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Introduction
It is common for especially Internet users to have to produce text in a foreign
language where they are unable to verify the quality of the proposed machine
translation. The issue at hand is referred to as “outbound translation,” which is
a complement to gisting, also known as inbound translation.

Both in gisting and outbound translation, a message is transferred between
an author and a recipient. The user has sufficient knowledge of only one of the
languages. In outbound translation, the user is responsible for creating correct
messages, while in gisting, their responsibility is to interpret them correctly. An
example of outbound translation may be filling out forms in a foreign language,
describing an issue to technical support, or ordering food in a foreign restaurant.
An example of gisting is to understand Internet articles, presentations correctly,
or to read restaurant menus, all in a foreign language.

When translating to foreign languages, users cooperate with machine trans-
lation tools to produce the best result. Many users also use machine translation
to verify their own translation, or at least to affirm, that the machine translation
is valid via backward translation. Machine translation systems advanced con-
siderably in the last decade due to breakthroughs in statistical and later neural
machine translation models but they still make often mistakes. Thankfully, they
are of a vastly different kind than the mistakes people make when translating
texts and so are detectable.

Outbound translation is a use case, which requires some confirmation of the
translation quality. Users translating to languages which they do not master
enough to validate the translation could use some additional system to verify that
the machine translation output is valid and assure them. This system may be
the missing connection necessary for establishing trust of the user to the machine
translator. We hope that MT systems will achieve perfection, but we do not
expect this to happen in the foreseeable future and especially for all possible
language pairs.

The issue of outbound translation has not yet been fully explored, yet there
exists much research on related problems, such as quality estimation and bitext
alignment, which has been productized by translation companies for minimizing
post-editing costs and by other NLP companies for robust information retrieval.

The proposed tool, Ptakopět, aims to showcase how such a product intended
to help with outbound translation may function. It provides the coveted user ex-
perience by several quality estimation pipelines and backward translation, which
we hope is served in an unobtrusive, yet informative way.

We follow up with an experiment whose objective is to examine different
phenomena and strategies users use with the help of Ptakopět when they are
faced with a task involving outbound translation. Such strategies are then further
examined based on their performance (relevance and quality of produced foreign
texts). This experiment also gives us valuable feedback from both the user’s and
experiment designer’s perspective. This is very beneficial to us, as we can improve
the system for future experiments with Ptakopět.
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Thesis overview
This thesis is divided into five chapters. The first one introduces terminology
and issues related to machine translation, quality estimation, bitext alignment
and source complexity, as well as relevant areas of research.

The second chapter covers the development and deployment of two previous
versions of Ptakopět (old-1 and old-2) as well as what we aimed to improve and
what we learned from them. We then mention different approaches to outbound
translation and what we think are their positives and negatives. We also briefly
discuss the industry adoption of quality estimation systems.

The next chapter shows the behaviour of Ptakopět from the user perspective,
together with screenshots and use case descriptions.

Data preparation, experiment setup, frontend, and backend implementation,
quality estimation, and bitext alignment model and deployment and usage of the
current version of Ptakopět is the focus of the fourth chapter.

In the fifth chapter, we propose, prepare, realize, and evaluate an experiment
on the strategies users take when faced with outbound translation with the help
provided by Ptakopět.

At the end of this thesis, we conclude and summarize both the Ptakopět
implementation and the experiment interpretation with notes on future work in
the area of outbound translation.
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1. Background
This chapter aims to provide a brief overview of the available tools related to out-
bound translation, namely Alignment, Machine translation, Quality estimation
and Source complexity.

1.1 Alignment
The alignment of parts of texts in parallel corpora is a common task in NLP and
especially in tasks related to statistical machine translation. One of their use
cases is creating resources used by MT systems for training. Usually, paragraph,
sentence, phrase, and word alignment levels are considered. The second one and
the last one are the most important for quality estimation.

A comprehensive source of alignment data is OPUS (Tiedemann, 2012), which
contains documents automatically aligned both on the sentence-level and word-
level.

1.1.1 Sentence alignment
The task of sentence alignment is to match two groups of sentences in parallel data
(usually in two languages), for example in two paragraphs or documents, if and
only if they are each other’s translations. A classical approach is unsupervised. In
this case, the problem can be approached with a dynamic programming algorithm
described by Gale and Church (1993). Another approach is to view it as a machine
learning problem, as summarized in Yu et al. (2012). Most of the approaches rely
in some way on comparing the number of either, characters, words, or both in a
sentence. The main idea is that a sentence’s length correlates with the length of
its translated counterpart.

Advances in deep neural models led to novel approaches to sentence alignment.
As reported in Zweigenbaum et al. (2017), they achieve the state of the art results.
However, such models are not yet readily available for deployment.

Given a sentence alignment and a gold standard, the recall, precision and
F-measure are the most common metrics.

Bleualign

Bleualign1 is a sentence alignment tool, which apart from the source and the
target corpora requires machine translation of at least one of the texts. The
alignment is then performed based on the similarity between two texts (in the
target language) in the same sentence with a modified BLEU score. This approach
was proposed in Sennrich and Volk (2011).

1github.com/rsennrich/bleualign
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Yalign

Yalign2 is an open-source product of the Machinalis company. It takes a dynamic
programming approach to sentence alignment, using a sentence similarity metric,
which in turn utilizes SVM to tell whether a pair of sentences are each other’s
translations.

Hunalign

Hunalign3 uses the classical algorithm based on sentence-length information de-
scribed in Gale and Church (1993). We found it to be more robust and usable
compared to other publicly available sentence alignment tools.

1.1.2 Word alignment

Figure 1.1: Depiction of word alignment of the third sentence in WMT18 QE
development data (English to German)”

Word alignment is the task of matching two groups of words in a bitext
sentence if and only if they are each other’s translations. An example4 of word
alignment between an English sentence and translated German sentence can be
seen in Figure 1.1. Word alignment usually follows after sentence alignment.
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Figure 1.2: Bitext matrix of English to German word alignment

Sometimes the word alignment is depicted as in Figure 1.2, which is known
as a bitext matrix. There is a point on Ai,j if and only if the i−th source word

2github.com/machinalis/yalign
3github.com/danielvarga/hunalign
4For the purposes of displaying word-alignment in the style of Figure 1.1 and Figure 1.3,

we wrote a small web-based tool SlowAlign. It is publicly available at vilda.net/s/slowalign.
The source code is both hosted at github.com/zouharvi/SlowAlign and attached to this thesis.
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is aligned to the j−th target word. Diagonal bitext alignment would correspond
to a bitext matrix with points on its diagonal (a geometrical diagonal for non-
square matrices). Sometimes it is impossible to do word alignment. Example
of this are idiomatic phrases, whose translations can be idiomatic phrases in the
target language and then there is no explicit mapping between individual words.
We show such an example of only a partial matching in Figure 1.3. In this case
using phrase-level alignment may be more suitable, as explored in Bojar and
Prokopová (2006). However, for most cases, we are able to construct meaningful
word-level alignment.

Figure 1.3: A partial alignment of an English idiom and its corresponding Ger-
man translation.

For a long time, increasingly complex IBM Alignment Models 1 to 6 domi-
nated the area of word-level alignment.5 These models are a coproduct of sta-
tistical machine translation models. Summary of the development of IBM word
alignment models can be found in the second chapter of Cuřı́n (2006).

Similarly to sentence alignment, research in the area of neural networks al-
lowed for state-of-the-art results. An example of this can be found in Legrand
et al. (2016), where the authors use the dot product of windows from two con-
volutional layers (source and target) as the alignment score. As far as we know,
none of the neural models has been made into a deployable word alignment tool.
There are however hints of progress, as word alignment can be extracted from
neural attention based machine translation systems, shown in Nizza6 and Neural
Machine Translation.7

The task of word alignment is formalized in Mihalcea and Pedersen (2003)
together with four standard metrics: precision, recall, F-measure and quality of
word alignment.

5statmt.org/survey/Topic/IBMModels
6github.com/fstahlberg/nizza
7github.com/tilde-nlp/neural-machine-translation-tools
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GIZA, GIZA++, MGIZA++, PGIZA++

The GIZA word alignment collection is a standard used for this task. The first
version, GIZA, was part of the EGYPT SMT toolkit and was later extended to
GIZA++ and later became part of the Moses SMT toolkit.8 It incorporates IBM
Model 4, IBM Model 5 and Hidden Markov Models. The support for multithread-
ing and clusters was later added, resulting in MGIZA++9 and PGIZA++10, re-
spectively.

In addition to word alignment, all of the ++ versions can perform some rudi-
mentary form of sentence alignment.

Fast align

Fast align (Dyer et al., 2013) is a word aligner based on IBM Alignment Model 2,
with improvements on this model’s over-parametrization issues. It outperforms
the commonly used IBM Alignment Model 4, is easy to build and use and has
low resource requirements (both memory and computational time). It is often
used as a baseline solution.

Eflomal

Eflomal11 is an improved version of Efmaral presented in Östling and Tiedemann
(2016) together with comparison to the other two-word alignment systems. It is
based on Bayesian alignment models with Markov Chain Monte Carlo inference.
It is currently the state-of-the-art in word alignment.

1.2 Machine translation
The task of machine translation is to translate text from one language to another.
In this context, it is strictly automatic and should not be confused with machine-
aided human translation. This is an extensive topic and beyond the scope of this
thesis. We thus provide only a very brief overview of the evolution and main
approaches.

1.2.1 Rule based (RBMT)
First attempts for machine translation were made with rule-based systems, with
either direct, syntactic or semantic transfer, which corresponds to steps described
by the Vauquois triangle.12 Models based on the manipulation of morphological,
syntactic and semantic structures are known as transfer based. They require
linguistic knowledge of both source and target languages to be produced. We
list examples of RBMT systems with short descriptions. Most of them became
obsolete with the advent of statistical machine translation systems.

8statmt.org/moses/
9github.com/moses-smt/mgiza

10www.cs.cmu.edu/q̃ing/giza/
11github.com/robertostling/eflomal
12mttalks.ufal.ms.mff.cuni.cz/index.php?title=Intro#Types of MT systems
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• Ruslan - Created for Czech-Russian translation (Hajič, 1987).
• APAČ - Created for Czech-English translation (Kirschner and Rosen, 1989).
• METEO - Used for 20 years for English-French Canada weather reports

translation (Lawson, 1982).
• SYSTRAN - Developed by one of the oldest companies providing MT. It

supports many language pairs and transitioned to SMT and NMT later
(Toma, 1977).

1.2.2 Statistical (SMT)
Statistical machine translation models rely on a great amount of parallel data.
They are usually modelled with two components: translation model and language
model. This is shown in Equation 1.1 which shows the common application of
the Bayes theorem for best translation t given a source sentence s. The model
is split into the translation model p(s|t), evaluating translation relevance, and
language model p(t), which describes how well the proposed target sentence fits
the language. The motivation is that monolingual data, used by the language
model, are much easier to obtain than bilingual ones.

argmaxt p(t|s) = argmaxt

p(t) · p(s|t)
p(s) = argmaxt p(s|t) · p(t) (1.1)

The language model is usually modelled with n-grams. Its use made the
translations more fluent as opposed to previous approaches.

SMT was first word-based, meaning words were manipulated and strung to-
gether to form a sentence. An example of this are the IBM models (Brown et al.,
1993). More modern systems were phrase-based (documented in (Koehn et al.,
2003)), meaning whole sequences of words were manipulated and composed to
form a sentence. This approach was widely adopted in the industry. We list
examples of MT systems which are or were SMT based.

• Google Translate - Is one of the most known publicly available MT system.13

It started transitioning to NMT in 2016.14

• Bing Translator - Developed by Microsoft and is another widely used pub-
licly available MT. It started transitioning to NMT in 2016.15

• SYSTRAN - Was SMT, but partially transitioned to NMT in 2016.16

1.2.3 Neural (NMT)
In the past decade, NMT systems became the state of the art and thus widely
used. There are two main cornerstones of NMT: encoder-decoder and (self-) at-
tention. They both rely on recent advances in representation learning.

13blog.google/products/translate/ten-years-of-google-translate/
14blog.google/products/translate/found-translation-more-accurate-fluent-sentences-google-

translate/
15microsoft.com/en-us/translator/business/machine-translation/
16kv-emptypages.blogspot.com/2016/12/systrans-continuing-nmt-evolution.html
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Embedding

One possibility to represent words in memory is using one hot encoding. Given
a dictionary D, the i-th word of the dictionary would be represented by a vector
of size |D| of zeros except for one 1 in the i-th place. This is far from the
optimal approach, and there are many associated issues, such as data sparsity.
In this encoding, each word form would be equally distant from each other. So
the difference between the embeddings of birds and bird would be the same as
between the embeddings of birds and refrigerated.

An alternative to this is to make a neural network learn a word representation.
In this context, the representation is named word embedding. Word2Vec (Mikolov
et al., 2013) are types of networks, which can create such word embeddings out of
monolingual data in an unsupervised way. The authors propose two architectures.
The first one is Continuous Bag-Of-Words, which tries to predict the current
word based on the context, and the other is Skip-Gram, which tries to predict
the context based on the current word.

Word embeddings are able to capture relationships between embedded words.
So word embeddings for birds and bird would be closer together than the word
embeddings for birds and refrigerated.

Another improvement was the introduction of subword units and relevant
training algorithms, such as Byte Pair Encoding (Sennrich et al., 2016). Subword
units are used to deal with unseen and rare words. If a word is too rare, it will
not get its own word embedding but will be split into multiple subword units.
This is intuitive, as humans are able to understand new words by analyzing their
morphemes.

Encoder-Decoder

The encoder-decoder architecture is the standard approach for sequence to se-
quence tasks. In this case, it is a sequence of word embeddings, which is passed
to multi-level bidirectional RNN, composed of either Long Short Term Memory
(LSTM) or Gated Recurrent Unit (GRU). The result is called the hidden state,
and it is a fixed-size vector, which is passed between the cells. The hidden state
represents the whole input sentence. To get the translated output, the hidden
state is unrolled with the same mechanism, but this time the probabilities of
all possible output subword units are produced. A search algorithm, possibly a
greedy one, selects one of them and the decoder moves to the next step.

The actual recurrent neural networks used for machine translation are made
more complex, such as with the use of multiple layers of encoders.

Attention

One of the deficiencies of the purely encoder-decoder approach is that both of
the RNN components only have direct access to the immediately preceding word.
This is a problem in case the translation of the current word is dependent on a
word, which was either encountered (source) or generated (target) several steps
back. Such distant word is embedded in the hidden state (fixed size vector), but
it may be too difficult to extract its features.
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A novel approach was taken by Bahdanau et al. (2014). They proposed a
system by which a current (to be produced) word can reference the words the
translation is dependent on. Such referencing is called the attention mechanism
and there are two types usually distinguished: global attention and local atten-
tion. This mechanism is employed only in the decoder part and the attention
mechanism adds a context vector to the word translation computation.

Global attention computes the context from all of the source words using a
hidden alignment vector, which supplies weights for each word. Local attention
focuses on a window of a fixed size around the aligned source word.

Popular MT models such as Transformer (Vaswani et al., 2017) or BERT
(Devlin et al., 2018) make use of attention mechanisms and add other improve-
ments, such as multi-head self-attention. As is apparent from the transition in
the industry standard in the listing in Section 1.2.2, NMT together with attention
mechanisms outperforms SMT and it is now the state of the art and widely used.

1.2.4 Evaluation
Automatic machine translation evaluation assigns scores to the produced machine
translations, given also the source text and reference translation. The goal is to
find such a metric, that would correlate the most with human annotations. This
is not an easy task to automate, as the machine translation can be vastly different
from the reference translation, but still be correct. Alternatively, it can be very
close to the reference translation, but be very ungrammatical or can distort the
meaning seriously.

Many other metrics have been proposed and this area of research is still active.
The metrics shared task is part of WMT (Ma et al., 2019).

BLEU

Bilingual Evaluation Understudy (Papineni et al., 2002) is the most common
metric for evaluation of MT systems. It is based on searching for n-grams in the
translated sentence, which are also in the reference translation. The geometric
mean of unigram, bigram, trigram and quadrigram precision is calculated and
the score computed as in the formula in Equation (1.2).

The first part of the product is called the brevity penalty. It is there to make
sure that the MT system does not game the metric by outputting for example
only one quadrigram, which it is very sure about. In this case all of the precisions
would be close to 1, but human annotators would not consider this to be a good
translation.

BLEU = exp
(︂

min(1, 1 − output length
reference length)

)︂
·

(︂ 4∏︂
i=1

preci

)︂ 1
4 (1.2)

METEOR

Metric for Evaluation of Translation with Explicit ORdering aims to fix some
disadvantages of BLEU. In contrast to BLEU, it considers only unigrams and
not bigrams, trigrams, nor quadrigrams. It uses stemming and synonyms and
tries to create mappings between the translated and reference sentence. It has
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been shown (Banerjee and Lavie, 2005) that it correlates better with the human
judgement than BLEU.

Round trip translation

Also called backward translation, round trip translation is an idea of evaluating
an MT system without reference. It is based on translating the source sentence
to a foreign language and then back and measuring BLEU score between source
and backward translated text. In (Somers, 2005) it was demonstrated, that RTT
does not correlate with the quality of MT systems in any statistically meaningful
way.

1.3 Quality estimation
As opposed to machine translation evaluation, which uses source text and target
and reference translations to evaluate the output, the objective of quality estima-
tion (also known as confidence estimation) is to predict the translation quality
without reference translations.

Machine translation quality estimation aims to provide hints as to whether a
produced machine translation is good or bad. Quality estimation shared task was
part of WMT since 201217 and was forked from automatic machine translation
evaluation shared task, which was part of WMT since 200818 and in 2012 renamed
to metrics task. The results of the latest findings of the WMT quality estimation
shared task 2019 are discussed in (Fonseca et al., 2019).

The input of metrics task, as defined by WMT, is the translation together
with human reference translations. It is performed usually on sentence-level and
system-level. In contrast, the input for quality estimation system is the source
text and the translated text. Quality estimation is then performed on word-level,
phrase-level and sentence-level.

For document-level quality estimation, the document is either to be assigned
a score, or the system should report spans, which contain translation errors. The
quality of sentence-level quality estimation is measured in HTER (edit-distance
metrics).

The output of word-level quality estimation is usually a list of probabilities
for each token in the target sentence. In WMT, the format is only binary values
for each token. For word-level quality estimation models, to encapsulate missing
words, tokens for gap were added. Thus each space adjoining a target token can
also be classified as OK or BAD, denoting a missing word in the latter case. For N
target tokens, 2 · N + 1 binary values should be generated. This is illustrated in
Figure 1.4.

17statmt.org/wmt12/quality-estimation-task.html
18statmt.org/wmt08/shared-evaluation-task.html
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use the Video Properties dialog box to change video properties for FLV Video files .

im Dialogfeld " Videoeigenschaften " können Sie Videoeigenschaften für FLV Video-Dateien ändern .

OK OK OK OK OK OK OK OK OK OK BAD OK OK

Source sentence:

Machine translated sentence:

Quality estimation for tokens:

Quality estimation for missing words:

OK OK OK OK OKOK OK BAD OK OK OK OK OKOK

Final output:
OK OK OK OK OK OK OK OK OK OK OK OK OK OK BAD OK OK OK OK OK OK BAD OK OK OK OK OK

Figure 1.4: Quality estimation tags for tokens and gaps on German sentence
translated from English (from WMT19 quality estimation shared task)

1.3.1 QE from machine translation models
Some machine learning systems, especially classifiers, are able to report also the
confidence in their output. To our knowledge, quality estimation from the ma-
chine translation models themselves is used only in combination with another QE
system which use this self-reported confidence as one of the features.

1.3.2 QuEst++
The main pipeline of QuEst++ by Specia et al. (2015) consists of feature extrac-
tion and machine learning prediction. This system first extracts features from the
input data and then runs a machine learning algorithm for example with scipy’s
LarsCV (Cross-validated Lasso, using the LARS algorithm) or Conditional Ran-
dom Fields suite by Okazaki (2007).

A large part of their work is devoted to feature exploration and fine-tuning.
There are four groups of features for word-level quality estimation:

• word alignment
• POS of source and target words
• n-gram frequencies in source and target texts
• syntactic, semantic and pseudo-reference binary flags

They are an extension of features for word-level quality estimation used by
WMT12-13-14-17-18 for the baseline model.19 For sentence-level, the features are
focused on the relations of tokens in the source and target sentences, e.g. the ratio
of such tokens and distribution of parts of speech. Document features incorporate
aggregation of sentence-level features as well as features on the discourse level by
Scarton and Specia (2016).

Since the system was not designed to provide online results, the consequence
is, that especially the feature extraction part is not optimized and is quite slow.
It can handle only ten sentences at a time, so larger inputs have to be split into
multiple batches. At the time of deployment there were two bugs, for which we
opened pull requests.20

19quest.dcs.shef.ac.uk/quest files/features blackbox baseline 17
20github.com/ghpaetzold/questplusplus/pull/45 and

github.com/ghpaetzold/questplusplus/pull/46
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1.3.3 DeepQuest
DeepQuest (Ive et al., 2018) takes a neural approach to quality estimation and is
capable of performing on any language pair. The toolkit offers two architectures.

source sentence
(x1, ..., xTx)

target sentence
(y1, ..., yTy)

RNN-based Word Predictor

training data

source
sentences

reference
translations
(post-editing)

Neural Quality Estimator

QE feature vectors
(v1, ..., vTy)

source
sentences

machine
translations

quality 
annotations

QE score
(word-, phrase-, sentence-level)

pipeline

parallel data

quality estimation data

Figure 1.5: Predictor-Estimator QE model pipeline and type of training data,
adapted from Fig. 1 from (Kim et al., 2017)

Predictor-Estimator architecture (Kim et al., 2017) consists of two stages of
training. In the first one, a predictor (encoder-decoder RNN) is trained on parallel
data to predict words based on their context representations. Feature vectors
from this network are then passed to the estimator, which is trained on quality
estimation data. This delegates the issue of feature engineering onto machine
learning itself. The architecture is illustrated in Figure 1.5.

The other architecture implemented by DeepQuest is biRNN. A sequence is
passed into RNN both in the original ordering as well as in reverse. The results
are then concatenated and propagate further into the rest of the network. The
network can then make use of not only the preceding item in the sequence but
also the subsequent one.

Models of both architectures can be executed on document-level, sentence-
level, phrase-level and word-level.

Ive et al. (2018) reported better results in most experiments on WMT17
with the Predictor-Estimator than the baseline (QuEst++). Performance of the
biRNN architecture is still better than the baseline and does not significantly lack
behind the Predictor-Estimator. They also stress the difference of performance of
implemented systems on SMT and NMT data, with the later resulting in worse
results, presumably because the error is less predictable in the latter case.

Despite the better results, we found the implementation difficult to work with
because of several bugs. Even though some of the bugs we reported were fixed,
the latency of this tool was still too high for online purposes.

1.3.4 OpenKiwi
OpenKiwi (Kepler et al., 2019) implements three quality estimation models:
QUality Estimation from ScraTCH (Kreutzer et al., 2015), NeUral Quality Esti-
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mation (Martins et al., 2016) used for WMT1921 baseline and Predictor-Estimator
(Kim et al., 2017). In addition OpenKiwi implements stacked ensemble as pro-
posed in Martins et al. (2017).

QUETCH is a linear combination of baseline features and custom neural net-
work. The architecture of the later is shown in Figure 1.6. For each target token
ti an aligned source token sa(i) is considered. Then windows of size three are con-
catenated: (ti−1, ti, ti+1, sa(i)−1, sa(i), sa(i)+1) and passed through a lookup-table
(pretrained word2vec). The resulting vectors are then passed through a densely
connected layer and finally through an output layer, which outputs OK or BAD.

representations (Mikolov et al. (2013c), Penning-
ton et al. (2014) inter alia), or by producing state-
of-the-art performance in applications such as lan-
guage modeling (Bengio et al. (2003), Mikolov et
al. (2010), inter alia) or statistical machine trans-
lation (Kalchbrenner and Blunsom (2013), Bah-
danau et al. (2015), inter alia). The property
that makes these models most attractive for vari-
ous applications is the ability to learn continuous
space representations “from scratch”(Collobert et
al., 2011), and to infuse the representation with
non-linearity. The deep layers of the neural net-
work capture these representations – even a single
hidden layer is sufficient (Hornik et al., 1989).

We present an approach to address the chal-
lenges of word-level translation quality estimation
by learning these continuous space bilingual rep-
resentations instead of relying on manual feature
engineering. While the neural network architec-
ture presented by Collobert et al. (2011) is lim-
ited to monolingual word-labeling tasks, we ex-
tend it to the bilingual context of QE. The multi-
layer feedforward neural network is pre-trained in
an unsupervised fashion by initializing the lookup-
table with word2vec representations (Mikolov et
al., 2013b). This is not only an effective way of
guiding the learning towards minima that still al-
low good generalization in non-convex optimiza-
tion (Bengio, 2009; Erhan et al., 2010), but it also
proves to yield considerably better results in our
application. In addition, we train a linear com-
bination of the manually defined baseline features
provided by the task organizers. We combine these
orthogonal information sources and find signifi-
cant improvements over each individual system.

3 QUETCH

Our QUality Estimation from scraTCH
(QUETCH) system is based on a neural net-
work architecture built with Theano (Bergstra
et al., 2010). We design a multilayer percep-
tron (MLP) architecture with one hidden layer,
non-linear tanh activation functions and a lookup-
table layer as proposed by Collobert et al. (2011).
The lookup-table has the function of mapping
word to continuous vectors and is updated during
training. Figure 1 illustrates the connections
between the input, hidden lookup-table and linear
layer, and the output.

Training is done by optimizing the log-
likelihood of the model given the training data

Input Layer

Hidden Layers

Lookup-Table
Layer

Linear Layer
+ non-linear
transformation

Output Layer

target
source

t1 t2 t3 t4 t5 s1 s2 s3 s4 s5

t2  t3  t4 s3  s4  s5

align

|V|

dwrd

concatenate

tanh(W1   +b1)

tanh(W2   +b2)

"OK"     "BAD"

Figure 1: Neural network architecture for predict-
ing word-level translation quality given aligned
source and target sentences. The lookup-table ma-
trix M contains dwrd-dimensional vectors for each
word in the vocabulary V. In this example, the con-
text window sizes |winsrc| and |wintgt| are set to
three and the target word t3 is classified “OK”.

via back-propagation and stochastic gradient de-
scent (Rumelhart et al., 1986). Trainable param-
eters are the bias vectors (b1,b2) and weight ma-
trices (W1,W2) of the linear layers and the matrix
M ∈ Rdwrd×|V | that represents the lookup-table.
Tunable hyper-parameters are the number of units
of the hidden linear layer, the lookup-table dimen-
sionality dwrd and the learning rate. The number
of output units is set to two, since the QE task 2
requires binary classification. The softmax over
the activation of these output units is interpreted
as score for the two classes.

3.1 Bilingual Representation Learning
Given a target word, we consider bilingual con-
text information: From the target sentence we ex-
tract a fixed-size word window wintgt centered at
the target word. From the aligned source sentence
we extract a fixed-size word window winsrc cen-
tered at a position that is either estimated heuristi-
cally or via word alignments. Concatenating target
and source windows, we obtain a bilingual context
vector for a given target word. This context vector
is the input for the lookup-table layer, which maps

Figure 1.6: QUETCH model architecture, from Fig. 1 in (Kreutzer et al., 2015)

NuQE is very similar to QUETCH in most respects. In addition, POS tags are
concatenated and passed through a POS embedding table and finally, two layers
bidirectional gated recurrent units are appended (with two extra dense layers in
between).

We opted for the Predictor-Estimator architecture because even though it
requires pretraining, it does not consume many resources compared to the stacked
ensemble. Except for the ensemble, it also provides the best results as shown in
Kepler et al. (2019). OpenKiwi, in general, proved to be faster, more robust and
easier to use22 than DeepQuest. Because of this, the experiment was conducted
with this quality estimation backend.

21statmt.org/wmt19/qe-task.html
22OpenKiwi is distributed via pip pypi.org/project/openkiwi/ as a Python module.
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1.3.5 Evaluation
Since the output of sentence-level and phrase-level quality estimation is usually
HTER, there are several metrics for quality estimation systems. They are mea-
sured over the whole dataset.

• Root Mean Squared Error
• Mean Average Error
• Pearson’s correlation
• Spearman’s rank correlation

For word-level quality estimation, the output is a sequence of probabilities,
which can be, for a given threshold, transformed into a sequence of two classes OK
and BAD. Since the distribution of OK and BAD for most of the sentences is unbal-
anced, accuracy could be cheated by predicting always OK. To balance precision
and recall, F measure with respect to OK and BAD is used. To incorporate both,
FMULT I = FOK · FBAD is usually used as a metrics for WMT quality estimation
task.

1.4 Source complexity
The task of estimating source complexity is not rigidly defined and has not been
thoroughly explored. In the context of machine translation, we can think of it
as finding patterns in a sentence which are hard to translate by MT systems.
For our purposes, it is beneficial to know which parts of the source sentence
are challenging to translate, so that users speaking only the source language can
reformulate that specific segment.

Lexical choice

One of the most straightforward ideas would be to look at individual words in the
source sentence and describe the probability of them being translated correctly.
This can be done, for example, by searching for that word in the data the specific
MT system used for training. Subword units can help with unseen words, but we
can still hypothesize, that if a word has never been seen by an MT system, it will
be difficult to translate.

Another approach to recognize problematic source words would be using word
alignment and word-level quality estimation. A QE system gives a score to every
translated word. These values can be mapped back to the source sentence by
word alignment. This approach was chosen for Ptakopět because it could be
done with already existing tools. The implementation is discussed in Section 4.1.

16



Syntactic structures

For most MT systems it is not a single unknown word which worsens the trans-
lation quality but syntactic structures. This has been described extensively in
Choshen and Abend (2019). Their claim is that long distance dependencies are
still a massive problem for translation quality.

The work of Niehues and Pham (2019) focuses not only on target tokens QE
but also on confidence annotation of source tokens. Their methods are based on
complex similarity measures between the given source sentence and training data.
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2. Previous work
This thesis is focused on the latest version of Ptakopět. The previous two versions
(old-1 and old-2) were vastly different and created as part of two other classes
taught at Charles University. Summaries of their respective goals, functionali-
ties, and conclusions follow. Both projects are archived in a combined GitHub
repository.1

We also comment on the adoption of quality estimation systems in the indus-
try and publicly available services Section 2.3.

2.1 Ptakopět old-1

2.1.1 Introduction
The first version was developed as a semestral assignment for class Competing in
Machine Translation led by Ondřej Bojar. The goal was to explore the issue of
outbound translation for daily internet usage (e.g. filling out forms in websites of
a foreign language). Because of this intended usage, it was designed as a browser
extension compatible with major browsers (tested on Firefox, Google Chrome,
and Opera).

It used to be available on Chrome Web Store and Add-ons for Firefox, but we
removed it from these places as this version soon became deprecated.

2.1.2 Usage
The core functionality was to display backward (round-trip) translation so that
users could check, for example, whether the verb tense was changed or if the
backward translation matches the original sentence in its meaning. This basic
functionality, which remained in future version, gave this project the name of
Ptakopět (překlad tam a kontrolně zpět). Ptakopět old-1 ran as a small plugin
located, if active, in the top left or top right corner of the page. The plugin could
be used either as a browser extension (users install this extension) or as a part of
a web page (web admin inserts a loading script into their page).

The plugin shown in Figure 2.1, contains two main textareas. The top one
expected input in the language of the user. The bottom one eventually contained
the backward translation. The translation was in the active input element (on the
webpage). This process of three text elements (input, translation and backward
translation) was hard to communicate to users, so the window also contained an
explanatory diagram in the bottom right corner, as seen in Figure 2.1.

The intended workflow was to write text to the top textarea and validate
against the backward translation in the bottom one. During this process, the
translated text appeared in the selected area on the web page. The active target
input element was changed every time a possible element (all textareas and text
inputs) got focus.

The plugin also contained other miscellaneous control elements, such as trans-
lator backend selector, small font checkbox and indicator of open requests.

1github.com/zouharvi/ptakopet-old
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Figure 2.1: User interface of the Ptakopět old-1 browser extension

(a) Toolbar icon (b) Input element icon

Figure 2.2: Two ways of launching Ptakopět old-1

The Ptakopět window could be invoked in multiple ways: by clicking the
toolbar button, as shown in Figure 2.2b, by launching it from the context menu
(right mouse button) or by clicking an icon, that appeared next to all web page
text input elements.

In Figure 2.3, the user selected the first web page input element, hence mak-
ing it active to Ptakopět and wrote a text in their native language (French) to
the first Ptakopět input. The backward translation removed a definite article
for an uncountable noun; otherwise, the sentence matches the original. The En-
glish translation of the input sentence then appeared in the target textarea, as
expected. Should the user now edit the English text, the translation would ap-
pear in the bottom Ptakopět textarea. Writing into the top Ptakopět input field
would overwrite the manual changes, as hinted in the bottom right diagram in
the Ptakopět window.
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Figure 2.3: Ptakopět helps a French-speaking user with filling in an English form

2.1.3 Technical details
Ptakopět old-1 was written entirely with basic HTML, CSS and JS stack with
some usage of jQuery. There was no packaging or build system. Part of the
codebase dealt with abstraction on top of different browser plugin APIs and
the differences between content and background script execution. Most major
browsers support the WebExtensions API of W3C, but there are some differences
between browsers.

The rest of the code dealt with DOM manipulation and mostly with handling
translation requests. Two translation backends were used: Khresmoi (Dušek
et al., 2014) and LINDAT Translation (Popel, 2018), because of their ease of
use and availability. At the time of deployment, LINDAT Translation supported
translations between English, French, and Czech, while Khresmoi supported En-
glish, French, Czech, German, and Spanish.

Four months after the finished project was demoed, the API which Ptakopět
used for communication with LINDAT Translation was deprecated and two
months after that the Khresmoi translation service shut down. Instead of making
necessary fixes, this project was abandoned for a newer version and the plugin
was removed from the public listing.

2.1.4 Conclusion
This project was completed and met all criteria regarding quality and function-
ality, even though the extension was not usable on all websites, which stemmed
from the extension architecture.

It was demoed during the Open Days at Charles University Faculty of Math-
ematics and Physics 2019, although only few visitors tried it. The demo page is
not hosted publicly anymore, but source code is available.2 A part of the demo
page is visible in Figure 2.3. The demo included a simple form with random
personal questions in a foreign language, which visitors were to fill. The source
language in the demo was Czech and, unfortunately, the foreign language was

2github.com/zouharvi/ptakopet-old/tree/master/old-1/dod ufal
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English, so it was hard to demonstrate the issue of outbound translation fully, as
most people know English to at least some extent.

A four-page report was submitted.3 This first attempt for an outbound trans-
lation tool provided us with findings as what to avoid and what to focus on in
the next version, Ptakopět old-2.

2.2 Ptakopět old-2

2.2.1 Introduction
The second version of Ptakopět aimed to extend the functionality of the first
version, while improving on usability. One of the downsides of the Ptakopět old-
1 was the disunified behaviour and lack of consistency across different websites.
The user interface proved to be too complex to work with and hence we opted for
a more traditional approach. The entire application would then be hosted on a
separate web page with no interaction with other web pages. This form of serving
public machine translation is similar to the one by Google, Microsoft, DeepL and
other online services.

In addition to the major change of moving from browser plugin to a standalone
web page, we decided to add visual quality estimation cues in the form of word
highlighting (from word-level quality estimation models).

Ptakopět old-2 was created to meet the requirements of class Semestral Project
and has a corresponding specification document.4 It was again supervised by
Ondřej Bojar.

2.2.2 Usage
There are generally two use cases for the second version: Outbound translation
and user translation quality estimation.

Outbound translation

In outbound translation the user tries to translate text to and validate produced
translation in a language their are not familiar with.

To perform outbound translation, the user selects the source and target lan-
guages from the select box, then writes text in the source language input window
(first textarea in Figure 2.4). Problematic words in the source and target text
can be seen (more intense colouring means worse quality; purple signifies, that
the particular word was not translated) as well as backward translation of the
already translated text (third textarea in Figure 2.4).

User translation quality estimation

The user could then follow up from the previous use case with a more agile
workflow and dynamically edit the translated text. They would see the quality
estimation of their own translation, as well as backward translation.

3github.com/zouharvi/ptakopet-old/blob/master/old-1/meta/report.pdf
4github.com/ zouharvi/ ptakopet-old/ blob/ master/ old-2/ meta/ Ptakopět v2 - specifica-

tion.pdf
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Figure 2.4: Example usage of Ptakopět old-2. The more red the word highlighting,
the worse the estimated translation quality. Purple highlighting was used for
words, which were not translated.

In this case the quality estimation is not exactly the same as the task defined
by WMT, because the provided translation is not a product of an MT system,
but of a human user. With current QE models we do not think that this can be
used reliably.

2.2.3 Technical details
The second version was also written in plain HTML, CSS, JS + jQuery (frontend)
and Python 3 (backend request handler), but contains many interactions (through
system pipes) to other frameworks written in Python 2, Java, Perl and C++. The
frontend tech stack is used contrary to modern approaches to web development,
but the limited scale of this project and focus on other aspects allowed for it.

The backend ran at servers provided by ÚFAL and responded to requests for
either quality estimation or word alignment. The same two translation backends
were used: Khresmoi (Dušek et al., 2014) and LINDAT Translation (Popel, 2018).

Quality Estimation

There were two quality estimation backends: DeepQuest for English-German and
QuEst++ for English-Spanish.

Highlighting parts of texts seems trivial at first, but taking into consideration,
that the text must be editable and that the highlighting must work on different
zoom levels, browsers and on mobile, it soon becomes complex. Finally, we opted
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for a jQuery plugin developed originally by Will Boyd,5 which we forked,6 as
some changes to the internal workings of this plugin were necessary. We also
wanted to highlight words, which were not translated. To do this, we highlighted
all words, which were mapped via alignment to a word of the same form. Such
an occurrence is displayed in Figure 2.4.

Alignment

Fast align7 was used for the alignment backend, as it was recommended in the
QuEst++ documentation. Word alignment was necessary for the highlighting
itself as well as for QuEst++.

2.2.4 Issues
We later found that we used Fast align incorrectly, applying the unsupervised
word-alignment method only to the single input sentence pair given. Since the
model lacks any lexical knowledge, it thus essentially provided a simple diagonal
alignment most of the time.

Because of missing Access-Control-Allow-Origin header on the Khresmoi
translator backend, a proxy was added. This was unavoidable but a wrong de-
cision since it is considered unsafe and software such as Avast would notify the
users.

At the time of the deployment, the web hosting server had a valid SSL cer-
tificate but made requests to unsafe servers, so it had to be served over HTTP.

Another issue was the lack of a clear indication of supported language pairs.
Ptakopět allowed users to use a quality estimation model even for language pairs
that the model did not support.

Setting up the server was also a difficult task, as proper replicable setup scripts
were not written.

2.2.5 Conclusion
While Ptakopět old-2 passed as a semestral project, there were many ideas on how
to improve the experience and project quality. In Ptakopět old-2 only English-
Spanish and English-German language pairs were supported by QuEst++ and
DeepQuest respectively. Especially DeepQuest could be used with more language
pairs if relevant data were provided. DeepQuest also reported only binary values
OK or BAD at that time, but continuous confidence values from 0 to 1 existed
inside. Extracting them would have provided more information to the user.

During development, the whole project accumulated significant technical debt.
This was due to decisions such as writing in JavaScript without a framework, not
having more structured backend and missing setup scripts.

Both technical and user documentation8 was written on this version.

5github.com/lonekorean/highlight-within-textarea
6github.com/zouharvi/highlight-within-textarea
7github.com/clab/fast align
8ptakopet.vilda.net/docs/old-2
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2.3 Industry
As far as we observed, modern outbound translation workflow is condensed to
roundtrip translation done manually by users (switching the language direction
and copy-pasting the translated text).

Quality estimation is used in translation companies mostly to minimize post-
editing costs. Despite that, QE cues are missing in most of the mainstream public
translation services, such as Google Translate9 (provides alternatives to words and
shows their usage frequencies), Microsoft Bing Translator10 or DeepL11 (provides
alternatives to phrases).

Memsource

The company Memsource, which specializes in cloud-based translation environ-
ment with tools like translation memory and terminology management, is also
deploying quality estimation models, to minimize post-editing cost. For example,
if a machine-translated sentence receives a full score, then there is no need to pay
professional human translators to verify the translation. Even though they are
developing their models in-house and closed-source, they disclosed some details
in one of their blog posts.12

Notable is their way of presenting the quality estimation data. Instead of
displaying the percentage score in any form (e.g. highlighting), they approach this
as a classification problem with the classes: 100%: probably perfect translation,
95%: possibly requires minor post-editing, 85%: will require post-editing, no
score: needs to be manually checked. They focus on the phrase-level and sentence-
level quality estimation.

Unbabel

The company Unbabel, which delivers machine translation solutions, is also de-
veloping13 a QE pipeline. As opposed to Memsource, most of their QE research is
public, such as Martins et al. (2016) and Kepler et al. (2019). They also make use
of both word-level and phrase-level quality estimation. One of their components,
OpenKiwi, is also part of Ptakopět and is described in Section 1.3.4.

9translate.google.com
10bing.com/translator
11deepl.com/en/translator
12memsource.com/blog/2018/10/01/machine-translation-quality-estimation-memsources-

latest-ai-powered-feature/
13unbabel.com/blog/unbabel-translation-quality-systems/
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3. Final Ptakopět
The final version of Ptakopět is publicly accessible from ptakopet.vilda.net. The
goals of this version were to improve the overall user experience, make the system
more modular, scalable and robust and also to make it ready for experiments on
human annotators.

3.1 Overview
Ptakopět helps users with outbound translation. The full layout is displayed in
Figure 3.1. It is composed of four blocks (modules): input, translation, backward
translation, paraphrases. Source and target languages can be selected in the drop-
down menus at the top of the first two modules. After writing text in the first
textarea, it is translated to the second textarea (also editable), then backward
translation, quality estimation and paraphrases are generated.

Figure 3.1: Ptakopět is used to translate a simple Czech noun phrase to German.
QE highlights parts of both source and target, that were translated incorrectly.

In Figure 3.1 it is seen, that the source was mistranslated by the red high-
lighting (on both source and target), but also by the backward translation. Para-
phrases (or source variations) are displayed in the second to last block. In the
case of simple noun phrases, they are irrelevant, but they are useful for more
complex inputs, as shown in Figure 3.2. In those cases, the user might want to
reformulate (mostly simplify) specific parts of their input, so that the MT system
can produce a better translation.

Unfortunately, we found the quality estimation not to be reliable enough. It
usually works only with concise sentences or simple noun phrases. This can be
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seen when comparing the highlighting in Figure 3.1 and Figure 3.2.
The translation can be then also edited. A common error of MT systems

is that they try to translate named entities. This is easy to recognize even in
languages the user is not proficient in. They may then choose to fix this error in
the translation textarea and check that all went well in the backward translation
block. Typing anything in the source textarea would then rewrite these manual
changes.

The backend for each service can be selected in the settings burger menu,
hidden behind the burger icon in the top left corner in Figure 3.1. The expanded
settings menu is shown in Figure 3.3 in the last block. Changing any language
or backend selection causes a cascade so that relevant information is recomputed
and showed. Pending requests to a specific backend are signalized by a loading
indicator next to every module block.

Figure 3.2: Ptakopět is used to translate a complex English sentence to Estonian.
User may opt to reformulate the input according to the paraphrases suggestions.

3.2 Settings overview
Backend settings are freely accessible, even though we do not expect most users
to interact with them. Some particular settings are not intended to be used for
outbound translation but are included either as placeholders or for debugging or
presentation purposes. In this section, we aim to give a brief overview of their
respective roles and origins. Backends, which were not created or setup by the
author of this thesis, are explicitly mentioned.

An exclamation mark is shown next to the specific module in case the selected
backend is incompatible with a given language pair. This warning is seen in
Figure 3.6.
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Figure 3.3: Expanded settings burger menu in Ptakopět, which allows the users
to change service backends.

Translator
The main translator backend is LINDAT Translation (Popel, 2018), which
provides translations between Czech, English, French and German. Strong EN-
CS is just a shadow copy of this backend. Due to a collaboration with Tartu on
the Bergamot project, we also added English↔Estonian backend Neurotõlge1

and Avg EN-ET. For future experiments, we also added Weak EN-CS and
Strong EN-CS for English↔Czech translation at various quality. There are
also two placeholder backends, which evaluate client-side. Identity only copies
the input and None/Manual does nothing so that the user can input their own
texts without being interrupted. All of the non-local backends are not part of the
work on this thesis.

Quality Estimation
Our instances of OpenKiwi and DeepQuest backends support Czech→German
and English→German quality estimation. The running instance of QuEst++
supports English→Czech quality estimation but is of very low quality. Collabora-
tors from the Bergamot project who specialize in quality estimation provided two
backends Sheffield EN-ET and Sheffield EN-CS. For presentation purposes,
the QE values can be inputted manually by selecting the Manual backend. It
can also be set to Random, which assigns each target word a random value be-
tween 0 and 1. This fake backend is good for analyzing alignment because one
can then easily see what the words map to. The highlighting can be turned off
by selecting None.

1neurotolge.ee
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Paraphraser
The first paraphraser is LINDAT Mock, which relies on round-trip translation
with LINDAT Translation. It is extremely unoptimized and is there only for
testing purposes. The second paraphraser backend, Rainbow, works on a similar
principle but is more elaborate and faster. This backend is a transformer-based
and is the work of Matúš Žilinec.2 The paraphraser module can also be turned
off by selecting None as the paraphraser backend.

Alignment
Alignment requests for most languages are by default relayed to fast align
Ubuntu on server-side. There also exists a special backend fast align Michal
which was setup by a colleague Michal Novák for future experiments with
Ptakopět on English-Estonian and English-Czech language pairs. The alignment
can also be evaluated locally by Diagonal placeholder backends, which for sen-
tences of M and N tokens generates alignment {(i, j) : 0 ≤ i ≤ M, 0 ≤ j ≤ N}.
The None turns off the alignment altogether.

Tokenization
The Moses tokenizer is the main tokenization backend and is very robust. There
are two alternatives, which evaluate client-side. The first one, Spaces, is just
splitting by single spaces, while the second one, Local, uses a more complex
tokenization scheme.

3.3 Miscellaneous

Omnibox OpenSearch
Google services and most notably Google Translate use omnibox OpenSearch to
improve the user experience. This was also implemented in Ptakopět, so instead
of having to go to the web page and then start typing the source text, it can be
typed in the address bar after pressing the TAB key. The web page is then loaded
and the input pasted in the input textarea.

This makes it more convenient for using Ptakopět to quickly translate pieces
of texts. An example omnibox input and the result is shown in Figure 3.4.

2github.com/mzilinec/paraphrase-server
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Figure 3.4: Example usage of omnibox OpenSearch input. The text appears
in the main input textarea once the user hits ENTER. The default language and
backends settings are used.

URL parameters
Ptakopět also supports other URL GET parameters:

• userID logs the user to the experiment by the supplied userID value. The
experiment is discussed in Section 4.2 and Chapter 5.

• q pastes the text query into the input box. This is to support the omnibox
OpenSeach functionality.

• p sets a given settings profile to other than default, e.g. pilot, edin,
csen or sao. This is helpful when one wishes to provide a quick link with
all settings prepared. These exact settings profiles were used for different
presentation purposes.

• source sends this extra value to the start log.
• test used for testing, described in Section 4.1.

The redirect URL for profile pilot with the user testuser and source infor-
mation online-ad can then look like:

ptakopet.vilda.net/?p=pilot&userID=testuser&source=online-ad
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Error masking in backtranslation
When using the same data for both forward and backward MT, an error can be
introduced in forward translation but removed in the backward translation. After
experimenting with Ptakopět we found several examples described in Figure 3.5.
All can be tested in the live system using the LINDAT Translation backend.

svı́rá úhel de−→ Er schließt den Winkel. cs−→ Zavı́rá úhel.

svı́rá úhel fr−→ Sait l’angle cs−→ Zná úhel
svı́rá úhel en−→ grips the angle cs−→ svı́rá úhel

Figure 3.5: Example of error masking in backward translation in English MT
compared to German and French MT in which the error is revealed.

The German and French MT in Figure 3.5 introduced an error in forward
translation, but the backward translation was accurate and thus, the user could
recognize this and reformulate the input. However, in the case of the English
machine translation, an error is still introduced in the forward translation but
the backward translation removes this error. The backward translation could, in
fact, be accurate and this masking could be a result of sense ambiguity of the
word “svı́rat”. Nevertheless, the user could then get a false sense of a correct
translation, which is undesirable.

Platforms
Ptakopět was tested to run properly on Edge 80, Chrome 83, Firefox 75 and
Opera 66.

We wanted Ptakopět to be accessible from as many devices as possible and
not just desktops. The frontend was designed to adapt to almost any screen size,
most notably mobile. The layout is then changed to a single column, as shown
in Figure 3.6.

We found Ptakopět to be very usable on mobile. The only issue was that
occasionally deleting of already written text could not be done by holding the
backspace key. This is due to the highlighter dependency. Ptakopět was also
tested to work without any issues on very computationally limited device, namely
Samsung Smart TV with Tizen OS.
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Figure 3.6: Mockup of Ptakopět in single column layout on phone.
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4. Implementation
The whole project is split into two git repositories hosted at GitHub. The first
repository1 contains the code for frontend, experiment data as well as some mis-
cellaneous files regarding the whole project. The second one2 is focused strictly
on the server, which is not the main focus of this thesis but is also described for
completeness.

In this chapter we first describe the frontend, then the experiment architecture
from a technical perspective (the experiment itself is the focus of Chapter 5) and
then the backend. See documentation in Appendix B which describes all the
implementation details as well as guides on how to build and setup the whole
project.

4.1 Frontend
The web frontend is written in TypeScript because of the great scalability prop-
erties. DOM manipulation is done mostly with jQuery and the output is packed
into one JavaScript file using Webpack. Packages are managed with npm (usually
contained in the NodeJS package).

The diagram in Figure 4.1 shows the overall object structure of the most
important objects. These objects are: AsyncMessage, Translator (and its
derivatives), Estimator, Aligner, Paraphraser, Tokenizer, Highlighter and
Throttler.

The task of TranslatorSource (and similarly for TranslatorTarget) is to
translate the source sentence. Then Estimator has to assign word-level quality
estimation scores for each target token. Finally, a word-level alignment must
be computed in Aligner. At the end, the QE is rendered using Highlighter.
Parallel to that, Paraphraser produces paraphrases for the source input and
displays them.

Each of these computations could take place in the browser3 (Ptakopět in-
cludes some such mock-up solutions, see Section 3.2), but the standard procedure
is to relay the translation, estimation, paraphrase, alignment and tokenization re-
quests to some server.

AsyncMessage

Since there can be multiple such requests of one type in one second, it is possible
to get into a race condition. This is what happened in the Ptakopět-old projects
and vastly worsened the user experience.

Sometimes a translation request, which was sent later than another one, would
finish sooner. The new content would be presented, but then the old request
would then finish and outdated content would be shown. This is highly unde-
sirable and it is the reason why most of the messaging objects (Translator,
Estimator, Paraphraser) make use of AsyncMessage. This class assigns a serial

1github.com/zouharvi/ptakopet
2github.com/zouharvi/ptakopet-server
3This one of the goals of the Bergamot project. browser.mt
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Figure 4.1: Object diagram of main component of the Ptakopět frontend

number to each request and drops delayed incoming responses. By keeping track
of active requests, AsyncMessage derivatives can easily display an indicator to
the user, signalizing whether it is still waiting for a response or not.

The other messaging components, Tokenizer and Aligner, do not have any
callback, which results in any content manipulation (they are almost pure func-
tions) that are invoked solely using async/await.

Backends

Each of the main messaging components contains a list of backends so that they
can be easily interchanged and tested. These “backends” are not to be confused
with the server backend, described in Section 4.3. A backend in this context is
just an object, which contains a list of supported language pairs, a name and a
function, which for some input returns a promise of the relevant output. A defi-
nition of a quality estimation Random backend is available in Appendix B.1.2.
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Miscellaneous objects

Apart from the main object distinguished in the diagram in Figure 4.1, there are
many others. We list a brief overview of their functionality.

• Throttler - a simple tool for handling throttling. The input event (on
the source input field) fires up every time the user types in a character. It
is undesirable to send a translation request after every keystroke, so the
throttler sends only the last request and only if no input event happened
for some duration. This is achieved by window.setTimeout which restarted
every time input event happens.

• Utils, TextUtils - various helper functions, such as generating a set of
all possible pairs from a set, language code database, parameter parsing,
random string generation.

• Settings - globally accessible and simply stores the currently selected back-
end and language options.

• SettingsSelector - backend and language selection in the DOM.
• SettingsProfiles - defines common setting setups, which can be later

applied (e.g. default and pilot)
• Highlighter - quality estimation DOM element highlighting
• Tester - contains functions used for testing

Testing

The Tester class contains two functions. The first one, workload, simulates the
user’s workflow by changing the source input field in some fixed interval. This
was used for debugging memory leaks, such as the one which was present in the
pilot study (Appendix B.4.2). It can be invoked by adding the test=workload
URL GET parameter.

The other function is used for testing the availability of backends. Since
Ptakopět encompasses many backends it is necessary to monitor their status. To
get a summary of their availability add the test=services URL GET parameter.
A white window will then appear at the top of the screen. The result is visible
in Figure 4.2. This function sends requests to all available backends (even local
ones) with a prepared text input and language settings. Usually the backend
status (up or down) is manifested on a single call, so checking text and language
variations is not necessary.

Highlighting

Given a QE score from 0 to 1 the color is computed as in Equation (4.1). It
is substracted from one, because QE of 1 correspond to high confidence and we
want to highlight bad scores. It is also scaled down by 1

3 for the highlighting to
not be too disruptive in the user interface. Technical details of highlighting are
described in Appendix B.1.2.

color(qe) = RGBA
(︂
1, 0, 0,

1 − qe

3
)︂

(4.1)
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Figure 4.2: Results of testing of all Ptakopět backends. Three backends were
down at the moment.

Source complexity

After the quality estimation and alignment is computed, every source word re-
ceives a possibly empty set of QE scores. This is because the alignment may map
the source word to zero or more target words. Different aggregating functions
can be chosen to get a single number, for example maximum, minimum, average
or weighted average (by position). Furthermore the default QE score has to be
assigned to unaligned tokens. We found it reasonable to use the average aggre-
gating function as to consider all the provided scores. The score for unaligned
tokens was set to 0.9 to only slightly hint that something may be wrong.
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4.2 Experiment definition
An experiment can be defined in a single JSON file. The format, details and
relevant tools used for generating experiment materials are described in detail in
Appendix B.2.

In the experiment definition we need to specify the number of users, their user
IDs and the queues. In this context we use the term “baked queues” for every user
which is just pre-generated random sequence of stimuli and their configurations.
This way it is decided prior to the experiment what stimuli configurations and in
what order will a given users encounter them. Baked queues are described more
in detail in Section 5.1.4.

A stimuli is just a string containing a HTML code which gets pasted into
the webpage. This is flexible enough to allow for both images and texts with
highlights. Every stimuli can be also presented with a different configuration,
such as a specific backend and set of modules enabled.

4.3 Server backend
The server backend’s purpose is to make some of the MT related services (quality
estimation, alignment, tokenization) available to the frontend. It is necessary, as
most of these services are not publicly deployed, but is not the main focus of the
Ptakopět project, nor of this thesis. Even though it was created to be portable
in theory, it is not expected to be run on any other server than ours. It is written
in Python 3.

To run the server (on 0.0.0.0:80), launch the server/run.sh script. A
common practice is to connect to a remote machine via SSH and launch the
server. For that, there is a script server/run nohup.sh, which disregards kill
signals on user logout.

4.3.1 Architecture and API
The overall backend object architecture is shown in Figure 4.3. The dashed line
from QuEst++ to Fast align means that QuEst++ uses this alignment tool also
as part of its pipeline. Both GET and POST methods are accepted. The server
offers the following API calls. In Listing 4.1 and Listing 4.2, we show example
requests together with their responses. The sentence aligner Hunalign is not
accessible publicly and is used only for internal purposes.

• qe/[openkiwi, deepquest, questplusplus]/? - for word-level QE.
Requires: sourceLang targetLang, sourceText and targetText.

• align/[fast align]/? - word alignment.
Requires: sourceLang targetLang, sourceText and targetText.

• tokenize/[moses]/? - sentence tokenization.
Requires: text and lang.

• paraphrase/[mock]/? - paraphrasing.
Requires: text and lang.
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Figure 4.3: Object diagram of main components of the Ptakopět backend

qe/ deepquest
? sourceLang =cs
& targetLang =de
& sourceText =Student gymnázia.
& targetText =Ein Student der Gymnastik .

-> {" status ": "OK",
"qe": [0.8 , 0.5, 0.2, 0.5, 1.0]}

tokenize /moses
?text =(z.B. Tomaten , Karotten usw .)
&lang=de

-> {" status ": "OK",
" tokenization ": ["(", "z.B.", " Tomaten ",

",", " Karotten ", "usw.", ")"]}

align/ fast_align
? sourceLang =en
& targetLang =de
& sourceText =Click the mouse button .
& targetText = Klicken Sie mit der Maustaste .

-> {" status ": "OK",
" alignment ": "0-0 0-1 2-2 1-3 3-4 4-5"}

List of Listings 4.1: Three examples of Ptakopět backend quality estimation,
tokenization and alignment requests and responses
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paraphrase /mock
?lang=cs
&text=Jsem student poslednı́ho ročnı́ku gymnázia.

-> {" status ": "OK",
"de": "Poslednı́ rok studuji gymnastiku.",
"fr": "Jsem v poslednı́m ročnı́ku střednı́ školy.",
"ru": "Jsem ve čtvrťáku na gymnáziu.",
"en": "Jsem ve čtvrťáku na gymnáziu."}

List of Listings 4.2: An example of Ptakopět backend paraphrase request and
response

4.3.2 Data and trained models
Word alignment

Fast align is the only alignment model we deployed. It simply requires a bilingual
sentence aligned corpus. We add the incoming language pairs to the data and
run Fast align. For the corpora, we make use of Ubuntu localization files.4 We
chose the IT domain, because data for the QE models are only in this domain.
The server is distributed with the following language pairs: cs-de, cs-en, cs-fr,
en-de, en-es, en-et and en-fr.

Quality estimation

The original feature extractor system in QuEst++ supports English→Spanish
quality estimation. We experimented with feeding it English→Czech quality
estimation data and expected that the ML part would disregard noisy or low
information features caused by feeding the feature extractor unsupported lan-
guage. We found that the performance regressed so considerably that we did not
experiment further and focused on other QE systems.

Both DeepQuest (bRNN) and OpenKiwi (Predictor-Estimator) were trained
on WMT 2017 English-German Word Level Quality Estimation dataset in the
IT domain (Specia and Logacheva, 2017). These trained models are downloaded
automatically when running the backend install script. OpenKiwi, in general,
proved to be faster, more robust and easier to use than DeepQuest. Because of
this, the experiment was conducted with OpenKiwi quality estimation backend.

Czech-German Quality Estimation Dataset

For the experiment, we also needed to train a Czech→German QE model. Since
relevant Czech→German training data for QE were not available, we synthesized
them from English→German data. We processed the WMT17 English-German
data to obtain Czech→German data by translating the source language sentences
using LINDAT Translation Popel (2018) from English to Czech. Given triplets
(English, German, QE), we thus create triplets of (Czech, German, QE). An
example of this can be seen in Figure 4.4.

4opus.nlpl.eu/Ubuntu-v14.10.php
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use the Video Properties dialog box to change video properties for FLV Video files .

im Dialogfeld " Videohäuser " können Sie Videoeigenschaften für Flv Video-Dateien ändern .

OK OK OK OK OK OK OK OK OK BAD BAD OK OK

CS (MT):

EN:

DE (MT):

QE:

použijte dialogové okno Vlastnosti videa ke změně vlastností videa pro video soubory FLV .

Figure 4.4: Quality estimation tags for tokens and gaps on German sentence
translated from English (from WMT19 quality estimation shared task) together
with synthetic Czech source (translated from English). MT systems are indepen-
dent.

To make sure the data did not lose quality, we performed the following ex-
periment: We manually annotated 30 Czech-German and 20 English-German
sentences for word-level quality estimation, in the same format as the original
English-German dataset, i.e., labeling German words with OK/BAD labels given
the source sentence. The original English-German annotation served as the golden
standard. Our annotation for English-German was created independently of it
and it served as a benchmark for our agreement with the original.

All
TP=74.57% FP=2.68%
FN=12.98% TN=9.76%

Czech→German
TP=77.58% FP=3.68%
FN=11.03% TN=7.71%

English→German
TP=69.81% FP=1.11%
FN=16.07% TN=13.02%

Table 4.1: Confusion matrix for word-level quality estimation annotations of
Czech-German and English-German.

Table 4.1 shows the confusion matrices of our annotations compared to the
golden standard. The distributions for both language pairs are similar. The
sample is very small and the sets of underlying sentences (20 English and 30
Czech) had to be different because the annotation was carried out by a single
person, but the results nevertheless indicate that this transfer of QE data by
machine-translating the source is viable. The similarity of confusion scores can
mean one of the following. Either the German sentence itself was representative
enough for the annotator to produce classes with similar distributions, or that
both the English and the Czech sentences provided the same level information. In
both cases, the pairs (EN, DE) and (CS, DE) seem equally usable, which means
that we should be able to train a similarly good quality estimation model based
on the synthetic Czech source.
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5. Experiment
To test the usability of the Ptakopět tool proposed in this thesis, we designed
an experiment. This experiment aimed to classify and describe strategies users
take when tasked to do outbound translation, as well as the final quality of the
produced texts. It was the main focus of one of the papers connected to this
thesis (Zouhar and Bojar, 2020).

5.1 Setup
The experiment was carried out remotely, in two phases. In the first phase, an-
notators were presented with a sequence of web pages and asked to produce a
German sentence given a stimulus at each of them. In the second phase (Sec-
tion 5.2), a highly-skilled speaker of German validated the outputs of the first
phase.

QE highlighting in Ptakopět was enabled only for the first section, because
the QE model did not perform well on out-of-domain sentences.

5.1.1 Annotators
There were 8 annotators in total, divided into two groups. The first one was
composed of 4 people without advanced knowledge of English1 and the second
one consisted of 4 people with English level of at least C1 on the CEFR scale.
All of the annotators had German knowledge of at most A1. We refer to these
groups as bilingual and monolingual, respectively. The annotators’ knowledge of
German and English is summarized in Table 5.1. Annotators with an English
level equal to or below B2 were opted out of stimuli from the original SQuAD
2.0.

Annotator English German
C1 B2 A0
C2 C1-C2 A0
C3 B2 A0
C4 B2 A0
C5 B1-B2 A0-A1
C6 C2 A0-A1
C7 C1 A0

Table 5.1: Language proficiency of English and German on the CEFR scale

5.1.2 Data
For our experiment, we gathered input data and prompted users to reformulate
a specific question or work with the text in some way. Each data section was
meant to correspond to some real-life situations.

1Note that the annotators never needed to produce any English text in the experiment.
Only one subset of the test data needed English comprehension.
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Seeking help in technical issues

For the best match with the QE training data (Section 4.3.2), we extracted 35
stimuli (in Czech) from WMT 2017 English-German quality estimation dataset.
The sentences describe technical issues when using common office or desktop
publishing programs.

The annotators were expected to translate the description of the issue to Ger-
man relying on machine translation and quality estimation tools. Furthermore,
we think that explaining technical issues to IT support in an unknown language
is a common outbound translation use case. An example of a technical issue is
in Figure 5.1 (translated to English).

Issue description:
The date format cannot be changed from Month-Day-Year to Day-Month-Year.
Figure 5.1: Example description of a technical issue from the experiment dataset.

Common administrative issues

The next 30 test stimuli in the experiments provided a source text in Czech with a
piece of factual information (a short span in the text) highlighted. The annotators
were supposed to formulate questions that ask for this factual information.

This data was collected from the instructions on how to proceed in various
administrative topics at the Municipal District of Prague 6.2 This use case is
inspired by the day to day problems of citizens living in a foreign city. With the
help of MT, they can get the gist of regulation or relevant document but they
may need to ask the administration for some clarification or a specific detail.

An example of an administrative issue stimulus can be seen in Figure 5.2.
For presentation purposes, we again translate the stimulus into English but the
annotators saw Czech text and were expected to formulate the question in Czech
so that MT produces a good German version.

Paragraph with highlighted span:
Applicant pays 100 CZK when changing a surname that is derogatory, eccentric,
ridiculous, garbled, or foreign.

Figure 5.2: Example administrative topic and the factual information to ask for
(the price) highlighted

Encyclopedic knowledge: SQuAD 2.0

The last section of the experimental data was based on the Stanford Question
Answering Dataset 2.0 Rajpurkar et al. (2018) and its (machine-translated) Czech
version.3 The basic unit of SQuAD are paragraphs with spans. In the context of
SQuAD 2.0, this means that there already existed a question for this span. In our

2praha6.cz/codelat/index.php
3Translation provided by Matúš Žilinec; the dataset is available at

zilinec.me/dl/datasets/squad/train-cs-v2.1.json
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experiment, we disregard the existing questions and ask our annotators to ask for
the highlighted information again. We are thus creating additional questions for
the SQuAD dataset, now in Czech.

An example of a paragraph from SQuAD 2.0 and questions we collected from
the Ptakopět pilot study (again translated to English) can be seen in Figure 5.3.

Paragraph with highlighted span:
All of Chopin’s compositions include the piano. Most are for solo piano, though
he also wrote two piano concertos, a few chamber pieces, and some songs to Polish
lyrics.
Sample questions asked by our annotators:
What do all Chopin’s songs include?
What musical instrument will we hear in virtually all Chopin’s compositions?
Figure 5.3: Paragraph from SQuAD with two questions for the underlined span

We were mostly interested in spans of text which had more questions in
SQuAD already because such spans seemed easier to create questions for. The
distribution of questions per span in SQuAD can be seen in Table 5.2: the vast
majority of spans have only one question and having more than four questions
per span is very rare. The rightmost column shows how many of such spans were
included in our experimental data.

Questions Number of spans Occurences in
per span in SQuAD 2.0 experiment data

1 81619 15
2 2303 15
3 166 15
4 13 10
5 8 5
6 1 0

Total: 84110 60

Table 5.2: SQuAD 2.0 span distribution

In total, 60 paragraphs were chosen from SQuAD 2.0 randomly but respecting
the intended distribution in the third column in Table 5.2. These paragraphs were
machine-translated to Czech and the spans were transferred to Czech manually.
Bilingual users then had half of the SQuAD paragraphs in Czech and half in
English, monolingual users saw only the Czech paragraphs. No user saw the
same paragraph in both English and Czech.

Annotation task composition

The overall composition of types of stimuli is shown in Table 5.3. The bilingual
group received half of the SQuAD stimuli in Czech and half in English. The
monolingual group received all the SQuAD stimuli in Czech.
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Stimuli monolingual bilingual
Technical issues 35 35
Administrative issues 30 30
SQuAD 2.0 0 30
SQuAD 2.0 Czech 60 30
Total 125 125

Table 5.3: Overall composition of the input stimuli

All of the annotators overlap fully in technical and administrative issues. The
monolingual annotators overlap entirely within the group and 50% with the bilin-
gual group. Such overlaps are necessary for studying the same stimulus answers
variations.

5.1.3 User Interface
The Ptakopět frontend version used for the experiment is stored in the git repos-
itory under v-pilot tag. It was later improved and the most up to date public
version is described thoroughly in Chapter 3. The user interface is different for
experiments than for public use. The experiment user interface can be seen in
Figure 5.4. Apart from the standard three text boxes, the settings section is
hidden and at the top, there is a stimulus briefly describing the task, as well as
the text in question.

Figure 5.4: Screenshot of Ptakopět for annotators with a stimulus from the trans-
lated version of SQuAD 2.0
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5.1.4 Technical details
All the relevant experiment files and scripts together with their usage are dis-
cussed in detail in Appendix B.4.

Data gathering

Throughout the Ptakopět annotation, we logged various data, while the users in-
teracted with Ptakopět. The list of each logged information is shown in Table 5.4
and the description of each information type is in Table 5.5. Additionally, each
logged action contained Unix timestamp. The logs are stored for in files with
<userID>.log scheme.

The logged data for each user is stored in CSV format in one file, thus inter-
leaving multiple tables. Each row is prefixed with an extra column, describing the
logged action. Thus the file can be easily grepped to extract correctly formatted
tables.

Action code Logged information Description
START - The user logs in
NEXT SID A stimuli is shown
CONFIRM SID, TEXT1, TEXT2 User accepts solution
SKIP SID, REASON User skips stimuli
TRANSLATE1 SID, TEXT1, TEXT2 Forward translation is displayed
TRANSLATE2 SID, TEXT2, TEXT3 Backward translation is displayed
ESTIMATE SID, ESTIMATION Quality estimation is highlighted
ALIGN SID, ALIGNMENT Source complexity is highlighted
PARAPHRASE PARAPHRASES Paraphrases are displayed
NOTE SID, MESSAGE User typed in a note

Table 5.4: Logged information from Ptakopět users for each of their actions.
Last two logging actions were not used for the pilot experiment.

Logged information Description
SID Identifier of the relevant stimuli
TEXT1 Content of the source text area
TEXT2 Content of the target text area
TEXT3 Content of the backward translation text area
ESTIMATION Quality estimation data
ALIGNMENT Source to target word alignment
REASON User’s motive for skipping answering the stimuli

Table 5.5: Description of logged information from Ptakopět users

Baked queue stimuli preparation

We want the stimuli to be distributed randomly but in a fixed manner. We
also want to know the distribution of stimuli to users beforehand so that we can
regenerate it in case of any anomalies. For this, we use the concept of baked
queues. For every user, we generate a fixed array of stimuli that will be shown to
them.
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The pool size of stimuli per domain is hardcoded as Technical issues: 35,
Administrative issues: 30, SQuAD Czech: 60, SQuAD: 60.

5.2 Results
The results of this experiment were published in Zouhar and Bojar (2020) and
this section uses whole paragraphs and tables from this paper.

5.2.1 Basic statistics
We refer to sequences of log entries related to the same stimulus as segments. The
number of finished segments, as well as their average duration in every domain,
is shown in Table 5.6. Since the differences in duration between each segment
were not high (min 90s, max 106s), we concluded that the users employed similar
strategies across all domains and that no domain was exceptionally difficult nor
easier than the others.

Domain Segments Average duration
SQuAD 2.0 141 100s
SQuAD 2.0 Czech 346 94s
Technical issues 268 107s
Administrative issues 246 90s
All 1001 98s

Table 5.6: Number of segments and average duration across all users per domain
in collected data

5.2.2 Types of edits
Some of the stimuli were skipped, mostly because the annotators did not have
enough confidence in the MT system’s performance (for a given stimulus) and
were unable to produce a better result. We describe such segments as skipped as
opposed to finished. From the finished ones, about a quarter of the segments were
written linearly (no edits or deletions in already written text). Such segments
are denoted as linear as opposed to segments, which had some edits in already
written parts (with edits). The number of skipped, finished, linear and edited
segments can be seen in Table 5.7.

We see that the proportion of skipped segments (i.e., segments where the
annotator failed to produce an output they could accept) is not excessively high.
The easiest to process were administrative issues (5.7 % skipped segments) and
the hardest was the technical issues (10.8 %). SQuAD reached 7.8 % (English)
and 7.5 % (Czech) of skipped segments.

Of the finished segments, most (72%) were edited and not just linearly written
(28%). Additionally, in technical issues, the stimulus was the description of the
technical problem itself, so the annotators could choose to simply copy this text
and paste it in the input window. The number of occurrences of this behavior
is described in the table as init copy (60% of all edited). We also measured the
number of final inputs, which matched the initial stimulus (Copy & submit, 6%
of all edited).
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Domain Description Segments Ratio

SQuAD 2.0

Skipped 11 (8%) (of all)Finished 130 (92%)
Linear 52 (40%) (of fin.)With edits 78 (60%)

SQuAD 2.0
Czech

Skipped 26 (8%) (of all)Finished 320 (92%)
Linear 110 (34%) (of fin.)With edits 210 (66%)

Tech issues

Skipped 29 (11%) (of all)Finished 239 (89%)
Linear 27 (11%) (of fin.)With edits 212 (89%)
Init copy 127 (60%) (of edt.)Copy & submit 13 (6%)

Administrative
issues

Skipped 14 (6%) (of all)Finished 232 (94%)
Linear 70 (30%) (of fin.)With edits 162 (70%)

All

Skipped 80 (8%) (of all)Finished 921 (92%)
Linear 259 (28%) (of fin.)With edits 662 (72%)

Table 5.7: Number of skipped, finished, linear and edited segments per domain
in collected data together with percentage of all, finished or edited segments.

We then focused on the segments, which were further edited. We tried to
extract the first input the annotator expected to be successful. We call this
input first viable and choose it heuristically as the longest nonfinal input ending
with a punctuation mark. We then compute the similarity between the first
viable source/translation and the final source/translation version as confirmed
by the annotator using Gestalt Pattern Matching on word-level (implemented in
Python’s difflib). This similarity is shown per domain in Table 5.8.

Domain Source sim. Translation sim.
SQuAD 2.0 69% 55%

SQuAD 2.0 Czech 75% 60%
Tech issues 78% 67%

Administrative issues 74% 57%
All 75% 61%

Table 5.8: Similarity between first viable and final versions of inputs (source
texts) and outputs (translations) (only on segments with edits)

From Table 5.8, we can see that even though the first viable and final inputs
are quite similar (75% on average across all domains), the first viable and final
translations are less similar (61% on average). This indicates that the edits had
a considerable effect on the translation.
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5.2.3 Evaluation survey
At the end of the experiment, we asked the annotators to fill in a short survey.
The results are shown in Table 5.9.

Question Domain Average
What confidence do you have in
the translations you have cre-
ated?

SQuAD 2.0 (both) 1.14
Technical issues 2.86
Administrative issues 2.29
All 2.10

How useful was the highlighting of problematic words in
technical issues? 2.29

How useful was the environment for these tasks, com-
pared to other web interfaces (Google Translate, Bing
Translator and others)?

1.71

Table 5.9: Annotator survey results (1 - most, 5 - least)

We suspect that the overall results are affected by the relatively low quality of
the MT system. Most of the annotators complained of this, stating that the MT
system made obvious mistakes, such as adding random words. Should we deploy
a better MT system, the average scores would probably go up. At the same time,
it seems that we have chosen the right level of MT quality for the experiment:
MT was not too good (edits were needed) and not too bad (at most 10.8 % of
segments were given up).

The perceived confidence per domain confirms that technical issues were the
hardest (probably because of vocabulary deficiency of the MT system in the IT
domain) and it was the highest for encyclopedic questions.

The good news is that the overall usefulness of Ptakopět compared to standard
web interfaces to MT was rated as 1.71 on the 1–5 scale, although the perceived
utility of QE was lower (2.29).

In a questionnaire we also inquired about the users’ strategies. Most of them
focused on the backtranslation to validate the output. If they suspected that
the result might not be preferable (either by the backtranslation or by looking
at the result itself), they tried reformulating the input by using synonyms. If
that did not help, they tried simplifying the sentence, even beyond the threshold
of a grammatically sound output sentence, attempting just to communicate the
meaning properly.

It is worth noting that the backward translation can in principle fix previously
introduced errors, thus hiding the problem. In these cases, the users could get a
false sense of confidence in the translation. For such occasions, an external tool
(e.g., MT quality estimator) is needed.

5.2.4 Output validation
After we collected data from the previous annotation phase, we extracted final
translations and translations of the first viable inputs for each segment (if possi-
ble). We then asked another annotator with a good command of German (C2 on
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the CEFR scale) to rate each translation on the scale of 1 to 5 (best to worst),
estimating to what extent a native German would understand the message.

Validation results

First viable Final
Domain Avg. Var. Avg. Var.

SQuAD 2.0 3.43 2.56 1.91 2.00
SQuAD 2.0 Czech 3.95 2.18 2.64 2.67

Tech issues 3.77 1.79 3.10 2.23
Administrative issues 4.05 1.91 2.92 2.55

All 3.85 2.07 2.77 2.55

Table 5.10: Average quality ratings across domains for first viable and final
translations (1 - best, 5 - worst)

The results for each domain for the final and first viable translations are
in Table 5.10. In each domain, the final translations were much better than the
translations for the first viable inputs. The average score improves from 3.85±1.44
to 2.77±1.6. The paired t-test showed that the difference is highly statistically
significant (p < 0.0001 for 0.75 difference between final and first viable ratings).

Figure 5.5: Histogram of ratings for first viable and final translations (1 - best,
5 - worst)

The validation scores assigned to the individual segments using the histogram
is presented in Figure 5.5. We see that the first viable translations received
mostly the worst rating while final hypotheses are bimodal: the majority received
a favorable validation score but a considerable portion (24%) had the worst score.
We assume that in these cases, our setup was unreliable and fooled the user in
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accepting a misleading translation. A possible explanation of this is offered in
Section 3.3.

Overall, this is a clear success, as our technique helps people to produce
better messages in a language they do not speak. Nevertheless, it is important to
mention the limitations of our pilot study. Our heuristics for picking first viable
inputs may include sentences, which were actually not thought to be viable by
the user. Maybe the sentences contained obvious errors, such as typos, which
the user would fix anyway but maybe the user would not notice if we did not
present the backtranslation. A more thorough exploration is needed to isolate
such effects.

Relation to sentence length

One could expect that shorter sentences are generally easier to process by MT
(except for very ambiguous very short sentences). To analyze this assumption in
our setting, we plot the average validation score assigned to sentences based on
the source length.

Figure 5.6: Average rating for first viable and final translations based on the
translated sentence length (1 - best, 5 - worst)

Figure 5.6 indicates that the assumed effect is not apparent in our case, at
least not with our estimation of the first viable hypotheses. The shorter sentences
generally receive worse validation scores than longer ones, but the differences are
not very big.

For final hypotheses, the assumption seems more accurate: The best valida-
tion score was assigned to sentences of 6–10 words and the worst to sentences
over 25 words. A noteworthy observation is that for these long sentences, the
improvement in the validation scores from first viable to the final hypothesis is
very low.
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5.2.5 Conclusion
In this pilot experiment, users who did not know German were tasked to use
this system for real-world use cases (communication with IT support, describing
administrative issues and asking encyclopedic questions).

Across these domains, 5–10 % of inputs could not have been translated (our
annotators have given up). For the submitted translations, the average self-
reported confidence in the translations was 2.1 on a 1–5 (best–worst) scale and
the tool was found more useful than standard web interfaces to MT (average
usefulness of 1.71, same scale).

The majority of inputs were edited and while initial inputs and the final inputs
were quite similar in the source language (word-level Gestalt Pattern Matching
similarity of 75 %), the translations of them differed more (average similarity of
61 %).

The second, validation, phase of our experiment confirmed that the overall
understandability of the translations improved from 3.9 to 2.71 on the 1–5 (best–
worst) scale.
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5.3 Changes in Ptakopět
During the experiment, we acknowledged the need for separating experiment
definitions from the rest of the code. As a result, the whole experiment content
can be specified by a single JSON file instead of having to be hardcoded in the
project. This is described in detail Section 4.2. We also restructured the whole
codebase, so that the experiment and settings profiles are more separated. The
original version commit on which the pilot experiment took place got the v-pilot
tag in the zouharvi/ptakopet repository.

In preparation for the next experiment we added a paraphrasing module vis-
ible in the bottom right corner in Figure 5.7

The experiment user interface also changed to accommodate better more mod-
ules and stimulus in the form of images. A stimuli is now confirmed by clicking
one of the five buttons. They correspond to the confidence the user itself has of
their produced texts (1 lowest – 5 most). We added the ability to leave a note
anywhere in the experiment by clicking the NOTE button below the rating scale.
The progress is tracked visibly on the experiment page above the scale. This way,
the annotators have a better overview of the amount of work left. All of the new
features are shown in Figure 5.7.

Figure 5.7: Screenshot of the update Ptakopět interface for annotators with an
image stimuli

The baked stimuli queue is now split into blocks. They were added only for
management purposes so that it is easier for users to split their work into several
phases. They are notified by an alert box that they completed a block.

From the server point of view, nothing has been changed. Only the logs are
now stored with <userID>-<block>.log scheme.
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Conclusion
In this thesis we described the issue of outbound translation as a complement to
gisting. We briefly described technologies related to machine translation quality
estimation and presented a new system Ptakopět for both real usage and for
experiments in this area.

We also conducted an experiment on human annotators, which proved that
cues such as backward translation or quality estimation can increase the user’s
confidence in the produced translation, but also improve the final translation
itself.

We found that enhancing MT with QE improves the user experience. We ex-
pect some form of quality estimation to start appearing more in publicly available
MT solutions.

Future work
In future experiments we would like to quantitatively measure which cues are
most relevant for outbound translation and how they project on user confidence
in the translation. This can be done by providing different cues to different users
on the same task and seeing how it affects their performance and trust in the MT
system.

From the described experiment we already know that not all errors get re-
covered in the backward translation. This is a proof that backward translation
is useful for the task of outbound translation, at least to some extent. We wish
to explore this issue of backtranslation errors in general and see for example how
many errors and of what kind get recovered.

Lastly we would like to explore how to gather more QE data, because at
this time only a very small dataset of manually annotated QE data for several
language pairs is publicly available by WMT. This QE data synthesis is a work
in progress.4

4github.com/zouharvi/MosQEto
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Joël Legrand, Michael Auli, and Ronan Collobert. Neural network-based word
alignment through score aggregation. arXiv preprint arXiv:1606.09560, 2016.
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A. Attachments

A.1 Snapshot of Ptakopět frontend repository
Besides the source code for the web application, the frontend repository contains
also tools for the experiment and documentation source. The snapshot was cre-
ated at 15dab17f. It was mirrored from github.com/zouharvi/ptakopet. The
main repository directory structure is discussed in the technical documentation
in Appendix B.

A.2 Snapshot of Ptakopět backend repository
The backend repository, mirrored from github.com/zouharvi/ptakopet-server,
contains server code at f099a35b. The repository directory structure is discussed
in the technical documentation in Appendix B.

A.3 Snapshot of SlowAlign repository
We used SlowAlign vilda.net/s/slowalign to produce alignment figures. It is a
snapshot of github.com/zouharvi/SlowAlign at 0a158baf.

A.4 Trained models
The attachment also contains two trained DeepQuest models, Czech→German
and English→German and one OpenKiwi model, Czech→German. They are,
however, downloaded automatically when running the backend install script.
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B. Development documentation
In this appendix we aim to describe all technical details regarding the deploymend
and implementation of Ptakopět. It is a complement to Chapter 4 which deals
with the implementation.

B.1 Frontend
The zouharvi/ptakopet repository contains the following directory structure:

• dist/ - output directory, which contains all of the build files.
• docs/ - source code for the Ptakopět documentation; the content is located

in docs/src/ and is written in simple markdown1

• meta/ - files related to the whole project and not just the frontend
– meta/logo - the Ptakopět bird logo and relevant files
– meta/object design - diagrams, which describe the project workings.

They are used also in the documentation
– meta/study pilot - all of the files connected with the pilot experi-

ment. The contents are further described in Appendix B.4.2
– meta/synth qe test - data and evaluation script for the experiment,

which tested the quality of transferred QE data (described in Sec-
tion 4.3.2)

• node modules/ - dependencies downloaded automatically by npm2

• package.json - the build commands and list of dependencies
• package-lock.json - list of all dependencies together with their versions

in the project.
• README.md - introductory text about Ptakopět
• src/ - source files; their structure is described in detail in Section 4.1
• tsconfig.json - TypeScript compiler settings.
• webpack.config.js - Webpack settings

B.1.1 Build and compilation
The code in Listing B.1 clones and builds the whole frontend in production mode:

git clone https :// github .com/ zouharvi / ptakopet
cd ptakopet
git submodule update --init
npm install
npm run build

List of Listings B.1: Shell code for building the whole frontend
All of the files necessary for running the frontend should then be present in

the dist/ directory. The web page does not need to be served from the Internet
and can be run locally.3 To do so, it is sufficient to load dist/index.html in any

1Documentation is generated dynamically from the markdown by docsify.js.org.
2www.npmjs.com
3It still needs a server to respond to various MT related requests.
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modern browser.
Moreover, if one wishes to rebuild the code upon every change in the source

files, they may run npm run dev. This starts a small HTTP server and makes
the application accessible from localhost. Upon code changes, the code gets
recompiled in development mode.

B.1.2 Architecture
The source files directory has the following structure:

• src/messages/ - code for anything related to backend requests (machine
translation, quality estimation, alignment and paraphrasing)

• src/misc/ - miscellaneous files (code utilities, current page config and pro-
files)

• src/page/ - files relevant to DOM manipulation
• src/study/ - code for displaying and collecting experiment data
• src/main.ts - entry point for the frontend application

Backends

As mentioned in Section 4.1, a backend in this context is just an object, which
contains a list of supported language pairs, a name and a function, which for some
input returns a promise of the relevant output. For example in case of Estimator
one may define a Random backend as in Listing B.2.

{
composeRequest (

[lang1 , lang2 ]: [ LanguageCode , LanguageCode ],
[text1 , text2 ]: [string , string ],
extra: ExtraTranslationInfo

): Promise <Estimation > {
return new Promise <Estimation >( async (resolve , reject )
=> {

let tokens = await tokenizer . tokenize (
targetText , Settings . language2 as LanguageCode )

let estimation : Estimation = []
for (let i in tokens )

estimation .push(Math. random ())
resolve ( estimation )

})
},

languages :
Utils. generatePairsSet < LanguageCode >( Utils. Languages ),

name:
’Random ’

}

List of Listings B.2: Random quality estimation backend definition
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Highlighting

As part of the quality estimation and source complexity presentation, we wanted
to highlight suspicious parts of the target and source texts, respectively. Even
though this seems like a trivial and prevalent task in web development, we found
a lack of robust and functional solutions. Our goal was to extend the functionality
of the textarea element so that we could display the highlighting, but keeping
the user experience unaffected.

The first option we explored was based on editable div elements. A div can
be made editable using the attribute contenteditable="true". The div would
then be filled by tokens, each in its span. The tokens could then be styled, for
example with an attribute like style=’background-color: red’. Even though
this would potentially offer extensive functionality, we found it very difficult to
work with. One of the biggest issues was that element focus and cursor position
was lost on rerender.

The other approach, which we eventually chose, was also used in Ptakopět-
old-2. It is based on a plugin4 by Will Boyd named highlight-within-textarea.
It is a simple jQuery plugin, which uses a placeholder div (overlapping with the
textarea), which is redrawn according to the current highlight values. This way,
the active textarea element does not lose focus nor cursor position because it is
not being manipulated. It is also beneficial that it works on mobile browsers as
well.

Unfortunately, we could not use this plugin out of the box, as it was created to
highlight keywords in the text. We thus forked5 this project and added the desired
functionality. This project is incorporated in the main Ptakopět repository as a
git submodule.

During the pilot experiment, we found out that there is a serious memory leak
in this plugin. This did not manifest in the original plugin, as the set of keywords
to highlight needed to be defined only once. For our use case, we needed to
display different highlight values roughly every second. After bisecting the bug,
we committed the fix into the forked repository.

4github.com/lonekorean/highlight-within-textarea
5github.com/zouharvi/highlight-within-textarea
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B.2 Experiment definition
In this section we describe the experiment definition on the frontend side. The
tools used for generating queues and stimuli and log evaluation are discussed in
Appendix B.4.1 and Appendix B.4.2.

An experiment can be defined in a single JSON file. It is included compile-
time in the src/study/baked study.ts file. The src/study/data/ directory
contains two files:

• study pilot.json - definition for the experiment described in this thesis
• study edin.json - definition for an upcoming experiment which is part of

this thesis

The JSON file has to contain a top-level object containing the keys users,
stimuliID and stimuliRules. We explain every item type in a separate para-
graph and provide a TypeScript type definition for the whole document in List-
ing B.3.

interface BakedStudyType {
users: {

[id: string ]: Array <Array <string >>
},
stimuli : {

[id: string ]: string
},
stimuliRules : Array <{

rule: string ,
message ?: string ,
profile ?: SettingsProfile ,

}>,
}

interface SettingsProfile {
settings ?: SettingsObject ,
qe?: boolean , // quality estimation
mt?: boolean , // machine translation ( translate 1)
bt?: boolean , // backward translation ( translate 2)
pp?: boolean , // paraphrasing
manual ?: boolean , // allow further manual settings

}

List of Listings B.3: Experiment definition type

users

users is an object with userID keys. These keys map to an array of arrays of
stimuliIDExtendeds. This defines the experiment blocks (every innermost array
is a separate block) and corresponding stimuli references. The users object can
look like in Listing B.4.
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"users": {
"alice": [

[ "003# bt.n", "007# bt.n", "012# bt.y", ... ],
[ "020# bt.y", "011# bt.y", "050# bt.y", ... ]

],
"bob": [

[ "101# bt.n", "003# bt.y", "084# bt.n", ... ],
[ "054# bt.n", "059# bt.y", "102# bt.n", ... ]

],
},

List of Listings B.4: users experiment definition example

stimuli

stimuli is an object with stimuliID keys mapping to a HTML string, which
gets pasted into the page when the given stimuli is to be shown. It is important
to note, that it can by any HTML, like images, not just text. The example in
Listing B.5 contains excerpts from stimuli of the experiment. The strings are
paragraphs with <mark> tags which highlight parts of the shown text.

" stimuli ": {
"001": "<p>A new style of wafers composed of gallium -

nitride -on - silicon (GaN -on -Si) is being used to
produce white LEDs using <mark >200 -mm </mark >
silicon wafers . ... </p>",

"002": "<p> Average annual precipitation is <mark >15
inches </mark > (380 mm), but great variations
are seen. ... </p>",

...
}

List of Listings B.5: stimuli experiment definition example

stimuliRules

stimuliRules is an array of stimuliRule objects, which contain the regex and
a settings object. If the regex matches the current stimulIDExtended, the
settings are applied. Multiple settings objects can be applied and can even over-
ride each other. The last rule in the array gets applied last. This allows the
stimuliIDExtended (in the users section) to contain different information about
e.g., whether the paraphraser should be shown to a given user, while still sharing
the same stimuliID.

An example of a stimuliRules array is shown in Listing B.6.

stimuliIDExtended

stimuliIDExtended is composed of two parts separated by #. The first part is
the actual stimuliID by which a lookup to this object is done, while the rest is
used for any symbols, that can be later recognized by stimuliRules.
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The string can then look like: "003#bt.y" and "003#bt.n". In both of these
examples, the same stimulus would be shown according to the lookup in stimuli,
but stimuliRules could have two rules: "\d+\#bt\.y" and "\d+\#bt\.n" which
would turn the backtranslation on and off respectively.

This example is also demonstrated in Listing B.6. In this example a
stimuliRule with the regex ".*" is used. This will match anything, so other
rules will only partially override this rule in case they also match. When com-
bined with the users definition in Listing B.4, the user alice would be shown
the stimuli 003 without backward translation and bob would see the same stimuli
but with backward translation enabled.

stimuliRule

Every stimuliRule object has to contain a rule key with the relevant regex and
optionally a settings object or a message string. The later is shown above the
stimuli that matches the rule. It can also contain HTML markup.

settingsProfile object

settings objects have a type defined in Listing B.3. It contains variables, which
define whether a given module should be active or not and also the backends.
The manual variable defines, whether users are allowed to change the backends
themselves. It defaults to false.
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" stimuliRules ": [
{

"rule": ".*",
" profile ": {

" settings ": {
" backendTranslator ": " ufalTransformer ",
" backendEstimator ": " random ",
" backendAligner ": " fast_align_ubuntu ",
" language1 ": "en",
" language2 ": "cs"

},
"qe": true ,
"mt": true ,
"bt": true ,
"pp": false ,
" manual ": false

},
" message ": " Translate the highlighted text in

the provided text."
},
{

"rule": ".*#.* bt \\.n.*",
" profile ": {

"bt": false
}

},
{

"rule": ".*#.* bt \\.y.*",
" profile ": {

"bt": true
}

},
...

]

List of Listings B.6: stimuliRules experiment definition example
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B.3 Server backend
The zouharvi/ptakopet-server repository contains several folders and files:

• align/ - models and config files for bitext alignment
• data/ - data which the models make use of
• install.sh - the root install script
• qe/ - models and config files for quality estimation
• README.md - an introductory text about the server
• server/src/ - the server source files
• server/run.sh and server/run nohup.sh - used for launching

B.3.1 Installation
The server needs to be run on a modern UNIX machine. It was tested on Ubuntu
19.10 and Fedora 31. The installation is done via a shell script install.sh. It
first checks whether all requirements are met. The requirements are on packages
installed via pip2 and pip3 (Theano, mosestokenizer, etc.), but also on system
tools (CMake, g++, tar, nohup). If all requirements are satisfied, it proceeds to
launch the installation scripts for alignment, quality estimation and the server
itself. According to modern development standards, the server should be docker-
ized. On the other hand, since only usually one instance would be running at a
time, dockerizing it would be overengineering.

To run the server (on 0.0.0.0:80), launch the server/run.sh script. A
common practice is to connect to a remote machine via SSH and launch the
server. For that, there is a script server/run nohup.sh, which disregards kill
signals on user logout.
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B.4 Experiment
All experiment data (both preparation and collected data) are stored in
ptakopet/meta/study pilot. The directory is structured as:

• logs/

– logs/raw anonymized collected raw log files
– logs/qe annotation quality annotation of the collected data
– logs/stable contains the finished product of all processing scripts

• prepare questions/ scripts used to genereate stimuli and also the finished
baked queues

• processing scripts/ contains all log processing scripts
• README.md introductory text about the experiment

B.4.1 Stimuli preparation
Baked queue

The Python program prepare questions/bake.py contains exactly this logic.
Given a number of monolingual (--cusers) and bilingual (--busers) users, it
will try to distribute the stimuli from the available pool as uniformly as possible.
By default the output is stored in a json file baked.json, but this can be changed
using the --file argument. The seed and maximum number of stimuli per user
can be specified using --seed and --per user respectively.

The program also prints the domain sizes for every user (important only for
bilingual users), the intersection between users’ baked queues and a histogram.
All three sections are displayed in an example output in Listing B.7. Users are
named from u1, with first being all the monolingual ones and then all the bilingual
ones.

These preparatory scripts assume that the current working directory contains
two dataset files. The first is squad-train-v2.0.json, which is available from
the SQuAD 2.0 website6. The second one is the Czech translation of the same
file with structure preserved. It is hosted by Matúš Žilinec7 and should be stored
with the name of zilinec-train-v2.1.json.

6rajpurkar.github.io/SQuAD-explorer
7zilinec.me/dl/datasets/squad/train-cs-v2.1.json
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> ./ prepare_questions /bake.py --cusers 2 --busers 2

s: SQuAD , z: SQuAD Czech , t: Tech issues , p: Praha 6
s z t p

u0: 00 60 35 30
u1: 00 60 35 30
u2: 33 27 35 30
u3: 20 40 35 30

Intersections (in %)
u0 u1 u2 u3

u0 100 100 73 84
u1 100 100 73 84
u2 73 73 100 75
u3 84 84 75 100

Histogram : X stimuli used by Y users
31: 1, 22: 2, 31: 3, 83: 4

List of Listings B.7: Example output of baked queue generator

Data extraction

Stimuli for the technical and administrative domains were chosen manually.
For SQuAD and SQuAD Czech, we extracted the stimuli at random us-
ing prepare questions/data prep.py. We used this program to explore the
SQuAD structure and also to pick stimuli of interest. As described by Table 5.2,
we wanted to focus on how many questions SQuAD had per given stimuli and
sample within a specific distribution. When using this data extraction program
with the extract distribution command, it prints the SQuAD distribution of
questions per span. It also samples the spans according to the hardcoded distri-
bution. This is shown in Listing B.8.

> ./ prepare_questions / data_prep .py \
extract_distribution \
output_raw .json

SQuAD 2.0 per span question distribution :
{1: 81619 , 2: 2303 , 3: 166, 5: 8, 4: 13, 6: 1}

Total selected spans: 60
Total SQuAD 2.0 spans: 84110

List of Listings B.8: Output of SQuAD data extraction tool

The output of this command is a JSON array, which contains tuples of the
original SQuAD 2.0 and SQuAD 2.0 Czech paragraphs. For the purposes of
our experiment, we also need to assign stimuli keys which we call SID. They
are in the form of <domain letter><number>. The domain letters are shown
in Listing B.7. For example the first stimuli of the SQuAD domain has SID
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of s00. To achieve this, we create a new JSON with the keys: tech issues,
praha 6 and squad. The values for the first two are just arrays of strings and for
squad it is the previous output. This file can then be used as an argument for
the last data preparation command which adds these keys. Assuming the new
edited file is stored in all questions raw.json, the keys can be added using as
in Listing B.9.

> ./ prepare_questions / data_prep .py \
add_keys \
all_questions \_raw.json \
all_questions .json

List of Listings B.9: Usage of data preparation tool command which adds SIDs
to stimuli

The file all questions.json from Listing B.9 should now contain the JSON
object which can be added to the main experiment definition file described in
Section 4.2.

B.4.2 Logs
Files

The raw logs are stored in an interleaved CSV file (grepping it by
the first token results in a regular CSV file). The collected files are
stored with anonymized userIDs at meta/study pilot/logs/raw/. The file
meta/study pilot/logs/a0 fixed.csv contains the quality annotation of pro-
duced outputs.

Processing scripts

For the purpose of this thesis we use files with the .blog extension. They simply
contain pickled Python data. The logs are split into segments (each corresponding
to one stimulus) and the timestamps are normalized concerning the segment’s
beginning. Furthermore, the lines also contain the annotator’s ID.

To create the .blog file, use the meta.py command. The file can then be
used by other scripts that analyze the logs. Quality estimation annotation has
to be added to these files as well using the extract qe annotation. This pro-
cess is shown in Listing B.10. We list the processing files along with their brief
description:

• meta.py aggregates all of the raw logs into a single pickled file.
• domains.py explores phenomena in segments across domains, such as the

number of linearly written stimuli.
• prep qe annotation.py creates a markdown (qe annotation/a0.md) and

a CSV file which can be used by a proficient annotator to assess the
quality of the produced output. We turned the markdown file into a
HTML page (qe annotation/a0.html) using Pandoc.8 These files were

8pandoc.org
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then used by this annotator and afterward, their work was merged using
extract qe annotation.

• process qe annotation.py processes quality annotations on collected data
with graphics output which is used in this thesis and Zouhar and Bojar
(2020). The matplotlib module is required.

• segments.py aggregates the log to some human-readable form that can
be later analyzed. Examples are only written inputs (SR1) and the last
translation request before confirmation (SR5). This was useful for us to
examine the data.

• load.py, create blog.py and utils.py are used only as modules from
other scripts.

> ./ processing_scripts /meta.py ./ logs/raw /* -b main.blog

> ./ processing_scripts / prep_qe_annotation .py ./ main.blog \
./ prepare_questions / questions_flat .json \
--a0md a0.md --a0csv a0.csv

> ./ processing_scripts / extract_qe_annotation .py \
main.blog main.blog \
./ logs/ qe_annotation / a0_fixed .csv

> ./ processing_scripts / domains .py ./ main.blog

SQuAD 141 (100s)
- skipped : 11
- finished : 130
- - linear : 50
- - with edits: 78
- - - avg similarity : 68.86%
- - - equal: 68.31%
- - - replace : 26.39%
- - - insert : 0.00%
- - - delete : 5.31%
SQuAD -cs 346 (94s)
- skipped : 26
- finished : 320

...

> ./ processing_scripts / segments .py ./ main.blog \
-sr1 out.sr1 -sr2 out.sr2 -sr3 out.sr3 \
-sr4 out.sr4 -sr5 out.sr5

List of Listings B.10: Example of binary log file creation and manipulation
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Errors

During the experiment, we committed three mistakes. The first concerns a mem-
ory leak which made the user interface less responsive over time. This was fixed
after the experiment.

The rest regards the annotation of produced translations. The sec-
ond error is connected to the IDs in the CSV and HTML file given
to the proficient annotator. Luckily this could be solved later by
running the script ./processing scripts/fix qecsv usid.py ./main.blog
./logs/qe annotation/a0 bad.csv ./logs/qe annotation/a0 fixed.csv.
The file a0 bad.csv is the one returned by the annotator and a0 fixed.csv
is the file with the correct mappings that can be used with other scripts.

The other error is a methodological one. The markdown/HTML file used
by the annotator by which they rated the translation quality contained visible
distinctions in IDs between first viable and final outputs. Since the first viable
were thought to be of lesser quality, the annotator could get biased in their ratings.
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C. Instructions for annotators
The following document in Czech is what was send (with minor styling edits) to
the annotators from the experiment described in Chapter 5. It briefly introduces
the user interface and the annotation task with an example.

Ptakopět Pilot Experiment
Ptakopět je nástroj pro práci s překladačem. Hlavnı́ je levé hornı́ textové
pole, obsahujı́cı́ zdrojový text, pravé hornı́ zobrazujı́cı́ text přeložený strojovým
překladem a levé spodnı́, zobrazujı́cı́ zpětný překlad (z cizı́ho jazyka zpět do
zdrojového). Prvnı́ dvě zmı́něná pole je možné editovat.

Červené zabarvenı́ v druhém poli indikuje, že překlad je v tomto mı́stě
nějakým způsobem problematický, jde ovšem o automatický odhad, který může
být zavádějı́cı́. V prvnı́m okně se pak podbarveně zobrazujı́ slova, která
pravděpodobně odpovı́dajı́ těm problematickým v překladu.

Studie

Úvod
Systém je nasazen na webové adrese: ptakopet.vilda.net. Doporučujeme krátké
seznámenı́ se systémem mimo samotnou studii. V přı́padě nejasnostı́ se, prosı́m,
obraťte na mail zouhar@ufal.mff.cuni.cz. Studie se týká použitı́ Ptakopětu k
překladu do němčiny pro uživatele, kteřı́ německy neumı́.

Po celou dobu práce je zapotřebı́ být připojen k internetu. Po zmáčknutı́
tlačı́tka Join study se zobrazı́ dialog, do kterého je potřeba vložit vaše ID, které
jste od nás dostali mailem. Pokud se vám po potvrzenı́ zobrazı́ hláška Unknown
user ID., bylo zadáno špatné ID a je třeba stránku načı́st a zadat ID znovu.
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Přı́klady
V přı́padě úspěšného přihlášenı́ se zobrazı́ prvnı́ z vašich přı́kladů spolu s krátkou
instrukcı́. Ty jsou čtyř charakterů:

1. Popis daného problému technické podpoře, která komunikuje pouze
německy.

2. Formulace otázky v němčině, na kterou v kontextu věty odpovı́dá
zvýrazněná část českého odborného textu.

3. Formulace otázky v němčině, na kterou v kontextu věty odpovı́dá
zvýrazněná část anglického odborného textu.

4. Formulace otázky v němčině, na kterou v kontextu věty odpovı́dá
zvýrazněná část českého administrativnı́ho textu.

Prvnı́ druh přı́kladu obsahuje navı́c červené podbarvenı́, které signalizuje kval-
itu překladu, ovšem ne směrodatně. Ukázka přı́kladu druhého druhu:

Prvnı́m řešenı́m (pište do prvnı́ho textového pole) může být např. Co bylo
rozpuštěno po indickém povstánı́ v roce 1857? Po překladu se však může ukázat,
že různé obraty jsou zpětně špatně přeloženy. V takovém přı́padě je třeba původnı́
otázku nadále reformulovat, dokud nebudete s překladem do němčiny spokojeni
(jde samozřejmě jen o váš odhad, německy neumı́te).

Pohyb mezi přı́klady
Po dokončenı́ práce s konkrétnı́m přı́kladem klikněte na tlačı́tko OK a zobrazı́
se dalšı́. V přı́padě, že jsou s nějakým přı́kladem problémy, můžete ji přeskočit
tlačı́tkem SKIP v takovém přı́padě je však třeba vhodné udat důvod. Přesnějšı́
popisy jsou pro studii přı́nosnějšı́.

Přerušenı́
Váš postup je uchováván v rámci jednoho prohlı́žeče na jednom zařı́zenı́. Tj.
zařı́zenı́ i konkrétnı́ prohlı́žeč lze vypı́nat. Po znovunačtenı́ stránky v prohlı́žeči a
zadánı́ uživatelského ID by se měl zobrazit přı́klad, u které jste naposledy skončili.
Informace o aktuálnı́m přı́kladu bude ztracena v přı́padě smazánı́ historie, cook-
ies, nebo dat z webu (většinou v nastavenı́ prohlı́žeče).
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Konec
Množstvı́ otázek přesahuje váš čas pro tento projekt (zhruba 6 hodin). Až to
nastane, napište mail na zouhar@ufal.mff.cuni.cz. Zde můžete buď skončit, nebo
dále pokračovat, dokud nedojde zásoba otázek. Mzda je hodinová a přesný čas,
který jste pracı́ s přı́klady strávili se měřı́ automaticky a ukládá na serveru.

Poznámka
Během průběhu experimentu jsme stihli zaznamenat jeden technický problém.
Některým uživatelům se po 5-10 minutách použı́vánı́ Ptakopětu snižuje responzi-
bilita stránky Ptakopětu. Pokud se vám to stane, načtěte prosı́m stránku znovu.
Jedná se o technický nedostatek, který se nám bohužel na poslednı́ chvı́li nepo-
dařilo odstranit.
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