STUDIUM VYUŽITÍ DERIVATIZAČNÍCH REAKcí PRO ESI-MS ANALÝZU OBTÍŽNĚ IONIZOVATELNÝCH ARYL CHLOROKOMPLEXŮ RHENIA

Study of derivatization reactions for ESI-MS analysis of hardly ionizable rhenium aryl chlorocomplexes

Diplomová práce

Vedoucí diplomové práce: RNDr. Martin Štícha Ph.D.
Konzultant: doc. RNDr. Ivan Jelinek, CSc.

Praha 2020
Prohlášení

Prohlašuji, že jsem tuto závěrečnou práci zpracoval samostatně a že jsem uvedl všechny použité informační zdroje a literaturu. Tato práce ani její podstatná část nebyla předložena k získání jiného nebo stejného akademického titulu.

Jsem si vědom toho, že případné využití výsledků, získaných v této práci, mimo Univerzitu Karlova je možné pouze po písemném souhlasu této univerzity.

V Praze dne 11. června 2020
Abstrakt

Hmotnostní spektrometrie s ionizací elektrosprejem je metoda vhodná pro strukturní analýzu koordinačních sloučenin s výbornou citlivostí a selektivitou. Některé komplexní sloučeniny však nejsou pomocí měkkých ionizačních technik přímo ionizovatelné. Tato diplomová práce se zabývá zkoumáním derivatizační reakce obtížně ionizovatelných komplexů komplexy rhenia s 1,2-dihydroxybenzem a 2,3-dihydroxytoluoenem a strukturní analýzou produktů. Struktura a fragmentační mechanismy připravených derivátů byly zkoumány pomocí kolizně indukované disociace (CID). Teorie funkcionálu hustoty (DFT) byla použita pro predikci štěpených vazeb při fragmentaci na základě prodloužení vazeb během ionizace a pro popis struktury připravených komplexů.

Klíčová slova

Komplexy rhenia, strukturní analýza, ESI-MS, derivatizace, fragmentace, výpočetní chemie, DFT, CID, kolizně indukovaná disociace

Abstract

Mass spectrometry with electrospray ionization is an excellent method for structural analysis of coordination compounds with outstanding sensitivity and selectivity. However, it fails to detect some low-polar rhenium complexes. This master thesis describes derivatization method of non-ionizable rhenium complexes with 1,2-dihydroxybenzene and 2,3-dihydroxytoluene. Fragmentation mechanisms and structure of prepared complexes was studied using high resolution mass spectrometry and collision-induced dissociation (CID). Furthermore, density functional theory (DFT) computational method was used for prediction of bond cleavage based on bond lengthening.

Keywords

Rhenium complexes, structural analysis, ESI-MS, derivatization, fragmentation, computational chemistry, DFT, CID, collision-induced dissociation
Obsah

Abstrakt .. 3
Klíčová slova .. 3
Abstract .. 3
Keywords .. 3
Obsah .. 4

1. Cíle práce ... 8
2. Teoretický úvod .. 9
 2.1. Komplexy rhenia .. 9
 2.2. Měkké ionizační techniky .. 9
 2.3. Ionizace za atmosférického tlaku ... 10
 2.3.1. Chemická ionizace za atmosférického tlaku ... 10
 2.3.2. Fotoionizace za atmosférického tlaku .. 11
 2.3.3. Ionizace elektrosprejem ... 12
 2.3.3.1. Model vypaření iontu ... 14
 2.3.3.2. Model zbytkového náboje ... 15
 2.3.3.3. Model vypužení řetězce ... 16
 2.4. Derivatizace látek obtížně ionizovatelných v ESI ... 17
 2.5. Tandemová hmotnostní spektrometrie .. 19
 2.5.1. Kolizně indukovaná disociace ... 19
 2.6. Výpočetní chemie ... 21
 2.6.1. Studium fragmentace využitím výpočetních metod 21
3. Experimentální část ... 23
 3.1.1. Metody funkcionálu hustoty ... 23
 3.2. Použité chemikálie ... 24
 3.3. Přístroje a prostory ... 24
 3.4. Příprava komplexů a derivatizace ... 24
3.1. Kinetická měření ... 25
3.2. Výpočty DFT .. 25
3.3. Podmínky měření .. 26
4. Výsledky a diskuse .. 27
 4.1. HRMS ... 27
 4.2. Reakční kinetika ... 28
 4.3. CID ... 31
 4.4. DFT .. 34
 4.4.1. Optimalizace struktury ... 34
 4.4.2. Změna délky vazby ... 35
 4.4.1. Změna dihedrálního úhlu .. 37
5. Závěr .. 40
6. Použitá literatura ... 41
7. Přílohy ... 51
 7.1. Příloha A – CID diagramy ... 51
 7.2. Příloha B – MS/MS spektra ... 56
 7.3. Příloha C – Fragmentační schématy 59
<table>
<thead>
<tr>
<th>Zkratka</th>
<th>Význam</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM1</td>
<td>výpočetní metoda Austin Model 1</td>
</tr>
<tr>
<td>AO</td>
<td>atomový orbital</td>
</tr>
<tr>
<td>APCI</td>
<td>atmospheric pressure chemical ionization – chemická ionizace za atmosférického tlaku</td>
</tr>
<tr>
<td>API</td>
<td>atmospheric pressure ionization – ionizace za atmosférického tlaku</td>
</tr>
<tr>
<td>APPI</td>
<td>atmospheric pressure photoionization – fotoionizace za atmosférického tlaku</td>
</tr>
<tr>
<td>Cat</td>
<td>katechol (1,2-dihydroxybenzen)</td>
</tr>
<tr>
<td>CA</td>
<td>collisional activation – kolizní aktivace</td>
</tr>
<tr>
<td>CAD</td>
<td>collisionally activated dissociation – kolizně aktivovaná disociace</td>
</tr>
<tr>
<td>CE</td>
<td>collision energy – laboratorní kolizní energie</td>
</tr>
<tr>
<td>CEM</td>
<td>chain ejection model – model vypužení řetězce</td>
</tr>
<tr>
<td>CI</td>
<td>chemická ionizace</td>
</tr>
<tr>
<td>CID</td>
<td>collision induced dissociation – kolizně indukovaná disociace</td>
</tr>
<tr>
<td>CRM</td>
<td>charge residue model – model zbytkového náboje</td>
</tr>
<tr>
<td>DFT</td>
<td>density functional theory – teorie funkcionálu hustoty</td>
</tr>
<tr>
<td>DHN</td>
<td>dihydroxynaftalen (2,3-dihydroxynaftalen)</td>
</tr>
<tr>
<td>DHT</td>
<td>dihydroxytoluen (4-methyl-1,2-dihydroxybenzen)</td>
</tr>
<tr>
<td>E_{CM}</td>
<td>center of mass energy – těžišťová kolizní energie</td>
</tr>
<tr>
<td>EI</td>
<td>elektronová ionizace</td>
</tr>
<tr>
<td>ESI</td>
<td>electrospray ionisation – ionizace elektrosprejem,</td>
</tr>
<tr>
<td>ESI-MS</td>
<td>hmotnostní spektrometrie s ionizací elektrosprejem</td>
</tr>
<tr>
<td>FAB</td>
<td>fast atom bombardment – ionizace urychlenými atomy</td>
</tr>
<tr>
<td>GC-MS</td>
<td>plynová chromatografie s hmotnostní detekcí</td>
</tr>
<tr>
<td>HF</td>
<td>Hartreeho-Fockova metoda</td>
</tr>
<tr>
<td>HPLC</td>
<td>high-performance liquid chromatography – vysokoúčinná kapalinová chromatografie</td>
</tr>
<tr>
<td>HRMS</td>
<td>high resolution mass spectrometry – hmotnostní spektrometrie s vysokou rozlišovací schopností</td>
</tr>
<tr>
<td>IEM</td>
<td>ion evaportaion model – model vypaření iontu</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>MALDI</td>
<td>Matrix-Assisted Laser Desorption/Ionization - ionizace laserem za přítomností matrice</td>
</tr>
<tr>
<td>MD</td>
<td>molekulární dynamika</td>
</tr>
<tr>
<td>MO</td>
<td>molekulový orbital</td>
</tr>
<tr>
<td>MO-LCAO</td>
<td>molekulové orbitaly – lineární kombinace atomových orbitalů</td>
</tr>
<tr>
<td>PBrA</td>
<td>p-bromoanilin</td>
</tr>
<tr>
<td>PCIA</td>
<td>p-chloroanilin</td>
</tr>
<tr>
<td>PIPA</td>
<td>p-isopropylanilin</td>
</tr>
<tr>
<td>PT</td>
<td>p-toluidin; p-methylanilin</td>
</tr>
<tr>
<td>Q</td>
<td>kvadrupól, kvadrupólový analyzátor</td>
</tr>
<tr>
<td>SI</td>
<td>similarity index – index podonosti</td>
</tr>
<tr>
<td>SID</td>
<td>source-induced dissociation</td>
</tr>
<tr>
<td>STO</td>
<td>Slater orbitaly</td>
</tr>
<tr>
<td>TEA</td>
<td>triethylamin</td>
</tr>
<tr>
<td>TOF</td>
<td>time of flight – hmotnostní analyzátor doby letu</td>
</tr>
</tbody>
</table>
1. Cíle práce

Cílem této práce bylo nalezení vhodné derivatizační reakce umožňující využít hmotnostní spektrometrie s ionizací elektroprojem k detekci a studiu některých obtížně ionizovatelných komplexů rhenia. Vzhledem k barevnosti vznikajících produktů měl být průběh těchto derivatizačních reakcí studován i pomocí spektrofotometrických metod. Další pozornost měla být zaměřena na studium chování připravovaných komplexů v kolizní cele a na interpretaci fragmentačních schémat. V neposlední řadě měla být prozkoumána možnost využití výpočetní chemie ke zkoumání struktury vzniklých komplexů a predikci vazeb štěpených při fragmentaci na základě změny délky vazby během ionizace.
2. Teoretický úvod

2.1. Komplexy rhenia

Koordinační sloučeniny rhenia mají široké spektrum aplikací ve výzkumu i praxi. Patří mezi ně například vývoj léků a katalýza. Komplexy rhenia složené z β-emitujících izotopů 186Re a 188Re a vhodných organických ligandů našly díky svým unikátním vlastnostem využití v cílené chemoterapii [1, 2].

Důkladná analýza připravených komplexů rhenia je důležitým předpokladem pro jejich úspěšné využití. V minulosti skupina dr. Štíchy studovala strukturu komplexů ReV, VI, VII s bidentátními aromatickými ligandy pomocí hmotnostní spektrometrie [6]. Mezi zkoumanými produkty reakcí a degradací byly pozorovány některé obtížně ionizovatelné sloučeniny [7]. Například komplex [ReVII(O)Cl(cat)] nebylo možné ionizovat pomocí ESI, APCI ani APPI. Navíc vzhledem jeho nestabilní je zjištěno pro analytické a protické rozpoznání bylo problematické i použití alternativních analitických metod.

2.2. Měkké ionizační techniky

Podle množství přidělené vnitřní energie lze ionizační techniky dělit na „tvrdé“ a „měkké“. V případě tvrdých ionizačních technik molekula získává velké množství přexbytečné energie, která způsobí rozsáhlou fragmentaci ionizované molekuly. Naopak u měkkých ionizačních technik je vytvoření molekulárního ionu obtížné a se značným fragmentací. Jednou z prvních měkkých ionizačních technik je chemická ionizace (CI) [8]. Využití našla v plynové chromatografii s hmotnostní detekci (GC-MS) spočívá v elektronovou ionizaci (EI). Elektronová ionizace je tvrdou ionizační technikou produkující velké množství fragmentů a ve spektru tak může chybět molekulární ion [9, 10]. Míra fragmentace v CI je nízká, molekulární ion má větší vyšší relativní intenzitu [11, 12]. Tyto metody jsou však vhodné pouze pro analyty, které jsou těkavé a termálně stabilní. Molekuly nesplňující tato kritéria musí být
převedeny na ionty přímo z pevné, případně kapalné fáze. Iontové zdroje vytvářející ionty z kapaliny fungují převážně na principu zmlžování. Za atmosférického tlaku jsou z kapek vytvořeny ionty a ty jsou dále transportovány skrze mezifázi do vakuové části hmotnostního spektrometru. Do této skupiny iontových zdrojů patří chemická ionizace za atmosférického tlaku (APCI), fotoionizace za atmosférického tlaku (APPI) a ionizace elektrosmogem (ESI). Princip těchto metod je popsán v následujících podkapitolách. Při generování iontů z pevné fáze je vzorek aplikován ve formě pevného netěkavého nánosu. Často je v kontaktu s pevnou nebo viskózní matricí. Vrstva vzorku je potom ozářena fotony v případě ionizace laserem za přítomnosti matrice (MALDI) nebo je ostřelována urychlenými atomy v případě FAB a následně dochází k desorpci iontů z povrchu vzorku. Ionty jsou pak elektrickým polem neseny k analyzátoru [9, 10].

Metody, které lze použít k ionizace molekul studovaných v této práci jsou popsány v následujících podkapitolách.

2.3. Ionizace za atmosférického tlaku

Při ionizaci za atmosférického tlaku (API) jsou vytvořené ionty transportovány do hmotnostního analyzátoru, který je umístěn ve vysokém vakuu (10^{-5} Pa). Toho lze dosáhnout pomocí přechodů mezi různými stupni vakuu. Většinou jde o dva stupně s vlastními pumpami. Jednotlivé části jsou spojeny průchodky s velmi malým průměrem, tzv. skimmery nebo iontovými nálevkami. Průměr otvůr pro průchod iontů musí být dostatečně široký, aby byla dosažena vysoká citlivost, ale zároveň nesmí být moc široký, aby bylo zajištěno dostatečné vakuum v prostoru hmotnostního analyzátoru [9, 13, 14].

Další problém nastává při přechodu iontů do vakuové části, při kterém dochází k ochlazení a nežádoucí tvorbě klastrů. Tvorbě klastrů lze zabránit protiproudem sušicího plynu, pro odstranění molekul rozpouštědla a vyhříváním iontového zdroje. Při teplotě zdroje mají vzniklé ionty dostatečnou teplotu i po přechodu do vakua [13–15].

2.3.1. Chemická ionizace za atmosférického tlaku

Metoda APCI pracuje na podobném principu, jako v GC-MS běžně využívaná CI. Hlavní využití APCI je pro ionizaci středně polárních až nepolárních látek s molekulovou hmotností až do 1500 Da. Tato ionizace poskytuje převážně ionty nesoucí jeden náboj [9, 16].

Ionizace pomocí APCI je používána ve spojení s vysokoúčinnou kapalinovou chromatografií (HPLC) nebo s přímým nástřikem. Kapalina je při průtoku $0,2 – 2$ ml min$^{-1}$

![Schéma zdroje APCI](image)

Obrázek 1 – Schéma zdroje APCI. Převzato a upraveno z [17].

2.3.2. Fotoionizace za atmosférického tlaku

Fotoionizace za atmosférického tlaku (APPI) je jednou z nejmladších sprejovacích metod. Vzorek je zmlžen a odpařen stejným způsobem, jako v případě APCI. Molekuly v plynné fázi pak interagují s fotony, které emituje výbojka (viz obrázek 2). Nejčastěji se používá kryptonová výbojka s energií fotonů 10 eV. Její energie je příliš nízká k ionizaci molekul rozpouštědla a vzduchu, ale je dostatečná k ionizaci fotoaktivních molekul. Na rozdíl od ESI a APCI je APPI vhodná pro ionizaci málo polárních molekul. Ionizací mohou vznikat iony s lichým počtem elektronů. Ke zvýšení citlivosti lze použít tzv. dopant. Jedná se o látku, která má ionizační energii nižší než 10 eV. Pomocí ion-molekulárních reakcí s analytem dochází selektivně ke vzniku iontů [18–22].
2.3.3. Ionizace elektrosprejem

Ionizace elektrosprejem (ESI) je jednou z nejvíce využívaných metod ionizace v chemické a biochemické analýze. Využitelnost vzrostla zejména poté, co bylo zjištěno, že s pomocí elektrospreje lze získat násobně nabité ionty proteinů. Byla tak umožněna jejich analýza i s přístroji s nízkým rozsahem měřených hmot. Z počátku byla ESI považována za nástroj k ionizaci pouze proteinů. Později byla rozšířena na polymery, další biopolymery ale i malé polární molekuly. Ukázalo se také, že je s ESI možné dosáhnout vysoké citlivosti a nabízí snadné spojení s HPLC, μHPLC nebo kapilární elektroforézou [9, 23].

Elektrosprej vzniká působením silného elektrického pole na kapalinu protékající skrze vodivou kapiláru za atmosférického tlaku [15]. Běžný průtok kapaliny se pohybuje v mezích 1-10 µl min⁻¹ a elektrosprej je tak vhodný pro spojení s kapalinovou chromatografií. Mezi kapilárou a válcovou elektrodou, které jsou od sebe vzdáleny 0,3 – 2 cm, je vloženo napětí 3-6 kV. Dochází ke vzniku elektrického pole o síle v řádu 106 V m⁻¹. Proti směru proudění kapek je zaveden tok sušícího inertního plynu o tlaku 1 atm, který urychluje odpařování rozpouštědla. Běžný průtok kapaliny se pohybuje v mezích 1 - 10 µl min⁻¹ a elektrosprej je tak vhodný pro spojení s kapalinovou chromatografií [15].

Působením elektrického pole na kapalinu u špičky kapiláry vzniká mlha jemných kapiček. Při nízkém napětí je kapka na špičce kapiláry sférická. S rostoucím napětím se kapka deformuje a ztrácí svůj sférický charakter. Při vloženém napětí 1 až 2 kV dochází k prodloužení kapky vlivem náboje, který se koncentruje u hrotu. Při dostatečném napětí 3 až 5 kV dochází k překročení síly povrchového napětí kapky a vzniká Taylorův kužel (viz obrázek 3). Z jeho špičky jsou uvolňovány malé kapičky [9]. Vlivem sušícího plynu pak dochází k odpaření rozpouštědla a koncentrování náboje. Při dosažení Rayleighovo limitu se vyrovnají Coulombické odpudivé síly a povrchové napětí kapky a dochází k tzv. Coulombické explozi. Tato podmínka je definována Rayleighovo rovnicí [28, 29]:

\[Q_{RY} = 8\pi(\varepsilon_0 \gamma R^3)^{1/2} \]

Kde \(Q_{RY} \) je náboj kapky, \(\gamma \) povrchové napětí rozpouštědla, \(R \) poloměr kapky a \(\varepsilon_0 \) permitivita. Kapka je roztržena, vzniká řada dalších kapek. První generace kapek vzniklých na špičce Taylorova kuželu má průměr okolo 1,5 µm a nese kolem 50000 elementárních nábojů. Po roztržení mají kapky průměr okolo 0,1 µm a 300 až 400 elementárních nábojů [30]. S každou další generací kapek se tak násobí náboj, který kapky nesou. Postupně se odpařuje rozpouštědlo a vznikají ionty. K popisu přechodu iontů z kapalné fáze do plynné bylo navrženo několik modelů – model vypaření iontu (ion evaporation model – IEM), model zbytkového náboje (charge residue model – CRM) a model vypuzení řetězce (chain ejection model – CEM). Ionty dále přenášeny pomocí iontové optiky skrze rozhraní do další části přístroje, která obsahuje vakuum a jsou analyzovány [9, 27].
2.3.3.1. Model vypaření iontu

Model odpaření iontu (IEM) navrhl Iribarne a Thomson k vysvětlení generování iontů z nabitéch kapk, které jsou produkovány elektrosprejem [32, 33]. Kapky se zmenšují díky odpařování rozpouštědla do chvíle, kdy je síla pole kolem jejich povrchu dostatečně velká k vytržení solvatovaných iontů [32–35]. Iribarne a Thomson navrhlí s použitím teorie přechodového stavu rovnici (2), která popisuje reakční konstantu emise iontu z nabité kapky:

\[k_R = \frac{k \cdot T}{h} \cdot e\left(\frac{\Delta G^*}{RT}\right) \] (2)

Kde je \(k_R \) reakční konstanta, \(k \) Boltzmannova konstanta, \(T \) teplota, \(h \) Planckova konstanta, \(\Delta G^* \) volná entalpie a \(R \) plynová konstanta. Obrázek 4 zobrazuje postup vytržení iontu z nabité kapky a aktivační bariéru, kterou vyjadřuje volná entalpie \(\Delta G^* \) v rovnici (2). Dříve bylo předpokládáno, že aktivační bariéra vzniká protichůdnými silami, které působí na ion opouštějící perfektně sférickou kapku [31]. Ahadi a Konermann [36] pomocí molekulární dynamiky ukázali, že ion je při opouštění kapky podporován můstkem tvořeným molekulami rozpouštědla, který se později rozpadá. Jejich experimenty ukázaly, že v případě vody jako rozpouštědla je povrchové napětí vyšší, kapka si drží sférickou geometrii a nedochází tak k tvorbě můstku a k vypužení iontu dochází jen vzácně. Naopak u roztoků methanolu nebo směsi methanolu s vodou (50/50) dochází snadněji k deformaci kapky, vytvoření můstku a vypužení iontu.

Obrázek 3 – Schématické znázornění ionizace elektrosprejem v pozitivním módu. Převzato a upraveno z [31].
Obrázek 4 – Proces vypaření iontu. Ion opouští nabitou kapku v solvatovaném stavu. Převzato a upraveno z [23].

2.3.3.2. Model zbytkového náboje

Ionty mohou do plynné fáze převedeny mechanismem, který popisuje model zbytkového náboje (CRM) [25, 29, 37]. Tento mechanismus byl popsán například na ionizaci globulárních proteinů. Model CRM předpokládá, že nanokapka blížící se Rayleighovo limitu obsahuje pouze jednu molekulu analytu a odpaří se do sucha [31]. Náboj se pak při odpaření rozpouštědla přesune na molekulu analytu [25, 29]. Kapky se dle CRM po dobu odpařování nachází v blízkosti Rayleighovo limitu a musí tak v průběhu ztrácet část náboje. K tomu může docházet pomocí vypužení protonů a malých iontů dle IEM [38]. Z nabité kapky se odpařuje rozpouštědlo až dojde k překročení Rayleighovo limitu a vznikne Taylorův kužel. Tento postup se opakuje, až kapka obsahuje jen jednu molekulu analytu. Iont pak vzniká odpařením rozpouštědla a přenesením náboje na molekulu v kapce [23]. Vypužení globulárního proteinu pomocí IEM není kineticky možné [31]. ESI produkuje ionty se složením blízkým [M + zRHzR], kde zR je Rayleighovo náboj kapky rozměrem se blížícím proteinu [29, 39–41]. Tento náboj je definován rovnicí (3) [42]:

\[
Z_R = \frac{8\pi (\varepsilon_0 \gamma_{kapky}^3)^{1/2}}{e}
\]

(3)
Kde ε_0 je elektrická permitivita okolního prostředí, γ je povrchové napětí, e je elementární náboj a r_{kapky} poloměr kapky.

Experimenty potvrdily, že náboj predikovaný pomocí CRM nezáleží na iontové formě v roztoku [29, 31, 39–41]. Grafické znázornění CRM ukazuje obrázek 5.

Obrázek 5 – Schéma popisující vznik iontu dle CRM. Převzato a upraveno z [23].

2.3.3.3. **Model vypužení řetězce**

Molekulární dynamika ukázala, že na rozdíl od globulárních proteinů podléhajících ionizaci dle CRM, rozbalené proteinové řetězce podléhají ionizaci jiným mechanismem [31, 42, 43]. Díky hydrofobnímu charakteru proteinových řetězců není výhodná pozice uvnitř kapky. Rozbalený protein v kapse blížící se Rayleighovo limitu migruje na povrch. Jeden konec proteinového řetězce je vypuzen do plynné fáze. Postupně je pak z kapky vypuzen i zbytek proteinu (viz obrázek 6) [31]. Bylo zjištěno, že CEM podstupují polymery neuspořádané, částečně hydrofobní a nesoucí skupiny schopné vázat přebytečný náboj [43, 44].
Obrázek 6 – Porovnání vzniku iontu ze sbaleného (A) a rozbaleného (B) proteinu. Převzato a upraveno z [43].

2.4. Derivatizace látek obtížně ionizovatelných v ESI

Citlivost hmotnostní spektrometrie je obecně extrémně vysoká, ale závislá na účinnosti ionizace analytu [45]. Analyty postrádající skupiny schopné protonace nebo deprotonace jsou obtížně ionizovatelné pomocí měkkých ionizačních technik [46]. Látky, které tvoří ionty v roztoku jsou obecně dobře ionizovatelné pomocí ESI. Naopak APCI se více hodí pro ionizaci málo až středně polárních látek obsahujících atomy s vysokou protonovou afinitou [47]. I přesto že je ESI-MS jednou z nejúčinnějších analytických metod, její použití pro detekci některých málo polárních komplexů rhenia je omezené. Problémy s ionizací těchto molekul jsou způsobeny absencí kyselých nebo bazických skupin ve struktuře. Pro zvýšení efektivity ionizace lze analyt chemicky modifikovat zavedením skupin schopných protonace nebo deprotonace [45].

Díky derivatizaci mohou vznikat unikátní fragmentové ionty v kolizní cele tandemového hmotnostního spektrometru. Ty pak zle využít k identifikaci a případné kvantifikaci [48]. V posledních letech byla publikována řada používaných derivatizačních technik pro ESI-MS [49–51]. Typ, struktura a hmotnost derivatizačního činidla by měla být zvolena tak, aby vyhovovala pro danou aplikaci. Zatímco derivatizace pomocí malých molekul může být výhodná v případě stereicky bráněných skupin, derivatizace velkými molekulami produkuje ionty o vysoké hmotnosti, které jsou v oblasti hmotnostního spektra s menší mírou šumu [48].

Chemická derivatizace analytu je jednou z nejúčinnějších metod ke zvýšení citlivosti detekce. Cílem chemické derivatizace je převést obtížně ionizovatelnou nebo neionizovatelnou látku na snadno detekovatelnou změnou jejich chemických a fyzických vlastností.
V analytické chemii je derivatizace především využívána k modifikaci analytu, který nelze analyzovat určitou analytickou metodou nebo ke zlepšení selektivity. Derivatizace může zlepšit separaci a účinnost ionizace [52].

Chemická derivatizace sehrála důležitou roli v analýze pomocí GC-MS. V GC-MS se derivatizace používá ke zvýšení těkavosti, ke změně ionizačních vlastností analytu nebo k ovlivnění fragmentace analytu [53]. Nejpoužívanějšími deriváty v GC-MS jsou methyl, ethyl, acetyl nebo silyl estery mastných kyselin. Většina metod derivatizace probíhá in situ, kde příprava vzorku a chemická modifikace probíhají v jednom kroku. Derivatizace v kapalinové chromatografii má odlišné odůvodnění, a proto se uplatňují jiná pravidla při volbě činidla [54].

Obecně platí, že molekula analytu může být protonována, pokud její protonová afinita převyšuje afinitu protonované molekuly rozpouštědla. Na druhé straně k deprotonaci analytu může docházet je-li acidita molekuly analytu v plynné fázi větší než acidita deprotonované molekuly rozpouštědla. K tvorbě záporných iontů může docházet i dalšími procesy jako například tvorbou aduktů nebo záchytem elektronu [55].

Většina derivatizačních technik používaných v ESI se zaměřuje na zavedení trvale nabité skupiny, nebo skupiny která má vysokou protonovou afinitu či elektronovou afinitu. V ESI se jedná o snadno ionizovatelnou skupinu. U některých obtížně ionizovatelných molekul může ke zlepšení citlivosti detekce přispět tvorba adktu. V pozitivním módu jsou běžně pozorovány adukty s kovy zejména alkalickými, zatímco v negativním módu se mohou tvořit adukty s karboxyláty a halogenidy [56].

Charakteristická vazba mezi stříbrnými ionty a alkeny je založena na interakci obsazeného π orbitalu alkenu s volným orbitalem 5s Ag⁺ a volného π⁺ orbitalu alkenu s obsazeným 4d orbitalem Ag⁺ [62]. Kromě stříbra byla studována možnost využití i některých dalších kovů především Cu⁺ a Au [46, 63].

Derivatizace při ESI-MS analýze byla úspěšně aplikována na řadu malých molekul, neutrálních steroidů a biomolekul, jako jsou například peptidy. Potenciál derivatizace pro ESI-MS v analytické chemii byl prezentován v celé řadě publikací. [49–51, 56, 63–68]. Anilin a jeho substituenty patří mezi nejjednodušší slabé báze. U některých halogenderivátů anilinu lze k identifikaci fragmentů úspěšně využít charakteristického izotopového profilu. To
je důvod, proč byly tyto látky zvoleny jako potenciální derivatizační činidla pro analýzu neionizovatelných komplexů rhenia. Výsledné deriváty obsahují atom dusíku, který je snadno ionizovatelnou skupinou a zlepšuje účinnost ionizace analytů pomocí ESI.

Jednou z nevýhod derivatizace je, že mohou být vyžadovány tvrdší reakční podmínky, při kterých dochází k derivatizaci nejen cíleného analytu, ale zároveň dochází k ovlivnění dalších složek vzorku.

2.5. Tandemová hmotnostní spektrometrie

Měkké ionizační techniky produkují převážně protonované nebo deprotonované molekuly s nulovou nebo minimální mírou fragmentace ve zdroji. Tím je limitováno množství získaných informací o struktuře ze spektra prvního řádu. Tandemová hmotnostní spektrometrie se proto stala nezbytnou pro strukturní analýzu široké škály látek, jako jsou farmaceutika, peptidy, proteiny, nukleové kyseliny a řada dalších. Při tandemové hmotnostní spektrometrii dochází k aktivaci známého prekurzního iontu a analýze produktů fragmentace [69]. Pomocí prvního analyzátoru je prekurzní ion izolován a následně fragmentován. Fragmentaci vznikají iontové fragmenty a neutrální molekuly. Poté jsou vzniklé ionty analyzovány druhým hmotnostním analyzátorom. Produktové ionty mají ve spektru izotopové píky jen v případě, že v je v prvním kroku vybrán širší pás m/z, který zahrnuje i izotopové píky prekurzního iontu. Počet fragmentačních kroků je možno v některých případech zvýšit. Tento typ experimentů se obecně nazývá MSn, kde n je počet generací analyzovaných iontů [9].

Jednou z možností tandemového uspořádání je použití hybridního hmotnostního spektrometru (Qq-TOF), který se skládá ze dvou kvadrupolových analyzátorů a jednoho analyzátoru doby letu. První kvadrupolový analyzátor lze použít k selekci iontů o určitém intervalu m/z. Druhý kvadrupolový analyzátor slouží jako kolizní cela, kde dochází k interakci přicházejících iontů s neutrálními molekulami kolizního plynu. Tento proces se nazývá kolizně indukovaná disociace (CID z angl. collision-induced dissociation). Analyzátor TOF je pak použit k analýze produktů fragmentace. Tímto typem přístroje lze provádět pouze experimenty MS2.

2.5.1. Kolizně indukovaná disociace

Technika CID, také známá jako kolizně aktivovaná disociace (CAD) a kolizní aktivace (CA) je jednou z nejpoužívanějších metod aktivace iontů [70–72]. Ionty z iontového zdroje při CID putují do kolizní cely, kde je umístěn kolizní plyn (N2, He, Ar) o tlaku výrazně vyšším než
okolní vakuum [10]. Kolize prekurzního iontu s molekulami neutrálního plynu způsobuje zvýšení vnitřní energie iontu. Část translační energie atomu se při nepružné srážce převede na vnitřní energii iontu, což vede k následnému rozkladu [73]. Tuto energii lze spočítat dle rovnice (4) [69, 72]:

\[E_{cm} = \frac{E_{lab} M_t}{M_t + M_t} \]

kde \(E_{cm} \) je těžišťová kolizní energie, \(M_t \) je hmotnost iontu; \(M_t \) je hmotnost terče a \(E_{lab} \) je kinetická energie udělená iontu.

Ion dále získanou energii rychle redistribuuje do vibračních hladin. Následuje druhý pomalejší krok, ve kterém dochází k rozpadu excitovaného iontu na produktové ionty a neutrální molekuly. Větší molekuly je pomocí CID obtížněji fragmentovat, protože mají k dispozici větší množství vibračních stavů pro uložení energie a je tak snížena šance, že fragmentace proběhne [74].

Obecně jsou definovány dva typy kolizí v závislosti na energii udělené iontu. V rozmezí kolizní energie 1-100 eV se jedná o nízkoenergetické kolize. V případě energií v řádu keV jde o vysokoenergetické kolize [9, 75].

Hybridní hmotnostní spektrometry zaznamenávají spektra nízkoenergetické CID. Při tandemové hmotnostní spektrometrii v prostoru je kolizní cela kvadrupól v radiofrekvenčním módu, který fokusuje ionty rozptýlené kolizemi. I přes fokusaci dochází k úniku části iontů mimo kolizní celu. Je tak ideální používat hexapólů a oktapólů, které mají vyšší účinnost záchytu než kvadrupóly [9]. Energie iontů v excitovaném stavu je převážně vibračního charakteru [76]. Doba interakce mezi iontem o hmotnosti 200 Da s energií 30 eV s cílem velkým několik Å je okolo \(10^{-14} \) s, což odpovídá vibrační periodě vazby.

U přístrojů s ionizací za atmosférického tlaku může docházet (SID – source-induced dissociation) přímo ve zdroji. V přechodové části mohou ionty získat dostatečnou rychlost ke kolizí s molekulami rozpouštědla nebo sušícího plynu. Rychlost iontů může být ovlivněna pomocí napětí na urychlovacích elektrodách. Tento způsob fragmentace je důležitý pro přístroje s jedním hmotnostním analyzátorem [74].
2.6. Výpočetní chemie

2.6.1. Studium fragmentace využitím výpočetních metod

Fragmentace v tandemovém hmotnostním spektrometru je komplexní proces. Stabilita iontu, vnitřní energie iontu a jeho struktura jsou jedny z hlavních parametrů, na kterých průběh fragmentace závisí [9, 71, 88, 89]. Existují programy, které se snaží predikovat vzniklé fragmenty: Mass Frontier (ThermoFinnigan, San Jose, USA), ACD/MS Fragmenter (Advanced Chemical Development, Toronto, Canada) a další. Tyto programy vycházejí z pravidel založených na fragmentaci v EI, která nemusí platit pro ionty vzniklé pomocí API, nebo z dat získaných z MS/MS databází [90, 91]. Vygenerovaný seznam předpokládaných fragmentů tak vzniká štěpením všech vazeb ve zkoumané molekule, který lze porovnat s naměřeným spektrem. Tento přístup však nebere v potaz termodynamická data, ani vliv protonace/deprotonace na MO a strukturu molekuly [89]. Dochází tak k predikci velkého množství fragmentů, z jen část reálně vzniká. Pravidla fragmentace pomocí CID nebyla dosud popsána ve stejném rozsahu, jako pro EI. Fragmentace v EI byla popsána na základě velkého množství dat shromážděných v knihovnách spekter. Pro CID neexistují rozsáhlé knihovny spekter a standardní podmínky pro jejich měření a není tak možný stejný přístup jako v EI [92].

Jednu z možností predikce fragmentace ukázali například Bandu a kol. [94], kteří se zaměřili na CID karboxylových kyselin. Definovali pravidla popisující, ve kterých případech dochází k neutrální ztrátě 44 Da odpovídající CO₂ a kdy k tomuto jevu nedochází. Dokázali tak správně odhadnout odštěpení CO₂ u 18 z 20 farmaceutik obsahujících karboxylovou skupinu. Klagkou a kol. [95, 96] studovali fragmentaci sulfonamidů a na základě znalostí fragmentačních mechanismů dokázali předpovědět vzniklé fragmenty.

V minulosti byla výpočetní chemie využívána pro výpočty energií iontů, intermediátů a popisu možných cest fragmentace. Metodu DFT lze použít pro výpočty optimalizované struktury. Lze také sledovat změnu elektronové hustoty v molekule při protonaci/deprotonace a oslabení nebo zesílení vazby při procesu ionizace [97]. Místo protonace/deprotonace má zásadní vliv na fragmentaci molekuly a lze ho částečně odhadnout na základě výpočtu protonové afinitity [89].
3. Experimentální část

3.1.1. Metody funkcionálu hustoty

Metody funkcionálu hustoty (DFT z angl. density functional theory) patří k ab initio („od počátku“) metodám. Řešení časově nezávislé Schrödingerovy rovnice [77] (viz rovnice (5)) je základem metod výpočetní chemie.

\[E\Psi = \hat{H}\Psi \]

(5)

kde \(\hat{H} \) je operátor Hamiltonovy funkce (tzv. Hamiltonián), \(\Psi \) vlnová funkce daného objektu a \(E \) jeho energie. Vlnová funkce vychází ze struktury molekuly. Hamiltonián popisuje síly mezi elektrony a jádře a nese informaci o geometrii. Druhá mocnina vlnové funkce \((\Psi^2)\) vyjadřuje hustotu pravděpodobnosti výskytu elektronu v daném místě [78, 79].

Výhoda DFT metod je relativně nízká výpočetní náročnost [82]. DFT je založena na vztahu mezi energií základního stavu a elektronové hustoty, která je funkcí pouze tří proměnných. Hybridní funkcionály jsou nejrozšířenějšími ve výpočetní chemii. Jsou založeny na výpočtu Hartree-Fockovy limity a korelační energii Coulombické repulze elektronů. Hartreeho-Fockova metoda (HF) řeší neempiricky Schrödingerovu rovnici se zanedbáním Coulombické repulze. Metoda HF je variační, což znamená, že vypočítané aproximativní energie musí být vyšší nebo
rovny energii exaktní. Pomocí HF nelze počítat energii systému s více elektrony. Zavádí tak jednoelektronovou funkci. Korelační energie v DFT je pak počítána pomocí funkcionálu hustoty [83].

Hybridní funkcionál použitý v této práci je B3LYP [84, 85]. Je tvořen dvěma funkcionály – Beckeho třiparametrovým [86] a Lee-Yang-Parr funkcionálem [87].

3.2. Použité chemikálie

Tetrabutylammonium tetrachlorooxorhenát [(n-Bu₄-N)(ReOCl₄)] (98%), 4-chloroanilin, 4-bromoanilin, 4-metylanilin, 4-isopropylanilin, anilin, 4-methylcatechol a 1,2-dihydroxybenzen byly zakoupeny od firmy Sigma-Aldrich. Acetonitril (HPLC grade) a trimethylamin byly zakoupeny od firmy Fisher Scientific.

Dusík byl vyroben generátorem dusíku MS-NGM 11 (Bruker Daltonics, Německo).

3.3. Přístroje a programy

Přístroj Bruker QqTOF compact ovládaný pomocí programu Compass otofControl 4.0 (Bruker Daltonics, Německo) byl použit pro ESI-MS experimenty. Vyhodnocení hmotnostních spektřů bylo provedeno v programu Compass DataAnalysis 4.4 (Bruker Daltonics, Německo). Struktury molekul a fragmentační schémata byla vytvořena v programu ChemDraw (PerkinElmer Informatics, USA). Izotopové profily a přesné hmoty iontů byly spočítány pomocí utility IsotopePattern 3.0 (Bruker Daltonics, Německo). Analytické váhy Kern ALJ 220-4 (Kern & Sohn, Německo) byly použity pro vážení pevných látek. K míchání bylo použito míchadlo Stuard SA8 (Cole Parmer, UK). UV/Vis spektra byla měřena na přístroji Agilent 8453.

3.4. Příprava komplexů a derivatizace

Chlorokomplexy [Re(O)Cl(Cat)₂] a [Re(O)Cl(DHT)₂] byly připraveny dle postupu adaptovaného z literatury [7]. Schéma reakce je zobrazeno na obrázku 7. V 1,5 ml acetonitrilu bylo rozpuštěno 4,4 mg (7,5 µmol) tetrabutylammonium tetrachlorooxorhenátu [(n-Bu₄-N)(ReOCl₄)]. Dále bylo přidáno 1,7 mg (15 µmol) katecholu nebo 1,9 (15 µmol) DHT podle typu připravovaného komplexu. Nakonec bylo přidáno 20 µl 10 % (v/v) roztoku triethylaminu v acetonitrilu. Reakční směs byla míchána po 3 dny za laboratorní teploty.
Reakční schéma derivatizační reakce je zobrazeno na obrázku 8. K 10 µl roztoku chlorokomplexu [Re(O)Cl(Cat)₂] nebo [Re(O)Cl(DHT)₂] o koncentraci 5 mmol/l bylo přidáno 50 µl roztoku p-substituovaného anilinu o koncentraci 25 mmol/l.

Obrázek 8 – Schéma derivatizační reakce.

3.1. Kinetická měření

Měření kinetiky derivatizační reakce pomocí ESI-MS bylo prováděno smícháním reaktantů v koncentrované formě. Ředění v poměru 1:100 bylo prováděno těsně před zmlžovačem. Hmotnostní spektrum bylo kontinuálně zaznamenáváno po dobu 60 min.

Pro UV/Vis kinetická měření byl roztok zředěn v poměru 1:4 acetonitrilem do 2ml uzavíratelné křemenné kyvety s délkou optické dráhy 1 cm. Spektra byla zaznamenána v rozsahu 250–800 nm s krokom 1 nm.

3.2. Výpočty DFT

Výpočty DFT byly prováděny pomocí programu Gaussian 16 [102] hybridním funkcionálem B3LYP [86] s bází LanL2DZ [103–106].

Struktury ionizované a nenabité formy studovaných komplexů byly optimalizovány.
3.3. Podmínky měření

Měření ESI-MS probíhalo v negativním módu v rozsahu m/z 50–1000. Teplota sušícího plynu (N₂) byla 220 °C při průtoku 3,0 l/min. Napětí kapiláry bylo 3500 V. Vzorky byly vstřikovány do zmlžovače pistovou pumpou (Cole Parmer, USA) při průtoku 3 µl/min.

Šířka izolovaného pásu byla při CID experimentech 5 Da a tlak kolizního plynu v kolizní cele 2,5·10⁻³ mbar. Měření probíhalo v rozsahu od 10 eV do 200 eV kolizní energie CE s krokem 1 eV.
4. Výsledky a diskuse

Použitou metodou derivatizace pomocí para substituovaného anilínů byla do struktury studovaných komplexů vnesena funkční skupina umožňující po deprotonaci vznik záporně nabitých iontů.

4.1. HRMS

Produkty derivatizační reakce uvedené na obrázku 7 byly charakterizovány pomocí měření hmotnostních spekter. U všech molekulárních iontů připravených derivátů byl pozorován charakteristický izotopový profil. Naměřená HRMS data připravených komplexů a jejich srovnání s vypočítanými hodnotami přehledně zobrazuje tabulka 1. Chyby odráží rozdíl mezi teoretickou a naměřenou hmotou. Index podobnosti (SI) vyjadřuje shodu teoretického a experimentálně naměřeného izotopového profilu. U všech připravených komplexů bylo dosaženo shody převyšující 90 %. Rovněž chyba při měření přesných hmot byla ve všech případech menší než 2 ppm. Z výsledků je patrná výrazná shoda mezi naměřenými a teoretickými hodnotami což také potvrzuje správnost přiřazení elementárního složení k dané hmotě.

Tabulka 1 – Teoretické a experimentálně získané hmoty aniontů studovaných derivátů.

<table>
<thead>
<tr>
<th>Označení</th>
<th>Sumární vzorec</th>
<th>Teoretická (m/z)</th>
<th>Měřená (m/z)</th>
<th>Chyba [mDa]</th>
<th>Chyba [ppm]</th>
<th>(1-SI)100 [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Re(O)(Cat)(_2)PCl(_A)](-)</td>
<td>C({18})H({12})ClNO(_5)Re</td>
<td>543,9958</td>
<td>543,9969</td>
<td>-1,1</td>
<td>-2,0</td>
<td>98,6</td>
</tr>
<tr>
<td>[Re(O)(Cat)(_2)PBr(_A)](-)</td>
<td>C({18})H({12})BrNO(_5)Re</td>
<td>587,9445</td>
<td>587,9440</td>
<td>0,4</td>
<td>0,8</td>
<td>94,2</td>
</tr>
<tr>
<td>[Re(O)(Cat)(2)An()](-)</td>
<td>C({18})H({13})NO(_5)Re</td>
<td>510,0357</td>
<td>510,0360</td>
<td>-0,3</td>
<td>-0,6</td>
<td>98,1</td>
</tr>
<tr>
<td>[Re(O)(Cat)(2)PT()](-)</td>
<td>C({19})H({12})NO(_5)Re</td>
<td>524,0514</td>
<td>524,0507</td>
<td>0,7</td>
<td>1,2</td>
<td>89,2</td>
</tr>
<tr>
<td>[Re(O)(Cat)(2)PIPA()](-)</td>
<td>C({21})H({19})NO(_5)Re</td>
<td>552,0827</td>
<td>552,0828</td>
<td>-0,2</td>
<td>-0,3</td>
<td>98,1</td>
</tr>
<tr>
<td>[Re(O)(DHT)(_2)PCl(_A)](-)</td>
<td>C({20})H({16})ClNO(_3)Re</td>
<td>572,0271</td>
<td>572,0277</td>
<td>-0,6</td>
<td>-1,0</td>
<td>98,0</td>
</tr>
<tr>
<td>[Re(O)(DHT)(_2)PBr(_A)](-)</td>
<td>C({20})H({16})BrNO(_3)Re</td>
<td>615,9758</td>
<td>615,9753</td>
<td>0,5</td>
<td>0,8</td>
<td>96,8</td>
</tr>
<tr>
<td>[Re(O)(DHT)(2)An()](-)</td>
<td>C({20})H({17})NO(_3)Re</td>
<td>538,0670</td>
<td>538,0676</td>
<td>-0,6</td>
<td>-1,1</td>
<td>92,3</td>
</tr>
<tr>
<td>[Re(O)(DHT)(2)PT()](-)</td>
<td>C({21})H({19})NO(_3)Re</td>
<td>552,0827</td>
<td>552,0824</td>
<td>0,3</td>
<td>0,5</td>
<td>99,3</td>
</tr>
<tr>
<td>[Re(O)(DHT)(2)PIPA()](-)</td>
<td>C({23})H({23})NO(_5)Re</td>
<td>580,1140</td>
<td>580,1142</td>
<td>-0,2</td>
<td>-0,4</td>
<td>91,5</td>
</tr>
</tbody>
</table>

\[SI = \sqrt{\frac{\sum_{i=1}^{N} \left(\frac{i - \bar{i}}{\bar{i}} \cdot 100\right)^2}{N}} \] (6)
Hodnoty S_I byly vypočítány ze vztahu (6), kde $(i - i_0)$ vyjadřuje rozdíl v intenzitách signálů dvou sloučenin s danou hmotou a i_0 je menší z nich a N je počet fragmentových iontů použitých k porovnání.

Porovnání naměřeného a vypočítaného izotopového profilu derivátu [Re(O)(Cat)$_2$PBrA] je zobrazeno na obrázku 9. Stejně dobrá shoda přesných hmot a izotopového zastoupení byla pozorována u všech derivátů. Vzhledem k tomu, že byla pozorována výrazná analogie v chování všech připravených derivátů, byl komplex [Re(O)(Cat)$_2$PBrA] zvolen jako zástupce, na kterém budou prezentovány výsledky dalších experimentů. Získaná data ostatních derivátů jsou dostupná ve formě přílohy.

Obrázek 9 – (A) Experimentálně získaný izotopový profily komplexu [Re(O)(Cat)$_2$PBrA] v porovnání s izotopovým profilem generovaným pomocí programu IsotopePattern 3.0 (B).

4.2. Reakční kinetika

Změna UV/Vis absorpčního spektra v čase během derivatizační reakce [ReVII(O)Cl(Cat)$_2$] s PBrA je zobrazena na obrázku Obrázek 10. Výrazný absorpční pás při λ_{max}=630 nm a slabší pás při λ_{max}=390 nm odpovídají intenzivní modrozelené barvě komplexu [ReVII(O)Cl(Cat)$_2$]. Produkt derivatizační reakce s p-substituovaným anilinem je slabě žlutý s absorpčním maximem při λ_{max}=355 nm. Časové intervale mezi měřenými jsou zobrazeny v grafu. Během prvních 15 minut měření došlo k 90% poklesu absorpčního pásů při λ_{max}=630 nm a λ_{max}=390 nm. V dalších 45 minutách obě absorpční maxima zanikají a postupně vzrůstá intenzita absorpčního pásu při λ_{max}=355 nm (viz přiblížená část grafu).
Obrázek 10 – Spektra absorpce v UV/Vis oblasti zaznamenána během 45 min. Časové intervaly mezi jednotlivými měřeními jsou zaznamenány v grafu. Tučné šipky ukazují na pokles/nárůst absorpčního maxima v čase.
Obrázek 11 – Graf časového vývoje intenzity vybraných iontů v ESI-MS při reakci \([Re(O)Cl(Cat)_2]\) s p-bromoanilinem v prostředí 2 ekvivalentů TEA.

Průběh stejné reakce byl sledován pomocí ESI-MS. Časový vývoj intenzit sledovaných iontů zobrazuje Obrázek 11. Intenzita iontu \(m/z \) 588, který je produktem derivatizační reakce, nabývá maxima zhruba po 15 minutách, což odpovídá pozorovanému poklesu absorpčního pásu \([Re^{VI}OCl(Cat)_2]\) při \(\lambda_{max}=630\) nm. Vznik iontu \(m/z \) 454 ukazuje, že derivát anilinu jako slabá báze urychluje oxidaci komplexu obsahujícího Re\(^{V}\) na formu Re\(^{VI}\). Komplexy obsahující Re\(^{VI}\) jsou náchylné k oxidaci a po dosažení maxima v 15 minutě tak intenzita iontu \(m/z \) 454 postupně klesá.

Časový průběh intenzit sledovaných iontů také pomohl při určení skutečné struktury iontu \(m/z \) 454. V tomto případě by nebylo možné ani s pomocí HRMS rozhodnout, jestli se jedná komplex s vázaným atomem chloru \([Re^{VI}(O)Cl(Cat)_2]^-\) a nebo jestli tento iont vzniká jako adukt s chlorem \([Re^{VI}(O)(Cat)_2]Cl^-\), neboť by se shodovaly jejich hmotnosti. Uvedená časová závislost iontových intenzit na obrázku 10 však přítomnost aduku chloru prakticky vylučuje.
4.3. CID

Struktura připravených derivátů byla určena sledováním vybraných reakcí (MRM) v negativním módu při kolizní energii 35 eV. Spektrum připraveného komplexu [Re(O)(Cat)₂PBrA] při 35 eV je zobrazeno na obrázku 12. Spektra MS/MS ostatních komplexů jsou uvedena v příloze B. Základní pik při m/z 480 vzniká odstoupením katecholu z iontu prekurzoru, který je označen modrou značkou. Izotopový profil molekulárního iontu je zachován i v případě iontu m/z 480 a potvrzuje přítomnost izotopů bromu a rhenia. Ve spektru je dále pozorován ion m/z 404, který vzniká ztrátou aromatického kruhu z druhého katecholového ligandu. Průběh fragmentace tak naznačuje přítomnost velmi silné vazby Re-N. Druhou cestou fragmentace molekulového iontu m/z 588 je ztráta substituovaného anilinu a vznik iontu m/z 327. Celý proces fragmentace pak končí vznikem ReO₄⁻ a následně ReO₃⁻. Navržené fragmentační schéma komplexu [Re(O)(Cat)₂PBrA] je zobrazeno na obrázku 13.

Fragmentační spektra ostatních komplexů jsou uvedena v příloze C.

Obrázek 12 – MS/MS spektrum derivátu [Re(O)(Cat)₂PBrA] při kolizní energii 35 eV.
Naměřené hmoty iontů získaných fragmentací \([\text{Re(O)(Cat)}_2\text{PBrA}^-]\) při kolizní energii 35 eV a jejich relativní intenzity jsou zobrazeny v tabulce 2. Dále jsou doplněny teoretické hmoty a vypočítané chyby měření.

Tabulka 2 – Teoretické a experimentálně získané hmoty fragmentů \([\text{Re(O)(Cat)}_2\text{PBrA}^-]\) při kolizní energii 35 eV. Chyby vyjadřují rozdíl mezi teoretickou a naměřenou hmotou.

<table>
<thead>
<tr>
<th>Nominální m/z</th>
<th>Sumární vzorec</th>
<th>Teoretická m/z</th>
<th>Měřená m/z</th>
<th>Chyba [mDa]</th>
<th>Chyba [ppm]</th>
<th>Relativní zastoupení [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>588</td>
<td>(\text{C}{18}\text{H}{12}\text{BrNO}_3\text{Re}^-)</td>
<td>587,9462</td>
<td>587,9459</td>
<td>0,3</td>
<td>0,5</td>
<td>1,0</td>
</tr>
<tr>
<td>480</td>
<td>(\text{C}{12}\text{H}{8}\text{BrNO}_3\text{Re}^-)</td>
<td>479,9233</td>
<td>479,9271</td>
<td>-3,8</td>
<td>-7,9</td>
<td>100,0</td>
</tr>
<tr>
<td>404</td>
<td>(\text{C}{9}\text{H}{4}\text{BrNO}_3\text{Re}^-)</td>
<td>403,8920</td>
<td>403,8931</td>
<td>-1,1</td>
<td>-2,8</td>
<td>4,8</td>
</tr>
<tr>
<td>327</td>
<td>(\text{C}_{6}\text{H}_4\text{O}_4\text{Re}^-)</td>
<td>326,9673</td>
<td>326,9681</td>
<td>-0,8</td>
<td>-2,5</td>
<td>10,1</td>
</tr>
<tr>
<td>251</td>
<td>(\text{ReO}_4^-)</td>
<td>250,9360</td>
<td>250,9354</td>
<td>0,6</td>
<td>2,3</td>
<td>11,2</td>
</tr>
<tr>
<td>235</td>
<td>(\text{ReO}_3^-)</td>
<td>234,9411</td>
<td>234,9383</td>
<td>2,8</td>
<td>11,7</td>
<td>0,6</td>
</tr>
</tbody>
</table>

U všech připravených komplexů byla zkoumána závislost relativní intenzity fragmentových iontů na kolizní energii. Laboratorní kolizní energie byla přepočítána na těžišťovou kolizní
energii podle rovnice 4. Tato závislost pro komplex s [Re(O)(Cat)₂PBrA]⁻ je zobrazena na obrázku 21. Podobné experimenty byly provedeny i s ostatními připravenými deriváty a výsledky jsou uvedeny v příloze A. Křivky byly vytvořeny proložením experimentálně získaných bodů pomocí funkci Gaussovského typu v programu Origin Pro 9.0 (OriginLab Corporation, USA).

Obrázek 14 – Graf závislosti relativní intenzity iontů vzniklých fragmentací [Re(O)(Cat)₂PBrA]⁻ na kolizní energii, resp. těžišťové kolizní energii.

Diagram CID na obrázku 14 popisuje průběh fragmentace komplexu [Re(O)(Cat)₂PBrA]⁻. Prekurzním iontem je ion m/z 588. Z něj při zvýšení kolizní energie vznikají ionty m/z 480 a m/z 327. Maximální intenzity nabývají tyto ionty při kolizní energii zhruba 37 eV. Ion m/z 480 vzniká odštěpením jednoho z ligandů, zatímco v případě ionu m/z 327 odstupuje současně p-substituovaný anilín. Tento krok má ale daleko nižší prioritu, což je vyjádřeno výrazně nižší zhruba 15 % relativní intenzitou vznikajícího fragmentu. Ion m/z 327 ztrátu benzenového jádra přechází na ion [Re⁵O]⁴⁺ m/z 251, ve kterém by mělo rhenium vystupovat v oxidačním stavu V. Z charakteru této závislosti vyjádřené zelenou křivkou bez výrazných maxim lze dále usuzovat na přítomnost izobarického iontu s rheniem v oxidačním stavu VII vznikajícího již při
nejnižších kolizních energiích rozpadem prekurzního iontu vlivem vnějších podmínek, jako je například vlhkost. Z iontu m/z 480 odstupuje část druhého ligandu za vzniku iontu m/z 404, jehož intenzita nabývá maxima při stejné kolizní energii jako intenzita iontu m/z 251. Celý proces fragmentace pak končí vznikem iontu m/z 235. Vysoká energie, při které dochází k odštěpení derivatizačního činidla z iontu m/z 404 za vzniku iontu m/z 235 demonstruje sílu vazby Re-N. Na základě takto získaných informací bylo možné navrhnout fragmentační schéma, které je uvedeno na obrázku 13. U všech dalších připravených komplexů bylo pozorováno analogické fragmentační chování a příslušné návrhy fragmentačních schémat jsou uvedeny v příloze C.

4.4. DFT

4.4.1. Optimalizace struktury

Struktury elektroneutrální a ionizované formy komplexů byly optimalizovány pomocí hybridního funkcionálu B3LYP a bází LanL2DZ. Na obrázku 15 je zobrazen proces deprotonace molekuly \([\text{Re}(\text{O})(\text{Cat})_2\text{PBrA}]\) v plynné fázi na \([\text{Re}(\text{O})(\text{Cat})_2\text{PBrA}^-]\).

Obrázek 15 – Změna struktury \([\text{Re}(\text{O})(\text{Cat})_2\text{PBrA}]\) během ionizace. Struktury neionizované i ionizované formy komplexu byly optimalizovány pomocí DFT.
4.4.2. Změna délky vazby

Byla studována změna délky vybraných vazeb v molekulách komplexů mezi ionizovanou a neionizovanou formou. Struktura komplexu [Re(O)(Cat)₂PBrA] s barevně označenými vazbami, jejichž délka byla v rámci molekul studována, je ukázána na obrázku 16. Vazby C-C a C-H studovány nebyly, protože štěpení tohoto typu vazby je při ESI ionizaci nepravděpodobné [9, 92].

Obrázek 16 – Barevné vyznačení vazeb v komplexu [Re(O)(Cat)₂PBrA], u kterých byla sledována změna délky během ionizace. Zelená pro vazby C-O, červená pro vazby Re-O a modrá pro vazbu N-Re.

Výsledky změny délky vazeb u komplexu [Re(O)(Cat)₂PBrA] jsou graficky zpracovány na obrázku 17. K výraznému prodloužení došlo v případě dvou protilehlých vazeb Re-O20 a Re-O21 (označení atomů viz obrázek 15). U délky vazeb C-O došlo k nejmenší změně. U vazeb Re-O19 a Re-O22 došlo k mírnému zkrácení. Vazba N-Re se vlivem ionizace zásadně zkrátila. Prodloužení vazby Re-O14 naznačuje, že během ionizace dochází k jejímu oslabení. Z CID diagramu tohoto komplexu na obrázku 14 je patrné, že intenzita iontu m/z 480, který vzniká odstoupením ligandu, nabývá maxima již kolem kolizní energie 40 eV. Zároveň je ion m/z 480 nejintenzivnějším fragmentem v MS/MS spektru. Naopak ion m/z 327 vznikající odstoupením jednoho ligandu a derivatizačního činidla nabývá výrazně nižší intenzity než ion m/z 480. Tomu odpovídá i fakt, že během ionizace dochází ke zkrácení vazby Re-N a její štěpení je tedy méně pravděpodobné než samotné odstoupení ligandu. Při kolizní energii cca 65 eV nabývá maxima ion m/z 404, který vzniká odštěpením části zbylého katecholového ligandu. Maximální intenzita iontu m/z 404 je nižší než v případě iontu m/z 480 a poloha maxima i nižší intenzita tak koresponduje s vypočtenou změnou délky vazby. K odštěpení derivatizačního činidla z iontu m/z 404 dochází při nejvyšší kolizní energii a výsledek je tak ve shodě s vypočítaným zkrácením vazby Re-N.
Obrázek 17 – Graf změny délky konkrétních vazeb typu O-Re, C-O a N-Re mezi ionizovanou a neionizovanou formou komplexu [Re(O)(Cat)2PBrA].

U všech připravených komplexů dochází k obdobnému prodloužení nebo zkrácení daného typu vazby jako u [Re(O)(Cat)2PBrA]. Typ derivatizačního činidla má vliv pouze na délku vazby Re-N (viz obrázek 18).

Výpočty ukázaly, že typ substituentu v poloze para má vliv na zkrácení vazby Re-N během ionizace. Při použití halogenovaného derivatizačního činidla bylo výsledné zkrácení délky vazby po ionizaci menší než v případě anilinů s vyšší bazicitou. Všechny komplexy s katecholem vykazovaly větší zkrácení vazby než komplexy s 2,3-dihydroxytoluenem.
Obrázek 18 – Grafická závislost změny délky vazby Re-N mezi ionizovanou a neionizovanou formou komplexů s katecholem a 2,3-dihydroxytoluenem v závislosti na použitém derivatizačním činidle. Zelené sloupce zobrazují hodnoty pKa příslušných anilinů.

Na obrázku 18 je porovnání vlivu bazicity substituentu na změnu délky vazby Re-N. Z tohoto grafu je patrné, že se vzrůstající hodnotou pKa substituentu roste i změna délky vazby Re-N. Vliv substituentu se také odráží ve fragmentačním chování komplexů, což je zřejmé z CID diagramů. Zatímco u derivátu s PBrA fragment m/z 404 vznikající postupnou ztrátou obou ligandů nabývá maximální intenzity při E_{CM} 1,37 eV, v případě fragmentace komplexu s PT leží maximum obdobného fragmentu m/z 340 až při E_{CM} 2,46 eV. V případě komplexu s PT je vazba v ionizované formě komplexu výrazně pevnější a je tedy potřeba větší množství energie k jejímu štěpení.

4.4.1. Změna dihedrálního úhlu

Z optimalizované struktury ionizovaného a neionizovaného komplexu (viz obrázek 15) je patrné, že během ionizace dochází k výrazné změně prostorového uspořádání komplexu vlivem negativního náboje na atomu dusíku. Pro popis této změny byl vybrán dihedrální úhel mezi atomy C14-O22-Re-O19 (viz obrázek 19) charakterizující polohu ligandů. V případě komplexů s katecholem byla změna dihedrálního úhlu u všech derivátů téměř identická a rozdíl mezi jednotlivými komplexy byl menší než jeden stupeň. U komplexů s DHT se změna

37
analogických dihedrálních úhlů lišila až o pět stupňů, což ale nijak zásadně neovlivnilo fragmentaci těchto látek při CID.

Obrázek 19 – Změna dihedrálního úhlu C14-O22-Re-O19 mezi ionizovanou a neionizovanou formou komplexu u komplexů s katecholem.

Obrázek 20 – Změna úhlu Re-N-C27 mezi ionizovanou a neionizovanou formou komplexů v závislosti na typu substituentu.
5. Závěr

Je možné konstatovat, že všechny vytčené cíle byly splněny. Byla popsána derivatizační reakce komplexů \([\text{Re(O)Cl(Cat)}_2]\) a \([\text{Re(O)Cl(DHT)}_2]\) se substituovanými aniliny. Derivatizace umožnila ionizaci obtížně ionizovatelných komplexů a jejich studium pomocí hmotnostní spektrometrie. Průběh reakce byl popsán pomocí ESI-MS a UV/Vis kinetického měření. Produkty byly charakterizovány pomocí hmotnostní spektrometrie s vysokým rozlišením.

K popisu fragmentačních mechanismů byly použity experimenty v kolizní cele. U všech připravených derivátů bylo pozorováno analogické fragmentační chování.

Struktura derivátů byla dále studována pomocí výpočetní chemie. Struktury ionizovaných a neionizovaných forem komplexů byly optimalizovány. Na základě změny délky vazby mezi ionizovanou a neionizovanou formou byla učiněna predikce štěpených vazeb při fragmentaci.
6. Použitá literatura

[60] Nikolova-Damyanova, B., & Momchilova, S.: Silver ion HPLC for the analysis of

48

Obrázek 21 – Graf závislosti relativní intenzity iontů vzniklých fragmentací \([\text{Re(O)(Cat)}_2\text{PClA}^-]\) na kolizní energii, resp. těžiště kolizní energii.
Obrázek 22 – Graf závislosti relativní intenzity iontů vzniklých fragmentací [Re(O)(Cat)_2An]^− na kolizní energii, resp. těžišťové kolizní energii.

Obrázek 23 – Graf závislosti relativní intenzity iontů vzniklých fragmentací [Re(O)(Cat)_2PT]^− na kolizní energii, resp. těžišťové kolizní energii.
Obrázek 24 – Graf závislosti relativní intenzity iontů vzniklých fragmentací \([\text{Re(O)(Cat)₂PIPA}]^-\) na kolizní energii, resp. těžišťové kolizní energii.

Obrázek 25 – Graf závislosti relativní intenzity iontů vzniklých fragmentací \([\text{Re(O)(DHT)₂PBrA}]^-\) na kolizní energii, resp. těžišťové kolizní energii.
Obrázek 26 – Graf závislosti relativní intenzity iontů vzniklých fragmentací [Re(O)(DHT)₂PCIA]⁻ na kolizní energii, resp. těžišťové kolizní energii.

Obrázek 27 – Graf závislosti relativní intenzity iontů vzniklých fragmentací [Re(O)(DHT)₂An]⁻ na kolizní energii, resp. těžišťové kolizní energii.

7.2. Příloha B – MS/MS spektra

Obrázek 30 – MS/MS spektrum derivátu [Re(O)(Cat)$_2$PCl$_A$] při kolizní energii 40 eV.

Obrázek 31 – MS/MS spektrum derivátu [Re(O)(DHT)$_2$PCl$_A$] při kolizní energii 40 eV.

Obrázek 32 – MS/MS spektrum derivátu [Re(O)(Cat)$_2$An] při kolizní energii 40 eV.
Obrázek 33 – MS/MS spektrum derivátu [Re(O)(DHT)$_2$An] při kolizní energii 40 eV.

Obrázek 34 – MS/MS spektrum derivátu [Re(O)(Cat)$_2$PT] při kolizní energii 40 eV.

Obrázek 35 – MS/MS spektrum derivátu [Re(O)(Cat)$_2$PIPA] při kolizní energii 40 eV.
Obrázek 36 – MS/MS spektrum derivátu [Re(O)(DHT)\textsubscript{2}PIPA] při kolizní energii 40 eV.

Obrázek 37 – MS/MS spektrum derivátu [Re(O)(DHT)\textsubscript{2}PBrA] při kolizní energii 40 eV.
7.3. Příloha C – Fragmentační schéma

Obrázek 38 – Fragmentační schéma komplexu [Re(O)(Cat)₂PCl₄].
Obrázek 39 – Fragmentační schéma komplexu [Re(O)(DHT)₂PCl₄]⁻.

Obrázek 40 – Fragmentační schéma komplexu [Re(O)(Cat)₂An]⁻.
Obrázek 41 – Fragmentační schéma komplexu \([\text{Re(O)(Cat)}_2\text{An}]^\cdot\).

Obrázek 42 – Fragmentační schéma komplexu \([\text{Re(O)(Cat)}_2\text{PT}]^\cdot\).
Obrázek 43 – Fragmentační schéma komplexu [Re(O)(DHT)₂PT].

Obrázek 44 – Fragmentační schéma komplexu [Re(O)(Cat)₂PIPA].
Obrázek 45 – Fragmentační schéma komplexu [Re(O)(DHT)₂PIPA]⁻.

Obrázek 46 – Fragmentační schéma komplexu [Re(O)(DHT)₂PBrA]⁻.