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Mahalanobis based hierarchical
clustering accelerated on GPU

Department of Software Engineering

Supervisor of the master thesis: RNDr. Miroslav Kratochvı́l

Study programme: Computer Science

Study branch: Software and Data Engineering

Prague 2020





I declare that I carried out this master thesis independently, and only with the

cited sources, literature and other professional sources. It has not been used to

obtain another or the same degree.

I understand that my work relates to the rights and obligations under the Act

No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the

Charles University has the right to conclude a license agreement on the use of this

work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In . . . . . . . . . . . . . date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Author’s signature

i



ii



I dedicate this to my parents, for their kindness and support.

I would like to thank my supervisor Mirek Kratochvı́l for his expertise, very fast

replies, time and patience.

I thank GPULAB cluster for the performed experiments.

iii



iv



Title: Mahalanobis based hierarchical clustering accelerated on GPU

Author: Bc. Adam Šmelko
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Abstract: Hierarchical clustering algorithms are common tools for simplifying,

exploring and analyzing datasets in many areas of research. For flow cytometry,

a specific variant of agglomerative clustering has been proposed, that uses clus-

ter linkage based onMahalanobis distance to produce results better suited for the

domain. Applicability of this clustering algorithm is currently limited by its rel-

atively high computational complexity, which does not allow it to scale to com-

mon cytometry datasets. This thesis describes a specialized, GPU-accelerated

version of the Mahalanobis-average linked hierarchical clustering, which im-

proves the algorithm performance by several orders of magnitude, thus allowing

it to scale to much larger datasets. The thesis provides an overview of current hi-

erarchical clustering algorithms, and details the construction of the variant used

on GPU. The result is benchmarked on publicly available high-dimensional data

from mass cytometry.
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Introduction

Clustering is a commonly used technique for simplifying the work with complex

datasets. The main principle is to represent a dataset composed of a huge num-

ber of elements by a simplified (and significantly smaller) set of element groups

which are commonly called clusters. There are many various ways of construct-

ing the clustering algorithms because each discipline typically requires a dif-

ferent kind of cluster similarity, it manipulates completely different data (texts,

sequences, vectors) and it has different expectations about the organizing of the

resulting data.

Clustering is commonly used to analyze datasets originating in single-cell

cytometry [22], where grouping the cells by similar measured features often cor-

responds to creating clusters of all individual biological types of the cells. This

greatly simplifies a data analysis and a distinction of different cell types. Many

customized approaches for clustering cytometry data have been developed, in-

cluding FlowSOM [24], PhenoGraph [15], SPADE [19] or FlowGrid [25]. This

thesis focuses on agglomerative hierarchical clustering with the Mahalanobis

metric, originally developed by Fišer et al. [8] for the purpose of monitoring

minimal residual decease in patients with leukemia.

The Mahalanobis clustering is, however, seriously restricted by the perfor-

mance and complexity of the current implementation, which can cluster tens of

thousands of cells on a common hardware. The computation of these clusters is

time demanding and consumes a lot of computer memory. Specifically for the

Mahalanobis clustering, the maximum size of a dataset that can be processed on

common hardware varies at about 100,000 cells. As a result, the performance

of the Mahalanobis clustering is unsuitable for processing data from modern cy-

tometers used in current experiments, which often produce datasets of more than

several million cells.

The primary goal of this thesis is to research possibilities of accelerating the

Mahalanobis clustering on a GPU, develop the implementation of the clustering

accelerated on a GPU and measure its results. Many clustering algorithms have

been already ported to a GPU device, eg. DBSCAN [3], UPGMA [11], etc.. The

Mahalanobis clustering is extremely suitable for cytometry because it naturally

forms elliptical clusters. A GPU-accelerated implementation that could improve

the performance on large datasets has not been developed yet.

The thesis first discusses the hierarchical clustering (section 1.1.2) and varia-

tions of algorithms that can be used (section 1.3). Then, an overview of the pro-

gramming for the GPU is introduced (section 2.1). Using this information, the

thesis designs a parallelized algorithm of MHCA which can be run on a GPU;

therefore, it is significantly faster. The combination of simple metric spaces with
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Minkowski distance specialization and enormous GPU throughput allows for a

major memory requirements reduction. The total acceleration gain of the im-

plementation varies from 20 times to 5000 times. The quality and speed of the

result is demonstrated on flow and mass cytometry datasets. We hope that the

results of the thesis will be possible to package and use for biologically relevant

purposes.
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1. Agglomerative clustering

algorithms

Clustering analysis — or clustering — is a reduction of a complex object group

into several small, less complex disjunctive subgroups. The reduction is per-

formed in such way that objects from one subgroup share a common property

(e.g. they are mutually compatible, or similar). Hence, clustering is used to iden-

tify and extract significant partitions from the underlying data.

In the field of clustering analysis, there is no strict definition for a cluster

itself. That may be one reason why there is such a vast amount of clustering

algorithms; many authors such as Estivill-Castro [7] discuss this topic. Despite

the lack of the definition, the one common property that we can find among all

the algorithms is the presence of a group of data objects.

Depending on a field of use, the data objects are represented variously (as

graphs, text sequences, etc.). The current thesis will focus on a clustering of

objects represented by a vector of real numbers.

Suppose a dataset D given as a n d-dimensional vectors (x1, . . . , xd) ⊂ R
d

— objects; each element of a vector describes a specific object property. Two

objects are similar if values of their respective properties are alike. Then, a clus-

tering analysis can be defined as a form of an object grouping into subsets of D
that maximizes the inter-set object similarity and minimizes the intra-set object

similarity.

1.1 Clustering models

Specific variations of clustering analysis are defined by a clustering model. There

is a great amount of them, since their field of use varies. For the purpose of the

following chapters, we first describe the centroid-based model. Then, we fully

focus on the hierarchical model.

Since the current thesis focuses on the clustering of vectors of real numbers,

we define the following terms and establish the terminology:

Definition 1 (Vector-space dataset). Given the real vector space Rd, an input of

clustering analysis D ⊂ R
d is called the vector-space dataset.

Definition 2 (Cluster). Given a vector-space dataset D, we define the cluster C of

D as any subset of D.

Definition 3 (Centroid). Given a vector-space dataset D ⊂ R
d and its cluster C ,

we define the centroid of C as a point in R
d such that its i-th element is equal to
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Algorithm 1 k-means clustering

1: procedure k-means(k ∈ R, D ⊂ R
d, d ∈ R

d × R
d → R)

2: C ← first k objects from D ▷ select initial centroids

3: repeat

4: ∀i ∈ {1 . . . k} : Ki ← {} ▷ create empty clusters

5: ∀o ∈ D : Kj ← Kj ∪ o for such j that d(Cj, o) is minimal ▷ assign

objects to clusters

6: C ′ ← {mean(K1), . . . ,mean(Kk)} ▷ compute new centroids

7: swap C and C ′

8: until C = C ′

9: return C

10: end procedure

the arithmetic mean of the i-th elements of all points o ∈ C . We will denote it by

mean(C).

1.1.1 Centroid-based model

The centroid-based clustering model represents clusters only by a central vector

— a centroid — which is not necessarily a member of a dataset. Further on in the

thesis, we will refer to the cluster as to a subset

Many implementations of this model need the number of required centroids

in advance (denoted by k). We define the following optimization problem for this

kinds of algorithms:

Problem (Centroid-based clustering). Having a distance function d, find k cen-

troids c1, . . . , ck from the domain of the dataset D such that the sum 1.1 is mini-

mized.

D
∑︂

o

min
i=1...k

d(o, ci) (1.1)

This problem is difficult to solve; in the euclidean space, the problem is NP-

hard [2]. Hence, many approximation algorithms have emerged.

k-means

The most common implementation of a centroid-based clustering is k-means. Its

algorithm can be expressed in a few simple steps (see alg. 1).

The algorithm divides data into k clusters in an iterative manner. Before the

first iteration, initial k central vectors are selected from the dataset (we chose
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the first k objects but the way of selecting k initial vectors varies between im-

plementations). In the iteration loop, dataset objects are grouped into clusters

according to the closest centroid (also called the cluster mean; hence, k-means).

After that, new centroids are computed from new clusters. Next iteration follows

until centroids does not change or a predefined number of iterations is reached.

Since the only performance demanding parts of the k-means algorithm are

the assignment of points to clusters and the centroid computation, the algorithm

is simple and fast. As a result of the simplicity, it is unable to deal with a noise

in a dataset and clusters of a non-convex shape [23].

1.1.2 Hierarchical model

In the hierarchical clustering model, objects are connected together forming a

tree-like structure. In contrast with the aim of a centroid-based model that re-

turns only k centroids, hierarchical clustering analysis (HCA) captures the whole

connecting process. HCA algorithms start with all objects from a dataset as ini-

tial clusters. Each iteration, two clusters are connected creating a new one, fin-

ishing with one all-inclusive cluster. Commonly, the algorithms represent the

connecting process as an ordered list of pairs — a list of connected clusters [12].

The result of a hierarchical clustering can be viewed as a dendrogram (see

fig. 1.1). The y-axis states the measure of similarity between connected clusters.

The x-axis shows labels of the objects from a dataset. Hence, the clusters that

are connected in the higher part of the dendrogram are considered less similar,

and the clusters connected at its bottom are more similar.

Hierarchical algorithms use two approaches on how to create a dendrogram;

agglomerative and divisive. An agglomerative hierarchical algorithm starts with

each object representing a cluster on its own. Then, in a bottom-up fashion,

clusters are successively connected into the only cluster. The divisive algorithm

begins with a single all-inclusive cluster which is divided into sub-clusters until

single objects remain [20].

To know which two clusters are connected (or respectively, how a cluster

is divided into two), algorithms use a dissimilarity measure between clusters.

Definition 4 (Dissimilarity measure). Given a vector-space dataset D ⊂ R
d, we

define the dissimilarity measure as the pair (M,L). M is a metric over Rd and L is

a linkage criterion; a function that can measure dissimilarity of subsets of Rd using

M . They are used to measure the dissimilarity of clusters during a D clustering.

A hierarchical clustering model distinguishes various kinds of algorithms

based on the choice of a metric and a linkage criterion. A distance function can

serve as a metric in a dissimilarity measure:
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Figure 1.1: An example of a dendrogram; a plant growth under different treat-

ment conditions (R dataset PlantGrowth).

Distance functions

A distance function is used on objects of a dataset to measure how far they are

from each other in the observed domain. For objects from a vector-space dataset,

variations ofMinkowski distance formula (see eq. 1.2) can be used to easily create

the metric for a dissimilarity measure. They are Manhattan distance (p = 1),
Euclidean distance (p = 2) and Chebyshev distance (p → ∞) (see tab. 1.1). The

other possible metric is the cosine similarity (see eq. 1.3).

||a− b||p = (
∑︂

i=1...d

|ai − bi|
p)

1

p (1.2)

cos(a, b) =
a · b

||a||||b||
(1.3)

As the choice of a distance function influences the result of a clustering, it

should be chosen with respect to the properties of a provided dataset. Aggar-

wal, Hinneburg, and Keim [1] show the qualitative behavior of different distance

functions in the k-means algorithm.
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Distance measure Formula

Manhattan ∥a− b∥1 =
∑︁

i |ai − bi|

Euclidean ∥a− b∥2 =
√︁

∑︁

i(ai − bi)2

Chebyshev ∥a− b∥∞ = maxi |ai − bi|

Table 1.1: Variations of the Minkowski distance formula.

Linkage criteria

A hierarchical algorithm can not compute the dissimilarity of two clusters only

by a distance function; it is a function of dataset objects. To completely define the

dissimilaritymeasure, we need a function of sets of object — a linkage criterion. It

describes any process of measuring dissimilarity between two groups of objects.

In a hierarchical algorithm, it measures clusters to determine which two will be

linked together. Given clusters A and B of a vector-space dataset and a distance

function d, we define the following linkage criteria [26] (see fig. 1.2):

Single linkage – The single linkage criterion computes the distance between

A and B as the minimum distance between all pairs (a, b) ∈ A× B:

min{d(a, b) : a ∈ A, b ∈ B}.

The major drawback this criterion suffers is the cluster chaining. It occurs

when connected clusters do not share any other pair of close objects than

the one that determined the connection. This produces long thin clusters

with a big distance between some objects.

Complete linkage – The complete linkage criterion is similar to the single

linkage criterion. But as opposed to finding the minimum, this criterion

uses the maximum of object pairs for the computation of a cluster dissim-

ilarity:

max{d(a, b) : a ∈ A, b ∈ B}.

The criterion suffers from its simplicity aswell as the single linkage. But in-

stead of naively connecting dissimilar clusters, here similar clusters are not

connected in some cases. Having all object pairs in a close proximity to

each other but one object being rather far from the others, the criterion

will not link the clusters as the maximum distance deteriorates the rest.
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Figure 1.2: An example of three linkage criteria. The double line represents

the distance between clusters A and B according to the respective criterion.

Centroid linkage – The centroid linkage criterion tries to solve the problems

of the aforementioned criteria by measuring the distance between the cen-

troids of clusters. It introduces a form of an average into the computation;

the think that the criteria above lack.

The choice of a linkage criterion in hierarchical clustering algorithm is vital.

As stated above, it can change the course of clustering in a great manner. Chosen

improperly, it can have a disastrous effect on the final result.

1.2 Hierarchical clusteringwith theMahalanobis

linkage

Commonly, HCA algorithms branch into different variations to become more

suitable for a specific dataset type [17, 18, 27]. A common cause for such cus-

tomization is a shape of clusters, i.e. an elliptical or gaussian shape (see fig. 1.3). A

general HCA is unable to properly cluster such dataset. TheMahalanobis-average

hierarchical clustering analysis (MHCA) focuses on the datasets that create clus-

ters of ellipsoid shapes. Such datasets commonly originate in the measurements

of cell cytometry data in bioinformatics, which was the original purpose for the

design of MHCA.
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Figure 1.3: A comparison of HCA and MHCA clustering on a dataset that con-

tains elliptic groups of points (taken from the tsieger/mhcaGithub repository).

The upper two figures show the state of clustering when both algorithms cluster

the dataset into three clusters. MHCA properly recognizes the elliptic clusters.

1.2.1 Mahalanobis distance

An important part of MHCA is the dissimilarity measure based on the Maha-

lanobis distance [16], a distance between a point and a set of points (in our case

a cluster). If points in the set are strongly correlated in some axis, then points

laying on this axis are closer to the set than points that are not; even if their

euclidean distance to the center of the set is closer.

To measure the Mahalanobis distance, a covariance matrix of a participat-

ing cluster needs to be computed. We compute the covariance matrix using the

random vector of a cluster.

Definition 5 (Random vector of a cluster). Given a cluster C of a vector-space

dataset, we define its random vector v as a vector of d discrete random variables,

where the random variable vi takes values from {xi : x ∈ C} with equal probabil-

ity.

Definition 6 (Covariance matrix). Given a random vector v of length n, we define

the covariance matrix cov(v) as a n×nmatrix that holds covariances of each pair

11



of vector element:

cov(v)i,j = cov(vi, vj)

Using the random vector of a cluster we can compute the covariance matrix

of a cluster and properly define the Mahalanobis distance:

Definition 7 (Mahalanobis distance). Suppose a clusterC of a vector-space dataset

D ∈ R
d and the random vector v of C . If the cov(v) is regular, we define the

Mahalanobis distance between u ∈ R
d and C as

dMaha(u, C) =
√︁

(u−mean(C))T cov(v)−1(u−mean(C)). (1.4)

Note that this equation computes a distance between a point and a cluster. To

fully incorporate the Mahalanobis distance in a hierarchical algorithm, we need

to construct a method to measure a distance between two clusters.

Two usable methods naturally arise. We compute either the arithmetic mean

of the distances between all points and a cluster or just the distance between a

centroid and a cluster. We respectively call these methods the Full Mahalanobis

distance (FMD) and the Centroid Mahalanobis distance (CMD).

Definition 8 (Full Mahalanobis distance). Having clusters C and C ′, we define

the Full Mahalanobis distance between clusters C and C ′ as the arithmetic mean of

the Mahalanobis distances between each object o ∈ C and the cluster C ′:

dMahaFull(C,C
′) =

1

|C|

∑︂

o∈C

dMaha(o, C
′).

Definition 9 (Centroid Mahalanobis distance). Having a cluster C with its cen-

troid c and a cluster C ′, we define the Centroid Mahalanobis distance between clus-

ters C and C ′ as the Mahalanobis distance between c and C ′:

dMahaCentroid(C,C
′) = dMaha(c, C

′).

To illustrate the measure of the Mahalanobis distance, let us suppose we have

two elliptic clusters. In the means of the proximity, the measure favors such

clusters that their ellipsis are alongside rather than in a prolongation of one an-

other [5] (see fig. 1.4). Only when the objects of a cluster form a spherical shape,

this measure of dissimilarity is proportional to the euclidean distance with a cor-

responding linkage.

12



Small distance clusters High distance clusters

Figure 1.4: An example of the cluster dissimilarity in the Mahalanobis-average

hierarchical clustering.

A

B

mean(A)    mean(B)

Figure 1.5: An example of clusters with a big difference between FMD and CMD

dissimilarity measures.

CMD can be interpreted as an approximation substitute for FMD variant. A

case when CMD variant fails to compute good approximate measure happens

when centroids of measured clusters are very close to each other while their

points do not lay on each others major axis (see fig. 1.5). Such case is rather un-

realistic; therefore, we assume it is unlikely to happen in cell cytometry datasets.

To properly utilize the Mahalanobis distance variants as dissimilarity met-

rics in a MHCA implementation, we need the distance function to be symmetric.

Originally, the Mahalanobis distance is not a symmetric function. Fortunately,

we easily fix the aforementioned distance functions with the Generalized dis-

tance.

Definition 10 (Generalized distance). Given clusters C , C ′ and a variant of the

Mahalanobis distance dVariant (either FMD or CMD), we define the Generalized dis-

tance between clusters C and C ′ as the arithmetic mean of distances between C , C ′

13



and C ′, C :

dGeneral(C,C
′) =

dVariant(C,C
′) + dVariant(C

′, C)

2
.

1.2.2 Singularity of cluster covariance matrix

In early stages of MHCA — when clusters consist of fewer points — the covari-

ance matrix of a cluster is often singular. As a result, we can not compute its

inverse and perform the distance measure. Furthermore, the matrix can happen

to be close to singular and — when inverted — can produce false results such as

negative distances or infinity floating points.

To solve this problem, Fišer et al. [8] specified a threshold of a cluster size;

if the size of a cluster is lower than the threshold, then the cluster dissimilarity

measurements are computed using euclidean distance. The value of the thresh-

old is proportional to the size of a dataset. We denote this threshold as the Ma-

halanobis threshold. To implement the singularity workaround we defined the

Non-singular Mahalanobis Distance.

Definition 11 (Non-singular Mahalanobis Distance). Given a threshold TM , a

cluster C and its centroid c, a cluster C ′ and its centroid c′, a variant of the Maha-

lanobis distance dVariant (either FMD or CMD) and the Generalized distance dGeneral,

we define the Non-singular Mahalanobis Distance as

dNSing(C,C
′) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

dGeneral(C,C
′), if |C| ≥ TM and |C ′| ≥ TM ,

dVariant(C,C
′) + ||c− c′||2
2

, if |C| < TM and |C ′| ≥ TM ,

||c− c′||2 + dVariant(C
′, C)

2
, if |C| ≥ TM and |C ′| < TM ,

||c− c′||2, if |C| < TM and |C ′| < TM .

1.3 Computational complexity of the hierarchi-

cal clustering algorithms

The common problem in clustering algorithms is their time complexity. In gen-

eral, the time complexity of an agglomerative HCA is O(n3), which restricts

its use for large datasets (≥ 105 points when using the contemporary hard-

ware) [21]. Day and Edelsbrunner [6] propose three different HCAvariants based

on the data structures they utilize:
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• HCA with the dissimilarity matrix,

• HCA with the nearest neighbor array,

• HCA with priority queues.

These variants are restricted to metrics from the Minkowski distance family
and a specified list of linkage criteria. To measure a dissimilarity between two
clusters, they use the Lance and Williams recurring formula [13, 14].

The formula can be used onlywith specific linkage criteria. For a dissimilarity
measure d, it specifies a measurement between a new cluster c merged from
clusters (i, j) and any other cluster k as a recurring formula

d(c, k) = αi · d(i, k) + αj · d(j, k) + β · d(i, j) + γ|d(i, k)− d(j, k)|.

For each linkage criterion, specific values for constants αi, αj , β and γ are de-
fined.

1.3.1 HCA with the dissimilarity matrix

The first variant caches the dissimilarity measurements in the dissimilarity ma-

trix M .

Definition 12 (Dissimilarity matrix). Having a vector-space dataset D divided

into clusters C1, . . . , Cm and a function d as a measure of dissimilarity, we define

the dissimilarity matrixM as am×m matrix whereMij = d(Ci, Cj).

Unless there remains only one cluster, this algorithm searchesM for themost
similar pair of clusters (represented by the minimum of matrix elements), stores
the pair and updates M (see alg. 2). The initialization on line 2 computes the
Minkowski distance between all n points. As the time complexity of the distance
is proportional to the point dimensionality, the initialization time is O(d · n2).

The main cycle on line 3 repeats n = |D| times; in each iteration, the num-
ber of clusters is reduced by 1. The search on line 4 is bounded by O(n2) time,
with maximal complexity in the first iteration when k = n. The update in line 6
reflects the deletion of clusters i and j and the addition of the new one. Hence,
it needs to perform k new dissimilarity measurements for the new cluster. Us-
ing the recurring formula and cached measurements in M , this step can be per-
formed in O(k) time (bounded by O(n) during the first iteration as well). As
there are total n iterations performed, this results in the overall time complexity
of O(n3 + d · n2).

The space required to store M is O(n2). As there is no other non-trivial
requirement, the overall space complexity is O(n2) as well.
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Algorithm 2 HCA with dissimilarity matrix

1: procedure dismat(D ⊂ R
d)

2: initialize M ▷ time: O(d · |D|2)
3: for k = |D| . . . 1 do
4: searchM for the closest pair (i, j) ▷ time: O(k2)
5: store cluster pair (i, j) into the merge list ▷ time: O(1)
6: updateM ▷ time: O(k)
7: end for

8: return list of merged clusters
9: end procedure

1.3.2 HCA with the nearest neighbor array

In addition to the dissimilarity matrix, this algorithm introduces the array of the
nearest neighbors.

Definition 13 (Nearest neighbor array). Suppose a vector-space dataset D di-

vided into clustersC1, . . . , Cm and a function d as a measure of dissimilarity. Then,

the nearest neighbor arrayN is am-element array of indices {1, . . . ,m} such that
for each element Ni holds

d(Ci, CNi
) = min{d(Ci, Cj) : j ∈ {1, . . . ,m} \ {i}}

Each cluster is assigned the index pointing to its closest neighboring cluster in
the dissimilarity matrix. Compared with the previous algorithm, this algorithm
trades the expensive closest pair search with the expensive structure update (see
alg. 3). On line 2 and 3, M and N are initialized. To initialize N , whole M is
searched for the closest neighbor of each point.

On line 5, each closest pair search can be performed in O(n) time as the ar-
ray length does not exceeds n elements. Line 7 does dot differ from the previous
variant. Line 8 updatesN . The worst case update ofN happens when each clus-
ter resides in the closest neighborhood with the clusters that are being merged
(clusters i and j). In that case, whole dissimilarity matrix has to be searched.
Hence, the time complexity for this step is O(n2). To sum up, the overall time
complexity is O(n3 + d · n2) and the space complexity is O(n2) because we add
N that does not have more than linear space requirements.

Despite the equal time complexities, this algorithm may outperform the pre-
vious one because in the majority of situations the update step on line 8 does
not require the whole array to be recomputed. Moreover, if the number of ele-
ments to be updated remains constant each iteration, the overall algorithm time
complexity may be O(d · n2).
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Algorithm 3 HCA with the nearest neighbor array

1: procedure neighbor(D ⊂ R
d)

2: initializeM ▷ time: O(d · |D|2)
3: initialize N ▷ time: O(|D|2)
4: for k = |D| . . . 1 do
5: search N for the closest pair (i, j) ▷ time: O(k)
6: store cluster pair (i, j) into the merge list ▷ time: O(1)
7: updateM ▷ time: O(k)
8: update N ▷ time: O(k2)
9: end for

10: return list of merged clusters
11: end procedure

Algorithm 4 HCA with priority queues

1: procedure queues(D ⊂ R
d)

2: initializeM ▷ time: O(d · |D|2)
3: for all o ∈ D do

4: initialize a priority queue from D \ {o} ▷ time: O(|D|)
5: end for

6: for k = |D| . . . 1 do
7: search k queues for the closest pair (i, j) ▷ time: O(k)
8: store cluster pair (i, j) into the merge list ▷ time: O(1)
9: updateM ▷ time: O(k)
10: update k − 1 priority queues ▷ time: O(k · log k)
11: end for

12: return list of merged clusters
13: end procedure

1.3.3 HCA with priority queues

This algorithm takes the advantage of the previous one employing the fast search
and combines it with the fast update using priority queues. Each object from
a dataset is assigned a priority queue constructed from the remainder of the
dataset. The priority label of a queued element is a dissimilarity measure be-
tween the object and the queued element.

When a priority queue is implemented as a heap, its time complexity can
be O(1) for the minimum retrieval, O(n) for initialization and O(log n) for the
insertion and deletion of an element [10].

Therefore, in alg. 4, the search step on line 7 takes O(k) time (bounded
by O(n) during the first iteration). Next on line 10, we need two delete and one
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insert operations (corresponding to deleting two merged clusters and inserting
one new). We can perform such update on n queues in O(n · log n) time.

To sum up, the overall time complexity is O(n2 · log n + d · n2). The space
complexity is O(n2) because all n queues have the linear space requirements.

1.3.4 In-place HCA

For some of the linkage criteria above, we can remove the dissimilarity matrix
from the aforementioned HCA variants to decrease the space complexity while
preserving the same asymptotic time complexity.

We propose two variations for centroid linkage with Minkowski distance:

In-place HCA removes the matrix from the HCA with dissimilarity matrix. To
find the most similar cluster pair, it computes the dissimilarities in-place.

To speed the dissimilarity measurements, an array of centroids is main-
tained. With the centroids precomputed, the dissimilarity measure com-
plexity is dependent only on the Minkowski distance; hence, it can be per-
formed in O(d).

As the search step now takesO(d ·n2) time, the overall time complexity is
O(d·n3). The space complexity isO(n) because the centroid array requires
only linear space.

In-place HCA with the nearest neighbor array adds the neighbor array to
the in-place HCA.

As the array has linear space complexity, the overall space complexity is
O(n). The time complexity forN search is the same as the original variant
and the N update complexity increases by the factor of d.

Therefore, the time complexity isO(d ·n3). Same as in the original variant,
this variant promises the time complexity O(d · n2) if the number of the
nearest neighbors to update remains constant.

We did not include the in-place HCA with priority queues as we can not
reduce the space complexity to subquadratic without removing the queue struc-
tures.

We summarize the time and space complexity of the mentioned algorithms
in the table 1.2.

To show an example of the big algorithm complexity, we tested the limits
of a dissimilarity matrix variant implementation. We measured the R language
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Time Space
HCA variant

complexity complexity

HCA with dissimilarity matrix O(n3 + d · n2) O(n2)
HCA with the nearest neighbor array O(n3 + d · n2) O(n2)
HCA with priority queues O(n2 log(n) + d · n2) O(n2)
in-place HCA O(d · n3) O(n)
in-place HCA with the neighbor array O(d · n3) O(n)

Table 1.2: The summary of time and space complexity for the HCA variants.

library function hclust; a frequently used implementation of HCA. It computes
the single linkage with the euclidean distance and uses the dissimilarity matrix.

Fig. 1.6 supports the above stated polynomial time complexity of the im-
plementation. Moreover, it stopped at a dataset size of 47K because the testing
machine 1 ran out of memory.

In conclusion, the space complexity of HCA can be even more restrictive
in the means of the overall algorithm usability than its time complexity. The
performance and usability of the HCA variants depends on many factors and
the programmer needs to find a balance between their tradeoffs. The metric
function is one of them. For example, when the Minkowski distance is used,
we can prefer the in-place HCA over the HCA with dissimilarity matrix for a
lower space complexity while retaining the same asymptotic time complexity.
However, if the distance metric is more complex, one may prefer to store the
measures in the memory.

1Intel Core i9-8950HK, 32GB RAM
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Figure 1.6: Time complexity of hclust with respect to the size of a dataset.
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2. GPU implementation

This chapter focuses on the implementation of the Mahalanobis-average hier-
archical clustering analysis. First, we summarize the most important parts of
the CUDA parallel platform. Next, we describe the algorithm and the high level
look on the implementation. Last, we thoroughly describe the most important
functions.

2.1 CUDA programming model overview

The problem this thesis aims to solve is to implement an algorithm that is able
to provide a hierarchical clustering of very large datasets while retaining a rea-
sonable computation time — the time required to compute a magnitude smaller
datasets with current HCA algorithms. In an effort of achieving this perfor-
mance, we used a combination of C++ programming language and CUDA1 API.

CUDA is a parallel platform and API allowing a programmer to use GPU
for general purpose programming. This API exposes a computational power
of hundreds (even thousands) cores of CUDA-enabled GPUs [4].

2.1.1 Terminology

The starting point for running any code onGPU using CUDA is a kernel. A kernel
is a function that is executed onGPU; we say it contains device code. Complemen-
tary to a device code, a host code is a phrase for code executed on a CPU. Hence,
a common CUDA application runs host code that determines which device code
to run next.

A kernel is run n times in parallel by n threads each having its unique thread
ID. IDs of threads can be identified by one-dimensional, two-dimensional or three-
dimensional indices forming a block of threads, called thread block. This prop-
erty reflects shapes of common structures such as vectors and matrices resulting
in more natural programming work.

Since all block threads reside on the same processor and share common re-
sources, the block size is limited2. However, a kernel can be launched with mul-
tiple equally shaped blocks to increase the number of running threads. They
can be organized into up to three-dimensional structure called grid. This natu-
rally implies unique block ID. A grid can be of an arbitrary size; usually dictated

1Compute Unified Device Architecture
2Currently up to 1024 threads
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Figure 2.1: An example of 2D grid of size (3,2) with 2D blocks of size (4,3) (taken
from the CUDA C++ Programming Guide).

by the computed data (see fig. 2.1). It is a common practice that grid size sur-
passes the number of GPU processors.

The device memory is hierarchically divided into parts each being accessible
by a different set of threads:

Global memory – This memory is accessible by any thread. Any memory re-
quest is transferred via transactions; hence, to avoid decrease of the data
throughput, memory accesses should be coalesced.

Local memory – Each thread has exclusive access to its local memory. As it
resides in a global memory, the local memory is a thread private global
memory.

Shared memory – The shared memory is assigned to a block. It means that
threads from the same block have access to the same shared memory. It
is placed on-chip so it has much lower latency and higher bandwidth than
the global or local memory.

Constant memory – The constant memory is a read-only memory accessible
by any thread. Due to its read-only property, it can be heavily cached and
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Figure 2.2: An example of different grid block distributions among SMs (taken
from the CUDA C++ Programming Guide).

may perform better than global memory. Together with global memory, it
persists across different kernel launches.

The building block of the CUDA-enabledGPUhardware architecture ismulti-
threaded streamingmultiprocessor (SM). A GPU contains an array of multiproces-
sors whose number varies between different GPUs. When a kernel launches, its
grid of blocks is distributed among available multiprocessors and execute in par-
allel (see fig. 2.2). On the selected multiprocessor, block threads are executed
in parallel as well. Moreover, multiple blocks can run concurrently on one mul-
tiprocessor.

To achieve this grade of parallelism, a GPU employs the SIMT architecture

(Single Instruction - Multiple Threads). A multiprocessor partitions an assigned
block to chunks of 32 threads calledwarps. Each warp thread is executed concur-
rently. During the execution, threads start with the the same program address
but have own registers and instruction pointers so they can branch indepen-
dently. However, a warp executes one common instruction at the time. Hence,
to achieve the greatest performance all warp threads must agree on the program
path.

Moreover, as warp threads execute concurrently, CUDA offers warp shuffle

instructions. All threads in a warp are able to distribute their data to another
thread within just one instruction. This comes to a great use for synchronization
but can also be used to achieve high throughput reduction operations as well.
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2.1.2 GPU performance and optimization concerns

To greatly utilize a CUDA-enabled GPU and achieve a good performance, a pro-
gram code must be written with respect to the GPU architecture. These guide-
lines help us in this task:

A GPU task has to be split to many small data dependent sub-tasks (e.g. a
computation of one element in a dissimilarity matrix). Threads must not perform
many different tasks. Rather, they must perform the same task with a different
data. Satisfying this condition, we follow the model of the SIMT architecture.

The next step is to maximize the memory throughput. The programmer
should minimize data transfers with low bandwidth such as copying data be-
tween CPU and GPU. This can be accomplished by creating and operating with
structures directly in a GPU without mapping it to the CPU memory.

On-chip shared memory should be utilized. It is equivalent to the user-mana-
ged cache and provides much higher data throughput than the global memory.
Heavy use task related data should be moved there.

Last, the application should maximize the instruction throughput. It is ac-
complished by using lower precision data types that does not affect the result or
by using high throughput instructions like warp shuffle. The most importantly,
the programmer should minimize the use of control flow instructions (if, switch,
while, etc.) that cause divergent warps.

2.2 Implementation strategy

Section 1.3 introduced three variants of a hierarchical clustering analysis. To de-
cide which one to implement, it must satisfy the memory usage and the level
of parallelism. Specifically, the algorithm must have subquadratic space require-
ments as it must be able to process rather large datasets. Next, the algorithm
should exhibit some parallelism opportunities; otherwise massive GPU parallel
properties will be to no use. We compare the mentioned algorithms according to
these conditions:

In-place HCA satisfies the memory usage with its linear space complexity. In
this variant, finding the most similar cluster pair is equivalent to a com-
putation of the whole dissimilarity matrix. The parallelism requirement is
satisfied because each measure of dissimilarity can be computed indepen-
dently, exposing great parallelism opportunity.

In-place HCA with the nearest neighbor array satisfies the required mem-
ory usage as well. On the other hand, it provides less space for a parallelism
because the algorithm does not compute whole dissimilarity matrix as in
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the previous algorithm. Large dataset sizes may compensate for this dis-
advantage.

HCA with priority queues is unsuitable as it does not satisfy the memory us-
age. Moreover, operation over priority queues (insert, delete and min) are
not of a parallel nature and may create a bottleneck in the computation.

For this thesiswe chose to implementHCAwith the nearest neighbor array. It
promises better time complexity than the HCA with dissimilarity matrix which
can come to a great use when clustering big datasets. In addition, we utilized
the advantages of priority queues by defining a constant that declares the number
of closest neighbors assigned to each cluster (so there can be also the second
closest, the third closest, etc.).

Additionally, we decided to implement the CMD variant of the Mahalanobis
distance (see def. 9) as a measure of dissimilarity. It is simpler to implement
than FMD and it may provide further knowledge for implementation of the FMD
variant.

2.2.1 Apriori clustering optimization

As alreadymentioned, the present HCA algorithms can hardly cluster datasets of
big sizes. This can be improved by implementing the apriori clustering method.

Definition 14 (Apriori clustering). Given a dataset D and a HCA algorithm A,
we define the apriori clusters of A as a partitioning of D into non-empty subsets

D1, . . . ,Dk if these conditions hold:

1. A performs clustering of each subset separately; meaning that clusters from

different subsets can not be merged.

2. When each subset is clustered into the only cluster, A clusters the resulting

clusters as if they were in one subset.

The intended usage of this method is that the apriori clusters are created
from a dataset using non-hierarchical clustering algorithm such as k-means — an
algorithm that is capable of creating a dataset partitioning fast. With this feature,
a HCA algorithm is guided by the apriori clusters to create the corresponding
merged clusters. They do not cluster the whole dataset at once. Rather, each
apriori cluster is clustered separately. This results in a much faster computation
(see section 3.2.2) and increased size of computable datasets.
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Figure 2.3: An example dataset with (right) and without (left) visualized pre-

computed apriori clusters (each apriori cluster is visualized as an ellipse— dataset

points contained in an ellipse represent a subset of the dataset).

2.3 Benchmarking framework

We implemented the selected algorithm with the apriori clustering method in

C++ language. Its implementation resides in the main class of the program —

gmhc3. It inherits from an abstract template class hierarchical clustering.

This template provides key data fields and methods for a hierarchical clustering

algorithm (see list. 2.1):

initialize() sets the fields of the class. A templated field points is an array

of dataset objects — points. They are expected to be of a floating-point nu-

meric type. Fields point dim and points size state a point dimension-

ality and a total number of points in the array. Hence, each point dim

consecutive array elements represent one point and the total array size

is point dim · points size elements.

run() initiates the clustering. It returns a vector of pasgnd t structures —

pairs that contain assignments and a distance — the IDs of merged clus-

ters and the distance between them. Each point from the input array is

assigned an unique consecutive ID starting from 0. When two clusters are

merged, the new cluster is assigned the next available unique ID. The pro-

cess of merging is then stored in the returning vector. Hence, the vector

completely describes the whole clustering process.

free() deallocates all acquired resources.

3An abbreviation for GPU Mahalanobis-average Hierarchical Clustering
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using csize_t = uint32_t;

using asgn_t = csize_t;

using pasgn_t = std::pair<asgn_t, asgn_t>;

template <typename T>

using pasgnd_t = std::pair<pasgn_t, T>;

template <typename T>

class hierarchical_clustering

{

protected:

const T* points;

csize_t points_size;

csize_t point_dim;

public:

virtual void initialize(...);

virtual std::vector<pasgnd_t<T>> run() = 0;

virtual void free() = 0;

};

Listing 2.1: A summary of hierarchical clustering header file.

2.4 Mahalanobis clustering implementation

The class gmhc is the entry point of the whole gpu-accelerated MHCA algo-
rithm. It inherits from hierarchical clustering<float> template special-
ization, which means that the algorithm expects dataset objects to be single-
precision points of a specified dimension. The class communicates with a GPU;
hence, it holds structures used by the device.

2.4.1 Initialization

The initialization happens in the initialize method. Due to the initializa-
tion of device and host structures, this stage must be treated with importance.
The class overloads initialize method so that it sets three additional fields:

• mahalanobis threshold indicates the threshold of the Non-singular Ma-
halanobis distance (see def. 11).

• apriori assignments is an array of assignments that splits points into
apriori clusters. This is an optional field of the initialize method.

• validator is an optional field used for testing purposes.
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Next follows the main responsibility of the initialize method — device
and host data allocation and initialization. They are point, assignment, centroid,
inverse covariance, neighbor and status arrays P , A, C, I , N , S .

Definition 15 (Point array). Suppose a datasetD that contains objects represented

by k-dimensional points. We define point array P as an array that contains con-

secutive sequence of all objects in D.

Definition 16 (Assignment array). Suppose a partitioning of a point array P
into clusters c1, . . . , ck where each cluster ci is defined by its unique ID idi and

a set of indices Ii that state which points from P belong to the cluster. The array

of length |P| is the assignments array A when for each cluster ci the following

equation holds:

∀j ∈ Ii : Aj = idi

Definition 17 (Cluster-related arrays). Given a dataset D, its clusters c1, . . . , ck,
a Mahalanobis threshold TM and a positive numberm ≤ |D|, we define the follow-
ing cluster-related arrays:

• the centroid array C as an array that contains centroids of all k clusters,

• the inverse covariance array I as an array that contains inverse covariance

matrices of all clusters that reached TM ,

• the neighbor array N as an array that contains m indices and distances

to them closest clusters for each of k clusters,

• the status array S as an array that contains sizes and unique ids of all k clus-

ters.

All but the status array are device arrays. Device arrays are used within
kernels while the host array controls the flow of run kernels.

2.4.2 Clustering

The clustering algorithm resides in the method run. This method utilizes the ar-
ray of clustering context t objects — instances of a clustering context — that
divide the dataset according to the provided apriori clusters (see fig. 2.4).

Definition 18 (Clustering context). Given a dataset D, its point array P , assign-
ment arrayA and cluster-related array tuple (C, I,N ,S), we define the clustering
context of D′ ⊂ D as a tuple (P ′,A′, C ′, I ′,N ′,S ′). In the tuple, each array is a

sub-array of the corresponding array of D. Each sub-array contains data of points

and clusters created within D′.
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Figure 2.4: An example of a dataset division into subsets and creation of clus-
tering contexts (each context is assigned the sub-arrays of the main arrays with
data relevant only to the subset).

The algorithmproceeds as follows. If apriori assignments are present, the
clustering context array is initialized and filled with clustering contexts. Each of
them describes the data structure of the corresponding apriori cluster and holds
methods for its further clustering. It will be further called the context array.

In addition to that, the method run uses one special clustering context called
the final context. If apriori clusters are present (and the context array is non-
empty), the final context is unset and serves as a context that will host the apriori
cluster results for the final clustering. If there are no apriori clusters, the final
context is set and contains the whole dataset.

We divide the whole clustering algorithm into the top level apriori clustering
layer and the low level context clustering layer.

Apriori clustering layer handles a separate clustering of apriori clusters, mer-
ges their results into one clustering context and performing the final clus-
tering (see alg. 5).

In this layer, the algorithm iterates over each apriori cluster from the con-
text array. It enters the context clustering layer to perform the clustering.
It retrieve the result that is then inserted into the final context. Either when
all apriori clusters are merged or when there are none at all, the final con-
text with the remaining clusters is clustered and the list of assignment pairs
is returned.

Before any context begins the clustering, its closest neighbor array has
to be initialized. It is done by the kernels neighbors.

Context clustering layer performs one iteration of clustering within the spec-
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Algorithm 5 Apriori clustering

1: procedure apriori(context array T , the final context ctxf )
2: for all ctx ∈ T ∪ ctxf do ▷ iterate over apriori clusters and the final

context
3: initialize the closest neighbor array of ctx
4: while ctx contains more than one cluster do
5: perform context clustering of cxt for the closest pair (i, j) and

their distance d
6: store ((i, j), d) into the returning list
7: end while

8: ctxf ← ctxf ∪ ctx ▷ assign merged cluster into the final context
9: end for

10: return list of merged clusters
11: end procedure

ified context (see alg. 6). First, it goes through the neighbor array of the
context and finds the closest pair of clusters (kernel neighbor min). At
that moment, there are two clusters to be removed and one new cluster
to be created. Hence, the cluster-related arrays of the context need to be
updated accordingly.

The remainder of this method sets data for the new cluster. First, A is re-
computed to correctly show that points of the former two clusters now
belong to the new one (kernel merge clusters). Then, the new centroid
is computed and stored into C (kernel centroid) and status array is up-
dated as well (in the host code). Last, if the new cluster reaches the Ma-
halanobis threshold, its inverse covariance matrix is computed and stored
into I (kernels compute icov).

The final statement of the context clustering method checks the whole N
according to the one created and two deleted clusters and updates it when
needed (kernels update neighbors).

2.4.3 Data order

This section describes the actual order of data in the cluster-related arrays and
describesthe process of reorganizing the cluster-related arrays provided that a
cluster pair (i, j) is to be merged.

This is achieved with a help of the cluster bound t structure called the
indexing structure. It is a rather simple structure that describes how the cluster-
related arrays organize their data. The structure distinguishes two parts of the
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Algorithm 6 Context clustering

1: procedure context(A, C, I,N ,S,Q)
2: retrieve the closest pair (i, j) and distance d from N
3: initialize an unique id of the new cluster c
4: update Q and retrieve new index idx for c
5: reorder data in (C, I,N ,S)
6: update A
7: Cidx ← compute the centroid of c
8: Sidx ← {|c|, id}
9: if |c| ≥ mahalanobis threshold then

10: Iidx ← compute the inverse covariance matrix of c
11: end if

12: update N
13: return ((i, j), d)
14: end procedure

arrays: The first part contains the data of clusters whose size have not reached
theMahalanobis threshold while the second part stores the data of the remaining
clusters. Hence, it contains a pair of indices indicating beginnings of the two
parts and another pair describing the sizes of the parts. We will respectively call
them Euclidean and Mahalanobis array parts. Note, the structure is uniform for
each cluster-related array; meaning that a different array data of the same cluster
resides on the same index.

When a cluster pair (i, j) is to be merged, the indexing structure first rec-
ognizes the parts of an array where the indices i, j belong. Hence, it identifies
the places of arrays that are no longer valid. It gets rid of the places in the two
particular ways:

• assigns the invalid place as the place for the new cluster,

• moves the end data of the corresponding part to the invalid place.

The reason why we organize the data in such way is to maintain continuously
distributed data (see fig. 2.5). This data distribution serves a great help for run-
ning device kernels.

Remark. Naturally, there are other ways to maintain continuously distributed
data within arrays. We can move the data in such way that the new cluster
will always reside at the beginning of the corresponding part of an array. This
approach could decrease the complexity of several kernels. On the other hand,
it requires at most a linear time to move the data instead of a constant time.

31



Euclidean part
i j

Mahalanobis part

Euclidean part Mahalanobis part
k

Figure 2.5: An example of the data distribution in a cluster-related array. Two
clusters of non-Mahalanobis size with their indices i, j are being merged into
a Mahalanobis-sized cluster on the index k.

2.5 CUDA Kernels

Kernels handle the computation critical parts of the algorithm. They are divided
into several groups:

• Clusters merging updates the assignment array so it reflects the merging
of two clusters.

• Centroid computation goes through the assignment array and computes
the centroid of the newly formed cluster.

• Inverse covariance matrix computation is a set of kernels which compute
the inverse of the covariance matrix of newly formed clusters that reached
the Mahalanobis threshold.

• Minimum retrieval iterates over the neighbor array to find the closest two
clusters.

• Neighbor array update updates the neighbor array structure with respect
to the newly created cluster.

Each kernel group reads and modifies a different data array and has its own
time complexity. Hence, to complete the kernel summary, we provide this infor-
mation in the table 2.1. The following sections will describe each kernel group
in more detail.

2.5.1 Clusters merging

The kernel merge clusters is responsible for a merging of clusters. As the in-
put, it takes the assignment arrayA, a pair of old cluster IDs (of merged clusters)
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Kernel group Input arrays Output arrays Complexity

Clusters merging A A O(n)

Centroid computation A, P C O(n)
Inverse covariance

matrix computation
A, P , C I O(n)

Minimum retrieval N – O(c)

Neighbor array update C, I , N N O(c2)

Table 2.1: A summary of the kernel groups (n is a number of points in a clustering
context; c is a number of clusters in a clustering context).

and a new ID (of a created cluster). It goes through the array in a grid-stride loop
and replaces any of the old IDs with the new ID.

Definition 19. A grid-stride loop iterates over all threads in the grid multiple times

until the desired number of iterations is hit. The following code shows an example

of a 1D grid stride loop. The first assignment creates an unique thread index across

a grid. The index is added a grid size until the condition fails.

for (auto idx = threadIdx.x + blockIdx.x * blockDim.x;

idx < iters;

idx += gridDim.x * blockDim.x);

2.5.2 Centroid computation

The kernel centroid computes the centroid of a cluster with a specified id. Ac-
cording to the id, the kernel filters the point array P using the assignment array
A to find the involved points.

Each thread maintains its local array that stores the sum of the points that
belong to the cluster.

First, a grid-stride loop is performed over P . If a point belongs to the cluster
(determined using A and id), the thread aggregates it in the sum array.

After the loop ends, the shared memory and warp shuffle instructions are uti-

lized to reduce the sum arrays of all block threads into one array (we will call

this the block reduction).

Each block reduced array is then divided by the cluster size and stored into

C using the atomic add instruction.
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2.5.3 Inverse covariance matrix computation

To compute the inverse covariancematrix of a cluster with an id, multiple kernels
are run from the host method compute icov.

First, the covariance matrix of the cluster has to be computed via kernels
covariance and finish covariance.

Then, the CUBLAS4 library is used to invert the covariance matrix. If the ma-
trix can not be inverted (due to the singular property) the inverse is set to the de-
fault value — identity.

Last, a special transformation is performed on the inverse covariance matrix
and the result is stored to I via the store icovariance kernel.

Covariance matrix computation

The first kernel covariance computes the upper triangular covariance matrix
of a cluster multiplied by the cluster size.

To achieve a linear complexity in the number of points, we use the centroid
C of the cluster (it is already computed by the previous kernel). Before the kernel
starts, C is copied to the constant memory so all threads can use it.

At the kernel start, each thread uniformly selects a part of the shared memory

as its intermediate upper-triangulate covariance matrix. As more threads can
share the same part, the atomic access is necessary.

Then, a grid-stride loop over P with an id filtering follows. If a point belongs
to the cluster, a thread subtracts it by C ; we will denote the subtraction result
with S. After that, each element i of S is separately multiplied with the element

j ≥ i and atomically added to the corresponding place of the intermediate co-

variance matrix of the thread. The equation 2.1 describes the process. There, X

denotes the discrete random variable of the x-coordinate of all cluster points, Cx

denotes the x-coordinate of C and Sx denotes discrete random variableX−Cx.

n cov(X,Y) = nE[(X− E(X))(Y − E(Y))] = nE[(X− Cx)(Y − Cy)]

= nE[(Sx)(Sy)] = n
1

n

n
∑︂

i=1

S
i
x
S
i
y
=

n
∑︂

i=1

S
i
x
S
i
y

(2.1)

After the loop, the block sum reduction is performed and the resulting covari-

ances are stored to the global memory via the atomic add instruction.

4CUDA implementation of BLAS library
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Finishing covariance matrix

Immediately next follows the kernel finish covariance. It takes the result
of the previous kernel as the input, it divides thematrix by the cluster size and fills
the lower triangular part for the inversion operation.

We could incorporate the division operation into the previous kernel. How-
ever, it would be needed to be done by each thread performing the atomic oper-
ation. Here, each element is divided just once.

Storing inverse covariance matrix

After the inversion done by the CUBLAS subroutine cublasSmatinvBatched,

the kernel store icovariance performs the following actions with its result:

1. Transforms the matrix to the upper triangulate variant.

2. Multiplies the non-diagonal elements of the matrix by a factor 2.

3. Stores the transformed matrix into I .

The first step is performed to get rid of redundant information and to save

space as the I array has the greatest space complexity among the cluster-related

arrays.

The second step is an optimization for the computation of the Mahalanobis

distance equation (see eq. 7). We can allow this optimization as the distance is a

quadratic form that can be simplified as shown in the equation 2.2.

x
⊤
Mx =

n
∑︂

i=1

n
∑︂

j=1

mijxixj =
n

∑︂

i=1

miix
2

i +
n

∑︂

i=1

n
∑︂

j>i

2mijxixj (2.2)

Remark. The overall time complexity of the compute icov function is O(n)
as each kernel needs to iterate over all points in a clustering context. We omitted

complexity of computing a point covariance (O(dim2)) and a matrix inversion

(O(dim3)) as the size of the point dimension is negligible compared to the size

of the clustering context.

2.5.4 Minimum retrieval

The kernel neighbor min finds the closest neighbor among all the neighbors

in the neighbor array N .

The loop over N is performed block-stride as the grid must consist of just

one block. That is because there is no grid synchronization in CUDA; meaning
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that threads can be synchronized only within the same block. In this task, we
need to synchronize all involved threads.

Each thread iterates through the loop and stores its local closest neighbors
(their distances and indices).

After the loop ends, the threads of the only block perform the block reduction

achieving the globally closest neighbors.

2.5.5 Neighbor array update

The host method update neighbors is a set of five kernels where each of them

takes an important part in updating the neighbor array N .

First, the kernel update collects invalidated indices. Next, two distinct ker-

nels neighbors u and neighbors mat u are run to update the array — the first

one updates the Euclidean part while the second kernel updates the Mahalanobis

part. Then, the reduction kernel reduce u is called that reduces intermediate re-

sults generated by the previous two kernels. Last, the kernel neighbors new

performs a special update of N for the newly created clusters.

Apriori clustering layer uses the kernel set neighbors. This set is used for the

initialization ofN ; it is a modification of the currently described kernels. There,

the update and neighbors new kernels are ignored as all elements of the array

have to be updated and none of them is created. The notation of kernel names

suggests that kernels suffixed with u have a suffix-less variant that processes all

elements.

Update detection kernel

The kernel update checks the validity of the neighbors of each cluster using a

grid-stride loop. The check consists of these steps:

• If the index of the closest neighbor belongs to a cluster that was merged,

remove the neighbor.

• If the neighbor index belongs to a cluster that was moved during an array

reorder, change the index accordingly.

When no neighbors are present, the particular cluster is marked for the update.

The index of this cluster is stored in the update array U . It is divided into two

parts — same as for the other cluster-related arrays.

U to contain continuous indices of update-ready clusters, threads synchro-

nize over the global memory variable indicating the next available location of U .
The variable is manipuled by threads using the atomic add instruction.
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Euclidean update kernel

The neighbor u kernel takes care of updating clusters whose size have not
reached the Mahalanobis threshold (we call them Euclidean clusters for simplic-
ity). For that reason, the input of the kernel is C (to compute distances) and U
(to target clusters for the computation).

The first loop iterates through U . All threads iterate the whole loop. There-
fore, when a cluster c is selected fromU , all threads contribute to the computation
of its closest neighbors.

For each c ∈ U , threads perform a grid-stride loop over Euclidean clusters.
Each thread takes care of one cluster at a time, computes its distance with c and
updates its local closest neighbors of c.

Then, the threads perform the block reduction and create the block-local clos-
est neighbors of c. As there is no grid synchronization, each block stores its result
in the intermediate neighbor array N ′ ready for a further reduction.

The kernel ends when all clusters from U are visited.

Remark. As the Non-singular Mahalanobis distance function is symmetric, there
is no need to compute a distance between all clusters and a cluster c (the one
that needs to be updated). We only need to compute distances of clusters with
their indices greater than the index of c. If we follow this invariant throughout
the algorithm, we can safely ignore the clusters of lower index in the computa-
tion as during theirs computation the cluster c was already involved. This does
not hold for newly created clusters. They need to be measured against all the
remaining clusters to hold the invariant (see the kernel neighbors new).

Mahalanobis update kernel

The neighbor mat u kernel is similar to the previous one. The main distinction
is that this kernel updates clusters that reached the Mahalanobis threshold (Ma-

halanobis clusters, for simplicity) instead of those that did not. We created the
separate kernel to tailor the thread utilization for the demanding Mahalanobis
distance computation.

In addition to C and U , the kernel takes I as the input. It is important to
access the inverse covariance matrices because they are involved in a distance
computation of Mahalanobis clusters.

Same as in the previous kernel, the first loop is performed by all threads to
cooperatively compute the closest neighbors for each element of U .

In contrast to the previous kernel, each warp takes care of one cluster at a
time in the grid-stride loop instead of a thread. Warp threads cooperate together
in the matrix-vector multiplications as the Mahalanobis distance function is now
involved. The previous kernel does not perform a matrix-vector multiplication
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for computing the distance so only one thread computes one distance measure-
ment.

Finally, the kernel performs the same reduction as in the previous kernel and
stores the block-local intermediate results into N ′.

Remark. The invariant of distance computation holds in this kernel as well. How-
ever, when a Mahalanobis cluster c needs to be updated, distances between c

and all Euclidean clusters must be also computed regardless the index. This is
a trade-off for having Euclidean and Mahalanobis clusters divided from them-
selves. However, the majority of Euclidean clusters tend to merge themselves
early in the clustering.

Reduction kernel

The kernel reduce u reduces the intermediate results of the updated clusters
in N ′ into the neighbor array N . For each updated cluster, there is as much
closest neighbor entries as there were blocks in a grid of the previous kernels.
As this may be a big number, one warp cooperates in the reduction of the entries
for one updated cluster.

New cluster update kernel

The neighbor new kernel updates N in the means of the newly created cluster
c. It computes the remainder of the distances (between c and the clusters of lower
index) to satisfy the mentioned invariant. Hence, this kernel moves that respon-
sibility from the kernels neighbor u and neighbor mat u to simplify their code
and process the special measures faster. The kernel is called after the reduction

kernel as it operates directly with N .

Remark. The time complexity of the update neighbors kernels isO(c2), where
c denotes the number of clusters in a clustering context. This is due to the kernels

that compute the closest neighbors. In the worst case, neighbors of each cluster

need to be recomputed resulting in the mentioned time complexity. However,

this is rarely the case. More often, the number of update-needed clusters resides

in a yet unpredictable but reasonable scope. Hence, when we denote the number

of clusters needed to be updated as u, we can start reasoning about the more

precise time complexity O(uc).
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3. Results

The last chapter of the thesis describes the experiments that were performed
to provide a clear result of the MHCA implementation performance. The aim
of the thesis was to create theMHCA implementation that is capable of clustering
datasets of hundred thousands and millions of points in a reasonable amount
of time.

The resultswere comparedwith the existing implementation ofMahalanobis-
average hierarchical clustering [8]. The implementation is written in R language
with performance critical parts written in C. For linear algebra computation, it
uses a BLAS library. It provides both FMD and CMD measures of dissimilarity
and the apriori clusters computation as well. It performs a serial CPU compu-
tation. For brevity, we denote the thesis GPU implementation by gmhclust and
the serial CPU version by mhclust.

The testing datasets were divided into these two categories:

Single-point datasets These datasets are clusteredwithout a knowledge of any
apriori clusters. Hence, the computing starts from a single point. The
datasets are purely of a high-dimensional flow and mass cytometry data
[9] (see tab. 3.1).

Apriori datasets These datasets are clustered with the apriori clustering me-
thod. They do not represent any measured data (alternatively, we could
use single-point datasets pre-clustered with k-means). The apriori datasets
contain small gaussian clusters; each of them is marked as an apriori clus-
ter. The datasets contain lot of these clusters located on a different place.

The describing parameters of apriori datasets comprise apriori cluster size,
the apriori cluster count and the point dimensionality (see tab. 3.2).

Dataset name Size Dimension

Niellson rare 44K 14
Levine 13dim 167K 13
Levine 32dim 265K 32
Mosmann rare 396K 15
Samusik all 841K 39

Table 3.1: Flow and mass cytometry datasets selected for experiments.
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Dataset name Cluster size Cluster count Size Dimension

apriori 1M 1000 1000 1M 20
apriori 2M 2000 1000 2M 20

Table 3.2: Apriori datasets generated for experiments.

3.0.1 Benchmarking setup

All experiments were run on the same machine (Intel Xeon Silver 4110, 256 GB
RAM, NVIDIA Tesla V100 PCIe 16 GB). The performance-related experiments
were performed five times to detect possible anomalies. As there were negligible
performance differences in the separate runs, all the following plots depicting
performance show their arithmetic means.

3.1 The closest neighbor parameter

To determine which clusters to merge, the GPU implementation uses the closest
neighbor array. The number of the closest neighbors assigned to each cluster
in the array is variable. We experimented on single-point and apriori datasets
with this parameter to determine which number performs best.

We assumed that two closest neighbors will achieve the best performance
as it will result in the reduced number of cluster to be updated each iteration.
Three and more neighbors will not provide such reduction that would compen-
sate the diminishing returns caused by the longer time for a cluster update.

As seen from the figure 3.1, the variant of 1 closest neighbor achieved the best
performance. This may be caused by the fact that the lower number of clus-
ter updates did not overcome the increased time for each update. Alternatively,
it may be caused by the composition of tested datasets; datasets that naturally
form cluster of other than elliptical shapemay benefit better from another closest
neighbor number variant.

The forthcoming experiments will be performed with the 1 closest neighbor
variant.

3.2 Clustering speedup

The following set of experiments determines the performance speedup of the
GPU implementation over the CPU implementation. The performance compar-
ison was performed on single-point and apriori datasets separately.
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Figure 3.1: A comparison of gmhclust with various numbers of neighbors as-
signed to clusters.

Unfortunately, during the single-point testing, we reached the computational
limits of the CPU implementation. Even for the smallest dataset, the computation
took nearly 14 hours. Due to the polynomial time complexity and extremely
increasingmemory requirements (193GB for Levine 32), we decided that in order
to test the datasets, we need to down-sample them. We uniformly randomly
selected a fraction of the dataset points to create a smaller dataset. Note that these
consequences are necessary (yet unforeseen) as the larger datasets require such
big amount of time and space resources that they are by no means practically
computable (see fig. 3.2).

3.2.1 Speedup on single-point datasets

To determine the performance increase, we decided to down-sample Nillson rare
dataset (as it is the smallest one). We created 10 samples with their sizes corre-
sponding to 10% of the dataset up to 100%. As seen from the figure 3.3, the per-
formance difference increases as the dataset size increases. It is a common con-
sequence of the fact that there is less work to parallelize in smaller datasets than
in bigger datasets. In the dataset of size around 4K, the performance of gmhclust
is 60-times greater. This scales up to 5000-times faster time for the full Nils-
son rare dataset.
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Figure 3.3: A comparison of gmhclust and mhclust performance on various
sizes of Nilsson rare single-point dataset.
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Figure 3.4: A comparison of gmhclust and mhclust on apriori datasets.

3.2.2 Speedup on apriori datasets

In contrast to the single-point datasets, the CPU implementation managed to
compute apriori datasets of big sizes. It is a consequence of the wisely chosen
apriori clusters.

When the algorithm is inputed with apriori clusters, it does not compute
the whole dataset at once — it clusters each apriori cluster first. This fact reduces
the overall time complexity significantly, allowing the CPU algorithm to compute
big datasets in a short amount of time.

For example, suppose the input dataset apriori 2M and a function f that takes
a dataset size and outputs the required time for its clustering. Then, the algorithm
performance is proportional to

1000f(2000) + f(1000)

that is — deducing from the previous experiment — far less than f(1000 · 2000).

We measured the performance of the CPU and GPU implementation on apri-
ori 1M and apriori 2M (see fig. 3.4). The results of the performance increase
are 8-times and 20-times respectively. As we expected, it is not as measurable
as in single-point datasets even though it has much more points.

It is caused by computing a lot of small apriori clusters. From the previous
experimentwe observed that small-sized datasets do not exhibit such big increase
in performance. Therefore, the overall performance increase in apriori datasets
is not expected to be drastically better.
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Figure 3.5: gmhclust performance for different ratios of apriori cluster size and
count (depicted as size-count) with Mahalanobis threshold set to size.

Apriori dataset parameters

The next experiment tests how the apriori dataset parameters size and count

influence the overall algorithm time. We tested 7 different size–count ratios
on a dataset of 5M 20-dimensional points (see fig. 3.5). The Mahalanobis thresh-
old of each run was set to be equal to the apriori cluster size.

The runs are ordered in such way that the apriori cluster size is increasing
(and the apriori cluster count is decreasing). The plotted line first rapidly de-
creases, then is close to constant and starts to increase in the end. This may
be caused by two factors:

First, according to the previous experiment, we expected the following re-
lation: the bigger is the maximum of the size and count parameters, the big-
ger is the overall computational time. Hence, big measured values are seen
on the edges of the plot.

The second factor may be the Mahalanobis threshold. As the threshold in-
creases with the increasing cluster size, more clustering work is performed us-
ing the less demanding euclidean distance. The threshold was set to be equal
to the apriori cluster size; hence, the Mahalanobis distance is used after all apri-

ori clusters are clustered. As the consequence, the right edge of the plot is not

as steep as the left edge.
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3.3 Results comparison

Next, wewill compare the clustering results of the GPU andCPU implementation
to see if they are similar. Comparing results for equality would put big restrains
on the implementation. Rather, we want to allow algorithms to have slight dif-
ferences during their clustering and compare the whole clustering process. First,
we need to define the point height.

Definition 20 (Point height). Suppose a datasetD ⊂ R
d and an ordered sequence

of cluster pairs p1, . . . , pn−1 that defines a resultR of a hierarchical clustering onD.
We define the height of point o ∈ D inR as the sum of distances between all cluster

pairs pi such that o belongs to their union.

We can easily imagine point height using a dendrogram. The point height
represents the distance from the bottom of the dendrogram (starting in the cor-
responding point) to the top.

To compare two clusterings, we compute the height of each point in both
clusterings. Then we take the two distances of each point as its coordinates and
plot a scatterplot. When the correlation between point heights of two clusterings
is equal to 1, clusterings formed very similar clusters. The scatterplot shows this
as a straight increasing line. When different clusters were created, points are
scattered among the whole plot.

An alternative approach for comparing hierarchical clusterings would be to
compare a selected parts of their dendrograms. Dendrograms are cut to expose
a small amount of clusters (i.e. 10). Then, they are directly compared using sim-
ilarity measures like the F-score.

However, the MHCA algorithm tends to create small clusters that are prop-
agated to the very top of the dendrogram. They usually consist of noise be-
cause Mahalanobis distance makes noise clusters dissimilar to the rest and they
are merged in the late clustering stages. This can be a problem for the direct
cluster-by-cluster comparison as these noise clusters can easily skew the results.
In compared clusterings, they may be composed of different points or form dif-
ferent amount of cluster; all this can worsen the result of potentially similar
clusterings.

3.3.1 Single-point dataset results comparison

We down-sampled four selected single-point datasets to the fraction of 1

10
. Then,

we computed heights of each point and plotted them as discussed above (see
fig. 3.6). The figure shows, that that GPU implementation chose different paths
during its clustering process creating a different result. However, we can see that
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the points reside mainly on the diagonal; hence, the compared clusterings may
created a lot of clusters that shared the majority of their points.

The possible reason of this behavior may be a slight difference in the measure
of dissimilarity of the CPU implementation. There, small clusters are assigned
an artificial covariance matrix so Mahalanobis distance can be applied on them.
However, the GPU implementation computes only the euclidean distance. This
can be a reason for branching of the algorithms in theirs early stages. As a con-
sequence, the GPU and CPU clustering results differ slightly.

3.3.2 Apriori dataset results comparison

We did not down-sample the selected apriori datasets and proceeded the same
way as in the previous experiment (see fig. 3.7). Here, the experiments showed
the almost straight line. It was expected, as the presence of apriori clusters effec-
tively removed a possible error created during the early algorithm stages where
the implementations differed. More specifically, the propagation of possible clus-
tering differences was stopped when the apriori clusters were completely clus-
tered (as the clusterings aligned at that point).

When all apriori clusters were processed, the GPU and CPU measures of dis-
similarity applied on the remaining clusters did not differ as the clusters were
big enough. Hence, no other opportunity for possible branching occurred. This
experiment also shows the importance of clustering early stages and how it can
affect the whole result.
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Figure 3.6: Plotted point heights of gmhclust and mhclust clusterings of the se-
lected single-point datasets. The Mahalanobis threshold was set to default (1

2
).
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Figure 3.7: Plotted point heights of gmhclust and mhclust clusterings of the se-
lected apriori datasets. The Mahalanobis threshold was set to apriori cluster size.
The results correlate almost perfectly.
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Conclusion

In this thesis we have researched possible variations of agglomerative hierar-
chical clustering algorithms (section 1.3) and selected the variant that promised
high GPU utilization and lowmemory requirements (section 2.2). Then, we have
implemented the Mahalanobis-average hierarchical clustering accelerated on a
single GPU (section 2.4). Finally, we have performed several experiments to mea-
sure the properties of the resulting implementation (chapter 3).

The resulting application is implemented within CUDA framework, which
should make it useful for scientific computing where CUDA is a de-facto stan-
dard. The implementation uses the Centroid Mahalanobis distance (see def. 9) as
the dissimilarity measure, and it can cluster datasets from single-points or with
a help of apriori clusters. We have tested the implementation on single-point
datasets with sizes from 40K to 800K points and apriori datasets with sizes from
1M to 5M points. Due to the big time and memory requirements of the CPU
implementation, datasets were down-sampled. For single-point datasets, the
speedup was 60-times for 4K points and 5000-times for 40K. For apriori datasets,
the speedup was 8-times for 1M points and 20-times for 2M points. We have also
tested the clustering performance of different apriori cluster size and count ra-
tios. We have discovered that clustering time increases faster with higher apriori
cluster count than with higher apriori cluster size.

Regarding the comparison of clustering results, the clusterings differed for
single-point datasets due to the slightly different dissimilarity measures. On the
other hand, in case of more frequently used apriori clusters, the clusterings were
practically the same.

Future work

Although the implementation in this thesis is useful and provides good results,
there are many minor improvements that can be added. The main concern of the
future work is to implement the remainder of the functionalities of the current
MHCA algorithm.

Most importantly, the dissimilaritymeasure that can provide better clustering
of small clusters can be implemented. We can transform a covariance matrix of
these clusters to make it regular. Then it can be properly inverted and used in
the Mahalanobis distance formula.

Next, a covariance matrix can be normalized by dividing each element by its
discriminant. When used in the distance formula, this transformation outputs
the combination of the Mahalanobis and Euclidean distance. The determinant
can be computed as a side product of the Cholesky decomposition that can be
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used to compute the inverse of a covariance matrix.
Although we do not expect it to provide any substantial improvement on

reasonable datasets, the work can be further expanded by implementing the Full
Mahalanobis distance (see def. 8). It can cover the cases when CMD does not pro-
vide precise dissimilarity measure which can lead to a better clustering results.
Naturally, it would come for the price of a greater overall time complexity.
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A. User guide

A.1 Build guide

TheMahalanobis-average hierarchical clustering project was developed with the
CMake build tool. To build the executable, use CMake configure and build com-
mands in a build directory. Then, the directory para will contain gmhclust

executable. The only dependency is the CUDA compiler (nvcc). The executable
should be portable to all platforms supporting nvcc; it was successfully tested
on Ubuntu 18.04 and Windows 10. See the following steps:

cd gmhc

mkdir build && cd build

cmake ..

cmake --build .

ls para/gmhclust

A.2 Running the program

The gmhclust executable has three command line parameters:

1. Dataset file path – The mandatory parameter with a path to a dataset file.
The file is binary and has structure as follows:

(a) 4B unsigned integer D – point dimension

(b) 4B unsigned integer N – number of points

(c) N ·D 4B floats –N single-precisionD-dimensional points stored one
after another

2. Mahalanobis threshold – An absolute positive number that states the Ma-

halanobis threshold. It is the mandatory parameter.

3. Apriori assignments file path – An optional path to an apriori assignments

file — a file with space separated 4B unsigned integers (assignment num-

bers). The number of integers is the same as the number of points in the

dataset; it sequentially assigns each point in the dataset file an assignment

number. Then simply, if the i-th and the j-th assignment numbers are

equal, then the i-th and j-th points are assigned the same apriori cluster.
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The executable writes the clustering process to the standard output. Each
line contains an ID pair of merged clusters with their merge distance as well.

The command, that executes the program gmhclust to cluster data dataset
with the apriori assignment file asgns and the threshold 100 is

./gmhclust data 100 asgns

A more complex examples can be seen in the benchmark directory of the
enclosed CD. See README.txt for the complete guide.
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B. Enclosed CD

The enclosed CD contais three folders:

• gmhc contains the source code of the implementation.

• benchmark contains scripts and a guide how to reproduce some of the
performed experiments.

• docs contains the program documentation.
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