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Abstract: Over the last few years surveillance cameras have become ubiq-
uitous. With so many cameras, analyzing the output manually has become
very laborious and inefficient. In recent years, however, a lot of development
has been focused on automatic video processing using artificial intelligence.
There are many deep learning models for object detection offering basic low-
level analysis. This thesis builds upon these models and creates an efficient
video processing pipeline that serves as a base for further higher-level analy-
ses. We aim to develop sufficiently fast video processing pipeline that will be
able to process surveillance camera video streams in real-time while main-
taining low CPU utilization. We move as much of the pipeline as possible
to the GPU, with the data never leaving the GPU memory before the very
end of the pipeline, and therefore leaving most of the CPU computational
power for further data analysis. Our testing shows that our implementa-
tion achieves performance very close to real-time with 1080p video even on
common consumer hardware.
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Introduction
The accessibility of surveillance cameras has been steadily improving in re-
cent years. With cameras covering more and more public places, it is pos-
sible to use them in various smart city applications ranging from security
and traffic monitoring to marketing. Due to an increasing amount of utilized
cameras, manual analysis and processing has become very inefficient. But
with the increasing power of common hardware and rapid development in
artificial intelligence, much of the work can be done automatically without
human intervention.

In the last few years, artificial intelligence, and especially machine learn-
ing, has gone through rapid development and has become very popular in
many fields. Video processing in particular mainly benefits from the devel-
opment of new deep learning models for object detection in images together
with the ever-increasing computing power of widely accessible hardware.

The aforementioned deep learning models, however, only offer basic low-
level analysis. Such results are usually not very useful and require further
analysis and processing. Without such higher-level analysis, the results would
still require significant amount of manual labor to obtain useful information
which defeats the whole purpose of automated video analysis.

Goals

The goal of this thesis is to develop an efficient real-time video processing
pipeline using selected CNN-based object detector and thus provide base for
various analytical tools from the Videolytics project. We aim to create a suffi-
ciently flexible pipeline architecture to allow for potential later improvements
in any of the stages and simple extensibility.

Apart from the basic pipeline implementation we propose a few modifica-
tions that may speed up the pipeline, especially in the inference stage, while
not sacrificing too much quality. We then test the trade-off between quality
and performance of the whole process.

While the pipeline can serve as a base for many interesting analytical
tasks, those are beyond the focus of this thesis. Our main focus is on the
pipeline itself, using already existing object detector, and optimizing pre-
processing and post-processing phases and data transfers inside the pipeline.
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Thesis structure

Considering our pipeline is a part of a bigger project, we decided to begin
with a brief overview of the Videolytics project as a whole. We therefore
dedicate chapter 1 to description of the entire project as well as description
of the separate modules that will be part of this project.

Chapter 2 contains a quick overview of important concepts related to our
application. We mostly focus on object detection, which is a crucial part
of this pipeline, and also briefly skim through some information regarding
manipulation of image data and how they are stored.

Chapter 3 is an analysis of our solution. It mostly consists of discussion of
various design decisions and overall architecture of the pipeline. It does not
contain all the implementation details and is mostly intended as a high-level
overview of the entire solution rather than detailed documentation.

Finally, the chapter 4 contains various experiments and performance eval-
uation tests of our application and its parts. It tries to identify bottlenecks
of the pipeline and potential performance problems our pipeline might intro-
duce in the rest of the project.

The thesis also contains two appendices documenting the entire solution.
The first one, appendix A, is primarily made for users of the pipeline. It
contains a manual on how the application shall be used, what options does it
accept and what do they do. Appendix B, on the other hand, contains all the
internal implementation details and is primarily intended for programmers
who want to extend or modify this pipeline and for those who want to get
more familiar with its internals.
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1. Videolytics project
With recent development in deep learning and computer hardware, auto-
matic real-time video analysis has become both possible and accessible and
is currently a highly demanded functionality in various fields. Deep learning
models are, however, not suitable for every case. Obtaining enough labeled
training data can be potentially very complicated or even impossible. Hence
analytical modeling might still be a viable approach especially for complex
tasks where training data are not available or obtaining them would not be
cost-effective.

Our project should serve as a complex analytical tool that will combine
the aforementioned approaches using modules with various levels of abstrac-
tion. Since the project should be modular — which will lead to better flexi-
bility for future development and easier maintenance of the modules — the
architecture will be built around one central database (see fig. 1.1). All the
extracted features will be saved in this database and therefore available to
other modules for further analysis. We should then be able to gradually
progress from basic low-level features to complex statistical information by
using a series of modules with different levels of abstraction and feature com-
plexity as illustrated in fig. 1.2. Using the modular approach, we will be able
to optimize each module separately and control the aggregations in it and
thus use the most efficient approach for each part.

The system is primarily targeted at surveillance cameras and their use in
various smart city applications. It should be able to provide basic low-level
information as well complex statistics from the aggregated data in a user-
friendly way through a simple web interface (available at videolytics.ms.
mff.cuni.cz). This thesis will focus on the very first module of the analytical
pipeline that uses deep learning model for real-time object detection in video
stream and thus provides a base for all the analytical modules in the project.
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Figure 1.1: Schema of the Videolytics project architecture.

Figure 1.2: We extract basic low-level features from the video stream and
further aggregate them into ones with a higher level of abstraction. Basic de-
tections from the left image are being aggregated into trajectories of moving
objects in the right image.
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2. Background
In chapter 3 we will be discussing design decisions and problems our appli-
cation has to deal with. The implementation contains various concepts and
technologies that the reader might not be familiar with. In order to allow
reader to easily understand our implementation, this chapter will offer a basic
overview of these concepts and technologies. Those who are already familiar
with presented topics may safely skip this chapter.

2.1 Storing image data
A big part of our application is concerned with manipulation of image data.
Hence we would like to remind the reader of a few basic concepts, related to
representation of image data, that might be relevant for our implementation.
We do not intend to offer a detailed description of these concepts but rather
basic principles that should be sufficient to make our implementation easily
understandable.

2.1.1 Color model
This is a concept most people will likely be familiar with to some extent.
A color model is an abstract mathematical model that describes how colors
can be represented (usually using tuples of numbers). Such models often use
three or four components to describe a given color. The color models relevant
for our implementation are called RGB an YUV.

RGB

RGB is an additive color model that uses three primary colors - red, green
and blue (hence its name) - that are added together to reproduce a variety of
different colors. Since it is an additive model, it is used mainly to represent
and display images in electronic systems that emit light (such as monitors,
TVs or projectors).

YUV

This color model is usually used to encode videos or images for storage or
transport. Contrary to RGB, it does not use mixing of primary colors to
represent a given color but instead represents each color as a combination
of one luma (Y) component and two chrominance (U and V) components.
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Figure 2.1: UV plane with a fixed Y value of 0, 0.5 and 1 respectively. U
goes from -0.5 on the left to +0.5 on the right and V from -0.5 at the bottom
to +0.5 at the top.

While this might sound like a very arbitrary way to divide colors, such model
has some very useful properties.

Since human vision is more sensitive to luma than chrominance, this
model allows us to use a technique called chroma subsampling, which reduces
size of the encoded image by only saving chrominance sample for a group of
pixels rather than each individual pixel. This allows us to reduce size if the
image data while retaining images that are perceived as higher quality ones
when compared to straightforward resolution reduction.

The aforementioned property is not exclusive to YUV. But historically,
YUV was created for its other advantage. During the transition from black
and white to color TV, it was possible to add color using a new carrier for
chrominance channels without breaking compatibility with black and white
TVs. Those would still only use the luma channel and therefore display the
grayscale version of the encoded video (luma with chrominance equal to 0
corresponds to shades of gray as seen in fig. 2.1).

2.1.2 Color space

Color model on its own is more or less arbitrary system since it has no con-
nection to a universally known system of color interpretation. We therefore
need a reference set of colors that we can map our model to. This is why we
use so called absolute color spaces (e. g. CIEXYZ) that have colors defined
colorimetrically without reference to external factors.

When we add a mapping between our model and a reference color space
we get a gamut, which is a subset of colors from the reference color space we
are able to represent with our model. This itself defines a color space for the
given color model.
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2.1.3 Pixel format
We already know what information we have to store in order to represent
certain colors but there are multiple ways to store this information in memory.
Without exactly specifying how such data should be interpreted, we will not
be able to reproduce the encoded colors. There are three frequently used
types of pixel formats used to store image data — planar, packed and a
combination of these called semi-planar. Each of them has certain advantages
and disadvantages but in many cases they are interchangeable.

Packed

This format only uses one plane for all the channels. Components of each
pixel are ”packed” together (stored right next to each other) in memory
(see fig. 2.2). This is a significant disadvantage when any of the channels
is subsampled because in such case odd rows will be different from even
ones and odd and even pixels in a single row might have different format.
However, this format may be useful when working with numeric libraries
(such as NumPy) since it can be easily stored in a generic n-dimensional
array (this is the layout usually used to store such arrays). This type of
format (8-bit BGR) is used by the detector in our application.

Planar

Sometimes it might make sense to separate different channels into separate
planes. Pixel formats using such approach are called planar. Each channel
has its own plane where samples from adjacent pixels are stored right next
to each other (see fig. 2.2). One of the biggest advantages of planar formats
is that they can be easily used in cases where chroma subsampling has been
applied. Mainly so because the chroma information is separated and leaving
out some of its samples does not deform the entire plane as in packed formats.

Semi-planar

This type is well suited for images where chroma subsampling has been ap-
plied, maybe even more so than the aforementioned planar formats. As an
example, we may take an image with 4:2:0 chroma subsampling (shown in
fig. 2.2). In planar format, luma and chroma planes would have different
width and it would be complicated to store them in a single array. Mean-
while, in semi-planar format, the combined chroma plane would be just as
wide as the luma plane and the entire image could be therefore saved easily
in a single two-dimensional array.
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2.2 Object detection
Object detection is the most crucial stage of our pipeline as it has great
impact on the results of our application, both in terms of performance and
precision. Hence we pay close attention to the available solutions and consider
their suitability for our task. Despite the importance of object detection for
our solution we only offer an overview of different techniques. We focus on
their advantages and disadvantages and do not discuss them in much detail
as that is beyond the scope of this thesis.

Our pipeline has rather high requirements with regard to performance
and not many detectors are capable of delivering such performance, which
restricts our options to only a few quite recent detectors. Even though there is
no strict definition of what is considered real-time, we may consider 25 frames
per second to be enough for the purpose of surveillance video analysis.

2.2.1 Two-stage detectors
Originally, most detectors used two-stage approach. The first stage for de-
tection of objects inside the image and the second one for classification of
these predicted objects.

The simplest approach to the first stage is to take an object classifier and
evaluate it at various locations and scales across the image. As an example
of such approach we may consider DPM [1], which uses a sliding window
technique, evaluating the classifier at evenly spaced locations throughout the
image.

Further development introduced a more sophisticated approach to the
first stage. Instead of simple classification of numerous parts of the input,
R-CNN [2] (and its subsequent improved modifications Fast R-CNN [3] and
Faster R-CNN [4]) introduced region proposal methods that significantly
improved performance by reducing the number of regions that require clas-
sification.

Despite all the improvements, especially in Faster R-CNN, two-stage de-
tectors still tend to fall behind in performance and usually fail to offer real-
time performance. That is a significant disadvantage in our case since our
performance requirements are rather high.

2.2.2 One-stage detectors
In recent years, a new type of detector architecture has been developed.
It combines both object detection and classification into one stage, which
usually results in overall faster detection system.
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While they have the potential to offer faster and simpler solution, the
highest accuracy is currently still achieved by object detectors based on two-
stage approach popularized by R-CNN. This might, however, change in the
future as the trade-off between inference speed and precision is slowly im-
proving in favor of one-stage approach.

For our needs we focus on two most popular one-stage detector architec-
tures and compare their suitability for use in our pipeline.

You Only Look Once

Redmon et al. [5] introduced a completely different approach to object de-
tection by joining detection and classification into a single stage. This new
approach brings significant performance improvements as well as much sim-
pler training since the detector can be trained end-to-end.

Originally, YOLO claimed to achieve 45 frames per second on Titan X
GPU. This number was, however, further improved to 56 FPS with the intro-
duction of YOLOv2 [6]. To achieve such results, it did sacrifice some precision
but still managed to outperform other real-time systems [7][8] available at
the time.

Both versions of YOLO mentioned so far achieve great inference speed
but they do sacrifice on quality. This trade-off was slightly balanced with
the introduction of yet another version, YOLOv3 [9], which introduced some
changes to improve precision. While this newest version does give up a bit
of speed, it can still be considered fast enough for real-time applications.

Single Shot MultiBox Detector

Another system offering truly real-time performance was presented by Liu et
al. [10] only a few months after YOLO. It managed to outperform YOLO
both in terms of precision and inference speed. And while both are based on
the same principle, there are some important differences.

Contrary to YOLO, SSD’s detection system is not grid-based. This might
result in greater ability to detect objects in close proximity when compared
to YOLO. This ability can be very useful for surveillance cameras as it may
yield better detections of people in crowd for example.

Despite the updated YOLOv3 claiming to outperform SSD both in terms
of inference speed and precision, we will settle with SSD as there happens to
be an SSD version by Dobranský [11] that is modified and trained specifically
for use in video surveillance. This makes it a better choice than YOLO since
creating a detector optimized for video surveillance from scratch would be
far beyond the scope of this thesis.
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3. Solution analysis
With the required background, we can move to the solution itself. Before
getting into the details of the implementation, we have to decide what the
solution should look like. This chapter will discuss various design decisions
and problems we might encounter during the implementation as well as their
solutions. We will not include any implementation details as those will be
thoroughly discussed later in appendix B.

3.1 Hardware limitations
Object detection is not a simple task and despite all the performance im-
provements we have seen in recent years, it still pushes hardware to its lim-
its. Only a few years back even the common consumer hardware has gotten
powerful enough to allow us to get even close to what might be considered
real-time object detection. But, as seen in fig. 3.1, we have slowly reached
a point where single core performance of modern CPUs is not getting much
better over time. What currently brings the biggest possible performance
improvements are increasing core counts. Not only do we have CPUs with
tens of physical cores but even GPUs with hundreds or even thousands of
them are now common. To keep up with this trend and to utilize as much
computing power offered by the current hardware as possible, we have to
adapt our applications accordingly, we have to parallelize. And thanks to
the nature of our task, we have various opportunities to do so.

Our application revolves around object detection, which is based on deep
learning, and image processing where lots of calculations independent of each
other take place. This is exactly where GPUs excel and can significantly
speed up the process. But since these cases are rather low-level and specific
to particular module, they will be discussed more thoroughly in subsequent
sections where we take a closer look on each module separately.

Even thought certain modules may benefit from the use of GPU, the per-
formance of the entire application can still be significantly improved. Apart
from the improvements that rely on the independence of separate pixels, we
can introduce parallelism relying on the independence of entire frames that
allows us to process more of them simultaneously. One approach to such
problem that fits our solution well is pipelining. It allows us to separate
different processing stages from each other and execute them simultaneously
on different data.

These requirements partly limit our choice of programming language.

13



Figure 3.1: Processor data collected from SPECint benchmark with sin-
gle threaded performance improvements slowing down and core counts
rising in recent years. Source: https://www.karlrupp.net/2018/02/
42-years-of-microprocessor-trend-data/

Originally, we wanted to keep things simple and settle with Python since it is
a comfortable language that would allow us to focus on functionality and the
SSD we are using is written in it. But Python alone, since it is an interpreted
language, proved to be inappropriate due to its poor performance. This can
be somewhat mitigated as Python is written in C and it is rather simple to
write extension code usable from Python in C or C++ to speed up certain
computationally intensive parts of the application. But even then Python
would not be a good choice because of its poor parallelization support. We
would very likely end up writing almost the entire solution in C or C++
and only ”glue” fairly high-level modules together with Python. To avoid
the need for developing any future modules as extensions for Python, which
requires certain amount of boiler plate code, we decided to keep the entire
solution in C++ and do the exact opposite. Instead of extending Python and
using C++ code from it, we embed the interpreter and use it inside our C++
code. This means that only one module (the one embedding the interpreter)
is required to cross the border between languages and other modules, even
the future ones, will only be written in one language. Furthermore, C++ is
the language of choice for various NVIDIA APIs that we might need in the
future to accelerate certain parts of the application using GPU, which is yet
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another point in favor of this language.

3.2 Pipeline architecture
As decided in the preceding section, we want to approach our task as a
pipeline that processes image data in a series of independent stages. There
are, however, a few limitations we have to keep in mind. We want our
pipeline to be as generic as possible for future development but we want it to
be effective enough to not bottleneck our solution or waste an unnecessary
amount of system resources just to preserve its maximum genericity. We have
therefore considered two different approaches to architecture of the pipeline
itself when looking for a compromise between these two.

3.2.1 Non-generic approach
Originally, we tried a solution that was specifically tailored to the function-
ality required at that moment. Such solution lacked in flexibility and was
quite hard to modify. In case of additional required functionality in the fu-
ture, we would have to rewrite significant amount of the already existing code
to again create a fixed architecture that is now able to fit all the required
modules. Moreover, such changes might introduce new unnecessary bugs in
the existing code and would lead to an increasingly complex solution that is
harder to manage with every added functionality.

Another disadvantage of such approach is rather unclear structure of the
pipeline. While offering a great freedom when it comes to possibilities of
interaction between modules, it does not encourage a maintainable solution
that makes different stages truly independent. Modules may be connected
with each other in many different and often unexpected ways, which makes
them harder to maintain as their modification may significantly influence
other modules as well.

In our case, the entire solution was only intended to add required input
and output capabilities to the detector it is based on. The SSD module was
a central part of the pipeline that constructed and managed all the other
modules as illustrated in fig. 3.2. During its own construction, all remaining
modules were also constructed and initialized with all the necessary data
passed between them. In the future as soon as somebody would want to
extend the pipeline by, for example, adding a new preprocessing module, the
shortcomings would become apparent. Such change would only be possible
by modifying either input or detector stage as one of those would have to
either construct and manage a new stage or take care of the preprocessing
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Database Output

Embedded SSD

Video Input

Figure 3.2: Schema of the original architecture with green arrows showing
flow of data and black arrows signifying ownership.

Pipeline

AAAAFrame

AAAADetections

AAAAFrame

Video decoding Colorspace
conversion Inference Database export

Figure 3.3: Schema of the generic version of the architecture. One object
owns and manages all the modules and facilitates exchange of data between
them.

itself. This would involve modification of at least one existing module and
would only further complicate any future modifications.

3.2.2 Generic approach
Considering all the disadvantages of the initial solution, we decided to move
towards a much more generic architecture. Instead of creating a fixed hierar-
chy of modules that requires significant modifications even for small changes
in functionality, we now use a single generic object that owns and manages a
series of single-purpose modules and facilitates the exchange of data between
them as seen in fig. 3.3.

Every module that we want to include in our pipeline has to fulfil certain
requirements. These have been summed up in the form of an abstract class
that all the modules have to inherit from. This class represents an interface
of a module. Apart from a few mandatory methods that the module has to
override, it also contains two queues, one for input and the other for output,
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that both hold a certain type of data. The only exceptions to this rule are
the first and the last module in the pipeline that have no input and output
respectively. The managing pipeline object automatically makes sure that
the input and output of neighboring modules match and binds them together
so that any subsequent exchange of data can be done through these queues.
This approach makes it possible to create a module without any information
about the rest of the pipeline other than the required input and output types
of the module itself.

This results in an easier way to include new functionality through simple
addition of new modules and encourages creation of simple single-purpose
modules that only have one standard major way of communication with each
other, which subsequently leads to more maintainable modules that can be
modified without influencing other modules.

While this approach mitigates some of the biggest issues of the original
architecture, it does come with its own drawbacks. Just like the improve-
ments we have mentioned so far, these mostly stem from the strict definition
of the data flowing through the pipeline and very limited options when it
comes to communication between the modules due to lack of information
about other modules in the pipeline. But despite being limiting to some
extent, we believe that the generic pipeline architecture solves more severe
and important problems than it introduces.

The biggest issue of our new architecture is more complicated and to a
certain degree ineffective initialization of modules. As there are fairly limited
possibilities of communication between modules, we cannot rely on direct
initialization of the modules. We cannot directly pass required information
from module to module as we have no information about other modules in
the pipeline and therefore have to include the required information in the
fixed datatype that we can pass through the queues. This might lead to a
memory-wise ineffective datatype that has to include data only required once
in the beginning and therefore takes up unnecessary amount of space most of
the time. However, this issue can be somewhat solved by dynamic allocation
of the initialization information and inclusion of the corresponding pointer
instead of the entire structure in the datatype. A single pointer does not
take up a lot of space and since the information is only allocated once, the
dynamic allocation will not be a significant performance hit.

3.3 Modules
With the overall pipeline architecture out of the way, lets focus on each
module separately. For now, only basic functionality is required and we have
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therefore only implemented four modules so far. But thanks to the generic
architecture of the pipeline, we can easily improve the functionality by adding
new modules in the future.

As described in section 3.2.2, all the modules in our pipeline share the
same base and are based on roughly the same principle that is enforced by
our pipeline design and the restrictions that come with it. Even most future
modules will very likely work in a similar manner. They will process data
from the input queue and place results in the output queue until they are
stopped and their input queue is empty.

3.3.1 Video input
The very first stage of our pipeline involves everything from reading a file
or receiving an online stream to the decoding of frames. We have decided
not to separate these tasks into two stages as they are very closely related
and they should not be the bottleneck of our solution anyway. Due to the
sheer amount of different codecs, formats and network protocols and their
complexity, this module relies quite heavily on third party libraries (namely
those from FFmpeg project). But despite using lot of functionality from
these libraries, a lot of boiler plate code is still required and we have there-
fore decided to only support a handful of them. Thanks to our modular
architecture, however, the module can be quite easily modified to support
more of them without touching the rest of the pipeline.

One of the reasons this stage would not benefit from splitting is that
we already offload part of the workload to the GPU. More specifically to a
special dedicated hardware present on all modern NVIDIA GPUs that offers
support for decoding of various mainstream video codecs. The resource usage
might be negligible when processing a single input stream but with multiple
streams at once, it might already pose a problem. This is where the dedicated
hardware, called NVDEC, might offer noticeable improvements. As shown in
fig. 3.4, its performance should be high enough not to bottleneck our solution
as we would get to the limit of other parts much earlier. We also want to
leave as much CPU resources as possible for other parts of the Videolytics
project and we should therefore use every possibility to move part of the
processing away from the CPU.

Currently, we only support decoding with NVDEC and only offer support
for a subset of the codecs that NVDEC supports (namely H264 and HEVC).
It is possible to add more codecs in the future but it requires mostly writing
boiler plate code and we have decided not to do that for now and focus
on more interesting parts. Another feature our implementation currently
lacks is software decoding that would serve mostly as a fallback solution
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Figure 3.4: Performance of dedicated video decoding hardware on mod-
ern NVIDIA GPUs for 1920x1080 video. Source: developer.nvidia.com/
nvidia-video-codec-sdk

when dedicated hardware either is not available or does not support required
codec. That, however, should be something that the FFmpeg libraries should
be capable of almost on their own and can therefore be implemented in the
future without big modifications.

3.3.2 Color model conversion
Before the inference itself, data in our pipeline have to pass one more mod-
ule. The video input and the detector, at least in our case, use different color
models and are therefore not compatible with each other. Our detector uses
RGB model while the decoder outputs frames in YUV. This module there-
fore serves as a compatibility layer between the input and detector stages.
Originally, in the solution that used non-generic approach, the color model
conversion was a part of the video input module. But to keep up with the
philosophy of simple single-purpose modules that our pipeline design indi-
rectly encourages, we have decided to make it a standalone module. This
way it would be possible to change easily modify it, in case we need different
conversion, without touching the input module.

As shown in section 2.1, color model conversion is a very simple process
and thanks to its nature can be easily done in parallel. It is a simple case of
matrix multiplication and can be done for each pixel individually. That is a
task well suited for a GPU, which can handle such calculations in parallel.
That allows us to once again leave more CPU resources for other tasks and
even speed up the conversion at the same time.

Because of the fairly limited functionality of our input stage that currently
only supports decoding on the GPU, we have decided to only implement color
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model conversions for the pixel formats that might be relevant to us. We
therefore only implement conversions from two planar (NV12 and P016) and
two semi-planar formats (YUV444 and YUV444-16bit) used by the decoder
to a single packed format (BGR24) used by the detector.

3.3.3 Object detection
After the necessary conversion, we can finally pass the data to the detector.
Like many other machine learning project, the detector we use is implemented
in Python. Since our detector of choice is already implemented, the only
thing left for us to solve is passing data between C++ and Python. That is,
however, not a big problem since Python is implemented in C and offers a
very simple interoperability with C/C++.

Our case, however, is a bit specific. One of the first things that our SSD
does when it receives data is moving them to the GPU where the compu-
tationally intensive part takes place. But as our data already reside in the
GPU memory after the color space conversion, it would be a waste of time
and resources to move them back and forth between the CPU and the GPU
because such transfers are usually quite time consuming. We therefore need
to find a way to keep the data in the GPU memory all the time to avoid
the unnecessary transfers. It is sadly not possible to pass a pointer to data
in GPU memory directly to the SSD as it is not supported by the machine
learning framework our detector uses. With a little modification, however,
we are able to pre-allocate an empty storage that is used by the framework to
store data in the GPU memory and get its address. This means that we are
able to fill this pre-allocated storage with the required data and thus avoid
moving them away from the GPU.

3.3.4 Data export
All the processing is now finished but to be able to utilize the obtained
information in a useful manner, we have to somehow pass them to other parts
of the project for further analysis. As described in chapter 1, the Videolytics
project revolves around one central database which is used to share all the
information between modules. Since this is not performance-wise a very
effective method, we should pay close attention to the performance of the
export itself in order to avoid any additional significant performance decrease
(especially with regard to latency).

Since we have no way to influence the communication between our ma-
chine and the database server, which depends mostly on quality of the con-
nection between them, we have to focus on minimizing the need to send data
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back and forth between our machine and the database and efficient processing
on both ends.

To achieve the former — minimal need of communication — we shall
eliminate any dependencies between data already inserted in the database
and those that we are currently trying to insert. This means batching data
(in our case frame data and detection data) together into bigger queries
that take care of everything at once instead of sending multiple queries and
waiting for their results in-between (and hence relying on the connection
performance).

Due to the nature of our application, however, it is required to keep the
latency at reasonable levels. This means we cannot batch data indefinitely
since that would create a significant delay in the availability of data for other
subsequent modules of the project (especially the web interface that shall be
able to react to user actions with a reasonably low delay).

The reasonable compromise seems to be sending data for each batch of
frames, processed by the SSD, separately. To further increase efficiency we
can execute the required queries asynchronously and start preparing another
batch of frames for export while waiting for the result of previous query
(which is perfectly possible since our next query does not depend in any way
on the result of the previous one).
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4. Experiments and
performance evaluation
Performance is a crucial aspect of our solution and we have therefore decided
to carry out a series of experiments. They are primarily focused on existing
implementation and its current performance but a few additional experi-
ments, concerned with potential future modifications and their improvement
potential, are also included.

Testing environment

The included results would have little to no meaning without the knowledge
of our testing environment. The exact testing procedures for various tests
will be discussed in the respective sections but unless stated otherwise, all
the testing was done on the following hardware:

• AMD Ryzen 3600X CPU

• NVIDIA GeForce RTX 2070 Super GPU

• 32GB DDR4 RAM

4.1 Performance of separate modules
The ability to process video in real-time is essential for our application. Hence
we have decided to test the performance of various parts of the pipeline
separately to assess where the potential bottlenecks are and what causes
them. This will allow us to focus on the most performance critical parts
where future development may yield the most significant improvements.

To remain as accurate as possible, most tests were carried out using the
same generic architecture as our application, which mostly allowed us to keep
modules completely identical to the original application.

4.1.1 Queue throughput
Since the tests utilize the generic architecture from our solution, we first
need to make sure that the architecture itself wouldn’t be limiting in any
way. Our first test is therefore focused on the queues used for communication
between modules. Even though we do not expect them to be a bottleneck
of our solution, we want to make sure that especially the locking required to
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Figure 4.1: Throughput of queues in the pipeline. Data measured for struc-
tures of size 4, 16, 64, 256, 1024 and 4096 bytes respectively.

make them thread safe does not have severe performance implications. We
therefore measure their throughput with different capacities and different
sizes of the datatype used by them. To avoid possible inconsistencies caused
by varying CPU utilization during testing each test is run ten times and an
average is taken.

As illustrated in fig. 4.1, our expectations are correct. Even for queues
with capacity as low as 5 the amount of items passed per second almost
reaches a million, which is more than enough for our application. Even
though increasing queue capacity increases throughput (especially for smaller
objects), large queues barely have any benefits for our application (since
we will never be even close to utilizing such throughput) and might even
introduce problems such as high memory usage or increased latency. We will
therefore settle with smaller queues that should be better suited for our task.

4.1.2 Stream demultiplexing and video decoding
According to our expectations, the first stage of our pipeline should be lim-
ited by the video decoding rather than stream demultiplexing. We therefore
expect this stage to achieve performance figures roughly similar to those of
the dedicated GPU decoding hardware shown in fig. 3.4.

In order to push this stage to its limit, we use an offline video source that

24



10 20 30 40 50
Test number

554

556

558

560

562

Fr
am

es
 p

er
 se

co
nd

Figure 4.2: Performance of the video input module. Initial decline is caused
by thermal constraints of the decoding hardware.

will not be influenced by network quality and can be processed faster than
in real time (as opposed to an online stream that our application is mainly
intended for). Our test uses an MP4 container with H264 encoded 1080p
video stored locally on a solid state drive and we should therefore only be
bottlenecked by the performance of the input stage itself.

We use a pipeline with two stages - the video input module and a module
that counts and deallocates frames. During our testing, the queue between
both modules never contained more than one frame (out of five possible) at
a time and we can therefore safely conclude that the counting module is at
least as fast as the input one and hence did not slow down the entire testing
pipeline and produced accurate results.

We ran 50 identical tests to see how the decoding hardware handles sus-
tained load. As illustrated in fig. 4.2, the results meet our expectations as
they are very similar to the NVDEC performance. After the initial decline,
which is presumably caused by thermal constraints of the decoding hard-
ware, the performance leveled off slightly above 550 FPS. Such performance
is sufficient even for multiple concurrent streams and will not bottleneck our
application.

4.1.3 Color model conversion
The color model conversion is a rather simple task that can be easily paral-
lelized and since we execute it on the GPU, we expect the performance to be
quite high. We have decided to measure performance for each pixel format
we currently support in our application. Each test is executed fifty times to
make sure there is no significant performance decline over time.

25



10 20 30 40 50
Test number

1600

1800

2000

2200

2400

Fr
am

es
 p

er
 se

co
nd

NV12
P016
YUV444 (8-bit)
YUV444 (16-bit)

Figure 4.3: Color model conversion performance for various pixel formats
over fifty consecutive tests.

According to fig. 4.3, there seems to be no performance decline over time
and as expected, the only performance difference between different pixel for-
mats seems to be caused by the total amount of data we have to process
(16-bit vs 8-bit color and 4:2:0 vs 4:4:4 chroma subsampling). Even for the
most demanding format (16-bit color with no chroma subsampling) the per-
formance is high enough to handle even multiple streams.

4.1.4 Object detection
Another GPU accelerated module to be tested is our single shot detector. It
is by far the most computationally intensive module in our pipeline. It is
very likely to be the bottleneck of our application and a part that will require
more focus in the future.

During the testing, we use a pipeline that consists of three stages - the first
one allocates frames on the GPU, the second one runs the inference and the
third one counts frames, deallocates them and measures time. For this test,
we do not require our frames to be initialized with any meaningful data as
the sole purpose of this test is to measure inference speed and not precision.
Both testing modules by far exceed the performance of the inference one
and thus will not bottleneck the testing pipeline and will measure accurate
results.

Each test used a different batch size for the inference module and mea-
sured an average inference speed over 1000 frames. As seen in fig. 4.4, larger
batches offer quite noticeable speed improvements. We are, however, lim-
ited by the memory consumption since bigger batches consume a significant
amount of GPU memory (the biggest batch we were able to fit in our GPU
memory had 16 frames).

Another thing to keep in mind is that this test only used the GPU for
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Figure 4.4: SSD performance for different batch sizes. Bigger batches offer
noticeably higher average inference speed.

the inference module. In reality, the GPU will also be used for other stages
of the pipeline such as color conversions and video decoding. Even tough
the other modules are much less computationally intensive and require less
memory, they might still affect the overall performance.

4.1.5 Export to database
As mentioned in section 3.3.4, performance of this section might be to some
extent influenced by the quality of connection between the machine our
pipeline is running on and the database. In our case this influence is re-
duced by the fact that we are running both the pipeline and the database on
the same machine (some communication overhead is still present).

Since we want to isolate this module for the testing and keep the test
results reproducible, we have decided to create the testing data manually
with strictly specified properties. We test the performance with different
combinations of parameters — namely different batch sizes, and number of
detections in a single frame — to see how it depends on various aspects
of the export. We have also decided to include performance results of the
export module when crop exporting is turned on (although we expect this
feature to be mostly used for further development and debugging and not for
production use — for both performance and security reasons).

As seen in fig. 4.5, the performance varies greatly for different parameters.
While for the low detection counts batch size makes a big difference, with
the increasing complexity of the exported data (and especially if crops are
involved) its importance declines quite rapidly. This is likely caused by the
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Figure 4.5: Database export performance for different combinations of batch
size and number of detections per frame. Columns suffixed with C have crop
export turned on.

fact that with more complex data majority of time is spent in the data
preparation part and the communication overhead (presumably since we are
running everything on the same machine) becomes negligible. With crop
exporting turned off this preparation mostly means converting all the results
from Python objects to data types suitable for communication with database.
When the crop export is turned on the performance difference becomes very
profound. Mainly so because our GPU to CPU memory transfers are not very
well optimized, which is definitely something future development should be
focused on.

Despite all these deficiencies, we are still able to achieve satisfactory ex-
port performance with the lowest measured export speed reaching roughly
99 FPS, which is currently enough for our needs.

4.2 Overall pipeline performance
While the performance of separate modules offers a good hint about where
the bottlenecks should be expected, we would still like to test the pipeline as
a whole and make sure our assumptions about its bottlenecks are correct.

To eliminate any network influence and ensure availability of data for
processing, we tested the pipeline on an locally stored 1080p video. As seen
in fig. 4.6, each frame spends a majority of time in the pipeline in the SSD
module. This comes as no surprise since even during the isolated testing the
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Figure 4.7: Initialization timeline from application start until successful ex-
port of the first batch.

SSD was by far the slowest part of the pipeline. This clearly confirms that
the inference stage is in fact the bottleneck of our entire pipeline.

However, measured results are still not satisfactory because when tested
separately, the inference module is able to keep the GPU utilization around
98% most of the time while with the complete pipeline GPU utilization hovers
between 60 and 85%. This means there should be a potential room for
improvement since the SSD on its own is able to fully saturate the GPU,
which is currently not happening.

Upon further examination of the profiling information of CUDA code, we
were unable to identify a single problematic part that would be causing our
rather low GPU utilization. The suboptimal performance seems to be mostly
caused by unoptimized manipulation with memory in the entire application
and dependencies between data in different stages. Due to these dependen-
cies, we have to wait for synchronization before being able to process the
given data further.

Another thing to keep in mind apart from the average performance is the
start-up latency. While it might not be very important for the processing
itself, it greatly affects the user experience because the initial delay can be
quite significant. We have measured the initialization in our simulated en-
vironment instead of offline video because connecting to online stream and
extracting all the required information from it is not an insignificant part of
the initialization time. As shown in fig. 4.7, despite our efforts to minimize
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the latency the initialization still introduces quite a significant delay.
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Conclusion
Our thesis was focused on efficient real-time object detection in video stream.
We have briefly reviewed possible approaches to object detection using deep
neural networks and their suitability for the task. We have then discussed
potential obstacles we might encounter when implementing the module and
how they can be resolved and to assess the viability of proposed solutions,
we have implemented the module.

• In chapter 2, we have reviewed different approaches to object detection
and discussed their advantages and disadvantages with regard to our
solution.

• We proposed a generic and easily extensible solution of the detection
pipeline and analysed its components required for basic functionality
in chapter 3.

• By implementing the proposed solution and testing its functionality in
a simulated environment together with other parts of the Videolytics
project, we have demonstrated the viability of the solution and the
entire project.

• Through thorough performance evaluation in chapter 4, we have tried
to identify bottlenecks and limitations of the implemented module and
propose parts on which development shall be focused in the future.

Future work

During the implementation, we have encountered several opportunities that
might be viable for further improvement or research:

• Because of current rapid development in deep learning and its applica-
tions the state-of-the-art object detection models are being improved
very quickly. Since the object detection is currently the most demand-
ing part of the solution and its bottleneck, these improved models might
yield significant improvements in the overall performance and usability
of the solution.

• It might be possible to exploit the static nature of surveillance cameras
to preprocess images in such a way that inference will be able to achieve
similar precision with less data, which would alleviate the bottleneck
created by the inference module while not sacrificing significantly on
quality.
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• There are countless possibilities for improvement in the video input
stage. In its current state, the application only supports a small subset
of existing codecs and formats. For example fall-back to CPU decoding
might be quite important since only a handful of codecs is supported
by GPUs.

• It is desirable to process multiple streams at once. The practicality of
the simplest solution, where each stream has its own process, is very
limited by the memory consumption of the deep learning model. It
might be therefore necessary to introduce support for multiple streams
in a single process that would share the model (only possible if the
videos have identical resolution).
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A. User documentation
Our object detection pipeline was originally developed to be part of the
Videolytics project but can be easily utilized elsewhere since it is a standalone
application. This appendix shall therefore serve as a guide for anyone who
wants to use this application as it is while not bothering himself with the
internal details of it.

A.1 Installation
There are currently two ways to install our application. You can either use
Docker, which is recommended, or install natively. For now, the application
only works on Linux and due to its performance requirements, we discourage
using virtualization to run it on another operating system.

A.1.1 Docker
We strongly recommend using this option as it takes care of (almost) all the
application’s dependencies and properly sets up the environment. Together
with our code, we provide a dockerfile that can be used to automatically
create a docker image with our application and all the required dependen-
cies. We were not able to ship Video Codec SDK files in the attachment and
it cannot be downloaded automatically since the download page requires
login. After downloading the SDK make sure you place the entire down-
loaded folder in the top level directory of our project (it should be called
Video Codec SDK ).

To create the image simply execute:

docker build -f LivED/docker/lived -t lived . (CUDA 10.2)
docker build -f LivED/docker/lived_cu101 -t lived . (CUDA 10.1)
docker build -f LivED/docker/lived_cu91 -t lived . (CUDA 9.2)

This should leave you with a docker image called lived that is ready for
use. Be aware that the above mentioned command must be run from the
top-level directory of the project (i. e. the one containing LivED and SSD
folders) and that the CUDA version should match that supported by your
GPU driver (you can check the supported version using nvidia-smi).

In case you would also like to build performance tests, add the appropriate
build argument:
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docker build -f LivED/docker/lived
-t lived
--build-arg COMPILE_TESTS=1
.

A.1.2 Native
You might want to install the application natively instead of using Docker.
In that case you have to get all the dependencies yourself and properly set up
the environment. Please note that we have only tested this on Ubuntu 18.04
and the required packages might not be available on your distribution. In
that case you would have to build the dependency from source. Also be aware
that at the build time, the header files are usually required and they might
come in a separate package. With each dependency we provide the version
we have tested our application with but newer version should generally work
just as well.

Dependencies

To build the solution, you will need:

• g++ [7.4.0] (or another C++ compiler)

• CMake [3.10.2]

• Python 3 [3.6] (Header files required.)

• libavcodec, libavformat, libswscale [3.4] (Part of the FFmpeg
project. Header files required.)

• libpq [10.12] (Shipped with PostgreSQL. Header files required.)

• NVIDIA Video Codec SDK (Has to be downloaded from the official site:
https://developer.nvidia.com/nvidia-video-codec-sdk)

To run the application, you will need:

• Python 3 [3.6], pip [9.0.1]

• libavformat [3.4]

• libpq [10.12]

• libsm6 [1.2.2]
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Building

After getting all the required dependencies, you are ready to build the solu-
tion. To make this step easier, we use CMake. We recommend an out-of-tree
build in a separate directory to keep everything organized. First, prepare the
build directory:

cd LivED
mkdir build
cd build

Now build the solution using:

cmake ..
make

Optionally, you can specify what type of build you want (Release or Debug)
and whether you want to also compile performance tests. We also recommend
using more threads to execute make (using -j option, ideally the number of
logical cores of your processor). The resulting commands can look like this:

cmake -DCMAKE_BUILD_TYPE=Release -DCOMPILE_TESTS=1 ..
make -j 8

A.2 Running the pipeline
Our application has only a very simple command line interface. The user can
specify input URL (for local files prefixed with file:) and a few options that
affect processing and output. If any of the options is specified more than once
only the last occurrence is taken into account. Option and its corresponding
parameter (if any is required) have to be divided by whitespace character.
To start the pipeline, simply execute:

LivED [options] <input URL>

For docker images:

docker run --rm --gpus all lived ./LivED [options] <input URL>

Proper termination of the pipeline can be achieved by sending SIGINT to the
runnning process.
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Options

• -w <file>, --weights <file>

– Specify path to saved SSD weights.
– If no path is specified, pre-trained weights are downloaded but

since they are for a different model they might only be useful for
example for performance testing.

• -n <network>, --network <network>

– Choose network used for SSD.
– Accepted values:

∗ resnet
∗ vgg
∗ xception_[A, B, C, D, E, F, G, H, J]
∗ nasnet
∗ ssdtc

– Defaults to resnet.

• -s <size>, --net-size <size>

– Specify size of the network.
– Only applicable to resnet. (Has no effect for other networks)
– Defaults to 34.

• -b <size>, --batch-size <size>

– Specify number of frames processed in one batch.
– Defaults to 1.

• -c <name>, --camera-name <name>

– Specify name used when storing camera information in database.
– Defaults to N/A or file name in case of local files.

• -f <limit>, --frame-limit <limit>

– Set maximum capacity of queues between modules.
– Defaults to 5.

• -d, --drop-frames
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– If a queue is full, drop the frame instead of waiting for free space.

• -e, --export-crops

– Store the cropped frame for every detection in the database.
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B. Implementation internals
This appendix describes the internal implementation of the entire solution
and is therefore intended mostly for programmers wanting to extend our
solution or make their own based on a similar architecture. All the source
code discussed in this part is also included as an attachment of this thesis.

We expect the reader to be familiar with C++ as it is the main language
used in our implementation and also to have a basic knowledge of Python
which is used in one of the modules to integrate an existing SSD written in
it.

B.1 Pipeline
To provide a sufficiently flexible architecture that will be able to adapt to
the future development of the pipeline, we created a small generic pipeline
library. Apart from the Pipeline itself, it also contains an abstract Module
class which describes an interface every module has to implement in order
to fit in the pipeline. To make development a little more comfortable we
have also included a TSQueue class that should facilitate exchange of data
between modules.

B.1.1 Communication between modules
Arguably the most important problem our pipeline solves is passing data
between modules. To be able to easily extend or modify the pipeline in the
future, each module included in it should have some sort of ”standard input”
and ”standard output”. If we force all the modules to adhere to this rule
and to specify what type of input data is expected and what type of output
data will be produced, we can easily check that the supplied modules will be
compatible with each other and establish a communication channel between
them. This allows the programmer to create an extension module without
modifying or even understanding existing ones solely based on the input and
output of neighboring modules. It also alleviates the need to write a lot of
boiler plate code to facilitate communication in longer pipelines.

Our TSQueue class serves exactly this purpose. Every Module has one
such input and one output queue (apart from modules at the beginning and
at the end of the pipeline). The class itself is nothing more than a simple
wrapper around std::queue that adds thread safety so that the queue can
be safely shared by two concurrently running modules. It also allows the
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Figure B.1: Standardized module interface allows for easy binding of outputs
to existing inputs.

programmer to set maximum capacity of the queue and can be used in two
different modes — blocking and non-blocking.

B.1.2 Module interface
To be able to include modules in our pipeline and facilitate communication
between them, we need to define a common interface that will be supported
by all modules. This interface is represented by the abstract Module class.

As illustrated in fig. B.1, every module inherits from this class and there-
fore contains two shared pointers to TSQueue. During construction every
module automatically allocates its own input queue. These queues are then
bound to the outputs of respective preceding modules during construction of
the Pipeline.

Apart from having input and output, every module has to override pure
virtual methods start and stop to offer a standardized way to start and
stop processing that can be used by the pipeline.

B.1.3 Building the pipeline
The most straightforward way to implement a pipeline, where every stage is
derived from certain class, is using some kind of collection (e. g. std::vector)
of pointers to the base class. In our case, such approach would be problematic
since our stages or not derived from a single class but rather from one instance
of a class template. This means that we have no single common base class
and hence no suitable type for our pointers. One possible solution might be
to create another class — lets call it ModuleBase — that would serve as a
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common ancestor to all instances of Module template. We would then be
able to use ModuleBase for our stage pointers.

While this approach does solve the above mentioned problem, it also
creates a new one. ModuleBase cannot possibly include all the required
members — for example input and output queues of different types — and
we would therefore have to dynamically cast these pointers at runtime to one
of the derived types (Module with appropriate input and output type). It
is however impossible to guess what type we shall cast it to which makes the
casting impossible and the entire approach unusable.

We have therefore decided to rely on templates instead and make the
pipeline generic. It would therefore be able to contain stages of any type (not
necessarily derived from Module) that contain all the required members. We
have, however, decided to restrict this only to classes derived from Module
to keep the semantics as originally intended — Pipeline should be filled
with Modules and not arbitrary types that coincidentally happen to have
identically named members.

Another advantage of using templates is the fact that module compatibil-
ity — matching input and output types and proper inheritance from Module
— is checked at compile time. While we lose the possibility of having dynamic
pipeline that can be change during runtime, we think that the reliability is
more important in our case and compile time checks mean no unwelcome
surprises during runtime.

B.1.4 Running the pipeline
When the Pipeline has been built, it is ready to start running. As soon
as the run method is called, all the modules are started by the pipeline
using their start methods. The starting is done in reverse order — from
the last module to the first — to make sure that earlier modules will only
start producing data once all the subsequent modules were started. This
guarantees that any time consuming initialization done in the start method
will not result in dropped frames.

The stopping is done in a similar manner except for the direction. Using
the its stop method, every module is terminated from the first one to the
last one. This will prevent earlier modules from filling up the queue when the
next module has already terminated. Contrary to run, which is non-blocking,
stop will usually have to wait before worker thread of each module is joined.
Due to that, since we use signals to notify the pipeline to terminate, the
stopping should be done in a new thread because signal handler might be
executed by any thread (including worker thread from one of the modules)
of the process and could result in a deadlock.
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B.2 Modules
So far we have only implemented four modules required for basic function-
ality. All of them are based on the same principle and their workflow looks
quite similar. They take an input, process it and send the result further.
Because of this, the main structure of all the modules is fairly similar.

To be able to work concurrently, our modules all contain a single worker
thread and a single volatile variable used to signal termination. Once the
thread is started by the start method, it processes data in a loop until it is
notified through the variable to terminate and has processed everything in
its input queue.

Even though it is not exactly necessary, our existing modules mostly use
opaque pointer to hide members used only by the internal implementation.
Mainly so because some modules use CUDA and hiding everything related
to it behind an opaque pointer avoids inclusion of CUDA headers into every-
thing that uses these modules.

B.2.1 Video input
Our VideoInput class takes care of stream demultiplexing and video decod-
ing. As both tasks are rather laborious, we rely quite heavily on third-party
software — namely libraries from FFmpeg for demultiplexing and NVDEC
for video decoding. Since these libraries are only required in this module we
try to hide everything regarding them behind and opaque pointer to keep
everything that uses this module clean.

VideoInput is a special case of module that has no input (it is derived
from Module with input type void). Therefore, instead of processing data
from the input queue, it has to take its input data from somewhere else. In
this case either from a local file or from an online stream.

Initialization

Before we start the processing, we have to initialize all the required libraries.
We do most of the initialization in the constructor to avoid further delay
when the pipeline is being started. We initialize CUDA, prepare CUDA
context and initialize libavformat. We however do not connect to the stream
yet. It would not be a problem in case of offline videos but for online videos it
might lead to unnecessary buffering of the input before starting the pipeline,
which is something we would like to avoid.

Once the pipeline is started, we can connect to the stream and get basic
information about it. As soon as we get that information, we send an empty

44



frame containing this information further into the pipeline to start initial-
ization of other modules that might depend on this information (in our case
especially the SSD which requires width and height of the processed video).
After passing the information to other modules, we initialize the rest of our
our input module and we are ready to start the processing.

Processing

The main processing loop of the input module first reads a frame from the
input source defined be user (either a local file or an online stream), discards
everything in the input container except for the video stream and applies
bitstream filters if necessary (based on the container format and codec). This
can be all be done using the FFmpeg libraries, which saves us from writing
a great amount of code to support various container formats and codecs.

After obtaining the encoded frames from the input stream, we are ready to
start decoding them. The decoding is in our case done using the dedicated
hardware on NVIDIA GPUs which is exposed through the NVDEC API.
However, using the decoding hardware directly can be quite laborious and
since the majority of programs uses it in a very similar way, the API offers a
wrapper class that partially automates this process.

The CUvideoparser class is a push parser of the encoded video data. It
allows the programmer to control the important parts of the workflow using
callbacks and automates the rest as illustrated in fig. B.2. When using this
class, we only have to define three callbacks and the rest was already done
for us.

The first required function is parserSequenceCallback. It is called ev-
erytime the parser encounters a new ”sequence” of frames (i. e. video with
different properties). It therefore has to initialize a CUvideodecoder for
the current video and prepare it for decoding. So far, we have only imple-
mented the first initialization since our pipeline only supports a single source
anyway. Any reinitialization attempt will therefore throw an exception.

Once the parser has received enough encoded data for a single frame
parserDecodeCallback is called. Its purpose is to start the asynchronous
decoding of the gathered frame data on the dedicated GPU hardware.

Lastly, once a decoded frame is ready, parserDisplayCallback is called.
This function, in our case, copies the decoded frame from the decoder’s
output surface to a new dynamically allocated memory and enqueues the
corresponding Frame object to the output queue.

45



CUvideoparser

sequence
callback

decode
callback

display
callback

encoded
data

new video
info

new
setup

encoded
data

decoderencoded
frame

frame
ready

decoded
frame

decoded
frame

Figure B.2: CUvideoparser coordinates video input processing and lets the
programmer implement only the most important parts through callbacks.

Termination

Since this module is the first one inside the pipeline and controls the flow of
data into the pipeline, it should be able to somehow notify the pipeline that
the end of the input was reached and the pipeline should terminate. Our
pipeline already supports notifications from the outside world via signals
and we have therefore decided to use the same way of communication for
this module. Upon reaching the end of input, we raise a SIGINT and hence
notify our pipeline to start the process of termination.

B.2.2 Color model conversion
ColorSpaceConvertor is the simplest module in our pipeline. Its sole
purpose is to convert frames from the YUV color model and various pixel
formats produced by the decoder to the packed BGR format used by our
SSD. Some of the corresponding reverse conversions might be useful in the
future if we, for example, decide to encode crops stored in the database for
faster export. But since the current version does not require them and we
do not expect them to be necessary in the near future, we have decided not
to implement them.

Current implementation relies on two templated conversion functions —
one for planar (yuv444ToRgb) and one for semi-planar (semi420ToRgb) for-
mats — that use a common pixel conversion function. The pixel conversion
function (pixelYuvToRgb) performs a simple matrix multiplication which
calculates corresponding RGB values from the YUV ones and clamps the
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result if it happens to be out of range.
Because performance is critical for our application, we execute all the

conversions in parallel on the GPU. For the subsampled semi-planar formats
we use an execution configuration where each 32×2 block of threads converts
a 64 × 4 block of pixels and for the planar formats without subsampling a
configuration where each 32 × 2 block of threads converts a block of pixels of
the same size. This way we should be able to achieve slightly more efficient
memory reads and writes (thanks to memory coalescing) and hence keep the
performance high enough.

B.2.3 Object detection
The most important part of our pipeline is undoubtedly the object detection.
The single shot detector we use — descibed in detail in thesis by Dobranský
[11] — is implemented in Python. The functionality of this module therefore
mostly revolves around the Python interpreter and passing data between
C++ and Python.

Since the required functionality is quite limited, we have decided to avoid
another dependency and instead of using Boost.Python implement the in-
terpreter embedding ourselves.

Initialization

Before using the module, we have to initialize the interpreter and prepare the
required Python functions. We try to do as much initialization as possible in
the constructor but since certain parts require information about the stream,
we have to resort to lazy initialization for those. The most significant action
requiring video metadata is the initialization of the SSD itself, which can take
up to 3-4 seconds (hence the empty frame sent by the video input immediately
after connecting to the stream mentioned in appendix B.2.1).

Processing

As the frames are coming in we append them to a batch and as soon as
the batch reaches the specified size we start the inference. The inference
function returns a tuple containing all the detection data. The result is then
sent further into the pipeline to be exported to the database.

The only remaining problem is how to efficiently move frame data to the
SSD. The SSD is implemented in PyTorch and therefore expects a PyTorch
Tensor as an input. As far we know, however, there is no way to create a
Tensor from already existing GPU data (in a way that the Tensor object
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would ”adopt” the existing allocated memory as its storage). The most
efficient solution we have come up with is to allocate an empty GPU Tensor
and copy frame data into it. Furthermore, if we want to retain the capability
to export crops in the export stage, it would still be necessary to copy the
frame data somewhere else for later use anyway and this solution therefore
seems to be ideal.

B.2.4 Data export
As discussed in section 3.3.4, the main focus of our implementation is to
minimize the network communication, eliminate dependencies of subsequent
queries on previous ones and minimize the influence of network overhead on
the performance.

Initialization

The only initialization required for this module is connecting to the database.
This can be done already in the constructor to avoid unnecessary delay after
starting the stage.

When the the first frame of a certain camera is received, we insert a record
for that camera into the database. Since camera insertion only happens
once per video stream (and in the current implementation therefore once
per application runtime), we have decided to keep our solution simple and
execute this query synchronously as it should not have a noticeable effect on
the overall performance.

Processing

To minimize the influence of network overhead we implement the commu-
nication with the database in an asynchronous manner. This way, we can
already be preparing next batch of data while the query for current batch
is being executed. In and ideal case, we would be able to send data to the
database as soon as possible. This is, however, not possible since libpq
only allows one asynchronous query to be executed at a time on a single
connection and requires its result to be received before executing another
one. But despite this limitation, asynchronous query execution still brings
performance improvements. In our implementation this asynchronous query
is implemented by the Query class. As soon as we start execution of one
such query, we create a new Query object and start preparing data for it
while the first query is still running.
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