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1. Introduction
Optical music recognition (OMR) is an interesting subfield of computer vision. It
shares a lot of similarities to optical character recognition (OCR) and handwrit-
ten text recognition (HTR). It is, however, more challenging as is pointed out
in the paper Understanding Optical Music Recognition (Calvo-Zaragoza et al.
[2020]). For example in OCR, characters are read in one direction, typically from
left to right. Musical symbols seem to be similar in that a staff is also read from
left to right, but many symbols can be placed above each other. Piano scores can
even have symbols that span multiple staves.

Although a musical score can be very complex, many scores are not. We
can limit ourselves to scores that are monophonic, have a single voice, and have
symbols spanning only one staff. Monophonic scores lack chords, meaning there
is only one note playing at a time. This holds, for example, for windblown
instruments, since they cannot play multiple notes simultaneously. Sometimes
multiple voices (instruments) are engraved in a single staff to save space. We will
not attempt to read these scores either. It would be like reading two lines of text
simultaneously and the proposed model can output only a single sequence. Also
deciding what voice a given note belongs to is in itself a complicated problem.

Deep neural networks have transformed the field of computer vision recently.
Especially convolutional networks (CNN), whose architecture is particularly well
suited for image processing. Recurrent neural networks (RNN) have been used for
sequence processing, like natural language modeling or natural language transla-
tion. We can combine these two architectures to create a so-called RCNN network.
When trained using connectionist temporal classification (CTC), we get a pow-
erful architecture that is ideal for processing visual sequential data (Puigcerver
[2017]). This architecture has been used in handwritten text recognition to yield
state-of-the-art results (Scheidl [2018]).

If we limit the complexity of musical scores to the point that a single staff
can be represented as a sequence of tokens, we can use this architecture to tackle
the problem of OMR. This approach has been tried in 2018 by Calvo-Zaragoza
and Rizo (Calvo-Zaragoza and Rizo [2018]). They created the PrIMuS dataset,
which contains 87678 real-music incipits. An incipit is the part of a melody or
a musical work that is most recognizable for that work. Each incipit is a few
measures long, typically shorter than a single staff of printed sheet music would
be.

The resulting model has been compared against Audiveris1, an open-source
OMR tool, and has proven to be superior on the PrIMuS dataset. However,
the dataset contains printed images only. Since this RCNN architecture is an end-
to-end approach, there is a great chance that it would be ideal for reading hand-
written scores as well (drawing analogy from HTR).

Therefore the goal of this thesis is to explore the end-to-end approach for op-
tical music recognition of handwritten music scores. More specifically we want to
train an RCNN network to yield the best possible results on the CVC-MUSCIMA
dataset.

We needed to obtain training data. We explored the Collection of datasets
1https://github.com/Audiveris
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for OMR by Alexander Pacha (Pacha) and quickly found out that the only dataset
containing entire staves of handwritten sheet music is the CVC-MUSCIMA dataset
(Fornés et al. [2011]). Every other handwritten dataset contains only musical
symbols or is derived from CVC-MUSCIMA. Since CVC-MUSCIMA is intended
for writer classification and staff removal, it contains only 20 parts, each written
by 50 writers. That is far too small variability, given the task we are trying to
solve.

Facing this issue we resorted to data augmentation. The idea is to take hand-
written musical symbols and place them onto an empty staff to create a new
staff image. We called this music engraving system Mashcima and the system
is explained in chapter 5. The musical symbols used by Mashcima come from
the MUSCIMA++ dataset (Hajič jr. and Pecina [2017]). This dataset is built
on top of CVC-MUSCIMA and provides pixel-perfect symbol segmentation and
relationships between symbols. The reason we choose MUSCIMA++, instead of
other musical symbol datasets, is that it is built on top of CVC-MUSCIMA. This
means the image resolution and overall style are consistent with CVC-MUSCIMA.
Also, MUSCIMA++ has been developed at Charles University and so it was easy
to contact its creator when needed. We however do make sure, that the final
evaluation is performed on data the neural network has not seen during training.
Specifically, it trains on staves by completely different writers than the ones used
for evaluation.

Mashcima engraving system is the main feature that sets this thesis apart
from other works. Other people, when faced with the lack of training data,
used data augmentation (dilation, blurring, distortion) or transfer learning (Baró
et al. [2019]). We believe that a custom engraving system for handwritten music
is the best way to produce an overabundance of high-quality training data. Our
confidence stems from the fact, that non-trained human has difficulties distin-
guishing a real-world sample from a well-engraved one (see Figure 1.1).

Real-world:

Synthetic:

Figure 1.1: Comparison of a real-world image to an engraved image. The top
image is taken from the CVC-MUSCIMA dataset. The bottom image is the same
music engraved using our engraving system and using symbols of the same writer.

It is difficult to evaluate an OMR system in general. This is because there is no
standard dataset that can be used and no standard set of metrics. Moreover, we
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proposed a new Mashcima representation for the music engraved in a staff. This
representation is based on the agnostic encoding proposed by Calvo-Zaragoza
and Rizo (Calvo-Zaragoza and Rizo [2018]). Using custom representation makes
it yet more difficult to compare our results to other works. That being said, we
can still make some comparisons. It seems that having a specialized engraving
system is a step in the right direction. The results we obtained when evaluating
are comparable to similar works performing similar evaluation (Baró et al. [2019]).

The thesis assignment states that the output of our model will be a MusicXML
file. We quickly realized that the problem is far larger than anticipated and so we
focused on the core features only. Similarly, the model input is not a plain photo
or scan. It is already preprocessed and binarized. This problem has already been
solved during the creation of the CVC-MUSCIMA dataset (Fornés et al. [2011]),
therefore we did not tackle it either.

Also, there is a Github repository containing all the source code and text
of this thesis at https://github.com/Jirka-Mayer/BachelorThesis. There is
also a release tag corresponding to the time this thesis was submitted and it
contains all the trained models for download.

1.1 Thesis Outline
Chapter 1: This chapter provides an introduction to the problem this thesis
attempts to solve. It describes the approach we tried and how successful it was.

Chapter 2: This chapter lists work done by other people that we build upon
and that will be referenced throughout the thesis. It provides a short overview
of each work and of what significance it is to us.

Chapter 3: This chapter describes the specific model we decided to use for our
OMR task. It discusses traditional methods and how deep neural networks help
us simplify the process. It describes models other people used for similar tasks
and how we have been influenced by them.

Chapter 4: This chapter mainly describes the Mashcima music encoding - the
encoding we used for our model. It describes how it relates to the PrIMuS agnostic
encoding, and why we made certain decisions regarding its design.

Chapter 5: This chapter talks about the Mashcima engraving system. Why
we developed this system and what problem it solves. How it works, what are its
limitations, and how it can be extended.

Chapter 6: This chapter describes the experiments we performed. These ex-
periments aim to measure the performance of our approach and test hypotheses
postulated in previous chapters. We will also attempt to compare our results to
other similar works.

5
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2. Related Work

2.1 CVC-MUSCIMA Dataset
CVC-MUSCIMA is a dataset presented in the article: CVC-MUSCIMA: A ground
truth of handwritten music score images for writer identification and staff removal
(Fornés et al. [2011]). This dataset contains 1000 sheets of music, consisting of
20 pages, each written by 50 different musicians. It is the only publicly available
dataset containing entire staves of handwritten music. The dataset has been
designed for writer identification and staff (staff line) removal tasks. It contains
two sets of images. One set for writer identification (containing gray, binary, and
staff-less binary images) and one set for staff removal (contains raw, staff-less,
and staff-only images, all binary).

Figure 2.1: One sheet of music from the CVC-MUSCIMA dataset. Image
taken from the CVC-MUSCIMA website http://www.cvc.uab.es/cvcmuscima/
index database.html.

We will use part of the staff removal set for evaluation. We will also use
another part of the staff removal set for engraving, but indirectly via the MUS-
CIMA++ dataset.

2.2 MUSCIMA++ Dataset
MUSCIMA++ is a dataset developed by Jan Hajič jr. and Pavel Pecina and has
been presented in the article: In Search of a Dataset for Handwritten Optical
Music Recognition: Introducing MUSCIMA++ (Hajič jr. and Pecina [2017]).
This dataset provides additional information for a subset of the CVC-MUSCIMA
dataset. MUSCIMA++ contains 140 sheets of music. Each sheet is annotated at
the level of individual symbols (noteheads, stems, flags, beams, slurs, staff lines).
Each one of these symbols is classified, contains a bounding box and a pixel mask.
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These symbols are then interlinked in a graph that can be traversed to extract
higher-level objects (notes, key signatures, beamed note groups).

Figure 2.2: Notation graph of the MUSCIMA++ dataset. Image taken from
Hajič jr. and Pecina [2017].

We will use the dataset as a collection of musical symbols. We will then
place those symbols onto an empty staff to create synthetic training data. The
additional data (relationship graph) will help us position certain symbols properly.

2.3 End-to-End OMR and the PrIMuS Dataset
This section refers to the article: End-to-End Neural Optical Music Recognition of
Monophonic Scores (Calvo-Zaragoza and Rizo [2018]). This article first describes
the PrIMuS1 dataset. This dataset contains 87678 real-music incipits. An incipit
is the part of a melody or a musical work that is most recognizable for that work.
Each incipit is a few measures long, typically shorter than a single staff of printed
sheet music. Each incipit is encoded in a few widely known encodings (MEI,
MIDI) and has a corresponding printed image. This image has been engraved
using the music notation engraving library Verovio2. Each incipit is also encoded
using two on-purpose devised encodings — the PrIMuS semantic and agnostic
encoding. These encodings are interesting because they are the output of a model
proposed in the article, but also the Mashcima encoding described in chapter 4
of this thesis is very similar to the agnostic encoding.

The article also proposes a neural network architecture for an end-to-end
solution of OMR. The architecture is very similar to ours, almost identical. It also
uses the connectionist temporal classification as the loss function (Graves et al.
[2006]), which shapes the PrIMuS dataset encoding formats. Our thesis differs
from this article mainly in the focus on handwritten music and the introduction
of a custom engraving system for handwritten music. The PrIMuS article focuses
on printed music only.

1https://grfia.dlsi.ua.es/primus/
2https://www.verovio.org/
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Figure 2.3: Two incipits taken directly from the PrIMuS dataset.

We will use the PrIMuS dataset as a source of melodies that can be used
as input to our engraving system. We will also take this article as a basis for our
Mashcima encoding and our model architecture.

2.4 HMR Baseline Article
This section refers to the article: From Optical Music Recognition to Handwritten
Music Recognition: A baseline (Baró et al. [2019]). This paper proposes a model
that should serve as a baseline for handwritten music recognition. The model is
again a convolutional recurrent neural network that recognizes entire staves. The
model is trained on printed music and then, using transfer learning, fine-tuned
on handwritten music. The handwritten music comes from the MUSCIMA++
dataset and it has been varied using data augmentation (blurring, erosion, di-
lation, measure shuffling). This model, however, does not use the CTC loss
function, instead, it produces two vectors for each pixel of the input image width.
One vector contains symbols that are present in the image at that position and
the other vector contains pitches of these symbols. This means annotations have
to be aligned with the symbols (unlike with CTC), but it allows the model to
recognize dense music sheets and even chords.

We will attempt to compare our model to the one from this article. The com-
parison will be difficult because the output formats are so different, but we will
mention all the differences and add a qualitative comparison of the final predic-
tions. We want to utilize the fact that our evaluation dataset intersects with
theirs and so we can perform a direct comparison.
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3. Deep Neural Networks
This chapter talks mainly about the model we decided to use. First, we de-
scribe the full pipeline of a traditional OMR system. Many of these steps are
shared between traditional and deep learning approaches. Then we will talk
about the deep learning approaches that can be taken. Neural networks can re-
place parts of a traditional pipeline, or they can be used in an end-to-end setting,
where the neural network replaces the most difficult core of the pipeline. We
will describe our architecture consisting of a convolutional block, recurrent block,
and the connectionist temporal classification (CTC) loss function. The following
sections describe in more detail what a neural network is and how the individual
blocks of our model work internally. The last section explains how CTC works
and what are its pros and cons, compared to the approach described in the HMR
baseline article (Baró et al. [2019]).

3.1 Traditional Approaches
A musical score intended for OMR typically begins as a raster image. This image
is a photo or a scan of a real-world sheet of paper. The image needs to be prepared
first. We need to find the sheet of paper in the image and correct any rotation
or perspective distortion. Scanned images are easier to prepare because they
do not contain any perspective deformation and lighting artifacts. Searching for
the paper in the image can be performed using many approaches, e.g. by using
maximally stable extremal regions (Matas et al. [2004]). We can detect staff lines
using Hough transform (Hough [1962]). We can then use this information to
remove any affine distortion of the image.

The next step is performing some color normalization and binarization. There
might be a light-intensity gradient over the image, so we do some automatic con-
trasting to bring the lightness to a constant level across the image. Median
filtering can be applied to remove noise (Huang et al. [1979]). Conversion to
a grayscale image is often used since colors are not useful to OMR. The image
can then be binarized to further remove unnecessary information. Many thresh-
olding algorithms can be used for this step, many of which are implemented in
the OpenCV1 library. Binarization is important for traditional approaches since
they often use methods based on connected components to detect individual sym-
bols. Neural networks could benefit from non-binarized images since binarization
can create aliasing artifacts that distort the input image on the pixel level.

The steps described above are shared by both traditional and neural network-
based approaches. Traditional approaches now usually perform staff line removal.
This step lets methods based on connected components to become useful. Staff
localization may be an important part of this step. Symbols then need to be
segmented and classified separately. Meaning is then reconstructed by looking
at the relationships between all the classified symbols. With the musical score
understood at the symbol level, the extracted information can be converted to
some final representation (MusicXML, MEI, MIDI).

1https://opencv.org/
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3.2 Deep Learning Approaches
Deep learning is a class of machine learning that focuses on deep neural networks.
Deep learning has risen over the past two decades and became a very powerful tool
for solving many problems, especially classification problems regarding computer
vision. Neural networks can be used in many places throughout the pipeline
of a traditional OMR system. They can be used for staff line removal (Calvo-
Zaragoza et al. [2017]), symbol classification (Lee et al. [2016]), or even symbol
detection (Pacha et al. [2018]).

Recently, neural networks have been used to tackle the problem of OMR in
an end-to-end fashion (Calvo-Zaragoza and Rizo [2018], Baró et al. [2019]). This
approach allows us to replace many stages of the pipeline with a single model. The
input sheet of music is usually processed staff by staff, so an initial segmentation
of staves is required. This step is, however, very robust and can be performed
reliably.

The main steps unified by an end-to-end system are segmentation, symbol
classification, and part of the relationship extraction. This means we do not need
to explicitly specify the structure of this part of the pipeline, which saves a lot
of time and thinking. Also, any intermediate features that would be extracted
(like noteheads) need not be specified. The deep neural network can learn, what
those features are. Moreover, it can adapt these features to the problem better
than a human could.

Deep learning, especially in an end-to-end approach also has some drawbacks.
The first is bound to the ability of the model to learn the solution from data.
While it is very helpful, that we do not have to design part of our OMR sys-
tem manually, it is often very difficult to acquire enough high-quality data for
the training. Also, the more complex our model is and the more learned param-
eters it has, the more training data it requires. The data also needs to be of
high quality. Ambiguity and mistakes in annotations lead to poor performance of
the resulting model. The trained model can only ever be as good as its training
data.

The second drawback is the very difficult nature of debugging the model.
A neural network is by design a black box and we cannot easily assign specific
meaning to any of its internal parts. The process of fixing a mistake the model
makes is tedious and requires a lot of experimentation and re-training.

3.3 Our Architecture
As stated in the title of this thesis, we decided to explore the end-to-end approach
to OMR using deep neural networks. We were primarily inspired by these three
models:

• End-to-End Neural Optical Music Recognition of Monophonic Scores by
Calvo-Zaragoza and Rizo (Calvo-Zaragoza and Rizo [2018])

• SimpleHTR by Harald Scheidl2

2https://github.com/githubharald/SimpleHTR
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• From Optical Music Recognition to Handwritten Music Recognition: A
baseline (Baró et al. [2019])

All of these models share the same high-level structure. They combine a con-
volutional neural network (CNN) with a recurrent neural network (RNN). This
combination is sometimes called RCNN architecture. Convolutional neural net-
works are used in image processing. Their architecture is inspired by the way
filters work in computer graphics (convolving a kernel over the source image).
They learn to extract edges, corners, and then even more abstract features like
noteheads and stems. Recurrent neural networks are used for sequence processing
(text and speech). They have been designed to carry state information throughout
the input sequence. In our case, they learn to propagate information horizontally
— like inferring pitch of an accidental from the pitch of a neighboring note. The
CNN block learns to extract features that the RNN block then learns to combine
into more abstract features.

Figure 3.1: Diagram of our model — a RCNN network with CTC loss function.
Detailed list of layers with all parameters can be found in table 6.5

The RNN block can be followed by fully connected layers that further refine
the result, although these layers are not necessary and our architecture does not
contain them. This may be due to the fact that our encoding is very close to
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the symbolic visual representation and so most of the heavy lifting is probably
performed in the CNN block.

The final layer outputs a sequence of vectors, where each vector represents one
time-step (horizontal slice of the input image). Values in such vector correspond
to probabilities of individual output classes (tokens) at that given time-step. One
additional class blank is added, which represents ”no symbol present”. The most
likely class for each time-step is selected and then repetitions of the same class are
collapsed into one token. Lastly, all the blank symbols are removed. The remain-
ing sequence of classes is mapped directly onto annotation tokens of the Mashcima
encoding explained in the chapter 4. This approach is called greedy CTC decod-
ing (Graves et al. [2006]) and is used during training. For evaluation, a more
advanced method is used, called beam search decoding (Hwang and Sung [2016]).

When training, the loss is computed using the connectionist temporal classi-
fication. The loss function provides a gradient for improving the network. This
gradient is then calculated for the entire network using the backpropagation algo-
rithm (Goodfellow et al. [2016]). Parameters are then updated using the adaptive
learning rate optimizer (Adam) (Kingma and Ba [2014]).

The values of all hyperparameters, including sizes and types of all layers, are
specified in the section 6.4.

3.4 Neural Network
A neural network is a model inspired by the human brain. Its core building block
is a perceptron (analogous to a neuron in the brain). Perceptron is a node that
has several inputs (real numbers), combines them, and produces a single output
value. The mathematical description is the following:

y = φ(w · x + b)

Vector x contains all the input values. It is multiplied by a vector of weights w
and a constant scalar bias b is added. The result is passed through an activation
function φ that produces the output value y. The core idea behind this model
is that a perceptron activates (fires) when enough inputs activate. Weights and
the bias are parameters that allow the perceptron to learn - to detect a specific
pattern in the input values. The activation function attempts to model the acti-
vation threshold and introduces non-linearity into the system.

One of the first activation functions to be used was the sigmoid function,
but it suffered from the problem of vanishing and exploding gradients (Hochre-
iter [1991]). The hyperbolic tangent function was then used to remedy this prob-
lem. Nowadays, rectifier function is often used (max(0, x)), because it is easy to
compute. Perceptrons with this function are called rectified linear units (ReLU).
It also has some problems, so leaky ReLU can be used to address them (Maas
et al. [2013]).

Perceptrons can be interconnected to form neural networks. A typical ar-
chitecture is a feedforward neural network (FNN). It organizes perceptrons into
layers, through which information flows in one direction. The resulting graph is
directed and acyclic, which allows us to understand the whole network as a com-
plex mathematical function and lets us train it using the backpropagation and

12



Figure 3.2: Fully-connected neural network with 3 layers.

gradient descent algorithms (Goodfellow et al. [2016]).
The simplest feedforward network is a network with dense (fully connected)

layers. Each perceptron in a given layer receives input as the output of all per-
ceptrons in the previous layer.

3.5 Convolutional Neural Network
A convolutional neural network (CNN) is a kind of feedforward network. It is
ideal for processing visual data. A CNN is built primarily from two kinds of
layers:

Convolutional layer A convolutional layer is similar to a fully connected layer,
but the connections are only local. The input and output is a two-dimensional
array of numbers (like one channel of an image). Each perceptron takes input from
only a small window of neighboring perceptrons in the input layer (3x3, 5x5, 7x7).
Weights are represented by a kernel of the same size as this neighborhood window.
This kernel is shared by all the perceptrons, reducing the number of learned
arguments substantially and allowing the layer to process images of variable sizes.
There may be multiple input and output arrays (channels). In such a case,
the convolutional layer has one kernel for each pair of channels. This architecture
is inspired by the convolution filters from computer graphics — hence the name.

Pooling layer A pooling layer typically follows a convolutional layer. Its job
is to downsample the image, reducing its spatial resolution, while preserving the
number of channels. The downsampling is performed by splitting the input into
a set of rectangular regions (that may overlap) and then reducing each region

13



Figure 3.3: Computation of one output pixel in a convolutional layer.

using max, sum, or average operator. Widely used is the maximum operator and
the resulting layer is called a max pooling layer. The pool size is typically 2x2.

Fully-connected layer One or more fully connected layers can be added at
the end of a CNN, to further refine features extracted by the previous layers.
This layer is often present in models performing classification because we want
to reduce the number of outputs to the number of classes we are predicting.

A CNN has typically many convolutional layers, combined with pooling layers.
Each time the spatial dimensions shrink in a pooling layer, more channels are
added to be able to represent more features. This forces the network to create
abstractions and convert the visual data into some abstract representation vector.

3.6 Recurrent Neural Network
A recurrent neural network (RNN) is a network intended for sequence processing.
Input for the network is a sequence of vectors and the output is a sequence
of the same length. The recurrent network can be understood as composed of
recurrent units, each with two inputs and two outputs. A unit accepts one vector
from the input sequence and an old state vector. It outputs the corresponding
vector of the output sequence and the new state vector. These recurrent units
can be unrolled along the input sequence and each one passes the state vector
to the next one, using it to send information along the length of the sequence.
All instances of the recurrent unit share the same learned parameters and so can
be unrolled to any length necessary. The sequence dimension, where unrolling
happens, is called the time dimension.

The internal architecture of a recurrent unit may vary, but it is often a feedfor-
ward network, where the input and output vectors are both split into a sequence
part and a state part. The most common recurrent unit architectures are the long
short-term memory (LSTM) (Hochreiter and Schmidhuber [1997]) and the gated
recurrent unit (GRU) (Cho et al. [2014]). You can join two recurrent layers, pass-
ing information in opposite directions, to create a bidirectional recurrent layer.
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Figure 3.4: Unrolled recurrent units processing a sequence of vectors.

3.7 Connectionist Temporal Classification
A recurrent neural network outputs a sequence of vectors. If these vectors are
the final output of the model, they typically represent class probabilities for
a given time-step (we solve sequence classification). If we did OCR, we would
have a set of characters (an alphabet) and the vector would have the same size as
the alphabet. Each value in that vector would correspond to the probability of
that given character being present at that given time-step. We could use the soft-
max function (Goodfellow et al. [2016]) to convert the perceptron activations to
probabilities.

This creates a problem when training. In OCR, we want to produce a se-
quence of letters as the output. But one letter might span multiple time-steps
in the input. This means we not only need the gold sequence of letters, but we
also need to know at which specific time-steps the letters are present. This map-
ping of output classes to specific time-steps is called alignment and it complicates
the creation of a training dataset.

Connectionist temporal classification (CTC) (Graves et al. [2006]) is an ap-
proach that solves the alignment issue. The CTC loss function can calculate
the loss value over all possible alignments of our gold sequence over the output
sequence. This allows us to train the model, without having explicit alignment.

When the model is trained, the greedy decoding algorithm (Graves et al.
[2006]) can be used to convert the output vector sequence to the proper prediction.
This algorithm takes each vector of the output sequence and selects the most
probable output class (letter). It then collapses all repetitions of that class into
one occurrence, producing the final sequence. One special output class called
blank is introduced, to prevent two actual successive occurrences of a given class
from being collapsed into one. This symbol is, however, after collapsing removed
and will never be present in the final prediction.

There is also the option to use the beam search decoding algorithm (Hwang
and Sung [2016]). This algorithm keeps a list of best decodings so far, as the entire
decoding is being computed. Greedy decoding is a special case of the beam search
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decoding, where the list contains only one item. All partial decodings cannot be
considered, because there are exponentially many of them.

The connectionist temporal classification has many benefits regarding the
alignment problem, but it has some flaws as well. The loss computation and
the decoding rely on the fact, that there will be only one class predicted for each
time-step. This means we cannot capture the fact of two symbols appearing in
the input at the same time. This happens often with music. We can solve this
problem partially by utilizing the recurrent layers. They will allow us to output
simultaneous symbols sequentially, by remembering those symbols for a while.
This however increases the length of the final sequence, but this sequence can
never be longer than the total number of time-steps. We might run out of tem-
poral resolution.

The HMR baseline article (Baró et al. [2019]) opted not to use CTC and
performed manual alignment instead. This lets them have a model that can
predict multiple symbols simultaneously. This also reduces the complexity of
the output sequence and the model thus need not perform much additional work
as in our case (see the section 4.2.4 on attachment ordering).
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4. Music Representation
This chapter explores how music is represented in this thesis. It looks at the
encodings devised for the PrIMuS dataset and how they have been modified to
produce our Mashcima music encoding. Then we explore how this encoding can
be used for annotating datasets and how it can be extended in the future.

All the encodings explored in this chapter are made for a model that produces
a sequence of tokens. An encoding then defines a specific set of tokens and
describes how they map onto the musical symbols. In the context of a neural
network with a CTC loss function, we take all the tokens of an encoding and
represent them as the individual classifier classes. How the tokens get indexed
and how the blank symbol is represented is considered an implementation detail
of the neural network and is not covered in the encoding specification.

We can provide a short overview of the terms used in this chapter:

• Token is a single item of the output sequence produced by a model.

• Vocabulary is the set of all tokens in an encoding.

• Encoding is a scheme for mapping musical staves onto a sequence of tokens.

• Annotation is a specific sequence of tokens.

4.1 PrIMuS Agnostic Encoding
The PrIMuS dataset contains over 87 000 items, each with an image of the printed
staff and then multiple files describing the music in that staff. There are two stan-
dard formats, namely Music Encoding Initiative format (MEI) and the Plaine and
Easie code source. Then there are two on-purpose encodings devised specifically
for this dataset. These two encodings are what interests us.

package_aa/000112602-1_1_1/000112602-1_1_1.png

Figure 4.1: An incipit from the PrIMuS dataset.

The first of these two encodings is the semantic encoding. It represents what
the musical symbols mean. Each symbol has a specific pitch that relies on the
cleft at the beginning of the staff. This makes the vocabulary much larger and
any model using this encoding has to take the clef into account when reading
the symbols. It is however much easier to transform this encoding to some well-
known format like MusicXML since these formats tend to represent the meaning
of a score, not the score appearance.

The second encoding is the agnostic encoding. This encoding treats the staff
visually as a specific positioning of specific symbols. It tries to capture what is
in the staff visually, not what the symbols mean musically. This is comparable
to a sentence being thought of as a sequence of letters, whereas the semantic
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clef-G2 keySignature-DM timeSignature-C/ note-D4_half
note-E4_eighth note-D4_eighth note-G4_eighth note-F#4_eighth

barline note-F#4_half note-G4_eighth note-F#4_eighth
note-B4_eighth note-A4_eighth barline note-A4_quarter.
note-A4_eighth note-B4_quarter note-C#5_quarter barline

note-D5_quarter

Figure 4.2: Semantic encoding of the incipit from figure 4.1.

encoding could be thought of as the specific sounds a written sentence represents.
This makes the encoding harder to convert to a well-known format acceptable by
other music software. On the other hand, this encoding is formal-enough to be
easily converted to the semantic encoding, if read correctly. So this encoding lets
the model do less work, therefore the model should do fewer mistakes.

clef.G-L2 accidental.sharp-L5 accidental.sharp-S3
metersign.C/-L3 note.half-S0 note.beamedRight1-L1

note.beamedLeft1-S0 note.beamedRight1-L2 note.beamedLeft1-S1
barline-L1 note.half-S1 note.beamedRight1-L2

note.beamedLeft1-S1 note.beamedRight1-L3 note.beamedLeft1-S2
barline-L1 note.quarter-S2 dot-S2 note.eighth-S2

note.quarter-L3 note.quarter-S3 barline-L1 note.quarter-L4

Figure 4.3: Agnostic encoding of the incipit from figure 4.1.

The agnostic encoding has also the advantage, that annotating an image is
not as difficult for a human. Annotating an image using the semantic encoding
requires the annotator to know pitches for a given key. The situation is even
more complicated by key signatures. This means an untrained non-musician has
to do a lot of thinking when annotating, which leads to many errors and slow
annotation speed.

We have taken this agnostic encoding and modified it slightly to produce our
Mashcima music representation.

4.2 Mashcima Music Encoding

4.2.1 Notes And Pitches
Mashcima music encoding is an encoding that attempts to improve upon the
PrIMuS agnostic encoding. In the source code, most of the logic regarding this
encoding is placed inside the app/vocabulary.py file. Each token of this encod-
ing represents some musical symbol.
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clef.G-2 #4 #1 time.C/ h-5 e=-4 =e-5 e=-2 =e-3 |
h-3 e=-2 =e-3 e=0 =e-1 | q-1 * e-1 q0 q1 | q2

Figure 4.4: Mashcima encoding of the incipit from figure 4.1. The top image is
taken from the PrIMuS dataset. The bottom image is the same music engraved
using our engraving system. Below that is the Mashcima encoding of the music.

The first symbol we need to encode is a note. A note has some duration
and some pitch. These two pieces of information can vary independently, so it
can seem logical to represent them using two vectors. The problem is that the
connectionist temporal classification can output only one vector at a time. To
solve this, we take every possible combination of note duration and pitch and
create a token for that case.

Mashcima token Duration Pitch

w5 Whole note 5
h0 Half note 0
q-8 Quarter note -8
e-4 Eighth note -4
s9 Sixteenth note 9
t12 Thirty-second note 12

Table 4.1: All possible note durations, each with some pitch.

Combining duration information and pitch information into a single token
actually ends up being a reasonable solution. That is because the concept of note
duration can be extended to a concept of symbol type in general. This is because
not only notes have pitches.

The set of pitches we can choose from greatly impacts the vocabulary size.
This is not a major issue, because the vocabulary size will still remain relatively
small. Currently, the vocabulary has around 550 tokens. The pitch range we
choose spans from -12 to 12 — that is from the fourth ledger line below the staff
to the fourth ledger line above the staff.

The pitch encoding is built such that it would be easy to understand for a non-
musician. In western music notation, the pitch of a note is represented by the
vertical position of that note on the staff. An empty staff is composed of 5 staff
lines. Mashcima encoding sets the middle staff line position to be zero. Going
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up, the first space is pitch 1 and the first line is pitch 2. Going down, the first
space is pitch -1 and the first line is pitch -2.

h-8 h-7 h-6 h-5 h-4 h-3 h-2 h-1 h0 h1 h2 h3 h4 h5 h6 h7 h8

Figure 4.5: Half notes with pitches from -8 to 8 engraved using Mashcima. Stem
orientation is randomized for pitches between -2 and 2.

This pitch encoding has the advantage of being vertically symmetric, which
speeds up the manual annotation process. The first ledger line above the staff
is pitch 6, and the first ledger line below is pitch -6. The second property this
system has is that pitches placed on lines are even and pitches placed in spaces
are odd.

4.2.2 Rests And Barlines
The second most common symbol is probably a rest. A rest has duration, just
like a note, but it has no pitch information. Its vertical position may vary, but
that does not encode any pitch information.

Mashcima token Duration

lr Longa rest (4 measures)
br Breve rest (2 measures)
wr Whole rest
hr Half rest
qr Quarter rest
er Eighth rest
sr Sixteenth rest
tr Thirty-second rest

Table 4.2: Tokens for all rests representable by the Mashcima encoding.

The reader may have noticed, that that there are two extra durations — longa
and breve. Also, there is missing the sixty-fourth rest. It all has to do with the
fact that not all durations are used equally frequently. I based Mashcima on the
CVC-MUSCIMA and MUSCIMA++ datasets. There is no occurrence of longa or
breve notes in those datasets. There are, however, occurrences of longa and breve
rests. Similarly, sixty-fourth notes and rests are also not present. The vocabulary
can luckily be extended to accommodate these symbols. See the section 4.5 for
more details.
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Now that we have notes and rests, we can start grouping them into measures
(bars). A barline is represented by the ”pipe” character (|). Barlines separate
notes and rests into groups of the same total duration. There are many types
of barlines (double barline, repeat signs) and although they are used quite often,
they have not yet been implemented into the Mashcima engraving system. This
is simply because we wanted to see, whether our approach even works. These
special barline types can be easily added in the future.

clef.G-2 time.C wr | hr qr er sr sr | lr lr br | wr |

Figure 4.6: Rests and barlines engraved using Mashcima. The symbols were taken
from all writers and chosen randomly, therefore the two sixteenth rests look very
different.

4.2.3 Generic Tokens
There are some tokens that contain pitch information and some that do not. Since
the pitch information is often not required when inspecting a token sequence, it
is useful to strip it away. This is why we define a generic token as a version
of a token without pitch information. So for example a generic quarter note is
represented by the q token.

Generic tokens are not present in the vocabulary and cannot be produced by
the model. They should also never appear in the gold data. They are, however,
often used when analyzing a given token sequence.

The only exception is tokens that do not contain pitch information (e.g. rests).
They are considered to be their own generic token (i.e. the generic token for
a quarter rest qr is still just qr).

The vocabulary file (app/vocabulary.py) contains helper methods for work-
ing with pitches:

• to_generic(token: str) -> str
Obtains generic version of a token unless the given token is already generic.

• get_pitch(token: str) -> Optional[int]
Obtains pitch of a token, or None if that token has no pitch.

4.2.4 Attachments
It is often the case, that notes are decorated with symbols that slightly modify
their meaning. Since these decorating symbols are bound to the note itself, we
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call them attachments. An attachment token is simply a token that belongs to
some other non-attachment token.

Many kinds of musical symbols behave as attachments:

• Accidentals are symbols placed before a note and they modify their pitch
by a semi-tone.

• Duration dots are placed after a note and they extend the duration of
a note.

• Articulation symbols are usually placed below or above a note and they
specify how the note should be played (e.g. staccato, tenuto, accent).

• Other symbols, like a tuplet number, fermata, trill, etc.

• Artificial tokens, that we have added to encode specific time-spanning
symbols. See the section 4.2.5 on slurs to learn more.

The term attachment is not a musical term and it describes more how a symbol
is represented, not what a symbol means.

All of these attachments lack pitch information since the pitch is stored in
the note token. The only exception here is accidentals. Accidentals are special
because they need not be attached to a note. They can be standalone in a key
signature. This means that they need pitch information. This creates some
redundancy in the encoding; when a note has an accidental, they both should
have the same pitch. This condition is not ideal, because it may cause the model
to make unnecessary errors. It is however better than having different tokens for
standalone accidentals and attached accidentals.

Mashcima token Accidental Pitch

#5 Sharp 5
b4 Flat 4
N-4 Natural -4
x8 Double sharp 8
bb0 Double flat 0

Table 4.3: All accidentals, each with some pitch.

Attachments come in two kinds:

• Before attachments are placed before the target token

• After attachments are placed after the target token

By placement, we mean placement in the token sequence. It may not corre-
spond to the visual order of the symbols. The rule of thumb here is that tokens
are ordered from left to right and from top to bottom. The problem is that
some symbols may be both above and below a note, depending on the note pitch.
Therefore we did not make this into a strict rule and instead devised a specific
ordering of the attachments:

Here are a few notes regarding the ordering:
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Before attachments Meaning

) Slur end
fermata Fermata
trill + Trill
tuplet.3 Tuplet number
# b N x bb Accidentals

Table 4.4: Before attachments, properly ordered.

After attachments Meaning

. Staccato
_ Tenuto
> Accent
ˆ Marcato
* ** Duration dots
( Slur start

Table 4.5: After attachments, properly ordered.

• Slurs are always the first/last attachment.

• Some tokens are mutually exclusive, so they are placed on the same level.

• There are many ornaments and this list is not exhaustive. It is meant to
be extended in the future.

• Not all symbols here can be engraved by Mashcima.

• There can be many more tuplet numbers, only triplets are currently present.

4.2.5 Slurs
Slurs and ties are one of the first symbols that make OMR complicated. A slur
is a curved line going from one notehead to another. Notes that are under a slur
should be played blended without explicit note beginnings. A tie looks exactly
like a slur, just the two notes it joins have the same pitch. This means the notes
should be played as one long note. So the difference is only semantic, we will
consider ties to be just like slurs.

Mashcima encoding does not represent slurs explicitly, but it represents their
beginnings and ends. This is accomplished by two attachment tokens, ( and ).
The problem it creates is that sometimes it is impossible to pair beginnings and
ends properly. Therefore we can only annotate staves that do not contain nested
slurs.

Slurs can also span from one staff to the next. When this happens, the slur
ends at a barline. Therefore a barline can also act as a token, on which a slur
can start or end.
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q-4 ( ) q-4 q4 ( ) q4 | q-8 ( ) q-4 q-4 ( ) q-8 |
q4 ( ) q5 ( ) q6 | q4 ( ) | qr | ( ) q-4

Figure 4.7: Various slur situations, engraved using Mashcima. The first two slurs
are actually ties. One note is simultaneously a slur ending and a slur beginning.
Two slurs end on a barline.

4.2.6 Beams
Beamed notes pose similar problems as slurs, but they obey some additional
constraints that make them easier to deal with. Beams are encoded from the
perspective of a single note within the beamed group. The duration of this note
depends only on the number of beams passing through its stem. We just need
to distinguish the note from its flag variant, therefore we add some information
regarding the beam presence. The last problem is, that having a couple of beamed
notes in a row does not tell us about the way the beams are grouped. Therefore
we modify the beam presence information into two parts — beam ending and
beam starting.

Therefore for a given note duration, we get three tokens, that represent all
the possible beam situations:

s=-3 =s=-1 =s=2 =s1 e=-3 =e-6 | e=-3 * =s-1 e=6 * =s4

Figure 4.8: Beamed notes use the = sign in token names.

This, however, lets us create annotations that make no sense. We can cre-
ate un-finished and non-started beams. For this reason, there is the repair_
annotation function in the file app/vocabulary.py that can repair such situa-
tions or validate the correctness of an annotation.
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4.2.7 Key Signatures and Time Signatures
A key signature is just a group of many accidentals, typically at the beginning
of a staff. These accidentals are not attached to any note, so they have special
handling in the source code. They are not a problem from the annotation point
of view.

A time signature is either a symbol C or a pair of two numbers on top of
each other. The standalone C symbol can be represented easily using the time.C
token. A pair of numbers is represented by two tokens, e.g. time.3 time.4.
Numbers have to be paired. Non-paired time number is considered an invalid
annotation.

clef.G-2 b0 b3 b-1 b2 time.C | time.C/ |
time.3 time.4 | time.6 time.8

Figure 4.9: Examples of a key signature and various time signatures.

Time signature numbers are also treated specially since they always come in
pairs.

4.2.8 Clefs and Repeats
Clefs are encoded similarly to rests, with the only difference of having a pitch
associated. Not all pitches are allowed, though. There are three types of clefs
(G, C, F). Each of these clefs has a set of pitches it can have.

clef.G-4 clef.G-2 clef.F0 clef.F2 clef.F3
clef.C-4 clef.C-2 clef.C0 clef.C2 clef.C4

Figure 4.10: Various clefs by various writers.
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There are special barlines that mark a part of music to be repeated. These
barlines cannot be engraved yet, but they do have corresponding tokens in the
encoding: :|, |:, :|:.

4.3 Differences to PrIMuS
Mashcima encoding is very similar to the agnostic PrIMuS encoding, but there are
some deliberate changes introduced. Mashcima encoding has on purpose shorter
token names. This aims to aid readability when manually annotating. The goal
is to fit one staff of tokens onto the screen. Common tokens, like quarter notes
(q5), are also quick to type. We also decided to use characters that look like the
musical symbols they encode (sharps #5, flats b5, barlines |).

The pitch is also encoded differently. In PrIMuS agnostic encoding, every
token has a pitch — even a barline. The pitch might not be useful, but it is
present, to simplify working with the encoding. We decided to leave some tokens
without pitch information. That complicates the code but makes the annotation
more user-friendly.

Also, the specific pitch values are different. PrIMuS indexes lines and spaces
separately and line zero is the first ledger line below the staff. We tried to improve
on this by putting the line zero at the center of the staff. This makes the pitch
values vertically symmetric. We also removed the separation of lines and spaces
and we use just an integer value. That simplifies the code that deals with pitch
information. This integer value is then odd in spaces and even on lines.

4.4 From PrIMuS Agnostic to Mashcima
Conversion from PrIMuS agnostic encoding to Mashcima encoding could almost
be done by a lookup table. There are, however, some differences that make it
more complicated. The conversion happens on a token by token basis. First, we
convert the pitch of the token according to the table 4.6. All PrIMuS tokens have
a pitch but if the corresponding Mashcima token does not, we will not use it. The
remaining pitch-less variant of the token can be converted using the table 4.7.

Primus contains symbols that Mashcima encoding cannot represent. Gra-
cenotes are automatically removed since they cannot be engraved. Fermatas are
also removed. Incipits containing multi-measure rests are ignored because the
logic enabling their parsing has not been implemented. This allows us to treat
digit.4 as a time signature because that is the only remaining place where digits
can appear. Dots have to be disambiguated by a simple heuristic to determine
whether they are staccato dots or duration dots. Duration double dots have to be
merged after the conversion finishes. Incipits containing too long (longa, breve)
or too short notes (thirty-second, 5 beams, ...) are also ignored. This is the
reason why we train only on 64 000 incipits and not the full 87 678 incipits.
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PrIMuS Mashcima

S8 11
L8 10
S7 9
L7 8
S6 7
L6 6
S5 5
L5 4
S4 3
L4 2
S3 1
L3 0
S2 -1
L2 -2
S1 -3
L1 -4
S0 -5
L0 -6
S-1 -7
L-1 -8
S-2 -9
L-2 -10
S-3 -11
L-3 -12

Table 4.6: Lookup table for converting PrIMuS pitch to Mashcima pitch.
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PrIMuS Mashcima

barline |
fermata.above fermata

clef.C clef.C
clef.F clef.F
clef.G clef.G

metersign.C time.C
metersign.C/ time.C/
digit.0 time.0
digit.1 time.1
. . . . . .
digit.9 time.9

accidental.sharp #
accidental.flat b
accidental.natural N

slur.start (
slur.end )
dot . or *

rest.quadruple_whole lr
rest.double_whole br
rest.whole wr
rest.half hr
rest.quarter qr
rest.eighth er
rest.sixteenth sr
rest.thirty_second tr

note.whole w
note.half h
note.quarter q
note.eighth e
note.sixteenth s
note.thirty_second t

note.beamedRight1 e=
note.beamedBoth1 =e=
note.beamedLeft1 =e

note.beamedRight2 s=
note.beamedBoth2 =s=
note.beamedLeft2 =s

note.beamedRight3 t=
note.beamedBoth3 =t=
note.beamedLeft3 =t

Table 4.7: Lookup table for converting PrIMuS generic tokens to Mashcima en-
coding.
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4.5 Extensibility
Because the CVC-MUSCIMA dataset contains such a wide range of symbols, we
did not want to create an encoding that would capture every possible symbol in
the dataset. Most of these unusual symbols are present in only a few places and
adding them to the encoding would make everything much more complicated,
for little to no return. Therefore the Mashcima encoding contains the ? token.
This token should be placed into gold data whenever we encounter a symbol (or
a group of symbols) that cannot be represented by our encoding. This ? token
acts as a marker, that we cannot fully represent a specific place in the staff. It
can then be used to filter out such bars or just to find such places if the encoding
was ever extended in the future.

As mentioned in previous sections, there are some missing note and rest du-
rations. These can be easily added when needed. These new tokens would follow
the rules that are imposed onto all the current notes and rests.

Similarly, many symbols are not present in the encoding but could be easily
added. Dynamics cannot be encoded right now. They are ignored as if they were
not present at all. They could be added as after attachments. The same applies
to additional tuplets or similar ornaments.

Grace notes are special. They look like little notes, they do not affect the
rhythm and are considered an ornament attached to another note. PrIMuS ag-
nostic encoding can represent them but at the expense of adding a lot of additional
tokens. We decided not to bloat our vocabulary with symbols that are not very
abundant in the CVC-MUSCIMA dataset. They are present in a few places in
the evaluation dataset and are represented by the ? token.

A chord is two or more notes played simultaneously. Currently, there is no
way of encoding simultaneous notes. Since chords usually share a stem, they
could maybe be represented via after attachments. Maybe if we encoded the
top-most note of a chord as a regular note and then added one ”notehead” token
for every remaining note, we could represent a chord. But there are problems
with having multiple accidentals. Either way, it would be interesting to explore
in some future work.

Text (like lyrics and tempo) is also ignored. It is not encoded by even the
? token.
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5. Engraving System
This chapter describes the Mashcima engraving system we developed. We created
a custom engraving system for handwritten music to serve as an advanced data
augmentation tool. We opted to write a new system from scratch, because of
the flexibility we needed. We will talk about the specific requirements for the
engraving system. We will briefly overview the inner workings of the system -
how it understands the input (Mashcima encoding), what are the basic building
blocks from which a staff image is engraved, what are the most important events
that happen during engraving. We will talk about the shortcomings of the system
and how it could be extended in the future.

5.1 Why Custom Engraving System
In the thesis introduction (chapter 1) we stated that there is only a single dataset
containing handwritten staves of music. There are other handwritten music
datasets, but they either contain only symbols, or they are derived from CVC-
MUSCIMA. Using this dataset as-is for training is not plausible, because it con-
tains far too few symbol combinations.

We are not the first to realize this issue. The HMR baseline article (Baró et al.
[2019]) talks about using data augmentation and transfer learning to solve the
lack of training data. They propose a model to be trained on printed music, of
which there is abundance. After that, the model is fine-tuned by training on the
CVC-MUSCIMA dataset. The results they obtained are impressive, considering
the method they used. To help with the process, they used data augmentation,
like dilation, erosion, and blurring, and even measure shuffling.

We propose to use more sophisticated data augmentation. Specifically, we
want to shuffle the data on the level of individual musical symbols. The reason we
choose this approach is that we have access to the MUSCIMA++ dataset (Hajič
jr. and Pecina [2017]). This dataset contains a lot of additional information
regarding the CVC-MUSCIMA dataset, which includes segmentation masks of
individual symbols and their relationships. We want to use these masks to engrave
entirely new staves of music.

We will also build our own engraving system because engraving handwritten
music is something that existing engraving systems do not focus on. Handwritten
music is very different from printed music. Symbol positions vary, notehead
shapes may differ from note to note within a single staff, slant angle may also
change. We tried looking at Abjad1 — a python package for engraving music that
uses Lilypond2 at its core. Lilypond can load custom fonts, but those have to be
in vector form, not raster masks. Also, there is no way to introduce a controlled
variability and randomness into the engraving process. When we considered the
options, we decided to create or own system, since it would be faster and we
would have the ability to modify it in the future.

1https://github.com/Abjad/abjad
2http://lilypond.org/
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5.2 Requirements
We are not trying to produce PDF files as the other engraving systems do. Our
goal is to produce a single staff of handwritten music, as a raster image. This
image should look as similar as possible to a cropped image of a staff from the
CVC-MUSCIMA dataset. This means the image is already binarized, it has
comparable resolution and the image has about three times the height of the
staff it contains (the height of the staff lines).

This similarity can be accomplished by using symbols from MUSCIMA++.
On page 19 of writer 1, there is an empty staff. We take the mask of the staff
lines and produce an empty image of proper dimensions containing the empty
staff lines. The staff lines are almost perfectly horizontal (they wobble up and
down by a few pixels, but do not drift), therefore we will use them to create
a lookup table for converting pitch numbers to pixel offset in the y axis. This
will act as our blank canvas, from which we will start. Canvas is an actual term
used in the codebase.

Figure 5.1: Empty staff and the padding to the edge of the engraved image.

By trying to mimic the look of CVC-MUSCIMA, we will remove a lot of
problems that we would otherwise face. We do not need to perform any distortion
removal, alignment, cropping, preprocessing, and binarization. All this is already
performed on the source data we use. This lets us focus only on the engraving
system, which is complicated enough by itself.

5.3 Token Groups and Canvas Items
The Mashcima encoding defines the concept of token groups. It is not discussed
in the chapter on the encoding, because it is not so important for the encoding
itself. A token group is a group of tokens, that has one main token and then
all the attachments of that token. So for example a quarter note with a sharp
and a staccato dot is represented by three tokens, but it is a single token group.
A token group is all the tokens that belong to some non-attachment token.

Token groups are used in Mashcima annotation validation. When proper
attachment ordering is checked, the annotation is first grouped into token groups
and then each group has its attachment order checked. It also helps us to hide
away all the attachment tokens and focus only on the important tokens.

Two special kinds of token groups are key signatures and numeric time signa-
tures. It again makes sense to treat a time signature as a single object and since
it is a multitude of tokens, it is represented by a token group.

Token groups are important because they map directly onto canvas items.
A canvas item is something on the staff, that takes up horizontal space and can

31



be rendered. Canvas item represents a barline, a note, a rest. Attachments, like
accidentals and dots, are not canvas items but are part of some given canvas item
and they modify its appearance. Canvas items are placed on the staff right after
each other with some randomized amount of padding between them. A canvas
item has all the vertical space it can have and it decides, where to draw itself
vertically. The bounding boxes of individual canvas items can be seen in figure 5.2.

Figure 5.2: Canvas items with bounding boxes. A bounding box encloses all
sprites of a canvas item. The large cross is the origin and it used to position
the items vertically. Smaller crosses are marking where a stem ends and a beam
attaches. A key signature does not use its origin point, so it is left at the top of
the image.

5.4 Rendering Flow
The process of converting an annotation to an image has a couple of important
steps:

Canvas instance is created An instance of the mashcima.Canvas class is
created, so that canvas items could be added into it.

Canvas items are added The annotation is grouped into token groups and
those groups are mapped onto canvas items. This step just feeds the semantic
information from the encoding system to the engraving system. This step is per-
formed by the annotation_to_canvas function inside mashcima/annotation_
to_image.py.

The following steps happen inside the Canvas.render(...) method.

Canvas construction is finished This goes over the added canvas items and
extracts information about slurs and beams. This step also validates that beams
and slurs are properly formed. This extracted information is used later during
the rendering of slurs and beams.

Sprites are selected Each canvas item gets to choose specific symbol sprites
(images) to use for rendering. These sprites are chosen from a symbol sprite
repository, represented by the class mashcima.Mashcima inside the file mashcima/
__init__.py.
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Sprites and canvas items are placed With specific sprites selected, dimen-
sions are now known and so everything can be positioned properly. Canvas items
are positioned from left to right one at a time. Each time a canvas item is placed,
it also places its internal sprites (and attachments and other ornaments) and
determines its total width.

Beams are placed With note positions known, we can calculate the proper
position and angle for each beam. Once the beam position is calculated, the
length of stems of all corresponding notes is adjusted to match the beam.

Everything is rendered Canvas items, beams, and slurs are rendered. The
order is not important, because the resulting image is binary.

5.5 Slurs and Beams
There are only a few symbols that are not taken from the MUSCIMA++ dataset
as images but are instead rendered manually. Those are slurs and beams. MUS-
CIMA++ does contain binary masks of these symbols, but the problem is that
they cannot be simply moved to a different position and rendered. They rely
heavily on the position of other symbols and therefore they would need to be
stretched, rotated, and skewed to render properly.

Slurs have some pre-defined attachment points they can use and the specific
attachment point is chosen by the way a note is flipped. Once the two points
are chosen, the slur is rendered as a parabola. This approach far too naive and
simplified, so it does not capture the whole variability of a handwritten slur.
We think this is the reason the model makes so many mistakes regarding slur
placement.

e6 ( ) e-4 | h-4 ( qr qr ) h8 | h0 ( ) h0 ( ) h0 |
h-6 ( h-4 ( ) h-4 ) h-6

Figure 5.3: Sometimes slur rendering does not look nice. Slurs cannot move
other items around or create additional space. Slur does not move away when it
intersects other symbols. Nested slurs are allowed, although not recommended.

Beams face many similar problems as slurs. They are also rendered manually,
as straight lines. This again does not capture the real world. Beams are often
curved or they have a gap between themselves and note stems. This again seems
to be the source of many mistakes, especially with the writer 49, who leaves a lot
of gaps between beams and stems.
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5.6 Multi-staff images
Staves are usually so close together, that cropping a single staff with proper space
around it will usually crop parts of symbols from the staves above and below. We
want to capture this property of real-world data in our synthetic data.

We can take our rendering system and run it three times to render three staves
into a single image. We crop out the middle staff we actually want. It can be
used with some variations — having staff only above, or only below.

Multi-staff rendering can be performed by the multi_staff_annotation_
to_image function inside mashcima/annotation_to_image.py file.

Figure 5.4: Rendering staves above and below with long barlines.

5.7 Additional Deformation and Normalization
Affine transformation is applied to the produced image to make the model resilient
to changes in image positioning, perspective, size, and rotation. This transfor-
mation is a subtle, but very important step of the synthetic data preparation.

Finally, before the image is fed into the model, it is normalized to a specified
height, while preserving the aspect ratio. The resulting image can look like this:

Figure 5.5: Skewed and normalized to 64 pixels in height. The blurriness is not
an artifact of engraving this thesis document, it is actually present in the data.
The transformation and normalization turn the image grayscale, so the model
takes grayscale images as input, not binary.

5.8 Parameters
There are many places where the engraving system makes an arbitrary decision.
This section attempts to list most of them. The list is not exhaustive. The goal
is to give the reader an idea of how the system works.
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• Sprites are selected randomly from a repository of all sprites. This selection
has the most impact on the variability of the resulting image. The repository
contains sprites from all writers so this selection process mixes up symbols
from different writers.

• Noteheads and stems are not mixed — a given note sprite will always have
its corresponding stem sprite when engraved.

• A canvas item has a pivot that is placed according to the item’s pitch.
This placement is not randomized (vertically) because sprite selection does
a good job of it already.

• A note will have many sprites attached (accidentals, duration dots, stac-
cato) and they are also chosen randomly from the sprite repository. Their
position is slightly randomized. Sometimes additional rules are applied (e.g.
to prevent duration dots from landing on staff lines and not being visible).

• Canvas items are placed from left to right with random padding inserted in
between.

• Barlines can be short or tall. This depends on whether there are staves
rendered above and below our staff.

• Note stem orientation depends on the note position. Lower-pitched notes
point stems up and vice versa. Notes around the centerline have stem
orientation randomized.

• A given note has three slur attachment points — before, below, and after
the notehead. When notes on both ends of a slur have stems pointing in
the same direction, the below points are used. Otherwise, the before and
after points are used. When below attachment points are used, slur curves
with the notes. Otherwise, the curvature is randomized.

• Slurs are rendered as parabolas intersecting three points — the attachment
points and one midpoint. The midpoint vertical offset defines the curvature
and it is proportional to the slur length.

• Beamed group stem orientation is determined in the same way as for a
single note, only the average pitch of the group is used.

• The beam is selected as a line that minimizes the distance to all notes while
staying on one side of all the notes. Minimal stem length is preserved.

• Stems in a beamed group have their height adjusted (by stretching the
sprite) to end up right on the beamline.

5.9 Extensibility
Many symbols currently can be encoded, but cannot be engraved (trills, accents,
fermatas). These attachment symbols could be added relatively easily, in a similar
fashion to the way staccato dots and accidentals are rendered.
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The slur and beam rendering system could be improved to better mimic the
real world. The concept of attachment points for slurs is a little bit too digital. It
could be made fuzzier. Also, there are certain slur placements, that the current
system does not render (like slur above a beam). This kind of extension should
not require too much redesign of the system.

It would be interesting to render tuplets. They are similar to beams and slurs
in many ways. Also, dynamics and hairpins are maybe even easier to add. But
they cannot currently be encoded.

Adding chords is an interesting problem, I think the current system architec-
ture would make it quite difficult. The note canvas item would need to be entirely
redesigned.
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6. Experiments and Results
This chapter focuses on the experiments we performed. We will first describe the
training and evaluation data. How it was chosen, where it comes from, and in
the case of evaluation data, also the manual annotation process. Then we will
talk about the symbol error rate (SER), a metric used for evaluation, as well as
additional metrics we propose to understand mistakes our model makes. We will
describe the training and evaluation process in detail and provide values for all
hyperparameters. We will describe the setup for each experiment and explore
the results from many perspectives. Finally, we will compare our results to the
results in the HMR baseline article (Baró et al. [2019]).

6.1 Training Data
Before we can talk about experiments, we have to explain what the training
data looks like. In chapter 3 we talked about the network architecture. The
model takes an image as the input and produces a sequence of annotation tokens.
Chapter 4 describes how these annotation tokens encode the music in an image.
Now we just need to obtain enough pairs of images and annotations to train on.

The thesis introduction (chapter 1) stated that the only available dataset is
CVC-MUSCIMA (Fornés et al. [2011]). This dataset contains 1000 images of
handwritten sheets of music, consisting of 20 pages, each written by 50 writers.
Because of this lack of variability, the dataset cannot be used as-is. In chapter 5 we
described our Mashcima engraving system. This system can produce an image
of one staff, that corresponds to a given Mashcima annotation. It does that
by rendering musical symbols present in CVC-MUSCIMA, which in turn were
extracted as part of the MUSCIMA++ dataset (Hajič jr. and Pecina [2017]).

We have a system, that can create images for given annotations. All we need
to provide are those annotations.

6.1.1 PrIMuS Incipits
We ideally need thousands of annotations to account for all the variability in note
types and pitches our encoding can capture. Luckily, the PrIMuS dataset (Calvo-
Zaragoza and Rizo [2018]) contains exactly what we need. PrIMuS contains over
87 000 incipits of monophonic music. An incipit is the recognizable part of a
melody or a song. The incipits have the ideal length of a few measures. It is not
an entire staff, but not a few symbols either. Also, all the incipits are encoded
in many formats, but most importantly they are encoded in the agnostic format,
which is very similar to the Mashcima encoding.

We can take the PrIMuS dataset, engrave all the incipits using Mashcima, and
train on the result. The only obstacle is converting PrIMuS agnostic encoding to
Mashcima encoding.

Converting PrIMuS agnostic encoding to Mashcima encoding is mostly a one-
to-one mapping of tokens. Pitches have to be encoded differently, tokens have
different names. In PrIMuS, all tokens have pitch information, so for some tokens,
it gets stripped away.
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Some incipits, however, need to be filtered out. PrIMuS contains symbols,
that are not present in CVC-MUSCIMA, therefore they cannot be engraved.
These symbols are very long or very short notes (longa, breve, thirty-second).
PrIMuS also contains many grace notes and similar symbols that the Mashcima
engraving system cannot render, so they get removed. There are a couple of other
rules and checks that make the conversion slightly more complicated. The exact
code for the conversion can be found in the file mashcima/primus_adapter.py.

When the conversion finishes, we are left with 64 000 incipits we can use to
train on.

package_aa/000102439-1_1_1/000102439-1_1_1.png
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Figure 6.1: An image engraved from an annotation taken from the PrIMuS
dataset.

The advantage of this training data is that the music in it comes from the real
world. This allows the model to pick up common patterns and possibly learn the
language model.

6.1.2 Synthetic Incipits
The other option we have is to just simply randomize the training annotations, to
create some synthetic data. We throw away the possibility of learning a language
model, but we get a different benefit. We can artificially boost frequencies of
tokens that appear lass frequently in the real world. This will cause the model
to make fewer mistakes on uncommon symbols.

Randomization seems simple at first, but it can be done in many ways. At one
extreme, we can simply randomly choose tokens from the vocabulary. This, how-
ever, produces sequences that cannot be rendered and are nonsensical. Beamed
notes have to have a beginning and an end. We cannot have an unfinished or
non-started beam. At another extreme, we can try to mimic the language model
by using a lot of rules.

We opted for something in the middle. We make sure, that the synthetic
annotation can be engraved, but we do not ensure anything more. Duration per
measure is not correct, pitch is almost random, time signatures can be in the
middle of a measure. The resulting image looks nothing like what we are used
to seeing in sheet music. The code for generating synthetic annotations can be
found in file app/generate_random_annotation.py.

We will compare these two approaches later in the experiments. It may come
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| | b3 s6 N-12 w-12 e=-3 =t=2 =e=1 =t1 * |
b9 h9 | #4 #-1 b2 N1 N-3 N1 N-4 | time.C

Figure 6.2: An image engraved from a synthetic annotation.

as a surprise, but the best approach will be to combine both synthetic and real-
world data, effectively training on both.

6.2 Evaluation Data
When we faced the lack of training data, we resorted to data augmentation. We
cannot do that for evaluation, because the evaluation data should be as close to
the real-world as possible. Therefore using a well-established dataset it the only
option.

By looking at the Collection of datasets for OMR by Alexander Pacha (Pacha)
we can see that most existing datasets are for printed music. If we focus on the
handwritten datasets, most of those contain only musical symbols, not entire
staves. When we filter those out, what remains is CVC-MUSCIMA (Fornés et al.
[2011]), MUSCIMA++ (Hajič jr. and Pecina [2017]), and Baró Single Stave
Dataset (Baró et al. [2019]). We are already familiar with the first two datasets
since we used them for training. The last dataset is also derived from CVC-
MUSCIMA and it is used in the paper for HMR baseline (Baró et al. [2019]). We
will compare our results to the results in the paper in section 6.7.

We decided to evaluate on a portion of the CVC-MUSCIMA dataset. Partly
because it is the only dataset available for this purpose, partly because other
people use it for evaluation as well. To learn more about the CVC-MUSCIMA
dataset, see the section 2.1.

The fact that we devised custom encoding means we have to annotate the
evaluation data manually. This is not very difficult, because the evaluation set
need not be large. It also means the resulting annotations are of high quality and
follow the rules of the Mashcima encoding.

We cannot use the entire CVC-MUSCIMA dataset for evaluation, because we
already use it for training. Therefore we need to decide what portion is going to be
used for evaluation. We definitely need to evaluate on data from different writers
than those we train on. This is because seeing the specific writer’s handwriting
style might help the model score higher during evaluation. Avoiding specific music
pages is not necessary since the data augmentation process completely destroys
any rhythmic or melodic information. The Mashcima engraving system samples
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individual symbols, ignoring their placement relative to other symbols in the staff.
So the primary concern is to separate writers used for evaluation.

There are additional criteria for selecting the evaluation writers. We want
the writer selection to be diverse in terms of handwriting style. Some writers
have very clean handwriting, some not so much. Noteheads can be little circles,
ellipses, or even little dashes. Some writers have note stems slanted, some have
straight, vertical stems. Also, the width and spacing of symbols differ.

We also want to evaluate on pages that are present in MUSCIMA++. This is
because pages in MUSCIMA++ have a lot of additional information available and
there exist detailed MusicXML transcriptions for them. Both of these facts may
become useful in the future. Each writer has 20 music pages in CVC-MUSCIMA,
but only 2 or 3 in MUSCIMA++. Additionally, not all pages can be represented
in the Mashcima encoding (some are polyphonic or have multiple voices).

First, we sorted the 20 pages by how easily they can be encoded using Mashcima
encoding (see table 6.1). This sorting is not perfect, the main goal is to separate
pages that we cannot encode at all. Some symbols can be encoded, but since the
engraving system cannot render them, they are considered slightly problematic.
See the section on extending mashcima encoding (section 4.5).

Page Acceptable Notes

03 Yes perfect
12 Yes perfect
02 Yes trills, grace notes
11 Yes ? token
09 Yes ? token, fermata
05 Yes trills
01 Yes triplets, fermata, rests in beamed groups
13 Yes ? token
14 Yes chord, triplets
17 Yes two staves with chords
15 Yes rests in beamed groups
16 Yes beamed notes with empty noteheads, accents
06 Not ideal trills, many grace notes
04 Not ideal tenuto, triplets, nested slurs, bar repeat, fermata
18 Not ideal two staves with chords
07 No trills, many concurrent notes
08 No grace notes, unsupported symbols, two voices in bass
20 No chords in many places
10 No chords
19 No multiple voices

Table 6.1: All pages of CVC-MUSCIMA, sorted by how easily they can be rep-
resented using the Mashcima encoding.

Then we took all the acceptable pages and found all writers for those pages
that are present in MUSCIMA++. We sorted those writers by the number of
pages that satisfied our selection (see table 6.2).

All the remaining writers had only two or fewer pages from the selection. We
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# Pages Writer Handwriting style Selected

4 49 worse, dash noteheads Yes
3 06 nice, round noteheads No
3 13 regular, round noteheads Yes
3 20 regular, dash noteheads Yes
3 27 nice, round noteheads No
3 34 regular, round noteheads, slanted Yes
3 41 beautiful, round noteheads Yes

Table 6.2: Writers that were considered for the evaluation dataset.

took 5 writers out of those 7 writers manually, to keep the handwriting diversity
high.

Lastly, we wanted to compare our results with the results of From Optical
Music Recognition to Handwritten Music Recognition: A baseline (Baró et al.
[2019]), so we added the writer 17. The final writer and page selection can be
seen in the table 6.3.

Writer Pages

13 02, 03, 16
17 01
20 02, 03, 16
34 02, 03, 16
41 02, 03, 16
49 03, 05, 09, 11

Table 6.3: The evaluation dataset.

We end up with 6 writers, 17 pages (7 distinct), 115 staves, and over 5840 to-
kens. Annotations for these pages can be found in the file app/muscima_annota
tions.py. These annotations have been created by me — the author of this
thesis. Experience regarding the annotation process is described in the following
section (section 6.2.1).

Lastly, we want to show a frequency table of the most common tokens and
pitches in the evaluation dataset (table 6.4). The table contains generic variants
of the tokens.
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Pitch Count

None 2703
4 531
3 411
2 373
5 344
1 243
0 203
6 191
-2 147
7 132
-4 103
-3 89
-6 88
-1 86
8 72
-5 48
9 33
-7 21
-8 20
10 13
-9 1

Token Count

q 981
| 843
) 418
( 416
=e= 372
e= 357
=e 334
# 287
qr 244
. 236
* 159
e 150
=s 103
=s= 88
s= 80
w 72
h 70
er 67
N 64
wr 62
clef.G 55
b 47
time.4 40
> 40
time.3 39
hr 36
clef.C 34
clef.F 28
s 27
trill 21
lr 16
? 15
tuplet.3 13
** 12
br 8
fermata 4
time.8 3
sr 2
time.6 2
:|: 2
:| 2
time.5 1
time.7 1
time.C 1

Table 6.4: Frequency tables of pitches and tokens in the evaluation dataset.
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6.2.1 Manual Annotation Experience
Although the Mashcima encoding attempts to not be ambiguous, there were some
places where we had to make some decisions regarding undefined situations. This
section goes over these situations.

Page 1: The last three measures contain nested slurs. These cannot be repre-
sented, so we chose to represent slur beginnings and slur endings as they appear
on the page. One note cannot have two slur beginnings, so only one is annotated.
The very last slur is maybe not a slur, but some pitch articulation symbol. We
annotated it as a slur continuing onto the next staff.

=s=8 =e7 | time.C b0 h0 fermata h0 | N-2 b1 b4 b0 time.3 time.4
h0 ( ) e=0 tuplet.3 =e=-1 =e-2 | h0 ( ) e=0 tuplet.3 =e=-1 =e-2

| ) h0 * ( ) |

Figure 6.3: Last three measures of page 01, writer 17.

Page 2: The last two staves contain three occurrences of grace notes. They
look like regular notes but are smaller. Grace notes cannot be represented yet, so
we replaced them with a ? token. We replaced the entire grace note group (two
sixteenths with a slur) with a single ? token.

| w1 | q2 qr ? q9 * e9 | e8 er e7

Figure 6.4: Grace notes in page 02, writer 13.

Page 9: There are two measures with notes playing at the same time. The first
three half notes are slightly offset, so we annotated them from left to right. The
last two quarter notes are right above each other, so we replaced them with the
? token. We wanted to place at least one ? token inside the measure and then we
tried to annotate the rest as good as we could. This way the measure is marked
and can be repaired in the future.

Page 11: One measure has the same problem as page 9.
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| e=1 ( ) =e=3 =e=6 ( ) =e=4 =e=2 ( ) =e7 | trill h7 h0 h-6 ? |

Figure 6.5: Simultaneous notes in page 09, writer 49.

Page 16: Third staff contains a bracket symbol in the key signature. The
bracket symbol is completely ignored, but the clef and key signature are annotated
as usual. The fifth staff contains double-beamed notes with empty noteheads.
These are not sixteenth notes, but since they look so similar, we annotated them
as such. These symbols are not very common and the trained model treated them
as sixteenth notes as well, so we kept it that way.

| s=-6 ( ) =s-4 s=-6 ( ) =s-4 | s=-6 ( ) =s-4 s=-6 ( ) =s-4 |

Figure 6.6: Beamed notes with empty noteheads in page 16, writer 34.

Special thick barlines, double barlines, or barlines with braces at the beginning
of a staff are all annotated as simple | token. The only exception is repeat signs
that do have their corresponding tokens.

There are many trills or accents throughout the pages. Those are not in the
training data but can be represented, so they are annotated just as defined in the
chapter on Mashcima encoding.

6.3 Evaluation Metrics
Now that we have a model producing some token sequences and we have our gold
sequences, we need a way to measure the model performance. There are three
goals for these measurements:

• Compare the model against itself to track improvements.

• Get an overall idea of the model performance and compare it to other works.

• Analyze model output to identify common mistakes it makes.

Looking at the work by Calvo-Zaragoza and Rizo (Calvo-Zaragoza and Rizo
[2018]) or the HMR baseline article (Baró et al. [2019]) we can see, that the metric
they use is Symbol Error Rate (SER). This metric is also known as normalized
Levenshtein distance or edit distance. The name Symbol Error Rate is used in
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contrast to Word Error Rate (WER) in the text recognition community. Since
we do not work with text, we are left with the Symbol Error Rate only.

Regular Levenshtein distance (Levenshtein [1965]) is defined as the minimum
number of single-character edits that turn our prediction into the gold sequence.
We do not work with strings, so we use tokens instead of characters. The basic
edit operations are insertion, deletion, and substitution. The lower this number,
the better. Zero means a perfect match.

This metric has to be normalized by the length of the gold sequence to allow
for averaging over multiple values. Normalized Levehnstein distance produces
a number that is typically between 0 and 1, where 0 means the sequence was
predicted perfectly and 1 means the sequence was entirely wrong. The normalized
distance can be greater than 1 when the predicted sequence is much longer than
the gold one, but that happens only when the model is completely useless.

SER = LevNormalized = #Insertions + #Deletions + #Substitutions
GoldLength

Since this metric is also used by other works, we will use it for comparison
against these works.

When training, we will use the edit distance function implemented in the
Tensorflow1 library. Although it is claimed to be the normalized Levenshtein
distance, the implementation is different from the one used during evaluation.
Therefore these two values should not be compared directly. The training edit
distance is only meant for tracking the learning process and determining the
stopping condition.

6.3.1 Understanding Model Mistakes
We would like to get an idea of the kind of mistakes our trained model makes. The
chapter 4 talks about the Mashcima encoding and how it can represent symbols
that it cannot yet represent (by the ? token). Having this ? token in the gold data
creates an ever-present mistake, that increases our error rate. We would like to
get an estimate of how much of the overall error is contributed by such symbols.
Also, note that ? is not the only token the model cannot produce. Some symbols
cannot be engraved yet, like trills, accents, or fermatas. Being able to measure
the error these tokens contribute would give us an idea of how much the model
could improve if we implemented these symbols in the engraving system.

During the evaluation, we will take the prediction and remove certain tokens
from it. These same tokens will be removed from the gold sequence as well. We
will compute the error of these simplified sequences. Comparing this error to
the baseline error should tell us how much the removed tokens contribute to the
baseline error.

The metric used for computing this error will be the Levenshtein distance
but normalized by the number of important tokens in the gold sequence. An
important token is a token that will never be removed. It can be altered, but not
removed. This will make sure the normalization term stays constant over all the
possible transformations and thus all the error values should be comparable.

1http://tensorflow.org/
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Important tokens are notes, rests, barlines, clefs, accidentals, and other similar
tokens. What remains as non-important is slurs, ornaments, and the ? token. The
specific list of important tokens can be found in the file app/vocabulary.py. We
will call this metric Important Token Error Rate (ITER). Remember that this
metric should not be used for comparison against other models using different
encodings. It is purely to get an idea of what mistakes contribute to the Symbol
Error Rate.

With this metric we propose a set of transformation functions that progres-
sively simplify the sequences:

• ITER_RAW
No transformation is applied, corresponds to SER, but normalized by the
number of important tokens.

• ITER_TRAINED
Tokens that the model has not seen during training are removed (? token,
trills, fermatas, etc.).

• ITER_SLURLESS
Like the above, but slurs are removed as well ((, )).

• ITER_ORNAMENTLESS
Like the above, but most of the non-important attachments are removed
(trill, accent, staccato, fermata, ...). What has to remain are accidentals
and duration dots. Those are important for correct pitch and rhythm.

• ITER_PITCHLESS
Like the above, but all pitch information is removed by converting all tokens
to their generic variant.

Each metric builds on the previous one, further simplifying the sequences.
This means the error rate should decrease as we go down. The amount by which
it decreases can tell us how much the given transformation affected the error,
therefore how much the removed tokens contributed to the error rate.

Also please understand, that all these errors are computed on a single trained
model. The gold sequence is modified during evaluation. Not during training.
We are trying to understand a specific model we have.

6.4 Architecture, Training, and Evaluation
In chapter 3 we provided a short introduction to deep neural networks and de-
scribed the RCNN architecture. We will use this architecture in the following
experiments. The list of layers used in the neural network can be found in ta-
ble 6.5.

The Mashcima engraving system works with images at the resolution of the
CVC-MUSCIMA dataset. Image of an engraved staff is about 400 pixels in height
and the width varies from 500 to over 2000 pixels. The neural network however
requires the input image to be exactly 64 pixels in height. The image will be
scaled down because of this while preserving its aspect ratio.
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Layer Shape Note

Input w × 64 × 1

Convolution w × 64 × 16 Kernel 5x5
Max pooling w/2 × 32 × 16 Stride 2,2
Convolution w/2 × 32 × 32 Kernel 5x5
Max pooling w/4 × 16 × 32 Stride 2,2
Convolution w/4 × 16 × 64 Kernel 5x5
Max pooling w/4 × 8 × 64 Stride 1,2
Convolution w/4 × 8 × 128 Kernel 3x3
Max pooling w/4 × 4 × 128 Stride 1,2
Convolution w/4 × 4 × 128 Kernel 3x3
Max pooling w/4 × 2 × 128 Stride 1,2
Convolution w/4 × 2 × 256 Kernel 3x3
Max pooling w/4 × 1 × 256 Stride 1,2

Reshape w/4 × 256
BLSTM w/4 × 256 + w/4 × 256 Droupout
Concatenate w/4 × 512

Fully connected w/4 × num_classes + 1 No activation function
CTC ≤ w/4

Letter w stands for input image width. BLSTM means bidirectional recurrent network
with LSTM cells. The dropout on the BLSTM layer is important because the model
does not converge without it. At the end, num_classes + 1 means the number of
output classes (vocabulary size) plus the blank symbol required for connectionist
temporal classification (CTC). All activation functions are ReLU. Convolutional

layers do not have an activation function, only pooling layers do. All the details can
be seen in the source code.

Table 6.5: Layers of the neural network.

There will be two datasets used for training. One for the actual training — a
training dataset and one for validation — a validation dataset (or dev dataset).
The training dataset is fed into the model in batches and each batch is used
to perform an update of the learned parameters of the model. This process is
called stochastic gradient descent (Goodfellow et al. [2016]). Using the entire
training dataset once is called one epoch. The validation dataset will be used
after each epoch to estimate the true performance of the model (to estimate the
generalization error).

Learned parameters will be updated by the adaptive learning rate optimizer
(Adam) (Kingma and Ba [2014]), that comes with Tensorflow2, with the default
parameters (table 6.6).

We have not tried to fine-tune these parameters or any other hyperparameters.
Our goal was to try training on engraved handwritten images and see whether
this approach is even feasible. Tuning hyperparameters is one of the places where
our approach can be improved in the future.

The training will run for a given number of epochs. In each epoch, an average
2http://tensorflow.org/
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Parameter Value

Learning rate 0.001
β1 0.9
β2 0.999
ε 10−8

Table 6.6: Adam optimizer parameters.

symbol error rate on the validation dataset is recorded. The final trained model
is the model, that had the lowest validation symbol error rate, during the whole
training. If the number of epochs trained is sufficiently high, this method should
return the model at the point, where the generalization error began to rise. Also,
note that the symbol error rate here is the edit distance function from Tensorflow.
It is a different implementation of SER than the one used for evaluation.

During the evaluation, the beam search decoding algorithm is used with a
beamwidth of 100 (Hwang and Sung [2016]). There are two additional steps
performed after that. Firstly the produced token sequence is repaired. This
means the rules regarding beamed notes are checked and corrected and attach-
ment tokens are sorted properly. This repairing process is relatively simple and
completely rule-based. For the details see the repair_annotation function inside
app/vocabulary.py. After the repairing process, leading and trailing barlines
are stripped from both gold data and the prediction. This is because barlines at
the beginning and at the end of staff convey no additional meaning. It is analo-
gous to trimming whitespace characters around a sentence. Barlines with repeat
signs are not stripped away since they are important.

6.5 Experiments
In the section on training data (section 6.1) we hypothesized some differences
between training on PrIMuS incipits and synthetic data. The main idea is that
training on PrIMuS incipits should allow the model to learn the language model.
More generally training on real-wold music samples should help the model, since
it will be evaluated on real-world music in the CVC-MUSCIMA dataset. Training
on synthetic data should allow the model to learn complicated combinations of
symbols, that are not as common in real-world music.

To test this hypothesis we propose a set of four experiments (table 6.7).

Experiment Training data Validation data

1 63 000 PrIMuS 1 000 PrIMuS
2 63 000 synthetic 1 000 synthetic
3 31 500 PrIMuS, 31 500 synthetic 1 000 PrIMuS
4 63 000 PrIMuS, 63 000 synthetic 1 000 PrIMuS

Table 6.7: Training data (number of incipits) for the proposed experiments.

The first experiment trains a model on real-world incipits, second uses syn-
thetic incipits and the third one combines both approaches in a 1:1 ratio. The
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last two experiments validate on real-world incipits since the evaluation will also
be performed on real-world music. The second experiment validates on synthetic
incipits because we wanted to simulate a scenario where we do not have access
to real-world incipits. The fourth experiment is the same as the third one, only
utilizing the whole PrIMuS dataset as is available to us.

When training, a random permutation of the size of the entire dataset is
generated and then used to access training items at random. This ensures random
order of training items and also proper mixing of real-world and synthetic incipits.
New permutation is generated for each epoch.

We trained each experiment for 20 epochs (except for the fourth that has been
trained for only 10 epochs) and took the model with the lowest edit distance,
averaged over the validation dataset. Figure 6.7 shows the training charts —
how the training and validation SER (edit distance) evolves. The training took
about 24 hours for each experiment on a gaming PC but it did not utilize the
full capacity of the machine (probably because recurrent network training cannot
be parallelized). The training was done in batches of 10 incipits. One epoch
corresponds to 6300 batches. Experiment 4 has twice as large dataset and half as
many epochs but the total number of batches is the same. Table 6.8 shows the
optimal epochs — the point during training when the model was saved for the
last time.

Experiment Optimal epoch Batches trained Validation SER

1 9 56 700 0.024
2 7 44 100 0.141
3 6 37 800 0.029
4 10 63 000 0.028

Table 6.8: What epochs had the smallest validation error and were chosen as the
final model.
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Figure 6.7: Training charts from Tensorboard. The horizontal axis shows the
number of trained batches.
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6.6 Results
The table 6.9 shows the resulting symbol error rates, averaged over the entire
validation dataset.

Experiment Symbol error rate

1 0.337
2 0.284
3 0.260
4 0.251

Table 6.9: Symbol error rates on the evaluation dataset for each experiment.

It seems that training on synthetic data is better than training on real-world
data. But looking at experiment 3, we see that the best approach is to combine
both approaches. Synthetic data is probably better than real-world data simply
because all the tokens are represented equally. The discussion on the language
model is more complicated and is explored in a separate section (section 6.6.1).
The experiment 4 is slightly better than the experiment 3 because it has twice as
much data to train on.

In section 6.3.1 we proposed a set of metrics, intended to give us insight into
the mistakes the model makes. Table 6.10 shows these ITER metrics for each
experiment.

ITER MetricsExperiment
RAW TRAINED SLURLESS ORNAMENTLESS PITCHLESS

1 0.439 0.422 0.298 0.262 0.212
2 0.365 0.345 0.283 0.254 0.174
3 0.339 0.322 0.237 0.211 0.156
4 0.328 0.312 0.233 0.207 0.156

Table 6.10: ITER metrics (section 6.3.1) on the evaluation dataset for each ex-
periment.

When we compare the ITER_RAW, ITER_TRAINED, and ITER_SLURLES, we can
see that reducing our focus to only trained tokens helps slightly, although it is
not as big of an impact as we expected. A considerably larger difference happens
when we remove slur tokens. This confirms, what can be seen by looking manually
at the predictions the model makes. There are a lot of mistakes related to slur
classification. This might be caused by the fact that the engraving system does
not capture all the variability that exists in the real world with regards to slur
engraving.

In a previous section on evaluation (section 6.4) we mentioned, that the pre-
diction, before being evaluated, is repaired by a few rules (attachment sorting,
barline trimming). The table 6.11 shows how much impact the repair has on the
error rate.

It can be seen, that there is almost no difference. Interestingly, the repairs
seem to increase the error rate but this might be done by the fact that the
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Experiment Raw SER Repaired prediction SER

1 0.335 0.337
2 0.277 0.284
3 0.259 0.260
4 0.246 0.251

Table 6.11: Comparison of repaired and non-repaired predictions.

repaired sequence has trailing barlines trimmed. This reduces the length of the
gold sequence (it is also trimmed), thus the normalization number is smaller
which in turn increases the error rate.

Now that we know the experiment 4 performed the best, we will take a closer
look at it. The table 6.12 shows metrics for each evaluation page (averaged over
all staves in that page).

ITER MetricsPage Writer SER
RAW TRAINED SLURLESS ORNAMENTLESS PITCHLESS

02 13 0.157 0.183 0.174 0.171 0.144 0.122
03 13 0.116 0.132 0.132 0.066 0.062 0.038
16 13 0.300 0.419 0.402 0.329 0.271 0.212
01 17 0.281 0.366 0.315 0.262 0.233 0.157
02 20 0.262 0.320 0.300 0.273 0.237 0.138
03 20 0.106 0.122 0.122 0.069 0.065 0.054
16 20 0.323 0.479 0.440 0.274 0.216 0.149
02 34 0.279 0.340 0.324 0.291 0.238 0.154
03 34 0.064 0.074 0.074 0.032 0.029 0.018
16 34 0.336 0.495 0.466 0.346 0.291 0.185
02 41 0.229 0.265 0.245 0.238 0.222 0.143
03 41 0.141 0.156 0.156 0.068 0.065 0.062
16 41 0.283 0.412 0.366 0.289 0.234 0.144
03 49 0.292 0.333 0.333 0.236 0.236 0.213
05 49 0.245 0.263 0.252 0.212 0.212 0.178
09 49 0.424 0.606 0.592 0.356 0.351 0.328
11 49 0.498 0.670 0.667 0.498 0.480 0.436

Table 6.12: All metrics for each page in the evaluation dataset.

We can average the results for each writer and compare them to the style of
their handwriting (table 6.13).
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Writer SER Handwriting style

13 0.191 regular, round noteheads
41 0.218 beautiful, round noteheads
34 0.226 regular, round noteheads, slanted
20 0.230 regular, dash noteheads
17 0.281 regular, round noteheads
49 0.365 worse, dash noteheads

Table 6.13: Symbol error rates averaged for each writer and handwriting style of
each writer.

The first four writers are very much comparable, but the writer 49 has the
worst handwriting of all the writers and he ended up last, as expected.

Similarly, we can average over each page and compare it to the annotation
difficulty notes we took eralier (table 6.14).

Page SER Notes

03 0.144 perfect
02 0.232 trills, grace notes
05 0.245 trills
01 0.281 triplets, fermata, rests in beamed groups
16 0.311 beamed notes with empty noteheads, accents
09 0.424 ? token, fermata
11 0.498 ? token

Table 6.14: Symbol error rates averaged for each page and annotation notes for
each page.

Pages 9 and 11 ended up last because they are only present for writer 49,
who ended up as the worst writer. Page 3 is very interesting. It is the only
page, that can be fully encoded using Mashcima encoding and all the symbols it
contains can be engraved using the Mashcima engraving system. It is, however,
also the simplest page in that it does not contain any complicated expressions
and contains only a few slurs. This is supported by the fact that page 5 ended
up with an also very low error and page 5 is very much comparable in its layout
and complexity to page 3.
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6.6.1 Language Model
When comparing the results of training on real-world data vs. synthetic data,
it is strange that pure synthetic data outperform purely real-world data. But
it probably has to do with the fact, that the synthetic dataset is balanced with
respect to the individual output class abundance. The learned language model
of real-world data helps the first experiment, but it is not nearly enough to beat
the benefits of a balanced dataset for the second experiment.

This idea is supported by the fact that the third experiment beats both of
the first two. It can benefit from both a balanced dataset and from learning a
language model.

Training on real-world data does indeed make the system learn a language
model, although it learns only very obvious rules. For example, a time signature
is represented by two numbers above one another. The most common time signa-
tures (4/4 and 2/2) are represented by the symbol C and a crossed C. Signatures
that remain as numeric are only 3/4 and 6/8. Any other signatures, although
possible, are almost never used. This means that learning on real-world data
should make the model gravitate towards those two common cases. It is explored
in table 6.15 and indeed, the more synthetic the data is, the more mistakes the
model makes on time signatures.

Experiment Training data Time signature mistakes

1 real-world 0/7 (0%)
2 synthetic 5/7 (71%)
3 mixed 1/7 (14%)
4 mixed 2/7 (29%)

Table 6.15: Erroneous time signatures for page 3, writer 49. Page 3 has been
chosen because all staves have a time signature of 3/4. The writer 49 was cho-
sen because his handwriting is the worst and so the models would make many
mistakes. Some of the mistakes experiment 2 made are 3/7, 3/1, and 3/9.

6.7 Comparison to Other Works
We wanted to make a comparison against the HMR baseline article (Baró et al.
[2019]) because our evaluation datasets overlap. Specifically, we share page 3 for
writer 13 and page 1 for writer 17. We both use the symbol error rate metric,
although many differences need to be addressed. Their model classifies rhythm
and pitch separately, so both error rates are provided. There is also a combined
error rate that treats the output symbols similar to our Mashcima encoding —
having pitch and rhythm in one token (this number should be analogous to ours).
The last column shows our error rate, given by the experiment 4.

Our model has a much smaller error rate, but we have to consider this result
carefully. Their model does not use the CTC loss and the output encoding is
very different. While our model might output a sequence of length 50, their
model produces a sequence of the same length as the width of the input image,
which is in the order of hundreds to a thousand sequence items. Also, their

54



HMR baseline SERsPage Writer Rhythm Pitch Combined Our SER

1 17 0.528 0.349 0.592 0.281
3 13 0.226 0.175 0.270 0.116

Table 6.16: Comparison of our model from experiment 4 to the model proposed
by the HMR baseline article (Baró et al. [2019]).

encoding requires perfect alignment. If the model transitions between output
classes at slightly different time-steps then the gold data, it produces a lot of
error, even though when collapsed, the resulting sequence is the same. And given
the temporal resolution, this might contribute a lot.

A more fair comparison would be a qualitative one. Luckily the paper pro-
vides a qualitative comparison of one staff from page 3 of their model against a
commercial software called PhotoScore3. We can add a prediction by our model
and compare all three (see figure 6.8). Note that the image has been produced
by manually engraving the predicted Mashcima annotation.

We can see, that the difference is not as pronounced, although this staff is one
of the simpler ones. There is, however, also a qualitative comparison on a staff
from page 1 (see figure 6.9).

Both models make a lot of mistakes on this more difficult input so it is not
easy to tell which one is better. What we can conclude is that their performance
is actually very comparable.

It should also be noted, that each model uses a different resolution for input
images. The model from HMR article normalizes to a height of 100 pixels, whereas
ours normalizes to only 64 pixels. This might be a disadvantage for us. Also,
our model cannot read chords by design, but theirs can. This might very well be
required for some task and it would make our model unusable. Their model can
also detect the presence of dynamics and text.

3https://www.neuratron.com/photoscore.htm
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Our result:

HMR baseline:

PhotoScore:

Input:

clef.C-4 time.3 time.4 qr q3 q4 | q5 ( ) q4 q3 |
q4 e=5 =e=4 =e=3 =e2 | q3 e=4 ) =e3 e=2 ( ) =e3 |

q2 q5 * e4 | q4 e=3 ( ) =e2 q5 | q3 qr qr | qr q2 q3

Figure 6.8: Comparison of our results to the HMR baseline article on page 03,
writer 13. The upper part (first three staves) are taken from the HMR baseline ar-
ticle (Baró et al. [2019]). The first staff is the input image from CVC-MUSCIMA,
page 03, writer 13. The second staff is what produced the commercial soft-
ware PhotoScore. The third staff is what the HMR baseline article achieved and
the last staff is what our model returned, together with the Mashcima anno-
tation. The image was created from the annotation by hand using MuseScore
(https://musescore.org/).
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Our result:

HMR baseline:

PhotoScore:

Input:

clef.F2 #2 time.3 time.4 e=-2 N-5 =s-5 e=-2 . =e1 s=0 . =e=1
=s=1 =e-3 | h-4 | e=5 . =t=2 =s2 . e=4 . =e8 . s=7 . =s=8 .
=e4 . | e6 er s5 ( ) q5 | e=5 =s=2 ) =e2 e=4 =e=2 =e4 e1 |

time.6 time.7 w8 * s=-6 ( =e=-7 =e-6 |

Figure 6.9: Comparison of our results to the HMR baseline article on page 01,
writer 17. The upper part (first three staves) are taken from the HMR baseline ar-
ticle (Baró et al. [2019]). The first staff is the input image from CVC-MUSCIMA,
page 01, writer 17. The second staff is what produced the commercial soft-
ware PhotoScore. The third staff is what the HMR baseline article achieved and
the last staff is what our model returned, together with the Mashcima anno-
tation. The image was created from the annotation by hand using MuseScore
(https://musescore.org/). The blue boxes are part of the original image and they
show difficulties with recognizing symbols placed above each other. The red sym-
bols in the last staff show errors introduced during manual engraving. MuseScore
requires rhythm to be correct. For the actual output of our model refer to the
Mashcima annotation below the staff.

57

https://musescore.org/


6.8 Evaluating on Printed PrIMuS Incipits
We also wanted to try, how would our model perform on printed music. Models
by other people are often pre-trained on printed music and then fine-tuned on
handwritten images via transfer learning. Ours is different in that it has never
seen an image of printed music. We already have code for parsing PrIMuS dataset
and since the dataset contains images as well, we will use those. We just slightly
preprocessed the images — inverted them, normalized, and slightly scaled down
to have dimensions comparable to what our model trained on. We used the model
from experiment 4 since it performed the best. The evaluation was performed on
100 incipits that the model has not seen during training and these are the results:

ITER MetricsSER
RAW TRAINED SLURLESS ORNAMENTLESS PITCHLESS

0.613 0.639 0.639 0.604 0.590 0.556

Table 6.17: All metrics, evaluated on printed primus incipits. Our model was not
trained on printed music so the performance suffers.

It can be seen, that the performance is not very impressive. We did expect the
error rate to be high, but not that high. Although, it is understandable because
the printed music is very different from the handwritten. It would be interesting
to also train on printed images in the future. This error rate would go down, but
maybe the CVC-MUSCIMA error rate would go down as well.

package_ab/211002723-1_1_1/211002723-1_1_1.agnostic

Gold: clef.C-4 #-1 #-4 #0 time.3 time.4 qr qr q1 |
q5 * e6 e=5 =e4 | h3 q3 | q2 . e3 e=4 =e5 | h3

Prediction: clef.C-4 #-1 #-4 #0 time.8 time.2 qr q1 |
q5 * s7 s=5 =e4 | h3 q3 | h2 ( time.9 time.4 e=4 =e5 | h3

SER: 0.346

Figure 6.10: Evaluation on printed PrIMuS incipits.

Also, note that ITER_RAW and ITER_TRAINED have the same value. This is
expected because we filter out incipits that cannot be engraved by Mashcima.
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7. Conclusion and Future Work
Handwritten text recognition is an interesting and unique field of research. We
can see it is mainly held back by the lack of training data. It shows the fact, that
we were able to achieve state-of-the-art results by writing a simple engraving
system. The MUSCIMA++ dataset is a step in the right direction. It provides
excessive amounts of information about the music from which we can extract
any specific encoding (be it with a little bit of work). It has to be done this
way because commonly used encodings (MusicXML, MEI, MIDI) express the
semantic meaning of the music and lack visual information, whereas any lower-
level encodings depend too much on the chosen model architecture and so cannot
be used to compare different models. The MUSCIMA++ encodes music on a low
level, from which high-level information can be extracted.

End-to-end solutions are powerful since they can learn intermediate features
by themselves. The problem is that training an end-to-end model is much more
challenging because it requires a lot more data. The MUSCIMA++ dataset has
barely enough data to learn symbol classification and segmentation. When we
want the model to extract pitch information about notes, the dataset becomes
far too small. It is understandable because annotating data at such a high level
of precision is very expensive.

Our Mashcima engraving system cannot yet engrave many symbols (chords,
trills, repeats, dynamics, text) and this functionality could easily be added. We
think that scaling the engraving system now would be a far too early optimization.
The system relies heavily on the Mashcima encoding. This is ok for the task we
tackled in this thesis — it was ideal for our model architecture. But should this
engraving system be extended in the future, there are many more fundamental
places it can change:

• What should the input look like? This will depend a lot on the final ar-
chitecture because the input has to be capable of expressing everything the
system can engrave. This would be an API at the source code level for
which adapters from other formats (MusicXML) could be added.

• What format and resolution the output image has? Currently, we produced
only binary images that are already very refined. We could generate RGB
images that look like photos or scans. We could even leave raster graphics
and produce a vector output.

• We could provide more information in addition to the output image. We
could produce the annotation XML file that MUSCIMA++ uses. Suddenly
our system would be useful for symbol segmentation as well as end-to-end
learning.

• The way engraving is implemented could be different. Currently, the system
moves around sprites. But when it tries to render slurs and beams, sprites
become inconvenient. Maybe we could draw everything as curved lines,
simulating the pen on the paper (we need it for slurs and beams anyway).

There is also a lot of discussions to be had about the model architecture.
It seems that each architecture has pros and cons and there is not yet a fit-all
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solution. Most of these differences have been mentioned many times throughout
the thesis. We think that an engraving system capable of producing high-quality
training data would make for a valuable common ground on which different HMR
approaches could be directly compared.

The goal of this thesis was to create a model capable of recognizing handwrit-
ten music. The goal was fulfilled and we also created an interesting engraving
system that could be further explored in the future. Our model does not produce
MusicXML as stated in the assignment but Mashcima encoding instead. Conver-
sion from Mashcima to MusicXML was not implemented because we wanted to
focus on the model and the engraving system instead.
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