
MASTER THESIS

Matěj Sochor

Semi-supervised Learning from
Unfavorably Distributed Data

Department of Theoretical Computer Science and Mathematical Logic

Supervisor of the master thesis: Mgr. Martin Pilát, Ph.D.
Study programme: Computer Science

Study branch: Artificial Intelligence

Prague 2020

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

I would like to thank my thesis supervisor, Mgr. Martin Pilát, Ph.D., for being
there whenever I needed an advice. I would also like to thank all those who
helped me in my studies, be it by support, example, or great teaching.

ii

Title: Semi-supervised Learning from Unfavorably Distributed Data

Author: Matěj Sochor

Department: Department of Theoretical Computer Science and Mathematical
Logic

Supervisor: Mgr. Martin Pilát, Ph.D., Department of Theoretical Computer
Science and Mathematical Logic

Abstract: Semi-supervised learning (SSL) is a branch of machine learning focus-
ing on using not only labeled data samples, but also unlabeled ones, in an effort
to decrease the need for labeled data and thus allow using machine learning even
when labeling large amounts of data would be too costly. Despite its quick devel-
opment in the recent years, there are still issues left to be solved before it can be
broadly deployed in practice. One of those issues is class distribution mismatch.
It arises when the unlabeled data contains samples not belonging to the classes
present in the labeled data. This confuses the training and can even lead to get-
ting a classifier performing worse than a classifier trained on the available data
in purely supervised fashion.
We designed a filtration method called Unfavorable Data Filtering (UDF) which
extracts important features from the data and then uses a similarity-based filter
to filter the irrelevant data out according to those features. The filtering happens
before any of the SSL training takes places, making UDF usable with any SSL
algorithm. To judge its effectiveness, we performed many experiments, mainly
on the CIFAR-10 dataset. We found out that UDF is capable of significantly im-
proving the resulting accuracy when compared to not filtering the data, identified
basic guidelines as to when to use it and discovered an important property of the
class distribution mismatch issue.

Keywords: Semi-supervised Learning Deep Learning Unbalanced distribution

iii

Contents

Introduction 2

1 Machine Learning 4
1.1 Introduction to Machine Learning 4

1.1.1 Basic Terms . 4
1.1.2 Public Datasets . 6
1.1.3 K-means . 7

1.2 Deep Learning . 9
1.2.1 Convolutional Neural Networks 11
1.2.2 Generative Adversarial Networks 13
1.2.3 Autoencoders . 14
1.2.4 Semi-supervised Learning in Deep Learning 15

2 Unfavorably Distributed Data in Semi-supervised Learning 17
2.1 Problem Description . 17
2.2 Previously Attempted Solutions 19

3 Unfavorable Data Filtering 22
3.1 Findings and Requirements . 22
3.2 Basic Design . 22
3.3 Feature Extraction . 24
3.4 Similarity-Based Filter . 25
3.5 Diagram . 27

4 Experiments and Their Evaluation 30
4.1 Source Code . 30
4.2 Experimental Setup . 30
4.3 Baseline Experiments . 32
4.4 Filtration Experiments . 34
4.5 Experiments with Filtered Data 36
4.6 Class Distribution Mismatch Grid 38
4.7 Comparison to Oliver et al. 40
4.8 SVHN Experiments . 42

Conclusion 43

Bibliography 45

List of Figures 48

List of Tables 50

A Attachments 51
A.1 Attached Code . 51

1

Introduction
Deep learning is a branch of machine learning using neural networks composed
of many layers. Those layers identify more and more complex features of the
input, until the last one, which is used to solve the task at hand, such as clas-
sifying the input into one of the predetermined classes. A decade ago, advances
in hardware and neural network learning techniques finally made deep learning
usable in practice, leading to a boom that revolutionized machine learning and
allowed computers to solve issues that either had no automatic solutions before
or the solutions available performed poorly. Image recognition, machine trans-
lation and many other areas suddenly acquired completely new state of the art
models. Moreover, deep learning is developing extremely quickly, bringing new
and exciting results every few months.

However, despite all the good it brings, it still has issues that often prevent
its use in practice. Principal among them is the need for large amounts of labeled
data. If there are insufficient quantities of such data, problems such as overfitting
severely degrade performance of deep learning models, often up to the point
of making deep learning useless. While sometimes it might be easy enough to
procure more labeled data, in other cases it might be very expensive or downright
impossible to do so. To solve this issue, various semi-supervised learning (SSL)
algorithms have been developed. Unlike supervised learning, SSL uses not only
the labeled data, but also unlabeled data, which is generally far easier to come
by. It has been shown that SSL is capable of improving the results when we
do not have enough labeled data for supervised learning. That might be taken
as evidence that the problem is solved. However, SSL presents its own set of
problems which severely limit its ability to perform well in practice.

One of those problems is its diminishing performance when the labeled and
unlabeled data have different distributions. That can happen in a lot of different
ways, from those well-known and studied in supervised learning, such as one of
them having an unbalanced class distribution, up to those that are exclusive to
SSL, for example the unlabeled data containing samples that do not belong to
any of the classes from labeled data. The last issue mentioned is called class
distribution mismatch. It has only been identified recently and has not been
studied very much yet, even though it is a serious and very realistic issue. The
goal of this thesis is to make SSL more robust to the issue of different distributions
of labeled and unlabeled data. We decided to focus specifically on the class
distribution mismatch issue, study what is known about it, add our own findings
and design a technique mitigating the issue.

The thesis can be divided into two distinct parts - a theoretical part and
a practical part. The purpose of the theoretical part is to provide information
necessary to understand the rest of the thesis and to sum up information on the
issue from available literature. This is done in the first two chapters of the thesis.
The first chapter describes general machine-learning knowledge, while the second
one describes the class distribution mismatch issue, what is known about it and
how others have tried to solve it. In the practical part, on the other hand, we are
concerned with identifying requirements for our solution of the issue, designing it
and then evaluating its effectiveness in a series of experiments. It spans the other

2

two chapters. In the third chapter, we design our own solution, a filtering method
trying to filter out data belonging to irrelevant classes before the actual training
takes place. In the last chapter, we describe results of many different experiments
and draw conclusions about the effectiveness of our solution and about the issue
itself.

3

1. Machine Learning
Since this thesis investigates and tries to solve a problem in a specific branch of
machine learning, we have to lay the theoretical foundations first, before delving
into studying the problem itself and the proposed solution. Therefore, this chap-
ter introduces basic concepts of machine learning and then focuses specifically on
its areas needed to understand the rest of the thesis.

A large portion of information in this chapter comes from one of three books:
Chapelle et al. [2006], Alpaydin [2014] or Goodfellow et al. [2016]. To not repeat
ourselves constantly, we will not state these as sources in the text. Therefore,
keep in mind that unless specified otherwise, these books or our own observations
are the source of any of the stated information.

We should also note that the information present in this chapter is in no way
exhaustive, since for the sake of brevity, we only focus on knowledge necessary to
understand the rest of this thesis.

1.1 Introduction to Machine Learning
In the broadest meaning of the term, machine learning encompasses all algo-
rithms that use knowledge automatically extracted from data or experience to
improve their performance. That usually means creating a mathematical model
and setting its parameters according to the available data. This allows us to solve
many tasks for which we have no exact algorithm or the exact algorithm requires
too much computation to be practical. The process of setting the parameters is
often called training and the data used to set those parameters is referred to as
training data. One update of the parameters is called a step, while a period when
the entire training data is used is called an epoch. Lastly, we will refer to each
instance in the training data as a sample.

1.1.1 Basic Terms
There are multiple types of machine learning tasks. Two of the most common
are called classification and regression. A classification task consists of taking
an input sample and assigning it to one of multiple predetermined classes. An
example of a classification task could be deciding whether the animal in a picture
is a cat or a dog. Output of the model in a classification task should be a decision
to which class the sample belongs (or said in other words, what its label is), a
regression task requires determining a number. This could, for example, mean
determining a person’s age based on a picture of their face. In this thesis, we
concern ourselves with classification.

One important thing to note about classification is that the models we usually
use do not output the decision directly, but rather a probability distribution over
the possible classes. For example, for the aforementioned case an output of the
model could be that with a probability of 80%, there is a dog in the picture,
and with a probability of 20%, there is a cat. The actual decision takes place
afterwards if needed, based on which class had the highest probability.

4

Another basic way to divide machine learning tasks is based on the data we
use. Both classification and regression belong to the so-called supervised learning.
In supervised learning, the training data consists of pairs, each pair containing the
input and the desired output. In other cases, we might only have the inputs and
want to find some useful knowledge about the structure of the data. This type
of machine learning tasks is called unsupervised learning and some examples of
when it is used include clustering, outlier detection or dimensionality reduction.

Between the supervised and unsupervised learning types lies a third type,
called semi-supervised learning (SSL). In this case, for some samples, we only
have the input and so we call them unlabeled data, while for others, we have
the desired output as well as the input and so we call them labeled data. When
used correctly, the inclusion of unlabeled data in the training process can increase
quality of the model’s outputs, which is especially useful if we have insufficient
amount of labeled data for proper supervised training. SSL is the type of machine
learning we will primarily be concerned with for the rest of the thesis. Additional
information about it, as well as a description of some of its algorithms, can be
found later in this chapter.

For supervised learning to work, the task at hand must meet certain assump-
tions. One of the most popular ones is called the smoothness assumption. For it
to be met, it must hold for any two data samples that if their inputs are similar,
their outputs should be similar as well. This assumption is absolutely necessary
for both supervised learning and SSL, because without it, training data samples
provide no indication to which class a new unseen sample should belong.

Once we have a model, we often need to test how well it performs. In classi-
fication tasks, this is commonly done by measuring the accuracy of its outputs.
However, because the model set its parameters according to the training data,
metrics measured on the training data are very often skewed. In severe cases,
when the final model fits the training data too well, often to the detriment of its
accuracy on unseen data, we talk about a problem called overfitting. To get more
accurate metrics we usually keep a small portion of the available data apart. This
data is called a test set or test data and is only used for this purpose at the end
of the model-creating process. However, we might need to measure the model’s
performance even during the process in order to pick a model type or properly
set its hyperparameters (parameters of the model not set during training). For
this reason, another small portion of the data is customarily separated, called a
validation set or validation data. Accuracies computed using training data, val-
idation data and test data are called training accuracy, validation accuracy and
test accuracy respectively. All the available data put together is referred to as a
dataset.

In a research paper about a new machine learning technique reporting only its
test accuracy is by itself usually not enough to properly illustrate its performance
because there would be nothing to compare the figure to. For that reason, one or
multiple baselines are often defined. A baseline is either a simple algorithm some-
how solving the issue or, more often, one of the previously invented algorithms.
In SSL, we can talk about a supervised baseline, which is often the same model,
but trained by a supervised learning algorithm using only the available labeled
data. Once we have measured performance metrics of the baseline, we can then
compare metrics of our technique to it and prove that we outperformed it, which

5

Figure 1.1: Examples of images from the SVHN dataset.
.

Figure 1.2: Sample image from the ImageNet dataset.

is often what researchers are trying to achieve.
In this thesis, we will mainly be concerned with image recognition. Image

recognition is the task of recognizing and identifying objects in an image. Its
algorithms can be used for many purposes, from automatic extraction of text from
a scanned page, through face recognition up to generating automatic descriptions
of images.

1.1.2 Public Datasets
Some datasets have been made publicly available by various researchers and or-
ganizations. This allows researchers to easily compare their approaches by simply
performing their experiments on and reporting results for a specific dataset or
datasets often used by their colleagues. There are many such datasets, especially
if we take into account all the different areas machine learning has been applied
in. The ones mentioned in the rest of this thesis are:

6

MNIST (LeCun and Cortes [2010]) is a simple image recognition dataset, con-
taining small grayscale images of handwritten digits. It has been very pop-
ular in the past but it is too simple to evaluate modern models.

SVHN (Netzer et al. [2011]) is similar to MNIST in that it contains images
of digits, but it poses a far more difficult problem. Its images come from
photos of real house numbers. Due to that they contain colors, the digits
can be tilted and there could even be irrelevant additional digits in the
image. Several examples of the images from the SVHN dataset can be
found in figure 1.1.

80 million tiny images (Torralba et al. [2008]), as the name suggests, contains
almost eighty million small (resolution of 32x32) images collected from the
internet. Each image is loosely labeled with one of seventy-five thousand
nouns.

CIFAR-10 and CIFAR-100 (Krizhevsky [2009]) are subsets of the previous
dataset, which have been manually labeled. CIFAR-10 contains ten classes,
six of them being animals (bird, cat, deer, dog, frog and horse) and the
remaining four being means of transportation (airplane, automobile, ship
and truck). It contains sixty thousand images, or six thousand for each
class. CIFAR-100 has the same overall number of images, but they are
divided into a hundred classes, containing not only animals and means
of transportation, but also plants, man-made things small and large and
natural sceneries. Several examples of CIFAR-10 images can be seen in the
top row of figure 4.3.

Open Images Dataset (Kuznetsova et al. [2020]) is a huge labeled dataset con-
taining nine million images and almost twenty thousand possible classes.
Moreover, it also contains large amounts of object location annotations (a
bounding box and object class), relationships between objects (e.g. “woman
playing guitar”), object properties (e.g. material), object actions and much
more. Thanks to this abundance of information about the images, many
different tasks can be studied using this dataset and even more importantly,
they can be studied jointly, on the same data. Its images have a far higher
resolution than the CIFAR-10 and CIFAR-100 images, but when scaled
down they are very similar, as illustrated by figure 4.5.

ImageNet (Russakovsky et al. [2015]) is another large dataset, containing mil-
lions of images belonging to more than a hundred thousand hierarchically
organized classes. It is very popular as a benchmark in modern research
papers. Just as images of the Open Images Dataset its images are available
in higher resolutions. Larger images mean that larger models are needed to
process the data, but they also provide more information to solve the clas-
sification task. To illustrate the detail available to the models, we provide
figure 1.2.

UrbanSound8k (Salamon et al. [2014]) is a small audio dataset composed of
less than nine thousand short sound recordings of urban sounds. Each
recording is labeled with one of ten classes, for example “jackhammer”.

7

Centroid

Data point

Cluster
borders

Figure 1.3: Example of the k-means end state. The positions of the centroids
and the cluster borders are only approximate.

1.1.3 K-means
As mentioned earlier, clustering is one of the tasks for which unsupervised learning
can be used. The aim of clustering is to find groups of related data inputs, for
example, in order to better understand the structure of the data. There are
various clustering algorithms, but for this thesis we only need one of them — the
k-means algorithm.

K-means is a simple yet very useful algorithm. Its input are the data samples
and a number k telling it how many clusters it should find. At the beginning of
the algorithm, k points in the feature space (space whose dimensions are features
of the data samples) are chosen, either randomly or using some heuristic. Those
points are called centroids. Then the algorithm enters its iterative phase, repeat-
ing the same set of steps until a condition is met, for example for a predefined
number of iterations. At each iteration, every data point (one of the data inputs
projected into the feature space) is assigned to the closest centroid. Every cen-
troid’s coordinates are then recalculated as a mean of the coordinates of its data
points. At the end, the centroids should roughly represent clusters of data in the
feature space. An example of such a result can be seen in figure 1.3.

While k-means is often useful, it can also easily fail to capture the correct dis-
tribution of clusters in the data. One of the possible reasons for such a failure is
the curse of dimensionality. The curse of dimensionality is a well known problem
that arises when we are dealing with high-dimensional data. Volume increases
exponentially with the number of dimensions, which means that we need exponen-
tially more data to properly represent data density and, even worse, differences

8

f

x0=1

x1

xn

wn

w1

w0

.

.

.

Figure 1.4: Illustration of artificial neuron, along with the formula to compute its
output. Inputs are marked x0 to xn, input weights w0 to wn, activation function
f and the output y.

of distances between pairs of data points become minuscule, making them far less
useful in any similarity-based algorithm.

1.2 Deep Learning
Artificial neural network (ANN) is a type of machine learning model that takes
inspiration from nervous systems of living beings. Just as our nervous system is
composed of interconnected neurons, ANN is composed of small processing units,
also called neurons. Each of these artificial neurons typically has a number of
weighted inputs, an activation function and one output which can serve as an
input for any number of other neurons. The value on the output of each neuron
is computed by applying its activation function (for example a sigmoid) to the
sum of its weighted inputs. The artificial neuron, along with the computation,
is illustrated by figure 1.4. Together the input weights from all the neurons
constitute the ANN’s parameters. The neurons are usually composed in layers,
with the first layer receiving inputs from the dataset and the last layer providing
the ANN’s outputs. When a new input enters the network through the first layer,
it is processed by the layers one after the other, each getting its inputs from the
outputs of the previous layer, until we reach the output layer, whose outputs can
for example define the probability distribution over classes in a classification task.

While the initial dreams of being able to create a real intelligent machine did
not pan out and the ANNs had several severe setbacks during the years, they
managed to overcome these setbacks and currently represent the state of the art
in many areas, such as image recognition or computer translation. They managed
this thanks to the idea of deep learning and the increasing computational power
that allowed this idea to manifest in reality. The basic idea of deep learning is
fairly simple — make a network with many layers, where each layer extracts more
and more abstract concepts from the outputs of the previous one, up to the last
one, which will use the most abstract concepts to solve the task at hand, be it a
classification task, a regression task or anything else. To give an example, when

9

the ANN’s task is to recognize digits, one layer could recognize edges, the next
one corners, the one after that basic shapes such as half circle, up to the last one,
which would decide what digit it is actually seeing.

While the basic idea is very simple, training the deep ANNs is complicated.
Modern training algorithms are usually variations of the backpropagation algo-
rithm. We will not go into details of the algorithm because its internal workings
are not important for understanding this thesis but its basic principle is that an
input is passed through the network to get an output, the error on the output
is calculated (usually the difference between the actual output and the desired
output) and then, as the name suggests, propagated backwards through the net-
work, calculating gradient of the error with respect to the weights in the process.
This gradient is then used to change the weights and make the error lower. The
function calculating the error is often called a loss function or an error function
and it can contain other terms, aside from the difference between actual and de-
sired output. Those other terms are often used to force some desirable property
on the ANN, such as minimizing the amount of neurons it needs to be active for
any one input sample.

While this may still seem fairly simple, training deep ANNs is rife with is-
sues, such as the vanishing gradient problem. Vanishing gradients occur in ANNs
with many layers because some activation functions tend to have gradients of
a magnitude smaller than 1. During the calculations of gradients in layers fur-
ther from the output, these small gradients from the later layers are multiplied,
causing the computed gradients to exponentially quickly move towards zero and
thus preventing the layers closer to the input layer from effectively learning. To
combat this problem and many others, improvements have been devised, such
as more sophisticated variations of the backpropagation algorithm, e.g. Adam
(Kingma and Ba [2015]), or even unique architectures, such as convolutional neu-
ral networks (CNNs). However, the problem of reliably training ANN’s is still
very much open.

Another one of the ANN training issues relevant for this thesis is the afore-
mentioned overfitting. It is very common in deep neural networks because they
tend to have a lot of parameters and thus have high capacity (the higher the
capacity, the more complex functions can be modelled using the model). That
makes it easy for the network to memorize the training data without regard for
how the network behaves in the areas between them, where the unseen examples
we need the ANN to work well for lie. One approach to prevent overfitting is
to choose appropriately complex model. However, this can be very difficult and
imprecise. Another common approach is called regularization. When perform-
ing regularization, we usually penalize the model complexity during training, for
example by adding a loss term penalizing weight magnitudes.

Another popular way to combat overfitting and generally improve training
of ANNs is batch normalization (Ioffe and Szegedy [2015]). Batch normalization
tries to solve a problem called internal covariate shift, which refers to the distri-
bution of inputs of each layer changing whenever the parameters of the previous
layer change. This makes it harder for the layers to learn because they have to
constantly adapt to the changes of their inputs. To mitigate the issue, batch nor-
malization does exactly what the name suggests — it normalizes outputs of each
layer using statistics computed over its outputs on all the data currently being

10

Figure 1.5: An example of basic CNN design, including examples of what parts
of the previous layer are used as input. Generated using a tool made by LeNail
[2019].

processed (a mini-batch) during the training. The actual normalization formula
used, as summed up by Zajac et al. [2019], is

ĥ = α
h − µ(h)

σ(h) + β,

where h are the outputs of the layer, ĥ are the outputs after normalization, α
and β are learnable parameters and µ(h) and σ(h) are the statistics (mean and
standard deviation) computed on the current mini-batch during training or on
the entire training data after the training.

1.2.1 Convolutional Neural Networks
The previously described ANN architecture is called fully connected neural net-
work. Fully connected, because every neuron gets its input from all the neurons
in the previous layer. That makes sense when there are no spatial relationships
between the features, for example when the input is a vector of figures about a
person, like their height, weight, blood pressure and so on. However, sometimes
we know there is some local structure in the network input. A typical example of
this would be in image recognition, where we know that the pixels next to each
other are more likely to be part of the same object and therefore are far more
relevant to each other than the pixels from the other side of the image. Therefore,
we might want to restrict the inputs of each neuron just to those neurons that
represent locations close to the location this neuron represents. Moreover, when
we are looking for some feature in the image, for example an edge, there is usually
no reason to do it differently in different locations. An edge at the top of the
picture will be the same as an edge at the bottom. Therefore, we can make all
the neurons looking for the same feature share weights.

Together these two improvements constitute the difference between a fully
connected neural network and a convolutional one. Switching a fully connected
network for a convolutional neural network (CNN) drastically reduces the number
of parameters along with explicitly forcing the neurons to use the local informa-
tion, making the training much easier when there is a local structure to exploit.

11

Figure 1.6: Basic types of residual blocks used in residual networks.

Thanks to these advantages, the invention of CNNs revolutionized image recog-
nition, heavily contributing to the current success of deep learning.

The typical basic architecture of a CNN consists of a series of convolutional
layers of gradually decreasing dimensions, which look for more and more complex
features (for example, first layer could be looking for edges, second layer for
circles, third layer for faces and so on), until we reach a small number of fully
connected layers that combine the most complex features to decide what the
output should be. A convolutional layer is a combination of a number of feature
maps. Each feature map is composed of neurons arranged in a grid, with all
neurons within the same feature map sharing the same weights and getting input
from the appropriate locations in all the feature maps of the previous layer. By
using multiple feature maps, a layer can look for more than one type of a feature
and thus, the next layer can combine multiple simpler features when searching
for a more complex one. The basic CNN architecture is illustrated by figure 1.5,
including the gradually decreasing height and width of the grid and increasing
depth of the layers (i.e. number of feature maps). In reality, CNNs tend to be
more complicated than that, but aside from the specific model described in the
next paragraphs, we will not go into more details as they are irrelevant for this
thesis.

Wide Residual Networks

One particular type of convolutional networks we are concerned with are the wide
residual networks (Zagoruyko and Komodakis [2016]), or WRNs for short. These
are a variant of an earlier type called residual networks (ResNets), proposed by He
et al. [2016].

Theoretically, adding more layers to a network should always lead to the same
or better performance, since even if the additional layers were not beneficial,
they could always perform identity mapping and thus not change the outputs
and achieve the same performance as the shallower network. He et al. [2016]
observed that this is not what is happening. In practice, adding more depth to
CNNs often led to diminishing performance. Initially, two obvious suspects were
identified, the aforementioned overfitting and the vanishing gradient problem.
As to overfitting, experiments showed that the added depth decreases not only
the test accuracy, but also the training accuracy, which would be increasing if

12

Training
data

Random
noise Generator

Discriminator

Fake
Image

Real

Fake

Figure 1.7: Basic training schema of a GAN.

overfitting had really been the cause. He et al. [2016] also performed experiments
looking for symptoms of the vanishing gradient issue, but they concluded that as
long as the network includes batch normalization, vanishing gradient should not
be the culprit.

In order to solve the issue of performance diminishing with depth, He et al.
[2016] decided to add residual connections. A residual connection is a connection
within the neural network allowing it to easily skip some layers when processing
inputs. He et al. [2016] added them in such a way that most of the network ended
up being composed of residual blocks. Each residual block consists of several layers
that can be bypassed using a residual connection. Learning an identity mapping
in a residual block should be easy because while outputs of the last layer in the
residual block are added to the values in the residual connection, the network
can learn to always output zero from the layers. Several examples of different
residual blocks can be seen in figure 1.6. According to the results of He et al.
[2016], adding the residual connections helped with the issue, finally allowing
convolutional networks to benefit from having a large number of layers.

However, Zagoruyko and Komodakis [2016] argue that the main part of the
ResNet’s success comes from the residual connections rather than the depth and
that the same performance could be achieved using a smaller number of wider
residual blocks (i.e. residual blocks whose convolutional layers have more feature
maps). While not decreasing the performance, this would have the added benefit
of faster training. Their results supported their assumptions, showing that wider
residual networks can outperform even many times deeper narrower ones.

Later in this thesis we will be using a model, whose architecture is called
WRN-28-2. This notation means that it is a residual network 28 layers deep and
its convolutional layers have twice as many feature maps as the convolutional
layers of the original ResNet would have.

1.2.2 Generative Adversarial Networks
Another important deep learning architecture we should mention is called Gen-
erative Adversarial Network (GAN) and it was proposed by Goodfellow et al.
[2014]. A GAN consists of two models, a generator and a discriminator. A gen-
erator is a model that should take random noise on its input and produce an
output that is similar to the training data. A discriminator on the other hand
takes a data sample on its input and decides whether the sample is from the same

13

Input

Internal
representation

Output

Encoder Decoder

Figure 1.8: Diagram of the basic autoencoder structure.

distribution as the training data or not. During the training, these two models
compete with each other, with generator learning to fool the discriminator and
the discriminator learning to distinguish between real training data and data gen-
erated by the generator. This training schema is illustrated by diagram 1.7. Since
this process does not require the labels, GANs can be trained in an unsupervised
fashion. Once the training is done, the generator can be used to create artificial
data samples.

GANs have been very successful in generating realistic images and many vari-
ants and improvements of the original architecture and training process have been
developed, but their usability is still severely limited by several problems with
their training, described for example by Metz et al. [2017]. The generator might
learn to generate only a very little variety of outputs, for example only one out
of all the classes in the data. This problem is called mode collapse. Even if it
does not happen, the training might not converge and even when it does, it is no
guarantee that we get high quality outputs out of the generator. Moreover, the
primary way to evaluate the outputs at the end of training is a human judgement
of the generated data, unlike for example in supervised learning, where we can
calculate accuracy and other metrics. All this makes it very difficult and expen-
sive to train GANs, needing not only computational resources, but also human
supervision.

1.2.3 Autoencoders
One of the tasks we often find ourselves solving in machine learning is called
dimensionality reduction. Unsurprisingly, that means decreasing the number of
features of the data. One of the reasons we try to do that is that it often decreases
both time and space complexity of the training and of running the trained model,
along with making the training easier in general. Another reason is that it might
allow us to avoid the curse of dimensionality, which makes it very important for
the method we designed in this thesis.

There are two main approaches to dimensionality reduction — feature selec-
tion and feature extraction. Feature selection simply picks the dimensions of the
inputs that give us the most useful information. Feature extraction, on the other
hand, processes the data and creates a brand new set of features. There are many

14

ways feature extraction can be performed. One of those ways is by using a neural
network architecture called an autoencoder.

An autoencoder is composed of two parts, an encoder and a decoder. An
encoder takes the input and transforms it into an internal representation, while a
decoder takes this internal representation and tries to reconstruct the input data
on the output. This basic structure is illustrated by figure 1.8. Thanks to the fact
that an autoencoder is simply learning to reconstruct its input on the output, it
can once again be trained in an unsupervised fashion, without the need for any
labels.

Simply training such a network to perfectly reconstruct its input would be
pointless, of course. However, if we impose restrictions on the autoencoder, pre-
venting it from learning a perfect identity function, it will be forced to extract
the important information and throw away the rest. One such restriction could
be limiting the internal representation to a smaller dimensionality than the input
has. This type of an autoencoder is called undercomplete autoencoder. When
training an undercomplete autoencoder, we have to make sure that its capacity is
sufficiently low because otherwise it will simply learn the identity function even
if it has fewer dimensions to work with. An example of a realistic undercomplete
autoencoder architecture can be seen in figure 4.2. Once we are done training an
undercomplete autoencoder, we can use the low-dimensional internal representa-
tion as the new data features and thus decrease the data dimensionality while
keeping most of the information.

There are multiple other types of autoencoders. Aside from feature extraction,
they can also be used for denoising the data, as a part of some SSL algorithms
or even to generate new data samples similar to the ones from the training data.

1.2.4 Semi-supervised Learning in Deep Learning
There are many different SSL algorithms, even if we only restrict ourselves to the
ones applicable to deep learning, and more are being developed right now. Some
are mentioned in the next chapter, where we investigate methods specifically rel-
evant to the problem we chose to tackle. Aside from those, there are several more
SSL algorithms that we mention and show some results for (Virtual Adversarial
Training, Pseudo-Labeling and Π-model) or use in our own experiments (Mean
Teacher) and therefore we should succinctly describe them.

Pseudo-labeling (Lee [2013]) is the simplest of the four. It uses the model
to predict classes for the unlabeled data, calling those predictions pseudo-labels.
Both the labeled data and the unlabeled data with the pseudo-labels are then used
for supervised learning weight updates, with the pseudo-labels being recomputed
after each update.

The other three (described for example by Oliver et al. [2018]) are more sophis-
ticated. They belong to the consistency regularization family of SSL algorithms.
Algorithms of this family generally try to prevent the model from changing its
output significantly when the data is subjected to a small realistic change. This
is done by adding a new unsupervised (meaning it does not need the labels) term
to the loss function. For the rest of the thesis, whenever we speak of data that
is used for consistency regularization, we mean specifically for this unsupervised
loss term.

15

Π-model is the simplest of the three. It requires the model to be stochastic,
meaning that it can produce different outputs for the same input. This
is often true about ANNs during training thanks to the use of stochas-
tic regularization techniques. Π-model adds a loss term, which penalizes
the differences in outputs of different passes of the same data through the
network.

Mean Teacher (Tarvainen and Valpola [2017]) is more complicated. It does
not rely on the stochasticity of the model. Instead, it keeps an exponential
moving average of the model weights throughout the training and penalizes
differences between output of the model with the current weights and the
target defined as the output of the model with the exponentially averaged
weights.

Virtual Adversarial Training (VAT) directly estimates what small change
to the current input would change the output of the model the most and
then penalizes the difference of the output for the original input and the
output for the changed input.

16

2. Unfavorably Distributed Data
in Semi-supervised Learning
Whereas the previous chapter contains fairly general information, this one focuses
specifically on the titular problem of this thesis. Firstly, it specifies the problem
we are trying to solve, and secondly, it investigates previously attempted solu-
tions.

2.1 Problem Description
There are many ways the labeled and unlabeled data can have different distribu-
tions. Just to give a few examples, the unlabeled data might not contain some of
the classes from the labeled data or one or both of their distributions might not
be properly balanced or the unlabeled data might contain all the classes, but only
contain a specific part of the feature space. Trying to solve multiple issues at once
could lead to extremely difficult interpretation of the results or require a number
of experiments that would take too much time with our limited computational
resources. Because of that, we decided to only tackle one specific issue.

Among other things, Oliver et al. [2018] investigate the effect of differing
distributions of labeled and unlabeled data on performance of several common
semi-supervised learning algorithms. More precisely, they observe that when a
significant portion of unlabeled data belongs to classes not present in the labeled
data (and therefore irrelevant for the task being solved), accuracy of classifiers
trained by these algorithms suffers, even to the point of being worse than a
classifier trained purely by supervised learning using only the available labeled
data. This is precisely the problem we will be trying to solve. The issue of
differing distributions of labeled and unlabeled data with respect to classes is
often referred to as class distribution mismatch or class mismatch in literature.
Therefore, we will do so from now on too. For the sake of conciseness, we will
from now on refer to the classes we are classifying into as favorable classes, to all
the other classes as unfavorable classes and to the data belonging to those two
types of classes as favorable and unfavorable data respectively. Another important
term is mismatch rate, defined as:

mismatch rate = | unlabeled unfavorable data |
| unlabeled unfavorable data | + | all favorable data |

It will be given either as a percentage (e.g. 75%) or as a decimal number (e.g. 0.75).
While this issue has to be artificially simulated when working with publicly

available datasets commonly used to judge quality of machine learning algorithms,
it is definitely a realistic one in practice. Imagine needing a classifier able to dis-
tinguish various forest terrestrial animals in images. To obtain the data necessary
to train the desired classifier, you set up camera traps triggered by movement.
After some time, you collect the images and pay someone to label a portion of
them, wanting to use a semi-supervised learning algorithm to get your classifier
without the expense of labelling all the images. However, soon you find out that
the cameras were triggered not only by terrestrial animals, but also by humans

17

passing by, birds, bats, large insects, or even branches of the trees swaying in the
wind. In the labeled data, all these cases can be manually filtered out, but doing
so for the unlabeled data would be almost as labor intensive as actually labelling
all of it and therefore too expensive. Even though this issue might sometimes be
solvable by simply improving the data collection practices, at other times that
might be impossible or we might even receive the data without being able to in-
fluence the data collection at all. Therefore, semi-supervised learning algorithms
should be robust in respect to this problem.

Effects of class mismatch are further studied by Look and Riedelbauch [2019].
Whereas Oliver et al. [2018] worked with CIFAR-10 (for a description of their
experimental setup, see section 4.2), Look and Riedelbauch [2019] perform their
experiments on two different datasets — MNIST and UrbanSound8k. They ob-
serve the detrimental effects of class mismatch while performing experiments on
MNIST, but observe little or no effects with UrbanSound8k. They conclude that
adding unlabeled data that does not necessarily belong to the classes that are
being classified into can be beneficial, but whether it will be beneficial or harmful
in the end might depend on how similar the additional classes are to the classes
we classify into. Therefore, if we could ensure that the additional data (even if
irrelevant strictly speaking) is very similar to the data we want to classify, we
might be able to negate the detrimental effects. Experiments done by Zajac et al.
[2019] seem to further support this. They show that the detrimental effects of
class distribution mismatch heavily depend on the particular dataset and task.
At first, they study the effects on CIFAR-10, just as Oliver et al. [2018] did.
The results there are very similar, again showing that applying SSL algorithms
to a dataset with high mismatch rate can lead to results worse than the super-
vised baseline had. Then they perform experiments for two ImageNet subsets.
In the first case, they randomly select twenty of the ImageNet classes to use for
the labeled dataset. In this case, SSL significantly outperformed the supervised
baseline even at mismatch rates of 75% and 100% (meaning there were very little
or no favorable unlabeled data). This confirms that even completely irrelevant
unlabeled data can theoretically be beneficial to the training process. In the
second case, they picked eight animal classes and eight non-animal classes and
only used the animal classes as favorable data. There, the results were similar
to the CIFAR-10 results, again showing severe detrimental effects of class mis-
match, with the supervised baseline outperforming SSL from a mismatch rate of
50% upwards. Since in this case, they ensured that the unfavorable classes were
very different when compared to the favorable ones, while in the previous case,
there could be many unfavorable data samples similar to the favorable data, this
experiment seems to support the conclusion that the magnitude of the difference
between favorable and unfavorable data matters very much to the final results.

Another research paper with important information for this thesis is Uesato
et al. [2019]. While they explore adversarial robustness (robustness against ex-
amples specifically designed to confuse the model), their conclusions might still
be valid even for non-adversarial setting, such as ours. They show that even
though using data from the CIFAR-10 dataset as unlabeled data is better than
using images from the 80 Million Tiny Images dataset, the second mentioned do
still help when they are properly filtered. However, for this filtration, they use
a classifier trained on the whole CIFAR-10 dataset, which is not applicable for

18

this thesis, because we do not want to count on having so much labeled data.
Nevertheless, it suggests that accurately filtering the data should help with the
issue.

While Oliver et al. [2018] show class mismatch causing problems in VAT,
Mean Teacher, Pseudo-Labeling and Π-model, it is not exclusive to these algo-
rithms. Kaizuka et al. [2019] show its detrimental effects on their proposed SSL
method, ROI regularization. Chen et al. [2020] perform experiments similar to
the ones done by Oliver et al. [2018], but add Temporal Ensembling (Laine and
Aila [2017]), Stochastic Weight Averaging (Athiwaratkun et al. [2019]) and their
own algorithm, called Uncertainty-Aware Self-Distillation (UASD), whose design
and results will be described in the next section. The detrimental effects are
present in some form and degree for all the mentioned algorithms and almost
always follow the logical trend of worsening with increasing mismatch rate, but
there are definite differences in how the algorithms are influenced by the issue,
especially when looking at results across several datasets or tasks. For example,
one algorithm might achieve better results than another on one task, even beat-
ing the supervised baseline, but get outperformed on another task. Even their
behavior with regards to increasing mismatch rate varies. One algorithm might
experience the highest performance degradation when going from 25% to 50%,
while another going from 50% to 75%. This suggests that in order to achieve
the best possible results, application of specific algorithms or other methods of
solving the issue should depend on properties of the specific task.

Not much information on what precisely causes the issue can be found. Chen
et al. [2020] claim that the detrimental effects of class mismatch are mainly caused
by an overconfidence issue of deep neural networks which in this setting causes
models to confidently assign unfavorable data to one of the favorable classes,
leading to far more significant incorrect influence on model weights than if the
model was unsure about the label. This claim is supported by their own results
which show that an algorithm designed around keeping these predictions less
confident suffers from the accuracy deterioration far less than algorithms suffering
from the overconfidence issue. Nevertheless, the assertion needs to be tested on
more tasks and more types of SSL algorithms, especially since it is currently only
empirically backed for image data.

2.2 Previously Attempted Solutions
Even though it does not seem surprising that having a classifier learn from irrele-
vant data can worsen its performance, the problem appears to be understudied by
researchers so far as mentioned for example by Oliver et al. [2018]. Nevertheless,
some efforts to create semi-supervised learning algorithms robust in respect to
this issue can be found in literature. In this section, we describe these attempts
to arrive at a solution. Aside from those mentioned in the following paragraphs,
we found several research papers claiming their model should be more robust in
relation to class mismatch than others. However, those claims were not followed
upon in those papers, which is why we decided not to include them in this section,
since without results the claims cannot be verified and no information usable for
the rest of the thesis can be extracted.

The most common attempts at solving the problems caused by class distri-

19

bution mismatch we identified during our investigation of the available literature
resemble the self-learning SSL approach. As described by van Engelen and Hoos
[2019], self-learning consists of iteratively training a classifier by supervised train-
ing and, in each iteration, adding some of the unlabeled data samples classified
by the current classifier to the labeled data. When used as a solution for class
mismatch, the data samples are not added to the labeled data. Instead, they are
still used as unlabeled data, for example for consistency regularization, but they
are only used when the current classifier is confident enough that they belong to
one of the favorable classes. Effectiveness of this approach is examined by Nair
et al. [2019]. They call their implementation out-of-distribution masking and they
compute the required confidence level on each training step so that a predefined
percentage of the unlabeled data is used. Results of their experiments with exper-
imental setup similar to the ones performed by Oliver et al. [2018] show that when
using this approach, their semi-supervised learning algorithm (RealMix) is always
better than the supervised baseline and that specifically the out-of-distribution
masking significantly improves the results. However, an important thing to note is
that in their experimental setup, even Mean Teacher outperformed the supervised
baseline in all cases except for 100% mismatch. Therefore, while encouraging as
to the possibility of overcoming the issue, their results should be taken with a
grain of salt. A common and much simpler variant of the same basic idea is
described by Xie et al. [2019]. They only pick the unlabeled data that are to
be used once, at the beginning of the training, using a classifier trained purely
through supervised training.

Another SSL algorithm incorporating the same idea is the aforementioned
UASD, developed by Chen et al. [2020]. They decide which samples of the un-
labeled data should be used for training at the beginning of every epoch. First,
they calculate average confidence of the predicted class when applying the current
model to the validation data, and then they use it as a threshold. If the model is
more confident than this threshold in its prediction about a particular unlabeled
data sample, the sample is used for training in that epoch. However, according
to their ablation study, this filtering is not the most significant part of UASD in
regard to combating class mismatch. As mentioned in the previous section, they
believe the detrimental effects are primarily caused by overconfident predictions
of the other algorithms. Because of that, they use a process similar to the one pre-
viously described for Mean Teacher, but with one significant difference — instead
of using exponential moving average of weights to get the target, they compute
the target as arithmetic mean of predictions across all the epochs so far. This
puts far less emphasis on the most recent predictions, which might be confident
even when wrong, and allows them to be balanced out by different predictions
made in the past, leading to far less pronounced influence of the unfavorable data
on the weights. Their results are very positive, consistently outperforming the
supervised baseline and all the other SSL algorithms they tested on any level of
mismatch, in three different cases, using data from CIFAR-10, CIFAR-100 and
ImageNet. While this shows that the problem can be beaten, it is still only shown
to work for image recognition tasks and the method they use might not be ap-
plicable when a different kind (meaning not consistency regularization) of SSL
algorithm would be preferable.

Zajac et al. [2019] propose their own attempt at mitigating the issue, which can

20

be applied whenever we use a neural network with batch normalization layers.
They call their approach Split Batch Normalization, or Split-BN for short. It
consists of computing the batch normalization statistics separately for the labeled
and unlabeled data, with the justification that when the labeled and unlabeled
distributions differ, these statistics should differ too or they will not be accurate
for either. They perform several experiments with class mismatch, as described
in the previous section. For these experiments, they use Mean Teacher and VAT
with and without the Split-BN. Their conclusions are that Split-BN almost always
improves the results when compared to using normal batch normalization and
that in many of the cases where SSL under the effects of class mismatch performs
worse than the supervised baseline, it improves the performance to the point of
being roughly equal to the supervised baseline. These are very positive results,
especially for such a simple change, because they almost make using SSL safe
when compared to simply using supervised training. However, a real solution has
to be capable of beating the supervised baseline, not just matching it.

An important observation we made while surveying the available literature
is that currently, the different approaches often cannot be directly compared to
each other due to differences in their experimental setup, ranging from training
different model architectures to using completely different ways of simulating class
mismatch, from only picking certain classes to be in the unlabeled data, up to
using another dataset to provide different images. Just as Oliver et al. [2018]
mention for SSL in general, a common experimental setup would be most useful,
allowing direct comparison of the different approaches.

21

3. Unfavorable Data Filtering
In this chapter, we first sum up some of the findings from previous chapter relevant
for the design of our solution of the class distribution mismatch issue, use them
to formulate requirements for the solution and then describe the solution itself.

3.1 Findings and Requirements
As was described in the previous chapter, the most common approach to dealing
with class distribution mismatch works by classifying each unlabeled example
that is to be used and then deciding whether or not it should be used based on
the results. While this approach might be a workable one, it might also create
a positive feedback loop, gradually increasing bias of the classifier, because the
outputs of the classifier are used to determine how the classifier will be trained.
Moreover, in settings where only a minuscule amount of labeled data is avail-
able, this effect would be even more pronounced, possibly making the solution
completely untenable.

However, the core idea (filtering out the irrelevant data) is a sound one. As
shown by Uesato et al. [2019], if you correctly filter out the irrelevant data,
semi-supervised learning becomes beneficial again. This is further reinforced by
results of our experiments, described in section 4.3 and even more by the results
presented by Look and Riedelbauch [2019], which suggest that you might not
even need to filter all the unfavorable data out, because unfavorable data similar
to the favorable data can even be beneficial to the SSL. Therefore, the solution
we propose in this thesis should work on the basis of filtering out the irrelevant
data.

That’s why we try to create an approach that would filter out the irrele-
vant data, while minimizing the probability that the bias of improperly trained
classifier will harm the learning process. Moreover, some of the other methods
for solving the issue only work for a specific SSL algorithm. We, on the other
hand, would like to create a technique that can be used with any semi-supervised
learning algorithm.

These requirements impose some restrictions on the possible solutions. First
of all, most of the machine learning involved should be unsupervised, to minimize
the bias caused by not having enough labeled data. Second, it needs to be able to
decide, whether a particular data sample is relevant to the task at hand or not.
And third, it should work independently of the specific semi-supervised learning
algorithm being used.

To satisfy all of these, we designed a technique that processes the dataset
before the actual semi-supervised learning algorithm and removes examples that
are deemed not relevant enough.

3.2 Basic Design
Our basic idea is to first extract features from the data samples and then use
those features along with a similarity-based filter to determine which samples

22

Feature
extraction

Similarity based
relevance
judgement

Semi-supervised
learning

Filtering

Unlabeled data

Labeled data

Figure 3.1: Basic design of UDF.

from the unlabeled data are probably relevant (come from the classes present
in the labeled data) and which are irrelevant and should be filtered out. This
process is illustrated by diagram 3.1. We call it Unfavorable Data Filtering, or
UDF for short.

Since feature extraction can usually be done in an unsupervised way and the
data is being filtered with no input from the subsequent SSL algorithm, all the
previously identified requirements and restrictions are fulfilled by this solution.
Moreover, as long as a way to extract features of good quality from a data sample
exists, it does not matter what the data is. Therefore, basically the same solution
should be applicable to various tasks, no matter whether they involve working
with images, texts or other forms of data.

The previous section mentioned that removing unfavorable samples from the
unlabeled data significantly improves the performance of the subsequent SSL. Of
course, in our setting, we do not have access to all the labels and therefore we
cannot do the filtering with perfect certainty. However, so long as the previously
described smoothness assumption holds (which is also a necessary condition for
SSL to work at all, according to Chapelle et al. [2006]), we should have a higher
probability of estimating whether a sample belongs to one of the favorable classes
using similarity to labeled data than if we did so by pure chance and therefore
be able to decrease the class mismatch degree by the proposed filtering, thus
improving the performance of the SSL. The extent of this improvement depends
on the quality of the feature extraction and on the choice of the similarity-based
filter and therefore, both of those should be chosen carefully. Moreover, while
filtering based mostly on unsupervised learning might never be as precise as
filtering while knowing the actual labels, it might also provide one advantage.
Some images can provide useful information for solving the problem at hand, even
if they do not belong to any of the classified labels. For example, an image of a
plane could help the classifier learn more about the general shape of flying objects
with wings and thus help the classifier better distinguish birds from terrestrial
animals.

23

3.3 Feature Extraction
Images in the CIFAR-10 dataset have a resolution of 32x32. Moreover, each of
those 1024 pixels has three color channels, making the overall dimensionality 3072.
Due to the curse of dimensionality, similarity-based filters would not work well
with that kind of data. Therefore we need to significantly decrease the number of
dimensions using feature extraction techniques. There are many of those available
for image data (Kumar and Bhatia [2014]), but we chose to mainly concentrate
on the options from the field of deep learning. The three options we considered
more closely are autoencoders, generative adversarial networks and the supervised
baseline.

The simplest of those would be using the supervised baseline. Since convolu-
tional neural networks gradually create more and more complex features, often
with decreasing dimensionality, we could train a convolutional network, even one
with the same architecture we will later use for SSL, and take the features it
identifies (e.g. the last layer before the output) in order to make its decision.
This way of obtaining features has the added advantage that, at least in research,
we often create just such a network — the aforementioned supervised baseline.
While that is certainly a reasonable option, it has two severe downsides. Firstly,
it would limit the usability of our approach in cases with minimal amounts of
labeled data. And secondly, it would make our solution very similar in the way
it works to the previously described already attempted ones.

Earlier in this thesis, we mentioned that a GAN is a neural architecture con-
sisting of two neural networks, generator and discriminator, competing with each
other during training. When working with images, a discriminator can be a
convolutional network. Once we are done training a GAN, we can extract the
features from the discriminator in the same way as we described in the previous
paragraph for supervised baseline. As GANs can be trained using unsupervised
learning and they are significantly different from the previously attempted solu-
tions, it would solve both the disadvantages of the previous option. However, as
GANs are difficult to train and the result of their training is uncertain and very
hard to objectively evaluate without interaction with humans, they are still not
the option we chose.

The third and last option examined in detail are autoencoders. They are
not overly complicated, their training can be objectively evaluated even without
human input and they can be trained using just unlabeled data. Those are the
reasons we chose to work with autoencoders in our experiments.

As mentioned before, there are multiple types of autoencoders. We decided to
use undercomplete autoencoders since their intended function coincides with what
we need — they decrease the dimensionality by extracting the most important
features from the data. Since these autoencoders learn in an unsupervised fashion,
we can use all the training data to train the autoencoder, trying to reconstruct
each input image at the output, with a bottleneck in the middle from which
we can extract the required features. Since autoencoders are neural networks,
we can select from a huge number of different architectures. To select the best
architecture, we performed many experiments. Information about their execution
and conclusions can be found in section 4.4.

24

3.4 Similarity-Based Filter
The second, more complicated part of UDF is the similarity-based filter. Inputs
of the filter are the unlabeled training images transformed into a low-dimensional
feature space by the feature extractor from the previous section. Since similarity
measures are often sensitive to variable scales, we standardize the features before
using them. Outputs of the filter are decisions about whether each specific un-
labeled data sample belongs to the favorable classes or to the unfavorable ones
according to a decision process using a similarity measure between the trans-
formed images. To provide the filter with information about what a favorable
or unfavorable data sample should look like, we also allow it to access features
extracted from the labeled training images and their labels. However, to improve
the chances of the algorithm working in scenarios where we do not have much
labeled data, we decided to only use the information about whether a sample
belongs to the favorable or unfavorable classes, not to which specific class it be-
longs. This gives us more samples for the two possible values than we would have
if we worked with class labels. Moreover, while it is quite realistic that we have
samples where we know that they do not belong to the favorable classes because
these would be identified during the labeling process (those doing the labeling
would encounter them and discard them, thus telling us they are unfavorable), it
is probably not realistic to expect the unfavorable data to be divisible into several
neatly separated classes.

We tried several different ways of constructing the filter, ranging from search-
ing for the closest labeled data sample, through a more complex one based on
finding representatives of the labeled favorable data and comparing the unlabeled
data to them, up to the final filter with the best performance, which we named
IterativeDoubleKMeansFilter. The basic principle of IterativeDoubleKMeansFil-
ter is still searching for representatives of the labeled data and then using them
to make decisions about the unlabeled data samples. However, instead of sim-
ply checking whether the data sample is close to representatives of the favorable
data, we now check whether it is closer to the favorable representatives than to
the unfavorable ones and use an iterative process to fine-tune the representatives
using the unlabeled data.

The final algorithm can be divided into three steps:

First step is processing the labeled data available to the filter. Representatives
for the favorable and the unfavorable labeled data are defined as centroids
found by clustering the respective data using the k-means algorithm. While
these representatives are already good enough to change the mismatch rate
by tens of percentage points, decisions made in the third step using them
tend to produce false negatives on many favorable data samples, easily
leading to the loss of half of the favorable unlabeled data in our preliminary
experiments. To mitigate this loss, we added the next step.

Second step consists of using the previously determined representatives and
the unlabeled data in an iterative fashion to get even better representa-
tives. Each iteration consists of taking the representatives found so far and
using very strict formulas to find unlabeled data samples that very probably
belong to the favorable data and data samples that very probably belong to

25

the unfavorable data. These samples are then used to augment the labeled
favorable and unfavorable data respectively for the purpose of finding bet-
ter representatives using the same method as in the first step. This repeats
for a predetermined number of iterations, slowly increasing the size of aug-
mented labeled data and hopefully leading to better representatives. Our
preliminary experiments showed that this step not only decreases the mis-
match rate, but, even more importantly, increases the amount of favorable
unlabeled data preserved for the SSL.

Third step contains the actual selection of the filtered training data using the
found representatives of favorable and unfavorable data. By using a far
more lenient formula than the second step, the third step is designed to
find as many favorable unlabeled data samples as possible, while excluding
the obviously unfavorable ones, thus trying to maximize the amount of
favorable data we preserve while also significantly decreasing the mismatch
rate.

What remains to be properly described are the exact formulas used to select
samples in the second and the third step of the algorithm. To accurately describe
them, we first need to define some terms. Each labeled data sample d from
the unlabeled data belongs to one favorable centroid cf (d), and one unfavorable
centroid cu(d), which are the closest centroid determined by k-means used on
the favorable data and the closest centroid determined by k-means used on the
unfavorable data respectively. Each centroid c has a maximal distance md(c).
This distance is calculated as

md(c) = dcc(⌊r ∗ ac⌋),

where ac is the amount of labeled data samples belonging to c according to the
k-means algorithm, dcc(k) is the distance from c to the k-th least distant labeled
data sample belonging to c, and r ∈ [0, 1] is a predetermined coefficient. The
maximal distance is defined this way to allow us to easily and intuitively modify
how strict or permissive the later formulas will be. For example, when we set the
r coefficient to be 0.5, it means that half of the labeled data that was previously
belonging to the centroid would be judged in the second step of the filter algorithm
as being represented by it and therefore probably having the same label. To be
precise, d is represented by c, if distance(c, d) ≤ md(c), where distance(c, d) is
the distance between c and d according to the currently used distance measure.

With all the necessary values defined, we can get to the formula from the
second step. All its conditions are based on the idea that the more similar a data
sample is to either the favorable or the unfavorable data, the higher its chances
of being favorable or unfavorable are. Since it only makes sense to compare the
data sample to the closest favorable and unfavorable data samples and calculating
similarity of the data sample to many others would take a long time, we use the
centroids to represent the favorable and unfavorable data distributions. For each
data sample d, we decide:

1. Whether it is represented by cf (d). This condition disqualifies data samples
that are too far from the favorable centroids (and thus too dissimilar to the
favorable data) and we therefore cannot justify considering them favorable.

26

2. Whether it is not represented by cu(d). This condition disqualifies data
samples that are too close to an unfavorable centroid (and thus too similar
to the unfavorable data) and therefore have a significant chance of being
unfavorable.

3. Whether:

ln(i(cf (d)) + 1)
ln(i(cu(d)) + 1) ∗ distance(cu(d), d) < distance(cf (d), d),

where i(c) is the amount of labeled data samples belonging to centroid c
according to the last k-means run. This condition is a direct implementation
of the idea that if a data sample is more similar to the favorable data than
to the unfavorable data, it has a higher chance of being favorable than of
being unfavorable. The amounts of data samples belonging to the centroids
(i(c)) are taken into account to make more accurate decisions in regions
where the favorable and unfavorable data overlap. If a data sample is a
similar distance from a favorable and an unfavorable centroid, it is more
probable it belongs to the side which has a higher density in the area. The
logarithms are present to scale down the effect, because one centroid can
have orders of magnitude more data belonging to it than the other, yet we
still do not want it to always dominate.

If all three conditions hold, the data sample is accepted to the augmented labeled
data for the purpose of calculating centroids as a favorable data sample. To
decide the same for the unfavorable side requires basically the same conditions,
with cu(d) and cf (d) switched.

The formula from the third step is far less complicated. It is actually just the
third condition of the formula from the second step, making it more permissive,
to make sure we do not drop too much favorable unlabeled data during the
filtering. Workings of this formula, along with the previous one, are illustrated
by diagram 3.2.

Same as in the case of the feature extractor, we performed many preliminary
experiments with the filter to set its parameters to reasonable values. These
experiments and their conclusions are described in section 4.4.

3.5 Diagram
In order to allow easier understanding of the entire operation of UDF, we cre-
ated diagram 3.3, depicting flow of the data during the process. The “2nd step
conditions” and “3rd step conditions” of course refer to the conditions from the
second and third step formulas, described in the previous section.

27

++

+
+

+

+

+

+

+

+

+

+

-

-

-

-

-

-

-

--

-
-

-

--
-

P
--

-
-

--
-

-

-

N
1

2

3

5
4

Figure 3.2: An example of how our filter works. The + signs mark the labeled
favorable data samples, the - signs mark the labeled unfavorable data samples.
The P and N letters mark the favorable and unfavorable centroid respectively,
with the appropriately colored circles around them encompassing 75% of the
labeled data belonging to each centroid. Thus, the circles illustrate the maximal
distance of each centroid. The digits mark unlabeled samples that need to be
filtered. In the second step of the algorithm, the rules are more strict. Thus, while
sample 1 will be considered as favorable and sample 2 as unfavorable, sample 3
will not be considered favorable, because it is not within the maximal distance
of the favorable centroid. Moreover, neither 4 nor 5 will be considered favorable
or unfavorable, because they are represented by both centroids. The third step
is more permissive, allowing 3 to be considered favorable. However, 4 and 5
will be filtered out, because the conditions will consider them more likely to be
unfavorable. Sample 5 is equidistant from the two centroids and therefore cannot
be considered favorable. The unfavorable centroid has more samples belonging
to it, which is why it is more powerful, and even samples that are closer to
the favorable centroid, like sample 4, might be filtered out (probably correctly,
considering the shown distribution of the data).

28

Train the
autoencoder

Apply the encoder and
standardize features

across all training data

Encoder
part of the

autoencoder

K-
means

Last iteration?

Favorable
centroids

Pass 2nd step
conditions or selected

in some previous
iteration?

Favorable
labeled

data

Unfavorable
labeled

data

Unlabeled
data

Training
data

No

Yes

Unfavorable
centroids

Pass 3rd
step

conditions?

Filter unlabeled data
according to the decisions

Filtering
decisions

Selected augmenting
favorable and

unfavorable data

SSL

Filtered
unlabeled

data

Labeled
data

Figure 3.3: A diagram detailing the entire process of UDF.

29

4. Experiments and Their
Evaluation
In the previous chapters, we described the problem of semi-supervised learning
under class distribution mismatch and proposed a novel solution. The effective-
ness of a solution has to be experimentally verified and measured. To that end,
we performed many experiments. Their results and conclusions based on those
results are described in this chapter.

Tables in this chapter often use the abbreviations “M.T.”, “S.B.” and “M.r.”,
meaning “Mean Teacher”, “Supervised Baseline” and “Mismatch rate” respec-
tively.

4.1 Source Code
Most of the source code used to perform the experiments is written in Python,
using the Tensorflow library for implementation of neural networks. The ex-
periments were performed using Python 3.7.6 and Tensorflow 1.13.1 (in a GPU
version) on Ubuntu 19.10 operating system. They should also be runnable with
different configurations, especially with regards to the Python version and the
operating system. Many other common libraries were used, one example for all
would be NumPy, a Python library focused on computations.

The source codes are included in the files attached to this thesis. Instructions
to use the scripts to repeat the experiments are in the README file in the root
directory of the source codes folder.

4.2 Experimental Setup
One of the problems with SSL algorithm evaluation identified by Oliver et al.
[2018] was that different research papers often use different neural network archi-
tectures, different kinds of data preprocessing and so on. Due to this variance,
results for different approaches often cannot be directly compared. To solve this
issue, they perform all their experiments using a common experimental setup.
They made source code for this setup public, allowing other researchers to easily
compare results with theirs. That is why we decided to use this setup as well.
Details about the setup can be found in the aforementioned paper. Most im-
portantly, it uses a WRN-28-2 architecture with batch normalization and leaky
ReLU (Maas et al. [2013]) activation functions.

Oliver et al. [2018] perform their experiments on two image datasets, CIFAR-
10 and SVHN. However, the class mismatch is only investigated on CIFAR-10,
which is why we chose to use that one as well (there are exceptions explicitly
mentioned in the further text). The mismatch in the paper is investigated at
four different mismatch rates — 25%, 50%, 75%, 100%, meaning that 25%, 50%,
75% or 100% of the data used for consistency regularization (not only unlabeled
data are used, but also the labeled data, but without using their labels) does
not belong to the favorable classes. Due to the limited computational resources

30

available we initially decided to perform the experiments on just one of those
levels. We picked 75% because it is the level where the issue should be very
noticeable according to the results presented by Oliver et al. [2018] (also included
in this thesis as figure 4.6), but unlike with 100% we can be sure there still are
valuable unlabeled data samples that can be used to train the classifier. As can
be seen in the next sections, we ended up performing the experiments for other
mismatch rates as well, for reasons described later. The same thought process
led us to restrict the number of SSL algorithms we use in our experiments to just
one from the original four Oliver et al. [2018] use to measure their results for class
mismatch. We picked Mean Teacher, which has one of the better results out of
the algorithms they tested, noticeably suffers from the class mismatch issue and is
not too computationally expensive, allowing us to perform enough experiments.

While most of the experimental setup is the same as in Oliver et al. [2018],
we made one significant change. As described before, the CIFAR-10 dataset has
ten classes, six of them animals, the rest being means of transportation. The
paper simulates class mismatch by only classifying into the six animal classes
and adding data belonging to the other four into the unlabeled data to create
the desired mismatch level. However, this is done by only allowing data from
four classes into the unlabeled data with the mismatch level being controlled by
how many of those classes belong to the animal classes and how many belong
to the means of transportation. For example, for the 75% mismatch level, only
one of the favorable classes is present in the unlabeled data. We think this
artificially increases the impact of class mismatch and a more realistic scenario
would be picking the data randomly from all the available classes while making
sure the level of mismatch is the desired (for example) 75%. For this reason,
we would pick 25% of the data used for consistency regularization from the six
animal classes, making sure each class is represented by approximately the same
number of samples, and the remaining 75% from the means of transportation
classes in the same way. Aside from the data from favorable classes, we also kept
some labeled data from the unfavorable classes (400 per class, the same as for
the favorable classes) to be used by the filtering algorithm. We consider keeping
that data realistic, because in the process of labeling the data, samples not from
favorable classes would be encountered and marked as such. In this case, we
know the precise labels of course, but we do not use them, so the results should
be realistic. In the end, we are working with similar amounts of data as Oliver
et al. [2018], but the data used for consistency regularization is distributed among
the classes far more equally.

Same as Oliver et al. [2018], we train the model for 500000 steps (each step
consisting of processing a batch of 50 labeled and 50 unlabeled samples). During
the training, the model is regularly saved, to allow for metrics calculations at
different points in the training. Unless specified otherwise, all the accuracies re-
ported in this thesis are test accuracies, calculated based on the results of a saved
model with the highest validation accuracy. This also copies the way evaluation is
done by Oliver et al. [2018]. Our tables report mean accuracy and its difference
to the mean accuracy of the supervised baseline, standard deviation, minimal
achieved accuracy and maximal achieved accuracy, computed using accuracy val-
ues from multiple runs, using different datasets picked from the CIFAR-10 dataset
according to the required configuration. All the hyperparameters and the opti-

31

Figure 4.1: Images showing the effect of ZCA normalization. The top row contains
original CIFAR-10 images, while the bottom row contains the same images after
applying ZCA normalization.

mizer (Adam) are identical with the original as well. While tuning them for the
specific case could produce better results, we decided not to do it for two reasons.
One, it would be computationally expensive. And two, it would make the results
unrealistic because, as mentioned by Oliver et al. [2018], the size of the validation
set required to properly tune the hyperparameters far exceeds what would be
realistic, as the validation set should usually be far smaller than the training set.
On that note, we should disclose that, same as Oliver et al. [2018], the validation
set we use is unrealistically large, up to the point of being slightly larger than
the labeled training data. While it would be better to use a small validation set
if we wanted to provide evidence that the technique can be used in practice, we
are mostly trying to find basic principles about what would and what would not
work in general, which is where more precise estimations using a larger validation
set are advantageous. Also, just as them, we perform ZCA normalization (Pal
and Sudeep [2016]) on the CIFAR-10 images before training the classifier. ZCA
normalization is a whitening transformation that (among other effects) makes
the edges in the images more prominent, as can be seen in figure 4.1, making it
easier for the model to learn.

4.3 Baseline Experiments
Due to the possible differences in achieved results caused by different versions and
implementations of the required software and also due to the changes in the way
datasets for the experiments are constructed described in the previous section,
accuracy values from Oliver et al. [2018] cannot be directly used as a baseline.
Therefore, we performed our own baseline experiments. There are three types of
them. The first one is a completely supervised baseline, only using the labeled
portion of the available data. The second one is using Mean Teacher, training
on all the available unlabeled data, even the data belonging to the four means of
transportation classes. This type is called Complete Data in the tables. The last
one is using Mean Teacher, training the model with the same unlabeled data but
after filtering out samples belonging to the unfavorable classes. This one we refer
to as Filtered Data. Results of these experiments are shown in table 4.1.

32

M.r., experiment type Mean(-S.B. mean) Std Min Max
N/A, Supervised Baseline 0.7688 0.0045 0.7632 0.7760
0.64, M.T., Complete Data 0.7611(-0.0076) 0.0037 0.7538 0.7655
0.64, M.T., Filtered Data 0.7883(0.0195) 0.0068 0.7765 0.7969
0.75, M.T., Complete Data 0.7507(-0.0181) 0.0056 0.7432 0.7567
0.75, M.T., Filtered Data 0.7783(0.0095) 0.0049 0.7717 0.7858

Table 4.1: Test accuracies achieved during the baseline experiments.

Aside from providing accuracies that can later be directly compared to ac-
curacies achieved using our solution, several important things can be seen from
these results. First of all, results of the supervised baseline are slightly more
positive than the ones reported by Oliver et al. [2018], however not by a large
margin. While the paper reports approximately 23.5% average error rate, our av-
erage error rate was approximately 23.1%. This difference could be caused purely
by chance or be a result of the slightly different way of preparing datasets for the
experiment or the aforementioned different versions of software and other minute
differences. It is probably not significant in any way and does not warrant more
investigation. It, however, reinforces the point that any comparison of our results
with the results from the research paper needs to be taken with a grain of salt.

More significant conclusions can be drawn from the Mean Teacher results.
The table contains results for two slightly different mismatch rates. We performed
these baseline experiments for both, because we changed the way mismatch rate
was calculated during the experiments. At first, data samples from unfavorable
classes in the labeled data were used for consistency regularization as well. We,
however, consider this unrealistic because if we know the labels, there is no reason
to use those data samples. After the change, only labeled data belonging to the
favorable classes was used for consistency regularization and the mismatch rate
calculations reflect that, while before they only considered the unlabeled data.
Because of this change, the data that previously had 75% mismatch rate now
have a mismatch rate of 64% and therefore could not be used as a baseline, which
is why we performed the other set of experiments.

As can be seen by comparing the Mean Teacher using all the data and the
supervised baseline results, the problem is still present even in our more realistic
data distribution scenario. Moreover, comparing the results using all the data
with results using only data from favorable classes gives us the worst and the
best-case accuracies achievable if we do not lose a significant portion of favorable
unlabeled data. This comparison reveals that even when not using any addi-
tional data, the accuracy could be improved by up to several percentage points
by correctly filtering the unfavorable data out. This demonstrates that even in
our slightly more convenient scenario, solving the class mismatch issue is still
worthwhile.

Comparing results of the experiments with the two different mismatch rates
could provide an opportunity to examine the effects of changing the mismatch
rate, but an important thing to keep in mind is that since the mismatch rate
is quite high and there are six favorable classes as opposed to four unfavorable
classes, the limiting factor of the dataset size used for training is the unfavorable
data. Due to that, while a 15% increase in mismatch rate might not seem very

33

Neurons: 3072 512 256 128 10 128 256 512 3072

Input Output

Figure 4.2: Diagram of the final autoencoder architecture we used. All neurons
use leaky ReLU activation functions. All the layers are fully connected.

significant, it actually means losing approximately 2800 favorable unlabeled data
samples out of the initial 5400. Because of this, the noticeable effects are prob-
ably caused more by the difference in the amount of favorable unlabeled data
samples than by the difference in the mismatch rate itself. Nevertheless, com-
paring the results for the two mismatch rates shows that the effects of changing
the mismatch rate by adding or removing favorable unlabeled data are as can
be expected. Lower mismatch rate means milder negative effects of the class
mismatch and higher positive effects (when compared to the supervised baseline)
when the unfavorable data is filtered out, while higher mismatch rate leads to
opposite effects.

4.4 Filtration Experiments
As mentioned in the previous chapter, we performed many experiments with our
filtering before trying to run the SSL with the filtered data to make sure all the
parameters are set to reasonable values and to check how well the different designs
of the autoencoder and the filter are performing. While in the results presented
in this chapter, we always use the actual mismatch rate and counts we were able
to achieve, we would not be able to do so in practice, of course. For that reason,
we also observed how well the filtration performed on the validation data and
on the labeled training data. We found out that results on both of these seem
to closely correlate with the results on the unlabeled training data, which would
make setting the hyperparameters of UDF for the specific case viable in practice,

34

Figure 4.3: Images showing reconstruction quality achieved by the autoencoder
architecture we used during our experiments. The top row contains CIFAR-10
images, while the bottom row contains the same images after passing through the
trained autoencoder.

especially thanks to the results on the labeled training data. The validation
data will be very small in practice, which might make it impossible to accurately
determine how well the filtration is doing, but the labeled training data should
be larger and we have not seen any evidence of the filter overfitting. Moreover,
even if we only had very little labeled training data and thus were unable to tune
the hyperparameters to the specific case, the change in performance would not
be high. As it turns out, the two most important parameters are the filter type
and the autoencoder architecture, with the precise settings of others responsible
for only several out of the tens of percentage points of improvement of mismatch
rate usually achieved, and these two parameters should not be hard to set — we
have identified one filter type described in the previous chapter, which was clearly
superior to all the others we tried to use, and one autoencoder architecture, which
should be applicable in many different domains with only very small changes.

During the experiments with autoencoder architectures, we came to three sur-
prising conclusions. The first one was that the best performing (with regard to
the filtering performance) autoencoder architecture was not a convolutional au-
toencoder, as we assumed due to the advantages convolutional neural networks
provide when dealing with images, but a fully connected autoencoder using leaky
ReLU activations (the final architecture is illustrated by diagram 4.2). The second
one was that the quality of reconstructed images at the output of the autoencoder
does not seem to matter much. The best performing architecture has a bottle-
neck of just ten hidden units and as you can see by pictures in figure 4.3, the
reconstructed images are mostly blurs, containing approximately the right colors
at approximately the right places, but the subject of the original picture tends to
be completely unrecognizable. Increasing the capacity of the autoencoder expect-
edly increases the quality of reconstructions, but severely decreases the filtering

35

performance. And last, but not least, ZCA normalization significantly decreased
the filtering performance, which is why we decided to only use it for training the
classifier and to use the original images for the filtering.

The less important parameters for the filter include the number of centroids,
the number of iterations of the second step of the filter, the r coefficient and the
distance metric used. As mentioned previously, we found out that as long as we set
reasonable values for them, the details do not make much difference. Therefore,
to avoid making the values too specific for the task at hand using knowledge we
should not have (e.g. labels of the unlabeled training data), we manually set
them to values we considered reasonable due to the results of the preliminary
experiments. The final metric used is the Euclidean metric and the number of
centroids was set to one-hundredth of the available labeled data count. Of course,
just as the k-means runs are separate for the favorable and unfavorable data, the
numbers of favorable and unfavorable centroids are also determined separately.
The number of iterations in the second step was set to five. And last, the r
coefficient was set to 0.75.

As for the final filtering results, they are very promising. For example, for
a training data containing 431 unlabeled samples for each favorable class, 400
labeled samples for each class and having a mismatch rate of 75%, it is able to
reduce the mismatch rate to just 44%, losing only a fifth (approximately 500)
of the favorable unlabeled samples, while filtering out approximately 75% of the
unfavorable unlabeled samples (ca 11500 out of 15000). If we use the same figures,
just with a 50% initial mismatch rate, it is capable of decreasing the mismatch
rate to just 21%, while again filtering out approximately 75% of the unfavorable
data. The filtering seems to be balanced across classes, with the exception of the
Ship class, which is consistently filtered out slightly more heavily than the other
unfavorable classes, possibly thanks to the blue background color unusual in the
favorable classes.

The time it takes to perform the filtering is very short, especially when com-
pared to the SSL training afterwards. We trained the autoencoder for 300 epochs,
which was more than enough to achieve the best results in all experiments. Even
considering the autoencoder training, the total time spent running UDF was
always under twenty minutes, while the subsequent SSL training on the same
hardware took twelve hours. From this, we conclude that the time spent running
UDF should not ever be a factor in deciding whether to use it or not, because it
will probably always be eclipsed by the time needed to train the actual model.
The memory requirements are not significant either, being linear in the dataset
size. Even if the dataset does not fit into the memory, it can be processed in
chunks, both during the training of the autoencoder and during the feature ex-
traction and filtering after that training.

4.5 Experiments with Filtered Data
The first experiments with data filtered by our filter we performed were done with
datasets with 75% mismatch rate. Their results are reported in table 4.2 as the
“Our Filter” experiment type along with the previously presented baseline results
for easier comparison. Applying our filter improved the average accuracy by more
than half of a percentage point and its worst and best results are both better

36

M.r., experiment type Mean(-S.B. mean) Std Min Max
0.44, Our Filter 0.7570(-0.0118) 0.0037 0.7530 0.7620
0.75, M.T., Complete Data 0.7507(-0.0181) 0.0056 0.7432 0.7567
0.75, M.T., Filtered Data 0.7783(0.0095) 0.0049 0.7717 0.7858
N/A, Supervised Baseline 0.7688 0.0045 0.7632 0.7760

Table 4.2: Test accuracies achieved for training data with 400 labeled samples
per favorable class, 431 unlabeled samples per favorable class and a mismatch
rate of 75%.

than the worst and best results before its application, with the worst result being
almost a full percentage point better. This shows that our filter really improves
the results. Unfortunately, it is still not enough to make using SSL in this case
worthwile, because the results are still not better than the supervised baseline.

M.r., experiment type Mean(-S.B. mean) Std Min Max
0.2, Our Filter 0.7814(0.0126) 0.0025 0.7780 0.7840
0.5, M.T., Complete Data 0.7944(0.0257) 0.0028 0.7907 0.7973
0.5, M.T., Filtered Data 0.8023
N/A, Supervised Baseline 0.7688 0.0045 0.7632 0.7760

Table 4.3: Test accuracies achieved for training data with 400 labeled samples
per favorable class, 2094 unlabeled samples per favorable class and a mismatch
rate of 50%.

Our first assumption why that would be the case was that the mismatch
rate was still too high, even after the filtration process, which only reduced it to
44%. To test whether this could be the case, we started experiments for the 50%
mismatch rate. Their results can be observed in table 4.3. We only got one value
for the “Filtered Data” experiment type, because we decided to abandon this set
of experiments after getting enough results from the other types. As you can see,
the results showed that SSL using both favorable and unfavorable data achieved
better results than the supervised baseline. Since the mismatch rate was actually
higher than the 44% mismatch rate we filtered data to previously, another factor
had to play a significant role in the difference of results. As mentioned earlier,
we already suspected that the absolute amount of the favorable data plays a
significant role too, not just the mismatch rate. And the difference of absolute
amounts between the cases was very large — while in previous experiments, we
could only use 431 unlabeled samples per favorable class to make sure we had
enough unfavorable data to fill the rest, the lower mismatch rate allowed us to
increase this figure to 2094. The theory is further supported by the fact that while
we were able to decrease the mismatch rate to a very low 20% by our filtering,
the accuracies achieved using the filtered data were lower than in the case using
all the data. This might have happened because the decrease in the amount of
favorable unlabeled data due to mistakes made by the filter was more significant
than the decrease in the mismatch rate.

To test this more, we run experiments with training data, whose mismatch
rate was 50%, but who contained only the 431 unlabeled samples per favorable
class. The resulting accuracies listed in table 4.4 support our theory. While

37

M.r., experiment type Mean(-S.B. mean) Std Min Max
0.21, Our Filter 0.7726(0.0038) 0.0055 0.7657 0.7787
0.5, M.T., Complete Data 0.7663(-0.0025) 0.0033 0.7618 0.7700
0.5, M.T., Filtered Data 0.7783(0.0095) 0.0049 0.7717 0.7858
N/A, Supervised Baseline 0.7688 0.0045 0.7632 0.7760

Table 4.4: Test accuracies achieved for training data with 400 labeled samples
per favorable class, 431 unlabeled samples per favorable class and a mismatch
rate of 50%.

using all the data expectably has smaller negative effects than it had when the
mismatch rate was 75%, the accuracies are still slightly below the supervised
baseline and are significantly worse than for the same mismatch rate but more
favorable data samples.

Even more interestingly, SSL with our filtering actually outperforms the su-
pervised baseline, making the SSL beneficial under these conditions. From the
cases we have seen so far, we deduce that the decision of whether to use SSL with
or without our filtering or whether to use pure supervised learning should be de-
pendent on the mismatch rate and the amount of favorable data. Of course, we
do not know the exact values of those in practice, so we would need to estimate
them. For example, in cases where we perform the labeling by sampling from the
data we have and manually assigning the labels, we know how many favorable
and how many unfavorable data we encountered in the process and can use those
figures to perform the estimation.

Once we have the two values, we would recommend using supervised learning
when you only have a small amount of favorable unlabeled data (for example, as
many per class as in the labeled data) and a mismatch rate significantly higher
than 50% and SSL without filtering when you have a large amount of favorable
unlabeled data (several times more than the labeled data or more). SSL with our
filtering should be a good choice for the rest, meaning mainly smaller or medium
amounts of favorable unlabeled data along with a mismatch rate of around 50%
or less.

Naturally, all these guidelines could be highly specific to our particular case
and to make them more general, performing extensive experiments on other
datasets than CIFAR-10 and other SSL algorithms would be necessary.

4.6 Class Distribution Mismatch Grid
To better understand how the issue behaves in regard to mismatch rate and
favorable unlabeled data counts, we run a number of additional experiments and
generated heat map 4.4. While most of the fields contain values determined using
only a single run and are therefore possibly inaccurate, the general trends can still
be observed in it. Because of these possible inaccuracies, conclusions described in
the next paragraphs are sometimes ignoring a case that might seem an exception,
but is probably just caused by the variance of the results. This variance can be
seen in previously described tables, where it is not uncommon for the best and
worst results to be a full percentage point away from each other, even though
they use exactly the same configuration.

38

0.0 25
.0

50
.0

75
.0

10
0.0

Mismatch rate

2094.0

1400.0

800.0

431.0

200.0

Un
la

be
le

d
da

ta
 p

er
 fa

vo
ra

bl
e

cla
ss

0.8023 0.7870 0.7944 0.7932 0.7353

0.8008 0.7932 0.7842 0.7877 0.7353

0.7803 0.7748 0.7798 0.7632 0.7353

0.7783 0.7728 0.7663 0.7507 0.7353

0.7665 0.7668 0.7623 0.7533 0.7353
0.03

0.02

0.01

0.00

0.01

0.02

0.03 Accuracy achieved - Supervised baseline accuracy

Figure 4.4: Accuracy difference to supervised baseline heatmap, containing mean
accuracy for each field.

Figure 4.5: Examples of preprocessed images from the Open Images Dataset.

39

Another thing to keep in mind is that while most of the experiments used
pure CIFAR-10, we had to augment the unfavorable classes using images from
the Open Images Dataset during the experiments with mismatch rate of 75%
and unlabeled favorable data count higher than 431 per class. While we tried
to find alternatives as close as possible to the CIFAR-10 classes (Helicopter and
Airplane for the Airplane CIFAR-10 class, Car for the Automobile class, Ship
for the Ship class and Truck, Van and Bus for the Truck class), the images are
still slightly different than the CIFAR-10 images, even after being scaled down
(several examples of them can be seen in figure 4.5). That might have influenced
the results, but we do not think the influence was significant, especially since the
results are in accordance with the trends in the heat map.

First of all, the rightmost column represents a run using all the unfavorable
data but no unlabeled favorable data. Thus, it is an extreme case, demonstrating
what happens when you have completely irrelevant unlabeled data. It shows
that while even irrelevant data might theoretically help the convolutional neural
network identify important features, it is probably not worth using it in general.

Second, the leftmost column contains accuracies from runs using only favor-
able data in the specific quantities. It shows that, as expected, accuracy increases
with the amount of favorable data, as the other columns do for non-zero mismatch
rates.

Third, as expected, the accuracies are decreasing with increasing mismatch
rates. It seems that they decrease similarly quickly in absolute terms, no matter
the data size, which is why the issue is more significant when we have fewer data
samples - losing a single percentage point when we are three percentage points
above supervised baseline is not that bad, but losing that same point when we
are only half of a percentage point better means using SSL suddenly becomes
detrimental. This could also explain why using unfiltered data seems to be the
best choice from some data amount upwards. At some point, the detrimental
effects of losing 20% of the favorable unlabeled data (which is approximately
what our filtering caused, as described before) overpower the positive effects of
decreasing the mismatch rate because these remain fairly constant, while the
effects of losing a percentage of the data increase the more data we have.

And last, but not least, one can also see that up until a mismatch rate be-
tween 50% and 75%, fields tend to be better than the fields with lower unlabeled
favorable data counts regardless of mismatch rate, which further supports the
conclusion that the favorable unlabeled data count is probably even more impor-
tant than the mismatch rate and should always be considered when deciding to
apply or not apply SSL and our filtering.

4.7 Comparison to Oliver et al.
While our results are not directly comparable to results achieved by Oliver et al.
[2018] due to the change in the way training datasets are composed, it would
be a missed opportunity to not compare our results with theirs because it might
lead to some new findings about the issue. To that end, we include one of their
charts as figure 4.6. We will be using our Complete Data figures from the cases
with mismatch rates of 50% and 75% and 431 unlabeled samples per favorable
class. That means that we are using approximately 5000 favorable samples for

40

Figure 4.6: A chart from Oliver et al. [2018] showing results of their experiments
with class mismatch.

consistency regularization, while they used approximately 4500 at 75% mismatch
rate and 9000 at 50% mismatch rate. As we have seen earlier, favorable unlabeled
data amounts affect the resulting accuracies very significantly and thus, these
differences might cause some of the differences in the results.

As we also noted earlier, supervised baseline results are very similar, which
is to be expected, since we made no significant changes in that regard. Our SSL
test errors are lower than theirs at both mismatch rates, by almost 1 percentage
point at the 75% mismatch rate and approximately 0.7 of a percentage point at
the 50% mismatch rate. While the difference for 75% mismatch rate might be
attributable to us using slightly more favorable unlabeled data, the difference at
the 50% should be in the opposite direction if that was the only factor. Because
of that, we would attribute the difference mainly to the previously described
way they are creating training datasets, which leads to them having plenty of
unlabeled training data for one or two favorable classes but none for the others,
while we sample from the favorable classes equally. This would indicate that the
class mismatch problem is even more significant if it involves unequal amounts
of unlabeled data among the favorable classes. Further research would need to
be done in that area, but if that is really the case, strategies to mitigate that
additional issue should be considered whenever it is a factor. In the terms of our
filtering that might mean for example creating class-specific centroids and trying
to upsample or downsample data as needed according to the centroid they belong
to. Of course, in the extreme case of not having any unlabeled data for a class,
not much can be done.

Different SSL algorithms seem to behave slightly differently with regards to
class mismatch. Therefore, it is possible that they will react in a different way
to the changing amounts of favorable unlabeled data and our filtering. That
reinforces the point made earlier that more experiments should be performed in
this regard before applying the filtering to any other SSL method, to identify

41

guidelines for when to use it and when not to, just as we did for Mean Teacher.

4.8 SVHN Experiments

M.r., experiment type Mean Std Min Max
0.5, M.T., Complete Data 0.9390 0.0046 0.9349 0.9454
0.75, M.T., Complete Data 0.9414 0.0016 0.9395 0.9435
Either, M.T., Filtered Data 0.9413 0.0013 0.9403 0.9432

Table 4.5: Test accuracies achieved for training data picked from SVHN with 400
labeled samples per favorable class, 431 unlabeled samples per favorable class
and a mismatch rate of either 50% or 75%. Mismatch rate for the Filtered Data
experiment type is given as “Either”, since we use the same amount of favorable
data for both mismatch rates and that amount is the only thing that matters for
that experiment type.

To show how much the behavior of the class distribution mismatch issue can
differ depending on the specific task, several experiments with the SVHN dataset
have been performed. We tried to make the conditions as equal as possible
to allow for direct comparisons between the SVHN results and the CIFAR-10
results. We designated six classes of SVHN (the digits from 2 to 7) as favorable
and the remaining four as unfavorable. We performed the experiments for the
mismatch rates of 50% and 75%, 400 labeled samples per class and 431 unlabeled
samples per favorable class. Everything else stayed the same too, including the
architectures and their hyperparameters.

The results on both the mismatch rates revealed that class distribution mis-
match is not an issue in this task on SVHN. Accuracies for Complete Data and
Filtered Data experiment types, as seen in table 4.5, were practically identical.
We attribute this to the fact that the task was far simpler than the one we per-
formed experiments on using CIFAR-10 and therefore it would be far harder for
the unfavorable data to confuse the classifier training. This conclusion is sup-
ported by the fact that while we usually saw accuracy values below 80% in the
previous experiments, all the accuracy values on SVHN were well above 90%.

No matter the precise reason for the absence of the issue, these results show
what we expected (and already noted from previously described literature), which
is that the specific dataset and task are important factors in choosing how to
handle the issue.

42

Conclusion
The goal of this thesis was to design an SSL method or an improvement of ex-
isting SSL methods that would improve robustness of SSL in regard to different
distributions of labeled and unlabeled training data and evaluate its effectiveness.
We decided to focus on the class distribution mismatch issue, which arises when
unlabeled training data contain samples belonging to classes not present in the
labeled data. This can confuse the learning algorithm and lead to diminished
accuracy of the final classifier. To mitigate this issue, we developed a filtering
method we called Unfavorable Data Filtering (UDF), which is trying to filter out
the irrelevant data by using conditions based on similarity of the unlabeled data
samples to the labeled favorable and unfavorable data representatives.

UDF turned out to be effective when tested on CIFAR-10 in some of the
possible cases, especially when we have a small to medium amount of relevant
labeled data and the mismatch rate (which is a proportion of irrelevant data
within all the data used for the unsupervised portion of the SSL algorithm) is
not much higher than 50%, while in other instances, it might be more beneficial
to either not use SSL at all or to use all the data, rather than risk filtering some
of the relevant data out by mistake. As shown by comparing the behavior of
the issue on SVHN and on CIFAR-10, the properties of the class distribution
mismatch issue can differ depending on the specific task we are trying to solve.
Therefore, more experiments on different datasets are required to formulate more
general guidelines on when to use UDF. The same thing is probably true for
different SSL algorithms, as results from Oliver et al. [2018] show that different
SSL algorithms behave slightly differently when subjected to class distribution
mismatch. Nevertheless, proper application (including not applying it at all when
appropriate) of UDF to filter the data before training should make SSL methods
more robust to the class distribution mismatch issue and therefore, the overall
goal of the thesis has been accomplished.

Results of the experiments also suggest an important property of the class
distribution mismatch issue, namely that it becomes less of an issue if we have
plenty of unlabeled data, compared to when we for example only have similar
amounts of unlabeled data from the relevant classes as we have of labeled data.
This could be used to potentially solve the problem in cases, where acquiring
more unlabeled data is not too expensive.

As for the future, it is necessary to perform experiments similar to ours for
different datasets and SSL algorithms, both to correctly estimate effectiveness of
UDF in specific cases and to test whether the property described in the previous
paragraph is general or specific to our case. There is also an enormous amount of
possibilities for specific design decisions within UDF that could make it beneficial
in a wider array of cases, for example using a GAN or a network pretrained on
different dataset for the feature extraction part of the algorithm. Moreover, while
we only studied one possible difference of the labeled and unlabeled distributions,
there are more that UDF could be applied to, with some changes. For example,
when the unlabeled distribution is severely unbalanced, a variant of UDF picking
representatives separately for each class and deciding to which class the sample
most probably belongs could be used to perform oversampling or undersampling

43

on the unlabeled data.
And last, but not least, while searching the available literature for ways others

tried to solve the class distribution mismatch issue, we noticed that their results
cannot be directly compared due to the differences in their experimental setup,
such as training different model architectures or even using different ways of
simulating class mismatch. For example, while some might simulate it by adding
data from another dataset as the irrelevant data, others might only use data
from a single dataset, choose relevant and irrelevant classes and pick only some of
those classes to include in the unlabeled data, leaving others out. In the future,
a common experimental setup should be adopted to allow direct comparisons
between different approaches.

44

Bibliography
E. Alpaydin. Introduction to Machine Learning. Third Edition. The MIT Press,

Cambridge, Massachusetts, 2014. ISBN 978-0-262-02818-9.

B. Athiwaratkun, M. Finzi, P. Izmailov, and A. G. Wilson. There are many
consistent explanations of unlabeled data: Why you should average. In
7th International Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL https:
//openreview.net/forum?id=rkgKBhA5Y7.

O. Chapelle, B. Schölkopf, and A. Zien. Semi-Supervised Learning. The MIT
Press, Cambridge, Massachusetts, 2006. ISBN 978-0-262-03358-9.

Y. Chen, X. Zhu, W. Li, and S. Gong. Semi-supervised learning under class dis-
tribution mismatch. 2020. URL https://xiatian-zhu.github.io/papers/
ChenEtAl_AAAI2020.pdf.

I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. C. Courville, and Y. Bengio. Generative adversarial nets. In Advances
in Neural Information Processing Systems 27: Annual Conference on Neural
Information Processing Systems 2014, December 8-13 2014, Montreal, Que-
bec, Canada, pages 2672–2680. Curran Associates, Inc., 2014. URL http:
//papers.nips.cc/paper/5423-generative-adversarial-nets.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recogni-
tion. In 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 770–778. IEEE, 2016.

S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In Proceedings of the 32nd International
Conference on International Conference on Machine Learning - Volume 37,
ICML’15, page 448–456. JMLR.org, 2015.

H. Kaizuka, Y. Nagasaki, and R. Sako. ROI regularization for semi-supervised
and supervised learning. CoRR, abs/1905.08615, 2019. URL http://arxiv.
org/abs/1905.08615.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In 3rd
International Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

A. Krizhevsky. Learning multiple layers of features from tiny images. 2009.

G. Kumar and P. K. Bhatia. A detailed review of feature extraction in image
processing systems. In 2014 Fourth International Conference on Advanced
Computing Communication Technologies, pages 5–12. IEEE, 2014.

45

https://openreview.net/forum?id=rkgKBhA5Y7
https://openreview.net/forum?id=rkgKBhA5Y7
https://xiatian-zhu.github.io/papers/ChenEtAl_AAAI2020.pdf
https://xiatian-zhu.github.io/papers/ChenEtAl_AAAI2020.pdf
http://www.deeplearningbook.org
http://papers.nips.cc/paper/5423-generative-adversarial-nets
http://papers.nips.cc/paper/5423-generative-adversarial-nets
http://arxiv.org/abs/1905.08615
http://arxiv.org/abs/1905.08615

A. Kuznetsova, H. Rom, N. Alldrin, J. Uijlings, I. Krasin, J. Pont-Tuset, S. Ka-
mali, S. Popov, M. Malloci, A. Kolesnikov, T. Duerig, and V. Ferrari. The
open images dataset v4: Unified image classification, object detection, and
visual relationship detection at scale. IJCV, 2020.

S. Laine and T. Aila. Temporal ensembling for semi-supervised learning. In 5th
International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net,
2017. URL https://openreview.net/forum?id=BJ6oOfqge.

Y. LeCun and C. Cortes. MNIST handwritten digit database. ATT Labs [Online],
2, 2010. URL http://yann.lecun.com/exdb/mnist/.

D.-H. Lee. Pseudo-label: The simple and efficient semi-supervised learning
method for deep neural networks. ICML 2013 Workshop : Challenges in Rep-
resentation Learning (WREPL), 07 2013.

A. LeNail. Nn-svg: Publication-ready neural network architecture schematics.
Journal of Open Source Software, 4(33):747, 2019. doi: 10.21105/joss.00747.
URL https://doi.org/10.21105/joss.00747.

A. Look and S. Riedelbauch. Dealing with limited access to data: Comparison of
deep learning approaches. In 2019 International Joint Conference on Neural
Networks (IJCNN), pages 1–8. IEEE, July 2019. doi: 10.1109/IJCNN.2019.
8852064.

A. L. Maas, A. Y. Hannun, and A. Y. Ng. Rectifier nonlinearities improve neural
network acoustic models. In in ICML Workshop on Deep Learning for Audio,
Speech and Language Processing. Citeseer, 2013.

L. Metz, B. Poole, D. Pfau, and J. Sohl-Dickstein. Unrolled generative adversarial
networks. In 5th International Conference on Learning Representations, ICLR
2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. Open-
Review.net, 2017. URL https://openreview.net/forum?id=BydrOIcle.

V. Nair, J. Fuentes Alonso, and T. Beltramelli. Realmix: Towards realistic semi-
supervised deep learning algorithms. CoRR, abs/1912.08766, 2019. URL http:
//arxiv.org/abs/1912.08766.

Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Ng. Reading digits
in natural images with unsupervised feature learning. In NIPS Workshop on
Deep Learning and Unsupervised Feature Learning 2011. Neural Information
Processing Systems Foundation, Inc., 2011. URL http://ufldl.stanford.
edu/housenumbers/nips2011_housenumbers.pdf.

A. Oliver, A. Odena, C. Raffel, E. A. Cubuk, and I. Goodfellow. Realistic eval-
uation of deep semi-supervised learning algorithms. In Advances in Neural
Information Processing Systems 31, pages 3235–3246. Curran Associates, Inc.,
2018.

46

https://openreview.net/forum?id=BJ6oOfqge
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.21105/joss.00747
https://openreview.net/forum?id=BydrOIcle
http://arxiv.org/abs/1912.08766
http://arxiv.org/abs/1912.08766
http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf
http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf

K. K. Pal and K. S. Sudeep. Preprocessing for image classification by convolu-
tional neural networks. In 2016 IEEE International Conference on Recent
Trends in Electronics, Information Communication Technology (RTEICT),
pages 1778–1781. IEEE, 2016.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet
Large Scale Visual Recognition Challenge. International Journal of Computer
Vision (IJCV), 115(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.

J. Salamon, C. Jacoby, and J. P. Bello. A dataset and taxonomy for urban
sound research. In 22nd ACM International Conference on Multimedia (ACM-
MM’14), pages 1041–1044, Orlando, FL, USA, Nov. 2014. Association for Com-
puting Machinery. ISBN 978-1-4503-3063-3.

A. Tarvainen and H. Valpola. Mean teachers are better role models: Weight-
averaged consistency targets improve semi-supervised deep learning results. In
Advances in Neural Information Processing Systems 30: Annual Conference
on Neural Information Processing Systems 2017, 4-9 December 2017, Long
Beach, CA, USA, pages 1195–1204. Neural Information Processing Systems
Foundation, Inc., 2017. ISBN 9781510860964.

A. Torralba, R. Fergus, and W. T. Freeman. 80 million tiny images: A large
data set for nonparametric object and scene recognition. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 30(11):1958–1970, 2008.

J. Uesato, J.-B. Alayrac, P.-S. Huang, R. Stanforth, A. Fawzi, and P. Kohli. Are
labels required for improving adversarial robustness? CoRR, abs/1905.13725,
2019. URL http://arxiv.org/abs/1905.13725.

J. E. van Engelen and H. H. Hoos. A survey on semi-supervised learning. Machine
Learning, 109(2):373–440, nov 2019. doi: 10.1007/s10994-019-05855-6.

Q. Xie, Z. Dai, E. H. Hovy, M.-T. Luong, and Q. V. Le. Unsupervised data
augmentation for consistency training. CoRR, abs/1904.12848, 2019. URL
http://arxiv.org/abs/1904.12848.

S. Zagoruyko and N. Komodakis. Wide residual networks. In Proceedings of the
British Machine Vision Conference 2016, BMVC 2016, York, UK, September
19-22, 2016. BMVA Press, 2016. ISBN 1-901725-59-6. URL http://www.
bmva.org/bmvc/2016/papers/paper087/index.html.

M. Zajac, K. Zolna, and S. Jastrzebski. Split batch normalization: Improving
semi-supervised learning under domain shift. CoRR, abs/1904.03515, 2019.
URL http://arxiv.org/abs/1904.03515.

47

http://arxiv.org/abs/1905.13725
http://arxiv.org/abs/1904.12848
http://www.bmva.org/bmvc/2016/papers/paper087/index.html
http://www.bmva.org/bmvc/2016/papers/paper087/index.html
http://arxiv.org/abs/1904.03515

List of Figures

1.1 Examples of images from the SVHN dataset. 6
1.2 Sample image from the ImageNet dataset. 6
1.3 Example of the k-means end state. The positions of the centroids

and the cluster borders are only approximate. 8
1.4 Illustration of artificial neuron, along with the formula to compute

its output. Inputs are marked x0 to xn, input weights w0 to wn,
activation function f and the output y. 9

1.5 An example of basic CNN design, including examples of what parts
of the previous layer are used as input. Generated using a tool
made by LeNail [2019]. 11

1.6 Basic types of residual blocks used in residual networks. 12
1.7 Basic training schema of a GAN. 13
1.8 Diagram of the basic autoencoder structure. 14

3.1 Basic design of UDF. 23
3.2 An example of how our filter works. The + signs mark the labeled

favorable data samples, the - signs mark the labeled unfavorable
data samples. The P and N letters mark the favorable and unfa-
vorable centroid respectively, with the appropriately colored circles
around them encompassing 75% of the labeled data belonging to
each centroid. Thus, the circles illustrate the maximal distance of
each centroid. The digits mark unlabeled samples that need to be
filtered. In the second step of the algorithm, the rules are more
strict. Thus, while sample 1 will be considered as favorable and
sample 2 as unfavorable, sample 3 will not be considered favorable,
because it is not within the maximal distance of the favorable cen-
troid. Moreover, neither 4 nor 5 will be considered favorable or
unfavorable, because they are represented by both centroids. The
third step is more permissive, allowing 3 to be considered favorable.
However, 4 and 5 will be filtered out, because the conditions will
consider them more likely to be unfavorable. Sample 5 is equidis-
tant from the two centroids and therefore cannot be considered
favorable. The unfavorable centroid has more samples belonging
to it, which is why it is more powerful, and even samples that are
closer to the favorable centroid, like sample 4, might be filtered out
(probably correctly, considering the shown distribution of the data). 28

3.3 A diagram detailing the entire process of UDF. 29

4.1 Images showing the effect of ZCA normalization. The top row
contains original CIFAR-10 images, while the bottom row contains
the same images after applying ZCA normalization. 32

4.2 Diagram of the final autoencoder architecture we used. All neu-
rons use leaky ReLU activation functions. All the layers are fully
connected. 34

48

4.3 Images showing reconstruction quality achieved by the autoen-
coder architecture we used during our experiments. The top row
contains CIFAR-10 images, while the bottom row contains the
same images after passing through the trained autoencoder. . . . 35

4.4 Accuracy difference to supervised baseline heatmap, containing
mean accuracy for each field. 39

4.5 Examples of preprocessed images from the Open Images Dataset. 39
4.6 A chart from Oliver et al. [2018] showing results of their experi-

ments with class mismatch. 41

49

List of Tables

4.1 Test accuracies achieved during the baseline experiments. 33
4.2 Test accuracies achieved for training data with 400 labeled samples

per favorable class, 431 unlabeled samples per favorable class and
a mismatch rate of 75%. 37

4.3 Test accuracies achieved for training data with 400 labeled samples
per favorable class, 2094 unlabeled samples per favorable class and
a mismatch rate of 50%. 37

4.4 Test accuracies achieved for training data with 400 labeled samples
per favorable class, 431 unlabeled samples per favorable class and
a mismatch rate of 50%. 38

4.5 Test accuracies achieved for training data picked from SVHN with
400 labeled samples per favorable class, 431 unlabeled samples
per favorable class and a mismatch rate of either 50% or 75%.
Mismatch rate for the Filtered Data experiment type is given as
“Either”, since we use the same amount of favorable data for both
mismatch rates and that amount is the only thing that matters for
that experiment type. 42

50

A. Attachments

A.1 Attached Code
All the source codes needed for reproducing our experiments are attached to
this thesis. Information on what the various folders contain and how to run the
experiments can be found in the README file in the root directory.

51

	Introduction
	Machine Learning
	Introduction to Machine Learning
	Basic Terms
	Public Datasets
	K-means

	Deep Learning
	Convolutional Neural Networks
	Generative Adversarial Networks
	Autoencoders
	Semi-supervised Learning in Deep Learning

	Unfavorably Distributed Data in Semi-supervised Learning
	Problem Description
	Previously Attempted Solutions

	Unfavorable Data Filtering
	Findings and Requirements
	Basic Design
	Feature Extraction
	Similarity-Based Filter
	Diagram

	Experiments and Their Evaluation
	Source Code
	Experimental Setup
	Baseline Experiments
	Filtration Experiments
	Experiments with Filtered Data
	Class Distribution Mismatch Grid
	Comparison to Oliver et al.
	SVHN Experiments

	Conclusion
	Bibliography
	List of Figures
	List of Tables
	Attachments
	Attached Code

