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Introduction
Thermodynamics form a principal basis for physical and bio-chemistry where
systems are inherently stochastic. Over a sufficiently long time, non-living, non-
biological systems enter a state of thermochemical equilibrium. In contrast, many
biological systems inside a cell function in a state of constant supply of energy and
material going in and out, never achieving an equilibrium. Such state is known as
a non-equilibrium steady state (NESS) [1] and is usually governed by chemical
kinetics. Wide array of processes of such systems are listed in [2]: random walks
and, more generally, diffusive processes, birth–death processes, growth processes
on a lattice, conformational changes between discrete states of a biomolecule,
molecular motors or chemical reaction networks.

The most important and widely studied example of a chemical reaction network
is the central energy metabolism of the cell. It is crucial to preserving cellular
functions and relies heavily on the adenosine triphosphate (ATP) for energy transfer
and supply. This organic compound is found in all forms of life, abundantly and
transiently so [3]. Works [4–7] give us following numbers for mitochondrial ATP
synthases. There are roughly 100 processes per mitochondria, each making around
10 ATP per second and there are 10 mitochondria per cell. That gives us about
10,000 processes just making ATP. Authors estimate that the human body uses
roughly 2 × 1026 transient molecules of ATP or more than the body’s weight; 160
kg of ATP in a day.

If you include other self-replicating processes, the number of processes per
second becomes exceedingly high, up to hundreds of thousands of times every
second. Take for instance transcription of genetic information from DNA to RNA
to amino acids. Each of these processes has hundreds of proteins all whirling
around at quite a speed. RNA to amino acids happens at a rate of around one
second per base pair, while a highly expressed gene will have thousands of copies
of mRNA at any one time [8].

The mentioned cellular processes are self-renewing and typically realized with a
help of biomolecules. These include enzymes, molecular motors and other organic
macromolecules. Yet, they are not always working impeccably in the intended
direction of the function they serve. Instead, they are inherently error-prone
and susceptible to thermodynamic fluctuations, which impacts their efficiency.
Although the kinetics of cyclic reactions have been studied extensively in the past,
not as much in the context of mutual interaction between biomolecules.

Motivated by cyclic chemical reactions occurring in the aforementioned pro-
cesses, we study a Markov processes on networks of discrete mesoscopic states
representing minima of free energy landscapes [9–11]. For instance, a motor
protein, myosin V [12], moves intracellular vesicles around cells along an actin
filament powered by the hydrolysis of ATP. Myosin’s movement consists of se-
ries of attachments and detachments of its two myosin heads, akin to a human
walking. The myosin walk can be broken down into three mesostates and thus be
represented as a three-state unicyclic Markov network. However, this process is
reversible [13–15] which together with its stochastic nature implies that a backstep
is always a real, albeit low-chance, possibility.

Requirement for any process to be microscopically reversible is conveniently
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incorporated into our Markov network model via a condition known as local detailed
balance [2, 16]. A surprising consequence of satisfying this condition is an equality
of cycle-completion times (i.e. backward and forward cycles are completed, on
average, with identical times). It has been rediscovered and exploited by several
authors [17, 18] notably in the context of membrane transport [19], chemical
kinetics of enzymes [20] and molecular motors [21, 22]. Our main goal is to test,
under which conditions this equality could be violated.

We devise a simple model of a Markov process on network states linked into
cycle and with reaction coordinates represented as a particle. We thoroughly
investigate the effect of interactions of a particle with other degrees of freedom, i.e.,
other particles. Particularly strong emphasis is put on studying a mean values and
variances of times of cycle completion, which may aid in a better understanding
of efficiencies of biochemical cycles far from equilibrium.

The structure of this thesis is as follows. In Chapter 1, we recapitulate the
basic principles of Markov chains and demonstrate their application in modeling
the aforementioned biological systems. We also present the basics of kinetic Monte
Carlo method. In the latter part of the chapter, the equality of cycle-completion
times in a cycle is shown and verified using the kinetic Monte Carlo method. In
Chapter 2, we discuss the impact of introducing additional interacting particles
to a unicyclic network. We demonstrate and explain a remarkable inequality of
corresponding cycle-completion times. In Chapter 3, we examine if the inequality
of cycle-completion times can be generalized to two dimensions. We investigate this
for canonical and for grand-canonical reservoir coupled to the reaction network.
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1. Kinetics of biochemical cycles
The evolution of biochemical reaction networks, particularly those of enzymes
or molecular motors which function in NESS, depend on specific couplings to
reservoirs (e.g. chemical concentration, load) and on dynamics inherent to the
particular system (e.g. type of enzyme, molecular motor). Each model of such
nonequilibrium processes has to incorporate a description of these couplings and
of the dynamics. It is often theoretically simpler to represent the effect of the
reservoirs in stochastic terms and reduce the complex dynamics to a Markov jump
process [16, 23, 24].

Markov jump process represents a reaction network as a random walker
occupying different discrete states (colllectively called statespace [25]) over the
course of time which is treated as a continous property. The changes between
individual states are called transitions and have rates associated with them [26].
These are denoted by wij and represent a rate at which the system transitions
from state i to state j in an infinitesimal time interval dt. Note that transitions
i → j and j → i are distinct from each other and generally have a separate
transition rate assigned to each.

For the transition rates to be compatible with real-world physics of biochemical
reactions, one must subject them to a concept of thermodynamics. In the case
of an equilibrium, a commonly known principle of microscopic reversibility, or
detailed balance, must hold [27]. The principle states that when a system is at an
equilibrium (a state of zero entropy production), the frequency of transitions is
the same in both directions for each individual reaction step. For Markov chains
specifically, this can expressed as

πiwij = πjwji (1.1)

where πi and πj are the equilibrium probabilities of being in states i and j,
respectively [28]. This relation amounts to a time-reversal symmetry of a stationary
process.

Alternatively, if there is not genuine equilibrium, one expects the detailed
balance to be broken. However, for a nonequilibrium system it is instead replaced
by the condition of local detailed balance [2, 11, 16], which can be expressed as
[29]

wij

wji

= e−β∆E(i→j), (1.2)

where ∆E(i → j) is an energy function. The function ∆E(i → j) includes an
energy difference between states (sites) i and j, and the work done by external
non-conservative driving forces which are frequently of a chemical origin [30] or,
represent an external load.

The aggregate of these driving forces acting on the system (e.g. the chemical
reaction, diffusion process,. . . ) is called a drift. The drift biases the random
walker to move in a certain direction. Even though, at a given instant in time, the
system may step in any direction, over many steps the system will, on average,
move in the direction of the drift.

In a living cell, the drift takes the form of a constant and continous supply of
material and energy. Such environment allows the reaction to renew and occur
cyclically.
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1.1 Gambler’s ruin problem
Markov processes with a discrete statespace can be easily visualised with the help
of graph theory. Vertices of a graph represent states of the system while directed
edges between the vertices represent possible transitions.

As an illustration, consider a particle which can move on a one-dimensional
lattice between 2n + 1 sites numbered from −n to n (see Fig. 1.1). The particle
can jump only between nearest neighboring sites. It starts its random walk from
x(t = 0) = 0, and stops once it reaches an absorbing boundary at n or −n for the
first time. Furthermore, a drift f is present which biases the particle to move to
the right if f > 0. This problem might be familiar to the reader, as it is simply
an example of a biased discrete random walk with absorbing boundaries, or more
concisely, the Gambler’s ruin problem [31, 32].

The most natural question to ask in this scenario is: What is the probability for
a particle to reach the absorbing boundary at n? The question that usually follows
is: What is the mean time it takes a particle to reach the absorbing boundary?
In mathematics this is commonly known as the conditional first-passage time [33].
By the condition we mean that reaching of the preferred absorbing boundary is
guaranteed. If that is the case, then the trajectory of a particle is called successful.

In the context of physical chemistry and cyclic biochemical reactions, the
conditional first-passage time of Gambler’s ruin problem directly corresponds
to a transition time of a reaction, i.e., the time it takes a system to complete
a cycle. In this framework, it is more appropriate and to avoid any confusion
with time intervals between individual transitions, to refer to the conditional
first-passage (or transition) time as a cycle-completion time, denoted in this thesis
by τ . Additionaly, if an absorbing boundary in the bias direction is reached, we
denote it by τ+

0 . Conversely, if an absorbing boundary against the bias direction
is reached, we denote it by τ−

0 .
To show a direct analogue between the Gambler’s ruin problem and a cyclic

reaction network, compare Fig. 1.1 and 1.2. The linear chain with 2n − 1 sites is
de facto a representation of two identical processes of length n linked together.
By identifying an initial site x(t = 0) = 0 with both absorbing boundaries and
other sites accordingly, the Gambler’s ruin problem can be reconstructed as a
cyclic Markov chain shown in Fig. 1.2. A particle is absorbed once it completes
a cycle (i.e. the particle jumps through all sites back to its initial site making a
“full revolution”) either in or against the drift bias. For brevity’s sake, we shall
refer to cyclic model statespace as 4-cycle, 5-cycle and so on depending on the
number of sites.

Figure 1.1: A graph of a Markov process with 2n + 1 sites linearly linked together
with two absorbing boundaries on either end. Emboldened graph edges represent
transitions favored by the positive value of drift f .
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1.2 Kinetic Monte Carlo

Figure 1.2: The 4-cycle: A unicyclic
graph of four sites. Emboldened
graph edges represent transitions fa-
vored by the positive value of drift
f .

In the case of Gambler’s ruin problem,
and therefore also in a 4-cycle, it is pos-
sible to determine the mean conditional
first-passage time τ±

0 analytically [26, 34].
The same approach can be used to solve
problems on a two-dimensional lattice, al-
though the exact form of the solution
quickly becomes unwieldy to express explic-
itly. For systems with multiple particles,
finding the exact solution is simply not pos-
sible. In this thesis, we will resort to finding
cycle-completion times using a simulation.

The most straightforward method, and
the one we shall use, is the well-known ki-
netic Monte Carlo (KMC). KMC is a com-
puter simulation intended to simulate the
time evolution of some stoachastic process.
It is widely used both for equilibrium and
non-equilibrium processes [30, 35] and is
based on the same principles as dynamic
Monte Carlo and Gilespie’s algorithm [36, 37].

In order to design a proper KMC simulation, individual transition rates are
typically needed to be known and inputed into the simulation beforehand. The
KMC by itself cannot predict them and in practical application these have to be
acquired from other methods, such as diffusion experiments, molecular dynamics
simulations or optical studies [38].

For all of our models, we define universally transition rates of a single particle
from a site i to j as follows:

wij =

⎧⎨⎩ aije
β
2 f+ β

2 (εi−εj) for transitions in the direction of positive f ,
aije− β

2 f+ β
2 (εi−εj) otherwise,

(1.3)

where aij = aji are constants representing the frequencies of unbiased transitions,
β is the inverse thermal energy (1/β = kBT where kB is the Boltzmann constant
and T is temperature), f denotes the drift, and the term (εi − εj) represents an
energy difference between sites i and j.

In all simulations, we set β = 1, which means εi and f will be given in units of
kBT . Parameters aij and εi will be used in Sec. 2.6 to model local inhomogenities
of dynamics. Otherwise, we shall set aij = 1, εi = 0, and call this scenario a
homogeneous n-cycle.

Defining transition rates in this manner guarantees that the local detailed
balance (1.2) is satisfied. Thus, our model can be interpreted as time-reversible
and compatible with thermodynamic principles.

The KMC algorithm that we use consists of ten steps:

1. Set the time to t = 0.

2. Set the initial state x(t = 0) = x0 and the absorbing boundaries.
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3. Form a list of transition rates wxj from the current state x to all possible
states j = 1, . . . , Nx.

4. Calculate a cumulative sum Zxj = ∑︁j
i wxi. The total rate of transition from

the state x is Zx = ZxNx .

5. Generate a uniform random number r1 ∈ (0, 1].

6. Find out which transition x → j happens by finding j for which:

Zx,j−1 < r1Zx ≤ Zxj.

7. Generate a new uniform random number r2 ∈ (0, 1].

8. Update the time with t = t + ∆t, where ∆t = 1
Zx

log( 1
r2

) is a dwell time.

9. Carry out the transition x → j.

10. If x(t) = ±n, record time as the cycle-completion time: τ = t, and set time
to t = 0. Otherwise return to step 3.

The step 6 is justified since the rates directly correspond to the probability pxi

of transition x → i such that
pxi = wxi

Zx

. (1.4)

We discard any trajectory ending in a non-preferred absorbing boundary. This
process is repeated until a desired number of successful trajectories is obtained.

Now that we have established all the necessary preliminaries, it is possible to
translate any Markov process into a KMC simulation. All coding was done in
Matlab R2019b and full written code can be found in the A Appendix at the
end of this thesis.

1.3 Equality of cycle-completion times
The principle of time reversal operates on the level of single trajectories. To show
this, consider a trajectory of a particle in a 4-cycle: {x(t)}, where 0 ≤ t ≤ t′. The
reversed trajectory is defined as {x†(t′ − t)} with the transitions in the opposite
direction of the original. If a trajectory was completed in the bias direction, then
its reversed counterpart was completed instead against the bias direction.

Any trajectory of a single diffusing particle making a transition between
two end points of an interval can be divided into two segments, which we call
direct-transit and looping parts. The former is the final segment of the trajectory,
when the particle goes from one end point of the interval to the opposite end
point, without retouching the starting point. The rest of the trajectory is the
looping part.

It has been proven, that mean first-passage time of both looping and di-
rect-transit part of the trajectory is identical for downhill (in the bias) and uphill
(against the bias) transitions [39]. Thus, we should see equality of τ+

0 (f) with
τ−

0 (f). That is the particle completes a cycle against the bias just as fast as in
the bias direction.
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As previously stated in Sec. 1.2, times τ±
0 (f) can be derived analytically or by

using KMC simulations. Figure 1.3 shows the plot of τ±
0 (f) determined by the

KMC method for a 4-cycle. A clear equality is indeed evident:

τ+
0 (f) = τ−

0 (f) = τ0(f) (1.5)

In the presence of the drift f , the mean cycle-completion time decreases compared
to its value at f = 0. As |f | → ∞, the mean cycle-completion time tends zero.

Moreover, we can observe that functions τ±
0 (f) are symmetrical in relation f .

This is simply a consequence of their equality because changing the parity of f
equates to switching absorbing boundaries. Hence

τ±
0 (f) = τ∓

0 (f) = τ±
0 (−f) (1.6)

Generalizations can be made for cycles of different length; shorter cycles have a
smaller values of τ±

0 (f) while longer ones have greater, but both display the same
equality and symmetry.

The symmetry and equality of τ±
0 is one of the most surprising consequences

of local detailed balance condition [40]. It has been rediscovered and exploited
by several authors [17, 18], notably in the context of membrane transport [19],
chemical kinetics of enzymes [20] and molecular motors [21, 22]. In more recent
papers [41, 42] equality of cycle-completion times was found not to be always the
preserved. In the latter paper, the authors state that the symmetry is broken
specifically for many-particles systems with a short-range repulsive interaction.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

2

3

4

5

6

7

8

Figure 1.3: Mean cycle-completion times τ+
0 (f), and τ−

0 (f) for a 4-cycle. Parame-
ters used: β = 1, aij = 1, εi = 0 number of KMC trajectories: 106.
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2. Interacting particles on a ring
Expanding upon the previous chapter, it was shown that cycle-completion times
τ+

0 (f) and τ−
0 (f) of a 4-cycle with one particle (or a cycle of any length for that

matter) are both identical and symmetrical in relation to an external drift f . This
was a result of the microspic reversibility. Yet, in most in vivo processes, it is
highly expected that the particle would interact with other ones diffusing nearby.
An endeavour to determine τ± in the presence of other particles becomes a matter
of great curiosity. Will the equality τ+(f) = τ−(f) hold for systems with two
or more interacting particles? In this chapter, we will answer this question for a
one-dimensional case.

We shall consider two identical particles performing a random motion on a
4-cycle shown in Fig. 1.2. Without the interaction, each particle moves exactly as
the one discussed in the previous chapter with transition rates wij given in (1.3).
The particles interact either if they occupy the same site, or the nearest neighboring
ones. The interaction affects transition rates of the two-particle system. The rate
Wij of the transition, where a particle jumps from the site i to the site j depends
on the position of the other particle in the following manner:

Wij =

⎧⎪⎪⎨⎪⎪⎩
wije

β
2 g if particles occupy the same site,

wije− β
2 g if the site j is occupied by the other particle,

wij if none of the above.
(2.1)

The parameter g can be understood as the potential energy of interaction. The
two-particle system gains energy +g when the particles occupy the same site. For
negative values of g, the interaction is attractive, while for positive values it is
repulsive. Form of rates Wij is such that the two-particle dynamics obeys the
local detailed balance condition (1.2).

We shall consider exclusively non-equilibrium steady-state dynamics. As such,
the issue of initial conditions must be addressed. In the case when a Markov process
is space-homogeneous (translationally invariant), the probability distribution of
particles’ initial position can be analytically derived for any value of drift f [26].
Generally, however, it is better to employ a less exact but more simple approach
taking advantage of the large number of Monte Carlo simulation runs. For the first
simulation run, we generate random initial conditions and let the system evolve.
When the first particle completes a cycle in either direction, a next simulation run
is initiated without changing any particle’s position. Hence, the system quickly
reaches a steady state in just a few runs without any need for external adjustment
[29].

For a more complicated case of a non-homogeneous 4-cycle, see Sec. 2.6.

2.1 Summary of main results
Using the KMC (as introduced in Sec. 1.2) to determine τ+(f) and τ−(f) of
4-cycle with two interacting particles has yielded results shown in Figs. 2.1 for
repulsion (g = −4) and 2.2 for attraction (g = +4). Both figures are accompanied
by a plot of mean cycle completion time with no interaction (g = 0) denoted by
τ0(f). In both instances, the results are unexpected and counterintuitive.
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Here is a brief summary of the six most important observations, each of which
will be discussed and expanded upon in its own section of this chapter.

i) For space-constant single-particle transition rates, every interaction between
particles slows down the cycle-completion process,

τ±(f) ≥ τ0(f). (2.2)

ii) An inequality
τ+(f) ≥ τ−(f) (2.3)

holds for any value of interaction parameter, g, i.e. trajectories are faster
against the direction of the bias than along. The equality of τ+ and τ− holds
either without any bias:

τ+(f = 0) = τ−(f = 0), (2.4)

or, naturally for g = 0, see Eq. (1.5).

iii) For strongly driven systems, we observe

lim
|f |→∞

τ−(f)
τ0(f) = 1, (2.5)

that is, a particle completing a cycle against a strong bias behaves very
similarly to non-interacting particle regardless of a number of other particles.
Cycle-completion times in the bias direction behave such that

lim
|f |→∞

τ+(f)
τ0(f) = h(g), (2.6)

where h(g) is a function of g, h(g) > 1.

iv) Fluctuations of cycle-completion times are most pronounced in the absence
of drift (f = 0) and exponentially decrease with increasing |f |.

v) Non-homogenities of the transition rates do not break the symmetry relative
to f : τ±(f) = τ±(−f); the inequality τ+(f) ≥ τ−(f) also holds. However, in
some special cases the inequality (2.2) can be violated.

vi) Inequality (2.3) becomes stronger with an increasing number of particles in
the system. Although τ±(f) may also increase as per the point i) of this
summary.
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Figure 2.1: Mean cycle-completion times τ+(f), and τ−(f) for a 4-cycle with
two particles interacting repulsively (g = 4), and τ0(f) corresponding to g = 0.
Parameters used: β = 1, aij = 1, εi = 0, number of KMC trajectories: 106.
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Figure 2.2: Mean cycle-completion times τ+(f), and τ−(f) for a 4-cycle with two
particles interacting attractively (g = −4), and τ0(f) corresponding to g = 0.
Parameters used: β = 1, aij = 1, εi = 0, number of KMC trajectories: 106.
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2.2 Interaction as an inhibitor
Why does interaction cause such a large difference between cycle-completion times
τ± and τ0? The most noticeable increase is for f = 0, where cycle-completion
times attain their maximal values. Longer cycle-completion times mean that
particles have more occassions to meet and interact with each other.

In the case of attractive interaction, it is very probable for the two particles
to exist in the same site. Such situation has a very low total rate Zx and thus a
longer dwell time ∆t due to the step 8 of KMC algorithm. Increase in dwell time
∆t in the case of same site occupancy is not compensated by a corresponding
decrease in a situation where the particles are neighboring each other. Thus, the
total of the two dwell times is higher.

In the case of repulsion, it is more likely for the particles to be neighboring
each other and less so to be occupying the same site. Nevertheless, the same
argument still holds and the total time is higher. Note that is regardless of the
second particle’s position. It could be either in front of the first particle (“blocking”
it) or behind it (“trailing” it). The greater the interaction energy g, the more
pronounced the effect is.

To give a concrete proof, we will use only Definition (2.1) and suppose a
cycle with zero energy difference between sites (εi = 0 for any i) and two-particle
interaction. When particles are interacting, the total rates are equal to

Zx =

⎧⎨⎩ 2(wij + wji)e
β
2 g if they occupy the same site,

(wij + wji)(1 + e− β
2 g) if they occupy neighboring sites.

(2.7)

And consequently we have
1

2(wij + wji)e
β
2 g

+ 1
(wij + wji)(1 + e− β

2 g)
≥ 1

2(wij + wji)
,

1 +
2 cosh

(︂
β
2 g

)︂
eβ

2 g + 1
≥ 1, (2.8)

where both sides of the inequality represent a sum of dwell times when two
particles are in the same site and in neighboring sites. The left side assumes g ≠ 0
while the right side assumes the opposite, g = 0.

Thus, τ±(f) is always greater than τ0(f). However, this inequality can be
violated for non-homogeneous cycles where we must take into a consideration
different energies of sites (see Sec. 2.6).

2.3 Inequality of cycle-completion times
While τ±

0 (f) are identical, for two-particle system a noticeable inequality of τ+(f)
and τ−(f) is observed in Figs. 2.1 and 2.2. Puzzlingly, τ−(f) is always smaller
than τ+(f), that is the cycle is completed faster against the bias than along.
Furthermore, the same inequality is observed for both repulsive and attractive
interaction. This counterintuitive behavior can be understood by conducting the
following thought experiment.

Consider all successful trajectories completing a 4-cycle against the bias in
a single-particle system, that is those determining τ−

0 . Now, consider the same
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trajectories but with another particle present. The second particle will, on average,
move consistently in the direction of the drift f towards the first particle. If the
two particles meet, they will either neighbor each other first (most probable for
the repulsive interaction, g < 0) or commence their trajectories at the same site
(most probable for the attractive interaction, g > 0).

If the particles meet and the interaction is repulsive, then the first particle is
blocked. The second particle reduces the first one’s transition rate by a factor of
e−βg/2. The first particle either overcomes the blocking with longer dwell time
or is pushed backsliding its progress. A similar event occurs if the interaction
is attractive. Instead of being blocked, it is instead pulled along by the second
particle in the bias direction. The effect is the most pronounced when both values
of f and g are large. In both instances first particle’s chances of moving against
the bias and completing the cycle succesfully are reduced. Therefore, the most
surviving trajectories are those with fewer times particles meeting or it never
happening at all.

Let us contrast this with the trajectories in the bias direction. Unlike before,
drift forces carry both particles at roughly the same speed in the bias direction
with both particles following a relatively straighforward trajectory. Sometimes
particle might take a quick “detour” going against the bias, but a majority of the
simulated trajectories complete cycle regardless of interaction.

Figure 2.3: Displacement of the second particle from its initial position in a 4-cycle
with trajectories against bias for positive values of f (colored blue) and in bias
for negative values of f (colored red). Parameters used: β = 1, aij = 1, εi = 0,
number of KMC trajectories: 106.

In conclusion, trajectories determining τ− experience less interaction compared
to trajectories determining τ+. If we take into account that any kind of interaction
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increases cycle-time, as we have shown in (see Sec. 1.2), we should see some
disparity between τ+(f) and τ−(f).

Should our hypothesis to hold, we expect the number of interactions to be
decreasing with g for trajectories determining τ−. This can be true only if the
second particle does not move freely in the direction of the drift. In Fig. 2.3
we indeed observe displacement of the second particle from its initial position
decreasing for trajectories completed against the drift (blue-colored). For small
values of g ≈ 0, the particle moves freely in the direction of the drift making the
maximum amount of four jumps in one direction. It is not affected in any way by
the other particle. As g increases, so does the number of particles meeting. Most
of these meetings prevent, or at least hamper, a succesful completion of the cycle.

First particle’s trajectory requires it move against the drift a set number of
jumps. Whereas second particle is bound by no such requirement. If the trajectory
is to be completed against the bias, the second particle’s displacement must be
gradually reduced to prevent meeting with the other particle as g increases.

If we increase g even further, all the trajectories with the particles meeting
will be unsucessful. Thus, to avoid meeting first particle entirely, the second
particle must now also move against bias. Figure 2.3 shows this to be happening
for |g| > 5. However, jumping against bias has a very low probability. Hence, the
second particle will try to minimize the number of jumps it has to make against
the bias; down to a mean of −2. Starting from a site numbered 1 in Fig. 1.2,
neighboring x0 = 0, it executes two jumps against the bias, namely 1 → 0 and
0 → 3. No meeting of particles occurs.

For τ+, we should expect the displacement to be equal to the displacement of
the first particle (i.e. number of sites in the cycle). Both particles are identical
thus the probability of moving next is ≈ 1/2, which is only negligibly affected by
their mutual interaction. The confirmation can be found in Fig. 2.3 for f < 0
plots (colored red).

2.4 Strongly driven cycles
In Fig. 2.1, we observe values of τ−(f, g = +4) approaching those of τ0(f) for
strongly driven cycles. The same can be said in the case of attractive interaction
(τ−(f, g = −4)) shown in Fig. 2.2. Although the values tend to τ0(f) more slowly
than in the case of repulsion. As discussed earlier in Sec. 2.3, the only surviving
trajectories determining τ−(f) for very large |f | are those without any kind of
interaction occurences. Hence, any trajectories in multiple-particle strongly driven
system completing a cycle against the bias are equivalent to a single-particle case.

A similar trend can be observed for τ+(g = ±4). We have increased the range
of f in KMC simulation to (−10, 10) as shown in Fig. 2.4 with a logarithmic scale
for several values of g. For roughly f > 2, all τ+(f) and τ0(f) are decreasing
exponentially by a factor of β/2, but there is a noticeable difference between
individual plots. Times τ+(f) are h(g) multiple of the single-particle case τ0(f),
as mentioned in Eq. (2.6).

Virtually all trajectories in strongly driven cycles comprise of exactly four
jumps, namely 0 → 1 → 2 → 3 → 0. Both particles can freely interact (in contrast
to those determining τ−(f)). The total rates Zx (see Sec. 2.2) are therefore affected,
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Figure 2.4: Plots of τ+(f) for a system with two particles interacting with various
values of g. A difference between them and τ0(f) is displayed. Parameters used:
β = 1, aij = 1, εi = 0, number of KMC trajectories: 106.

which results in the difference dependent on the value of g. For attraction, it is
substantial and unbounded while for repulsion, it is very small and bounded.

If we take a look at the inequality (2.8), the reason becomes apparent. When-
ever the two particles interact, their dwell times are multiplied by the left side of
the inequality (2.8). For g < 0, it is unbounded, while for g > 0 it is bounded and
tends to 2. The left side of inequality (2.8) does not equate to the function h(g)
in Eq. (2.6), however. Because we do not know the mean number of interaction
occurences per trajectory.

But what is the reason for τ+(f) to be decreasing exponentially by a factor
of β/2? Take into account that all trajectories comprise of four jumps and also
Wi,i+1 ≫ Wi,i−1 and thus the right side of inequality is negligible. Then the dwell
time ∆t ∝ e−βf/2 and by the same logic τ+ ∝ 4e−βf/2 which is exactly what we
wanted to show.

2.5 Fluctuations of trajectories
Let us analyze how much do individual trajectories differ from each other in terms
of length and the order of transitions. Figure 2.5 shows a standard deviation
of τ−(f) and τ+(f) both peaking at f = 0 and also manifesting the previously
encountered inequality. As f increases, fluctation rates plummet indicating only a
few typical trajectories are dominating. Some of them are visualised for f = 2 in
Fig. 2.6 which shows a small sample of four. The trajectories indeed do not differ
from each other significantly, especially in terms of transition order of the first
particle. Conclusive confirmation of few trajectories dominating can be found in
Table 2.1 and 2.2.

Comparing the trajectories in a Table 2.2 with trajectories in Table 2.1,
suggests the two particles are interacting more often for τ+(f) than τ−(f). One
can prominently see such tendency in the trajectories of the second particle: when
a cycle is completed against the bias, the second particle always starts at the site 1
and almost never transitions to the site 0. Otherwise, it would mean blocking the
first particle, unlike in the case of τ+ where the site 0 is almost always occupied
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at some point in time. These results are in order with our hypothesis in Sec. 2.3.
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Figure 2.5: Standard deviation of τ±(f) with repulsive interaction (g = +4) also
displaying inequality (2.3). Parameters used: β = 1, aij = 1, εi = 0, number of
KMC trajectories: 106.
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Figure 2.6: Sample trajectories of the second particle (dashed line) and the first
particle (full line) completing a cycle against bias (|f | = 2) with the two particles
interacting repulsively (g = +4). Parameters used: β = 1, aij = 1, εi = 0.
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Table 2.1: Approximate prevalence of constituent particles’ trajectories in
two-particle system. Cycle is completed against the bias direction and the two
particles are interacting repulsively (g = +4). Number of KMC trajectories: 104.

1st particle’s trajectory Prevalence
0, 3, 2, 1, 0 70 %

0, 3, 0, 3, 2, 1, 0 6 %
0, 3, 2, 3, 2, 1, 0 5 %
0, 3, 2, 1, 2, 1,0 5 %

2nd particle’s trajectory Prevalence
1, 2, 3 11 %
1, 2, 3 10 %
2, 3 5 %
1 4 %

Table 2.2: Approximate prevalence of constituent particles’ trajectories in
two-particle system. Cycle is completed in the bias direction and the two particles
are interacting repulsively (g = +4). Number of KMC trajectories: 104

1st particle’s trajectory Prevalence
0, 1, 2, 3, 0 58 %

0, 1, 2, 3, 2, 3, 0 7 %
0, 1, 0, 1, 2, 3, 0 7 %
0, 3, 0, 1, 2, 3, 0 7 %
0, 1, 2, 1, 2, 3, 0 7 %

2nd particle’s trajectory Prevalence
1, 2, 3, 0, 1 10 %
2, 3, 0, 1 10 %

1, 2, 3, 0, 1, 2 9 %
2, 3, 0, 1, 2 8 %

1, 2 2 %

2.6 Non-homogeneous cycles
Recalling the Definition (1.3) of transition rates wij, we have two ways how to
introduce non-homogenity (quenched disorder) into a system: that is via changing
aij and εi. In this section, we will examine both of them.

Slowed/accelerated transition
First is the possibility of different frequencies of transition between sites i and
j with εi = εj. In the context of biochemical reactions, parameters aij quantify
heights of (free) energy barriers between sites i and j. Transition i ↔ j can be
either slowed down (a < 1) or accelerated (a > 1) compared to a = 1. However,
equality aij = aji must hold since we assume the local detailed balance condition
to be satisfied.

Figure 2.7 shows result for one slowed (a) and one accelerated (b) transition
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Figure 2.7: Comparison of cycle-completion times of a 4-cycle with two particles
interacting repulsively (g = +4) and an altered rate for one of two-way transitions.
It is similar to earlier results with the key difference being the transformed time
scale. Parameters used: β = 1, εi = 0, number of KMC trajectories: 106.

inside the cycle. We observe that the system behaves qualitatively the same as a
homogeneous system preserving all symmetries and inequalities outlined in the
summary of Sec. 2.1. For single-particle system (g = 0), we have discovered a
heuristic solution for determining τ0(f, a) of a 4-cycle

τ0(f, a) =
(︃ 1

4a
+ 3

4

)︃
τ0(f, 1). (2.9)

For τ±(f, g, a), the above relationship does not hold and can be used only as a
rough approximation.

Simulating sites of different energy
Situation is rather fascinating when εi are different for individual sites. However,
simulating such non-homogeneous systems differs slightly from before. If one
were to impose a fixed initial condition x(t = 0) = x0 on a non-homogeneous
systems with different εi, they would find that τ±

0 (f) ̸= τ±
0 (−f). This is in direct

contradiction with theory presented in Sec. 1.3.
To rectify violating equality τ±

0 (f) = τ±
0 (−f) of system with a single particle,

we must determine the initial condition stochastically. That is in accordance with
the steady-state probability distribution of NESS.

For a single particle, this corresponds to a probability of occupying certain site.
Whereas for multiple-particle system, we must consider all its possible microstates
(determined by the position of each particle) and determine the corresponding
probabilities.

This is done by letting the system freely evolve from an initial random state to
its steady state for an adequately long time (e.g. 104 individual transitions). We
record the time the system spent occupying each possible microstate. Afterwards,
we compute steady-state probability by dividing the time spent in a certain
microstate by the total time of the simulation. Then for each simulation run, the
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system is initialized in some microstate stochastically picked from the computed
discrete probability distribution.

High-energy site
In the case when one site has high energy and the interaction is attractive, we
observe a sharp increase in τ±(f) and slight increase in τ0(f) compared to a
homogeneous 4-cycle. The latter is caused only by the difficulty of transitioning
over the high-energy site while the former has the added difficulty of the second
particle “pulling” onto the first one.

If the interaction is repulsive, we observe τ±(f) decreasing compared to a
homogeneous 4-cycle and being similar to those of τ0(f). The second particle
occupies mostly the low energy sites. Hence, it repels the first particle from
occupying them (and vice versa), meaning its presence has the same effect as
increasing low sites’ overall energy. Yet, as repulsive interaction increases further,
we would observe repeated increase in τ±(f) as the second particle starts acting
as an extra high-energy site hindering other particles (not plotted).

Inequality (2.3) is preserved for all cases but not as pronounced as in the
homogeneous case. Non-homogenities in the process force particles to occupy the
lowest energy sites and make it harder for them to move consistently through the
whole cycle. It could be argued that an energy landscape of the cycle is more
static and the displacement of the second particle tends to 0, in which case the
equality of τ+(f) and τ−(f) is achieved.
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Figure 2.8: Cycle-completion times of a 4-cycle with one high-energy site (ε = +3)
and two interacting particles. The high-energy site acts as a kinetic barrier slowing
down the cycle process; in the case of attractive interaction the most greatly.
Parameters used: β = 1, number of KMC trajectories: 106.

Low-energy site
In the case when one site has low energy, a behavior comparable to the high-energy
site is demonstrated. For attraction we observe a sharp increase in τ±(f) and
slight increase in τ0(f) compared to a homogeneous 4-cycle. The second particle
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gets trapped in a low-energy site further reducing its energy relative to the other
particles. For repulsion, one can instead see the direct analogy of the particle
filling a vacancy. As such, τ0(f) is significantly bigger than τ±(f) because a
particle is not as likely to get trapped in the low-energy site already occupied
by the other particle. If g ≫ εi, then the particle trapped in the low-energy site
starts acting instead as a stationary high-energy site.

The cycle-completion time inequality (2.3) is analogous to the high-energy site.
Though in this case, second particle’s movement is chiefly restricted to only one
site instead of three, further weakening the inequality.
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Figure 2.9: Cycle-completion times of a 4-cycle with one low-energy site (ε = −3)
and two interacting particles. The high-energy site acts as an energy well and
most of the time is occuppied by one of the particles. Thus, repulsive interaction
expedites the cycle process, while attraction slows it down. Parameters used:
β = 1, number of KMC trajectories: 106.

Effect of additional particles
Additional repulsive particles mitigate the effect of different sites’ energies as
they gradually fill out lowest-energy sites smoothing out the energy landscape
and approaching the homogeneous model. Attractive particles on the other hand
exacerbate the problem with increasing τ±(f) as they fill out lowest-energy states
and make them even lower in relation to other particles.

Inequality (2.3) becomes stronger with an increasing number of particles in the
system and the resulting plot of cycle-completion times is qualitatively analogous
to Fig. 2.1 and 2.2. It must be noted, however, that in an environment with
many particles with a weak interaction, regardless of its nature, events of particles
meeting are extremely likely or even inevitable and thus inequality of τ±(f) is
instead weakened. When the relative difference of τ+(f) and τ−(f) is maximal,
depends on the number of particles, length of the cycle network and the value of
the interaction parameter.
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3. Cyclic reactions strongly
coupled to reservoirs

Figure 3.1: Schematic of a cyclic re-
action (blue) coupled to an environ-
ment (grey). States are labelled ac-
cording to their position on the dashed
grid and emboldened graph edges rep-
resent transitions favored by the posi-
tive value of drift f .

In the previous chapter, we have stud-
ied n-site unicyclic networks with two
or more particles and corresponding
cycle-completion times. Can we ob-
serve the τ±(f) inequality outside a
one-dimensional cyclic reaction network?
And equally importantly, are conclusions
drawn in the previous chapter still appli-
cable?

To determine behavior of a cyclic re-
action in two dimensions, we will use a
simple model whose schematic is shown
in Fig. 3.1. There are 4 × 4 states laid
out on an orthogonal grid. In the mid-
dle, four (blue) lattice sites form a 4-cycle.
Single-particle transition rates between
the 4-cycle sites are defined in (1.3). The
number of particles within the 4-cycle is
conserved and equal to one, and the par-
ticle is tagged.

All other lattice sites (grey circles) rep-
resent an ambient environment (a reser-
voir) which is populated by one or more
reservoir particles. Reservoir particles can
interact with the tagged particle but not among each other.

A reservoir particle interacts with the tagged particle if the two are located
on the nearest or second-nearest neighboring sites. Their interaction energy will
again be denoted by g. The rate Wij of the transition, where a particle jumps
from the site i to the site j depends on the position of the other particles in the
following manner:

Wij =

⎧⎪⎪⎨⎪⎪⎩
wije

β
2 g if the site i neighbors an occupied reservoir site,

wije− β
2 g if the site j neighbors an occupied reservoir site,

wij if none of the above.
(3.1)

We will discriminate between two types of reservoirs. First, the canonical reservoir
with a constant number of reservoir particles will be considered in Section 3.1.
Second, the grand-canonical reservoir, where particles can only enter/exit with
rates controlled by a prescribed chemical potential will be discussed in Section 3.2.

The main findings are as follows:

i) Inequality (2.2) expressing inhibiting character of interaction on τ±(f) holds
in both studied reservoir models.
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ii) Inequality (2.3) of cycle-completion times τ±(f) holds in both studied reservoir
models.

iii) Inequalities (2.3) and (2.2) are overall less pronounced in the two-dimensional
case when compared to the unicyclic model with the same g.

iv) Inequality (2.3) is stronger for attractive interaction compared to a repulsive
one (with the same |g|).

v) Limits (2.5) and (2.6), for τ−(f) and τ+(f), hold in the same manner.

vi) Fluctuations of cycle-completion times are most noticeable in the absence of
drift (f = 0) and exponentially decrease with increasing |f |.

3.1 Canonical reservoir
In the case of a canonical reservoir, we have set the number of reservoir particles
to one. In addition, we assume periodic boundary condition, i.e., the particle can
move in a single transition from one side of the reservoir to the opposite side.

The particle is free to move between grey lattice sites shown in Fig. 3.1. A
rate of any transition in a reservoir is uniform: wij = 1 (comparable to those of
the tagged particle). Rates wij inside reservoir are also subject to the interaction
energy between particles and as such, are modified as in Eq. (3.1).

Results of the simulation can be seen in Fig. 3.2 for repulsive and attractive
interaction between particles. We indeed do see the inequality of τ±(f) although
it is less pronounced than in the one-dimensional lattice. The effect is most
appreciable for a reaction strongly coupled to a reservoir.
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Figure 3.2: Cycle-completion times of a 4-cycle populated by one tagged particle
embedded in a lattice and interacting with one other particle in a canonical
reservoir. Parameters used: aij = 1, β = 1, number of KMC trajectories: 105.

By switching from a very constrained 1D model (only four sites with three of
them always in the scope of interaction) to a 2D model, the number of microstates
of the system steeply increases. A majority of these microstates is classified as
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a situation where no interaction is happening. Thus, the average amount of
interaction per trajectory is overall reduced and the inequality (2.3) is weakened.

Interestingly enough, we observe a stronger τ±(f) inequality for an attraction,
in contrast to the same value of g for a repulsion. While a repulsive interaction
between particles leads to them moving away from each other and being separated,
an attractive interaction does the opposite. Attracting particles tend to follow each
other moving in tandem; any interaction increases the likelihood of interaction in
the future. Analogically to argument asserted in Sec. 2.3, the inequality τ±(f) is
caused by the disproportionate number of interaction occurences happening for
a cycle completed in the bias direction compared to a cycle completed against
the bias. However, if the number of interactions is not high enough at the outset,
neither can be the considered disproportion.

To counter the effect of increasing number of no-interaction microstates, either
a very strong coupling or an additional reservoir particles are required. Naturally
reducing size of the reservoir is also a possible solution to reducing the number of
microstates and preserving the inequality (2.3).

3.2 Grand-canonical reservoir
Major portion of cellular machinery functions in a state of constant material
exchange with the surrounding environment as particles chemically bind and
unbind transferring energy necessary for the cycle to continue. As such, the
system can come into contact with an immense number of particles going in and
out. Some of these can directly interact with the cycle kinetics. Could τ±(f)
inequality manifest even in the case of an open reservoir, in a grand-canonical
sense?

In Sec. 3.1 we have proven that τ±(f) inequality does indeed persist if a
reservoir particle is free to move inside a reservoir. We shall use the same model
as in Fig. 3.1 but with a few modifications aimed at eliminating the possibility of
particles moving inside the reservoir.

The particle’s movement is reduced exclusively to either entering or exiting
some site in the reservoir. These two processes have rates win and wout associated
with them. Rates for either vacating or entering reservoir apply to all states in it.
Therefore, there can be multiple particles present in the reservoir, but never more
than one in one site. We define win and wout as follows,

win = ϱ,

wout = 1.
(3.2)

Parameter ϱ represents a relative occupancy of reservoir sites and corresponds to
a chemical potential.

Modification of rates wij in the case of interaction between the tagged particle
and a reservoir particle is handled as stated in Definition (3.1). Explicitly, the
reservoir rates Wij of the transition i → j, depend on the position of the tagged
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particle in the following manner:

Win =

⎧⎨⎩ wineβ
2 g if a neighboring site is occupied by the tagged particle,

win otherwise.

Wout =

⎧⎨⎩ woute− β
2 g if a neighboring site is occupied by the tagged particle,

wout otherwise.
(3.3)

Results of computed τ±(f) are shown in Fig. 3.3 for a repulsive and an attractive
interaction. The inequality (2.3) is still present although faint. Moreover, we see
a trend of a stronger inequality for an attraction in contrast to a repulsion, as
similarly observed in the canonical reservoir.
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Figure 3.3: Cycle-completion times of a 4-cycle populated by one tagged particle
embedded in a lattice and interacting with particles in the grand-canonical reservoir.
Parameters used: aij = 1, β = 1, ϱ = 0.5, number of KMC trajectories: 1.6 × 105.
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Conclusions and Perspectives
Using the kinetic Monte Carlo method, we have studied a unicyclic network
with multiple interacting particles. In particular, we have focused on a behavior
of mean and variances of cycle-completion times τ±(f) which characterize the
cyclic reaction kinetics. In single-particle systems, equality τ+

0 (f) = τ 0(f) holds
for arbitrary transition rates within the cycle. However, systems with two or
more particles exhibit a remarkable inequality of cycle-completion times which
we verified for several modifications of the model. Counterintuitively, trajectories
completing the cycle against the net bias are always (on average) faster than the
ones traveling along the bias direction.

Disparity between cycle-completion times occurs due to a smaller amount
of interparticle interactions happening in trajectories traveling against the bias.
In Chapter 2, we have provided a complete physical picture underlying this
phenomenon for both homogeneous and non-homogeneous cycles. Overall, for
cycles with sites of vastly different energies, the disparity can be weakened but
never entirely eliminated.

In Chapter 3, we have proposed a 2D model of a cyclic reaction and its
surroundings to ascertain whether our previous findings can be generalized to
systems interacting strongly with an ambient environment. We have considered
canonical and grand-canonical reservoirs and come to the same τ±(f) inequality
as before. Though it is weaker compared to that of a one-dimensional lattice.
We have deduced the reason to be the increased number of microstates with
no interparticle interaction. As such, the dynamics of a particle on the cycle
approaches that of the single non-interacting particle where τ±

0 (f) equality holds.
In future work, it would be interesting to investigate cycle-completion times

in models with long-ranged forces or/and non-Markovian dynamics. The former
would directly address the universality of observed inequality and shed a new
light on its dependence on the interaction force. The latter could lead to new
effects caused by a non-negligible memory frequently occurring in the molecular
dynamics.

Our results verify a universality of cycle-completion times inequality. In the
framework of single isolated processes, such effect might be understably neglible.
But in cellular conditions, with up to thousands or even tens of thousands reactions
every second occuring simultaneously, its significance could rise considerably. Thus,
the most affected reactions should be the most frequent ones, this includes DNA
transcription and translation, protein synthesis in ribosomes, processes powered
by ATP hydrolysis and others. A necessary condition to observe the predicted
phenomenon experimentally, is to have a sufficient statistical sample of unfavorable
steps against the bias direction. Therefore, we believe, that our results can be
directly observable in reactions with shorter cycles and not very large (compared
to kBT ) free energy differences between individual states.
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A. Appendix

A.1 Matlab R2019b codes
Code 1: Mean cycle time of a 4-cycle given drift f , interaction parameter g and
absorbing boundary.

function tau = 4Cycle(f,AbsorbingBoundary,g,mc)
CycleTimeData = zeros(1,mc);
beta = 1;
w = zeros(4);
len = length(w);
%%_________________________RATES FOR PARTICLES__________________________%%
for i = 1:len

w(i,mod(i,len)+1) = exp(-beta/2*f);
w(mod(i,len)+1,i) = exp(beta/2*f);

end
%%____________________________TOTAL RATES_______________________________%%
Z = 2*w(2,1)+ 2*w(1,2);
Zg1 = w(2,1)+ w(1,2)+(w(2,1)+w(1,2))*exp(-beta/2*g);
Zg0 = exp(beta/2*g)*Z;
%%___________________________INITIAL STATE______________________________%%
y = randi(4);
x = 1;
%%____________________PICKING ABSORBING BOUNDARY_______________________%%
if AbsorbingBoundary == 1

OtherAbsorbingBoundary = +len;
AbsorbingBoundary = -len;

else
AbsorbingBoundary = len;
OtherAbsorbingBoundary = -len;

end
%%________________________MONTE CARLO SIMULATION________________________%%
for d = 1 : mc

counter = 0;
while (counter˜=AbsorbingBoundary)

t = 0;
counter = 0;
while (counter˜=AbsorbingBoundary && counter˜=OtherAbsorbingBoundary)

ra_1 = rand;
x_ps = mod(x,len)+1;
x_ms = mod(x-2,len)+1;
y_ps = mod(y,len)+1;
y_ms = mod(y-2,len)+1;
%%_______________________SAME STATE_________________________%%
if x == y

t = t -1/Zg0*log(rand);
if ra_1 <= w(x_ms,x)/Z

counter = counter - 1;
x = x_ms;

elseif ra_1 <= (w(x_ms,x)+w(x_ps,x))/Z
counter = counter + 1;
x = x_ps;

elseif ra_1 <= (w(x_ms,x)+w(x_ps,x)+w(y_ms,y))/Z
y = y_ms;

else
y = y_ps;

end
%%_________________NEIGHBOR STATE (RIGHT)___________________%%
elseif mod(x-y,len) == 1

t = t -1/Zg1*log(rand);
if ra_1 <= w(x_ms,x)*exp(-beta/2*g)/Zg1

counter = counter - 1;
x = x_ms;

elseif ra_1 <= (w(x_ms,x)*exp(-beta/2*g)+w(x_ps,x))/Zg1
counter = counter + 1;
x = x_ps;

elseif ra_1 <= ((w(x_ms,x)+w(y_ps,y))*exp(-beta/2*g)+w(x_ps,x))/Zg1
y = y_ps;
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else
y = y_ms;

end
%%__________________NEIGHBOR STATE (LEFT)___________________%%
elseif mod(x-y,len) == len-1

t = t -1/Zg1*log(rand);
if ra_1 <= w(x_ms,x)/Zg1

counter = counter - 1;
x = x_ms;

elseif ra_1 <= (w(x_ms,x)+w(x_ps,x)*exp(-beta/2*g))/Zg1
counter = counter + 1;
x = x_ps;

elseif ra_1 <= (w(x_ms,x)+(w(x_ps,x)+w(y_ms,y))*exp(-beta/2*g))/Zg1
y = y_ms;

else
y = y_ps;

end
%%_____________________NO INTERACTION_______________________%%
else

t = t -1/Z*log(rand);
if ra_1 <= w(x_ms,x)/Z

x = x_ms;
counter = counter - 1;

elseif ra_1 <= (w(x_ms,x)+w(x_ps,x))/Z
x = x_ps;
counter = counter + 1;

elseif ra_1 <= (w(x_ms,x)+w(x_ps,x)+w(y_ps,y))/Z
y = y_ps;

else
y = y_ms;

end
end

end
end
CycleTimeData(d) = t;

end
tau = mean(CycleTimeData);
end

Code 2: Determination of steady-state probabilities of all microstates when
cycle is non-homogeneous.

...
eps = zeros(1,4);
eps(1) = 0;
eps(2) = 0;
eps(3) = 0;
eps(4) = 0;

for i=1:len
for j=1:len

w(j,i) = w(j,i)*exp(beta/2*(eps(i)-eps(j)));
end

end
a = 1;
w(1,2)=a*w(1,2);
w(2,1)=a*w(2,1);
...
y = randi(len);
x = randi(len);
t = 0;
steady_state_probabilities = zeros(len,len);
%%_________________________INITIAL SIMULATION_________________________%%
for Number_of_Transitions = 1:10000

t_aux = - 1/Z(x,y)*log(rand);
t = t + t_aux;
steady_state_probabilities(x,y) = tprob(x,y) + t_aux;
...
%% Determination of the next microstate %%
...

end
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%%_________________DETERMINING MICROSTATE PROBABILITIES_______________%%
steady_state_probabilities = steady_state_probabilities/t;
cumm_probability = zeros(len,len);
for i = 1:lenˆ2

for j = 1:i
cumm_probability(i) = cumm_probability(i) + cumm_probability(j);

end
end
...
%%________________________MONTE CARLO SIMULATION________________________%%
for d = 1 : mc

counter = 0;
while (counter˜=AbsorbingBoundary)

t = 0;
counter = 0;
idx = find(cumm_probality>rand,1);
[x,y] = ind2sub([len,len],idx);
while (counter˜=AbsorbingBoundary && counter˜=OtherAbsorbingBoundary)

...

Code 3: Mean cycle-completion time in a 2D lattice model (canonical reservoir).

function tau = Tau2D(f1,particles,shape1,shape2,f2,AbsorbingBoundary,g,mc)
CycleTimeData = zeros(1,mc);
beta = 1;
rowsize=shape1(1);
colsize=shape1(2);

%%__________________ALLOWED OCCUPATIONS OF THE SYSTEM___________________%%
mx_RESERVOIR = ones(shape2(1),shape2(2));
mx_RESERVOIR(2:2+rowsize-1,2:2+colsize-1)=zeros(rowsize,colsize);

mx_CYCLE = zeros(shape2(1),shape2(2));
mx_CYCLE(2:2+rowsize-1,2)=ones(rowsize,1);
mx_CYCLE(2:2+rowsize-1,2+colsize-1)=ones(rowsize,1);
mx_CYCLE(2,2:2+colsize-1)=ones(1,colsize);
mx_CYCLE(2+rowsize-1,2:2+colsize-1)=ones(1,colsize,1);

%%_________________TRANSITION RATES FOR CYCLE PARTICLE__________________%%
w_CYCLE = zeros(shape2(1),shape2(2),shape2(1),shape2(2));
i=0;
j=0;
while j<colsize-1

w_CYCLE(2,2+j+1,2,2+j)= exp(beta/2*f1);
w_CYCLE(2,2+j,2,2+j+1)= exp(-beta/2*f1);
j=j+1;

end
while i<rowsize-1

w_CYCLE(2+i+1,2+j,2+i,2+j)= exp(beta/2*f1);
w_CYCLE(2+i,2+j,2+i+1,2+j)= exp(-beta/2*f1);
i=i+1;

end
while j>0

w_CYCLE(2+i,2+j-1,2+i,2+j)= exp(beta/2*f1);
w_CYCLE(2+i,2+j,2+i,2+j-1)= exp(-beta/2*f1);
j=j-1;

end
while i>0

w_CYCLE(2+i-1,2+j,2+i,2+j)= exp(beta/2*f1);
w_CYCLE(2+i,2+j,2+i-1,2+j)= exp(-beta/2*f1);
i=i-1;

end
%%_______________TRANSITION RATES FOR RESERVOIR PARTICLE________________%%
w_RESERVOIR = zeros(shape2(1),shape2(2),shape2(1),shape2(2));
w_vertic = 1;
for k = 1:shape2(1)

for l = 1:shape2(2)
if mx_RESERVOIR(k,l)==0

continue
end
for i = 1:shape2(1)
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for j = 1:shape2(2)
if mx_RESERVOIR(i,j)==0

continue
end
if norm([i,j]-[k,l])==1

if j==l
w_RESERVOIR(i,j,k,l) = w_vertic;

elseif i==k && j-l > 0
w_RESERVOIR(i,j,k,l) = exp(beta/2*f2);

elseif i==k && j-l < 0
w_RESERVOIR(i,j,k,l) = exp(-beta/2*f2);

end
end
if norm([i,j]-[k,l])==shape2(2)-1

if i==k && j-l < 0
w_RESERVOIR(i,j,k,l) = exp(beta/2*f2);

elseif i==k && j-l > 0
w_RESERVOIR(i,j,k,l) = exp(-beta/2*f2);

end
end
if norm([i,j]-[k,l])==shape2(1)-1

if j==l
w_RESERVOIR(i,j,k,l) = w_vertic;

end
end

end
end

end
end
%%______________________LEDGER OF CONFIGURATIONS________________________%%
numofconfigs = nnz(mx_CYCLE)* nnz(mx_RESERVOIR)ˆparticles;
% linear indices of allowed states - cycle and reservoir
idx1=find(mx_CYCLE);
idx2=find(mx_RESERVOIR);
% combinations: matrix of all poss. combinations (generation of all
% microstates expressed with linear indices)
combinations = {idx1};
for i=1:particles

combinations{end+1} = idx2;
end
lel = length(combinations);
[combinations{:}] = ndgrid(combinations{end:-1:1});
combinations = cat(lel+1,combinations{:});
combinations = fliplr(reshape(combinations,[],lel));
% ledger (as of yet incomplete) of microstates and their transitions
% 1st column: current microstate,
% 2nd: possible microstates from current microstate,
% 3rd: rates (and later probabiliies)
ledger = zeros(0,3);
for n = 1:numofconfigs

% cycle particle’s position
[x,y]=ind2sub(size(mx_CYCLE),combinations(n,1));
% reservoir particle’s position
[xrsv,yrsv]=ind2sub(size(mx_CYCLE),combinations(n,2:(particles+1)));

idxw1=find(w_CYCLE(:,:,x,y));
for p=1:length(idxw1)

[i,j]=ind2sub(size(mx_CYCLE),idxw1(p));
% vector made up of linear indices describing particles’
% positions of a certain microstate
kod = combinations(n,:);
kod(1)= idxw1(p);
[˜,cislo]=ismember(kod,combinations,’rows’);
ledger = [ledger;n,cislo,w_CYCLE(i,j,x,y)];
% Application of interaction on rates
for ch = 1:length(yrsv)

if norm([i,j]-[xrsv(ch),yrsv(ch)]) == 1
ledger(end,3)= ledger(end,3)*exp(-beta/2*g);

end
if norm([x,y]-[xrsv(ch),yrsv(ch)]) == 1 && norm([i,j]-[xrsv(ch),yrsv(ch)])˜=1

ledger(end,3)= ledger(end,3)*exp(beta/2*g);
end

end
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end

for m = 2:(particles+1)
idxw2=find(w_RESERVOIR(:,:,xrsv(m-1),yrsv(m-1)));
for p=1:length(idxw2)

[i,j]=ind2sub(size(mx_CYCLE),idxw2(p));
kod = combinations(n,:);
kod(m)= idxw2(p);
[˜,cislo]=ismember(kod,combinations,’rows’);
ledger = [ledger;n,cislo,w_RESERVOIR(i,j,xrsv(m-1),yrsv(m-1))];
if norm([i,j]-[x,y]) == 1

ledger(end,3)= ledger(end,3)*exp(-beta/2*g);
end
if norm([xrsv(m-1),yrsv(m-1)]-[x,y]) == 1 && norm([i,j]-[x,y])˜=1

ledger(end,3)= ledger(end,3)*exp(beta/2*g);
end

end
end

end
% Total rates computation
Z=zeros(1,numofconfigs);
for i=1:numofconfigs

sum_indexes = find(ledger(:,1)==i);
for j=sum_indexes’

Z(i)=Z(i)+ledger(j,3);
end
for j=sum_indexes’

ledger(j,3)= ledger(j,3)/Z(i);
end

end
%%______________________PICKING ABSORBING BOUNDARY_____________________%%
if AbsorbingBoundary == 1

OtherAbsorbingBoundary = 2;
AbsorbingBoundary = -2;

else
AbsorbingBoundary = 2;
OtherAbsorbingBoundary = -2;

end
%%____________________________INITIAL STATE_____________________________%%
% occupational matrix of states in lattice.
ocp_mx = zeros(shape2(1),shape2(2));
ocp_mx(2,2) = -1;
% setting random initial state
for i=1:particles

ra_init = randsample(find(mx_RESERVOIR),1);
ocp_mx(ra_init) = ocp_mx(ra_init)+1;

end
% conversion of matrix with occupational numbers into one single
% microstate index.
init_cycleparticle=find(ocp_mx == -1);
init = find(ocp_mx > 0);
v = nonzeros(ocp_mx);
v = v(v ˜= -1);
init_reservoir = zeros(0);
for i = 1:length(init)

init_reservoir = [init_reservoir,init(i)*ones(1,v(i))];
end
init = [init_cycleparticle,init_reservoir];
[˜,init_number]=ismember(init,combinations,’rows’);
current_number = init_number;
%%____________________________MONTE CARLO_______________________________%%
for d = 1 : mc

counter = 0;
t = 0;
while (counter ˜= AbsorbingBoundary)

t = 0;
counter = 0;
while (counter ˜= AbsorbingBoundary && counter ˜= OtherAbsorbingBoundary)

t = t -1/Z(current_number)*log(rand);
previous_number = current_number;
%%%__________NEW CONFIGURATION_________%%%
ra_1 = rand;
indxnpconfigs = find(ledger(:,1)==current_number);
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npconfigs = ledger(indxnpconfigs,2);
cumm_probability = 0;
for i = 1:length(indxnpconfigs)

cumm_probability = cumm_probability + ledger(indxnpconfigs(i),3);
if ra_1 <= cumm_probability

current_number=npconfigs(i);
%%____________________COUNTER______________________%%
if i == 1 || i == 2

cycleold = combinations(previous_number,1);
cyclenew = combinations(current_number,1);
[oldrow,oldcol]=ind2sub(size(mx_CYCLE),cycleold);
[newrow,newcol]=ind2sub(size(mx_CYCLE),cyclenew);
if [oldrow,oldcol] == [2,2]

if [newrow,newcol] == [2,3]
counter = counter + 1;

elseif [newrow,newcol] == [3,2]
counter = counter - 1;

end
end
if [newrow,newcol] == [2,2]

if [oldrow,oldcol] == [2,3]
counter = counter - 1;

elseif [oldrow,oldcol] == [3,2]
counter = counter + 1;

end
end

end
break

end
end

end
end
CycleTimeData(d) = t;

end
tau = mean(CycleTimeData);
end

Code 4: Mean cycle-completion time in a 2D lattice model with particles only
entering and exiting reservoir (grand-canonical reservoir).

function u = TauGrand(f,AbsorbingBoundary,rho,g,mc)
CycleTimeData = zeros(1,mc);
beta = 1;
w = zeros(4);
len = length(w);
rsv = [1,2;

1,3;
2,4;
3,4;
4,3;
4,2;
3,1;
2,1];

w_OUT = ones(1,8);
w_IN = rho*ones(1,8);
%%____________________________INITIAL STATE_____________________________%%
near_states = rho*exp(-beta*g);
sumgrand = 2*near_states+6*rho;
rho = rho/sumgrand;
near_states = near_states/sumgrand;
occupied_rsv_indexes = [];
for i = 1:8

if norm(rsv(i,:)-[2,2]) == 1
if rand <= near_states

occupied_rsv_indexes = [occupied_rsv_indexes,i];
end

else
if rand <= rho

occupied_rsv_indexes = [occupied_rsv_indexes,i];
end

end
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end
x = 1;
%%________________________CYCLE TRANSITION RATES________________________%%
for i = 1:len

w(i,mod(i,len)+1) = exp(-beta/2*f);
w(mod(i,len)+1,i) = exp(beta/2*f);

end
%%____________________PICKING ABSORBING BOUNDARY_______________________%%
if AbsorbingBoundary == 1

OtherAbsorbingBoundary = (len)*(1);
AbsorbingBoundary = (len)*(-1);

else
AbsorbingBoundary = (len)*(1);
OtherAbsorbingBoundary = (len)*(-1);

end
%%________________________MONTE CARLO SIMULATION________________________%%
for d = 1 : mc

counter = 0;
t = 0;
while (counter˜=AbsorbingBoundary)

t = 0;
counter = 0;

while (counter˜=AbsorbingBoundary && counter˜=OtherAbsorbingBoundary)
x_ps = mod(x,len)+1;
x_ms = mod(x-2,len)+1;
w_ps = w(x_ps,x);
w_ms = w(x_ms,x);
[x1,x2] = cycind(x);
x_ind = [x1,x2];
[x1,x2] = cycind(x_ps);
x_ind_ps = [x1,x2];
[x1,x2] = cycind(x_ms);
x_ind_ms = [x1,x2];
% Interaction modification of cycle particle rates
for i = occupied_rsv_indexes

if norm(rsv(i,:)-x_ind) == 1
w_ps = w_ps*exp(beta/2*g);
w_ms = w_ms*exp(beta/2*g);

elseif norm(rsv(i,:)-x_ind_ps) == 1
w_ps = w_ps*exp(-beta/2*g);

elseif norm(rsv(i,:)-x_ind_ms) == 1
w_ms = w_ms*exp(-beta/2*g);

end
end
% Interaction modification of reservoir rates
w_rsv = ones(1,8);
for i = 1:8

if ˜ismember(i,occupied_rsv_indexes)
if norm(rsv(i,:)-x_ind) == 1

w_rsv(i)=w_IN(i)*exp(-beta/2*g);
else

w_rsv(i) = w_IN(i);
end

else
if norm(rsv(i,:)-x_ind) == 1

w_rsv(i) = w_OUT(i)*exp(beta/2*g);
else

w_rsv(i) = w_OUT(i);
end

end
end
Z = w_ps + w_ms + sum(w_rsv);
t = t - 1/Z*log(rand);
ra1 = rand;
% Transitions in the cycle
if ra1 <= w_ps/Z

counter = counter + 1;
x = x_ps;
continue

elseif ra1 <= (w_ps+w_ms)/Z
counter = counter - 1;
x = x_ms;
continue
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end
% Transitions in the reservoir
cumm_Z = w_ps + w_ms;
for i = 1:8

if ra1 <= (cumm_Z + w_rsv(i))/Z
if ismember(i,occupied_rsv_indexes)

occupied_rsv_indexes = occupied_rsv_indexes(occupied_rsv_indexes˜=i);
else

occupied_rsv_indexes = [occupied_rsv_indexes,i];
end
break

else
cumm_Z = cumm_Z + w_rsv(i);

end
end

end
end

CycleTimeData(d) = t;
end
u = mean(CycleTimeData);
end

Code 5: Auxilliary function transforming linear indices to subscripts.

function [x1,x2] = cycind(l)
switch l

case 1
x1 = 2;
x2 = 2;

case 2
x1 = 2;
x2 = 3;

case 3
x1 = 3;
x2 = 3;

case 4
x1 = 3;
x2 = 2;

otherwise
warning(’index is out of 1-4 bounds!’)

end
end
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