a ∈ I,
there exists an idempotent e ∈ R satisfying a − e ∈ I. The idempotent e is also
called a lift of a. If a lift of a can be chosen from the one-sided ideal generated by
a, then the ideal I is said to be strongly lifting. The notions of ”strongly lifting”
and ”lifting” coincide for superfluous ideals, cf. [2, Theorem 2 + Proposition 5].

Fact 4.4.1. The following holds:

(i) if I is lifting in R then every right ideal B ⊆ I is lifting in R.

(ii) I is lifting in R if and only if every direct summand of the right R-module
R/I has a projective cover.

Proof. (i) Proved in [14, Lemma 5].
(ii) Proved in [9, Corollary 1.8].

Example 4.4.2. (i) Consider the subring Z(6) of the field Q of rational numbers.
Then Z(6)/J (Z(6)) ≃ Z/6Z and idempotents do not lift modulo the Jacobson
radical because the factor ring contains four idempotents while Z only two.

(ii) As shown recently [3, Theorem 2.1], there exists a counterexample of a
(commutative) ring when idempotents lift modulo the Jacobson radical but this
property does not pass to its ring of square matrices.

The proof of how (L3′) implies (L4′) is an adaptation of [9, Theorem 2.9].
Note the expected transmission from Fact 4.4.1(ii) to the equivalence of (L3′)
and (L4′).

Theorem 4.4.3. The following conditions are equivalent:

(L1’) for every n ∈ N, any direct summand of a right R-module R(n)/I(n) has a
projective I-cover

(L2’) for every n ∈ N, if P ′ is a direct summand of (R/I)(n), then there is a
direct summand P of R(n) such that P ′ = P + I(n)/I(n)(≃ P/PI)

(L3’) Mn(I) is lifting in Mn(R) for every n ∈ N

(L4’) every direct summand of a finitely generated right R-module with a projec-
tive I-cover has a projective I-cover.

Proof. (L4′) → (L1′): A special case when the finitely generated module is
R(n)/I(n), because the canonical projection R(n) → R(n)/I(n) forms its projec-
tive I-cover.

(L1′) → (L2′): Let P ′ be a direct summand of (R/I)(n) ≃ R(n)/I(n), i.e.
there are j : P ′ → R(n)/I(n), θ : R(n)/I(n) → P ′ with θ ◦ j = 1P ′ and let
ψ : Q → P ′ be a projective I-cover of P ′. We know that the canonical projection
π : R(n) → R(n)/I(n) is a projective I-cover. The free module Rn is obviously
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projective, hence we have a homomorphism ρ : Rn → Q such that φ ◦ ρ = θ ◦ π.
We have a commutative diagram:

R(n)

ρ

↓↓

π →→ R(n)/I(n) →→

θ
↓↓

0

Q →→

ψ
→→ P ′ →→ 0

But θ ◦ π is an epimorphism and the kernel of φ is superfluous (since it is even
I-superfluous), thus ρ is an epimorphism. By the projectivity of Q, there is
i : Q → R(n) with ρ ◦ i = 1Q. It follows that θ(i(Q) + I(n)/I(n)) = (θ ◦ π ◦ i)(Q) =
(ψ◦ρ◦i)(Q) = ψ(Q) = P ′ = (θ◦j)(P ′) and (π◦i)(Q) = P+I(n)/I(n) = j(P ′) = P ′.
We put P := i(Q).

(L2′) → (L3′): First, there is an isomorphism Mn(R/I) ≃ Mn(R)/Mn(I)
and denote A ∈ Mn(R/I) for a matrix A ∈ Mn(R) (then A = A + Mn(I)). Let
X2 −X ∈ Mn(I). Since P ′ := X(R/I)(n) is a direct summand of (R/I)(n), by (L2′)
there is a direct summand P of R(n) with the ideal factor equal to P ′. Let Y = Y2

be an idempotent matrix with P = YR(n). Then P ′ = P + I(n)/I(n) = Y(R/I)(n)

implying X = Y. Thus X − Y ∈ Mn(I) and Y is a lift of X.
(L3′) → (L4′): The trivial case M = 0 is obvious. Let M be a non-zero finitely

generated right R-module with a projective I-cover. Similarly as in [9, Lemma
2.8], we infer that M is of the form ER(n)/EB(n) for a non-zero idempotent matrix
E and a right ideal B ⊆ I. Then ψ : ER(n) → ER(n)/EB(n) is a projective I-cover
of M with the kernel EB(n). Let˜︁S := {f ∈ EndR(R(n)) | f(EB(n)) ⊆ EB(n)}˜︁T := {g ∈ EndR(R(n)) | g(R(n)) ⊆ EB(n)}

S := {h ∈ EndR(ER(n)) | h(EB(n)) ⊆ EB(n)}
T := {k ∈ EndR(ER(n)) | k(R(n)) ⊆ EB(n)}

and as in [9, Theorem 2.9] we conclude that EndR(M) = S/T = E ˜︁SE/E ˜︁TE. Note
that ˜︁T is a right ideal in EndR(R(n)) ≃ Mn(R) that is canonically isomorphic to
a right ideal contained in Mn(I). Since Mn(I) is lifting by (L3′), ˜︁T is lifting in
Mn(R) by Proposition 4.4.1(i). Then E ˜︁TE is lifting in E ˜︁SE by [9, Lemma 1.5],
and, in particular, T is lifting in S.

Let G be a direct summand of M . Then there is an idempotent endomorphism
f = f

2 ∈ EndR(M) with f(M) = G. Because T is lifting in S, choose f ∈ S
to be a lift of f . Now ψ(f(p)) = f(ψ(p)) for each p ∈ ER(n) and G = f(M) =
f(ψ(ER(n))) = ψ(f(ER(n))). By defining Q := f(ER(n)) we acquire a projective
direct summand of ER(n), because f was idempotent. Then ψ restricted to Q
is a projective I-cover of G. Indeed, ker(ψ) ≪I ER(n) implies ker(ψ ↾ Q) =
ker(ψ) ∩ Q = πQ(kerψ) ≪I πQ(ER(n)) = Q where we used Lemma 4.1.3(ii) on
the canonical projection πQ : ER(n) → Q.

4.5 Main Result
Let us start first with a technical lemma that is used in the proof of the main
theorem. It is based on [16, Lemma 2.1(b)]. We state and prove it for the sake
of completeness.
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Lemma 4.5.1. Let G be an I-supplement submodule of a projective module P .
Then there is a pure submodule K of P such that G is an I-supplement of K.
Moreover, if K is finitely generated then K ⊕G = P .

Proof. There is a submodule K ′ of P with K ′ + G = P and G ∩ K ′ ≪I G.
By the projectivity of P there is some γ ∈ EndR(P ) such that γ(P ) ⊆ G and
(1−γ)(P ) ⊆ K ′ . By Lemma 4.1.14, G is also a supplement of K ′ in P , especially
of (1−γ)(P ) in P . By the minimality of G in the set {G′ ≤ M | (1−γ)(P )+G′ =
M}, γ(P ) = G. Also γ2(P ) + (γ ◦ (1 − γ))(P ) = γ(P ) = G. Since G ∩ K ′ is
superfluous in G, γ2(P ) = γ(P ). Define K := ∑︁∞

i=1 ker(γi). For any i ∈ N,
ker(γi) ⊆ (1 − γi)(P ) = (1 − γ)(P ) ⊆ K ′, hence K ⊆ K ′. We have proved
G ∩K ≪I G.

By the projectivity of P there is δ ∈ EndR(P ) with γ2 ◦ δ = γ. Applying
induction, we obtain the equation γn+1 ◦δn = γ for any n ∈ N. Define αn := 1P −
δn ◦ γn ∈ EndR(P ), n ∈ N. All the inclusions ker(γn) ⊆ αn(P ) ⊆ ker(γn+1) hold,
because γn+1◦(1P−δn◦γn) = γn+1−γ◦γn = 0. HenceK = ∑︁∞

i=1 αi(P ). Obviously
(1P − γ ◦ δ)(P ) + (γ ◦ δ)(P ) = P . The inclusions (1P − γ ◦ δ)(P ) ⊆ ker(γ) ⊆ K,
(γ ◦ δ)(P ) ⊆ G imply K +G = P . Now G is an I-supplement of K in P .

We prove that K is pure in P by testing positive for the flatness of P/K in
the short exact sequence 0 → K ⊕ C → P ⊕ C → P/K → 0, where C is a
complement of P in a free module F . For any (x, c) ∈ K ⊕ C, let m ∈ N be the
appropriate index for which x ∈ ker(γm). Then αm(P ) ⊆ K and αm(x) = x. To
get the desired homomorphism, we put ˜︁αm := αm ⊕ 1C ∈ HomR(F,K ⊕ C).

Finally, assumeK = ker(γm) for somem ∈ N. Let y ∈ K∩G. Then y = γm(z)
for some z ∈ P and γm(y) = 0. It follows that z ∈ ker(γ2m) = ker(γm) and so
y = 0. We have shown that G is a direct summand of P with the complement
K.

Theorem 4.5.2. The following is equivalent:

(1) every I-supplement in a finitely generated projective R-module P is a direct
summand

(2) every finitely generated I-(semi)projective R-module is projective

(3) every finitely generated flat R-module M with projective R/I-module M/MI
is projective

(4) for every projective R-module Q, if the ideal factor Q/QI is finitely gener-
ated then Q is finitely generated

Proof. (1) ↔ (2): By Theorem 4.2.3, this holds true even for a non-finitely
generated projective modules.

(2) → (3): Let M be a finitely generated flat right R-module. Let α : F → M
be an epimorphism from a finitely generated free module F . Then there is a
short exact sequence 0 → ker(α) → F

α→ M → 0. Denote K := ker(α). By
the assumption on M , the induced short exact sequence 0 → K/KI → F/FI →
M/MI → 0 of R/I-modules splits. Then K/KI is finitely generated and so
K = K0 +KI for some finitely generated submodule K0 of K. By the well known
Villamayor’s flatness test applied on M , there is a homomorphism f : F → K
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that is identical on generators of K0 and therefore on the whole K0. The factor-
module F/K0 is finitely presented. Because K0 ⊆ ker(1F − f) we have some
homomorphism g that makes the diagram commuting:

F
1−f

→→

πK0
↓↓

F

F/K0

g

↗↗

We want to show that F/K0 is I-semiprojective. By Proposition 4.1.12(ii) it
is enough to show that the square commutes:

F/K0

g

↓↓

πI →→ F/K0
(K0+FI)/K0

F
πK0 →→ F/K0

πI

↑↑

From the inclusions f(F ) ⊆ K ⊆ K0 + FI we infer the following identity:

πI ◦ πK0 ◦ (g ◦ πK0) = (πI ◦ πK0) ◦ (1 − f) = πI ◦ πK0 ,

Because πK0 is an epimorphism, the square indeed commutes.
By (2), F/K0 is projective and K0 is a direct summand of F . Denote by C

a complement of K0 in F , which is obviously projective and finitely generated,
because it is also a direct summand of F . Then the factor-module C/(C ∩K) ≃
(C + K)/K = F/K is isomorphic to M and therefore it is flat. Note that we
have the inclusions

C ∩K ⊆ C ∩ (K0 + (K0 + C)I) = C ∩ (K0 + CI) = (C ∩K0) + CI = CI

which means that C ∩K is I-superfluous in C by Lemma 4.1.2(iv), i.e the canon-
ical projection πC∩K : C → C/C ∩ K is a projective I-cover of C/(C ∩ K). By
Lemma 4.3.4 πC∩K is an isomorphism and we infer that the module M ≃ C/C∩K
is projective.

(3) ↔ (4): By Corollary 4.3.5.
(3) → (1): Let P be a finitely generated projective R-module and G be a

submodule of P such that it is an I-supplement. By Lemma 4.5.1 there is a pure
submodule K of P that has an I-supplement G.

Observe that K/KI is finitely generated. Indeed, from G∩K ⊆ GI ⊆ PI we
get

G+ PI

PI
⊕ K + PI

PI
= P/PI

Because K is pure in P we have K ∩ PI = KI. Then

K + PI/PI ≃ K/K ∩ PI = K/KI

and K/KI is isomorphic to a direct summand of a finitely generated R-module
P/PI, in particular it is finitely generated.

The right R-module P/K is countably presented, finitely generated and flat
with the ideal factor (P/K)/(PI+K/K)) ≃ P/(PI+K) ≃ G+PI/PI projective
as a right R/I-module. By the condition (3), P/K projective. This yields K is
finitely generated and by addendum of Lemma 4.5.1 we accomplish what was
required.
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By Example 4.1.7, the condition ”every projective J (R)-semicover is a pro-
jective cover” is stronger than (4) with I = J (R).

Using terminology from radical theory of rings, a (Kurosh-Amitsur) radical γ
is matrix extensible if it satisfies the equation Mn(γ(R)) = γ(Mn(R)), n ∈ N for
any ring R. As an application of the previous theorem, we show now that (4), and
hence all of (1)–(4), are true for the Levitzki radical L(R), i.e. the condition (L3′)
of Theorem 4.4.3 holds. This is ensured when the ideal I consists of nilpotent
elements and is matrix extensible, since then also the ideal Mn(I) would consist
only of nilpotent elements and idempotents lift modulo these ideals. It is well
known that both β and L are matrix extensible and the nil radical N is matrix
extensible if the famous Köthe’s Conjecture holds true.

By Example 4.4.2, we were afforded examples of rings that do not satisfy (L3′),
nevertheless the condition (4) still holds (and in fact it does for any commutative
ring).

Proposition 4.5.3. Let R be a ring satisfying the conditions of Theorem 4.4.3.
Then the condition (4) in Theorem 4.5.2 holds true.

Proof. Let P be projective with the ideal factor P/PI finitely generated. Then
Q′ := P/PI is a direct summand of a finitely generated free R/I-module isomor-
phic to (R/I)(m) for some m ∈ N.

By the assumption, idempotents lift moduloMn(I) inMn(R) for all n ∈ N. By
Theorem 4.4.3(L2′), there is a (finitely generated) direct summand Q of R(m) such
that Q/QI ≃ Q′. From the second isomorphism theorem for modules P/PI

PJ (R)/PN ≃
P/PJ (R) and Q/QI

QJ (R)/QN ≃ Q/QJ (R). Projective modules are determined by
their radical factors [15, Theorem 2.3] so P/PJ (R) ≃ Q/QJ (R) implies P ≃ Q
and P is finitely generated.

Example 4.5.4. The conditions (1)–(4) of Theorem 4.5.2 hold for I = β(R) and
I = L(R). They also hold for I = N (R) if Köthe’s Conjecture is true.
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[16] Zöschinger H.: Projektive Moduln mit endlich erzeugten Radikalfaktormodul,
Math. Ann. 255, 1981, pp. 199–206.

54



5. Open Problems
The following questions of interest have remained still unanswered:

Question 1. Does the Corollary 1.3.5 hold without the additional set-theoretic
axiom?

Question 2. Does the Theorem 2.3.4 hold without the additional set-theoretic
axiom?

Question 3. Is it possible to exclude in the Theorem 3.2.3 the Type IIf or Type
III or both?

Question 4. Does the equivalent conditions in Theorem 4.5.2 hold for I = N (R)
without the assumption that Köthe’s Conjecture is true?
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