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Abstract: The influence of epitaxial strain on La2/3Sr1/3MnO3 (LSMO) thin films
has been studied by magneto-optical spectroscopy. The investigated samples have
been grown by pulsed laser deposition on four different substrates with varying
degree of compressive and tensile strain. The spectra of the magneto-optical Kerr
effect (MOKE) have been measured. Deterioration of magnetic properties with
increasing epitaxial strain has been observed. The off-diagonal elements of the
permittivity tensor, numerically calculated from the MOKE and spectroscopic el-
lipsometry measurements, confirmed two already reported electronic transitions.
A third transition at around 4.3 eV has been observed on samples grown under
compressive strain. The dependence of the Kerr rotation spectra on tempera-
ture has been measured for all four samples. The Curie temperatures have been
estimated for all samples with the exception of LSMO grown on LaAlO3 which
undergoes a spin reorientation transition at 200 K. The low temperature measure-
ments on the compressively strained samples showed amplification of the third
transition supporting the claim of it being paramagnetic. Also observed was a
change in the spectra of the Kerr rotation of the sample grown on SrTiO3 which
undergoes a structural transition at 105 K, and, therefore, changes the epitaxial
strain.
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Introduction
This thesis aims to advance the study of the influence of epitaxial strain on hole
doped manganites. Hole doped manganites, given by La1−xMxMnO3, where M
stands for either Ca, Sr or Ba, are thoroughly researched materials [1, 2, 3] due to
the unique combination of their physical properties. The most intriguing of which
is the combination of colossal magnetoresistance (CMR) [4] and high degree of
spin polarization spanning the whole family of hole doped manganites. However,
so far no thorough systematic study has been published that would investigate a
wide variety of epitaxialy strained samples with respect to temperature.

The particular case of La2/3Sr1/3MnO3 (LSMO) has been subject to extensive
research due to it’s high Curie temperature (T bulk

C ≈ 370 K) [5] and almost 100%
spin polarization [6]. LSMO is a half-metal, conducting current for only one
orientation of the spin and acting as an insulator for the other. Such physical
properties make LSMO an auspicious candidate for the application in the field of
spintronics.

The ferromagnetic ordering of LSMO has been explained by Zener [7] through
a double-exchange (DE) interaction. The DE is an eg electron transfer between
Mn3+ and Mn4+ ions via the O2− 2p state. The probability of this interaction
is highly dependent on the Mn3+-O-Mn4+ geometry. Thus, the main factors
responsible for the change of the magnetic properties of LSMO are the rotations
and distortions of the MnO6 octahedra. Such distortions or rotations are induced
in thin films of LSMO by epitaxial strain as a result of the lattice mismatch or
by coupling of the octahedral rotations at the sample/substrate interface [8].

The oxygen octahedra coupling (OOC) is restricted to a distance of several
monolayers due to it’s interfacial nature. The first couple monolayers, which
are the most likely to be influenced by OOC, are typically magnetically inert.
On the contrary, the thin films of LSMO deposited on mismatched substrates
remain fully strained for up to tens of nanometers in thickness, hence proving
the importance of the influence of epitaxial strain on the magnetic properties of
LSMO.

The majority of theoretical applications of LSMO make use of the effect of
strain on the properties of LSMO in a dynamic way. However, for research pur-
poses we have chosen to study the effect of strain on LSMO in a static manner.
Depositing LSMO on materials inducing a wide variety of strains ranging from a
large compressive strain on LaAlO3 (LAO), through a mild compressive strain on
(LaAlO3)1/3(Sr2AlTaO6)2/3 (LSAT) and a mild tensile strain on SrTiO3 (STO),
up to a large tensile strain on DyScO3 (DSO).

The thesis begins with the origin of the electromagnetic wave. The concept
of polarization for such a wave is introduced in the second chapter. This concept
is then neatly described using the Jones formalism. Before making use of this
formalism in the fourth chapter about experimental methods the thesis introduces
the permittivity tensor and the Yeh formalism for the calculation of the magneto-
optical response of a sample. After the introduction of the experimental methods
the theory of ferromagnetism is presented in chapter five. The last two chapters
are then devoted to the introduction of the samples and the measurements and
discussion of the results.
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1. Electromagnetic waves
Visible light is a small part of the spectrum of electromagnetic waves. In order to
study light we have to study the electromagnetic waves. This chapter introduces
Maxwell’s equations and the electromagnetic constitutive relations. Derived from
these equations is the electromagnetic wave equation. A specific solution for the
electromagnetic wave equation is presented in the form of a monochromatic time-
harmonic plane wave in vacuum.

1.1 Wave equation
The electromagnetic wave equation is derived from Maxwell’s equations, constitu-
tive relations and Ohm’s law. The most general of these are Maxwell’s equations
[9] which are universally applicable and link together the electric field E, mag-
netic induction B, displacement field D, magnetic field H , free current density
jf and free charge density ρf in the following differential relations

∇ × H − ∂D

∂t
= jf , (1.1)

∇ · D = ρf , (1.2)

∇ × E + ∂B

∂t
= 0 , (1.3)

∇ · B = 0 . (1.4)

We will now restrict ourselves for the purpose of this work to materials that
abide by the following relations. We denote ε and µ as tensors of relative per-
mittivity and relative permeability, respectively. Further on we denote ε0 and µ0
as permittivity and permeability of vacuum. The symbol σ represents the tensor
conductivity. The material relations are stated as follows

D = ε0εE , (1.5)

B = µ0µH , (1.6)

jf = σE . (1.7)

For further manipulations with the equations we assume that the medium is
static (∂ε

∂t
, ∂µ

∂t
, ∂σ

∂t
= 0). We also assume that the relative permeability is approx-

imately equal to 1. Relative permittivity and permeability are both in general
second-rank tensors but the magnetic interaction of light with a material at op-
tical frequencies is negligible [10, 11]. This is derived from it’s small effect on the
spins of electrons [12] and also it’s incomparable effect on the orbiting electrons
relative to the electric field due to the Lorentz force.

With these assumptions we can then combine the equation (1.3) with (1.6)
and the equation (1.1) with (1.5) and with (1.7) so that we arrive at the following
equations
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1
µ0

∇ × E + ∂H

∂t
= 0 , (1.8)

∇ × H − ε0ε
∂E

∂t
− σE = 0 . (1.9)

By using a curl on the equation (1.8) and differentiation with respect to time on
the equation (1.9) we get

∇ × ( 1
µ0

∇ × E) + ∇ × ∂H

∂t
= 0 , (1.10)

∇ × ∂H

∂t
− ε0ε

∂2E

∂t2 − σ
∂E

∂t
= 0 . (1.11)

Substituting (1.11) into (1.10) and using the identity for curl of a curl of a vector
field we arrive at the final form of the electromagnetic wave equation

∆E − ε0µ0ε
∂2E

∂t2 − µ0σ
∂E

∂t
− ∇(∇ · E) = 0 , (1.12)

which is a linear second-order partial differential equation with respect to E.

1.2 Plane wave solution in vacuum
Suppose now that we have an isotropic, homogeneous, non-conductive medium
without any free current or charge, i.e. vacuum. The wave equation (1.12) is
then reduced to

∆E − 1
c2

∂2E

∂t2 = 0 , (1.13)

where c = 1/
√

µ0ε0 is the speed of light in vacuum.
A solution to this wave equation can be given in a form of a plane wave.

A plane wave is such a wave that abides by E(r, t) = E(r · s, t), where s is a
unit vector in a fixed direction (generally in the direction of motion of the wave).
The plane wave that we are going to be leaning heavily on in this work is a
monochromatic time-harmonic plane wave given by

E(r, t) = E0 cos(ωt − k · r + δ) = Re
{︂
E0e

i(ωt−k·r+δ)
}︂

, (1.14)

where E0 is the amplitude of the wave and ω, k, δ are the angular frequency,
wavevector and phase shift, respectively.
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2. Polarization of light
In the previous chapter we have derived the electromagnetic wave equation and
we have introduced the plane wave as it’s solution in vacuum. Now we will use
that knowledge to approach light as a time-harmonic plane wave in order to define
polarization. Moreover we will present a mathematical apparatus for describing
the change in polarization for light propagating in an optical system.

2.1 Introduction
Polarization is a property of transverse waves, such as electromagnetic plane
waves, describing the geometrical oscillations of, in our case, the electric field
vector E.

If we consider a time-harmonic monochromatic plane wave given by (1.14) we
can derive that it can oscillate on any given line perpendicular to the direction
of motion.

Let us now consider a more general case of polarization originating from the
superposition of two time-harmonic monochromatic plane waves of the same fre-
quency. Without loss of generality let the direction of propagation be parallel to
the z axis for both waves. Also let the oscillations of one wave be parallel to the
x axis and the other parallel to the y axis. We can write this superposition in
terms of it’s components in agreement with Maxwell’s equations as

Ex(z, t) = E0x cos(ωt − kz + δx) , (2.1)

Ey(z, t) = E0y cos(ωt − kz + δy) , (2.2)

Ez(z, t) = 0 , (2.3)

where E0x, E0y are positive amplitudes of the corresponding components and
δx, δy are their phase offsets. The constants ω and k are angular frequency and
the magnitude of the wavevector, respectively.

If we now define τ := (ωt − kz) and we divide the above equations by their
respective amplitudes we get

Ex

E0x

= cos(τ + δx) = cos(τ) cos(δx) − sin(τ) sin(δx) , (2.4)

Ey

E0y

= cos(τ + δy) = cos(τ) cos(δy) − sin(τ) sin(δy) . (2.5)

Let us now multiply (2.4) and (2.5) by sin δy and sin δx, respectively, and
take the difference of the two. Let us also multiply (2.4) and (2.5) by cos δy and
cos δx, respectively, and then take the difference of the two. We have acquired
the following set of equations
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Ex

E0x

sin δy − Ey

E0y

sin δx = cos(τ) sin(δy − δx) , (2.6)

Ex

E0x

cos δy − Ey

E0y

cos δx = sin(τ) sin(δy − δx) . (2.7)

If we square both of the equations above sum them together and define
δ := δy − δx we receive

(︃
Ex

E0x

)︃2
− 2 Ex

E0x

Ey

E0y

cos δ +
(︄

Ey

E0y

)︄2

= sin2 δ . (2.8)

What we have arrived at is the formula for an ellipse meaning that the electric
field vector E traces an ellipse in the plane perpendicular to the direction of wave
propagation. This ellipse of polarization (see Fig. 2.1) and hence the polarization
state can be described in full by four parameters which are:

• The azimuth θ - an oriented angle between the positive semi axis x and the
major axis of the ellipse. The azimuth can range from −π/2 to π/2 and
determines the orientation of the ellipse.

• The ellipticity e - ratio of the lengths between the semi-minor axis b and the
semi-major axis a of the ellipse. The ellipticity can range between −1 and 1
where it’s sign is a matter of convention. In this thesis we define the negative
sign to correspond to the left-hand polarization state and the positive sign
to the right-hand polarization state. The handedness of the polarization
represents the orientation of rotation of the electric field vector where, when
looking against the propagation direction, the right-handed polarization
represents a clockwise motion whereas the left-hand polarization represents
a counterclockwise motion. An associated parameter ϵ defined by tan ϵ = e
is called the ellipticity angle and ranges between −π/4 and π/4.

• The amplitude E0 - measure of the overall wave amplitude. Can be given
by E0 =

√
a2 + b2 and relates to the intensity of light such that I = E2

0 =
a2 + b2.

• The absolute phase δ0 - an angle between the initial state of the electric
field vector E(t = 0) and the x axis. It characterises the initial state and
ranges from −π to π.

Whilst describing the polarization state we will restrict ourselves to only the
first two parameters. The amplitude carries information about the overall inten-
sity of light which will not usually be of interest to us. More so the absolute
phase which only describes the initial state and as such is not important.

We have introduced wave polarization and shown that all strictly monochro-
matic time-harmonic plane waves are polarized. That does not always hold true
for polychromatic light. We further recognise partially polarized light and ran-
domly polarized light. Partially polarized light is such light that changes it’s
polarization state randomly with time. We call the limit when the time between
the changes approaches zero randomly polarized light.
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Figure 2.1: The ellipse of polarization when looking against the propagation of
light.

2.2 Jones calculus
There exist several formalisms for the description of polarized light. Some of them
have the advantage of also being capable to describe partially polarized light. One
of the simplest, yet elegant, is the Jones formalism. The Jones formalism can be
used to describe magneto-optical effects; however, it only describes fully polarized
light.

2.2.1 Jones vector
The cornerstone of Jones calculus is the Jones vector. The Jones vector is defined
using the complex amplitudes of a monochromatic plane wave. The complex
amplitudes of a monochromatic plane wave such as the superposition of (2.1)-
(2.3) are Ax and Ay defined by

Ex(z, t) = Re{E0xei(ωt−kz+δx)} = Re{Axei(ωt−kz)} , (2.9)

Ey(z, t) = Re{E0yei(ωt−kz+δy)} = Re{Ayei(ωt−kz)} . (2.10)

As shown above the polarization state is fully described by four parameters.
Each complex amplitude carries information about two parameters due to it’s
complex nature. Therefore a set of two complex amplitudes can provide complete
information about the polarization state of the light wave. We use them to define
the Jones vector as

J =
[︄
E0xeiδx

E0yeiδy

]︄
=
[︄
Ax

Ay

]︄
, (2.11)

which carries the complete polarization information. We generally do not need
the intensity information carried by the magnitude of the complex amplitudes so
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we normalize the Jones vector to unitary intensity. Further on we also define the
parameter α using the relation tan α = E0y/E0x. Since the initial phases are not
of interest to us we introduce δ = δy − δx. Using these new parameters we can
rewrite the Jones vector as

J =
[︄
cos α
sin α eiδ

]︄
. (2.12)

The newly introduced parameters α and δ are related to the previously defined
parameters θ and ϵ through the relations [13]

tan 2θ = tan 2α cos δ , (2.13)

sin 2ϵ = sin 2α sin δ . (2.14)

The Jones vector can be expressed in terms of any basis. The basis that we
have been using so far is a Cartesian basis of linear polarizations. Another impor-
tant basis is the circular polarization basis, the basis of left circular polarization
(LCP) and right circular polarization (RCP). The process of switching basis is
identical to that of linear algebra and can be found in [14].

• The Cartesian basis:

Jx =
[︄
1
0

]︄
, Jy =

[︄
0
1

]︄
(2.15)

• The circular basis:

JL = 1√
2

[︄
1

−i

]︄
, JR = 1√

2

[︄
1
i

]︄
(2.16)

In order to derive the Jones vector in terms of the azimuth θ and the ellipticity
angle ϵ we utilize the rotation matrix. The rotation is in a counterclockwise
direction by an arbitrary angle φ. This matrix and its inverse can also be used
for the transformation of the Cartesian system. In the form written bellow this
matrix represents a transformation matrix for a rotation of a Cartesian system
in a clockwise direction. The rotation matrix is defined as

RT (φ) =
[︄
cos φ − sin φ
sin φ cos φ

]︄
. (2.17)

Let us now consider a polarization ellipse with the azimuth equal to zero and
ellipticity angle ϵ. That means that the parameter α = ϵ and δ = π/2. Then
we rotate the Cartesian system clockwise by the azimuth θ. That translates into
rotating the whole ellipse in a counterclockwise direction by an azimuth θ. Such
transformation of the Cartesian system is achieved using (2.17). The resulting
Jones vector for general polarization in terms of θ and ϵ in the Cartesian system
is

JXY =
[︄
cos θ − sin θ
sin θ cos θ

]︄ [︄
cos ϵ
i sin ϵ

]︄
=
[︄
cos θ cos ϵ − i sin θ sin ϵ
sin θ cos ϵ + i cos θ sin ϵ

]︄
. (2.18)
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2.2.2 Jones matrix
In this section we will show how to calculate the change of polarization upon
reflection or transmission of polarized light through polarizing optical elements
using the Jones calculus.

Let us have light reflecting off an optical element and two Cartesian coordi-
nate systems S(I) and S(R) (see Fig. 2.2(a)) defined such that the axis z(I) and
z(R) coincide with the wavevector before and after the reflection, respectively.
The direction of the x axis is perpendicular to the plane of incidence. Light
linearly polarized in this direction is called s-polarized (from German senkrecht -
perpendicular). The direction of the y axis is parallel with the plane of incidence
and light linearly polarized in its direction is called p-polarized (parallel).

ss

p p𝑥(𝐼) 𝑥(𝑅)𝑦(𝐼) 𝑦(𝑅) 𝑧(𝑅)
𝑆(𝐼) 𝑆(𝑅)

𝑅𝑠𝑝
𝑧(𝐼)

(a)

𝑥(𝐼) 𝑥(𝑇)𝑧(𝐼) 𝑧(𝑇)𝑦(𝐼) 𝑦(𝑇)
𝑆(𝐼) 𝑆(𝑇)𝑇𝑠𝑝s

p

s

p

(b)

Figure 2.2: Cartesian coordinate systems for the reflection (a) and transmission
(b) of light.

Let us now have the Jones vector for the incident wave in the form of J (I) and
the Jones vector for the reflected wave in the form of J (R). The relation between
the Jones vectors J (I) and J (R) can be then written using the Jones calculus as

J (R) = Rsp J (I) , (2.19)

where Rsp is the Jones reflection matrix of an optical element. Such matrix fully
describes the effect of the optical element on the polarization state of the light
wave upon reflection. We can write the reflection matrix in terms of its elements
as

Rsp =
[︄
rss rsp

rps rpp

]︄
. (2.20)

Using the definition of the Jones reflection matrix (2.19) and the definition of
the Jones vector (2.11) we can write the relations between the matrix elements
and the complex amplitudes of the light wave in terms of s,p-polarizations as
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rss =
(︄

A(R)
s

A
(I)
s

)︄
A

(I)
p =0

, (2.21)

rsp =
(︄

A(R)
s

A
(I)
p

)︄
A

(I)
s =0

, (2.22)

rps =
(︄

A(R)
p

A
(I)
s

)︄
A

(I)
p =0

, (2.23)

rpp =
(︄

A(R)
p

A
(I)
p

)︄
A

(I)
s =0

, (2.24)

where the diagonal elements represent the Fresnel reflection coefficients. The off-
diagonal elements represent the conversion of one polarization state to the other
upon reflection.

For the case of transmission we will use the previously defined Cartesian
system S(I) and the s,p-polarizations. We then define the Cartesian system S(T )

(see Fig. 2.2(b)) such that the z(T ) axis is identical to z(I) and the x(T ) and y(T )

axis are parallel to x(I) and y(I), respectively.
Let us now have the incident Jones vector J (I) and the transmitted Jones

vector J (T ). Similarly to reflection, we now define the Jones transmission matrix
Tsp as

J (T ) = Tsp J (I) , (2.25)

where

Tsp =
[︄
tss tsp

tps tpp

]︄
. (2.26)

The relations between the matrix elements of the transmission matrix and
the complex amplitudes of the light wave can be then written analogously to
(2.21)-(2.24). With respect to the s,p-polarizations we get

tss =
(︄

A(T )
s

A
(I)
s

)︄
A

(I)
p =0

, (2.27)

tsp =
(︄

A(T )
s

A
(I)
p

)︄
A

(I)
s =0

, (2.28)

tps =
(︄

A(T )
p

A
(I)
s

)︄
A

(I)
p =0

, (2.29)

tpp =
(︄

A(T )
p

A
(I)
p

)︄
A

(I)
s =0

. (2.30)

So far we have shown how to model the transformation of light polarization
using a single optical element in reflection or transmission. To model the entirety
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of the system one must must multiply the incident Jones vector J (I) by the ma-
trices of all the optical elements in the system in their respective order. We must
make sure that all the matrices are represented relative to the right coordinate
system so that the transmitted (reflected) Jones vector J (Tk) is represented in
the same system as the incident Jones vector J (Tk+1) for the next optical ele-
ment. An example of such optical system represented by optical elements with
corresponding Jones matrices X1, X2 ... XN would be

J
(XN )
out = XNXN−1 ... X1J

(I) . (2.31)

Lastly some of the Jones transmission matrices for the most basic optical
elements are listed bellow.

Cartesian basis Circular basis

Linear polarizer oriented at an arbitrary angle φ with respect to the x axis

• PXY =
[︄

cos2 φ sin φ cos φ
sin φ cos φ sin2 φ

]︄
• PLR = 1√

2

[︄
1 e2iφ

e−2iφ 1

]︄

Phase plate with retardance of Γ with principal axis parallel to x and y

• CXY =
[︄
eiΓ/2 0

0 e−iΓ/2

]︄
• CLR =

[︄
cos Γ

2 i sin Γ
2

i sin Γ
2 cos Γ

2

]︄

Polarization rotator - rotating the polarization by an angle ϕ

• NXY =
[︄
cos ϕ − sin ϕ
sin ϕ cos ϕ

]︄
• NLR =

[︄
eiϕ 0
0 e−iϕ

]︄

2.3 Complex polarization parameter
Let us revisit the description of the polarization state one last time. It has been
shown in the beginning of the chapter how to describe the polarization state
using two parameters (θ, e) or (α, δ). In this section we introduce the complex
polarization parameter χ defined by the ratio of the complex amplitudes as

χ = Ay

Ax

= tan αeiδ , (2.32)

which represents another equivalent method for the description of the polarization
state.

The relation of this complex parameter to the azimuth θ and the ellipticity
angle ϵ can be then written for arbitrary polarization using (2.18) as

χ = sin θ cos ϵ + i cos θ sin ϵ

cos θ cos ϵ − i sin θ sin ϵ
= tan θ + i tan ϵ

1 − i tan θ tan ϵ
. (2.33)

Assuming small angles θ and ϵ we can approximate the tangent function by its
arguments. This approximation originates from the Taylor series of the tangent
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function where the first element of the series is linear. Moreover we can assume
the second order term in the denominator to be zero. With these assumptions in
mind we can simplify the relation (2.33) for the complex polarization parameter
as

χ ≈ θ + iϵ . (2.34)

2.4 Magneto-optical observables
Magneto-optical observables are parameters describing the change in polarization
upon reflection or transmission on a sample placed in a magnetic field. The
case of reflection is called the magneto-optical Kerr effect (MOKE) and the case
of transmission is called the magneto-optical Faraday effect. Let us consider a
Cartesian basis of s and p-polarizations and an optically isotropic material. The
Jones reflection matrix of such a material is diagonal indicating no transformation
of an incident s-polarized wave to a reflected p-polarized wave or vice versa.
However, if we introduce an anisotropy in such material the reflected light will
change its polarization state. In our case the anisotropy is the result of the
magnetic moment of a magnetized ferromagnetic material.

Let us consider an incident s-polarized wave impacting a magnetized ferro-
magnetic material. The Jones reflection matrix will no longer be diagonal and
the ratio of the off-diagonal to diagonal elements of the reflection matrix for an
s-polarized wave can be expressed using (2.21) and (2.23) as

rps

rss

=

⎛⎜⎜⎝
A

(R)
p

A
(I)
s

A
(R)
s

A
(I)
s

⎞⎟⎟⎠
A

(I)
p =0

=
(︄

A(R)
p

A
(R)
s

)︄
A

(I)
p =0

= χ(R)
s . (2.35)

In our circumstances the angles θ(R)
s and ϵ(R)

s will always be small enough to
satisfy the approximation (2.34) so that we can write

χ(R)
s ≈ θ(R)

s + iϵ(R)
s . (2.36)

The complex magneto-optical (MO) Kerr angle ΦKs for incident s-polarization
can then be defined as

ΦKs := −rps

rss

= −χ(R)
s , (2.37)

ΦKs ≈ θKs − iϵKs . (2.38)

The above definition of the magneto-optical Kerr angle also defines two new
real parameters named Kerr rotation θKs and Kerr ellipticity ϵKs. These param-
eters satisfy the following approximations
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θKs ≈ −θ(R)
s (2.39)

ϵKs ≈ ϵ(R)
s . (2.40)

If we now consider the case of an incident p-polarized wave we can work
analogously. With the use of (2.22) and (2.24) we get

rsp

rpp

=

⎛⎜⎜⎝
A

(R)
s

A
(I)
p

A
(R)
p

A
(I)
p

⎞⎟⎟⎠
A

(I)
s =0

=
(︄

A(R)
s

A
(R)
p

)︄
A

(I)
s =0

= (χ(R)
p )−1 . (2.41)

For the purpose of the p-polarized wave we need to rewrite (2.33) as

χ = 1 + i cot θ tan ϵ

cot θ − i tan ϵ
. (2.42)

The azimuth θ of the reflected p-polarized wave is not a small angle anymore
as it approximately equals π/2. However, if the difference of θ and π/2 is small we
can approximate the cotangent function by the first element of its Taylor series
at π/2. We suppose that the tangent function of the ellipticity angle still satisfies
the approximation of small angles and can be approximated by its argument. If
we then assume that the second order term in the numerator is zero we get

χ ≈ 1
π/2 − θ − iϵ

, (2.43)

χ−1 ≈ π/2 − θ − iϵ . (2.44)

Using (2.41) we can write the definition of magneto-optical Kerr angle for an
incident p-polarized wave as

ΦKp := rsp

rpp

= (χ(R)
p )−1 . (2.45)

Similar to (2.39) and (2.40) we can now define Kerr rotation and Kerr ellipticity
for an incident p-polarized wave as

θKp ≈ π/2 − θ(R) , (2.46)

ϵKp ≈ ϵ(R) . (2.47)

This in turn allows us to write the approximation for the Kerr angle for an incident
p-polarized wave in the form of

ΦKp ≈ θkp − iϵKp . (2.48)
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If we now go back to the definitions of the MO Kerr angle for both polariza-
tions (2.37) and (2.45) we can explain the sign difference between them. Let’s
consider the case of an isotropic sample in a magnetic field. This magnetic field
introduces anisotropy in the system. This anisotropy will generally result in non-
zero off-diagonal elements of the reflection matrix. Let us now only consider polar
geometry (magnetization of the sample is perpendicular to its surface). Also let
the light propagate at normal incidence (angle of incidence is zero). Then from
the symmetry of the problem it can be shown [15] that the elements of the Jones
reflection matrix must satisfy

rss = −rpp , (2.49)

rsp = rps . (2.50)

Let’s now consider the MO Kerr angles in the the polar geometry at normal
light incidence. Under such circumstances there is no difference between the s,p-
polarizations since we can not define the plane of incidence. Thus we should
expect the MO Kerr angles ΦKs and ΦKp to be equal. We accomplish that by the
different signs in their definitions. We can verify this by using (2.49) and (2.50)
in the definitions of the MO Kerr angles (2.37) and (2.45). The origin of the
different signs in the definitions is then in (2.49) and is rooted in the switching
of the basis upon reflection (see Fig. 2.2(a)).
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3. Optically anisotropic media
This chapter begins with an introduction of the permittivity tensor. The focus
is to study the permittivity tensor of a magnetized medium. Further on Yeh
formalism is presented which allows for the description of light propagation in
such a medium.

3.1 Permittivity tensor
The permittivity tensor ties together the material properties of the sample with
the measured parameters such as the MO Kerr angle or the index of refraction.
It’s knowledge allows us to solve the wave equation and in turn to calculate the
reflection coefficients necessary for the estimation of the MO Kerr angle. More
importantly, under specific circumstances this process can be reversed, allowing
us to calculate particular permittivity tensor elements from the knowledge of the
MO Kerr angle.

In general, the permittivity is a second-order tensor which can be written as

ε =

⎡⎢⎣εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

⎤⎥⎦ . (3.1)

External magnetic field applied to the sample may induce optical anisotropy
and results in a small perturbation in it’s permittivity tensor. Such perturbation
can be described within the Taylor series. In this thesis we are working with the
magneto-optical Kerr effect which is linear with respect to the magnetization M
(magnetic dipole moment per unit volume). This approximation is justified by
the small effect of the perturbation and the fact that the quadratic terms cancel
out due to the nature of the measuring technique (see section 4.2). Therefore we
can restrict ourselves to the first two elements of the Taylor series

εij ≈ εij(0) +
(︄

∂εij

∂Mk

)︄
M=0

Mk , (3.2)

where the indices i,j,k each represent any index of the Cartesian basis x,y,z.
For the description of the MOKE we define three main geometrical config-

urations of the magnetization vector (see Fig. 3.1). In the polar geometry the
magetization vector is perpendicular to the surface of the sample (it points along
the z axis). In case of the longitudinal geometry the magnetization vector lies
within the plane of incidence and also the surface plane of the sample (it points
along the y axis). Lastly, in the transverse geometry the magnetization vector
also lies within the surface plane; however, it is perpendicular to the plane of
incidence (it points against the x axis).

Let us consider an optically isotropic sample placed in an external magnetic
field in polar geometry. The induced magnetization introduces optical anisotropy
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𝑥
𝑧 𝑦𝑀
(a)

𝑥
𝑧 𝑦𝑀
(b)

𝑥
𝑧 𝑦𝑀
(c)

Figure 3.1: Definitions of polar (a), longitudinal (b) and transversal (c) geometries
for MOKE measurements for a magnetized sample.

in the system resulting in non-zero off-diagonal elements. Due to the Voigt sym-
metry principle [15] the permittivity tensor for such configuration must be in-
variant with respect to the rotation around the z axis. The general form of the
permittivity tensor in polar configuration is then

εp =

⎡⎢⎣ εxx εxy 0
−εxy εxx 0

0 0 εzz

⎤⎥⎦ . (3.3)

Due to our restriction to linear magneto-optical effects it can be shown [16]
that εzz ≈ εxx. Therefore we can write the permittivity tensor for polar geometry
in a more conventional way as

εp =

⎡⎢⎣ ε1 iε2 0
−iε2 ε1 0

0 0 ε1

⎤⎥⎦ . (3.4)

The permittivity tensor for the longitudinal geometry can then be obtained
by rotating the polar coordinate system counterclockwise 90◦ around the x axis.
The result of such a rotation is

εl =

⎡⎢⎣ ε1 0 iε2
0 ε1 0

−iε2 0 ε1

⎤⎥⎦ . (3.5)

Analogously for the transverse geometry we carry out a counterclockwise 90◦

rotation around the y axis so that we get
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εt =

⎡⎢⎣ε1 0 0
0 ε1 iε2
0 −iε2 ε1

⎤⎥⎦ . (3.6)

3.2 Yeh formalism
This section introduces the formalism for the description of propagation of elec-
tromagnetic plane waves through anisotropic layered media. This formalism has
been introduced in 1980 by Yeh [17] for non-absorbing materials and later ex-
tended to absorbing materials and MO effects by Vǐsňovský [16]. The formalism
relates together the electric field of the incident and the reflected or transmit-
ted light wave. Using the knowledge of the material properties the reflection or
transmission matrix, and hence the MOKE, can then be obtained allowing us to
model the magneto-optic response of a layered sample.

𝑥

𝑧

𝑦
𝜑0

𝐻𝑎𝑙𝑓 − 𝑠𝑝𝑎𝑐𝑒 0 𝜀(0)

𝐿𝑎𝑦𝑒𝑟 1 𝜺(1)𝐿𝑎𝑦𝑒𝑟 2 𝜺(2)
𝐿𝑎𝑦𝑒𝑟 𝑁 𝜺(𝑁)
𝐻𝑎𝑙𝑓 − 𝑠𝑝𝑎𝑐𝑒 𝑁 + 1 𝜀(𝑁+1)

𝑡1𝑡2
𝑡𝑁

𝑧0𝑧1

𝑧𝑁

Figure 3.2: Investigated multilayer structure consisting of N anisotropic lay-
ers, with corresponding tensor permittivities ε(n), surrounded by two optically
isotropic half-spaces, with corresponding scalar permittivities ε(0) and ε(N+1).
Each layer has a respective thickness tn and each interface has a corresponding
zn coordinate.
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Let us now consider an optically anisotropic sample consisting of N layers (see
Fig. 3.2). These layers are mutually parallel and are perpendicular to the z axis.
Each layer has a corresponding thickness tn and it’s optical properties are char-
acterised by a permittivity tensor ε(n). Interfaces of layers have a corresponding
zn coordinate. The layers are surrounded by half-spaces 0 and N+1 which are
isotropic and hence characterised by scalar permittivities ε(0) and ε(N+1), respec-
tively. In this model the N+1 half-space is an idealization of the substrate. For
an incident plane wave we define a coordinate system such that the x axis is
perpendicular to the plane of incidence and the angle of incidence is φ0.

In order to calculate the response of the sample we will need to solve the wave
equations for all the layers. Let us consider the layers to be devoid of any free
current or charge. Hence, for any layer the general wave equation (1.12) can be
simplified to

∆E(n) − ε0µ0ε
n ∂2E(n)

∂t2 − ∇(∇ · E(n)) = 0 . (3.7)

We will now assume a solution in a form of a plane wave

E(n) = E
(n)
0 ei(ωt−k(n)·r) . (3.8)

The equation (3.7) can be rewritten by substituting the plane wave solution (3.8)
and using the Einstein summation convention as

k
(n)
j k

(n)
j E

(n)
0i − k

(n)
i k

(n)
j E

(n)
0j − ω2

c2 ε
(n)
ij E

(n)
0j = 0 . (3.9)

To simplify the above equation we introduce a reduced wavevector N . It is
a wavevector in a given medium divided by the magnitude of the wavevector in
vacuum. Using a basic relation for a plane wave we can write

N (n) = c

ω
k(n) . (3.10)

Our coordinate system has been chosen such that the Nx component is zero
for all the layers. From the Snell’s law it then follows that the Ny component is
the same for all the media and is equal to

Ny = N0 sin φ0 , (3.11)

where N0 is the refractive index of the front isotropic half-space. If we multiply
(3.9) by −c2/ω2 and use the reduced wavevector we get

N
(n)
j N

(n)
j E

(n)
0i − N

(n)
i N

(n)
j E

(n)
0j − ε

(n)
ij E

(n)
0j = 0 , (3.12)

which can be written in matrix form as
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⎡⎢⎢⎢⎢⎣
ε(n)

xx − N2
y − (N (n)

z )2 ε(n)
xy ε(n)

xz

ε(n)
yx ε(n)

yy − (N (n)
z )2 ε(n)

yz + NyN (n)
z

ε(n)
zx ε(n)

zy + NyN (n)
z ε(n)

zz − N2
y

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
E

(n)
0x

E
(n)
0y

E
(n)
0z

⎤⎥⎥⎥⎥⎦ = 0 . (3.13)

A non-trivial solution to the above equation exists only if the determinant of
the matrix is equal to zero. This leads us to the characteristic equation of the
matrix which is

(N (n)
z )4ε(n)

zz +

+ (N (n)
z )3

[︂
Ny(ε(n)

yz + ε(n)
zy )

]︂
−

− (N (n)
z )2

[︂
ε(n)

yy (ε(n)
zz − N2

y ) + ε(n)
zz (ε(n)

xx − N2
y ) − ε(n)

xz ε(n)
zx − ε(n)

yz ε(n)
zy

]︂
−

− N (n)
z Ny

[︂
(ε(n)

xx − N2
y )(ε(n)

yz + ε(n)
zy ) − ε(n)

zx ε(n)
xy − ε(n)

yx ε(n)
xz

]︂
+

+ ε(n)
yy

[︂
(ε(n)

xx − N2
y )(ε(n)

zz − N2
y ) − ε(n)

xz ε(n)
zx

]︂
− ε(n)

xy ε(n)
yx (ε(n)

zz − N2
y )−

− ε(n)
yz ε(n)

zy (ε(n)
xx − N2

y ) + ε(n)
xy ε(n)

zx ε(n)
yz + ε(n)

yx ε(n)
xz ε(n)

zy = 0 . (3.14)

For the four roots N
(n)
zj of the characteristic equation we acquire four solutions

[16]

e
(n)
j =

⎡⎢⎢⎢⎢⎣
−ε(n)

xy

(︂
ε(n)

zz − N2
y

)︂
+ ε(n)

xz

(︂
ε(n)

zy + NyN
(n)
zj

)︂
(︂
ε(n)

zz − N2
y

)︂ (︂
ε(n)

xx − N2
y − (N (n)

zj )2
)︂

− ε(n)
xz ε(n)

zx

−
(︂
ε(n)

xx − N2
y − (N (n)

zj )2
)︂ (︂

ε(n)
zy + NyN

(n)
zj

)︂
+ ε(n)

xy ε(n)
zx

⎤⎥⎥⎥⎥⎦ . (3.15)

These solutions, also called proper modes, are polarizations left unchanged
during the propagation through the corresponding medium. As the equation
(3.13) is linear they can serve as a basis for the description of propagation of an
arbitrary plane wave through the medium. We can then write the electric field
E(n) of the wave as

E(n) =
4∑︂

j=1
E

(n)
0j e

(n)
j e

i

{︂
ωt− ω

c

[︂
Nyy+N

(n)
zj (z−zn)

]︂}︂
. (3.16)

For plane waves the relation between the magnetic field and electric field
follows from the Maxwell’s equations as

B = 1
c
N × E . (3.17)

Using this relation we can obtain the magnetic field in terms of the proper modes
as
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B(n) = 1
c

4∑︂
j=1

E
(n)
0j b

(n)
j e

i

{︂
ωt− ω

c

[︂
Nyy+N

(n)
zj (z−zn)

]︂}︂
, (3.18)

where b
(n)
j stands for the proper magnetic modes given by

b
(n)
j = N

(n)
j × e

(n)
j . (3.19)

Having solved the wave equation within all the layers of the sample we now
have to apply the boundary conditions. From Maxwell’s equation (1.3) it follows
that the tangential components of the electric field vector are continuous at the
interface between any two media. From Maxwell’s equation (1.1) it follows that
in any media without free current the tangential components of the magnetic field
vector are also continuous. These requirements can be expressed for any interface
as

4∑︂
j=1

E
(n−1)
0j e

(n−1)
j · x =

4∑︂
j=1

E
(n)
0j e

(n)
j · xei ω

c
N

(n)
zj tn , (3.20)

4∑︂
j=1

E
(n−1)
0j b

(n−1)
j · y =

4∑︂
j=1

E
(n)
0j b

(n)
j · yei ω

c
N

(n)
zj tn , (3.21)

4∑︂
j=1

E
(n−1)
0j e

(n−1)
j · y =

4∑︂
j=1

E
(n)
0j e

(n)
j · yei ω

c
N

(n)
zj tn , (3.22)

4∑︂
j=1

E
(n−1)
0j b

(n−1)
j · x =

4∑︂
j=1

E
(n)
0j b

(n)
j · xei ω

c
N

(n)
zj tn . (3.23)

These equations can also be written in matrix form as

D(n−1)E
(n−1)
0 = D(n)P (n)E

(n)
0 , (3.24)

where we introduced the dynamical D(n) matrix and the propagation P (n) ma-
trix. The dynamical matrix describes the transformation of the light wave at the
interface. It can be written in terms of it’s elements as

D(n) =

⎡⎢⎢⎢⎢⎢⎣
e

(n)
1 · x e

(n)
2 · x e

(n)
3 · x e

(n)
4 · x

b
(n)
1 · y b

(n)
2 · y b

(n)
3 · y b

(n)
4 · y

e
(n)
1 · y e

(n)
2 · y e

(n)
3 · y e

(n)
4 · y

b
(n)
1 · x b

(n)
2 · x b

(n)
3 · x b

(n)
4 · x

⎤⎥⎥⎥⎥⎥⎦ . (3.25)

The propagation matrix describes the propagation of light through the corre-
sponding layer and is given as
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P (n) =

⎡⎢⎢⎢⎢⎢⎣
ei ω

c
N

(n)
z1 tn 0 0 0

0 ei ω
c

N
(n)
z2 tn 0 0

0 0 ei ω
c

N
(n)
z3 tn 0

0 0 0 ei ω
c

N
(n)
z4 tn

⎤⎥⎥⎥⎥⎥⎦ . (3.26)

We can further rewrite (3.24) as

E
(n−1)
0 = (D(n−1))−1D(n)P (n)E

(n)
0 = T (n−1,n)E

(n)
0 , (3.27)

where we introduce the transfer matrix T (n−1,n). It characterises the relation of
the field components in two adjacent layers. This matrix can be constructed for
all interfaces with the exception of the last one. Since we consider the substrate
to be semi-infinite we can not write it’s propagation matrix and hence we define
the transfer matrix of the last interface as

E
(N)
0 = (D(N))−1D(N+1)E

(N+1)
0 = T (N,N+1)E

(N+1)
0 . (3.28)

We can now implicitly calculate the matrix M characterising the anisotropic
multilayer. From (3.27) and (3.28) we acquire

E
(0)
0 =

(︄
N+1∏︂
n=1

T (n−1,n)
)︄

E
(N+1)
0 = ME

(N+1)
0 . (3.29)

Let us now assume that the incident light wave in the front half-space can
be decomposed into two orthogonal s,p-polarizations e

(0)
1 and e

(0)
3 with their re-

spective amplitudes E
(0)
01 and E

(0)
03 . Let us also assume that the same follows for

the reflected light wave and the polarizations e
(0)
2 and e

(0)
4 with the amplitudes

E
(0)
02 and E

(0)
04 . The proper modes of the reflected light wave are equal to those of

the incident light wave with the exception of the z-component that points in the
opposite direction (unlike on Fig. 2.2(a) where the p-polarization also switches
direction). If we define the proper modes for the back half-space analogously then
considering there is no light source at the back half-space we get E

(0)
02 = E

(0)
04 = 0.

Therefore, we can write the equation (3.29) in terms of it’s elements as

⎡⎢⎢⎢⎢⎢⎣
E

(0)
01

E
(0)
02

E
(0)
03

E
(0)
04

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
M11 M12 M13 M14
M21 M22 M23 M24
M31 M32 M33 M34
M41 M42 M43 M44

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
E

(N+1)
01
0

E
(N+1)
03
0

⎤⎥⎥⎥⎥⎦ . (3.30)

With the above equation we can write the reflection coefficients using their
definitions (2.21) - (2.24) as
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rss =
⎛⎝E

(0)
02

E
(0)
01

⎞⎠
E

(0)
03 =0

= M21M33 − M23M31

M11M33 − M13M31
, (3.31)

rsp =
⎛⎝E

(0)
02

E
(0)
03

⎞⎠
E

(0)
01 =0

= M11M23 − M21M13

M11M33 − M13M31
, (3.32)

rps = −

⎛⎝E
(0)
04

E
(0)
01

⎞⎠
E

(0)
03 =0

= −M41M33 − M43M31

M11M33 − M13M31
, (3.33)

rpp = −

⎛⎝E
(0)
04

E
(0)
03

⎞⎠
E

(0)
01 =0

= −M11M43 − M41M13

M11M33 − M13M31
. (3.34)

The negative signs of the last two coefficients originate from the geometry
defined at the paragraph above where we have not switched the direction of the
p-polarization after reflection.

Seeing as we have been able to calculate the reflection coefficients we now
have all the information needed in order to calculate the MO response of an
arbitrary multilayer. Moreover we can use this procedure in reverse and from the
knowledge of the MO Kerr effect and the diagonal permittivity elements calculate
the off-diagonal permittivity elements for any of the three geometries defined in
Fig 3.1.
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4. Experimental techniques
This chapter will provide a short overview of the experimental methods used in
this work. First we introduce the optical method of spectroscopic ellipsometry
which will allow us to calculate the diagonal permittivity tensor elements. After-
wards we present the magneto-optical Kerr spectroscopy which will allow us to
measure the magneto-optical Kerr angles. Both of these methods will be leaning
on the knowledge of Jones calculus introduced in the previous chapter.

4.1 Spectroscopic ellipsometry
Spectroscopic ellipsometry (SE) is an experimental technique used to analyse the
optical response of a material.

A schematic sketch of a rotating compensator ellipsometry (RCE) experimen-
tal set-up can be seen in Fig 4.1. The light coming from a wide-spectrum lamp
passes through a polarizer P before reflecting off the sample S. The reflected beam
then passes through a rotating compensator C, an analyzer A and finally into a
detector D.

𝑃𝐶𝑜𝑝𝑡
𝐶 𝐴

𝑆
𝐷

Figure 4.1: The rotating compensator ellipsometry (RCE) set-up. Light from
a wide-spectrum lamp passes through a polarizer P, reflects off a sample S and
continues through a rotating compensator C, analyzer A and into the detector D.

Through out this chapter we will be working in the Cartesian system with
the basis of s,p-polarizations (see Fig. 2.2). In such a system we can use Jones
formalism to calculate the resulting polarization state of the reflected light. Let
us consider the polarizer P oriented at an angle ξ relative to the s axis. The Jones
matrix corresponding to the polarizer is

P =
[︄

cos2 ξ sin ξ cos ξ
sin ξ cos ξ sin2 ξ

]︄
. (4.1)
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The Jones reflection matrix of the sample is then (2.20). However, if we con-
sider the sample isotropic the off-diagonal elements will be zero and the resulting
matrix will be

R =
[︄
rss 0
0 rpp

]︄
. (4.2)

The compensator is a phase plate with retardance Γ with principal axis parallel
to s and p axis. Such a phase plate has a Jones transmission matrix

C =
[︄
eiΓ 0
0 1

]︄
. (4.3)

In this ellipsometry set-up we are using a rotating compensator. The Jones
matrix of such a compensator can be derived by rotating the Cartesian system
by an angle c using (2.17).

The analyzer A is a linear polarizer at an angle ζ relative to the s axis.
Analogously to (4.1) we can write its transmission matrix as

A =
[︄

cos2 ζ sin ζ cos ζ
sin ζ cos ζ sin2 ζ

]︄
. (4.4)

We can now calculate the outgoing Jones vector J (O) in agreement with (2.31)
as

J (O) = ART (c)CRT (−c)RP J (I) . (4.5)

From (4.5) we can determine the resulting intensity as

I = (J (O))∗J (O) . (4.6)

We are not interested in the absolute value of intensity as we have neglected it
throughout the whole work. Our interest lies in the ratio of the s,p-polarizations,
specifically in the ratio of rpp and rss coefficients. This ratio is the defining relation
for ellipsometric angles Ψ and ∆:

ρ = rpp

rss

= tan Ψei∆ . (4.7)

Through rotating the compensator by different angles c we can calculate Ψ
and ∆ from (4.6) and (4.5). We will not be showing the general case of the
intensity calculation due to it’s complexity but rather we will introduce a specific
case. Let the polarizer P be oriented at 45 degrees and the analyzer A parallel to
the p axis. Further more let the retardance Γ be −π/2. The negative sign means
that the p axis is the fast axis. Then we can rewrite (4.5) as
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[︄
0
Jp

]︄
=
[︄
0 0
0 1

]︄ [︄
cos c − sin c
sin c cos c

]︄ [︄
−i 0
0 1

]︄ [︄
cos c sin c

− sin c cos c

]︄ [︄
cos Ψ 0

0 sin Ψei∆

]︄ [︄
1
1

]︄
.

(4.8)

If we quantify for Jp we get

Jp = (cos2 c − i sin2 c) sin Ψei∆ − (1 + i) cos c sin c cos Ψ . (4.9)

We can then use the above equation and (4.6) to determine the light intensity.
The full calculation can be seen in A.1.

I = I0[2 − cos(2Ψ) − 2 sin(2Ψ) sin(∆) sin(2c) − cos(2Ψ) cos(4c) − sin(2Ψ) cos(∆) sin(4c)]

I = I0[2 + S1 + 2S3 sin(2c) + S1 cos(4c) − S2 sin(4c)] (4.10)

This relation allows us to measure light intensity I as a function of the angle c.
We can then numerically determine the Fourier coefficients S1−3 and extract from
them the ellipsometric angles Ψ and ∆.

For a simple bulk interface one can then calculate the index of refraction from
the Fresnel reflection coefficients. In this thesis, however, we are working with
thin layers deposited on a substrate. Therefore, multiple reflections within the
thin layer need to be considered. For these complicated interfaces the value of
the complex index of refraction is numerically modelled by a software. Typically
we are investigating one layer of the sample with full knowledge of the optical
and physical properties of the other layers.

If we model the complex index of refraction ñ = n + ik we can then obtain
the diagonal permittivity tensor element ε1 as

ε1 = ñ2 . (4.11)

The introduced RCE set-up uses one compensator located after the sample
reflection. For the purpose of this work the compensator could also be located
before the sample reflection (see Fig. 4.1). The RC2 Woollam ellipsometer set-
up used for the measurement of the ellipsometric data in Zahradńık et al. [18],
which are used in this work, uses both compensators. The presence of both
compensators allows for the measurement of the full Mueller matrix. However,
as this is not of interest to this work a simpler RCE set-up has been introduced.
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4.2 Magneto-optical spectroscopy
Magneto-optical spectroscopy is a similar technique to spectroscopic ellipsometry.
It allows us to measure the MO angles θk and ϵk which can be used to determine
the off-diagonal tensor permittivity elements. The scheme of the experimental
set-up can be seen in Fig 4.2. The main difference in MO spectroscopy is the
introduction of the magnetic field making the sample optically anisotropic.

The MO spectroscopy set-up that we are using differs from the SE set-up in
the rotating element. In the previous section we used a variant with a rotating
compensator. For MO spectroscopy we will be using a static compensator and
a rotating analyzer. Such experimental set-up can also be used for SE and it is
referred to as rotating analyzer ellipsometry (RAE) with a compensator.

In the MO spectroscopy set-up we have a wide-spectrum light source emitting
light that passes through a polarizer P and reflects off a sample S placed in an
external magnetic field B. The reflected beam then passes through an optional
compensator C, a rotating analyzer A and into a detector D. As in the previous
section we can calculate the outgoing Jones vector using the Jones formalism. For
the polarizer at an angle ξ we will use the transmission matrix (4.1). Analogously
for the analyzer at an angle ζ we will use (4.4) and for the compensator with
retardance Γ we shall use (4.3).

𝑃

𝐶𝑜𝑝𝑡 𝐴
𝑆

𝐷𝑀

Figure 4.2: The rotating analyzer MO spectroscopy set-up. Light from a wide-
spectrum lamp passes through a polarizer P, reflects off a sample S on to an
optional compensator C and continues through a rotating analyzer A into the
detector D.

The reflection matrix of the sample is no longer diagonal due to the anisotropy
induced by the magnetic field. However, if we consider the magnetization to be in
polar geometry and the angle of incidence approximately zero we can use (2.49),
(2.50) and the definition of the MO Kerr angle (2.37) to write the reflection matrix
(2.20) as

R =
[︄

1 −Φk

−Φk −1

]︄
. (4.12)
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In accordance with (2.31) we can then write

J (O) = ACSP J (I) , (4.13)

J (O) =
[︄

cos2 ζ sin ζ cos ζ
sin ζ cos ζ sin2 ζ

]︄ [︄
eiΓ 0
0 1

]︄ [︄
1 −Φk

−Φk −1

]︄ [︄
cos2 ξ sin ξ cos ξ

sin ξ cos ξ sin2 ξ

]︄
J (I).

(4.14)

Let us now consider the specific case of our experimental set-up. The polarizer
P is at an angle of 90◦ meaning that the light passing through is p-polarized. The
angle of the analyzer A then also measures the angular distance from a crossed
position. The resulting Jones vector for such a set-up is

J (O) =
[︄

cos2 ζ sin ζ cos ζ
sin ζ cos ζ sin2 ζ

]︄ [︄
eiΓ 0
0 1

]︄ [︄
1 −Φk

−Φk −1

]︄ [︄
0
1

]︄
, (4.15)

J (O) =
[︄
−eiΓΦk cos2 ζ − sin ζ cos ζ
−eiΓΦk sin ζ cos ζ − sin2 ζ

]︄
. (4.16)

The intensity of the detected light can then be determined using (4.6). The
full calculation can be seen in A.2 with the resulting intensity being

I = sin2 ζ + |Φk|2 cos2 ζ + sin(2ζ) Re
{︂
ΦkeiΓ

}︂
. (4.17)

The second order term |Φk|2 in the above equation can be neglected since the
Kerr angle is usually a very small number (tens of millidegrees). For such an
approximation the intensity in terms of the Kerr rotation θk and Kerr ellipticity
ϵk can be written as

I = sin2 ζ + (θk cos Γ + ϵk sin Γ) sin(2ζ) . (4.18)

It is possible to measure the Kerr angle using (4.18) as a function of the angle
of the analalyzer A. It is important not to forget that we have neglected the
absolute value of the intensity and therefore we should introduce a multiplier I0
on the right side of the equation. In real measurements we also introduce an
additive constant Idark which accounts for the dark current in the detector.

From (4.18) one can also see that for Γ equal to 0 we can directly measure the
Kerr rotation. If Γ were π/2 one could also directly measure the Kerr ellipticity.
The latter, unfortunately, is not possible as we are measuring a broad spectrum
and there is no optical element that would act as a phase plate with retardence π/2
for all wavelengths. As such we measure the Kerr rotation directly without the
compensator and then we introduce the compensator to measure the effect of both
Kerr rotation and Kerr ellipticity. For each measurement we take multiple angles
ζ and then fit for the measured parameter in order to improve the sensitivity.

The sensitivity is further improved by measuring the Kerr angle for both
orientations of the applied magnetic field. By taking the difference of the two
measurements we eliminate any unwanted optical influence and get the double
Kerr angle due to the Onsager reciprocity relation [16].
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5. Magnetic properties of
ferromagnetic materials
Ferromagnetic materials are magnetically ordered materials whose atomic mag-
netic moments align within an area called a domain. For a bulk sample these
domains may cancel out making the sample unmagnetized. We also call this the
virgin state. However, in the presence of an external magnetic field these domains
will all align in the same direction making the material magnetized. The process
of alignment of the magnetic moments with respect to the external magnetic field
traces a hysteresis loop (see Fig. 5.1). The loop is usually described using three
parameters. The intrinsic spontaneous magnetization Ms, which is the saturation
magnetization of the sample. An extrinsic property called the remanence mag-
netization Mr describing the remaining magnetization in zero external field and
an extrinsic property Hc named coercivity, which describes the magnitude of the
field needed to set the magnetization to zero. The two extrinsic properties depend
on many extraneous factors including the shape of the sample, surface roughness,
microscopic defects, thermal history and the speed at which the external field
changes during the measurement [19].

Figure 5.1: The hysteresis loop of a ferromagnetic material. Initially in an unmag-
netized virgin state. With the introduction of the magnetic field H the magnetic
moments of the domains begin to align until they reach the spontaneous magne-
tization Ms. We also recognize the remanence magnetization Mr, which remains
when the applied field disappears. Lastly we denote Hc as the coercivity field
needed to reduce the magnetization to zero [19].
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5.1 Curie temperature
The spontaneous magnetization of a ferromagnetic material is a temperature de-
pendent property. For every ferromagnetic material there exists a temperature,
called Curie temperature TC , at which it’s spontaneous magnetization sharply
falls to zero. Above this temperature the material is paramagnetic whereas bel-
low it, it is ferromagnetic. Above the Curie temperature the domain structure is
no longer valid as the atomic magnetic moments become disordered. The tem-
perature dependence of spontaneous magnetization of iron, cobalt and nickel can
be seen on Fig. 5.2.

The relation of spontaneous magnetization and temperature can be approxi-
mated to the first order by the Bloch’s law [20]

Ms = M0

(︄
1 −

(︃
T

TC

)︃3/2)︄
, (5.1)

which holds true for low temperature measurements. For temperatures approach-
ing the Curie temperature the spontaneous magnetization follows the dependence
[20]

Ms ∝ (TC − T )β , (5.2)

where we introduce the critical exponent β. Combining the equations (5.1) and
(5.2) we get

Ms = M0

(︄
1 −

(︃
T

TC

)︃α
)︄β

. (5.3)

This relation is used to fit the temperature dependence of the MO Kerr rotation
to estimate the value of the Curie temperature for the investigated samples.

Figure 5.2: Spontaneous magnetization of iron, cobalt and nickel as a function of
temperature [21].
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6. Investigated samples
In this chapter, we introduce the investigated material LSMO and the deposition
process used for the preparation of the samples. The samples are thin layers of
LSMO deposited on four different substrates. Also introduced are the ways the
epitaxial strain induced by the substrate can influence the physical properties of
thin film LSMO.

6.1 Pulsed laser deposition
Pulsed laser deposition (PLD) has been one of the widely used techniques for the
growth of thin films since the 1980s. A typical PLD set-up can be seen in Fig.
6.1. The material we want to deposit as a thin layer is presented as a dense target
placed in a vacuum chamber. A short duration laser pulse of high energy then
ablates a small part of the target creating a plasma plume. The plume reaches
the substrate above it, which is usually heated to hundreds of degrees Celsius,
and condensates.

If the ablation plume consists of atoms or other low-mass components it is
possible to achieve epitaxial growth. Epitaxial growth is the continuation of the
substrate crystallographic ordering in the deposited layer.

The investigated samples were deposited using a custom PLD set-up with a
KrF laser operating at the wavelength of 248 nm. The energy fluence of the laser
was 3 J/cm2 with the repetition rate of 2 Hz. The deposition was made with the
presence of background oxygen pressure of 120 mTorr whereas the postdeposition
annealing process was carried out with 75 Torr of background pressure. The
substrate temperature during deposition was maintained at 620 ◦C. The thickness
of the samples is 20 nm.

𝐿𝑒𝑛𝑠
𝐾𝑟𝐹 𝑙𝑎𝑠𝑒𝑟

𝑇𝑎𝑟𝑔𝑒𝑡𝑃𝑙𝑢𝑚𝑒

𝐻𝑒𝑎𝑡𝑒𝑟
Deposited 𝑆𝑎𝑚𝑝𝑙𝑒

𝑇𝑢𝑟𝑏𝑜 −𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟𝑝𝑢𝑚𝑝
Figure 6.1: A schematic sketch of a pulsed laser deposition set-up. A high en-
ergy KrF laser impacts a dense target creating a plasma plume condensing on a
substrate which is being heated to high temperatures.
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6.2 La2/3Sr1/3MnO3

The investigated samples are La2/3Sr1/3MnO3 (LSMO) thin films deposited on
different substrates. In the following paragraphs we will introduce bulk LSMO
crystallography as well as the strain effects induced by the different substrates.

6.2.1 Bulk LSMO
LSMO is a member of a manganese oxide class whose ideal structure is cubic
perovskite. For a general oxide ABO3 the structure can be seen in Fig. 6.2. The
A-site cations form the cubic cell while the B-site cation resides in it’s centre
surrounded by oxygen octahedron with atoms located in the centre of every face
of the cube.

𝐴𝐵𝑂

Figure 6.2: A schematic view of an ideal cubic perovskite type structure ABO3.

Due to the different ionic radii of the possible cations in ABO3 the structure
can break the cubic symmetry and become rhombohedral or orthorhombic. Under
certain circumstances the structure can also become unstable. A parameter to
control the stability of the structure can be defined as

t := rA + rO√︂
2(rB + rO)

, (6.1)

where rA, rB and rO are the radii of the A and B cations and oxygen, respectively.
The structure can be considered stable for 0.89 < t < 1.02 [22].

When doped by Sr the unit cell of LaMnO3 becomes rhombohedral
La2/3Sr1/3MnO3 with lattice parameters a = 5.471 Å and α = 60.43◦ [23].

The magnetic properties of LSMO have been studied for it’s irregular presence
of both the Mn3+ and Mn4+ valence ions. The resulting magnetic ordering is
ferromagnetic and has been explained by C. Zener [7] through the double-exchange
(DE) interaction. In this interaction an eg electron transfer occurs between the
Mn3+ and Mn4+ valence ions through the O2− 2p state (schematically shown in
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Fig. 6.3). The material LSMO is a half-metal meaning that it conducts current
for only one orientation of the spin and acts as an insulator for the other.

The chosen Sr doping of La2/3Sr1/3MnO3 has been based on the work of Jonker
and van Santen [5] who have found that for La1−xSrxMnO3 the doping of 1/3
provides the highest Curie temperature of about 370 K.

𝑀𝑛3+ 𝑀𝑛4+𝑂2−

𝑀𝑛4+ 𝑀𝑛3+𝑂2−
Figure 6.3: An illustration of the double-exchange interaction between the Mn3+

and Mn4+ valence ions through the O2− 2p state in LSMO.

6.2.2 Thin film LSMO
Deposition of LSMO as a thin layer leads to certain changes in it’s physical
properties. Some of them arise as the effects of the epitaxial strain induced by
the substrate. In order to study such effects we need to quantify the epitaxial
strain. This can be done via the lattice mismatch parameter m defined as

m := al − as

as

, (6.2)

where al and as are the bulk lattice parameters of the deposited material and the
substrate, respectively. If the parameter m is positive the layer is grown under
compressive strain. For a negative sign the layer is grown under tensile strain.

In this work we will be examining samples with a thickness of 20 nm. Two of
these samples were grown under compressive strain. The first on the diamagnetic
LaAlO3 (LAO) (001) oriented cubic crystal and the other on the diamagnetic
(LaAlO3)1/3(Sr2AlTaO6)2/3 (LSAT) (001) oriented cubic crystal. Also examined
will be two samples grown under tensile strain on the diamagnetic SrTiO3 (STO)
in it’s cubic (001) crystal orientation and on a paramagnetic DyScO3 (DSO) in it’s
orthorhombic (110) orientation. Their lattice parameters and lattice mismatch
parameters with respect to LSMO can be seen in Table 6.1 and in Fig. 6.4. For
LSMO and DSO their respective pseudocubic lattice parameters are used instead.
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Material LAO LSAT LSMO STO DSO
Lattice parameter a (Å) 3.790 3.868 3.876 3.905 3.942
Lattice mismatch m (%) 2.27 0.21 - -0.74 -1.67

Table 6.1: The cubic or pseudocubic lattice parameters for LSMO and the four
substrates with corresponding lattice mismatch parameters [18, 24].

LAO LSAT STO DSO

LSMO

3.7 3.8 3.9 4.0

Lattice parameter 𝑎 (Å)
Figure 6.4: The cubic or pseudocubic lattice parameter comparison for bulk
LSMO and the four substrates [18, 24].

6.2.3 Influence of epitaxial strain on physical properties
Having introduced how to quantify the epitaxial strain let us now illustrate some
of it’s effects.

One of the physical properties of LSMO influenced by the epitaxial strain is
the orbital ordering of the manganese 3d electron energy levels, which results
in the suppression of the DE mechanism. For an isolated manganese atom the
3d electron energy levels are all degenerated. Partial lifting of the degeneration
occurs for the case of a manganese atom in a perfect perovskite type structure
with the splitting of eg and t2g orbitals. Further splitting occurs as a result of
lower symmetry due to the epitaxial strain and has been linked to the suppression
of the DE mechanism [25].

The magnetic anisotropy of LSMO also exhibits substantial dependence on
the epitaxial strain. For the bulk LSMO the easy axis of magnetization normally
lies in the pseudocubic [111]c direction [26]. However, for thin films it typically
moves into the plane of the film. LSMO grown under tensile strain on STO
shows in-plane magnetic anisotropy. The directions ⟨100⟩c and ⟨110⟩c are equiv-
alent easy axes of magnetization above 250K [27]. Bellow 250K the direction
⟨110⟩c is more pronounced [27]. LSMO thin films grown on LSAT and NdGaO3
(NGO) are grown under compressive strain that is not strong enough to move
the easy axis of magnetization out of the in-plane orientation. These thin films
exhibit temperature dependent uniaxial and biaxial anisotropy along the ⟨100⟩c

and ⟨110⟩c directions, respectively [27].
Lastly the oxygen octahedra rotations (OOR) can be induced by the epitaxial

strain or the substrate symmetry. The OOR are rotations of the oxygen octahreda
part of the perovskite type structure (see Fig. 6.2). Their influence on the
resulting physical properties has not yet been sufficiently explained, as some, for
example, claim positive correlation of the angle of the octahedral tilt and the
quality of the samples magnetic properties [28] and some claim the correlation to
be negative [29].
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7. Strain impact on thin film
La2/3Sr1/3MnO3

The previous chapters have introduced the theory, experimental set-ups and the
investigated samples. In this chapter we make use of that knowledge in order to
observe the impact of strain on the electronic structure of thin film LSMO. This
impact is thoroughly analysed at room temperature in the first section of this
chapter. The second section aims to explore temperature dependent measure-
ments in order to determine whether future exploration in this direction could
prove noteworthy.

7.1 Room temperature MO spectroscopy
The magneto-optical Kerr effect was measured at room temperature on a home-
made MO spectroscopy set-up (see Fig. 4.2). The measurement was carried out
at nearly normal light incidence in a polar configuration at 1T, which at room
temperature is a sufficient field for the magnetic saturation of all the samples
[25]. The spectral range of the measurement was from 1.5 eV to 5 eV.

The measured spectra of the MO Kerr rotation and ellipticity can be seen
on Fig. 7.2. The spectra of LSMO/DSO and LSMO/LAO have been multiplied
tenfold for better clarity. For all samples the Kerr rotation spectra are dominated
by a global minimum at around 3.6 eV. Also common for all samples is the local
maximum at around 2.4 eV in the Kerr rotation spectra. The Kerr ellipticity
spectra have an inflection point at around 3.6 eV, common to all samples, with
the maximum and minimum of around 3 eV and 4 eV, respectively. The MOKE
spectra are very similar in spectral shape for all samples with the exception of
LSMO deposited on STO, which is influenced by the high reflectivity of STO in
the UV region [1]. The amplitude of the measured MOKE shows a strong sup-
pression of the ferromagnetic ordering for samples with higher lattice mismatch
and therefore higher epitaxial strain.

Using the MOKE spectra we can numerically calculate the off-diagonal ele-
ments of the permittivity tensor of the investigated samples. The numeric cal-
culation is based on the Yeh formalism presented in section 3.2. From there the
calculation of the MOKE effect in polar configuration is based solely on known
properties and the off-diagonal elements of the permittivity tensor. Therefore,
we can numerically calculate the off-diagonal elements of the permittivity tensor
through finding the tenser elements minimizing the difference of the measured
MOKE and the calculated MOKE. The physical properties of the very same
samples and the spectroscopic ellipsometry data necessary for this calculation
are taken from [18].

The calculated spectra of the off-diagonal elements of the permittivity tensor
can be seen on Fig 7.3. The spectra of the LSMO/DSO sample have been calcu-
lated only within the spectral range of 2 - 5 eV due to the small effect and high
noise in the IR region. For all samples the spectral shape is dominated by the
spectroscopic structure situated near 3.6 eV. This structure manifests itself as a
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global minimum in the real part of ε2 and as an ”S” shape centred around 3.6
eV in the imaginary part. The associated electronic transition has already been
reported in single crystalline thin films of LSMO grown on STO [30]. It has been
characterized as a charge transfer diamagnetic transition from O 2p to Mn t2g

state in the minority spin channel (see Fig. 7.1). Another prominent transition
occurs at around 2.4 eV and manifests itself most visibly as the ”S” shape in
the real part of the off-diagonal permittivity tensor elements. This transition has
also already been reported, most notably on STO in [30], and has been charac-
terized as a paramagnetic electronic transition from Mn t2g to Mn eg state in the
majority spin channel. These transitions are also visible on the Kerr effect spec-
tra. They are also sufficient for the description of the off-diagonal elements for
the LSMO/STO and LSMO/DSO samples, that have been grown under tensile
strain.

Figure 7.1: Energy-level diagram for the ground state of LSMO. Up-spin corre-
sponds to the majority-spin states. Dashed arrows represent diamagnetic charge
transfer transitions. The transition in the minority spin channel from O 2p to
Mn t2g state has been used for the interpretation of the spectral structure in the
MOKE spectra of LSMO at around 3.6 eV [31].

In case of the compressively strained LSMO/LAO and LSMO/LSAT another
transition has been observed in the off-diagonal elements spectra at around 4.3
eV. It can be observed in the real part of ε2 as a small ”S” shape and in the
imaginary part as a change in concavity. It’s effect is very small, and, therefore,
not well observable in the MOKE spectra. Arguably in the Kerr rotation spectra
around 4.3 eV we can see the LSMO/DSO crossing the zero line, whereas the
samples grown under compressive strain (i.e. LSMO/LAO and LSMO/LSAT)
show a decrease in the gradient of Kerr rotation and we do not observe the spec-
tra crossing the zero line. In contrast to these measurements the Kerr spectra of
LSMO/STO are markedly different around 3.6 eV owing to the optical contribu-
tion of STO. In the UV region the penetration depth of LSMO is high as is the
reflectivity of STO [1]. Therefore, it is necessary to draw conclusions from the
spectra of the off-diagonal permittivity tensor elements, where such contribution
is separated.
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The origin of the transition at 4.3 eV on samples grown under compressive
strain has not been fully explained yet. The transition has also been observed
at low temperatures on samples grown on STO under tensile strain [2]. That
has lead Zahradńık et al. [18] to believe that this transition is paramagnetic in
nature and originates in Mn t2g levels in the majority spin channel. Therefore, it
is dependent on both the epitaxial strain and temperature.

From the low temperature measurements on STO [2] we can also conclude
that the OOR is not the main cause of the transition at 4.3 eV. The change of
temperature does not induce structural alterations large enough to influence the
octahedra tilt system [25]. With the OOR remaining unchanged with temperature
during the introduction of the third transition we can conclude that it does not
have significant influence on the magneto-optical properties of LSMO.

37



-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

K
er

r 
ro

ta
ti

o
n

 (
d

eg
re

e)

 

 

 LSMO/STO

 LSMO/LSAT

 LSMO/LAO x10

 LSMO/DSO x10

 

 

 LSMO/STO

 LSMO/LSAT

 LSMO/LAO x10

 LSMO/DSO x10

Energy (eV)

K
er

r 
el

li
p

ti
ci

ty
 (

d
eg

re
e)

 

 

Figure 7.2: The real part (top panel) and the opposite of the imaginary part
(bottom panel) of the magneto-optical Kerr effect in polar geometry of the four
LSMO samples deposited on different substrates. For better clarity the spectra
of the LSMO/LAO and LSMO/DSO samples have been multiplied tenfold.
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Figure 7.3: The real part (top panel) and the imaginary part (bottom panel) of
the off-diagonal permittivity tensor elements of the four LSMO samples deposited
on different substrates. For better clarity the spectra of the LSMO/LAO and
LSMO/DSO samples have been multiplied tenfold. The vertical lines represent
the approximate locations of the transitions.
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7.2 Temperature dependent MO spectroscopy
Temperature dependent magneto-optical spectroscopy has been measured on a
homemade set-up similar to Fig. 4.2 with the notable addition of a closed cycle
helium optical cryostat around the sample. The cryostat does not allow for the
placement of an electromagnet in the vicinity of the sample. Therefore, a perma-
nent neodymium Nd2Fe14B magnet attached to the back of the sample has been
used. This section does not aim to provide conclusive proof and serves as a means
to determine whether future exploration in this direction could prove noteworthy.
We currently have no possibility of calculating the permittivity tensor elements
due to the lack of temperature dependent ellipsometric measurements. Hence,
only the real part of the MOKE has been measured for all four samples.

The use of a permanent magnet introduces several difficulties. It does not
allow for the measurement of the difference of the MOKE for a positive and a
negative field (see section 4.2). Hence, the quadratic term in the Taylor series
(3.2) does not cancel out. The resulting measurement is then a combination of the
linear and quadratic term. Due to the small magnitude of the effect we neglect
the influence of the quadratic term. The measurement in only one polarity of the
field is also more prone to errors that are optical in nature and that do not cancel
out.

The placement of the permanent magnet inside the cryostat also presents dif-
ficulties. It is necessary to consider the temperature dependent magnetic proper-
ties of the magnet when evaluating the measured spectra. The TC of neodymium
magnets is around 580 K [32]. That is well above 350 K, the maximum mea-
sured temperature in this work. However, irreversible loss of magnetization can
occur during prolonged sessions of temperatures higher than 350 K. No such loss
of magnetization has been observed during the measurement. For neodymium
magnets at the temperature of 135 K [33] a spin reorientation transition occurs.
This transition is from a uniaxial material to an easy-cone material with a cant-
ing angle of no more than 30◦ [34]. This reversible transition results in a loss
of magnetic field strength in the out-of-plane direction. The magnetic field as a
function of temperature can be seen on Fig. 7.4.

The magnetic field of the neodymium magnet used in the experiments is
200 mT at room temperature. Such field is not high enough to saturate the
magnetization of the measured samples [25]. This results in the suppression of
magnitude of the MOKE as it is approximately linear with magnetization.

The addition of the cryostat in combination with the magnetic field also intro-
duces the Faraday effect of the fused silica optical window. The Faraday effect is
not constant across the spectrum. For the fused silica optical window this effect
is concave up with a growing gradient towards the UV region and is positive.
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Figure 7.4: Magnetic field of NdFeB and SmCo permanent magnets as a function
of temperature [33].

7.2.1 LSMO/LSAT
The measured Kerr rotation spectra of LSMO/LSAT can be seen on Fig. 7.5.
The influence of the Faraday effect of the window is clearly visible as the mea-
sured spectra exceed the zero position in the UV region in contrast to the room
temperature measurements on Fig. 7.2. This effect is not negligible yet it does
not prevent the analysis of the spectra.

We can see that the amplitude of the spectra scales with temperature. The
scaling is as to be expected, with respect to the reported temperature dependent
magnetic properties of LSMO, with the notable exception of the measurements
with the two lowest temperatures. The 100 K measurement notably differs in
magnitude and partially in spectral shape. The difference in magnitude is most
likely due to the neodymium magnet (see Fig. 7.4). The reported transition of the
magnet is at 135 K. As the 100 K measurement was the first to be carried out the
magnet could have retained a slightly higher temperature than the sample and
therefore would have retained it’s stronger magnetic properties. When the sample
was cooled to 50 K the magnet passed through the spin reorientation transition,
loosing some of it’s magnetic field and thus causing lower overall measured effect
of the sample.

The difference in spectral shape of the 100 K measurement is possibly caused
by the additional transition at 4.3 eV. If the transition is truly paramagnetic
in nature then it should be dependent on temperature [35]. This prominent
difference is also magnified by the magnitude of the external magnetic field which
is at it’s maximum for the 100 K measurement.

The Curie temperature of LSMO/LSAT can be estimated by fitting the tem-
perature dependent Kerr rotation using the function (5.3). As Kerr rotation is
spectrally dependent we fit the average of the absolute values of Kerr rotation in
the spectral region of 2 - 4 eV. This region has been chosen due to it’s lower noise,
lower Faraday effect impact of the windows and overall higher Kerr rotation. The
average of the Kerr effect as a function of temperature and the numeric fit can be
seen on Fig. 7.6. The approximated TC is 356 K which is in good agreement with
the TC of 361 K measured in [25], considering the limited data and the negative
influence of the temperature dependent external magnetic field.
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Figure 7.5: Kerr rotation spectra of LSMO/LSAT plotted for a wide range of
temperatures.
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Figure 7.6: The average of the absolute values of Kerr rotation of LSMO/LSAT
between 2 - 4 eV as a function of temperature. Experimentally obtained data are
fitted with a theoretical model. The theoretical model gives a Curie temperature
of 356 K.
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7.2.2 LSMO/LAO
The measured Kerr rotation as a function of energy for LSMO/LAO can be seen
on Fig. 7.7. The Faraday effect of the windows is well observable on this set of
measurements as the effect of LSMO/LAO is very low at room temperature. Also
well observable is the transition at 4.3 eV. The transition is more pronounced at
lower temperatures further proving it to be paramagnetic.

The temperature dependent measurements of the Kerr rotation on
LSMO/LAO show more substantial differences in the overall magnitudes then
those of LSMO/LSAT or LSMO/STO. That is due to the fact that the magne-
tization of LSMO/LAO saturates at about 0.5 T whereas for LSMO/LSAT and
LSMO/STO saturation occurs at around 0.2 T [25]. Therefore, the changes of
the applied magnetic field with temperature impact the amplitude of LSMO/LAO
more substantially.

The observed magnitudes of the Kerr rotation for low temperatures are much
higher than that of LSMO/LSAT and LSMO/STO. That is in contrast with room
temperature measurements (see Fig. 7.2). The lower effect at room temperature
is caused by the lower Curie temperature of LSMO/LAO with respect to higher
epitaxial strain. Unfortunately we are not able to fit the data and estimate the
Curie temperature due to the temperature dependence of the applied magnetic
field and the spin reorientation transition of LSMO/LAO occurring at 200 K [25].
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Figure 7.7: Kerr rotation spectra of LSMO/LAO plotted for a wide range of
temperatures.
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7.2.3 LSMO/DSO
The sample of thin film LSMO on the DSO substrate has a very small effect across
all the measured temperatures (see Fig. 7.8). Therefore, the undesirable Faraday
effect has a substantial influence on the measured spectra. In order to eliminate
this effect Kerr rotation has been measured at the temperature of 340K where the
sample showed paramagnetic behaviour. Hence, the measured effect at 340 K was
solely due to the Faraday effect and optical imperfections. Therefore, this effect
has then been subtracted from the measured spectra, resulting in almost pure
MOKE signal. As the field of the permanent magnet is temperature dependent
the Faraday effect in the optical windows at 340 K is weaker than that at lower
temperatures, which leaves a small contribution in the displayed spectra.

The resulting spectra have a high level of noise. No spectral change with
temperature can be observed. The magnitude does scale with temperature (see
Fig. 7.9); however, the average of the absolute Kerr effects between 2 - 4 eV
does not exactly follow the theoretical model. That is due to the high noise of
the measurement and small MO effect of the sample. The measurement error of
our set-up under perfect circumstances is lower than 1 millidegree. However, the
temperature dependent measurements have a much higher error. The measure-
ment of LSMO/DSO has an effect so small that we are on the limit of usability of
this set-up. Nonetheless, when averaged out the Kerr rotation can still be fitted
using the relation (5.3). This model gives the Curie temperature of 313 K. Due
to the paramagnetic nature of DSO the Curie temperature of LSMO/DSO can
not be determined using standard magnetometry measurements. Therefore, the
successful use of the surface method of Kerr rotation for the ascertainment of the
Curie temperature of LSMO/DSO is an important step.
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Figure 7.8: Kerr rotation spectra of LSMO/DSO plotted for a wide range of
temperatures.
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Figure 7.9: The average of the absolute values of Kerr rotation of LSMO/DSO
between 2 - 4 eV as a function of temperature. Experimentally obtained data are
fitted with a theoretical model. The theoretical model gives a Curie temperature
of 313 K.
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7.2.4 LSMO/STO
Kerr rotation spectra of LSMO deposited on the STO substrate have been mea-
sured for multiple temperatures between 10 K and 350 K. The sample has been
characterised as paramagnetic at 350 K. This is also supported by literature [25].
The measured Kerr rotation of the sample at 350 K is then solely due to the
Faraday rotation of the window and optical imperfections. Therefore, as with
LSMO deposited on DSO, this measurement was subtracted from the Kerr rota-
tion spectra, thus diminishing the systematic error of the set-up. The resulting
Kerr rotation spectra of LSMO deposited on STO can be seen on Fig. 7.10.

The STO substrate undergoes a structural transition at around 110 K [36]
from cubic (above 110 K) to tetragonal (65 - 110 K) state. This transition changes
the epitaxial strain induced on the thin film of LSMO. In the measured spectra
we observe this transition as a change in the ratio of the magnitudes of the
two minima peaks around 3.6 eV. Bellow 90 K the second peak has a higher
magnitude. At 90 K and above we observe that the first peak has a higher
amplitude. This holds true until about 150 K where we, in agreement with
the room temperature measurements, observe that the second peak has a higher
amplitude. This change in spectral shape is the direct result of the change of the
epitaxial strain caused by the structural transition of the substrate.

The measurements at 10 K and 50 K differ in the UV part of the spectra from
the other measurements. This may be due to additional structural transitions of
STO. It has been observed [36] that STO changes it’s structure to orthorombic
bellow 65 K and to be ”possibly rhombohedral” [36] at 10 K. This spectral change
may also be the result of the transition at around 4.3 eV, which was previously
observed on the compressively strained samples. However, our set-up does have a
high noise to signal ratio above 4.5 eV and the temperature stability of the 10 K
measurement was not very good in part due to the large magnet attached to the
back of the sample. Therefore, this observation can not be passed as conclusive.

We have observed changes in the Kerr rotation spectra of LSMO deposited
on STO at temperatures around that of the structural transition of STO. Un-
fortunately we are unable to comment on the effect this transition has on the
magnitude of the Kerr rotation. That is due to the transition being in the tem-
perature region with the highest changes of the applied magnetic field due to
the magnet’s temperature dependence (see Fig. 7.4). However, for temperatures
above 150 K the changes in the magnetic field are much smaller allowing us to
fit the temperature dependence of the magnitude of the Kerr rotation. The nu-
meric fit of the average of the absolute values of the Kerr rotation between 2.5 -
4 eV gives the Curie temperature of 330 K. The temperature dependence of the
magnitude of Kerr rotation can be seen on Fig. 7.11.
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Figure 7.10: Kerr rotation spectra of LSMO/STO plotted for a wide range of
temperatures.
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Figure 7.11: The average of the absolute values of Kerr rotation of LSMO/STO
between 2.5 - 4 eV as a function of temperature. Experimentally obtained data are
fitted with a theoretical model. The theoretical model gives a Curie temperature
of 330 K.
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Conclusions
The impact of epitaxial strain on thin film LSMO has been studied using magneto-
optical methods. Room temperature measurements of MO spectroscopy on four
differently strained samples showed deterioration of magnetic properties with
increasing epitaxial strain. Two already reported transitions at around 2.4 eV
and 3.6 eV have been observed on all samples. The numeric calculation of the
off-diagonal elements of the permittivity tensor has been carried out from the
measured MOKE and using spectroscopic ellipsometry data from literature. The
spectra of the off-diagonal permittivity elements revealed a third transition at
around 4.3 eV for samples grown under compressive strain.

A wide range of low temperature measurements of the MO Kerr rotation
spectra have been carried out for all four samples. The measured spectra of LSMO
grown under considerable compressive strain on LAO showed clear magnification
of the influence of the third transition at around 4.3 eV. This magnification was
less observable on LSMO grown under small compressive strain on LSAT. The
samples grown under tensile strain showed no conclusive proof of this transition.
The spectra of LSMO grown under large tensile strain on DSO showed no change
in spectral shape with temperature and showed very poor magnetic properties for
all measured temperatures. The spectra of LSMO grown under small tensile strain
on STO showed spectral changes for temperatures around 100 K, where STO
undergoes a structural transition from cubic to tetragonal state, thus changing
the epitaxial strain.

The dependence of the magnitude of the MO Kerr rotation on temperature
was fitted with a theoretical model for three samples, allowing for the approxi-
mation of the Curie temperature (see Table 7.1). The model has proven inap-
propriate for the approximation of the Curie temperature of LSMO deposited on
LAO due to it’s spin reorientation transition at 200 K.

The measurements of the temperature dependent MO Kerr rotation have re-
vealed the potential for a thorough future investigation. The already planned
investigation will focus on the full measurements of the MOKE as well as spec-
troscopic ellipsometry in order to obtain the temperature dependence of the com-
plete permittivity tensor.

Sample LSMO/LSAT LSMO/STO LSMO/DSO
Lattice mismatch m (%) 0.21 -0.74 -1.67
Curie temperature TC (K) 356 330 313

Table 7.1: The estimated Curie temperatures from the MO Kerr rotation tem-
perature dependence for three measured samples.
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[6] M. Bowen, M. Bibes, A. Barthélémy, J.-P. Contour, A. Anane, Y. Lemaitre,
and A. Fert. Nearly total spin polarization in La2/3Sr1/3MnO3 from tunneling
experiments. Applied Physics Letters, 82(2):233–235, January 2003.

[7] Clarence Zener. Interaction between the d-shells in the transition metals. II.
ferromagnetic compounds of manganese with perovskite structure. Physical
Review, 82(3):403–405, May 1951.

[8] James M. Rondinelli, Steven J. May, and John W. Freeland. Control of
octahedral connectivity in perovskite oxide heterostructures: An emerging
route to multifunctional materials discovery. MRS Bulletin, 37(3):261–270,
March 2012.
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A. Attachments

A.1 RCE intensity calculation
Following from (4.9):

Jp = (cos2 c − i sin2 c) sin Ψei∆ − (1 + i) cos c sin c cos Ψ , (A.1)

using the identities

cos2 c + i sin2 c = 1
2(1 + i)(cos(2c) − i) , (A.2)

2 cos α sin α = sin(2α) , (A.3)

we get

Jp = 1
2(1 + i)[cos(2c) sin Ψei∆ − i sin Ψei∆ − sin(2c) cos Ψ] . (A.4)

If we now take the square of the absolute value of (A.4) the prefactor 1/2(1+i)
will be one half and the rest of the equation will be

2I = + cos2(2c) sin2 Ψ + sin2 Ψ + sin2(2c) cos2 Ψ+

+ i sin2 Ψ cos(2c) − sin(2c) cos(2c) sin Ψ cos Ψei∆−

− i sin2 Ψ cos(2c) + i sin Ψ cos Ψ sin(2c)ei∆−

− sin(2c) cos(2c) sin Ψ cos Ψe−i∆ − i sin Ψ cos Ψ sin(2c)e−i∆ . (A.5)

Through some cancellations, the repeated use of (A.3) and the identity

eiα = cos α + i sin α , (A.6)

we get

2I = + cos2(2c) sin2 Ψ + sin2 Ψ + sin2(2c) cos2 Ψ+

− 1
2 sin(4c) sin(2Ψ) − sin(2Ψ) sin(2c) sin ∆ . (A.7)

Using the double angle identities

cos2 c = 1
2(1 + cos(2c)) , (A.8)

sin2 c = 1
2(1 − cos(2c)) , (A.9)
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we can rewrite the intensity (A.7) as

2I = + 1
4(1 − cos(2Ψ))(1 + cos(4c)) + 1

2(1 − cos(2Ψ)+

+ 1
4(1 − cos(4c))(1 + cos(2Ψ)

− 1
2 sin(4c) sin(2Ψ) − sin(2Ψ) sin(2c) sin ∆ . (A.10)

Finally if we rearrange the equation, multiply it by 2 and introduce the am-
plitude of intensity I0 we can rewrite the relation as

I = I0[2 − cos(2Ψ) − 2 sin(2Ψ) sin(∆) sin(2c) − cos(2Ψ) cos(4c) − sin(2Ψ) cos(∆) sin(4c)] .
(A.11)

A.2 MO spectroscopy intensity calculation
The Jones vector for the MO spectroscopy set-up is from (4.16)

J (O) =
[︄
−eiΓΦk cos2 ζ − sin ζ cos ζ
−eiΓΦk sin ζ cos ζ − sin2 ζ

]︄
. (A.12)

If we take the square of it’s absolute value we get

I = |Φk|2 cos4 ζ + sin2 ζ cos2 ζ + ΦkeiΓ cos3 ζ sin ζ + Φke−iΓ cos3 ζ sin ζ+
+ |Φk|2 cos2 ζ sin2 ζ + sin4 ζ + ΦkeiΓ cos ζ sin3 ζ + Φke−iΓ cos ζ sin3 ζ . (A.13)

Using (A.3), the following identity for the sine and cosine function and the
identity for complex conjugate

cos2 x + sin2 x = 1 , (A.14)
z + z = 2 Re{z} , (A.15)

yields

I = sin2 ζ + |Φk|2 cos2 ζ + sin(2ζ) Re
{︂
ΦkeiΓ

}︂
. (A.16)
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