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Study programme: Computer Science

Study branch: General Computer Science

Prague 2020



I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In . . . . . . . . . . . . . date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Author’s signature

i



I would like to thank Prof. Christoph Lampert for his invaluable guidance during
my internship at IST Austria, where the research was carried out. I would also
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Abstract: Modern neural networks can easily fit their training set perfectly. Sur-
prisingly, they generalize well despite being “overfit” in this way, defying the
bias–variance trade-off. A prevalent explanation is that stochastic gradient de-
scent has an implicit bias which leads it to learn functions that are simple, and
these simple functions generalize well. However, the specifics of this implicit bias
are not well understood. In this work, we explore the hypothesis that SGD is
implicitly biased towards learning functions that are smooth. We propose several
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Introduction
Classical machine learning wisdom suggests that the expressive power of a model
class (the capacity) must be carefully balanced: if the capacity is too low, the
model is underfit and does not manage to fit the training set, let alone the test
set. If the capacity is too high, the model does fit the training set, but is overfit
to spurious patterns and fails to represent the underlying trend, again failing to
generalize well to the test set. Thus, the model generalizes best when the capacity
is in a sweet-spot somewhere between underfitting and overfitting. This is known
as the bias–variance trade-off.

Several papers have noted that neural networks apparently defy the bias–
variance trade-off: increasing model capacity may improve generalization perfor-
mance, even if the network is already “overfit”. This phenomenon has been known
for over 20 years, e.g. Lawrence et al. [1996], Caruana et al. [2000], but it has
only begun receiving wider attention in recent years. This started with the work
of Neyshabur et al. [2014], who showed that plotting the test loss as a function of
model capacity (represented by the hidden layer size) does not yield the U-shaped
curve predicted by the bias–variance trade-off. The actual results are shown in
Figure 1: the test loss first decreases, then increases slightly, until the network is
able to perfectly fit (interpolate) the training set. When the hidden layer size is
increased further, the test loss surprisingly decreases again.

Figure 1: Loss (error) of a two-layer neural network trained on CIFAR-10 as a
function of hidden layer size. The test loss at convergence exhibits the double de-
scent phenomenon: it decreases, then increases around the point of interpolation
(H = 256) and then decreases again. Reprinted from Neyshabur et al. [2014],
Figure 1.

Neyshabur et al. [2014] suggest that the surprising generalization performance
of “overfit” neural networks might be due to implicit regularization in the training
process:

A possible explanation is that the optimization is introducing some
implicit regularization. That is, we are implicitly trying to find a solu-
tion with small “complexity”, for some notion of complexity, perhaps
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norm. This can explain why we do not overfit even when the number
of parameters is huge. Furthermore, increasing the number of units
might allow for solutions that actually have lower “complexity”, and
thus [generalize] better.

Figure 2: A non-smooth function (left) and smooth function (right) interpolating
a one-dimensional dataset. Reprinted from Maennel et al. [2018].

It is still an open question what exactly the implicitly regularized complexity
measure is. In this work, we explore the hypothesis that “smoothness” is implic-
itly regularized, i.e. that stochastic gradient descent tends to produce functions
that are not unnecessarily “rough” or “bumpy”. For an illustration, see Figure 2.
The examined hypothesis may be summarized as follows:

1. Neural networks trained with SGD learn smooth functions (for some defi-
nition of smoothness).

2. Smooth functions generalize well.

3. Therefore, neural networks trained with SGD generalize well.

We focus primarily on empirically verifying premise 1: we perform experi-
ments designed to measure the smoothness of neural networks trained with SGD.
We design four smoothness measures and through experiments, we exclude two of
them as possible candidates for the implicitly regularized measure. The remain-
ing two show promising results, although further investigation remains as future
work.

The work is organized as follows. Chapter 1 introduces the mathematical
concepts used throughout our work. Chapter 2 discusses related work. Chap-
ter 3 presents our proposed measures of smoothness and Chapter 4 discusses our
experiments and their results. The final chapter summarizes our conclusions.
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1. Preliminaries
In this chapter, we introduce the necessary concepts and notation from machine
learning and mathematics used throughout this work.

1.1 Regression
We study the problem of learning a function f : Rdin → R to approximate a
data distribution P(X,Y ). Though we do not have direct access to P(X,Y ), we
have available a training dataset D = {(x1, y1), . . . , (xn, yn)} where we assume
(xi, yi) ∼ P(X,Y ) are i.i.d. variables. We select in advance a hypothesis class F ,
which might be e.g. the set of functions representable by a linear function. We
want to select (learn) a function f ∈ F , which minimizes a loss function L(f).
The loss function measures how well f fits the training dataset D. Our loss
function is the mean squared error:

L(f) := 1
n

n∑︂
i=1

(f(xi)− yi)2 (1.1)

We are primarily interested in the generalization properties of models that
perfectly fit or interpolate the training data, meaning the learned function satisfies
L(f) = 0. For numerical reasons, we only require L(f) < ε with a small ε
(typically 10−5) in practice.

1.2 Neural networks
Neural networks (NNs) are machine learning models that can be used to perform
regression. For our purposes, a neural network can be viewed as a directed acyclic
graph, in which each node (or unit) u holds a scalar value au, referred to as the
node’s activation. Each edge has a weight; let us denote the weight of the edge
from u to v as wuv.

As input, we are given the values of the source nodes, i.e. nodes with no
incoming edges. The value of the other nodes is computed using the edges: an
edge from u to v with weight wuv means “add wuvau to av”. The outputs of the
network are the values of the sink nodes, i.e. nodes with no outgoing edges. When
performing regression, we require a scalar output, so let us assume that the graph
only has one sink node.

Because the graph is acyclic, the values of the nodes are well-defined and can
be computed easily: for a node u with a set of predecessors P , we have

au =
∑︂
p∈P

wpuap (1.2)

which we can compute in topological order; this is known as forward propagation.
To add expressive power to the network, we typically also add a constant bias

term bu to au. Thus, we obtain a modified equation:

au =
∑︂
p∈P

wpuap + bu (1.3)
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In the current formulation, the value of any node can be represented as a linear
combination of the inputs. Therefore, these linear neural networks are only as
expressive as linear functions. To allow for non-linearity, we employ activation
functions: we assign in advance to each node u a certain activation function
ϕu : R→ R which we apply after summing up the terms:

au = ϕu

(︂ ∑︂
p∈P

wpuap + bu

)︂
(1.4)

A neural network is therefore specified by two parts: first, its architecture,
which consists of the graph structure along with the activation function used in
each node. This part is typically determined in advance. The second part are the
parameters, meaning the network’s weights wuv and biases bu. The parameters
are determined when the network is trained using stochastic gradient descent.

1.3 Stochastic gradient descent
We may view a neural network with a fixed architecture as a function fθ : Rdin →
R parametrized by θ, a vector containing all of the parameters. Here din is
the number of source nodes. We wish to train the network to fit some dataset,
meaning we want to find the value of θ, which minimizes a loss function L(fθ).

We use the fact that the entire computation is differentiable (assuming the
activation functions used are differentiable). This allows us to compute ∇L(fθ),
the gradient of the loss function w.r.t. the parameters. This allows us to apply
gradient descent, an algorithm for minimizing differentiable functions:

Definition 1. Let F : Rn → R be a differentiable function. Gradient descent is
an algorithm which finds θ ∈ Rn such that F (θ) is a local minimum of F . The
algorithm is defined as follows:

1. Initialize θ to a random vector using some initialization method.

2. Compute ∇F (θ).

3. Set θ ← θ − α∇F (θ).

4. Repeat steps 2.–4. until L(fθ) stops improving.

Here α is the learning rate, a scalar value that determines how quickly the
parameters change between steps.

Essentially, in each step of the algorithm, we proceed in the steepest direction
possible.

To train a neural network, we run gradient descent with F (θ) := L(fθ). In
practice, however, computing∇L(fθ) might be expensive as it requires evaluating
f for each input x in the potentially very large dataset (see Equation (1.1)). Thus
in practice, we approximate ∇L(fθ) by computing LB(fθ), an approximation of
the loss for a small subset (a “batch”) B of the training dataset. We then compute
∇LB(fθ) and take a step in its direction (or rather in the opposite direction, due
to the minus sign in step 3).
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To ensure that the samples in the dataset are represented equally, we use the
following method to create the batches. We select a batch size b and order our
dataset randomly into a queue. In each step, we form a batch of the queue’s
first b elements. When the queue becomes empty, we re-shuffle the dataset and
place it into the queue again. This version of the algorithm is known as stochastic
gradient descent.1

1.4 Two-layer ReLU networks

Input
layer

Hidden
layer

Output
layer

a1

x1

a2

x2 a3 y

a4

x3

a5

Figure 1.1: A two-layer ReLU network with din = 3 and h = 5. The activation
function is ReLU for nodes ai and the identity function for the output node y.

We study a very specific type of neural networks: two-layer neural networks
with ReLU activations. This is perhaps the simplest NN architecture on which the
surprising generalization properties of neural networks are still observable, and
it has been used in several other works studying NN generalization (Neyshabur
et al. [2014], Maennel et al. [2018], Savarese et al. [2019]).

For brevity, we refer interchangeably to a node and its activation. The neural
network is organized into two layers in addition to the input layer x. The first
of these is the hidden layer, which contains h nodes, denoted a1, . . . , ah. Every
input node xi is connected to every hidden node aj. These hidden nodes use the
rectified linear unit (ReLU) activation function (Nair and Hinton [2010]), defined

1A technical note: more precisely, the algorithm described here is stochastic gradient descent
with mini-batches; “vanilla” SGD deals only with one sample at a time. However, the version
with mini-batches described here is the one prevalent in practice since it is more efficient and
less noisy. Thus, the last part of the name is typically omitted.
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as [a]+ := max(0, a). We can concisely express the activation ai as:

ai :=
⎡⎣ din∑︂

j=1
w

(1)
ij xj + b

(1)
i

⎤⎦
+

=
[︂
⟨w(1)

i , x⟩+ b
(1)
i

]︂
+

(1.5)

The nodes in the hidden layer are then connected to the output layer, which
consists of a single node y. This node has no activation function, or equivalently, it
uses the identity function ϕ(x) = x as its activation. This is because using ReLU
would prevent the network from having negative output values. Summarized in
an equation, we have:

y :=
h∑︂

i=1
w

(2)
i ai + b(2) (1.6)

Figure 1.1 illustrates this type of neural network. Since the graph has such a
simple structure, we can easily express the entire computation in a single equation:

Definition 2. A two-layer ReLU network is a function fθ : Rdin → R defined as
follows:

fθ(x) :=
h∑︂

i=1
w

(2)
i

[︂
⟨w(1)

i , x⟩+ b
(1)
i

]︂
+

+ b(2) (1.7)

where [a]+ := max(0, a) taken elementwise, h is the number of hidden units and
θ represents the network’s weights:

θ := (W (1), b(1), w(2), b(2))

where W (1) ∈ Rh×din , b(1) ∈ Rh, w(2) ∈ Rh, b(2) ∈ R, and w
(1)
i is the i-th column

of W (1).

In Section 1.3, we mentioned that a neural network’s activation functions
should be differentiable to allow us to compute ∇L(fθ), yet ReLU is not differ-
entiable at 0. In practice, this is not a problem since ReLU is still differentiable
almost everywhere, and we can simply postulate that its derivative at 0 is 1.

1.5 Regularization
Consider a measure S, which accepts a model f : Rdin → R as input, and outputs
a scalar value. We say that a measure S is being regularized during training if,
in addition to minimizing loss, the training process tends to find functions that
have a low value of S. Note that “regularization” is sometimes taken to have a
broader meaning, but this does not concern us here.

Regularization may be explicit or implicit. When training a model fθ para-
metrized by a vector θ, we may regularize a measure explicitly by adding a
regularization term to the loss:

Lreg(fθ) := L(fθ) + λS(fθ) (1.8)

where λ is a coefficient determining the strength of regularization—the relative
importance of the regularization term. In this way, the model is “punished” for
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large values of S. In particular, if there is a value of θ for which the model fits the
data perfectly (L(fθ) = 0), the minimizer of Lreg(fθ) is the θ which minimizes
S(fθ) in addition to perfectly fitting the data.

One popular choice of S is the L2 norm of the parameter vector θ, defined
as S(fθ) = ∥θ∥2. L2 regularization leads training to favor low-norm solutions,
which often correspond to simpler models.

Regularization can also be implicit: due to some properties of the training
algorithm or the model class, training may favor models that have specific prop-
erties, e.g. a low value of some complexity measure. For instance, using a smaller
batch size in SGD is known to improve performance; Keskar et al. [2017] propose
that this is because, with a smaller batch size, the optimization tends to find flat
minima of the loss function, which have favorable generalization properties. We
can understand this as implicit regularization of the sharpness of the loss function
minimum.

1.6 Total variation
For measuring smoothness, a useful notion is the total variation, which is a mea-
sure of “how much a function is moving”. We begin with a special case and
proceed to a more general definition. Let us define total variation for a differen-
tiable function f : [a, b]→ R as:

TV (f) :=
∫︂ b

a
|f ′(x)| dx (1.9)

If we interpret f(t) as the position of an object on the number line at time t,
TV (f) is the total distance travelled by the object from time a to time b.

The requirement that f be differentiable is unnecessarily strict; by analogy
to the definition of the Riemann integral, we may extend the definition of TV to
non-differentiable functions. We define the total variation for a (not necessarily
differentiable) function f : [a, b]→ R as:

TV (f) := sup
P ∈Pa,b

|P |∑︂
i=1
|f(xi)− f(xi−1)| (1.10)

Here Pa,b is the set of all partitions of the interval [a, b]:

Pa,b :=
{︃

P = (x0, x1, . . . , x|P |) | a = x0 < x1 · · · < x|P | = b
}︃

(1.11)

As an example, consider f : [−2, 2] → R, where f(x) := |x|. Then by using
the partition (−2, 0, 2), we get TV (f) ≥ 4. No other partition gives a higher
TV , so TV (f) = 4. The definition from Equation (1.10) is also applicable to
non-continuous functions, such as the Heaviside step function:

H(x) :=

⎧⎨⎩1 if x ≥ 0
0 if x < 0

(1.12)

On the interval [−1, 1], we get TV (H) = 1. In the “moving object” analogy,
the definition from Equation (1.10) allows the object to jump instantaneously,
with jumps counting towards the total distance moved. Our analogy also offers a
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natural way to extend the definition to vector-valued functions f : [a, b]→ Rd: the
imagined object is now simply moving around in Rd rather than on the number
line.2

Definition 3. We define the total variation of f : [a, b]→ Rd as

TV (f) := sup
P ∈Pa,b

|P |∑︂
i=1

⃦⃦⃦
f(xi)− f(xi−1)

⃦⃦⃦
(1.13)

where Pa,b is the set of all partitions of the interval [a, b], as defined in Equa-
tion (1.11).

Another good intuition for Definition 3 is that total variation is the arc length
of the curve “drawn” by f in Rd.
Example. Let f : [−1, 1] → R2 be a function defined as f(t) := (|t| , t). We
interpret f as the definition of a parametric curve in R2. The curve starts in
(1,−1) for t = −1, then goes linearly to (0, 0) and finally reaches (1, 1) when
t = 1.

Consider the partition (−1, 0, 1). Then we get

TV (f) ≥ ∥(0, 0)− (1,−1)∥+ ∥(1, 1)− (0, 0)∥ =
√

2 +
√

2 = 2
√

2 (1.14)

and indeed one can verify that it is not possible achieve a higher value by using
a different partition, so TV (f) = 2

√
2, which is the curve’s arc length.

Total variation allows us to measure how much “unnecessary movement” a
function is doing. Let F be the set of functions f : [a, b]→ Rd for which f(a) = ca

and f(b) = cb. We have

min
f∈F

TV (f) = ∥ca − cb∥ (1.15)

More can be said if d = 1: then the functions f ∈ F which minimize TV
are exactly those which are weakly monotonic (either non-decreasing or non-
increasing), formally:

f ∈ arg min
g∈F

TV (g) ⇐⇒ f is weakly monotonic (1.16)

An analogous result holds even for d > 1, but is not relevant for the present
work.

2There are other ways to define total variation for vector-valued functions; see Goldluecke
and Cremers [2010] for a discussion. Our definition is a special case of the pointwise Frobenius
norm total variation discussed in the paper.
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2. Related work
To the best of our knowledge, the first modern paper which observed the unex-
pected generalization behavior of neural networks is Neyshabur et al. [2014]. The
authors focus on the fact that the test loss keeps decreasing with the number of
hidden units but do not investigate the increase in test loss around the interpo-
lation point (see the blue curve in Figure 1). This “bump” was later observed
in several papers (Advani and Saxe [2017], Spigler et al. [2019]), and the effect
was dubbed double descent by Belkin et al. [2019], because of the fact that loss
decreases in two parts of the curve. Nakkiran et al. [2020] confirm the findings
in extensive experiments and observe that double descent occurs not only as a
function of model size but also the number of training epochs.

R
is
k

Training risk

Test risk

Capacity of H

under-parameterized

“modern”
interpolating regime

interpolation threshold

over-parameterized

“classical”
regime

Figure 2.1: A diagram of the double descent curve. Reprinted from Belkin et al.
[2019], Figure 1. The term risk refers to the expected value of the loss.

In a widely-cited thought-provoking work, Zhang et al. [2017] show that mod-
ern convolutional neural networks (CNNs) are able to fit datasets with random
labels. This means that the networks can memorize the dataset since they learn
even when there is no relationship between the inputs and outputs. Thus, their
capacity is so large that they should be significantly overfit. Nevertheless, CNNs
generalize well on real data.

A popular form of explanation introduced already by Neyshabur et al. [2014]
is that the training procedure is implicitly biased towards solutions with low com-
plexity. However, it is still unknown what the implicitly regularized complexity is.
There have been several suggestions, for instance: sharpness of the reached loss
function minimum (Keskar et al. [2017]), distance from initialization (Nagarajan
and Kolter [2019]), Fisher–Rao norm (Liang et al. [2019]), or various measures
based on parameter norms (Bartlett et al. [2017], Neyshabur et al. [2015]). We
refer the reader to Jiang et al. [2019] for an empirical comparison of many of the
proposed complexity measures.

Our approach is inspired by Maennel et al. [2018], who observe that under
certain conditions, training shallow ReLU networks in the 1D setting using gradi-
ent descent yields “simple” functions that are close to a linear interpolation of the
training data—see Figure 2. The initial question of the present work was whether
a similar tendency towards simple/smooth functions exists in higher dimensions
as well.

Novak et al. [2018] explore how the average norm of the Jacobian correlates
with generalization; this is the measure which we refer to as gradient norm in this
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work. The authors perform an empirical study and find that in the classification
setting, the gradient norm is correlated with a network’s generalization ability.
This is especially interesting in connection with our work as our results suggest
that the gradient norm is not the measure that is being implicitly regularized.
Rifai et al. [2011] and Sokolic et al. [2017] regularize the gradient norm explicitly
and find that it improves performance.

LeJeune et al. [2019] propose a measure of “rugosity” (roughness) based on the
learned function’s Hessian, which in our framework is a second-order smoothness
measure (since it is calculated based on the second derivative). The authors
draw parallels between rugosity and data augmentation; they find empirically
that data augmentation decreases rugosity. They also experiment with explicitly
regularizing rugosity in hopes of simulating the effect of data augmentation but
find that unlike with data augmentation, the test loss increases when explicit
regularization of rugosity is used.

Kubo et al. [2019] investigate a second-order smoothness measure based on
how the learned function’s gradient changes when interpolating between two sam-
ples; this is similar to one of our proposed measures. The authors empirically
show that the measure’s value is low, meaning that overparametrized networks
interpolate almost linearly between the samples. This result is consistent with
our findings.
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3. Measuring Smoothness
In machine learning literature, the notion of smoothness of a function is often used
intuitively (e.g. Kawaguchi et al. [2017], Belkin et al. [2019], or Kubo et al. [2019]),
but is rarely defined formally.1Here we present several smoothness measures which
assign a scalar smoothness value to a function f : Rdin → R.

Intuitively, f may be arbitrarily non-smooth (“rough”); we can always make
it less smooth by adding noise. On the other hand, there is some kind of max-
imum smoothness upon which we cannot improve. For this reason, we define
the measures S such that S(f) ≥ 0 and such that the higher S(f) is, the less
smooth f is. The value S(f) = 0 thus means that f is as smooth as possible.
For a measure to be consistent with our intuition, this ideal smoothness should
be reached by constant functions, or perhaps more generally by linear functions.

Our measures may be classified into two categories: first-order and second-
order smoothness measures. First-order measures are based on the gradient or
first difference of f , whereas second-order measures are based on the Hessian
or second difference. In the one-dimensional case, an example of a first-order
measure is the total variation TV (f), whereas an example of a second-order
measure is the total variation of the derivative TV (f ′).

Within one category of measures, our experiments show that the measures are
strongly correlated. There is some correlation between first-order and second-
order measures as well, but minimizing first-order smoothness does not neces-
sarily imply minimizing second-order smoothness or vice versa, as we show in
Section 3.3.

In this chapter, we propose four smoothness measures and discuss their prop-
erties, and we study them in more detail in the one-dimensional setting (din = 1).

3.1 First-order smoothness measures
A simple way to formalize smoothness is to identify it with steepness; if a function
is very steep (has a large gradient), then it is not smooth.

3.1.1 Gradient norm
We define the gradient norm GN(f) as the expected norm of the gradient of f :

Definition 4. Let f : Rdin → R be a differentiable function and let PX be a
probability distribution over Rdin. We define the gradient norm as

GN(f) := E x∼PX
∥∇xf(x)∥ (3.1)

This definition is analogous to the definition of the total variation, as discussed
in Goldluecke and Cremers [2010]. However, we take the expectation over the
dataset distribution rather than integrating ∥∇xf(x)∥ over Rdin . Integrating
would be intractable in higher dimensions, not to mention the fact that for ReLU
networks, the integral would most likely converge to +∞.

1Smoothness is also a technical term in mathematical analysis, but this is not the meaning
of the term used in the present work.
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Note that we assume f is differentiable, which is not entirely accurate since
ReLU is not differentiable at 0. This shortcoming could be rectified formally by
taking the distributional derivative, a weaker form of derivative. Alternatively,
we could define a differentiable version ReLU by smoothing the function very
slightly. Again, we may simply postulate that the derivative of ReLU at 0 is 1 to
fix this in practice.

We approximate GN(f) by taking 1000 samples from the test set. Note that
GN is non-negative and is 0 for those functions whose gradient is zero almost
everywhere.

3.1.2 Function path length
Another approach is to sample pairs of points and consider the one-dimensional
segments between these points in the input space. On these one-dimensional
“slices” of f , we can compute measures which would not be tractable in higher
dimensions, such as the total variation. We define the total variation along a
segment as follows:

Definition 5. Let f : Rdin → Rdout be a function and let a, b ∈ Rdin. We define
the total variation of f along a segment [a, b] as

TV[a,b](f) := TV (f[a,b]) (3.2)

where f[a,b] : [0, 1]→ R is a “slice” of f along the segment [a, b]:

f[a,b](t) := f((1− t)a + tb) (3.3)

Now we define the function path length as the expected value of TV[a,b] taken
over the data distribution:

Definition 6. Let f : Rdin → Rdout be a function and let PX be a probability
distribution over Rdin. We define the function path length as

PL0(f) := E a,b∼PX
TV[a,b](f) (3.4)

Of course, we do not have direct access to PX , so we approximate PL0 by
utilizing the information about PX that we do have, namely the training dataset
x1, . . . , xn (labels are not necessary):

PL0(f) ≈ 1
n2

n∑︂
i=1

n∑︂
j=1

TV[xi,xj ](f) (3.5)

Since the computation time scales quadratically in n, PL0 quickly becomes
impractically slow to compute. We thus sample a fixed number of pairs from the
dataset to get a fast approximation. We also approximate TV[a,b] by selecting a
fixed equidistant partition of the segment [a, b]:

ˆ︃TV [a,b](f, n) :=
n−1∑︂
i=1
∥f(pi)− f(pi−1)∥ (3.6)

where pi := i
n−1a +

(︂
1− i

n−1

)︂
b for i ∈ {0, . . . , n− 1}. We sample 1000 pairs

of points and use n = 100.
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The disadvantage of PL0 is that by being based on total variation, it cannot
distinguish between some functions which we would not consider equally smooth.
As described by equation (1.16), the total variation of a function with fixed
endpoints is minimal for any weakly monotonic function. Consider f(x) = x,
g(x) = max(0, 2x − 10). Then TV (f, 0, 10) = TV (g, 0, 10) = 10, but intuitively,
f is smoother than g, since g is linear whereas f has a “tooth”. The gradient
norm measure shares the same problem.

3.2 Second-order smoothness measures
To be able to distinguish between functions which are monotonic, we want a mea-
sure which takes the second derivative into account. Since the ReLU activation
function does not have a second derivative in the regular sense, we need a weaker
notion.

3.2.1 Gradient path length
A natural way to do this is to use another segment-based measure which looks at
the values of the gradient along a segment, rather than the values of the function
itself.

Definition 7. Let f : Rdin → R be a differentiable function and let PX be a
probability distribution over Rdin. We define the gradient path length as

PL1(f) := PL0(∇xf) = E a,b∼PX
TV[a,b](∇xf) (3.7)

Now for two datapoints (x1, y1) and (x2, y2), if f(x1) = y1 and f(x2) = y2,
we have TV[x1,x2](∇xf) = 0 iff ∇xf is constant on the segment (x1, x2). This
means that the minimizer is a linear interpolation between the endpoints.

Calculating PL1 requires access to ∇xf , but second-order partial derivatives
need not exist. This allows us to apply the measure to ReLU networks (again
after defining the derivative of ReLU at 0 to be 1).

3.2.2 Weights product
Another second-order measure we propose is the weights product. It is defined as
follows:

Definition 8. Let fθ : Rdin → R be a two-layer ReLU network, where θ =
(W (1), b(1), w(2), b(2)). We define the weights product WP as

WP (fθ) :=
h∑︂

i=1

⃓⃓⃓
w

(2)
i

⃓⃓⃓
·

⃦⃦⃦
w

(1)
i

⃦⃦⃦
(3.8)

Each summand is the norm of the difference of the gradient on the two sides
of the ReLU. Thus WP is a second-order measure as it is based on the changes
of the gradient.

Unlike the previous smoothness measures, WP is only defined for two-layer
ReLU networks but has the advantage of being easily computable and being
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independent of the dataset. Compared to the gradient path length, it is also less
noisy since we can compute it without resorting to approximation.

We show in the following section that in the one-dimensional case, WP is
equal to the total variation of the derivative.

3.3 One-dimensional case
Here we restrict ourselves to the simplified case where din = 1 and the input
distribution PX is a uniform distribution over the interval [a, b]. Thus the learned
function is f : [a, b] → R. We analyze the behavior of the following simplified
measures:

PL
(1)
0 (f) := TV (f)

PL
(1)
1 (f) := TV (f ′)

(3.9)

Note that for this class of functions, there also exists a simple relationship
between GN and PL

(1)
0 : GN(f) = 1

b−a
PL

(1)
0 (f). The measure PL

(1)
1 is a second-

order measure related to PL1, which differs in the weighing. If f is twice differ-
entiable, the measures simplify to:

PL
(1)
0 (f) :=

∫︂ b

a
|f ′| dx

PL
(1)
1 (f) :=

∫︂ b

a
|f ′′| dx

(3.10)

Under these measures, what are the smoothest functions which interpolate
(perfectly fit) a certain dataset? Consider a dataset D = {(x1, y1), . . . , (xn, yn)},
where a = x1 < x2 < · · · < xn = b. Let us denote by F the set of continuous
piecewise linear functions f : R→ R which interpolate D. (Continuous piecewise
linear functions are representable by two-layer ReLU networks.)

Among the functions in F , both PL
(1)
0 and PL

(1)
1 are minimized by linear

spline interpolation fL : [a, b]→ R, defined as:

fL(x) := yi + yi+1 − yi

xi+1 − xi

(x− xi) (3.11)

where i is chosen for a given x as the unique index for which xi ≤ x ≤ xi+1.
First, we show that fL minimizes TV (= PL

(1)
0 ).

Proof. Denote by F∗ the subset of F which minimizes TV , and by f ∗ an arbi-
trarily chosen function from F∗. By the definition of the total variation (Equa-
tion (1.10)), we can bound TV from below by considering a fixed partition. We
take the partition P = (x1, . . . , xn) and obtain

TV (f ∗) ≥
n∑︂

i=2
|f(xi)− f(xi−1)| (3.12)

We compare this to the total variation of fL:

TV (fL) =
n∑︂

i=2
|f(xi)− f(xi−1)| (3.13)
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Combining the two equations, we obtain TV (f ∗) ≥ TV (fL), and since f ∗ ∈
F∗, we get TV (f ∗) = TV (fL), and so fL ∈ F∗.

For proof of that PL
(1)
1 is minimized by fL, see Theorem 3.3 in Savarese

et al. [2019]. The measure to be minimized is slightly different, but the proof
is analogous, so we only sketch it here. The core idea is to use the mean value
theorem on each of the segments [xi, xi+1] to show that for any function f ∈ F ,
its derivative f ′ must obtain the value yi+1−yi

xi+1−xi
= f ′

L(x), meaning that TV (f ′) ≥
TV (f ′

L) and so fL minimizes PL
(1)
1 .

The situation is complicated by the fact that to use the mean value theorem
in this way, we need f ∈ F to be twice differentiable, which in general, it is not.
The solution is to approach f by a sequence (fr) of smoothed versions of f , which
are twice differentiable. We then get the desired result in the limit.

The function fL is not the unique minimizer of PL
(1)
0 : any function which

interpolates S and is piecewise monotonic on of the intervals [x1, x2], . . . , [xn−1, xn]
achieves minimal TV (and thus PL

(1)
0 ). This is a consequence of a generalized

version of Equation (1.16).
The measure PL

(1)
1 is also not minimized uniquely by fL, though it is more

difficult to characterize which functions minimize PL
(1)
1 for a given dataset. In-

formally, the function must not “overshoot” the values of f ′; they should be as
monotonic as possible. A complete characterization is not the focus here, so, let
us merely show an example of a minimizer distinct from fL for a specific dataset:
Example. Let D = ((−2, 1), (−1, 0), (1, 0), (2, 1)) and define f as

f(x) :=

⎧⎨⎩|x| − 1 if 1 ≤ |x| ≤ 2
x2−1

2 if |x| ≤ 1
(3.14)

For an illustration, see Figure 3.1. The function f interpolates D, and we have
PL

(1)
1 (fL) = PL

(1)
1 (f) = 2. However, the values of PL

(1)
0 differ, since PL

(1)
0 (fL) =

2, but PL
(1)
0 (f) = 3. This example thus also shows that minimizing one of the

measures does not imply minimizing the other. (The other implication, namely
that minimizing PL

(1)
0 does not imply minimizing PL

(1)
1 , is left as an exercise to

the reader.)
We also note that for two-layer ReLU networks, PL

(1)
1 can be expressed purely

as a function of the network’s weights. The definition of two-layer ReLU networks
(Definition 2) simplifies in the one-dimensional case to:

fθ(x) =
h∑︂

i=1
w

(2)
i

[︂
w

(1)
i x + b

(1)
i

]︂
+

+ b(2) (3.15)

For short, let us write fθ = f . Taking the derivative of f , we obtain:

f ′(x) =
h∑︂

i=1
w

(2)
i w

(1)
i H(w(1)

i x + b
(1)
i ) (3.16)

where H is the Heaviside step function, defined as H(x) = 1 if x ≥ 0 and
H(x) = 0 otherwise. Note that again we are neglecting the fact that ReLU is not
differentiable at 0 since it is inconsequential.
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Figure 3.1: A function f (in blue) interpolating a dataset D (green points), along
with its derivative f ′ (in orange). Among functions which interpolate D, this
function minimizes PL

(1)
1 but does not minimize PL

(1)
0 .

We now want to compute PL
(1)
1 (f) = TV (f ′). Since f ′ has a special form, this

can be done under mild assumptions. Let us denote ci := − b
(1)
i

w
(1)
i

; when x = ci, the
argument of the i-th Heaviside step function in Equation (3.16) is 0, meaning that
the i-th node switches between being activated and deactivated at this position.

The function f ′ is piecewise constant, with the knot positions ci determining
the borders of the pieces. If we assume that the values ci are unique, the value of
f ′ changes at position ci by w

(2)
i w

(1)
i , because at this position we add or remove

the i-th summand (depending on the sign of w
(1)
i ).

Now if we assume that every knot position ci lies within the input interval
[a, b], we have:

PL
(1)
1 (f) = TV (f ′) =

h∑︂
i=1

⃓⃓⃓
w

(2)
i w

(1)
i

⃓⃓⃓
(3.17)

The assumption of the uniqueness of the values ci is only weak, as this holds
for almost all parameter configurations θ. Formally, if we select θ randomly (e.g.
sample each parameter independently from a Gaussian distribution), the proba-
bility that ci = cj is 0. To prove this, we expand the right side of the equation
and obtain ci = −b

(1)
j /w

(1)
j . Assume we have already (randomly) determined ci

and b
(1)
j ; then there is only a single value of w

(1)
j which would make the equation

hold, and the probability of randomly selecting this value is 0.
Equation 3.17 highlights the relationship between the gradient path length

PL1 and the weights product WP :

PL1(fθ) = WP (fθ) (3.18)

Indeed, the one-dimensional case was the original motivation for the weights
product measure. In higher dimensions, the interpretation of WP is less obvious,
but the measure is still correlated with PL1.
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4. Experiments
In this chapter, we describe the experiments performed and present their results.

Though we have described several smoothness measures, it is not straightfor-
ward to apply them to determine whether smooth functions are being learned.
The reason is that we need a sense of scale: if a network f has a gradient norm
of GN(f) = 1.2, is it smooth or not? The central issue which our experiments
have to tackle is then how to use the measures to obtain interpretable results.

In each experiment, we train several models with varying values of certain
hyperparameters and measure the trained models. We then compare the experi-
mental results with our expectations and draw conclusions.

Note that the design of the experiments is very general: they could be used to
reason not only about smoothness but also about any other complexity measure,
such as distance from initialization or sharpness of the loss function.

4.1 Hyperparameters
First, let us describe the common hyperparameters used in training the networks.
We use a batch size of 64, and, unless specified otherwise, a learning rate of 0.01.
Each network has a hidden layer size of h = 256. This is enough to perfectly fit
the training set for the datasets that we experiment with.

We found empirically that training loss is correlated with the smoothness
measures, so we fix training loss to avoid spurious correlations: we train each
network until it reaches a training loss of 10−5. Additionally, by fixing the training
loss, we ensure that we study models that perfectly fit the training set (ideally,
we would have 0 training error, but this is not feasible numerically).

Regarding network initialization, the network’s biases are initially set to 0.
The weights in each of the two layers are initialized by drawing uniformly from
the interval [−ℓ, ℓ], where

ℓ :=
√︄

3α

nin + nout

(4.1)

and nin is the number of input units of the layer, nout is the number of output
units, and α is the initialization scale. For the first layer, we have n

(1)
in = din and

n
(1)
out = h, whereas for the second layer, n

(2)
in = n

(1)
out = h and n

(2)
out = 1. Recall that

din is the dimensionality of the dataset (e.g. 28× 28 = 784 for MNIST) and h is
the size of the hidden layer.

When α = 1, the initializer reduces to the widely used Glorot uniform ini-
tializer (Glorot and Bengio [2010]). We set α := 0.01 in our experiments. The
motivation behind scaling the initialization comes from Maennel et al. [2018],
who find that in their one-dimensional setup, using a smaller initialization scale
leads to a smoother learned function. We find that this initialization scheme
makes the trends in the experimental results more evident. We verify in one of
the experiments (Subsection 4.3.2) that the general trend holds even when α = 1.
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4.2 Implementation
The experiments were implemented in Python, using the TensorFlow deep learn-
ing framework (Abadi et al. [2016]). To ensure experimental results are not lost,
we used the Sacred package (Greff et al. [2017]). We also used the Scipy li-
brary (Virtanen et al. [2020]) for various scientific computation. For working
with Gaussian processes, we used GPy1.

We analyzed the results using Jupyter notebooks (Kluyver et al. [2016]). To
store and manipulate data, we used Pandas (Reback et al. [2019]). For plotting
results, we used the Seaborn plotting library (Waskom et al. [2020]) which builds
upon Matplotlib (Hunter [2007]), another plotting library.

The code is available in Attachment A.1, as well as a GitHub repository at
https://github.com/vvolhejn/neural_network_smoothness.

4.3 Increasing training set size
This experiment relies on the observation that if the smoothest possible function
is learned, then adding samples to the training set should lead to a decrease in
the smoothness of the learned function because a more complicated function is
required to fit the dataset.

More formally, consider a family F of functions f . This family could be e.g.
every possible function expressible with a fixed network architecture. We view
the training process as a way of selecting a function f ∈ F which best fits a
given dataset D. We limit ourselves to the case where it is possible to interpolate
D, meaning there exist functions in F which achieve zero loss on D. Let us
denote the set of functions interpolating dataset D by FD. If |FD| > 1, we must
decide between one of the multiple interpolating functions. If the training process
maximizes smoothness (and assuming it is able to find functions with zero loss
on D), it selects the smoothest function from FD.

We can empirically verify whether this is the case. Consider a dataset D =
{(x1, y1), . . . , (xn, yn)} and its subsets Di := {(x1, y1), . . . , (xi, yi)}. Notice that
for i < j, we have FDi

⊇ FDj
, since Di ⊂ Dj and any function interpolating

a dataset also interpolates its subset. Let us define fi ∈ FDi
as the function

learned by the training process for dataset Di. If the training process minimizes
smoothness, then fi must be at least as smooth as fj.

This observation is the basis of the following experiment: we select a dataset
D of n samples which we are able to interpolate using a function from F . Take the
sequence of datasets D1, . . . , Dn. Denote by f1, . . . , fn the corresponding trained
functions, and by S a smoothness measure (again, a lower S means a smoother
function). If the training process maximizes smoothness, then we have:

S(f1) ≤ S(f2) ≤ · · · ≤ S(fn) (4.2)

Due to noise, not all of the inequalities might hold simultaneously. To quantify
how close we are to all inequalities holding, we use the Kendall rank correlation
coefficient (Kendall [1938]), defined as a normalized number of inversions in the
sequence.

1http://github.com/SheffieldML/GPy
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Definition 9. Let X := (x1, . . . , xn), xi ∈ R and Y := (y1, . . . , yn), yi ∈ R be two
sequences.2 The Kendall rank correlation coefficient (“Kendall’s τ”) is defined as

τ(X, Y ) := 1(︂
n
2

)︂ n−1∑︂
i=1

n∑︂
j=i+1

sign(xj − xi) sign(yj − yi) (4.3)

When Y is increasing, we may omit it and write simply

τinc(X) := 1(︂
n
2

)︂ n−1∑︂
i=1

n∑︂
j=i+1

sign(xj − xi) (4.4)

The definition is simpler to understand if one of the sequences is a canonical
ordering, as in Equation (4.4). This simplified version τinc takes values between
−1 and 1, where τinc(X) = 1 if X is an increasing sequence. The value of τinc(X)
then decreases for each inversion in X and takes the value −1 if X is decreasing.
The original τ itself has analogous properties.

One can also use Kendall’s τ in a hypothesis test to determine whether the
observation is statistically significant.

In practice, we actually use τb, a version of τ with a more complex normaliza-
tion coefficient which accounts for ties. Since τ normalizes by dividing by

(︂
n
2

)︂
, it

is impossible for τ(X, Y ) to reach 1 when some values are tied in X or Y . The
modified τb rectifies the issue by dividing instead by

√︂
(np − nx)(np − ny), where

np :=
(︂

n
2

)︂
, and nx is the number of ties in X, i.e. the number of unordered pairs

{i, j} such that xi = xj. The value ny is defined analogously.

4.3.1 Results for one dimension
We begin by studying simple synthetic one-dimensional datasets. To generate
these datasets, we sample functions from Gaussian processes. For an introduction
to Gaussian processes, we refer the reader to Rasmussen and Williams [2006].
However, Gaussian processes play a small role in this work, and it is sufficient to
think of them as a tool for generating synthetic datasets.

Specifically, we use a Gaussian process with an RBF kernel with variance
1.0. The length scale is 0.5, and the noise variance is 0. The test set consists of
100 equally-spaced samples of the function on the interval [−1, 1]. For technical
reasons, we also set f(0) := 0 when sampling functions. Figure 4.1 shows three
functions sampled from a Gaussian process with these parameters.

When selecting the order in which to add samples to the training set, we
wish for the samples to be well-spaced. To ensure this, we use the following
procedure: Denote by X the set of x values of the samples in D, and Xi the
corresponding set of Di. We set X2 = {−1, 1}. Then, Xi for i > 2 is defined
as Xi := Xi−1 ∪ xi, where xi is one of the samples from X which have not been
used yet. We select xi such that its distance to any sample from Xi−1 is the
largest possible. In the case of a tie, we select the lowest sample. For instance,
if we imagine D to be the entire interval [−1, 1], we would begin by adding these
points: 0,−0.5, 0.5,−0.75,−0.25, 0.25, . . .

2The definition of τ only needs ordinal values (we only need to be able to compare two
values), so we could define τ more generally; this is not important for our purposes, however.
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Figure 4.1: Three functions sampled from a Gaussian process.

We sample 20 datasets using this procedure. For each one, we try dataset
sizes {2, . . . , 10}. The reason we use such small training sets is that due to the
dataset’s simplicity, adding new points soon stops forcing the functions to be less
smooth, and the smoothness measures plateau. To reduce variance, we train 10
networks for each seed and training set size. We train the networks until they
reach 10−3 training loss. We compute Kendall’s τ for each dataset separately.
This yields a distribution of τ ’s.

Because the size of the training set is small, we use “vanilla” gradient descent
rather than SGD. We train the networks for 50 000 epochs with a learning rate
of 0.1.

We found that the networks did not manage to fit some of the datasets,
even though they had so few training samples—this is an anomaly of the one-
dimensional setting. Specifically, out of the 20 ∗ 9 = 180 dataset configurations,
none of the 10 trained models reached the desired loss threshold in 23 cases.
When calculating τ values, we do not include the unconverged models, though
we find that including them does not change the results significantly, skewing the
mean τ by at most 0.05.

For comparison, we also calculate our measures when we interpolate the
dataset using a high-degree polynomial rather than by using a neural network.
For a dataset of k samples, we use a polynomial of degree k − 1, so that the
solution is unique. Polynomials are known to overfit, and so the smoothness
measures should be unstable as we vary the number of training samples. The
weights product measure is only defined for two-layer ReLU networks, but in one
dimension, we can still calculate it using Equation (3.18).

The results of the experiment are shown in Table 4.1. Polynomials are not as
unstable as we could hope to highlight; this might be because the data is simple
and noiseless, reducing the risk of overfitting. Nevertheless, the values of τ for
polynomials are consistently lower than for neural networks (though there is some
variance).

4.3.2 Results for multiple dimensions
To test that the inequalities (4.2) hold even for datasets of higher dimensions,
we train on subsets of the MNIST dataset of handwritten digits (LeCun et al.
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Measure NNs Polynomial
GN 0.72 ± 0.19 0.36± 0.20
PL0 0.62 ± 0.31 0.44± 0.22
PL1 0.79 ± 0.12 0.51± 0.14
WP 0.82 ± 0.13 0.38± 0.15

Table 4.1: The distribution of the values of Kendall’s τ for synthetic datasets,
comparing neural networks with polynomial interpolation.

[1998]), limited to some two labels (digits) a and b. We formulate the problem as
regression, where the labels are −1 for digit a and 1 for digit b. In this way, we
create one dataset for every possible pairs of digits, yielding

(︂
10
2

)︂
= 45 datasets.

Additionally, we balance the classes by truncating the datasets to 10000 examples
of each digit. We refer to these datasets as MNIST-binary collectively. Having
multiple (albeit strongly correlated) datasets allows us to reduce variance and
gain more confidence that the observed trends are not just due to randomness.

For each dataset, the training set sizes we try are N = {64, 128, 256, 512,
1024, 2048, 4096, 8192}. Let us denote by dataset configuration a (dataset, train-
ing set size) pair. To lower variance, we train three networks for each dataset
configuration.

In Table 4.2, we summarize the results. We see that the trend is much stronger
in second-order measures (WP and PL1) than first-order measures. Second or-
der measures consistently achieve the highest value of τ that we can reasonably
expect; this is because training three networks for each dataset configuration in-
troduces ties. To reach higher values, we would need two networks trained on
the same dataset configuration to reach exactly the same smoothness, which is
highly unlikely due to the stochasticity of the training process.

Measure Kendall’s τ

GN 0.15± 0.30
PL0 0.06± 0.40
PL1 0.96
WP 0.96

Table 4.2: The distribution of the values of Kendall’s τ for the 45 MNIST-binary
datasets. Standard deviation is not listed for WP and PL1 because these mea-
sures reach the same τ for every dataset.

In the previous experiments, we used an initialization scale of α = 0.01. To
examine the effect of using this smaller initialization, we re-run the preceding
experiment with the standard initialization scale of α = 1. The results are shown
in Table 4.3. The difference between first-order and second-order measures is still
visible, though not as pronounced. The explanation could be that by using a lower
initialization scale, we are nearing some “idealized behavior” of stochastic gradient
descent (SGD), similar to what is observed Maennel et al. [2018]. Compare this
effect also to the observation of Nakkiran et al. [2020] that label noise highlights
the double descent phenomenon: analogously, a smaller initialization makes the
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differences between the smoothness measures more pronounced.

Measure Kendall’s τ

GN 0.77± 0.25
PL0 0.72± 0.14
PL1 0.91± 0.08
WP 0.94± 0.03

Table 4.3: The distribution of the values of Kendall’s τ for the 45 MNIST-binary
datasets, with initialization scale α set to 1.

4.3.3 Interpretation
As expected, all four smoothness measures increase as the number of training
samples increases. The results show this both absolutely (the values of τ are
positive) and relatively (by comparison to polynomials).

Furthermore, the multidimensional case (Table 4.2) highlights the differences
between first-order and second-order measures. In this experiment, second-order
measures increase perfectly with training set size. We expect this behavior from
an implicitly regularized measure.

4.4 Explicit regularization
One way to determine that a complexity measure S is not being regularized
implicitly during training is to see if we are able to find models that perform
equally well on the training set but which are simpler (under this measure) than
those found by SGD. If we can find such simpler models, this measure is not
being implicitly regularized.

Notice that the converse need not hold: if we are not able to find these simpler
models, this does not necessarily mean that they do not exist at all. We were
simply not able to find a counterexample but did not show that no counterex-
amples exist. Jiang et al. [2019] reach the same conclusion when discussing this
method.

To search for such simpler models, we use explicit regularization; we replace
the original loss function L with its regularized version Lreg, in which we penalize
high values of S:

Lreg(f) := L(f) + λS(f) (4.5)

where λ > 0 is a regularization coefficient.
The limitation of this approach is that S must be differentiable to allow for

the use of SGD. Furthermore, if S is expensive to compute, optimization is slowed
down considerably as it is evaluated in every training step. To alleviate this issue,
we use stochastic variants of our measures, which are faster to compute.

We train the networks on the 45 MNIST-binary datasets to reduce variance.
The downside of multiple datasets is that displaying the measures for different
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datasets in a single plot might be misleading, as the datasets have different prop-
erties (distinguishing between 4 and 9 proved to be more difficult than between
0 and 1, for instance).

We used a learning rate of 0.1 when regularizing the two path length measures
and the standard value of 0.01 for the remaining two. The reason we use an in-
creased learning rate for the path length measures is to ensure faster convergence,
which is valuable as these measures are computationally expensive.

Note that we formulate the problem as regression despite it essentially being
a classification problem. This has the advantage that the network is, in theory,
able to fit the training data perfectly, which would not be possible in classification
due to the final softmax, which outputs probabilities which are strictly less than
1. Avoiding softmax also has the advantage that the learned function we obtain
is piecewise linear, making it easier to reason about. Finally, the justification of
the weights product measure also assumes there is no softmax layer.

4.4.1 Gradient norm
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Figure 4.2: Explicit gradient norm regularization

For the regularization coefficient of gradient norm, we test values λgn ∈
{0, 10−5, 10−4, 10−3}. Increasing λgn further leads to deterioration of training
error; models with a larger λgn did not reach the training loss threshold within a
fixed limit of 15000 epochs.

Computing GN is computationally expensive since it is necessary to compute
the gradient in the forward pass, so we then have to compute the Hessian during
backpropagation. For more efficient regularization, we use a stochastic variant
of the gradient norm: when training on a batch x1, . . . , xk, we approximate the
gradient norm as

ˆ︃GN(f) := 1
k

k∑︂
i=1
∥∇xf(xi)∥ (4.6)

whereas normally, we would compute GN by averaging either over the whole
training set or the whole test set.

Note that we regularize GN on the training set, and then measure it on the
test set. This is true for the other smoothness measures as well. Empirically, the
results show that the regularization effect carries over between the two sets.
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Figure 4.2 summarizes the results. Each boxplot contains 45 datapoints, one
per dataset. The results show that we were able to decrease the gradient norm
significantly. In Figure 4.2b, we plot the gradient norm divided by the value
achieved by the unregularized model trained on the same dataset (so this value is
1 for each of the unregularized models). We find that we reach a gradient norm
of roughly a third of the original value; this reduction allows us to conclude that
the gradient norm is not being implicitly regularized.

4.4.2 Function path length
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Figure 4.3: Explicit function path length regularization

As the two path length measures are the most expensive to compute, we
approximate them stochastically. Namely, we take the batch x1, . . . , xk and split
it into k

2 pairs, which we use as the endpoints for the segments. Also, whereas
normally we approximate the total variation by sampling 100 points along the
segment, here we only use 10 points. Formally, this gives us the approximation

ˆ︃PL0 := 2
k

k∑︂
i=1

ˆ︃TV [xi,xi+k](f, 10) (4.7)

where ˆ︃TV is used as defined in Equation (3.6).
Figure 4.3 summarizes the results of the experiment. For 7 of the 45 datasets,

the models did not reach the required loss threshold. For the plots to be compara-
ble between one another, we omit from each the datasets on which the regularized
models did not converge. The trend looks qualitatively similar even if we do not
omit the datasets.

At first glance, we get a fairly small reduction in unnormalized function path
length, to about 90%. However, this is because we are approaching a lower bound
for PL0.

For a model f ∗ which attains zero loss on the training set, we may use the
lower bound for total variation from Equation (1.15) to bound the (empirical)
value of PL0. Let us denote by y1, . . . , yn the labels corresponding to the training
set x1, . . . , xn. Then we may bound the empirical function path length from
Equation (3.5) by

PL0(f ∗) ≥ 1
n2

n∑︂
i=1

n∑︂
j=1
|yi − yj| (4.8)
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In this specific case, we utilize the fact that in MNIST-binary datasets, half
of the dataset has the label −1 and the other half has the label 1. So when
sampling pairs from the dataset, with a probability of 1

2 we get two samples with
the same label and with a probability of 1

2 we get different labels (in which case
|y1 − y2| = 2). This simplifies the bound to

PL0(f ∗) ≥ 1
20 + 1

22 = 1

Since 1 is the lowest achievable value of PL0 as opposed to 0 in other measures,
it makes sense to normalize the value of PL0 − 1 rather than the original, to see
how well we are matching the bound. When we normalize the value in this way,
we obtain Figure 4.3b, which shows that the reduction in function path length is
actually significant.

The reason why a few models appear to reach a function path length of less
than the lower bound of 1 is that we only compute PL0 approximately.

4.4.3 Gradient path length
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Figure 4.4: Explicit gradient path length regularization

When regularizing gradient path, we again compute it approximately, similar
to the function path length. In this case, however, there is no simple lower bound
on the value, and so we use the trivial bound PL1(f) ≥ 0 when normalizing.

The results in Figure 4.4b show that this measure is not easy to regularize,
with the value reaching about 90% of the original. In the figures, we again omit
5 models (out of 45) that did not converge within 25000 epochs.

4.4.4 Weights product
As the weights product is computed purely from the weights, regardless of training
data, there is no need for an approximation; it can be computed directly. Thus,
in these experiments, we simply add the term λwpWP (f) to the loss. We tried
the values λwp ∈ {0, 10−5, 3× 10−5}. The largest of these is already significantly
slower to train; on 10 of the 45 datasets, the training loss did not reach the
required threshold within 25000 epochs.

In Figure 4.5, we report the results of the experiment. Again, we omit from
each the 10 datasets on which models with λwp = 3× 10−5 did not converge.
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Figure 4.5: Explicit weights product regularization

We were not able to decrease the weights product by a large amount with this
method. With the larger λwp, the value is typically reduced to about 90%, as
shown in Figure 4.5b.

4.4.5 Interpretation

Measure Unreg. mean Reg. mean Lower bound Normalized

GN 0.93 0.29 0 0.31 ± 0.13
PL0 1.17 1.05 1 0.33 ± 0.27
PL1 2.62 2.35 0 0.89 ± 0.06
WP 12.84 11.57 0 0.90 ± 0.03

Table 4.4: Explicit regularization experiment results. For each measure, we report
the results for the highest regularization coefficient for which we were still able
to train the models to achieve 10−5 training loss.

Table 4.4 compares the results for different measures. Two of the four mea-
sures were easy to decrease: gradient norm and function path length. Note
that the first-order measures were reduced by explicit regularization, whereas
the second-order measures were not. Furthermore, results for measures of one
category match closely, suggesting that the distinction between first-order and
second-order measures is a meaningful one. Thus, we can likely rule out the
possibility that a first-order measure is being implicitly regularized. A second-
order measure might be implicitly regularized, possibly through a different but
correlated measure.

4.5 Discussion
The first experiment leveraged the observation that adding samples to the train-
ing set should make the learned function less smooth. We trained networks for
several dataset sizes and compared how well the data matches our expectation
by using the Kendall rank correlation coefficient. Though all measures display
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the expected trend to some extent, it is significantly stronger in second-order
measures.

The second experiment was based on the following claim: if a smoothness
measure is being regularized implicitly, then it should be difficult to reduce fur-
ther without adversely affecting the model’s performance. Thus, to show that a
measure is not being regularized implicitly, it is sufficient to be able find these
counterexample models. We searched for counterexamples by regularizing our
measures explicitly, adding a regularization term to the loss.

Using this method, we were able to find models which were much smoother
in terms of first-order measures (about 30% of the original value) but could not
find much smoother models for second-order measures (we reduced them to about
90%).

The results of the two experiments are consistent: they support the view that
it is not a first-order measure which is being regularized implicitly. The results
for second-order measures, on the other hand, are consistent with what we would
expect from an implicitly regularized measure. However, it would be premature
to state that one of the second-order measures is the implicit bias that we are
searching for.

Our results are consistent with Kubo et al. [2019], who show that a measure
similar to the gradient path length (which they dub gradient deflection) is kept
low by SGD. On the other hand, there is a tension between the failure of first-
order smoothness measures in our experiments and the results of Novak et al.
[2018]: the authors find that there is correlation between the gradient norm and
generalization, but our results suggest that gradient norm is not the implicitly
regularized measure. Perhaps the correlation comes from a confounder, another
measure that is implicitly regularized and also correlates with the gradient norm.
Alternatively, this tension might originate from the differences between the ex-
perimental setups.

Interestingly, LeJeune et al. [2019] explicitly regularize a measure of “rugos-
ity”, which is a second-order smoothness measure. They are able to reduce it
significantly, in contrast with the results of our experiments with second-order
measures. This might be due to the differences in the experimental setup—the
authors use CNNs and perform classification on CIFAR10—or due to the fact that
the original “ideal” rugosity measure is computed via several approximations.
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Conclusion
In this work, we empirically studied a hypothesis for explaining the favorable
generalization behavior of neural networks. These models do not overfit despite
having a very large capacity (Neyshabur et al. [2014], Zhang et al. [2017]): they
easily fit the training set perfectly, but unexpectedly, they still generalize well to
the test set.

A proposed general explanation is that training using stochastic gradient de-
scent introduces an implicit bias that favors functions of low complexity, and these
generalize well. We investigated whether this complexity measure could be the
smoothness of the learned function. First, we designed measures of smoothness
to be able to quantify it. These measures fall into two categories: first-order and
second-order measures. First-order measures are based on the learned function’s
first derivatives (the gradient), whereas second-order measures are based on the
second derivatives (the Hessian).

We proposed two kinds of experiments to determine whether a certain smooth-
ness measure is being implicitly regularized. We showed experimentally that
first-order measures are not being implicitly regularized, whereas a second-order
measure could be.

4.6 Future work
Further investigation of second-order smoothness measures is a promising direc-
tion for further research: one could extend the empirical investigation to more
complex architectures and datasets, e.g. ImageNet classification using convolu-
tional neural networks. This poses certain challenges, for instance, using CNNs
prevents one from using the weights product measure. Investigating classification
(as opposed to regression) also complicates the situation: the learned function is
now vector-valued, but perhaps more importantly, it is no longer possible to fit
the dataset perfectly. This is because the final softmax produces strictly positive
outputs, whereas the dataset has one-hot labels, meaning it requires all probabil-
ities but one to be zero. One could solve this by smoothing the labels or training
the models until they reach a certain training loss (as we do here). Furthermore,
if we study the learned function of a classifier after the final softmax, it is no
longer piecewise linear, making it more difficult to reason about.

The experiments performed here to determine whether SGD prefers smooth
functions could also be used to analyze other proposed complexity measures,
allowing even for comparison between different measures, similar to studies such
as Jiang et al. [2019].

Alternatively, one could analyze the situation theoretically with our results
in mind to determine whether a second-order smoothness measure is truly being
minimized.
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A. Attachments

A.1 Codebase
The electronic attachment contains the code. Alternatively, the code is also
available as a repository on GitHub at https://github.com/vvolhejn/neural_
network_smoothness. The repository is organized into the following directories:

• smooth: Python package for running experiments

• thesis_data: data from experiments that appear in the thesis, along with
configuration YAML files that can be used to reproduce the experiments.

• thesis_notebooks: simple Jupyter notebooks which calculate the reported
results from data in thesis_data
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