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Introduction
An intersection graph is a graph such that each vertex v of the graph can be
assigned a set Sv and two sets Su, Sv have a nonempty intersection if and only
if the vertices u and v are connected by an edge. Usually, we consider classes of
intersection graphs, which are restricted to a certain type of sets.

One of the possible uses of these restrictions is to make practically intractable
problems (such as finding the maximum clique in a general graph) tractable by
assuming additional constraints about the graph. There are classes of intersection
graphs, for which at least some of the typical NP-complete problems can be solved
in polynomial time, such as the intersection graphs of segments on a real line (so-
called interval graphs), intersection graphs of subtrees in a tree (better known
as the chordal graphs [1]) or the intersection graphs of chords in a circle (circle
graphs).

As an example, assume that a university needs to know the least amount of
virtual conference rooms needed to continue all the classes virtually during the
lockdown so that an appropriate license is purchased. It is not difficult to see
that this corresponds to a partition of the classes into conference rooms so that
no two classes in the same conference room overlap with the minimum number
of rooms. In terms of graph theory, this number is the chromatic number of an
interval graph, where the vertices (classes) are represented on the real line as the
time intervals during which the class takes place.

However, another issue may arise with these classes: in order to make use
of the polynomial-time algorithms, we may need to know the intersection repre-
sentations. For all three classes mentioned above, this is not an issue1, as their
representation can be constructed in polynomial time [2, 3, 4].

This is not true for other classes such as the intersection graphs of continuous
nonnegative functions on closed intervals such that the values on their endpoints
are zero (so-called interval filament graphs). This class admits a polynomial-time
algorithm for finding the maximum weighted clique or the maximum weighted
independent set [5] while being NP-complete to recognize [6].

Intersection graphs of curves in the plane (so-called string graphs) form an-
other naturally occurring class of graphs. It is a folklore result that the class
of string graphs is equivalent to the class of intersection graphs of paths in the
grid, denoted as VPG. We may constrain the class further, as a VPG graph may
contain a vertex represented by a large number of bends. As such, the class Bk-
VPG is defined to be a subclass of VPG, where all of the paths have at most k
bends. For all of these classes, recognition is NP-complete. In the case of string
graphs, this was a remarkable long-standing open problem, as NP-hardness [7]
was proved by Kratochvíl more than ten years before Schaefer, Sedgwick and Šte-
fankovič showed that recognizing string graphs is in NP [8]. For Bk-VPG graphs,
the case of k = 0 was shown to be NP-complete by Kratochvíl and Matoušek [9]
and the remaining case with k ≥ 1 was shown to be NP-complete by Chaplick et
al.[10].

In this thesis, we focus on three subclasses of B1-VPG: L-graphs, {L, L}-graphs
1Chordal graphs are a slight exception, as most of the algorithms for this class use the fact

that every chordal graph has a perfect elimination ordering.
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and grounded L-graphs. The first two classes are restricted based on permitted
shapes – in the first case, only L-shapes are allowed, in the second case both
L-shapes and L-shapes are allowed. The third class is another restriction of L-
graphs. In particular, in every grounded L-graph, there exists a line such that
the highest points all L-shapes touch the line.

In chapter 1, we build the foundation for the following chapters and mention
more related works. Chapter 2 contains the proof that recognizing both L-graphs
and {L, L}-graphs is NP-complete, which answers an open problem posed by
Felsner et al. [11]. Next, we study other decision problems on L-graphs and
grounded L-graphs in chapter 3.

Preliminaries
We will use standard notation as is usual in the introductory courses on discrete
mathematics and computational complexity. In particular, we use [n] to denote
the set {1, 2, . . . , n}. We now introduce some more advanced concepts which will
be used extensively in the thesis.

An intersection graph of a family of sets M is a graph such that for every
set M ∈ M, the graph contains a vertex vM corresponding to the set and there
exists en edge between two vertices vM , vN : vM ̸= vN if and only if M ∩ N ̸= ∅.

A representation R of a graph G = (V, E) is a family of piecewise linear
curves R = {R(v) : v ∈ V } such that ∀u, v ∈ V : R(v) ∩ R(u) ̸= ∅ ⇔ {u, v} ∈ E.

A representation is proper if every curve is simple, there are finitely many
intersection points and finitely many bends, and in every point of the plane, at
most two curves intersect and every such intersection is a crossing.

A string graph is an intersection graph of curves in the plane.
An Bk-VPG graph is an intersection graph of paths in a grid with at most

k bends.
An L-shape is the union of a horizontal line segment and a vertical line

segment such that the only common point of the two line segments is the lowest
point of the vertical line segment and the leftmost point of the horizontal line
segment.

An L-representation is a representation such that every curve is an L-shape.
An L-graph is an intersection graph of L-shapes with a proper L-representa-

tion.
An L-shape is the union of a horizontal line segment and a vertical line

segment such that the only common point of the two line segments is the lowest
point of the vertical line segment and the rightmost point of the horizontal line
segment.

An {L, L}-representation is a representation such that every curve is an
L-shape or an L-shape.

An {L, L}-graph is an intersection graph of L-shapes and L-shapes with a
proper {L, L}-representation.

A grounded L-graph is an intersection graph of L-shapes with a proper
L-representation such that the topmost points of the L-shapes lie on a single line.

A circle graph is an intersection graph of chords in a circle. Equivalently,
it is an intersection graph of L-shapes in a circle such that both endpoints of the
L-shape touch the circle boundary.
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1. Related works
This chapter contains previously known relations between graph classes and hard-
ness results in more detail.

We mainly focus on three related classes: grounded L-graphs, L-graphs, and
{L, L}-graphs. These are quite similar and for many decision problems, these
graph classes lie near the boundary between classes with polynomial-time algo-
rithms and classes for which the problem is NP-complete.

1.1 Investigated decision problems
The main problem which occurs naturally with every graph class is the recognition
of the class. We formulate the problem for L-graphs and {L, L}-graphs. The case
of grounded L-graphs is still open.

Definition 1 (L-graph recognition).
L-graph recognition
Instance: A graph G = (V, E).
Question: Does G have a proper L-representation (i.e., is it an L-graph)?

Definition 2 ({L, L}-graph recognition).
{L, L}-graph recognition
Instance: A graph G = (V, E).
Question: Is G an {L, L}-graph?

However, we will mostly deal with restricted decision problems which are
NP-complete in a general setting. The three main problems are Clique, In-
dependent Set and 3-Coloring. We will also consider generalisations of
3-Coloring such as k-Coloring and Coloring.

Definition 3 (Clique).
Clique
Instance: A graph G = (V, E), an integer k ∈ N.
Question: Does there exist a clique (a complete subgraph) in G of size k?

Definition 4 (Independent Set).
Independent Set
Instance: A graph G = (V, E), an integer k ∈ N.
Question: Does G have an independent set of size k as an induced subgraph?

Definition 5 (3-Coloring).
3-Coloring
Instance: A graph G = (V, E).
Question: Is G 3-colorable?

Definition 6 (k-Coloring).
k-Coloring
Instance: A graph G = (V, E).
Question: Is G k-colorable?
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Definition 7 (Coloring).
Coloring
Instance: A graph G = (V, E), an integer k ∈ N.
Question: Is G k-colorable?

There is a subtle but significant difference between k-Coloring and Col-
oring. In k-Coloring, k is not a part of the input and is therefore a constant,
whereas in Coloring, k is a part of the input. In particular, we need log k bits
to represent k.

If we could formulate an algorithm for finding a k-coloring with time com-
plexity O(nk), it would be polynomial for k-Coloring, but it would not be
polynomial for Coloring. The time complexity is double exponential in the
size of the input, as the size of k on input is only log k.

1.2 L-graphs and similar classes
The first chain of observations is simple: every L-graph is an {L, L}-graph and
every {L, L}-graph is a B1-VPG graph. At the same time, it is obvious that every
grounded L-graph is an L-graph.

The fact that every B0-VPG graph is an L-graph is not immediately obvious,
given that we only consider proper L-graphs. To show this, we first need to
remark that every interval graph is a grounded L-graph. This follows easily, as
we may represent the intervals as L-shapes with the same length of the horizontal
line segment such that in every pair of L-shapes, the L-shape which corresponds
to the interval whose left endpoint is more to the left has its bend higher. In
case two or more intervals share the same left endpoint, we may perturb them
so that the endpoints are unique. In the case of vertical lines, we reflect the line
across the axis of symmetry of the first and the third quadrant, so that the order
of endpoints from left to right corresponds to the order of the original endpoints
from bottom to top. This is necessary for the construction in the next paragraph.

Now, given a B0-VPG graph, every line which contains at least one line seg-
ment is an interval graph and, therefore, can be represented as an arbitrarily thin
grounded L-graph. In the case of vertical lines, we might change the “grounding”
of the L-shapes so that the rightmost points of the L-shapes lie on the same line.
This can be easily achieved by reflecting the grounded L-representation with the
axis of reflection being the axis of symmetry of the first and the third quadrant.
Then we add the reflected grounded L-graphs on the position of the line they
represent, which creates an L-representation.

Another useful inclusion is that every circle graph is a grounded L-graph. This
follows from an equivalent characterization of circle graphs, which is that every
circle graph is an intersection graph of L-shapes drawn inside a circle with both
endpoints touching the circle’s boundary [12]. We may extend the L-shapes so
that they touch a tangent of the circle which is perpendicular to the vertical line
segments of the L-shapes. Note that we cannot add any more intersections by
the extension.

There is a history of reducing the necessary number of bends for planar graphs
as Bk-VPG. First, three bends were shown to be sufficient and conjectured to be
necessary by Asinowski et al. [12]. This conjecture was disproved by Chaplick and
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Ueckerdt who showed that only two bends are sufficient [13]. This was strength-
ened by Biedl and Derka who proved that planar graphs can be represented with
two bends and every pair of vertices sharing at most a single intersection point
[14]. The latest result by Gonçalves, Isenmann, and Pennarun shows that every
planar graph is an L-graph [15].

It is also worth mentioning that grounded L-graphs have an alternative char-
acterization. Jelínek and Töpfer showed that every graph is a grounded L-graph
if and only if it admits a vertex order with forbidden patterns of size 4 [16].

By way of context, we mention a graph class similar to VPG – the class of
edge intersection graphs of paths on a rectilinear grid, where two vertices are
adjacent if and only if their corresponding paths share an edge. This class is
usually written as EPG. In an analogy to Bk-VPG, Bk-EPG is the class of edge
intersection graphs with paths which have at most k bends.

1.3 Recognizing the classes
The main results of the thesis are NP-completeness of Recognition of L-
graphs and Recognition of {L, L}-graphs. This resolves an open problem
posed by Felsner et al. [11] as the case of Bk-VPG for k ≥ 1 and {L,

L

}-graphs
was shown to be NP-complete by Chaplick et al [10]. The method used in the
proof is similar and uses the same technical tool which is formulated in Section
2.

The complexity of recognizing grounded L-graphs is still open despite the
characterization via forbidden patterns. While it is possible to recognize all com-
binations of 3-vertex forbidden patterns in polynomial time, this is not possible
in general for 4-vertex patterns [17].

The analogous EPG graphs are studied similarly and the results are similar as
well, yet the techniques used differ significantly. Heldt, Knauer, and Ueckerdt [18]
proved that the recognition of B1-EPG is NP-complete and Cameron, Chaplick,
and Hoàng [19] showed the same holds for all natural subclasses of the shapes,
i.e., {L}, {L, L}, {L,

L

} and {L,
L
,

L

}. This was further extended for B2-EPG and
its natural subclasses by Pergel and Rzążewski [20].

1.4 Other problems on the classes

1.4.1 Clique
Clique is a problem, which is already known to be in P for {L, L}-graphs and NP-
complete for {L,

L

}-graphs, both proved by Middendorf and Pfeiffer [21]. Their
algorithm based on dynamic programming has time complexity O(n4) for {L, L}-
graphs and O(n3) for grounded {L, L}-graphs, whereas the algorithm discussed in
the thesis has better time complexity in exchange for restricting the graph class.

1.4.2 Independent Set
Independent Set is also known to be NP-complete for B0-VPG [22] and there-
fore is also NP-complete on L-graphs. At the same time, a recent result of Bose
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et al. yields an (4 · log OPT)-approximation algorithm for L-graphs where OPT
is the size of an optimal solution [23].

We provide another proof of NP-completeness of Independent Set on L-
graphs, which is based on a reduction from a special case of SAT, in particular
the Planar Monotone Rectilinear 3-SAT which was shown to be NP-
complete by de Berg and Khosravi [24].

1.4.3 Coloring
The situation with deciding the chromatic number of a graph is a little more
complicated. Both B0-VPG and circle graphs do not offer any help with Color-
ing as the problem is still NP-complete even with the restriction [11, 25]. The
case of 3-Coloring is open for grounded L-graphs. However, from the fact that
every planar graph is an L-graph and that 3-Coloring is NP-complete when re-
stricted to planar graphs with degree at most 4 [26], we see that 3-Coloring is
NP-complete on L-graphs as well. The same does not apply for triangle-free1 pla-
nar graphs as Grötzsch’s theorem [27] shows that all triangle-free planar graphs
are 3-colorable and therefore 3-Coloring is in P when restricted to triangle-free
planar graphs.

We prove NP-completeness of 3-Coloring on L-graphs and triangle-free L-
graphs with a given representation, also reducing from Planar Monotone
Rectilinear 3-SAT. We also discuss possible approximation algorithms for
Coloring grounded L-graphs.

1A graph is triangle-free if it does not contain a triangle (K3) as a subgraph.
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2. Recognizing the classes
This chapter focuses on the main results of the thesis - the NP-completeness of
L-graph recognition and {L, L}-graph recognition.

Theorem 1. L-graph recognition is NP-complete.

Theorem 2. {L, L}-graph recognition is NP-complete.

2.1 Building blocks
To prove the theorems, we will use the same approach Chaplick et al. [10] used
for proving NP-completeness of recognizing Bk-VPG graphs for k ≥ 1. Their
approach extensively uses terms related to geometric representations which are
defined below.

Definition 8 (Intersection point). An intersection point of a representation R is
a point in the plane which belong to two (or possibly more) distinct curves in R.
We will use In(R) to denote the set of all intersection points in R.

Definition 9 (Order-preserving mapping). Let R, R′ be two representations of
G, where R is proper (R′ does not have to be proper). Let φ be a mapping
φ : In(R) → In(R′).

We say that φ is order-preserving if it is injective and for every v ∈ V , if
p1, . . . , pk are all distinct intersection points on R(v), then φ(p1), . . . , φ(pk) all
belong to R′(v) and they appear on R′(v) in the same relative order as the points
p1, . . . , pk on R(v).

An extremely useful tool is the Noodle-Forcing Lemma by Chaplick et al.

Lemma 3 (Noodle-Forcing Lemma, Chaplick et al., 2012 [10]). Let G = (V, E)
be a graph with a proper representation R = {Rv : v ∈ V }. Then there exists
a graph G′ = (V ′, E ′) containing G as an induced subgraph, which has a proper
representation R′ = {R′(v) : v ∈ V ′} such that R(v) = R′(v) for all v ∈ V and
R′(w) is a vertical or a horizontal segment for w ∈ V ′ \ V .

Moreover, for any ε > 0 any (not necessarily proper) representation of G′ can
be transformed by a homeomorphism of the plane and a circular inversion into a
representation Rε = {Rε(v) : v ∈ V ′} with these properties:

1. for every vertex v ∈ V , the curve Rε(v) is contained in the ε−neighborhood
of R(v) and R(v) is contained in the ε−neighborhood of Rε(v).

2. there is an order-preserving mapping ϕ : In(R) → In(Rε) with the addi-
tional property that for every p ∈ In(R), the point ϕ(p) coincides with the
point p.

Sketch of the proof. We are given a proper representation R of G. First, we define
special points of R, which are endpoints of the curves, bends of the curves and
intersection points of the curves.

We first construct an auxiliary grid graph H so that its drawing overlays the
representation with the following properties:

8



P1 The edges of H are drawn as vertical and horizontal segments, and every
internal face of H is a rectangle. Moreover, the outer face of H is not
intersected by any curve of R.

P2 No curve of R passes through a vertex of H and no edge of H passes through
a special point of R.

P3 Every face of H contains at most one special point of R and no two faces
containing a special point are adjacent.

P4 Every edge of H is intersected at most once by the curves of R.

P5 Every face of H is intersected by at most two curves of R, and if a face f
is intersected by two curves of R, then the two curves intersect inside the
face f .

P6 Every curve of R intersects the boundary of a face of H at most twice.

This is done in four steps, starting with a grid fine enough so that properties
P1-P3 hold. Adding the next three properties is done by splitting the faces.

The grid of H is then converted into the graph G′ induced by its representation
R′. For any vertex v of the grid H, we create two vertices S1(v), S2(v) joined by
an edge. Then for every edge e ∈ E(P ) incident with v, we create another vertex
S(v, e), which is joined to S1(v) if the edge is horizontal and to S2(v) if e is
vertical. We also take every edge e = {u, v} ∈ E(H) and add the vertex S(e),
which is adjacent precisely to vertices S(u, e) and S(v, e). Finally, we add vertices
of G with the same representation and add edges between the vertices and edge-
vertices S(e) of the grid which their curves cross. A part of the construction is
sketched with L-shapes in Figure 2.7.

These six properties are then enough to prove the rest of the statement.

The underlying reduction used in proving the Theorems 1 and 2 also uses
a result from Kratochvíl [28], who showed that the recognition of grid intersec-
tion graphs (sometimes referred to as PURE-2-DIR graphs) is NP-complete. We
sketch the reduction used in proving the NP-completeness of Grid intersec-
tion graph recognition as it will be used later for our proof of Theorems 1
and 2. The reduction is based on the NP-completeness of 4-bounded Planar
3-connected 3-SAT, which we write as 4P3C3SAT for short.

Definition 10 (4P3C3SAT).
4P3C3SAT
Instance: A formula φ with a set of clauses C over a set of variables X
satisfying the following:

1. every clause contains exactly three distinct variables

2. every variable occurs in at most 4 clauses

3. the bipartite graph Gφ = (X ∪ C, {{x, c} : x ∈ c ∈ C ∨ (¬x) ∈ c ∈ C})
is planar and vertex 3-connected.

Question: If φ satisfiable?

9



Theorem 4 (Kratochvíl, 1994 [28]). The decision problem 4P3C3SAT is NP-
complete.

Definition 11 (Grid intersection graph). A grid intersection graph is an inter-
section graph whose vertices are represented by line segments on a grid in the
plane with the additional property that every two collinear line segments do not
intersect.

Definition 12 (Grid intersection graph recognition).
Grid intersection graph recognition
Instance: A graph G = (V, E).
Question: Is G a grid intersection graph?

Theorem 5 (Kratochvíl, 1994 [28]). The decision problem Grid intersection
graph recognition is NP-complete.

Sketch of the construction. Given an instance φ of 4P3C3SAT, we construct G′
φ

in the following steps:

1. We fix an embedding Dφ of Gφ = (X ∪ C, {{x, c} : x ∈ c ∈ C ∨ (¬x) ∈ c ∈
C}) in the grid such that the edges are piecewise linear and lie on the grid
lines, no two edges cross and no vertex lies on an edge.

2. For every edge e = {x, c} ∈ E(Gφ), we use d(e) to denote the number
of linear pieces in the drawing of e. Taking L(e), R(e) to be two distinct
paths on d(e) vertices l1(e), l2(e), . . . , ld(e)(e), r1(e), r2(e), . . . , rd(e)(e), we set
Ge = L(e) ∪ R(e).

3. We consider graph F as in Figure 2.1, called the frame. The role of the
frame is to restrict the construction to a bounded convex region as in every
segment representation of F , there is exactly one region Ω which is bounded
by the four segments a, b, c, d. Moreover, the region is convex. The segments
denoted by a, b, c, d in the figure correspond to the vertices a, b, c, d in the
following step.

4. We also consider an uppermost, a rightmost, a bottommost and a leftmost
linear segment of Dφ. Let the segments be the i(u)th, i(r)th, i(b)th and
i(l)th linear piece of an edge eu, er, eb, el. Then, we take Gl = (Vl, El) with
Vl = {t(u), t(r), t(b), t(l), a, b, c, d, li(u)(eu), li(r)(er), li(b)(eb), li(l)(el), ri(u)(eu),
ri(r)(er), ri(b)(eb), ri(l)(el)} and El = {{a, t(u)}, {b, t(r)}, {c, t(b)}, {d, t(l)},
{t(u), li(u)(eu)}, {t(r), li(r)(er)}, {t(b), li(b)(eb)}, {t(l), li(l)(el)}},
{t(u), ri(u)(eu)}, {t(r), ri(r)(er)}, {t(b), ri(b)(eb)}, {t(l), ri(l)(el)}.

This graph attaches the gadgets described below to the frame.

5. For every variable x, we construct a variable gadget Gx as follows. If x
appears in four clauses, we number the clauses in the clockwise order on
the edges leaving the vertex x in Dφ. Then, we set Ai = l1({x, ci}), Bi =
r1({x, ci}) if x ∈ ci and Ai = r1({x, ci}), Bi = l1({x, ci}) if ¬x ∈ ci. The
gadget itself is depicted in Figures 2.2 and 2.3 in two versions: one for a
variable which is in four clauses and another for a variable which is in three
clauses.
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Figure 2.1: The frame F with its PURE-2-DIR representation
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Figure 2.2: The variable gadget with four occurrences

6. For each clause c, we construct a clause gadget Gc in the following way. Let
x1, x2, x3 be the variables occurring in c numbered in the clockwise order
as the edges xic are around c in the drawing Dφ. The gadget is depicted
in Figure 2.4. It is based on the frame, so that all intersection points of
vertices u1, u2, u3, v1, v2, v2, w lie in the bounded convex region.

7. We set G′
φ = (V, E), where V = V (F )∪⋃︁

e∈E(Gφ) V (Ge)∪Vl ∪
⋃︁

x∈X V (Gx)∪⋃︁
c∈C V (Gc) and E = E(F )∪⋃︁

e∈E(Gφ) E(Ge)∪El∪
⋃︁

x∈X E(Gx)∪⋃︁
c∈C E(Gc).

The steps 3 and 4 anchor the representation in a bounded convex region. The
gadgets then simulate the true/false assignment by the order of the paths l and
r.

This means that in PURE-2-DIR, the clause gadget cannot be represented, if
the vertices rd({x1,c})({x1, c}), ld({x1,c})({x1, c}), rd({x2,c})({x2, c}), ld({x2,c})({x2, c}),
rd({x3,c})({x3, c}), ld({x3,c})({x3, c}) intersect the gadget in this clockwise order.
This order then also means that the vertices u1, v1, u2, v2, u3, v3 intersect the ver-
tices a, b, c, d of the clause gadget’s frame in the same order and it is impossible
to represent the gadget then.

As it can be shown that the vertices u1, v2 and v1, v2 intersect inside the region
Ω and the same applies for v3, u3 intersecting u2 and v3 intersecting v2, the vertex
w can only be drawn inside the region Ω as well. However, with the order of
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B3

A3

A2 B2

A1

B1

Figure 2.3: The variable gadget with three occurrences

w

v2

u2

u3v3

rd({x3,c})({x3, c})ld({x3,c})({x3, c})

u1 v1

ld({x2,c})({x2, c})

rd({x2,c})({x2, c})

rd({x1,c})({x1, c}) ld({x1,c})({x1, c})

Figure 2.4: The clause gadget
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I(b, d) I(b, e)

I(c, d)

I(c, e)

R(a) R(b) R(c)

I(b, d)

R(b) R(c) R(a)

I(b, e)

I(c, d)

I(c, e)

Figure 2.5: The two possible situations in the proof of Lemma 6

vertices u1, v1, u2, v2, u3, v3, the segments v1, v2, v3 divide Ω into two regions with
boundaries dav1v2v3c and bcv3v2v1a and u1 must be only in the first region while
u3 can only be in the second region and hence we cannot add the line segment
corresponding to vertex w.

Next, we prove a lemma that enables us to use the Noodle-Forcing Lemma to
force the bend on a vertex.

Lemma 6. For a proper {L, L}-representation R of K5, V (K5) = {a, b, c, d, e},
if the intersection points on all five vertices are located in relative alphabetical
order, then the vertex c cannot be represented just as a horizontal or a vertical
line segment.

Proof. We prove the lemma by contradiction. To simplify notation, we use R(x)
to denote the representation of the vertex x and I(x, y) denotes the intersection
point of R(x) and R(y).

First, let c be represented as a horizontal line segment R(c). This means
that all bends of vertices a, b, d, e must be below R(c), otherwise they could not
intersect c. We immediately get a contradiction, as all intersection points on
R(a) must be below the intersection point with R(c), and therefore the order of
intersection points on R(a) starts or ends with c, which cannot happen.

Next, let c be represented as a vertical line segment R(c). As the situations are
symmetric, we may assume without loss of generality that the order of intersection
points on R(c) is a, b, d, e with a being the highest and e the lowest. In the same
vein, we have a similar symmetry with the position of the intersection point I(a, b)
of R(a) and R(b). If I(a, b) was to the right of the vertical line segment R(c), we
may use reflection with R(c) as the axis of reflection and I(a, b) would then be
to the left of R(c). From now on, we assume I(a, b) to be to the left of R(c).

Given this, we know that b has to be represented as an L-shape as it could not
intersect both R(a) and R(c) otherwise. The two possible situations are depicted
in Figure 2.5. Therefore, it is necessary that vertices d and e are represented as
L-shapes so that they can intersect both vertices b and c in the prescribed order.

Now, we observe that the intersection points I(b, d) and I(b, e) must lie on
R(b) in this order, therefore the x-coordinate of the bend of R(d) is less than the
x-coordinate of the bend of R(e). At the same time, from the order of intersection
points on R(c), we know that the y-coordinate of the bend of R(d) must be higher
than the y-coordinate of the bend of R(e). From these two constraints, we see that
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R(d) and R(e) cannot intersect, which is the contradiction with the expectation
that the represented graph is complete.

2.2 Proofs of NP-completeness
Proof of Theorem 1. It is not difficult to see that L-graph recognition is in
NP. We can imagine that the L-shapes are lying on a grid, therefore the poly-
nomial certificate for any L-representation would consist of four integers for each
L-shape: the two coordinates of the intersection of the horizontal and the vertical
line segments and the two lengths of the segments. The coordinates and lengths
can surely be bounded by n. Verifying the intersections and nonintersections then
surely takes polynomial time - there are Θ(n2) pairs of L-shapes and verifying
whether a single pair intersects takes constant time given the certificate described
above.

Next, we show the decision problem is NP-hard.
We use a construction which is very similar to the one used in the proof of the

NP-completeness of recognition of Bk-VPG graphs. The terminology is also quite
similar, as we will construct a pin and a clothespin, from which we will be able
to build a polynomial reduction from the recognition of grid intersection graphs.

In order to construct the pin, we construct an auxiliary graph H first. First,
we take a K5 with its vertices a, b, c, d, e and create its L-representation R so
that the intersection points on all five vertices are located in relative alphabetical
order. Then, we overlay the representation with a planar grid graph P according
to Figure 2.6. This grid satisfies all six properties P1-P6 from the proof of the
Noodle-Forcing Lemma and therefore Lemma 3 applies. From this, we construct
the graph H induced by its representation R′ as in the Noodle-Forcing Lemma:
for any vertex v of the grid, we create two vertices S1(v), S2(v) joined by an edge.
Then for every edge e ∈ E(P ) incident with v, we create another vertex S(v, e),
which is joined to S1(v) if the edge is horizontal and to S2(v) if e is vertical.
We also take every edge e = {u, v} ∈ E(H) and add the vertex S(e), which is
adjacent precisely to vertices S(u, e) and S(v, e). Finally, we add the five vertices
a, b, c, d, e from the K5 and add edges between the vertices and edge-vertices S(e)
of the grid which their L-shapes cross. A part of the construction is depicted in
Figure 2.7.

We will write this as the pin P (c), where c is the middle vertex of the K5
representation. As the grid (via the Noodle-Forcing Lemma) forces the order of
intersections, the Lemma 6 guarantees that c has a bend. Also, we may create
a representation of P (c) such that the last segment of R′(c) may be extended
arbitrarily far, as shown in the schematic Figure 2.8. We will refer to the last
segment as the tip of P (c), we will also say that c is an exposed vertex, and the
cell of the grid which is “inverted” will be denoted by α. Note that in this way,
we are able to create a pin with a horizontal tip and a pin with a vertical tip.

This, however, is not enough to make use of Kratochvíl’s construction. It may
still happen that the intersection of two exposed vertices could happen in a cell
of the grid different from α – one pin could be fully contained in a cell of the
other pin.

In order to tackle the issue, we will construct the clothespin. We start with a
K4, whose edges are all subdivided once. Then, we take two faces of the drawing
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and add vertices m1, m2 connected by paths of length two to the three original
vertices of K4 from its respective face. Next, for each of m1, m2, we add a path of
length two connecting it with the outside of the pin P (v1) or P (v2) respectively.
These pins are also connected to a vertex which was subdividing the edge of the
original K4. Lastly, the tips of the two pins are connected to the tip of a third
pin. It may not happen that the pin vertices intersect anywhere else than in their
pins, as in that case, they would have to intersect at least one other vertex. The
construction is depicted in Figure 2.9.

The clothespin CP (v) then consists of three pins P (v1), P (v2), P (v3) so that
precisely the pairs v1, v3 and v2, v3 form an edge.

Now, we may use our clothespin construction in the original construction by
Kratochvíl. Given a formula φ, we construct GL

φ by taking the construction G′
φ

from the proof of Theorem 5. Then we replace every vertex v ∈ V (G′
φ) by the

clothespin CP (v). If two vertices u, v share an edge, then we add four new edges
uivj : i, j ∈ {1, 2}, where ui, vj are the exposed vertices.

It remains to verify that φ is satisfiable if and only if GL
φ has a proper L-

representation.
Given a satisfiable φ and its satisfying assignment a, we create a grid inter-

section graph in the same way as Kratochvíl [28] and replace every vertex with a
clothespin with the bodies of the pins small enough so that they do not intersect
anything else, which is a proper L-representation of GL

φ.
On the converse, if GL

φ has a proper L-representation, then the tips of R′(u1)
for u ∈ V (G′

φ) form a GIG representation of G′
φ, and φ is satisfiable.

The proof of Theorem 2 is similar, only similar arguments are presented for
{L, L}-representations instead and there is another possibility of representing the
horizontal pin, with the “head” of the pin being to the right of the tip.

Another observation is that given a graph class C such that L-graphs are a
subclass of C and C is a subclass of {L, L}-graphs, recognition of C is NP-complete.
We showed that if φ is satisfiable, then GL

φ is an L-graph (and therefore GL
φ ∈ C),

while if φ is not satisfiable, then GL
φ is not an {L, L}-graph (and GL

φ ̸∈ C).
Much like Chaplick et al. showed for all Bk-VPG graphs that the recognition

of Bk-VPG graphs when given a Bk+1-VPG representation is still NP-complete,
the same applies for the recognition of grid intersection graphs when given an
L-representation (the same also trivially applies for {L, L}-representations).

Theorem 7. The decision problem Grid intersection graph recognition
is NP-complete even when given an L-graph representation.

Proof. Once again, we will use Kratochvíl’s construction, which uses clause gad-
gets, of which only satisfied clause gadgets are representable when restricted to
grid intersection graphs. It is sufficient to show that it is possible to represent an
unsatisfied clause gadget with L-shapes. This is shown in Fig. 2.10.

Therefore, G′
φ is an L-graph, and its representation can be constructed in

polynomial time, which implies the theorem.
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Figure 2.6: The graph K5 with the grid overlay

Figure 2.7: A part of the construction joining the grid with the K5
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Figure 2.8: The pin construction

Figure 2.9: The clothespin construction

c

a

b

w

u2

v2

v3 u3

d

u1 v1

Figure 2.10: The unsatisfied clause gadget
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2.3 Recognizing L-graphs algorithmically
In this section, we discuss an algorithm which creates an L-representation for
every L-graph and rejects the input otherwise with time complexity O((n!)2 · n2).

The following observation motivates the algorithm: in any L-representation, if
two L-shapes a, b intersect, then it cannot happen that the bend of a is both lower
than and more to the left than the bend of b. Hence for an L-graph G = (V, E)
with an L-representation R, we take a linear order (V, <) of the bends from left to
right. That is, for u, v ∈ V : u < v if and only if the bend of u is more to the left
than the bend of v. The linear order < then induces a strict poset (V, ≺), where
≺ is the transitive closure of the order (u < v) ∧ {u, v} ∈ E. The poset’s order
u ≺ v then represents the relation “the bend of vertex u must be higher than
and more to the left than the bend of vertex v”. Now, we observe that the order
induced by the order of bends from top to bottom is another linear extension of
≺.

One possible way of generating these posets is taking all possible linear orders
< and then creating the poset ≺. Any linear extension of the generated strict
poset is a possible candidate for a linear order on the y-axis. We are able to
generate these linear extensions in time linear with respect to the number of
linear extensions, using an algorithm by Oko and Nakano [29].

Now, for any order and its extension, it is easy to check in time O(n2) whether
the two orders can be extended into the L-representation. One possible algorithm
is extending both the line segments of every vertex v so that the lines reach all
of v’s neighbors. Then, we check if the graph that is represented is the same as
the original graph.

Proposition 8. There exists an algorithm for recognizing L-graphs and generat-
ing the corresponding L-representation with time complexity O((n!)2n2).

Proof. We discuss the following algorithm:
Algorithm 1 (Recognition of L-graphs). Input: a graph G = (V, E).
For every linear order < of V :

1. generate the strict poset ≺

2. for every linear extension ◁ of ≺, check if there exists an L-representation
with the orders of bend points on x and y axis as follows:

(a) for every vertex v, extend the horizontal line segment as little as pos-
sible so that all neighbors of v that have their bend points more to the
right are below the line segment

(b) for every vertex v, extend the vertical line segment as little as possible
so that all neighbors of v that have their bend points above v are to
the left of the line segment

(c) check if the graph induced by the representation is G and if so, return
the representation

If no representation was found, G has no L-representation.
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First, we show the correctness of the algorithm. The algorithm cannot return
a representation of a different graph, hence if the algorithm with input G returns
an L-representation, G is an L-graph. On the converse, if G is an L-graph, it
has an L-representation R. Such representation can be generated, as the order <
based on R was surely used to generate ≺ in the algorithm, and ◁ based on R is
one of its linear extensions. The representation R also has to have its L-shapes
extended at least as far as in the algorithm so that the required shapes intersect.
Therefore the algorithm must find an L-representation.

Next, we analyze the time complexity of the algorithm. The outer for loop
has to exhaust every linear order on V . As |V | = n, there are n! distinct linear
orders. During the inner loop, we first generate the poset, which can be done in
time O(n4). Then, we try every linear extension of the poset, there are n! linear
extensions in the worst case. Finally, with a given extension we can extend the
line segments and check the graph in time O(n2). This yields the time complexity
O((n!)2n2).
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3. Other problems on the classes
In this chapter we investigate other decision problems restricted to L-graphs or
grounded L-graphs. More precisely, we show a polynomial-time algorithm for
Clique both for L-graphs and grounded L-graphs. At the same time, we show
NP-completeness of the problems Independent Set and 3-Coloring on L-
graphs. Moreover, we discuss possible approximation algorithms for Coloring
on grounded L-graphs.

3.1 Clique
As we mentioned in the first chapter, it is already known that Clique is in P for
{L, L}-graphs [21]. However, the restriction of the set of shapes makes it possible
to reduce the time complexity.

The provided algorithm uses a previously known algorithm for Clique on
permutation graphs.

Definition 13 (Permutation graph). A permutation graph is an intersection
graph of line segments whose endpoints lie at two parallel lines.

Equivalently, a permutation graph G is a graph on n vertices induced by a
permutation π : [n] → [n] as follows: Gπ = ([n], {{i, j} : i, j ∈ [n] ∧ i < j ∧ π(i) >
π(j)}).

Theorem 9 (Clique on permutation graphs [30]). There exists an algorithm
solving Clique on permutation with time complexity O(n log n).

Proof. Given the permutation representation of G, we work with π(1), . . . , π(n)
as a finite sequence. The maximum clique of G then corresponds to the longest
decreasing subsequence of π.

Such longest decreasing subsequence can be found in time O(n log n) [31].

Theorem 10 (Clique on grounded L-graphs). There exists an algorithm solving
Clique when restricted to grounded L-graphs with time complexity O(n2 log n)
when given a geometric representation.

Proof. For every clique, there exists a rightmost vertex, and all horizontal line
segments of the vertices of the clique must extend farther to the right than the
vertical line segment of the right-most vertex.

This motivates the following algorithm: For every vertex v, we take the graph
induced by the vertices whose horizontal lines intersect the vertical line segment
of v – this corresponds to the choice of v as the rightmost vertex. This graph
is a permutation graph on k vertices, for which we are able to find a maximum
clique in time O(k log k) by Theorem 9. Then, we take the maximum of these
maximum cliques to be the result.

Given that there are n possible choices for the right-most vertex and in the
induced graph, there may be n − 1 vertices, the worst-case time complexity is
O(n2 log n)
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Theorem 11 (Clique on L-graphs). There exists an algorithm solving Clique
when restricted to L-graphs with time complexity O(n3 log n) when given a geo-
metric representation.

Proof. We will proceed similarly as with grounded L-graphs. For every clique,
there exists a topmost vertex, and the vertical segments of the clique’s vertices
must extend higher than the horizontal line segment of the top-most vertex.

Hence, for every vertex v, we create the graph induced by the vertices whose
vertical line segments intersect the horizontal line segment of v. This graph is a
grounded L-graph. For such graphs, there exists an algorithm for Clique running
in time O(n2 log n) by Theorem 10. We take the maximum of the maximum
cliques as the result.

Similarly as in the previous theorem, we have n choices for the top-most
vertex, which leaves us with a graph on at most n − 1 vertices, so our total time
complexity is O(n3 log n).

3.2 Independent Set
The situation with Independent Set is similar. We already know that restric-
tion to B0-VPG (or 2-DIR) graphs still results in a problem which is NP-complete.

We present an alternative proof on NP-completeness based on a reduction
from the decision problem Planar Monotone 3-SAT.

Definition 14 (Monotone rectilinear representation). Let φ be a CNF formula
with a set of clauses C over a set of variables X such that

1. every clause contains at most three variables,

2. each clause contains only positive literals or only negative literals,

3. the bipartite graph Gφ = (X ∪ C, {{x, c} : x ∈ c ∈ C ∨ (¬x) ∈ c ∈ C}) is
planar.

The formula’s monotone rectilinear representation is a planar drawing of the
graph Gφ such that

• all variables and clauses are drawn as rectangles,

• the edges connecting the variables to their clauses are vertical segments,

• the drawing is crossing-free,

• all positive clauses are drawn above the variables,

• all negative clauses are drawn below the variables,

• there exists a horizontal line which intersects all rectangles corresponding
to the variables.

Definition 15 (Planar Monotone Rectilinear 3-SAT).
Planar Monotone Rectilinear 3-SAT
Instance: A monotone rectilinear representation of a CNF formula φ.
Question: Is φ satisfiable?
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Theorem 12 (de Berg & Khosravi, 2010 [24]). The decision problem Planar
Monotone Rectilinear 3-SAT is NP-complete.

Theorem 13 (Independent Set on L-graphs). The decision problem Inde-
pendent Set is NP-complete when restricted to L-graphs even when given a
geometric representation.

Proof. It is easy to see the problem is in NP – the certificate is the set of vertices
in the independent set.

To show that the problem is NP-hard, we will reduce from Planar Mono-
tone Rectilinear 3-SAT. We are given the monotone rectilinear representa-
tion of the formula. Without loss of generality, we may assume that for each
variable, all the line segments connecting its rectangle to the rectangles repre-
senting its positive occurrences in clauses lie on the same vertical line, and the
same applies for the negative occurrences.

Moreover, the line for negative instances is to the right from the line of the
positive instances and no two rectangles representing a positive clause containing
the same variable have the same y-coordinate. Otherwise, we perturb them.

The reduction is the same as in the case of general Independent Set. For
a formula φ = ⋀︁m

i=1 Ci, we create graph Gφ = (V, E). The graph Gφ has a vertex
for each positive or negative occurrence of a variable in a clause. For every clause
Ci = ⋁︁k

j=1 li,j, we connect all of its occurrences of variables with edges. Then, for
every two literals which represent the same variable, with one being the negation
of the other, we add an edge between them. This ensures we may never choose
both xi and ¬xi as the variables of the independent set.

This can also be represented as an L-graph, as shown in Figures 3.1, 3.2 and
3.3.

Finally, we show that the formula φ is satisfiable if and only if the graph Gφ

has an independent set of size m.
For the forward implication, let φ be a satisfiable formula with a satisfying

assignment a. As the formula is satisfied by a, for every clause there exists at
least one true literal. We may choose these literals to represent the independent
set (if there are more true literals in a single clause, we choose one arbitrarily),
as it cannot happen that we would choose two literals connected by an edge.
There are two types of edges: edges between literals in the same clause, which
are handled by choosing exactly one literal per clause, and edges between positive
and negative instances of the same variable, of which we can only choose one, as
precisely one of the instances has true value.

For the converse, let there exist an independent set I ⊂ V of size m. This
means that there exists a single variable which was chosen in every clause. Take
all variables vi such that there exists a literal lj,k ∈ I such that lj,k = vi. We
will set these variables to ‘true’ and the rest (including vi such that lj,k ∈ I and
lj,k = ¬vi) to ‘false’. It may not happen that this would produce an unsatisfying
assignment, as it cannot happen that there would be two literals, one the negation
of the other, as they would not form an independent set. Therefore, we have a
satisfying assignment and the formula is satisfiable.
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li,2

li,3

li,1

¬li,1 ¬li,2 ¬li,3

Figure 3.1: The positive clause gadget for Independent Set

¬li,1 ¬li,2 ¬li,3

Figure 3.2: The negative clause gadget for Independent Set
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x1 x2 x3 x4 x5

x1 ∨ x2

x2 ∨ x3 ∨ x4

¬x1 ∨ ¬x3 ∨ ¬x4

x1 ∨ x4 ∨ x5

¬x1 ∨ ¬x3 ∨ ¬x4

¬x2 ∨ ¬x3

x1 ∨ x2

x2 ∨ x3 ∨ x4

x1 ∨ x4 ∨ x5

¬x2 ∨ ¬x3

Figure 3.3: An example of reduction from Planar Monotone Rectilinear
3-SAT to Independent Set
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3.3 Coloring

3.3.1 NP-completeness on L-graphs
Theorem 14 (3-Coloring L-graphs). The decision problem 3-Coloring is
NP-complete when restricted to L-graphs even when given a geometric represen-
tation.

Proof. We will show that Planar Monotone Rectilinear 3-SAT reduces
to 3-Coloring on L-graphs. Given an instance of Planar Monotone Rec-
tilinear 3-SAT, we will construct an instance of 3-Coloring as follows.

As with the reduction to Independent Set, we may assume that all line
segments from the rectangles representing positive instances of variables lie on a
single line for each variable, the same applies for the negative instances and the
line for negative instances is to the right from the line of the positive instances.

For every variable xi, we create two vertices xi, xi joined by an edge, all
connected to another vertex denoted by B. The vertex B also forms a triangle
with vertices T, F . The colors of these two vertices then correspond to the truth
values true and false respectively. We also add another vertex T ′ which forms a
triangle with the vertices B, F .

Every positive clause (i.e. above the line) corresponds to a positive clause
gadget, while every negative clause corresponds to a negative clause gadget. These
gadgets are shown in Figures 3.4, 3.5.

Next, we need to connect the clause gadgets. Every heightwise maximal pos-
itive clause gadget’s two vertices denoted by ¬T in the figure are both connected
by an edge to the vertex T . At the same time, we add the two edges between
the vertex T ′ and the two vertices denoted by ¬T in every heightwise minimal
negative clause gadget. If there are k ≥ 2 clause gadgets between the vertices a, b
or b, c in the representation, then we create another vertex T̂ that forms a triangle
with one of ¬T , ˆ︃¬T and add the vertices ¬T of each clause as the neighbors of
T̂ . For all other clause gadgets, we identify its vertices of ¬T with one of ¬T , ˆ︃¬T
based on the position of the clause gadget with respect to the clause gadget above
it.

An example of the reduction can be seen in Figure 3.7.
Next, we show that a 3-coloring of a clause gadget exists if and only if the

clause is satisfied (i.e. at least one of its variables has a color which is the same
as the color of the vertex T ).

From now on, we will use T , F and B to denote the colors of vertices T , F
and B.

The gadgets use two OR gadgets (Fig. 3.6) to join the colors. If both s, t
are colored F , then the vertices q, r must be colored using colors T and B, hence
vertex p must colored F . At the same time, if at least one of s, t is not colored
F , then we can use colors F and B and the vertex p can be colored T .

First, we assume that the 3-coloring exists. In every such coloring, the color
of the vertex a ∨ b ∨ c must be T . This implies that at least one of the vertices c
or a ∨ c are not colored F , and therefore at least one of the vertices a, b, c is not
colored F . Because all vertices representing variables can only be colored T or
F , it simply follows that the clause is satisfied.
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a b c

a ∨ b ∨ c

ˆ︃¬T¬T

¬T

Figure 3.4: The positive clause gadget for 3-Coloring

a b c¬T ˆ︃¬T

a ∨ b ∨ c

¬T

Figure 3.5: The negative clause gadget for 3-Coloring

For the converse, if the clause is satisfied, then we can color the variables by
their truth values in the satisfying assignment: a true variable will be colored T ,
while a false variable will be colored F . As the clause is satisfied, then at least
one variable is colored by T , and by the argument above, the vertex a ∨ b ∨ c can
be colored T .

As the argument does not change for the construction as a whole, we conclude
that 3-Coloring L-graphs is NP-complete.

Theorem 15 (3-Coloring triangle-free L-graphs). The decision problem 3-
Coloring is NP-complete when restricted to triangle-free L-graphs even when
given a geometric representation.

Proof. We use the same reduction as in the case of general 3-Coloring and
transform every vertex into a triangle-free circle graph with two vertices m, n
which have the same color in every 3-coloring of the graph. Then all vertices which
intersect the original L-shape’s horizontal line segment are now the neighbors
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c

b

a

¬T

¬T ˆ︃¬T

c

ba

a ∨ b ∨ c

q

s t

r

p

Figure 3.6: The clause gadget, the union of two OR gadgets, and a single OR
gadget

x1 x2 x3 x4 x5

x1 ∨ x2

x2 ∨ x3 ∨ x4

¬x1 ∨ ¬x3 ∨ ¬x4

x1 ∨ x4 ∨ x5

¬x2 ∨ ¬x3

x1 ∨ x2

x2 ∨ x3 ∨ x4

¬x1 ∨ ¬x3 ∨ ¬x4

¬x2 ∨ ¬x3

x1 ∨ x4 ∨ x5

B

T

F

T ′

Figure 3.7: An example of the 3-Coloring reduction
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n

m

Figure 3.8: A 4-colorable circle graph and its 3-colorable circle subgraph created
by removing the edge {m, n}

of the vertex n and all vertices intersecting the original L-shape’s vertical line
segment are the neighbors of the vertex m. As the subgraph is a circle graph,
it has a representation using only L-shapes with both of their endpoints on a
circle. Therefore we can arbitrarily extend the horizontal line segment of n and
the vertical line segment of m.

We construct the subgraph in two steps. First, we take a triangle-free circle
graph H which needs four colors. In our case, H is the left part of Figure 3.8.
Then, we remove the edge {m, n} to create the graph H ′ so that it is still a circle
graph and the graph is now 3-colorable, as in the right part of Figure 3.8. We
observe that vertices m and n must have the same color in every coloring of the
graph H ′ – if there existed a 3-coloring c of H ′ so that c(m) ̸= c(n), c would also
be a 3-coloring of the graph H, which is a contradiction, as we know that H is
not 3-colorable.

The reduction then works the same and is still polynomial, as every vertex is
now extended into 17 vertices.

3.3.2 Approximation on grounded L-graphs
As Coloring is NP-complete on circle graphs [25], we also obtain NP-complete-
ness on grounded L-graphs. Therefore, it is natural to ask if there exist any
approximation algorithms with a constant approximation ratio. The linearity of
the natural order of the vertices in representation seems to indicate that First
Fit could be a reasonable strategy. It is easy to see that the First Fit algorithm
finds a coloring with at most ∆ + 1 colors, where ∆ is the maximum degree of a
vertex in the colored graph.

However, it turns out that we cannot do any better – there exist graphs which
attain the bound.

Lemma 16. For every k ≥ 2 there exists a bipartite graph Gk with n = 2k−1

vertices, a maximum degree ∆ ∈ Ω(log n) and a grounded L-representation such
that the First Fit approach uses k = ∆ colors.

Proof. We construct the graph inductively: it is helpful to also create G1, which
simply contains a single vertex (and can be colored using a single color). As for
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G1G2G3G4

Figure 3.9: The construction of G5 in Lemma 16

the base case k = 2, we construct such a graph using two vertices connected to
each other.

Now we proceed with the induction step – assume we already constructed Gi

for every i ∈ [k − 1]. Then we construct Gk by drawing Gl for l = k − 1 to l = 1
left-to-right so that Gl is below Gl−1 and the vertex of Gl colored by l can be
extended arbitrarily far to the right without intersecting any other vertex from
Gp : p < l. Then we extend the “color-maximizing” vertices and intersect them
all with a new vertex, which will be colored by color k.

In total, we use 1 + ∑︁k−1
l=1 2l−1 = 1 + 2k−1 − 1 = 2k−1 vertices.

It is not difficult to see that sometimes, we do not reuse colors even though
we could – namely, if we are currently trying to color a vertex v, which joins two
or more previously disconnected components. As an example, let us have two
components where one has two neighbors of v with colors 1 and 3 and the other
has also two neighbors with colors 2 and 4. In this case, it would make sense to
greedily permute the colors in one of the classes so that the neighbors of v only
use 2 colors.

The main tool we use is the construction of connected components so far. For
every vertex, we look at the connected components it intersects (there exists at
most one component which is not connected to the vertex completely – the lowest
one). Now, for every component, we look at the colors which have been used
already by the intersected vertices and permute them so that the k used colors
are now numbered 1, . . . , k. Then, we use the lowest available color number.

Algorithm 2 (Permuted First Fit). Input: a grounded L-graph with vertices
v1, . . . , vn ordered left-to-right.

Output: coloring of the vertices.

1. For i = 1 to n:

(a) If vi does not intersect any other vertex, create a new component and
color vi with color 1

(b) If vi intersects precisely one component, choose vi’s color according to
the First Fit scheme (take the lowest color which is not used by vi’s
neighbors)

(c) Otherwise, for every component vi intersects, permute the colors of
the component so that the k colors of vertices which have a nonempty
intersection with vi are numbered 1, . . . , k, then color vi with color
k + 1 and create a new component by joining the components and
adding vi
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Let us remark that while First Fit works as an online algorithm, Permuted
First Fit does not. In online coloring algorithms, the color of any given vertex
cannot change, however such change may happen in the Permuted First Fist.

On the other hand, this would pose no issue if we lowered our expectations
on the online algorithm. If it was not necessary to report the color of the vertex,
only the vertices with the same color, this would still be an online algorithm, but
for a different problem.

However, it turns out that the modification does not help much.

Lemma 17. For every k ≥ 2 there exists a tripartite graph G′
k with n = 1 + 2k−1

vertices, a maximum degree ∆ ∈ Ω(log n) and a grounded L-representation such
that the Permuted First Fit approach uses k = ∆ colors.

Proof. We will slightly modify the graph Gk from Lemma 16 by adding a new
vertex v′, which lies above all other vertices and intersects them all.

It is easy to see that the graph is tripartite, as it was bipartite and we have
added a single vertex, which cannot increase the chromatic number by more than
one.

At the same time, the maximum degree obviously increases by one. By adding
the vertex, we have successfully removed any possibility of permuting the vertices,
as all vertices are in the same component as v′. This means we use the same
number of colors as if we used First Fit on G′

k − v′ and v′ has to use another
color, from which we obtain that we use ∆ − 1 + 1 colors.
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Conclusion
In the thesis we studied various decision problems restricted to three classes of
intersection graphs: L-graphs, grounded L-graphs, and {L, L}-graphs. The first
problem we discussed was Recognition, precisely L-graph recognition and
{L, L}-graph recognition. In both cases we proved that the problem is NP-
complete answering an open question of Felsner et al.[11]. Next, we focused on
Clique on L-graphs and grounded L-graphs and provided polynomial algorithms
for both classes with better time complexity than the algorithms by Middendorf
and Pfeiffer [21]. In the case of Independent Set, we showed that it is NP-
complete on L-graphs. Finally, we showed that 3-Coloring is NP-complete
even on triangle-free L-graphs and discussed possible approximation algorithms
for Coloring of grounded L-graphs.

There are still many open questions surrounding these problems. We will fo-
cus on three, which are closely related. First, is it possible to use the approach
used in proving NP-completeness of L-graph recognition and {L, L}-graph
recognition to show NP-completeness of other subclasses of Bk-VPG graphs?
For example, the case of {⊔}-graphs seems to have an issue, where we need a
pin-like construction, which works in two separate “modes”: either it enables the
main vertex to arbitrarily extend its horizontal segment and both of its vertical
segments are bounded in the “pin heads” or it enables the main vertex to arbi-
trarily extend precisely one of the two vertical segments and has both of its bends
inside a single “pin head”.

Second, what is the complexity of Grounded L-graph recognition? Both
a polynomial algorithm and the NP-completeness of the problem would be inter-
esting, as the polynomial algorithm could possibly be extended to some other
forbidden vertex orders and the same could apply for the polynomial reduction.

Third, what is the complexity of 3-Coloring outerstring graphs or grounded
L-graphs? Both L-graphs and string graphs still retain NP-completeness of 3-
Coloring and either result might shine a light on strength of the additional
restriction of all shapes touching a line with one of their endpoints.
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