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intricate  and  time-consuming,  and  may  lead  to  human  mistakes  and  inaccuracy  in             

heartbeat  recognition.  In  this  paper,  different  machine  learning  techniques  for  the            
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Introduction  

 

According  to  the  World  Health  Organisation  (Moran,  et  al.  2018),  cardiovascular            

diseases  including  heart  disease  and  stroke  are  the  leading  cause  of  deaths             

worldwide,  killing  17.62  million  people  in  2016.  Unfortunately,  due  to  the  present             

lifestyle  factors,  this  number  continues  to  grow  with  an  alarming  rate  all  around  the               

world.  The  heart  is  one  of  the  most  important  organs  in  our  body  and  the  first  organ                  

developed  in  embryogenesis  within  three  weeks.  Beating  approximately  72  times  per            

minute,  it  pumps  blood  throughout  our  body  supplying  oxygen  and  nutrients  to  the              

tissues  and  removing  carbon  dioxide  and  other  wastes  (Thaler,  2015).  Each  time  our              

heart  beats,  it  creates  energy  in  the  form  of  electrical  currents.  In  order  to  be  able  to                  

recognise  and  diagnose  different  heart  diseases,  and  measure  the  health  of  a  patient’s              

heart,   it   is   important   to   be   able   to   collect   this   data.   

 Electrocardiography  (ECG)  is  the  most  reliable  and  low-cost  method  that  registers             

the  electrical  activity  of  the  heart,  recording  it  as  waveforms  and  generating  a  graph               

of  voltage  versus  time.  It  is  through  the  changes  in  the  normal  electrical  patterns               

shown  by  the  ECG  which  enable  us  to  diagnose  many  different  cardiac  disorders              

(Thaler,  2015).  Electrodes,  placed  on  the  surface  of  the  chest,  are  able  to  detect  the                

small  changes  in  voltage  during  depolarization  and  repolarization  of  cardiomyocytes           

in  each  heart  beat  (Gacek  &  Pedrycz,  2012).  Thaler  (2015)  recognizes  the             

disturbance  in  the  electrical  flow  through  the  heart,  called  arrhythmia,  as  the  most              

common  natural  cause  of  sudden  death  in  young  people  nowadays.  However,            

interpretation  of  ECG  signals  by  cardiologists  is  complicated  and  time  consuming,            

and  may  lead  to  errors  due  to  beat  misclassification  (Desai,  et  al.,  2016).  A  wrong                

diagnosis  of  a  patient  will  not  only  waste  time  and  money,  but  it  could  lead  to  the                  

sudden  death  of  the  patient.  Therefore,  several  machine  learning  (ML)  techniques  are             

proposed   for   contributing   to   the   clinical   applications   .   

 Machine  learning  is  a  branch  of  artificial  intelligence  that  allows  computers  to              

learn  directly  from  data  and  experience,  and  widely  used  to  replace  human  decision              

making  (Boutaba,  et  al.  2018). “We  are  actually  living  in  the  data  age”  says  Jiawein                
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Han  in  his  2012  book “Data  Mining:  Concepts  and  Techniques” .  Thousands  of             

terabytes  of  data  are  being  collected  every  day  from  businesses,  society,  science,             

engineering  and  medicine,  and  due  to  the  increasing  technological  advances  in  all             

fields,  analysing  such  data  using  various  machine  learning  techniques  plays  an            

essential  role  in  every  aspect  of  our  everyday  life  (Han,  2012).  In  the  healthcare               

industry,  these  data  collected  from  electronic  patient  records  and  diagnosis  of            

diseases  can  be  used  in  order  to  accurately  predict  the  presence  or  absence  of  heart                

related  diseases  (Ramalingam,  et  al.,  2018).  As  a  result,  significantly  reducing  the             

workload  of  cardiologists  and  enabling  them  to  focus  more  on  treatment  rather  than              

diagnosis.   

 As  stated  in  many  research  papers,  one  of  the  biggest  problems  in  building  a                

computer-assisted  detection  of  different  arrhythmia  types  is  the  selection  of  the            

correct  and  appropriate  machine  learning  technique  which  will  successfully  detect           

arrhythmia  types.  In  addition,  another  problem  stands  in  extracting  the  proper  feature             

selection  that  will  be  used  in  training  the  classifier.  In  this  paper,  the  ECG  heartbeat                

signals,  acquired  from  the  online  MIT-BIH  arrhythmia  database,  are  classified  using            

four  machine  learning  techniques,  namely  CART,  C5.0,  Random  Forest  and  Support            

Vector  Machine.  In  the  first  step,  the  Discrete  Wavelet  Transform  is  applied  to              

decompose  ECG  signals  into  numerous  wavelets  at  different  frequency  bands.  Next,            

in  order  to  have  a  better  performance  in  heartbeat  classification,  statistical  features             

are  extracted  from  these  frequency  bands.  In  this  study,  only  five  types  of  ECG               

heartbeats  are  being  analysed:  Normal  beats,  Right  Bundle  Branch  Blocks  beats            

(RBBB),  Left  Bundle  Branch  Blocks  beats  (LBBB),  Premature  Ventricular          

Contractions   (PVC)   and   Atrial   Premature   Contractions   (APC)   beats.  

 

Outline  

The  Introductory  Chapter  provides  a  general  sense  of  the  topic  by  emphasizing  the              

need  of  such  machine  learning  approaches  in  the  classification  of  arrhythmia  types             

and  the  available  tools  to  help  us  build  accurate  and  successful  arrhythmia  diagnosis              
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systems.  Then  the  focus  is  shifted  in  the  biggest  problems  faced  when  building  such               

classifiers.  

Chapter  1:  The  Electrocardiographic  Interpretation  describes  the  main          

theoretical  characteristics  of  the  cardiac  muscle  and  the  normal  electrocardiogram.           

Moreover,  we  provide  a  brief  explanation  to  all  types  of  arrhythmias  and  their              

electrocardiographic  interpretation,  giving,  in  particular,  a  deeper  explanation  to  the           

five   types   of   heartbeats   that   will   be   analysed   in   this   thesis.  

Chapter  2:  Materials  and  Methodology  presents  the  dataset  used,  describes  the             

methods  used  in  data  pre-processing,  gives  a  brief  explanation  to  DWT  and  how  it               

will  be  used  in  this  thesis,  and  shows  the  feature  extraction  methodology  chosen  in               

this  study.  Next,  we  analyse  the  machine  learning  classifiers  used  and  the  main              

reasons  why  we  chose  such  classifiers.  Lastly,  ten-fold  cross  validation  is  introduced             

and  evaluation  metrics  that  are  used  to  give  us  some  easily  comparable  numbers  are               

described.  

Chapter  3:  Experiments  gives  a  full  description  of  the  proposed  procedure,  the              

experimental  results  and  discussions  by  comparing  the  performance  results  obtained           

by   the   suggested   system   in   this   paper   with   the   results   obtained   in   other   studies.  

Conclusion  summarises  the  main  points  made  in  this  paper,  and  suggests  one  final               

model  with  the  highest  results  for  arrhythmia  classification  among  all  other  methods             

used   in   our   experiments.   

 

Goals   

The   goals   of   this   thesis   are:  

● to   review   current   research   conducted   on   MIT-BIH   arrhythmia   database  

● to  analyze  the  DWT  (Discrete  Wavelet  Transform)  as  the  only  pre-processing            

method   for   arrhythmia   classification   on   MIT-BIH   arrhythmia   database  
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1. The   Electrocardiographic   Interpretation  

In  order  to  build  a  successful  ECG  signal  classifier,  first,  it  is  important  to  understand                

what  causes  arrhythmias,  and  how  they  can  be  detected.  Therefore,  in  this  chapter,              

we  will  provide  a  brief  introduction  on  the  electrocardiographic  interpretation  of  the             

cardiac  muscle,  what  are  the  main  characteristics  of  a  normal  electrocardiogram,  the             

main   types   of   arrhythmias   and   how   they   can   be   recognised   using   ECG   signal.   

 

1.1.  The   Cardiac   Muscle  

The  cardiac  muscle  is  an  involuntary  muscle  constructing  the  main  tissue  of  the  heart               

wall,  and  forming  a  thick  middle  layer  between  its  outer  and  inner  layer  (Saxton,               

2018).  Cardiomyocytes  are  one  of  the  main  cells  contained  in  the  cardiac  muscle.              

They  are  specialised  in  generating  electrical  potentials  during  contraction.  At  rest,            

cardiomyocytes  are  negatively  charged  inside  with  respect  to  their  outside;  that  is,             

they  are  electrically  polarized  with  an  electrical  membrane  potential  of  about  −90             

mV  (Gacek  &  Pedrycz,  2012).  By  letting  ions  pass  in  and  out  of  the  cell,  the                 

membrane  pumps  make  sure  that  ions  are  well-distributed  in  order  to  keep  their              

internal  negativity.  However,  the  cells  can  lose  this  electrical  polarity  through  a             

fundamental  electrical  event  of  the  heart  called  depolarization.  The  arrival  of  an             

electrical  impulse  that  causes  positively  charged  ions  to  cross  the  cell  membrane             

leading  to depolarization (Thaler,  2015).  This  produces  a  wave  of  electricity  that  is              

then  transmitted  across  the  entire  heart.  After  depolarization  is  complete,  the  heart             

muscle  cells  return  to  their  rest  state  by  reversing  the  flow  of  ions,  a  process  called                 

repolarization (Thaler,  2015).  The  movement  of  ions,  causing  depolarization  and           

repolarization  of  the  cardiac  cells,  is  in  the  center  of  the  heart's  electrical  activity               

(Gacek  &  Pedrycz,  2012).  Moreover,  all  of  the  different  waves  recorded  on  ECG  are               

a  presentation  of  these  two  processes  (see  Figure  1.1.2).  These  waves  are             

characterized  by  three  main  attributes:  duration,  amplitude  and  configuration.          

Configuration   refers   to   the   shape   of   a   wave   (Thaler,   2015).   
 

9  
 



 

      
Figure   1.1.1   A   labeled   diagram   of   an  

action   potential  

 

                            
 

Figure   1.1.2   Above,   depolarization   and   the  
repolarization.   Below,   Electrocardiogram   recorded  

at   the   same   time   (Source:   Thaler,   2015)  

 
  

1.2.  Characteristics   of   the   Normal   Electrocardiogram  

The  normal  electrocardiogram  (see  Figure  1.2.1)  is  composed  of  the  P  wave,  the              

QRS  complex,  and  the  T  wave.  The  QRS  complex  consists  of  three  separate  waves:               

the  Q  wave,  the  R  wave  and  the  S  wave  (Hall,  2011).  T  waves  are  caused  by  the                   

repolarization  of  the  ventricle.  The  ventricle  is  the  lower  chamber  of  the  heart  that               

pumps  blood  from  the  heart  into  the  lungs  and  the  circulation  system  (Gacek  &               

Pedrycz,  2012).  It  is  composed  of  the  right  ventricle  (RV)  and  the  left  ventricle  (LV)                

(see  Figure  1.2.1).  The  P  wave  and  the  waves  of  the  QRS  complex  are  both                

depolarization  waves.  Depolarization  of  the  atria  causes  the  P  wave.  The  atria,  which              

are  called  the  upper  two  heart  chambers,  receive  the  blood  that  comes  back  from  the                

body  to  the  heart  (Gacek  &  Pedrycz,  2012).  Normally,  the  P  wave  lasts  0.12  seconds                

and  with  a  maximum  voltage  of  0.25mV.  If  a  P  wave  exceeds  the  values  given  above,                 

then  it  is  considered  to  be  abnormal  (Gacek  &  Pedrycz,  2012).  The  QRS  complex,               

being  the  largest  group  of  waves  on  the  ECG,  corresponds  exactly  to  the              

depolarization  of  ventricles  (see  Figure  1.2.1).  The  normal  duration  of  the  QRS             

complex  is  considered  to  be  0.12  seconds.  If  the  QRS  complex  lasts  more  than  0.12                

seconds,  then  this  shows  signs  of  bundle  branch  block,  pre-excitation  syndromes,  or             

premature  ventricular  contraction,  and  as  we  will  see  later  on  this  paper,  all  three  of                

them   will   appear   in   our   chosen   dataset   (Gacek   &   Pedrycz,   2012).   
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Figure   1.2.1   Propagation   of   the   depolarization   wave   in   the   heart   muscle   (Source:   Gacek   &   Pedrycz,  

2012)  

 
As  it  is  shown  in  the  heartbeats  of  Figure  1.2.2,  the  P-Q  interval  measures  the  time                 

from  the  beginning  of  atrial  depolarization  to  the  start  of  ventricular  depolarization.             

This  occurs  while  the  PQ  segment  measures  the  time  from  the  end  of  atrial               

depolarization  to  the  start  of  ventricular  depolarization.  The  P-Q  interval,  which            

extends  between  the  beginning  of  the  P  wave  and  the  beginning  of  the  QRS  complex,                

normally  lasts  between  0.12  to  0.20  seconds  (Gacek  &  Pedrycz,  2012).  The  ST              

segment,  extending  from  the  end  of  the  QRS  complex  to  the  beginning  of  the  T                

wave,  measures  the  time  between  the  end  of  ventricular  depolarization  and  the  start              

of  ventricular  repolarization  (Hall,  2011).  As  it  can  be  observed  in  both  Figure  1.2.1               

and  Figure  1.2.2,  the  Q-T  interval  includes  the  QRS  complex  and  the  T  wave,  and                

represents  the  duration  of  the  ventricular  action  potential  and  repolarisation.  The  Q-T             

interval’s  length  is  influenced  directly  by  the  heart  rate.  The  faster  the  heart  rate  is,                

the  shorter  this  interval  will  appear  in  the  ECG  signal  (Gacek  &  Pedrycz,  2012).               

Moreover,  extension  of  the  duration  of  this  interval  more  than  0.44  seconds             

corresponds  to  the  increased  risk  of  polymorphic  tachycardia,  which  can  cause            

unexpected  cardiac  death  (Gacek  &  Pedrycz,  2012).  In  order  to  calculate  the  heart              

rate,  the  R-R  interval  is  used.  It  represents  one  cardiac  cycle  (Gacek  &  Pedrycz,               

2012).   
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Figure   1.2.2   Normal   electrocardiogram   for   two   beats   of   the   heart   (Source:   Gacek   &   Pedrycz,   2012)  

 

1.3.  Arrhythmias   and   Their   Electrocardiographic   Interpretation  

ECG  signal  is  a  series  of  waves,  where  each  individual  heartbeat  shows  how  the               

electrical  activity  of  the  heart  is  evolving  with  time  from  a  certain  view  called  a lead                 

(Thaler,  2015).  Each  lead  measures  the  voltage  changes  between  electrodes  at            

different  positions  in  our  body.  Leads  I,  II,  and  III  are  called bipolar  leads ,  and  leads                 

aVR,  aVL,  aVF,  V1  to  V6  are  called unipolar  leads  (Thaler,  2015).  By  observing  the                

electrocardiographic  signal,  we  are  able  to  detect  any  disorder  of  the  heart  rhythm  or               

any  abnormal  change  in  the  depolarization-repolarization  pattern,  which  suggests  a           

risk  of  cardiac  arrhythmia  (Gacek  &  Pedrycz,  2012).  Therefore,  an  accurate  real-time             

analysis  and  classification  of  ECG  signals  in  clinical  settings  comes  of  significant             

help  to  doctors  in  identifying  arrhythmias.  Moreover,  the  diagnosis  of  an  arrhythmia             

is  one  of  the  most  important  things  an  ECG  can  do,  and  it  is  considered  to  be  the                   

most  reliable  and  cost-effective  tool  (Desai,  et  al,  2016).  The  purpose  of  this  section               

is  to  discuss  the  physiology  of  cardiac  arrhythmias  and  their  diagnosis  by             

electrocardiology.   
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Abnormality  P   wave  P:QRS  
ratio  

QRS  
regularity  

QRS  
shape  QRS   rate  Rhythm  

Occasional   
Normal   Supraventricular  

Abnormal   Ventricular  

Sustained  

Present  

P:QRS   =  
1:1  

Regular  Normal  
Normal  Sinus   rhythm  

>=  
150/min  Atrial   tachycardia  

Slightly  
irregular  Normal  

Normal  Sinus   arrhythmia  

Slow  Atrial   escape  

More   P  
waves  

than   QRS  
complexes  

Regular  
Normal  

Fast  Atrial   tachycardia   with  
block  

Slow  Second   degree   heart  
block  

Abnormal  Slow  Complete   heart   block  

Absent  

 

Regular  

Normal  
Fast  Junctional   tachycardia  

Slow  Junctional   escape  

Abnormal  Fast  

Junctional   tachycardia  
with   bundle   branch  
block   or   ventricular  

tachycardia  

Irregular  
Normal  Any  

speed  Atrial   fibrillation  

Abnormal  Any  
speed  

Atrial   fibrillation   and  
bundle   branch   block  

QRS  
complexes  

absent  
   Ventricular   fibrillation  

 
Table   1.3.1   Recognizing   ECG   abnormalities   (Source:   Hampton,   2013)  

 
 The  resting  heart  beats  usually  60-100  times  per  minute,  and  this  normal  cardiac               

rhythm  is  called normal  sinus  rhythm  (NSR),  while  anything  else  is  called  an              

arrhythmia (Thaler,  2015).  The  term  arrhythmia  includes  any  abnormality  in  the            

conduction,  rate  or  regularity  of  the  cardiac  electrical  impulses  (Thaler,  2015).            

Referring  to  Thaler  (2015),  an  arrhythmia  can  be  a  single  abnormal  beat,  an  extended               

pause  between  beats,  or  a  rhythm  disturbance  that  can  continue  during  the  whole  life               

of  the  patient.  However,  it  is  important  to  note  that  not  every  arrhythmia  is  dangerous                

to  human’s  health.  For  instance,  a  heart  rate  between  35  to  40  beats  per  minute  is                 
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considered  normal  in  well-trained  athletes.  Therefore,  a  precise  analysis  of  the  ECG             

signal   is   crucial   in   preventing   wrong   diagnosis.   

 Hampton  (2013),  in  his  book “The  ECG  Made  Easy”,  categorizes  abnormal             

rhythms   as:  

● bradycardias,   which   have   a   slow   and   sustained   rhythm;  
● tachycardias,   which   also   have   a   sustained   rhythm,   but   faster   in   speed;   
● fibrillation,   where   the   activation   of   the   atria   or   ventricles   is   completely   out   of  

order.   
 

↓   Origin,   Type   →  Tachycardia  Bradycardia  Error   of   conduction  

Supraventricular  
arrhythmias  
(Narrow   QRS  
complexes)  

Sinus   tachycardia  Sinus   bradycardia  AV   block   I  

Premature   atrial   contraction  
/   premature   impulse   from  

the   AV   node  

SA   block   /   sinus  
block  AV   block   II  

Junctional   tachycardia   AV   block   III  

Supraventricular  
tachycardia    

Atrial   flutter    

Atrial   fibrillation    

Ventricular  
arrhythmias  
(Broad   QRS  
complexes)  

Premature   ventricular  
contraction  Ventricular   escape  Right   bundle   branch  

block  

Ventricular   tachycardia   Left   bundle   branch  
block  

Ventricular   fibrillation    
 

Table   1.3.2   Arrhythmias   overview  

 In  reference  to  Hampton  (2013)  and  bearing  in  mind  the  abnormal  heartbeats  that               

appear  in  our  dataset,  arrhythmias  are  categorized  into  two  major  groups  based  on              

their  origin  and  type  (see  Table  1.3.2):  supraventricular  arrhythmias  and  ventricular            

arrhythmias.  

 

1.3.1.   Narrow   QRS   Complexes:   Supraventricular   Arrhythmias   

 

Supraventricular  Arrhythmias  are  the  arrhythmias  that  originate  in  the  atria  or  the             

atrioventricular  node  (AV)  (Thaler,  2015). Atrioventricular  node  is  an  electrical  gate            

at   the   meeting   point   of   the   atria   and   the   ventricles   (see   Figure   1.2.1).   
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Supraventricular  rhythms  are  characterised  by  narrow  QRS  complexes,  less  than            

120  ms  (Hampton,  2013).  Narrow  complex  tachycardia  may  be  a  sign  of sinus              

tachycardia,  premature  atrial  contraction or  premature  impulse  from  the  AV  node,            

junctional  tachycardia,  atrial  flutter and atrial  fibrillation  (see  Table  1.3.1). Sinus            

rhythm  is  identified  by  one  P  wave  per  QRS  complex,  by  a  normal  QRS  shape  and  a                  

normal  QRS  rate  (see  Table  1.3.1). Premature  atrial  contraction  appears  as  a  P  wave               

and  QRS  complex  happening  earlier  than  expected.  Moreover,  it  is  characterized  by  a              

R-R   interval   that   is   prolonged   after   a   premature   beat.   

Sinus  tachycardia  seems  to  have  a  normal  electrocardiogram.  However,  while  a             

normal  heart  rate  is  72  beats  per  minute,  for  sinus  tachycardia  the  heart  rate  is                

expected  to  be  150  beats  per  minute  (Hall,  2011).  In junctional  tachycardia ,  we              

observe  that  the  P  waves  are  not  present.  Additionally,  a  normal  QRS  shape  with  a                

rate  of  150-180  beats  per  minute  is  noticed  (Hampton,  2013).  In  contrast, atrial              

flutter  is  characterized  by  a  P  wave  at  a  rate  of  300  beats  per  minute.  Furthermore,                 

the  atrial  depolarization  happens  very  fast  such  that  we  are  not  able  to  see  the  P                 

waves  separated  by  a  flat  baseline  (Thaler,  2015).  This  results  in  a  great  number  of                

atrial   impulses   that   want   to   pass   through   the   AV   node   to   generate   QRS   complexes.   

 Nevertheless,  not  all  atrial  impulses  succeed  to  pass  through  the  AV  node.  The               

most  that  they  can  do  is  hit  the  refractory  node,  and  this  is  called  the AV  block                  

(Thaler,  2015).  The  first-degree  AV  block  causes  a  prolonged  P-Q  interval  and  all  P               

waves  are  followed  by  QRS  complexes.  As  mentioned  earlier,  a  normal  P-Q  interval              

lasts  between  0.12  and  0.20  seconds,  while  the  PR  interval  in  a  patient  with  first                

degree  AV  block  is  prolonged  more  than  0.20  seconds  (Hall,  2011).  Therefore,  the              

first  degree  AV  block is  more  of  a  postponement  of  conduction  from  the  atria  to  the                 

ventricles,  rather  than  an  obstruction  of  conduction.  In  addition,  in  the            

atrioventricular  node,  we  notice  an  atrial  P  wave,  but  no  QRS-T  wave  (Hall,  2011).               

As  shown  in  Table  1.3.1,  the second  degree  AV  block is  characterized  by  a  regular                

QRS  complex  with  a  normal  shape  and  slow  rate.  The third  degree  AV  block ,  also                

called  a  complete  AV  block,  is  characterised  by  a  P  wave  that  is  completely               

disassociated   from   the   QRS-T   complexes.   

Atrial  fibrillation ,  known  as  the  most  irregular  rhythm  and  a  completely  chaotic              

atrial  activity,  has  a  QRS  complex  rate  typically  varying  between  120  beats  per              
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minute  and  190  beats  per  minute  (Hampton,  2013).  However,  the  QRS  complexes             

have  a  normal  shape  and  a  normal  T  wave  (see  Table  1.3.1).  Same  as  with  junctional                 

tachycardia,  atrial  fibrillation  has  no  P  wave.  On  the  other  hand,  in  the  groups  of                

slow  rhythms,  known  under  the  name  of  bradycardia,  is  included  sinus  bradycardia             

and  SA  block  (see  Table  1.3.2). Sinus  bradycardia  happens  when  the  rhythm  of  the               

heart  slows  down  below  60  beats  per  minute.  It  is  the  most  common  rhythm               

disturbance  observed  in  the  early  stages  of  an  acute  myocardial  infarction  (Thaler,             

2015).  

 

1.3.2.   Broad   QRS   Complexes:   Ventricular   Arrhythmias  

 

Ventricular  rhythms  are  identified  by  wide  QRS  complexes  with  duration  more  than             

120  ms  (Hampton,  2013).  Very  wide  QRS  complexes,  which  are  greater  than  160  ms,               

are  usually  a  sign  of  ventricular  tachycardia.  Furthermore,  such  rhythms  have  no             

visible  P  waves.  If  the  ventricular  muscle  depolarizes  with  a  high  frequency,  the              

rhythm  is  called  ventricular  tachycardia.  The  QRS  complexes  are  seen  to  be  wide,              

duration  280  ms  and  with  a  very  abnormal  shape,  and  T  waves  are  difficult  to  be                 

identified   (Hampton,   2013).   Moreover,   the   P   waves   are   absent.   

 The premature  ventricular  contractions (PVC) are  the  most  widespread           

ventricular  arrhythmias.  The  QRS  complexes  in  PVC  are  usually  commonly           

prolonged  and  have  a  high  voltage  (Hall,  2011).  In  addition,  the  QRS  duration  must               

be  at  least  0.12  seconds  in  most  of  the  leads  of  an  ECG  signal  in  order  to  make  the                    

diagnosis  of  PVC  (Thaler,  2015).  Typically,  PVCs  do  not  have  the  same  amplitude  of               

the  R  peak,  and  the  T  wave  that  precedes  the  QRS  is  placed  higher.  Moreover,  there                 

is  no  P  wave  after  the  QRS  complex  (Carvalho,  et  al.,  2011).  The  main  characteristic                

of  PVC  is  its  premature  occurrence,  which  is  clearly  displayed  by  the  R-R  interval  in                

Figure   1.3.1.  
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                 Figure   1.3.1   Premature   ventricular   contraction   (Source:   Carvalho,   et   al.,   2011)  

 
 
Ventricular  fibrillation (FVB)  is  known  to  be  the  arrhythmia  that  causes  the  greatest              

number  of  sudden  deaths  in  adults  (Thaler,  2015).  The  main  identifier  of  FVB  is  the                

absence  of  QRS  complexes.  Escape  beats  are  called  the  rescuing  beats  that  come  into               

action  when  sinus  arrest  occurs.  Sinus  arrest,  shown  in  the  ECG  as  a  flat  line  without                 

any  electrical  activity,  happens  when  the  sinus  node  stops  firing  (Thaler,  2015).  The              

escape  beats  included  in  our  dataset  are: atrial  escape  beat,  junctional  escape  beat,              

supraventricular   escape   beat    and    ventricular   escape   beat.   

 Ventricular  escape  is  most  often  observed  in  the  cases  when  then  complete  heart               

block  interrupts  the  conduction  between  the  atria  and  ventricles  (Hampton,  2013).  On             

the  ECG  signal,  after  a  pause,  a  single  abnormal  wide  QRS  complex  is  observed.               

One  could  diagnose  a  bundle  branch  block  by  observing  the  width  and  configuration              

of   the   QRS   complexes.   

 The right  bundle  branch  block  (RBBB)  is  caused  by  a  delay  in  the  right                

ventricular  depolarization  which  is  represented  in  the  ECG  signal  by  a  wider  QRS              

complex  beyond  0.12  seconds.  In  RBBB,  with  the  left  ventricle  depolarizing  we  see              

the  initial  R  and  S  waves,  while  with  the  late  depolarization  of  the  right  ventricle,  we                 

notice  a  second  R  wave,  called  R′  (Thaler,  2015).  Some  other  commonly  used  ECG               

criterias  to  diagnose  RBBB  include:  a  QRS  complex  in  the  shape  of  letter  “M”  and                

an  inverted  T  wave  appears  in  leads  V1  and  V2,  a  broad  S  wave  in  leads  V5  and  V6,                    

either  S  wave  lasts  longer  than  R  wave  or  S  wave  duration  is  beyond  40  msec  in  V6                   

(Thaler,   2015).   
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 On  the  other  hand,  in  the left  bundle  branch  block (LBBB),  it  is  the  left                 

ventricular  decomposition  that  is  delayed.  Similarly  to  the  RBBB,  the  QRS  complex             

lasts  longer  than  0.12  seconds.  In  addition,  RBBB  is  characterised  by  a  broad  R  wave                

that  lasts  longer  than  30  msec  (Wyngaarden,  et  al.,  2004).  Some  other  commonly              

used  ECG  criterias  to  diagnose  LBBB  are:  deep  and  broad  S  wave  in  leads  V1  and                 

V2,  while  leads  V5  and  V6  are  characterized  by  broad  and  clumsy  R  wave,  and,                

moreover,  the  ST  segment  goes  higher  than  5mm.  You  may  refer  to  Figure  1.3.2  for  a                 

visual   representation   of   such   characteristics.   

 

                

Figure   1.3.2   ECG   signals   showing   the   difference   between   Normal,   LBBB   and   RBBB   beats   (Source:  
ECG   and   ECHO   Learning)  

 

An  overview  of  the  main  characteristics  of  the  beats  that  are  being  considered  in  this                

thesis   are   displayed   in   Table   1.3.3.  
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APC  PVC  RBBB  LBBB  

-   Early   and  
abnormal   P   wave  

-   No   P   wave   after   QRS  
complex  

-   Long   S   wave   (>=   40  
ms)   in   leads   V5-V6  

-   R   wave   >=   30   ms,  
deep   and   broad   in  
leads   V5-V6  

-   Early   and   narrow  
QRS   complex  

-   Wide   (>=   0.12   s)   and  
prolonged   QRS  
complex  

-   Wide   (>=   0.12   s)  
QRS   complex   with   "M"  
shape  

-   Wide   (>=   0.12   s)  
QRS   complex  

-   Prolonged   RR  
interval  

-   Higher   T   wave   after  
QRS   complex  

-   Inverted   T   wave   in  
leads   V1-V2  

-   ST   segment   higher  
than   5mm  

   
-   Deep   and   broad   S  
wave   in   leads   V1-V2  

 
Table   1.3.3   Recognizing   main   characteristics   of   APC,   PVC,   RBBB   and   LBBB   beats   
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2. Materials   and   Methodology  

2.1.  Dataset   Used  

In  this  thesis,  the  MIT-BIH  arrhythmia  database,  which  is  free  and  publicly  available              

on  PhysioNet  is  used  (Goldberger,  et  al.,  2003).  The  database  contains  48  records,              

each  with  two-channel  ECG  signals  (Moody  &  Mark,  2001).  As  described  in  Moody              

&  Mark  (2001),  each  record  has  a  duration  of  30  minutes  selected  from  24  hours  of                 

recordings  after  studying  47  different  patients  at  the  Boston’s  Beth  Israel  Hospital             

(BIH)  Arrhythmia  Laboratory  between  1975  and  1979.  The  continuous  ECG  signals            

are  band-pass  filtered  at  0.1–100Hz  and  then  digitized  at  360  Hz  (Moody  &  Mark,               

2001).  Subjects  include  22  females  of  age  23  to  89  and  25  males  of  age  32  to  89.                   

Approximately  40%  of  these  recordings  were  obtained  from  outpatients,  and  60%  of             

these  recordings  were  obtained  from  inpatients.  Two  records,  201  and  202,  are  from              

the  same  male  subject  (Moody  &  Mark,  2001).  The  database  contains  annotations  for              

both   timing   information   and   beat   class   information   verified   by   experts   independently.   

 Overall,  there  are  112,646  labelled  beats,  all  annotated  by  at  least  two              

cardiologists  (Moody  &  Mark,  2001).  First,  a  simple  QRS  detector  generated  an             

initial  set  of  labels  for  each  beat,  tagging  each  detected  event  as  a  normal  beat.  Then,                 

for  each  record,  the  cardiologists  added  additional  beat  labels  for  those  beats  that  the               

detector  missed.  Moreover,  they  deleted  false  detections  where  it  was  necessary,  and             

checked  the  labels  for  all  abnormal  beats  (Moody  &  Mark,  2001).  The  dataset              

includes  15  different  heartbeat  classes,  where Normal  Beat  is  the  group  with  the              

highest  amount  of  data,  and Supraventricular  Premature  Beat  with  only  two  samples,             

being  the  class  with  the  smallest  amount  of  data.  More  specifically,  some  of  the  main                

beats,  that  our  dataset  includes,  are:  75052  labeled  normal  beats,  8075  left  bundle              

branch  block  (LBBB)  beats,  7259  right  bundle  branch  block  (RBBB)  beats,  7130             

PVC  beats,  7028  paced  beats,  2546  atrial  premature  contraction  (APC)  beats,  229             

nodal  (junctional)  escape  beats,  106  ventricular  escape  beats,  83  nodal  (junctional)            

premature  beats,  16  atrial  escape  beats,  2  supraventricular  premature  beats  and  33  are              

unclassified   beats   (Moody   &   Mark,   2001).   
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2.2.  Data   Pre-processing  

Objective  evaluation  of  the  classifiers  proposed  in  machine  learning  research  is            

essential.  Therefore,  using  all  the  data  of  the  MIT-BIH  arrhythmia  dataset  in  the              

classification  process  seems  the  right  path  to  follow.  However,  this  results  in  being              

time  consuming.  Hence,  the  most  recent  scientific  papers  use  only  a  subset  of  this               

database,  extracting  different  heartbeat  classes  to  use  in  their  study.  In  Alickovic  &              

Subasi  (2016),  five  different  heartbeat  classes  were  selected  with  a  total  of  1800              

heartbeats:  1000  normal  beats,  300  left  bundle  branch  block  beats,  200  right  bundle              

branch  block  beats,  100  atrial  premature  contraction  heartbeats  and  200  premature            

ventricular  contraction  heartbeats.  Nayak,  et  al.  (2016)  and  Desai,  et  al.  (2016)  both              

categorize  the  entire  dataset  into  five  arrhythmia  classes  based  on  the  ANSI/AAMI             

EC57:1998  standard.  In  their  experiments,  they  use  110,093  heartbeats,  consisting  of            

82.3%  non-ectopic  (NE),  2.7%  supraventricular  ectopic  (S),  7%  ventricular  ectopic           

(V),  1.6%  fusion  (F)  and  6.4%  unknown  beats  (U).  In  Acır  (2006),  4  types  of  beats                 

are  used:  normal  beats,  LBBB  beats,  premature  ventricular  contraction  beats  (PVC)            

and   non-conducted   P-wave.  

 In  this  paper,  3600  heart  beats  were  randomly  selected  out  of  112,646  labelled               

beats  contained  in  the  chosen  database,  from  which:  2000  Normal  heartbeats  out  of              

75052,  600  LBBB  heartbeats  out  of  8075,  400  RBBB  heartbeats  out  of  7259,  400               

PVC  heartbeats  out  of  7130  and  200  APC  heartbeats  out  of  2546.  In  each  heartbeat                

class,  half  of  the  beats  were  used  for  training  of  the  classifiers  and  half  of  the  beats                  

for  testing  and  evaluation  of  our  models.  In  particular,  1000  Normal  beats,  300              

LBBB  beats,  200  RBBB  beats,  200  PVC  beats  and  100  APC  beats  were  used  to  form                 

the  training  set,  and  the  same  amount  of  beats  were  used  to  form  the  test  set.  Every                  

ECG  heartbeat  is  a  matrix  using  one  lead  and  having  a  window  of  length  320  data                 

points.   320   data   points   corresponds   to   approximately   0.889   seconds.   

 

2.3.  Discrete   Wavelet   Transform   (DWT)  

Wavelet  transform  is  the  decomposition  of  a  signal  into  components  called  wavelets.             

The  key  idea  of  the  wavelet  transform  is  the  multiresolution  decomposition  of  signals              

21  
 



 

and  images.  The  most  commonly  used  method  in  multiresolution  decomposition           

includes  creating  an  approximation  component  using  a  scaling  function  (a  low-pass            

filter)  and  the  detail  components  using  wavelet  functions  (high-pass  filters)           

(Sundararajan,  2015).  Wavelets  are  functions  that  separate  data  into  various           

frequency  components  and  are  the  foundation  for  representing  images  in  various            

degrees  of  resolution  (Gonzales  &  Woods,  2008).  There  are  different  versions  of             

wavelet  analysis;  one  of  them  is  the  Discrete  Wavelet  Transform.  DWT  decomposes             

the   signal   into   wavelets   at   distinct   frequency   bands   having   distinct   resolutions.   

 

 
                                   Figure   2.3.1   Frequency   domain   representation   of   the   DWT  

 
It  decomposes  the  signal  into  approximation  A  using  low-pass  filter,  which            

attenuates  the  high  frequency  part  of  the  initial  signal  and  passes  only  the  low               

frequencies,  corresponding  to  the  smooth  parts  of  the  image,  and  into  detail  D  using               

high-pass  filter,  which  does  the  opposite  of  the  low-pass  filter,  passing  only  the  high               

frequency  part  of  the  initial  signal  and  corresponding  to  the  detailed  parts  of  the               

image  (Gonzales  &  Woods,  2008).  The  first  down  sampled  high-pass  filters’  and             

low-pass  filters’  produce  detail  D1  and  approximation  A1.  In  the  next  level  of              

decomposition,  in  the  same  way,  A1  is  decomposed  into  detail  D2  and  approximation              

A2.  Repeatedly,  this  procedure  is  performed  in  this  way  until  no  more  sub-sampling              

is  possible.  The  two  level  decomposition  of  a  signal  s  by  the  DWT  is  shown  in                 

Figure  2.3.2.  Even  though,  the  DWT  are  not  capable  of  distinguishing  the  noise              

coefficients  from  the  signal  coefficients  at  low  SNRs,  it  is  still  a  good  choice  as  it  is                  

capable  of  saving  the  significant  phase  information  of  ECG  heartbeat  signals            

(Alickovic  &  Abdulhamit,  2016).  DWT  involves  forward  and  inverse  transforms  (see            

Figure  2.3.2  and  Figure  2.3.3).  Discrete  Wavelet  Transform  is  being  used  by  all  of               

the   most   recent   papers   in   the   process   of   feature   extraction   from   ECG   signals.  
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Figure   2.3.2   A   two   level   decomposition   of   a   signal   s   by   the   forward   DWT  

    

Figure   2.3.3   A   two   level   inverse   DWT  

 

 The  first  level  of  DWT  is  the  Haar  wavelet  invented  by  the  Hungarian               

mathematician  Alfred  Haar.  The  Haar  Wavelet  Transform  is  well-known  for  being            

simple  and  fast  in  computation  (Stanković  &  Falkowski  2003).  There  are  two  types              

of  coefficients  produced  by  Haar  Wavelet  Transform,  the  approximation  coefficients,           

which  are  calculated  by  averaging  the  two  adjacent  samples,  and  the  detail             

coefficients,  acquired  by  subtracting  two  adjacent  samples  (Stanković  &  Falkowski           

2003).  Moreover,  the  Haar  Wavelet  Transform  involves  forward  and  inverse           

transforms.  The  forward  transform  requires  two  main  steps:  computation  of  the            

scaling  coefficients,  achieved  by  adding  two  adjacent  sample  values  and  dividing  by             

2,  and  computation  of  the  wavelet  coefficients,  achieved  by  subtracting  two  adjacent             

sample   values   and   dividing   by   2.   

 On  the  other  hand,  the  computation  of  the  inverse  transform  requires  simply              

addition  and  subtraction.  In  other  words,  for  an  input  signal  of  length  2n,  where  n  is                 

the  number  of  levels,  the  Haar  wavelet  transform  joins  together  the  input  values.  It               

saves  their  difference  and  passes  their  sum.  Daubechies  wavelet  family,  invented  by             

the  Belgian  mathematician  Ingrid  Daubechies,  is  considered  to  be  the  most  practical             
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wavelet  family  due  to  its  orthogonal  abilities.  An  N-th  order  Daubechies  wavelet  is              

denoted  as  dbN,  where  Daubechies  db1  is  the  same  as  Haar  Transform  (Malik  &               

Verma,   2012).   

 

 
                         Figure   2.3.4   Example   of   a   3-level   forward   DWT   signal   decomposition  

 

 The  Figure  2.3.4  displays  a  visual  representation  of  how  the  DWT  algorithm              

works.  In  order  to  make  the  explanation  as  simple  to  understand,  we  decided  to  take                

a  simple  example  of  a  signal  and  perform  3rd  level  DWT.  The  green  squares               

represent  the  approximation  coefficients  and  the  blue  squares  represent  the  detail            

coefficients.  As  mentioned  above,  the  approximation  coefficients  are  obtained  by           

adding  two  adjacent  sample  values  and  dividing  by  2  (ie.  (10+8)/2  =  9),  while  the                

detail  coefficients  are  obtained  by  subtracting  the  two  adjacent  sample  values  and             

dividing  by  2  (ie.  (10-8)/2  =  1).  We  proceed  in  this  way,  taking  two-by-two  samples                

and  performing  the  simple  calculations  above.  As  a  result  of  this  transformation,  the              

first  level  of  discrete  wavelet  transform  is  obtained.  In  addition,  to  acquire  the  second               

level  of  DWT,  the  same  calculations  are  performed,  but  only  on  the  first  half  of  the                 

output  transformed  signal.  The  second  half  is  a  copy  of  the  values  of  the  signal  in  the                  

1st  level  of  DWT,  represented  by  the  yellow  colored  boxes.  We  proceed  in  this  way                

recursively,  depending  on  how  many  levels  of  DWT  decomposition  we  wish  to             

perform.   
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 In  many  recent  research  papers,  it  is  stated  that  the  6th  level  detail  coefficients  are                 

considered  to  be  the  most  significant  ones.  Therefore,  we  will  be  performing  up  to               

6th  level  DWT  decomposition  of  the  ECG  signal.  Moreover,  Figure  2.3.5  shows  the              

plot  of  the  original  signal  of  record  100  from  MIT-BIH  arrhythmia  database  and  the               

output   of   DWT   for   level   1,   2,   4,   5   and   6.   

 

 
   Figure   2.3.5   Plotting   original   signal   of   record   100   and   the   output   of   DWT  

 

2.4.  Feature   Extraction  

In  both  papers  of  Nayak,  et  al  (2016)  and  Desai,  et  al  (2015),  the  DWT                

multiresolution  analysis  with  Daubechiesdb4  mother  wavelets  is  being  used  in  the            

ECG  signal  denoising  process.  They  reconstruct  the  wavelet  coefficients  in  the            

detailed  sub-bands  of  3th,  4th,  5th,  6th,  7th,  8th  and  9th  level  to  obtain  a  denoised                 

ECG  signal.  The  first  two  levels  of  detailed  coefficients  are  set  to  zero,  because  the                

ECG  above  45Hz  does  not  contain  any  important  information.  Moreover,  each            

cardiac  beat  consists  of  200  samples,  and  the  DWT  is  used  to  decompose  them  into                

four  sub-bands.  In  addition,  the  feature  extraction  is  performed  at  the  QRS-complex             

frequency   range   from   3rd   level   detail   and   4th   level   detail   coefficients.   

25  
 



 

 Acir  (2006)  analyses  three  different  techniques  in  feature  extraction.  The  first             

method  uses  the  amplitude  of  the  raw  samples  as  input  vectors  in  the  recognition               

procedure,  the  second  calculates  the  Discrete  Cosine  Transform  coefficients  in  the            

original  ECG  data,  and  the  third  involves  the  DWT  of  ECG  data  using  Daubechies-2               

wavelet.  For  each  feature  vector,  only  the  2nd,  3rd  and  4th  levels  of  wavelet               

approximation  coefficients  are  calculated,  resulting  in  the  4th  level  being  the  most             

significant   one.   

 In  the  study  of  Alickovic  and  Abdulhamit  (2016),  the  DWT  analysis  is  also  used                

in  the  process  of  feature  extraction.  To  reconstruct  the  original  signal,  they  rebuild              

the   approximations   and   details   results   using   Daubechies-4   wavelet   filters.   

 In  order  to  accurately  classify  the  heartbeat  from  an  ECG  signal,  dimensionality              

reduction  of  the  feature  extraction  is  needed.  The  wavelet  coefficients  of  the  DWT              

provide  us  with  a  good  picture  of  the  distribution  in  time  and  frequency  domain  of                

the  ECG  signal.  However,  to  reduce  its  dimensionality,  in  this  thesis,  statistical             

indices  are  used  to  indicate  the  distribution  of  the  ECG  signals  over  time  and               

frequency   as   follows   (Alickovic   &   Abdulhamit,   2016):  

1. The  average  of  the  absolute  values  of  the  wavelet  coefficients  in  each             

sub-band.  

2. The   mean   of   the   values   of   the   coefficients   in   each   sub-band.  

3. The   standard   deviation   of   the   wavelet   coefficient   in   each   sub-band.  

4. The   ratio   of   the   mean   of   the   absolute   values   of   each   two   adjacent   sub-bands.   

In  the  implementation  of  this  thesis,  we  are  considering  up  to  the  6th  level  of  detail                 

of  the  DWT,  and  the  inputs  of  the  classifiers  were  the  statistics  calculated  on  the                

frequency   bands   A6   and   D1-D6.   In   total   there   are   27   feature   vectors.  

 

2.5.  Machine   Learning   Classifiers   

2.5.1. Decision   Tree   Classifiers   

 

Classification   and   Regression   Tree   and   C5.0  

CART  analysis  is  a  well-known  decision  tree  technique  for  constructing  predictors            

from  the  data.  C5.0  algorithm  is  also  known  as  divide  and  conquer,  because  it  uses                
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the  features  to  divide  the  data  into  smaller  and  smaller  subsets  of  similar  classes               

(Lantz,  2013).  The  CART  implementation  is  very  similar  to  C5.0.  The  predictors  are              

obtained  by  recursively  partitioning  the  data  and  fitting  a  single  predictor  model             

within  each  partition  (Loh,  2011).  The  root  node  of  the  tree  represents  the  entire               

dataset.  The  algorithm  starts  at  the  root  node,  and,  at  each  step,  it  picks  one  feature                 

which  helps  us  better  in  predicting  the  target  class.  It  then  uses  this  feature  to  make  a                  

split,  forming  in  this  way  the  first  set  of  tree  branches.  The  algorithms  recursively               

proceeds  in  this  way  until  a  stopping  criterion  is  reached.  This  happens  when  (Lantz,               

2013):  

● All   of   the   examples   at   the   node   belong   to   the   same   class  

● There   are   no   features   left   to   identify   between   examples  

● The   tree   has   reached   the   predefined   size   limit  

 Decision  Tree  classifiers  are  based  on  identifying  the  best  split  from  which  the               

greatest  information  is  obtained,  and  then  using  that  feature  to  split  the  data.  In  order                

to  identify  the  best  split,  it  is  needed  to  measure  the  purity  of  the  target  variable                 

within   the   subsets,   which   can   be   accomplished   by   using    entropy    (Lantz,   2013):   

,  
where  S  represents  the  segment  of  data,  c  the  number  of  different  classes  and  p  the                 

probability  of  the  values  being  part  of  class  i.  Now,  using  entropy,  the  Information               

Gain   of   a   feature   F   can   be   calculated   as   shown   below   (Lantz,   2013):  

                              InfoGain(F)   =   Entropy(S1)   -   Entropy(S2).  

The  higher  the  information  gain,  the  more  homogenous  the  group  that  is  created  after               

the   split   on   this   feature   is.   

 Decision  Tree  classifier  is  a  binary  recursive  partitioning  technique,  because  each             

node  in  the  decision  tree  stands  for  a  group  of  examples.  This  node  can  be  split  only                  

into  two  child  nodes,  making  the  original  node  the  parent.  This  process  of  binary               

partitioning  happens  recursively,  over  and  over  again.  In  this  way,  each  parent  node              

is  divided  into  two  children  nodes,  and  each  children  node  may  be  partitioned  into               

additional  children  nodes  (Lewis,  2000).  However,  there  is  the  risk  of  model             

overfitting  as  the  tree  grows  bigger  and  bigger  making  overly  specific  decisions.             

Therefore,   there   is   the   need   to   prune   the   tree.  
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 Pruning  is  the  process  of  reducing  the  size  of  a  decision  tree  so  that  it  would                  

generalize  better  to  new  unseen  data  (Lantz,  2013).  There  are  two  main  types  of               

pruning:  pre-pruning  and  post-pruning.  In  pre-pruning,  we  allow  the  tree  to  grow             

until  it  reaches  some  predefined  number  of  decisions  or  if  there  is  only  a  small                

number  of  examples  in  the  node.  In  post-pruning,  first  we  grow  a  very  large  tree  and                 

then  reduce  the  size  using  pruning  criteria  (Lantz,  2013).  Some  main  advantages  of              

decision   tree   analysis   include   (Lewis,   2000   and   Lantz,   2013):  

● Work  with  highly  skewed  numerical  data  and  ordinal  and  non-ordinal           

categorical   data.  

● Work   well   with   missing   variables.  

● Compared  to  the  complexity  of  the  algorithm,  it  requires  relatively  little  input             

from   the   user.  

● Require   little   knowledge   of   statistics   to   be   interpreted.   

 

Random   Forest  

A  Random  Forest  (RF)  is  an  ensemble  method  based  on  decision  trees  and  bagging.               

This  method  was  introduced  first  by  Leo  Breiman  (2001),  and  then  developed  by  Leo               

Brieman  and  Adele  Cutler.  RF  combines  the  principles  of  bagging  and  random             

feature  selection  (see  Figure  2.5.1).  First,  it  generates  an  ensemble  of  trees,  and,  then,               

using   voting,   it   allows   these   trees   to   vote   for   the   most   popular   class   (Lantz,   2013).  

 In  order  to  grow  these  ensembles,  for  the  k-th  tree,  this  method  generates  a                

random  vector  Θ k  with  the  same  distribution  for  all  the  trees  in  the  forest,  but                

independent  of  all  the  previous  random  vectors  Θ i  for  i  =  1,...,k-1,  and  grows  a  tree                 

using  the  training  set  and  the  generated  random  vector  Θ k .  This  results  in  a  classifier                

h(x,  Θ k ),  where  x  is  the  input  vector  (Breiman,  2001).  All  trees  are  allowed  to  grow                 

to  the  largest  extent  possible,  without  pruning,  to  result  in  low  bias  trees  (Alickovic               

&  Subasi,  2016).  After  a  large  number  of  trees  is  obtained,  using  voting,  these  trees                

select  the  most  popular  class  (Breiman,  2001).  Random  Forest  classifiers  are  mostly             

known   for   the   following   advantages   (Lantz,   2013):   

● Performs   well   on   most   problems.  

● Can   work   with   noisy   and   missing   data.  

● Can   handle   both   categorical   and   continuous   features.  
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● There   is   little   risk   of   overfitting.  

● Selects  a  subset  of  features.  Therefore,  it  can  be  used  on  data  with  a  very                

large   number   of   features.   

 

 
Figure   2.5.1   Random   Forest   algorithm  

 

2.5.2. Support   Vector   Machine   Classifier  

Support  Vector  Machine  is  widely  used  for  solving  classification  problems           

(Goodfellow  et  al.,  2016).  One  can  imagine  SVM  as  determining  a  boundary             

between  different  points  of  data  representing  examples  plotted  in  a  multidimensional            

space  according  to  their  feature  values  (Lantz,  2013).  Its  main  objective  is  to  create  a                

hyperplane  that  creates  reasonably  homogenous  partitions  of  the          

examples  on  each  side  of  this  boundary.  SVM  is  able  to  model  very  complex               

relationships  by  combining  some  features  from  both  the  instance-based  nearest           

neighbor  learning  and  linear  regression  (Lantz,  2013).  Like  linear  regression,  SVM  is             

driven  by  a  linear  function.  However,  it  does  not  provide  probabilities,  but  instead  it               

identifies  an  output  class.  An  example  will  be  classified  in  the  positive  class  if               

,  and  will  be  classified  in  the  negative  class  if            

(Goodfellow   et   al.,   2016).  
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At  the  heart  of  SVM  classifiers  is  a  quadratic  optimization  problem  that  tries  to               

maximize  the  margin  between  the  decision  boundary  and  the  training  data  in  the              

feature  space.  The  subset  of  examples  that  lie  close  to  the  decision  boundary  in  the                

plane  are  called  support  vectors.  In  Figure  2.5.2,  we  can  see  a  visual  representation               

of  the  architecture  of  SVM,  M  is  the  number  of  support  vectors  and  p  is  the  input                  

dimension.  However,  data  in  real  life  is  not  always  uniformly  separable.  Therefore,  it              

is  necessary  to  apply  different  kernel  transformations  for  nonlinear  mapping  to  a             

higher  dimensional  feature  space  (labeled  by  K(.)  in  the  Figure  2.5.2),  which  are  a               

key   innovation   associated   with   SVMs   (Acir,   2006).  

 
               Figure   2.5.2   Visual   representation   of   the   architecture   of   SVM   (Source:   Acir,   2006)  

 

 The  kernel  exploited  the  fact  that  many  machine  learning  algorithms  can  be              

written  as  dot  product  between  examples.  Therefore,  it  can  be  written  as  the              

following   (Goodfellow   et   al.,   2016):   

,  

where  is  a  training  example  and  is  a  vector  of  coefficients.  By  replacing  x  with  the                 

output  of  a  given  feature  function  and  the  dot  product  with  a  kernel  function,  we  can                 

make   predictions   using   the   function   (Goodfellow   et   al.,   2016):   

.  

 In  this  way  the  input  data  are  mapped  to  a  higher  dimensional  space  in  which  the                  

separating  plane  is  constructed  to  maximize  the  margin.  If  we  go  back  to  the  lower                
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dimensional  data  space,  this  hyperplane  becomes  a  nonlinear  separating  function  (see            

Figure  2.5.2).  The  prediction  kernel-based  function  shown  above,  roughly          

corresponds  to  pre-processing  the  data  by  applying  to  all  input  values  and  then              

learning   a   linear   model   in   the   new   transformed   space    (Goodfellow   et   al.,   2016).   

 

2.6.  Ten-fold   Cross-validation  

The  ten-fold  cross-validation  randomly  separates  the  data  into  ten  equally  sized            

subsets  called  folds.  Evidence  suggests  that  taking  a  greater  number  than  ten  for  the               

folds  does  not  add  many  benefits  (Lantz,  2013).  One  fold  is  used  as  the  model                

evaluation  and  the  remaining  nine  folds  to  train  the  classifier.  A  detailed  description              

of  k-fold  cross  validation  and  other  cross-validation  methods  can  be  found  in  Arlot              

and  Celisse  (2010).  In  this  thesis,  the  10-fold  cross  validation  is  used  in  model               

parameter   tuning.   A   detailed   description   of   this   process   may   be   found   in   Chapter   3.  

 

2.7.  Evaluation   Metrics  

Different  methods  are  used  in  the  evaluation  of  the  classifiers.  I  will  be  considering               

three  different  statistical  approaches:  ROC  curve,  F-measure  and  the  overall           

accuracy.  The  F-measure  and  accuracy  is  calculated  using  a  multi-class  confusion            

matrix.  The  confusion  matrix  is  a  table  that  describes  the  performance  of  our              

classification  model,  by  categorizing  predictions  on  whether  the  predicted  value  is            

the   same   as   the   true   value   (Lantz,   2013).   

 The  first  statistical  index  used  in  this  paper  to  measure  the  performance  of  the                

classifiers  is  ROC  curve.  The  ROC  curve  (receiver  operating  characteristic  curve)            

shows  the  performance  of  the  classifier  at  all  classification  thresholds.  This  graph  is              

obtained  by  plotting  true  positives  (sensitivity)  in  the  x-axis  and  false  positives  (1  -               

specificity)  in  the  y-axis.  Sensitivity  measures  how  often  a  test  correctly  gives  a              

positive  result  for  patients  who  suffer  from  a  certain  arrhythmia  type  for  which  they               

are  being  tested.  On  the  other  hand,  specificity  measures  how  often  a  test  correctly               

gives  a  negative  result  for  people  who  do  not  suffer  from  the  arrhythmia  type  that                

they  are  being  tested  for.  The  question “How  specific  is  the  test?”  tells  us “How                
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many  heartbeats  that  are  not  of  type  A  were  correctly  confirmed  as  not  being  of  type                 

A?” .  The  question  “How  sensitive  is  the  test?”  tells  us “How  many  heartbeats  that               

actually  correspond  to  class  A  were  correctly  identified  as  so?”.  True  Positive  Rate              

(TPR)   is   a   synonym   for   recall   and   is   defined   as:  

,  
while   False   Positive   Rate   (FPR)   is   defined   as   follows:  

.  

TP  stands  for  true  positives,  TN  stands  for  true  negatives,  FN  stands  for  false               

negatives  and  FP  stands  for  false  positives.  The  True  Positives  show  the  number  of               

predictions  belonging  to  class  A  which  were  correctly  classified  in  the  class  A.  By               

using  the  confusion  matrix,  the  True  Negatives  for  a  particular  class  A  can  be               

calculated  by  summing  the  values  in  every  row  and  column  excluding  the  row  and               

column  of  the  class  A,  and  the  False  Positives  of  class  A  by  summing  all  the  values                  

in  the  column  of  class  A  excluding  the  True  Positive  value.  The  same  holds  for  False                 

Negatives,  but  instead  of  taking  the  column  of  class  A,  we  sum  the  rows.  The  points                 

in  the  ROC  curve  display  the  true  positive  rate  at  different  false  positive  thresholds               

(Lantz,  2013).  The  closer  the  curve  is  to  the  left  upper  corner  of  the  graph,  the  better                  

the  model  is  at  identifying  positive  values.  We  will  be  calculating  the  AUC  value               

(area  under  the  ROC  curve)  which  calculates  the  entire  two-dimensional  area  under             

the  ROC  curve.  The  AUC  ranges  from  0.5,  for  a  random  classifier  with  no  predictive                

value,   to   1.0   for   a   perfect   classifier   (Lantz,   2013).   

 The  second  statistical  approach  used  in  performance  evaluation  is  F-measure.  The             

F-measure  integrates  precision  and  recall  using  the  harmonic  mean  and  is  defined  as              

follows:  

,   

where  

  

and  

32  
 



 

.  

Precision  shows  the  proportion  of  positive  predictions  that  were  actual  positives,            

while  recall  shows  the  proportion  of  actual  positives  that  were  predicted  correct.  In              

evaluation  of  our  model  we  aim  for  both  a  high  recall  and  a  high  precision,  therefore,                 

calculating  F-measure  will  provide  us  with  such  data.  Unlike  the  2-class            

classification,  in  the  multi-class  classification  the  true  positives  and  false  negatives            

for   each   class   are   calculated   in   the   confusion   matrix.   

 Due  to  the  fact  that  our  data  is  imbalanced,  the  weighted  F-measure,  weighted               

precision  and  weighted  recall  for  each  classifier  will  be  calculated  (see  Table  4.1.6).              

In  order  to  find  the  weighted  precision,  we  weigh  the  precision  of  each  class  by  the                 

number  of  samples  from  that  class.  The  example  below  demonstrates  how  to  find  the               

weighted   precision   of   rpart   classifier   using   the   data   from   Table   3.2.6:  

 

 

 

 The  most  used  statistical  approach  in  model  evaluation  is  the  overall  accuracy,              

which   is   described   by   the   formula   below:   

 

.  
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3. Experiments  
 

3.1.  Overall   Procedure   of   ECG   Signal   Classification  

In  this  thesis,  3600  randomly  selected  heartbeats  belonging  to  five  arrhythmia            

classes,  namely  N  (normal  heart  beat),  LBBB  (Left  Bundle  Branch  Block),  RBBB             

(Right  Bundle  Branch  Block),  PVC  (Premature  Ventricular  Complex)  and  APC           

(Atrial  Premature  Contraction)  from  MIT-BIH  arrhythmia  database  were  considered.          

This  dataset  is  split  into  two  halves,  where  1800  beats  are  used  for  training  the                

classifiers  and  the  other  1800  beats  are  being  used  in  the  evaluation  process.  The               

training  dataset  contains  1000  normal  beats,  300  RBBB  beats,  200  LBBB  beats,  200              

PVC  beats  and  100  APC  beats,  and  the  same  holds  for  the  test  set.  A  rectangular                 

window   of   320   data   points   is   used   to   extract   heartbeats.   

 The  considered  ECG  signals  were  subject  to  6  level  sub-band  decomposition             

using  DWT.  This  aims  to  extract  feature  vectors  from  each  ECG  signal  segment,              

which  are  significant  in  model  training  and  testing.  In  order  to  reduce  dimensionality              

of  the  feature  extraction  composed  of  the  set  of  the  wavelet  coefficients  of  DWT,               

statistical  indices  were  used  on  the  frequency  bands  A6  and  D1-D6  to  denote  the               

time-frequency  distribution.  A  detailed  explanation  of  these  statistical  tools  used,           

may   be   found   in   2.4.   

 As  a  result,  the  system  is  trained  using  one  channel  and  two  matrices,  each                

composed  of  1800  rows  and  27  feature  vectors  generated  from  DWT  decomposition             

and  the  application  of  statistical  indices,  and  evaluated  on  28  columns  including  the              

annotation  and  27  feature  vectors.  The  classification  is  performed  using  four  machine             

learning  techniques:  CART,  C5.0,  random  forest  and  support  vector  machine  using            

quadratic  kernel  as  it  resulted  in  a  better  overall  performance  than  other  kernel              

functions.   

 In  addition,  the  10-fold  cross  validation  is  used  to  tune  model  parameters  in  order                

to  help  us  find  the  best  combinations  of  algorithm  parameters  for  our  classification              

problem.  In  order  to  achieve  such  tuning,  we  use  the  CARET  package  of  R,  which                

stands  for  Classification  and  Regression  Training.  This  package  provides  a  great            

facility   to   tune   ML   algorithm   parameters.   
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            Figure   3.1.1   rpart   -   cross   validation   tuning   parameters  

 
 For  the  CART  classifier,  10-fold  cross  validation  is  repeated  ten  times  by  setting               

the method parameter  of trainControl function  to "repeatedcv" and  the repeats            

parameter  to  10,  such  that  each  subset  is  used  for  training  at  least  once,  then  the                 

average  performance  on  all  10  folds  is  outputted  (Alickovic  &  Abdulhamit,  2016).             

Our  model  is  tuned  by  tuning  the complexity  parameter (cp)  or tree  pruning .  The               

tuneLength parameter,  which  tells  the  algorithm  to  try  different  default  values  for  the              

main  parameter  and  allows  the  system  to  tune  the  algorithm  automatically,  is  set  to               

100.  Therefore,  the  total  number  of  combinations  that  will  be  evaluated  is  100.              

Figure  3.1.1  shows  us  how  the  change  in  cp  value  changes  the  model  accuracy.  As                

displayed  in  the  graph  with  a  colored  node,  for  cp  equal  to  0.001,  the  highest                

accuracy  of  81.05%  and  a  kappa  score  of  0.696  is  obtained.  The  standard  deviation               

of  cross  validation  for  CART  was  estimated  to  be  0.03.  As  our  CART  classification               

model,  we  choose  the  final  model  used  by  the  ten-fold  cross  validation.  The  final               

decision   tree   is   displayed   in   Figure   3.1.2.  
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Figure   3.1.2   The   final   decision   tree   resulted   from   ten-fold   cross   validation  

 
 As  stated  in  Scornet  (2017),  random  forest  classifier  is  controlled  by  four              

parameters: mtry representing  the  number  of  variables  randomly  sampled  as           

candidates  at  each  split, nodesize controlling  the  maximal  number  of  observations  in             

each  cell, maxnodes representing  the  tree  depth  and ntree representing  the  number  of              

trees  to  grow.  Therefore,  for  random  forest,  10-fold  cross  validation  is  used  to  search               

for  the  best  number  mtry,  the  best  maxnodes  of  the  maximum  number  of  terminal               

nodes  trees  in  the  forest  and  the  best  ntrees.  For  RF,  we  decide  to  define  a  grid  to                   

tune  the  model  by  setting  the search parameter  of TrainControl function  to  “ grid ”.              

Each  axis  of  the  grid  represents  a  parameter  and  each  point  represents  a  specific               

combination  of  parameters.  Accuracy  was  used  to  select  the  optimal  model  using  the              

largest  value.  First,  we  search  for  the  best  mtry,  by  setting  a  ntree  to  500  and                 

nodesize  to  10.  Figure  3.1.3  shows  how  the  accuracy  changes  with  respect  to  the               

number  of  variables  used  in  the  model,  mtry  score.  Clearly,  it  can  be  seen  that  the                 
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highest  accuracy  is  obtained  by  mtry  equal  to  10  represented  with  a  colored  node,               

which  provides  us  with  an  accuracy  of  91.2%  and  kappa  value  of  0.86.  Next,  we  look                 

for  the  best  maxnodes  value.  This  is  performed  in  several  iterations,  where  the  range               

is  expanded  by  10  in  each  iteration  in  order  to  achieve  the  highest  accuracy.  Finally,                

we  search  for  the  best  ntrees  score,  by  looking  at  the  vector  of  values  [250,  300,  350,                  

400,  450,  500,  550,  600,  800,  1000,  2000].  Training  our  model  on  ntree  equal  to  800,                 

a  maximal  accuracy  of  92.8%  and  a  kappa  score  of  0.88  is  obtained.  As  a  result,  the                  

highest  accuracy  score  is  obtained  with  a  value  of  maxnodes  equals  56,  mtry  equals               

10  and  ntree  equals  800.  The  random  forest  model  is  trained  with  such  parameter               

values   and   the    randomForest    standard   library   of   R   is   used.  

 
Figure   3.1.3   Plot   of   accuracy   by   number   of   variables   used   in   model   for   Random   Forest  

 

 In  SVM,  first,  the  models  are  trained  using  different  kernel  functions  including              

linear,  polynomial  of  degree  2  and  3,  and  radial.  Then,  the  SVM  model  with  radial                

kernel  function  is  tuned  to  find  the  best  cost  and  gamma  values,  by  looking  at  the                 

vector  [0.001,  0.005,  0.01,  0.015,  0.02,  0.025,  0.03,  0.035,  0.04]  for  the  gamma              

value,  and  at  the  vector  [0.5,  1,  5,  10]  for  the  cost  value.  Finally,  10-fold  cross                 

validation  is  run  using  the  best  cost  and  gamma,  10  and  0.035  respectively.  This               

results   in   the   lowest   error   rate   of   0.076.  

 The  benefits  of  performing  ten-fold  cross-validation  can  be  seen  in  all  three              

models  where  such  procedure  is  applied.  In  CART  classifier,  the  accuracy  of  the              
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model  before  ten-fold  cross-validation  was  64.5%,  and  the  AUC  value  was  0.728,             

while,  after  using  ten-fold  cross-validation  to  select  the  best  cp  value,  an  accuracy  of               

67.1%  and  AUC  value  of  0.766  is  achieved.  In  addition,  the  accuracy  of  the  RF                

model  before  and  after  using  ten-fold  cross  validation  for  parameter  tuning  is  71.3%              

and  89.4%  respectively.  Lastly,  the  accuracy  of  SVM  using  a  radial  basis  kernel              

increases   from   71.6%   to   93.8%.  

 Each  prediction  model  was  tested  and  evaluated  on  the  test  set  using  the               

evaluation  metrics  described  in  2.7.  The  experimental  results  of  each  classifier  can  be              

found  in  3.2.  When  we  finish  with  parameter  tuning,  training  and  testing  the  tree               

model,  it  comes  naturally  to  all  of  us  to  ask  which  of  the  variables  have  the  most                  

predictive  power  in  our  model.  Variables  with  high  importance  impact  the  most  the              

result  of  our  classifier.  The  more  the  model  depends  on  a  variable  to  make  a                

prediction,  the  higher  the  importance  of  this  variable  is  for  the  model.  In  the  random                

forest,  the  importance  of  each  variable  is  measured  using  two  tools  (James,  et  al.,               

2017).  The  first  tool  is  the  mean  decrease  of  accuracy,  which  tells  us  how  much  the                 

accuracy  of  a  given  variable  is  decreased  when  we  exclude  this  variable  from  the               

prediction  process.  The  second  is  the  mean  decrease  of  impurity  of  a  given  variable               

that  results  from  splits  over  that  variable.  For  classification  problems,  Gini  index  is              

used  to  calculate  the  node  impurity.  Therefore,  the  most  important  variables  that  have              

the  highest  predictive  power  on  our  decision  tree  models  are  being  plotted.  The              

results   are   shown   in   3.2.  

 The  proposed  system  has  been  implemented  using  R  codes  and  standard  libraries              

including: rpart to  build  the  CART  decision  tree,  rpart.plot  to  display  a  visual              

representation  of  the  tree, gmodels to  compute  CrossTable, C50 to  build  the  C5.0              

model, e1071 to  build  the  SVM  classifier, multiROC to  find  the  area  under  the  curve                

value  and pROC to  plot  the  ROC  graphs  for  each  classifier.  Figure  3.1.4  gives  a                

visual   representation   of   the   proposed   procedure   for   the   ECG   heartbeat   classification.  
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Figure   3.1.4   Procedure   for   ECG   heartbeat   classification   used   in   this   study  

 

3.2.  Experimental   Results  

In  this  experiment,  DWT  and  statistical  indices  are  used  to  extract  the  feature  vectors               

from  each  ECG  signal  segment.  Then,  four  different  machine  learning  techniques            

were  used  in  the  classification.  In  this  section,  we  will  be  reporting  and  analysing  the                

results   obtained   from   all   our   experiments.  

 Tables  3.2.1  -  3.2.4  provide  the  confusion  matrix  of  five  classes  for  four  machine                

learning  classifiers,  where  rows  represent  the  classifier  outputs  and  the  columns            

represent  the  gold  standard.  The  correct  predictions  of  each  classifier  fall  on  the              

diagonal  of  the  confusion  matrix,  highlighted  in  a  grey  background,  while  all  the              

other  values  outside  of  the  diagonal  count  the  cases  of  incorrect  prediction.             

Moreover,  comparing  the  results  from  all  four  classifiers,  the  best  correct  predictions             

are   displayed   in   bold.   
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 Based  on  the  results  in  the  confusion  matrices  below,  it  can  be  seen  that  SVM                 

classifier  performs  the  best  in  classifying  APC,  LBBB,  RBBB  and  PVC  beats,  while              

Random  Forest  performs  slightly  better  in  classifying  Normal  beats.  RF  manages  to             

predict  correctly  989  Normal  beats  out  of  1000  Normal  beats  used  for  the  testing  in                

total,  misclassifying  4  beats  as  LBBB  and  7  beats  as  PVC.  On  the  other  hand,  SVM                 

wrongly  classifies  only  9  RBBB  heartbeats,  achieving  in  this  way  a  high  accuracy  in               

RBBB  classification,  which  can  be  seen  in  Table  3.2.5  and  SVM  ROC  graph  of               

Figure  3.2.1.  In  addition,  SVM  only  correctly  classifies  67  out  of  100  APC              

heartbeats;  however,  this  number  is  still  higher  compared  to  the  other  classifiers.             

CART  classifier  has  the  lowest  number  of  correctly  classified  APC  heartbeats,  only             

36,  which  is  less  than  half  of  the  total  APC  heartbeats  in  the  training  set.  If  C5.0  and                   

RF  are  compared,  it  can  be  observed  that  the  latter  perform  better  in  classifying               

Normal  beats,  LBBB  beats  and  PVC  beats.  However,  C5.0  achieves  a  higher  number              

of  correctly  classified  APC  and  RBBB  heartbeats.  These  results  can  be  observed  also              

in   the   ROC   curves   of   Figure   3.2.1.   

 

Classes  APC  LBBB  Normal  RBBB  PVC  

APC  36  3  20  12  3  

LBBB  16  235  26  6  14  

Normal  34  32  787  81  116  

RBBB  5  20  57  94  12  

PVC  9  10  110  7  55  
 

Table   3.2.1   Confusion   Matrix   for   classification   using   CART  

 
Classes  APC  LBBB  Normal  RBBB  PVC  

APC  61  3  15  2  4  

LBBB  6  262  20  1  22  

Normal  29  19  922  27  37  

RBBB  4  2  16  165  2  

PVC  0  14  27  5  135  
  

Table   3.2.2   Confusion   Matrix   for   classification   using   C5.0  
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Classes  APC  LBBB  Normal  RBBB  PVC  

APC  60  0  0  6  0  

LBBB  4  257  4  0  5  

Normal  32  37  989  42  43  

RBBB  4  0  0  152  0  

PVC  0  6  7  0  152  
 

             Table   3.2.3   Confusion   Matrix   for   classification   using   Random   Forest  

 
 

Classes  APC  LBBB  Normal  RBBB  PVC  

APC  67  0  5  3  2  

LBBB  1  275  7  0  5  

Normal  24  19  974  6  12  

RBBB  7  0  6  191  0  

PVC  1  6  8  0  181  
 

Table   3.2.4    Confusion   Matrix   for   classification   using   SVM  

 

 The  area  under  the  ROC  curve  has  been  widely  used  in  computer-based  medical               

decision  making  to  help  define  the  accuracy  of  the  model.  One  of  the  advantages  of                

using  AUC  is  its  visual  accessibility  from  a  ROC  plot,  as  shown  in  Figure  3.2.1.                

Each  plot  represents  one  machine  learning  technique  used  to  classify  the  ECG             

signals,  and  each  color  represents  one  heartbeat  class.  As  mentioned  previously,  the             

closer  the  curve  is  to  the  left  upper  corner  of  the  graph,  the  better  the  classifier                 

performs   for   this   specific   beat   class.   

 As  it  can  be  seen  in  the  plots  of  the  Figure  3.2.1,  SVM  classifier  performs  the  best                   

in  classifying  correctly  all  the  beats,  except  the  APC  beats  who  have  a  lower               

performance  as  shown  represented  by  the  blue  line.  On  the  other  hand,  if  we  look  at                 

the  ROC  of  the  Random  Forest,  we  notice  that  it  performs  also  very  well  in                

classifying  the  beats.  CART  classifier  seems  to  be  performing  very  poorly,  especially             

in  classifying  PVC  beats  and  APC  beats.  As  it  can  be  seen  from  the  plot  of  the  upper                   

left  corner  of  the  Figure  3.2.1,  the  green  curve  representing  the  PVC  beats  is  very                

close  to  the  diagonal.  The  same  can  be  observed  for  the  blue  line,  representing  APC                

41  
 



 

beats.  In  addition,  we  observe  that  all  C5.0,  RF  and  SVM  classifiers  score  the  lowest                

performance  in  classifying  correctly  the  APC  beats  compared  to  the  classification  of             

the  other  beats.  One  explanation  for  this  could  be  the  small  number  of  examples  of                

such  heartbeat  class  in  our  database.  Therefore,  resulting  in  a  small  number  of  APC               

heartbeats  in  our  training  data  of  only  100  compared  to  1000  examples  from  the               

Normal   heartbeat   class.  

 

  

 
Figure   3.2.1   Receiver   operating   characteristics   (ROC)   for   each   classifier   and   each   class   

 

 Table  3.2.5  displays  the  results  of  F-measure  and  accuracy  obtained  from  all  the               

classifiers  for  each  heartbeat  class,  in  which  highlighted  in  bold  are  displayed  the              

best  results  obtained  by  our  classifier.  The  performance  of  SVM  results  in  the  best               

accuracy  and  highest  F-measure  for  each  heartbeat  class.  SVM  classifies  with  the             

highest  accuracy  RBBB  beats  achieving  97.3%,  and,  as  we  observed  in  the  ROC              
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plots  above,  SVM  has  lower  classification  accuracy  for  APC  beats  of  83.2%.  In              

addition,  the  highest  F-measure  is  achieved  by  SVM  for  the  recognition  of  Normal              

heartbeats.  The  same  holds  for  RF  classifiers  in  classification  of  APC  beats.             

However,  RF  classifies  LBBB  beats  with  the  highest  accuracy.  C5.0  and  RF  classify              

APC  beats  with  the  same  accuracy,  while  the  Random  Forest  model  scores  a  slightly               

higher  F-measure  value.  On  the  other  hand,  the  lowest  F-measure  of  only  0.28  is               

scored   by   CART   for   PVC   beats,   which   also   has   the   lowest   accuracy   of   59.5%.  

 
 CART  C5.0  Random   Forest  SVM  

 F-measure  Accuracy  F-measure  Accuracy  F-measure  Accuracy  F-measure  Accuracy  

Normal  0.77  72.9%  0.90  89.1%  0.92  89.8%  0.96  94.9%  

APC  0.41  66.9%  0.66  79.8%  0.72  79.8%  0.76  83.2%  

PVC  0.28  59.5%  0.71  82.3%  0.83  87.6%  0.91  94.8%  

RBBB  0.48  70.6%  0.85  90.5%  0.85  87.9%  0.95  97.3%  

LBBB  0.79  87.1%  0.86  92.0%  0.90  92.4%  0.94  95.4%  
 

Table   3.2.5   Comparison   of   the   obtained   results   of   accuracy   and   F-measure   from   all   classifiers   for   each  
class  

 

 In  addition,  the  performance  of  the  models  in  terms  of  precision  and  recall  for                

each  heartbeat  class  is  given  in  Table  3.2.6.  Both  RF  and  SVM  seem  to  perform  the                 

best.  SVM  performs  very  well  in  classifying  the  PVC  and  LBBB  beats,  scoring  both               

the  highest  precision  and  recall.  However,  RF  also  achieves  the  same  recall  as  SVM               

for  PVC  and  LBBB  beats.  Moreover,  RF  has  an  almost  perfect  precision  for  the               

Normal  beat,  scoring  0.99,  which  means  that  only  1%  of  normal  heartbeats  that  were               

predicted  resulted  in  wrong  predictions.  On  the  other  hand,  SVM  wins  over  RF  in               

precision  for  all  the  other  classes.  A  score  of  0.97  in  recall  from  RF  for  the  RBBB                  

beats  means  that  97%  of  total  RBBB  beats  were  correctly  classified  by  RF.              

Comparing  the  performance  of  the  CART  model  and  SVM  classifier,  we  notice  that              

there  is  a  significant  increase  in  terms  of  precision  and  recall  in  classification  of               

PVC,  APC  and  RBBB  heartbeats.  Overall,  SVM  is  the  best  classifier  in  terms  of               

precision  and  recall.  These  values  were  reflected  also  in  the  F-measure  column  of              

Table   3.2.5.  
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 CART  C5.0  Random   Forest  SVM  

 Precision  Recall  Precision  Recall  Precision  Recall  Precision  Recall  

Normal  0.79  0.75  0.92  0.89  0.99  0.87  0.97  0.94  

APC  0.36  0.49  0.61  0.72  0.60  0.91  0.67  0.87  

PVC  0.28  0.29  0.68  0.75  0.76  0.92  0.91  0.92  

RBBB  0.47  0.50  0.83  0.87  0.76  0.97  0.96  0.94  

LBBB  0.78  0.79  0.87  0.84  0.86  0.95  0.92  0.95  

 
Table   3.2.6   Comparison   of   the   obtained   results   of   precision   and   recall   from   all   classifiers   for   each  

class  

 

 Table  3.2.7  displays  the  specificity  and  sensitivity  score  of  each  classifier  for  each               

beat  class.  It  can  be  seen  that  for  SVM,  the  sensitivity  for  RBBB  beats  is  0.96.  This                  

means  that  the  model  will  correctly  classify  as  RBBB  beats  96%  of  the  RBBB  beats,                

but  will  return  a  negative  result  for  4%  of  the  beats  that  should  have  resulted  as                 

RBBB.  A  model  that  is  highly  sensitive  will  not  generate  many  false  negative  results.               

On  the  other  hand,  that  RF  scores  a  perfect  specificity  value  for  APC  and  RBBB                

beats,  and  an  almost  perfect  specificity  score  for  PVC  and  LBBB  heartbeat  classes.              

This  means  that  RF  does  not  incorrectly  classify  any  beat  as  RBBB  when  the  beat                

does  not  belong  to  RBBB.  The  same  holds  true  for  APC  beats.  SVM  classifier  scores                

and  almost  perfect  specificity  score  for  APC,  PVC,  RBBB  and  LBBB  heartbeat             

classes.  Moreover,  this  classifier  achieves  the  highest  specificity  value  for  the            

Normal   beats   compared   to   the   other   models.   

 
 CART  C5.0  Random   Forest  SVM  

 Sensitivity  Specificity  Sensitivity  Specificity  Sensitivity  Specificity  Sensitivity  Specificity  

Normal  0.79  0.67  0.92  0.86  0.99  0.81  0.97  0.92  

APC  0.36  0.98  0.61  0.99  0.60  1.00  0.67  0.99  

PVC  0.28  0.92  0.68  0.97  0.76  0.99  0.91  0.99  

RBBB  0.47  0.94  0.83  0.99  0.76  1.00  0.96  0.99  

LBBB  0.78  0.96  0.87  0.97  0.86  0.99  0.92  0.99  
  

Table   3.2.7    Comparison   of   the   obtained   results   of   sensitivity   and   specificity   from   all   classifiers   for  
each   class  
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 As  seen  in  Table  3.2.8,  CART  classifier  results  in  the  lowest  accuracy  of  67.1%,                

the  lowest  F-measure  of  0.67  and  the  lowest  ROC  area  of  0.77.  In  addition,  CART                

classifier  has  the  lowest  Precision  and  Recall  of  only  0.67  and  0.66  respectively.  C5.0               

gave  a  significantly  higher  accuracy,  ROC  area  and  F-measure  than  CART.  Accuracy             

of  CART  and  C5.0  are  still  noticeably  lower  than  the  results  of  the  Random  Forest                

classifier.  The  accuracy  for  Random  Forest  scores  89.4%,  while  C5.0  has  a  85.8%              

accuracy.  The  best  performance  results  on  overall  accuracy,  ROC  area,  F-measure,            

precision  and  recall  were  obtained  with  SVM  which  were  93.8%,  0.98,  0.94,  0.94              

and  0.94  respectively.  A  significant  improvement  in  F-measure  is  achieved  by  the             

SVM  model  compared  to  the  other  classifiers.  Taking  into  consideration  all  the             

results  reported  above,  we  consider  SVM  as  our  best  model  in  heart  arrhythmia              

classification.   

 
Model  CART  C5.0  Random   Forest  SVM  

Accuracy  67.1%  85.8%  89.4%  93.8%  

ROC   Area  0.77  0.92  0.97  0.98  

Weighted   F-Measure  0.67  0.86  0.89  0.94  

Weighted   Precision  0.67  0.86  0.89  0.94  

Weighted   Recall  0.66  0.86  0.90  0.94  
 

Table   3.2.8   Comparison   of   the   obtained   overall   results   from   all   classifiers  

 
 As  it  can  be  seen  from  Figure  3.2.2  and  Figure  3.2.3,  sd(A6)  is  ranked  as  the                  

variable  with  the  highest  weight  in  the  prediction  of  both  CART  and  RF  models.  The                

top  5  most  important  variables  for  CART  classifier  are  (see  Figure  3.2.2): sd(A6),              

sd(DWT2),   mean(abs_DWT1),   sd(DWT1),    and    mean(abs_DWT2)    .   
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Figure   3.2.2   Barplot   of   variable   importance   in   CART   model  

 The  top  5  most  important  features  for  RF  classifier  based  on  Gini  impurity  are                

(see  Figure  3.2.3): sd(A6),  mean(DWT6),  (mean(abs_DWT6))/(mean(abs_DWT5)),       

(mean(abs_DWT5))/(mean(abs_DWT4)) and sd(DWT6). This  means  that  node  splits         

based  on  these  five  features  on  average  result  in  a  large  decrease  of  node  impurity.                

On  the  other  hand,  the  top  5  most  important  variables  for  RF  classifier  based  on                

accuracy  are: sd(A6),  mean(DWT6),  sd(DWT6),      

(mean(abs_DWT6))/(mean(abs_DWT5)),  (mean(abs_DWT5))/(mean(abs_DWT4)).   

In  other  words,  node  splits  based  on sd(A6) or  on  any  of  the  other  top  5  features                  

mentioned  above result  in  a  large  decrease  of  accuracy.  This  proves  what  it  is  stated                

in  2.3  that  the  6th  level  detail  coefficients  of  DWT  are  considered  to  be  the  most                 

significant  ones.  However,  it  is  important  to  note  that  the  feature  importance  from  RF               

is  calculated  based  on  the  training  dataset,  not  on  the  predictions  made  on  the  test                

dataset.   Therefore,   it   does   not   indicate   the   true   predictive   power   of   the   model.   
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Figure   3.2.3   Variable   importance   for   Random   Forest  

 

3.3.  Discussion  

In  this  part,  we  will  be  comparing  the  performance  results  obtained  by  the  suggested               

system  in  this  paper  with  the  results  obtained  in  other  studies.  Although  it  is               

important  to  note  that  other  studies  analyze  different  arrhythmia  types,  use  different             

databases,   pre-processing   techniques   and   performance   evaluations.   

 Alickovic  and  Abdulhamit  (2016)  conducted  four  experiments  in  total,  two  for  the              

MIT-BIH  arrhythmia  database  and  the  other  using  St.-Petersburg  Institute  of           

Cardiological  Technics  12-lead  arrhythmia  database.  For  each  database  two          

experiments  were  performed,  one  of  them  was  conducted  using  DWT  and  statistical             

indices  without  applying  MSPCA  de-noising  and  the  other  experiment  with  MSPCA            

de-noising.  They  apply  three  ML  classifiers:  CART,  C  4.5  and  Random  Forest.  For              

the  MIT-BIH  database,  without  MSPCA  de-noising,  they  achieve  classification          

47  
 



 

accuracy  of  79%  on  CART,  80.4%  on  C4.5  and  85.3%  on  Random  Forest  on  five                

different   ECG   heartbeat   types   (N,   APC,   PVC,   RBBB,   LBBB).   

 Desai,  et  al,  (2016)  performed  9  level  sub  band  DWT  decomposition,  used  ICA               

for  dimensionality  reduction  and  employed  SVM  classifier  with  10-fold  cross           

validation  on  the  ECG  signals  from  MIT-BIH  arrhythmia  database.  Five  classes  of             

cardiac  arrhythmias  (NE,  S,  V,  F,  U)  are  detected  with  a  classification  accuracy  of               

95.24%  on  SVM  linear  kernel,  98.42%  on  SVM  polynomial  kernel,  97.8%  on  SVM              

RBF   kernel   and   the   highest   accuracy   of   98.49%   scored   using   SVM   quadratic   kernel.  

 Nayak,  et  al.  (2016)  applied  PCA  instead  of  ICA  and  using  SVM  achieved  the                

following  results:  93.13%  accuracy  on  SVM  linear  kernel,  97.29%  accuracy  on  SVM             

polynomial  kernel,  96.46%  accuracy  on  SVM  RBF  kernel  and  the  highest  accuracy             

of   97.48%   scored   using   SVM   quadratic   kernel.   

 Acir,  et  al.  (2006)  introduce  a  ECG  beat  recognition  system  that  uses  SVM               

classifier  designed  with  a  perturbation  method  for  input  dimension  reduction,  and            

using  DCT  for  feature  extraction  and  selection,  they  achieve  an  accuracy  of  96.5%,              

while  using  DWT  for  feature  extraction  and  selection,  they  achieve  an  accuracy  of              

94.0%.  They  considered  only  four  types  of  heartbeats:  N,  LBBB,  PVC  and             

non-conducted   P-wave.  

      Obtained   results   in   this   study   allow   us   to   point   out   the   following:  

● The  statistical  features  of  DWT  coefficients  play  a  significant  part  in  the             

ECG  signal  heartbeats  classification,  as  they  provide  a  great  characterization           

and   a   very   good   distinction   between   ECG   signal   classes.  

● The  results  of  our  classifiers  show  that  using  DWT  as  the  only  pre-processing              

and  feature  extraction  technique,  we  achieve  notable  accomplishments  and          

high   accuracy   in   ECG   heartbeat   classification.   

● Random  Forest  and  C5.0  classifiers  proposed  in  this  paper  produce           

significant   performance   compared   to   the   results   found   in   literature.   

● According  to  the  results  in  this  study  and  comparing  the  performance  of             

Support  Vector  Machine-based  models  in  ECG  heartbeat  classification  in          

other  studies,  we  conclude  that  SVM  with  DWT  as  the  only  pre-processing             

method  results  in  high  performance,  while  additional  pre-processing  and          
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feature  extraction  techniques  like  PCA  and  ICA  seem  to  increase  accuracy            

further.   

● Based  on  the  achieved  performance  of  this  study,  the  utilization  of  Support             

Vector  Machine  approach  in  diagnostic  systems  results  to  be  simple,  efficient,            

easy   and   practical.   
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Conclusion  
 
This  thesis  is  focused  on  reviewing  current  research  conducted  on  the  classification             

of  ECG  signal  and  on  analyzing  the  Discrete  Wavelet  Transform  as  the  only              

preprocessing  method  for  arrhythmia  classification  on  MIT-BIH  arrhythmia  database.          

Five  heartbeat  classes  were  considered:  Normal  (N),  Premature  Ventricular          

Contraction  (PVC),  Atrial  Premature  Contraction  (APC),  Right  Bundle  Branch  Block           

(RBBB)  and  Left  Bundle  Branch  Block  (LBBB).  Using  DWT  as  the  only             

preprocessing  method  and  applying  four  different  machine  learning  techniques,          

namely:  Classification  and  Regression  Tree  (CART),  C5.0,  Random  Forest  and           

Support  Vector  Machine  (SVM)  classifiers,  the  highest  accuracy  is  achieved  on  the             

SVM  model.  It  can  classify  the  five  most  frequent  arrhythmia  types  with  an  accuracy               

rate   of    93.8%,   AUC   value   of   0.98   and   F-measure   score   of   0.94.   

 In  order  to  show  the  effectiveness  and  efficiency  of  our  proposed  models,  we               

performed  a  comparison  of  the  results  obtained  in  this  study  with  the  results  achieved               

in  other  research  papers.  In  comparison,  other  SVM  techniques  designed  with  a             

perturbation  method  used  by  other  research  papers,  achieved  only  a  slightly  better             

accuracy  of  94%  (Acir  et  al.,  2006).  There  are  other  papers  using  Independent              

Component  Analysis  (ICA)  or  Principal  Component  Analysis  (PCA)  in  addition  to            

DWT,  and  achieving  a  somewhat  better  accuracy  of  a  maximum  score  of  97.48%.  It               

is  important  to  note  that  for  the  other  classifiers  we  still  got  a  slightly  better  result  in                  

terms  of  accuracy,  AUC  value  and  F-measure  score  than  comparable  results  reported             

in   similar   research   conducted.   

 The  positive  results  obtained  in  this  study,  encourage  for  future  further  design  and               

evaluation  of  the  proposed  models  in  diagnoses  of  cardiovascular  diseases.  With  this             

work,  we  succeed  in  an  efficient,  simple  and  practical  machine  learning-based            

approach   in   heart   arrhythmia   detection   and   diagnosis   from   ECG   signal.   

 Currently,  there  is  a  high  number  of  people  suffering  from  cardiovascular  diseases              

around  the  world,  and  this  number  is  rising  dramatically.  Therefore,  early  detection             

of  heart  diseases  is  crucial  to  improve  the  quality  of  life.  The  development  of  medical                

decision  support  systems  using  machine  learning-based  methodology  in  diagnoses  of           
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heart  arrhythmia  can  help  the  healthcare  industry  with  considerable  reliability  and            

precision.   

 

Future   Work  

First,  we  have  conducted  experiments  only  using  four  machine  learning  techniques            

and  DWT  for  feature  extraction.  Even  though  the  performance  has  exceeded  our             

expectations,  we  point  out  that  it  is  possible  that  different  systems  or  different  ML               

techniques  can  result  in  better  performance.  Moreover,  as  our  dataset  is  unbalanced,             

having  more  examples  of  rare  classes  may  result  in  a  more  accurate  heartbeat              

classification.  Regarding  the  classifier  tuning,  in  this  study,  we  only  perform  tuning             

using  ten-fold  cross  validation.  Other  tuning  methods  which  involve  an  optimization            

algorithm  may  be  helpful.  Moreover,  as  one  of  the  goals  in  this  study  was  to  show                 

the  advantages  of  Discrete  Wavelet  Transform  as  the  only  pre-processing  method  for             

arrhythmia  classification,  the  use  of  different  de-noising  techniques  could  be           

implemented  to  increase  classification  performance.  Finally,  as  our  approach  may  be            

considered  simple,  it  could  be  helpful  to  use  more  advanced  approaches  such  as              

neural   networks   in   classification.   However,   this   is   out   of   the   scope   of   this   thesis.  

 
  

51  
 



 

 

Bibliography  

Adam  Gacek  and  Witold  Pedrycz.  ECG  signal  processing,  classification,  and           

interpretation:  a  comprehensive  framework  of  computational  intelligence.        

London   :   Springer,   2012.  

 

Ali  Isin  and  Selen  Ozdalili.  Cardiac  Arrhythmia  Detection  Using  Deep  Learning.            

Procedia  Computer  Science,  vol.  120,  2017,  pp.  268–275.         

doi:10.1016/j.procs.2017.11.238.  

 

Anthony  Saxton  and  Bruno  Bordoni.  Anatomy,  Thorax,  Cardiac  Muscle.  StatPearls.           

4  December  2018.  [Accessed  17  January  2020].  Available  from:          

http://www.ncbi.nlm.nih.gov/books/NBK535355/  

 

Ary  L.  Goldberger,  Amaral  A.N.  Luis,  Leon  Glass,  Jeffrey  M.  Hausdorff,  Plamen  Ch              

Ivanov,  Roger  G.  Mark,  Joseph  E.  Mietus,  George  B.  Moody,  Chung-Kang  Peng,             

and  H.  Eugene  Stanley.  PhysioBank,  PhysioToolkit,  and  PhysioNet:  Components          

of  a  New  Research  Resource  for  Complex  Physiologic  Signals  (2003).           

Circulation.   101(23):e215-e220.  

 

Brett  Lantz.  Machine  Learning  with  R:  Learn  How  to  Use  R  to  Apply  Powerful               

Machine  Learning  Methods  and  Gain  an  Insight  into  Real-World  Applications.           

Packt   Publ.,   2013.  

 

C.  Gurudas  Nayak,  et  al.  Identification  of  Arrhythmia  Classes  Using           

Machine-Learning  Techniques. International  Journal  of  Biology  and        

Biomedicine.    2016.   Vol:   2   pp:   48-53  

 

D.  Sundararajan.  Discrete  Wavelet  Transform:  a  Signal  Processing  Approach.  John           

Wiley   &   Sons   Singapore   Pte.   Ltd.,   2015.  

 

52  
 



 

ECG  and  ECHO  Learning.  Left  Bundle  Branch  Block  (LBBB):  ECG  Criteria,            

Causes,  Management. ECG  &  ECHO, Retrieved  from:        

ecgwaves.com/topic/left-bundle-branch-block-lbbb-ecg-criteria-treatment/.  

 

Emina  Alickovic  and  Subasi  Abdulhamit.  Medical  Decision  Support  System  for           

Diagnosis  of  Heart  Arrhythmia  using  DWT  and  Random  Forests  Classifier.           

Journal  of  Medical  Systems.  2016.  Vol.  40,  no.  4.          

doi:10.1007/s10916-016-0467-8.  

 

Erwan  Scornet.  Tuning  Parameters  in  Random  Forests. ESAIM:  Proceedings  and           

Surveys ,   vol.   60,   2017,   pp.   144–162.,   doi:10.1051/proc/201760144.  

 

Gareth  James,  et  al.  An  Introduction  to  Statistical  Learning:  with  Applications  in  R.              

Springer,   2017.  

 

George  B.  Moody  GB,  Roger  G.  Mark.  The  impact  of  the  MIT-BIH  Arrhythmia              

Database.  IEEE  Engineering  in  Medicine  and  Biology  Magazine.  20(3):45-50          

(May-June   2001).   (PMID:   11446209)  

 

Ian   Goodfellow,   et   al.   Deep   Learning.   MIT   Press,   2016.  

 

James   B.   Wyngaarden,   et   al.   Cecil   Textbook   of   Medicine.   Saunders,   2004.  

 

John  E.  Hall.  Guyton  and  Hall  Textbook  of  Medical  Physiology  E-Book.  12th  ed.,              

Saunders   Elsevier,   2011.  

 

John   Hampton.   The   ECG   Made   Easy.   8th   ed.,   Churchill   Livingstone/Elsevier,   2013.  

 

Jiawei  Han,  et  al.  Data  Mining:  Concepts  and  Techniques.  Elsevier,  Morgan            

Kaufmann,   2012.  

 

53  
 



 

José  L.  Rojo-Álvarez,  et  al.  A  Review  of  Kernel  Methods  in  ECG  Signal              

Classification. ECG  Signal  Processing,  Classification  and  Interpretation,  Nov.         

2011,   pp.   195–217.,   doi:10.1007/978-0-85729-868-3_9.  

 

L.  Brent  Mitchell,  Overview  of  Arrhythmias  -  Cardiovascular  Disorders. Merck           

Manuals  Professional  Edition .  [Accessed  14  January  2020].  Available  from:          

http://www.merckmanuals.com/professional/cardiovascular-disorders/arrhythmia 

s-and-conduction-disorders/overview-of-arrhythmias  

 

Leo  Breiman.  Machine  Learning.  October  2001.  Vol.  45,  no.  1p.  5–32.            

doi:10.1023/a:1010933404324.  

 

Malcolm  S.  Thaler.  The  only  EKG  book  you’ll  ever  need.  Philadelphia  :  Wolters              

Kluwer,   2015.  

 

MIT-BIH  Arrhythmia  Database.  MIT-BIH  Arrhythmia  Database  v1.0.0.  24  February          

2005.  [Accessed  November  2019].  Available  from:       

http://www.physionet.org/content/mitdb/1.0.0/  

 

Moody  GB,  Mark  RG.  The  impact  of  the  MIT-BIH  Arrhythmia  Database.  IEEE  Eng              

in   Med   and   Biol   20(3):45-50   (May-June   2001).   (PMID:   11446209)  

 

Moran  AE,  Wood  DA  and  Narula  J.  The  2000-2016  WHF  Global  Atlas  of  CVD:               

Take  Two. Global  Heart.  2018.  13(3):139–41.  doi::        

http://doi.org/10.1016/j.gheart.2018.09.512  

 

 Nurettin  Acir.  A  support  vector  machine  classifier  algorithm  based  on  a  perturbation              

method  and  its  application  to  ECG  beat  recognition  systems.  Expert  Systems            

with  Applications.  2006.  Vol.  31,  no.  1p.  150–158.,         

doi:10.1016/j.eswa.2005.09.013.  

 

54  
 

http://www.physionet.org/content/mitdb/1.0.0/


 

Paulo  De  Carvalho,  et  al.  Model-Based  Atrial  Fibrillation  Detection. ECG  Signal            

Processing,  Classification  and  Interpretation ,  Nov.  2011,  pp.  99–133.,         

doi:10.1007/978-0-85729-868-3_5.  

 

Radomir  S.  Stanković,  and  Bogdan  J.  Falkowski.  The  Haar  Wavelet  Transform:  Its             

Status  and  Achievements. Computers  &  Electrical  Engineering,  vol.  29,  no.  1,            

2003,   pp.   25–44.,   doi:10.1016/s0045-7906(01)00011-8.  

 

Rafael  C.  Gonzalez  and  Richard  E.  Woods.  Digital  Image  Processing.  3rd  ed.,             

Prentice   Hall,   2008.  

 

Raouf  Boutaba,  et  al.  A  Comprehensive  Survey  on  Machine  Learning  for            

Networking:  Evolution,  Applications  and  Research  Opportunities. Journal  of         

Internet  Services  and  Applications ,  vol.  9,  no.  1,  2018,          

doi:10.1186/s13174-018-0087-2.  

 

Roger  J.  Lewis.  An  Introduction  to  Classification  and  Regression  Tree  (CART)            

Analysis. Annual  Meeting  of  the  Society  for  Academic  Emergency  Medicine.  San            

Francisco,   California,   2000.  

 

Sonam  Malik  and  Vikram  Verma.  Comparative  analysis  of  DCT,  Haar  and            

Daubechies  Wavelet  for  Image  Compression. International  Journal  of  Applied          

Engineering   Research.    2012.   Vol.   7,   no.11,    ISSN   0973-4562  

 

Sylvain  Arlot  and  Alain  Celisse.  A  Survey  of  Cross-Validation  Procedures  for  Model             

Selection. Statistics  Surveys ,  vol.  4,  no.  0,  2010,  pp.  40–79.           

doi:10.1214/09-ss054.  

 

Usha  Desai,  Roshan  Joy  Martis,  C.Gurudas  Nayak,  Sarika  K.  and  Seshikala  G.             

Machine  intelligent  diagnosis  of  ECG  for  arrhythmia  classification  using  DWT,           

ICA  and  SVM  techniques. 2015  Annual  IEEE  India  Conference  (INDICON).  29            

March   2016.   doi:10.1109/indicon.2015.7443220.  

55  
 



 

 

V.V  .Ramalingam,  et  al.  Heart  Disease  Prediction  Using  Machine  Learning           

Techniques  :  a  Survey. International  Journal  of  Engineering  &  Technology .  vol.            

7,   no.   2.8,   2018,   p.   684.,   doi:10.14419/ijet.v7i2.8.10557.  

 

Wei-Yin  Loh.  Classification  and  regression  trees. Wiley  Interdisciplinary  Reviews:          

Data  Mining  and  Knowledge  Discovery.  2011.  Vol.  1,  no.  1p.  14–23.            

doi:10.1002/widm.8.  

 

 

 

 

56  
 



 

List   of   Figures  
 
Figure   1.1.1   A   labeled   diagram   of   an   action   potential 10  

Figure   1.1.2   Above,   depolarization   and   the   repolarization.   Below,   Electrocardiogram  

recorded   at   the   same   time 10  

Figure   1.2.1   Propagation   of   the   depolarization   wave   in   the   heart   muscle  11  

Figure   1.2.2   Normal   electrocardiogram   for   two   beats   of   the   heart  12  

Figure   1.3.1   Premature   ventricular   contraction  17  

Figure   1.3.2   ECG   signals   showing   the   difference   between   Normal,   LBBB   and   RBBB  

beats 18  

Figure   2.3.1   Frequency   domain   representation   of   the   DWT 2 2  

Figure   2.3.2   A   two   level   decomposition   of   a   signal   s   by   the   forward   DWT 2 3  

Figure   2.3.3   A   two   level   inverse   DWT 2 3  

Figure   2.3.4   Example   of   a   3-level   forward   DWT   signal   decomposition 2 4  

Figure   2.3.5   Plotting   original   signal   of   record   100   and   the   output   of   DWT 2 5  

Figure   2.5.1   Random   Forest   algorithm 2 9  

Figure   2.5.2   Visual   representation   of   the   architecture   of   SVM 30  

Figure   3.1.1   rpart   -   cross   validation   tuning   parameters 3 5  

Figure   3.1.2   The   final   decision   tree   resulted   from   ten-fold   cross   validation 3 6  

Figure   3.1.3   Plot   of   accuracy   by   number   of   variables   used   in   model   for   Random  

Forest 3 7  

Figure   3.1.4   Procedure   for   ECG   heartbeat   classification   used   in   this   study 3 9  

Figure   3.2.1   Receiver   operating   characteristics   (ROC)   for   each   classifier   and   each  

class 42  

Figure   3.2.2   Barplot   of   variable   importance   in   CART   model 4 6  

Figure   3.2.3   Variable   importance   for   Random   Forest 4 7  

	  

57  
 



 

List   of   Tables   
 
Table   1.3.1   Recognizing   ECG   abnormalities 13  

Table   1.3.2   Arrhythmias   overview 14  

Table   1.3.3   Recognizing   main   characteristics   of   APC,   PVC,   RBBB   and   LBBB   beats 

1 9  

Table   3.2.1   Confusion   Matrix   for   classification   using   CART 40  

Table   3.2.2   Confusion   Matrix   for   classification   using   C5.0 40  

Table   3.2.3   Confusion   Matrix   for   classification   using   Random   Forest 41  

Table   3.2.4    Confusion   Matrix   for   classification   using   SVM 41  

Table   3.2.5   Comparison   of   the   obtained   results   of   accuracy   and   F-measure   from   all  

classifiers   for   each   class 43  

Table   3.2.6   Comparison   of   the   obtained   results   of   precision   and   recall   from   all  

classifiers   for   each   class 44  

Table   3.2.7    Comparison   of   the   obtained   results   of   sensitivity   and   specificity   from   all  

classifiers   for   each   class 4 4  

Table   3.2.8   Comparison   of   the   obtained   overall   results   from   all   classifiers 4 5  

 

58  
 


