
Univerzita Karlova v Praze

Matematicko-fyzikální fakulta

DIPLOMOVÁ PRÁCE

ŠTEFAN IGNÁTH

Aktivní XML

Active XML

Katedra softwarového inženýrství

Vedoucí diplomové práce: Doc. Ing. Jan Janeček, CSc.

Studijní program: Informatika, obor Softwarové systémy

Děkuji Doc. Ing. Janu Janečkovi, CSc. za cenné rady, náměty a konzultace, kterými přispěl

k napsání diplomové práce. Dále děkuji svým rodičům, protože bez jejich mnohaleté podpory

během mého studia by tato práce vzniknout nemohla. Také děkuji všem přátelům, které jsem

během studia poznal.

Prohlašuji, že jsem svou diplomovou práci napsal samostatně a výhradně s použitím

citovaných pramenů. Souhlasím se zapůjčováním práce.

V Praze dne Štefan Ignáth

 2

Název práce: Aktivní XML

Autor: Štefan Ignáth

Katedra: Katedra softwarového inženýrství

Vedoucí diplomové práce: Doc. Ing. Jan Janeček, CSc.

E-mail vedoucího: janecek@fel.cvut.cz

Abstrakt: Tato práce se zabývá využitím takzvaného aktivního XML pro implementaci
distribuovaných algoritmů. Aktivní XML je představeno ve formě webových služeb (Web
Services) a protokolu XML-RPC. Obě tyto technologie jsou založeny na výměne XML zpráv.
Zatímco protokol XML-RPC je nyní téměř nepoužívanou a zapomenutou technologií, webové
služby se za posledních několik let dostaly na výsluní. Komunikace webových služeb probíha
za pomoci protokolu SOAP a rozhraní těchto služeb je definováno pomocí WSDL. Kromě
přiblížení výše vzpomenutých technologií se tato práce zabývá jejich možným přizpůsobením
pro implementaci distribuovaných algoritmů. Jelikož jsou požadavky distribuovaných
algoritmů, tak jak jsou pojaty akademickou sférou, diametrálně odlišné od požadavků
bussiness aplikací, pro které jsou webové služby primárně určeny, jsou nutné rozsáhlé
kompromisy. Praktická část této práce ukazuje možná řešení pro nasazení webových služeb
na výpočet distribuovaných algoritmů na ukázkové implementaci. Taktéž je implementován
distribuovaný algoritmus za pomoci protokolu XML-RPC a použité technologie jsou
porovnány.

Klíčová slova: webové služby, distribuované algoritmy, SOAP, XML-RPC, middleware

Title: Active XML

Author: Štefan Ignáth

Department: Department of Software Engineering

Supervisor: Doc. Ing. Jan Janeček, CSc.

Supervisor's e-mail address: janecek@fel.cvut.cz

Abstract: This work is concerned about the usage of so called active XML for the
implementation of distributed algorithms. The active XML is introduced in the form of Web
Services and the XML-RPC protocol. Both of these technologies are based on the exchange of
XML-based messages. While the XML-RPC protocol is nowadays an unused and almost
forgotten technology, the Web Services are getting more and more attention over the last few
years. The communication of Web Services is based on the exchange of SOAP messages. The
interface of these services is described by WSDL files. Besides the description of these
already mentioned technologies, this thesis is concerned with possible modifications of these
technologies in order to implement distributed algorithms. Since the requirements of
distributed algorithms, as they are conceived by the academics, are diametrically different
from the requirements of business applications, for which were the Web Services developed,
great compromises are necessary. The practical part of this work points at possible solutions
for the usage of Web Services in the distributed algorithm computing on an exemplary
implementation. Another distributed algorithm is implemented with the usage of the XML-
RPC protocol and the comparison of these implementations is done.

Keywords: Web Service, distributed algorith, SOAP, XML-RPC, middleware

 3

mailto:janecek@fel.cvut.cz
mailto:janecek@fel.cvut.cz

Table of Contents

Chapter 1 Introduction ..7

1.1 Theoretical Part ..8

1.2 Practical Part...8

1.3 Overview of Chapters 2-7 ..8

Chapter 2 XML-based internet technologies ..10

2.1 Client/Server Architecture..10

2.1.1 Client/Server vs. Peer 2 Peer ..11

2.2 Middleware...12

2.2.1 CORBA ..13

2.2.2 MS DCOM/COM ...15

2.2.3 Java RMI ..16

2.2.4 Web Services ..17

2.3 XML-RPC ..18

2.3.1 Protocol Structure ...18

2.4 SOAP..19

2.4.1 Protocol Structure ...20

2.5 WSDL...21

2.5.1 Protocol Structure ...22

Chapter 3 Implementations of XML-based protocols in Java...23

3.1 Why Java? ..23

3.1.1 gSOAP..23

3.1.2 .NET ...24

3.1.3 JAX-WS ...24

3.2 XML-RPC ..25

3.2.1 Client Classes ...25

3.2.2 Server-Side XML-RPC ..26

3.3 JAX-RPC..27

3.4 JAX-WS ...28

3.4.1 Server Side Development ...28

3.4.2 Client Side Development..28

Chapter 4 Distributed Algorithms...30

4.1 Formal Description...31

 4

4.2 I/O Automata in Client/Server Architecture...32

Chapter 5 SOAP vs. Distributed Algorithms ..34

5.1 Data Management...34

5.2 Asynchronous Calls..34

5.3 Performance..35

5.4 Client/Server as P2P Node ...35

5.5 WSDL Target Endpoint Problem ...36

5.6 Network Topology..37

5.6.1 Large Scale Solution...37

5.6.2 Small Scale Solution...38

5.6.3 Other Solutions ...39

Chapter 6 XML-RPC Leader Election Implementation..40

6.1 Problem Definition ...40

6.2 Algorithm Description..40

6.2.1 Formal Description...41

6.2.2 Complexity Analysis ..43

6.3 Implementation Details ..44

6.3.1 Package cz.cuni.mff.leaderElection..44

6.3.2 Package cz.cuni.mff.leaderElection.broadcast ...46

6.3.3 Package cz.cuni.mff.leaderElection.synchronizer..47

6.4 Performance Measurements ...48

6.4.1 Underlying Problems..48

6.4.2 Testing Environment ..48

6.4.3 Results ..49

Chapter 7 JAX-WS Resource Reservation Implementation ...53

7.1 Problem Definition ...53

7.2 Algorithm Description..54

7.2.1 Formal Description...56

7.2.2 Complexity Analysis ..57

7.3 Implementation Details ..58

7.3.1 Package cz.cuni.mff.coloring ...59

7.3.2 Package cz.cuni.mff.coloring.client ...60

7.3.3 Package cz.cuni.mff.coloring.client.algorithm...61

7.3.4 Package cz.cuni.mff.coloring.client.broadcast ...62

 5

7.4 Performance Measurements ...62

7.4.1 Underlying Problems..62

7.4.2 Testing Environment ..63

7.4.3 Results ..63

7.4.4 Comparison to XML-RPC..66

Chapter 8 Conclusion..68

Appendix A Contents of the CD ..70

A.1 Leader Election Algorithm ...70

A.2 Resource Reservation Algorithm..70

Bibliography ...72

 6

Chapter 1 INTRODUCTION

The purpose of this thesis is to discover and contemplate on differences between the world of

the client/server architecture (most of the internet as we know it today) and the world of the

distributed algorithms as described by academics. In the academic world the basic premise is

the existence of processes (or users, or nodes); the combination of server and client role and

functionality in a single point. The world of internet is suitable for implementing only a small

subset of distributed algorithms known in the academic world. These are the asynchronous

algorithms based on message sending.

It is impossible or very difficult to implement other types of distributed algorithms in the

client/server architecture based environment. Other types of distributed algorithms include

synchronous algorithms based both on message sending and on memory sharing,

asynchronous algorithms based on memory sharing and several other subtypes like semi

synchronous algorithms.

XML is a markup language widely used as an underlying language for many internet

protocols. As it is just a text protocol, it has been used in the past for exchanging static text

information (for example XHTML protocol). Over the last few years has the usage of XML

grown very much. The so called active XML allows us to achieve such goals as never seen

before.

Many different attempts have been made on developing distributed systems. Recent (last

couple of decades) focus is of course on the distributed systems that would work over the

internet. The distributed systems like CORBA and MS DCOM/COM have been developed

with such focus in mind. But they have failed and are nowadays mostly used as legacy

systems. The most common problem, that these systems encountered, was the so-called

firewall problem. The companies’ policy on firewall and router settings blocked every

communication that went through any non-standard ports. With this in mind different

protocols based on the exchange of XML documents have been developed. The important fact

 7

is that the XML documents can be exchanged on the standard port 80 with the usage of

HTTP.

One of the simpler XML-based protocols is the XML-RPC protocol. It is a simple protocol

that supports only remote procedure calling with few different variable types. The only

available message exchange pattern is the request/response pattern as the only underlying

protocol, that is supported, is HTTP. The main advantage of this protocol is its simplicity.

The most common and used protocol is SOAP (Simple Object Access Protocol). SOAP

Version 1.2 (SOAP) is a lightweight protocol designed for exchanging structured information

(such as XML) in a distributed network environment. It uses XML technologies to define an

extensible messaging framework providing a message construct that can be exchanged over a

variety of underlying protocols. The framework has been designed to be independent of any

particular programming model and other implementation specific semantics [32].

1.1 Theoretical Part

For the theoretical part of this work we will cover the history of middleware from the oldest

systems like CORBA to the newest middleware technologies – Web Services. We will

describe the technologies used by Web Services and compare and describe the frameworks

available for their development. Later, the problems and implied solutions of the usage of

Web Services for a distributed algorithm implementation are discussed.

1.2 Practical Part

In the practical part of this thesis we will describe the implementation of distributed

algorithms using different chosen technologies in order to show the necessities to make the

chosen technologies work as distributed algorithms. One implementation was created using

Web Services as the communication environment for the resource reservation algorithm. The

second implementation was done with the usage of XML-RPC as a simpler protocol. The

second implementation is needed for comparison of these technologies (SOAP and XML-

RPC) as both are active XML technologies. The XML-RPC protocol is nowadays only a

legacy technology. The practical part is also concerned with performance tests done for both

protocols in order to compare them successfully.

1.3 Overview of Chapters 2-7

Chapter 2 describes different XML-based internet technologies. It describes the client/server

architecture as the architecture used by those technologies that is this work concerned about.

 8

It continues with the definition and the description of different middleware technologies as

CORBA, DCOM and Web Services. This chapter ends with the description of three protocols

that are the core of technologies used in this work (SOAP, WSDL and XML-RPC).

In Chapter 3 we discuss the decision to use Java to implement the chosen distributed

algorithms. First, we compare different SOAP frameworks that were available at the time.

Then, we describe the implementations that we have chosen to use with short example codes

of the creation of server and client classes.

Chapter 4 contains the informal and formal description of distributed algorithms.

Distributed algorithms are in this work formally described as I/O automata. The last section of

this chapter explains the translation of I/O automata into client/server applications.

Chapter 5 is concerned about the differences of the Web Services environment and the

environment assumed by the distributed algorithms. We iterate one by one through the

different problems that arise from these differences and we devise and describe solutions to

these problems.

Chapter 6 presents the implementation of a leader election distributed algorithm with the

usage of the XML-RPC protocol. At first we describe the leader election algorithm in details,

giving its formal description and the complexity analysis. Then we discuss the

implementation details. At the end of the chapter we present the performance measurements

done for the XML-RPC protocol and briefly compare them with other technologies.

Chapter 7 has a similar structure to Chapter 6, but it concentrates on an algorithm for

resource reservation in a distributed environment and its implementation in the JAX-WS

framework. The last section of this chapter presents the performance measurements done for

the SOAP implementation in the JAX-WS framework and compares them to the results of the

XML-RPC protocol.

Chapter 8 brings the conclusion of this work and discusses a possible usage and

consequences of findings and methods devised in this work. It also briefly mentions the work

that can be done in this field.

 9

Chapter 2 XML-BASED INTERNET TECHNOLOGIES

2.1 Client/Server Architecture

Although there is no universal agreement upon definition of what the term ‘client/server’

means, it is generally accepted to mean any system that splits its data processing between two

distinct parts or programs: the requester and the provider, or the client and the server, where

the client makes requests for services provided by the server [7].

“Servers are entities that passively await requests from a client and respond to them.

Servers fill one specific need and encapsulate the provided service so that the state of the

server is protected and the means by which the service is provided are hidden from the client”

[23].

Clients, on the other hand, are active entities that send requests to servers. They await

messages only as the response to their requests and are not opened to any other incoming

communication. The distribution of responsibility, authority, and intelligence between a

server and a client allows us to differentiate between the so called fat and thin clients. The

server portion of a client/server system almost always holds the data, and the client is nearly

always responsible for the user interface. The shifting of the application logic constitutes the

distinction between fat clients and fat servers (with thin clients).

A thin client is a client, which delegates most of the actual workload (data handling,

algorithm computing, and data storage) to the server. As the fat server harbors most of the

functionality it is usually easier to update the application logic since a new client does not

need to be distributed.

A fat client does most of the workload by it self. As the actual work is mostly done by the

clients, the server handling fat clients can serve more clients while having the same

computing power. The disadvantage of the usage of the fat clients is usually the higher

bandwidth usage (that is being eliminated as the bandwidth has grown considerably over the

last few years).

 10

The main advantage and disadvantage of the client/server architecture is the existence of a

central node (server). It is a disadvantage, as it is a single point of failure (system comprising

10,000s of clients and a server will fail in the case of a failure of the server). That is why a

system based on the client/server architecture usually lacks robustness. On the other hand, the

server is usually the only place, where data is stored and thus higher security can be provided.

Figure 1: The client/server network architecture

2.1.1 Client/Server vs. Peer 2 Peer

The peer-to-peer (P2P) architecture does not have the notion of clients or servers, but rather

every node fulfills the roles of both ‘the server’ and ‘the client’ with respect to other nodes.

The advantage of a P2P network is that each node provides the resources (bandwidth, storage

space, and computing power), thus the total capacity of the system increases with the

increased number of nodes. This also provides the robustness of P2P networks, where no

single point of failure exists.

As mentioned before, the distributed algorithms as described by Lynch [24] use only the

P2P architecture. The XML technologies such as SOAP on the other hand are implemented

only for usage in the client/server architecture. There are some exceptions beginning to

emerge, such as WSPEER and WSKPEER [13].

The aim of this work is not to explore the usage of middleware such as WSPEER in P2P

networks, but rather to use the client/server technologies to simulate the P2P architecture.

 11

Figure 2: The peer-to-peer network architecture

2.2 Middleware
When the Internet Society held a workshop on middleware [3], the participants decided that

the definition was dependant on the subjective perspective of those trying to define it.

Nevertheless this is a definition that we have found more or less suitable for the scope of this

thesis: “The main purpose of middleware is to overcome the heterogeneity of the distributed

infrastructure. It establishes a new software layer that homogenizes the infrastructure’s

diversities by means of a well-defined and structured distributed programming model.

Abstractions provided by middleware systems hide heterogeneity of the networking

environment, support advanced coordination models among distributed entities and make the

distribution of computation as transparent as possible” [17].

The taxonomy of middleware platforms allows a categorization according to the

coordination model they implement. Transactional middleware systems use transactions to

guarantee a consistent system state. They use the two-phase commit (2PC) to implement the

transactions. The Distributed Transaction Processing (DTP) protocol defines a programmatic

interface for 2PC. The disadvantages of transactional middleware are the unnecessary

overhead, if transactions are unnecessary or undesired and automated (un)marshalling is in

most systems not provided. Such middleware is used in databases, telecommunications and

safety critical systems [11].

A tuplespace-based middleware builds upon the distributed shared memory concept. The

tuplespace is globally shared in between components and it enables complete decoupling of

the components, such they do not need to co-exist at the same time or have reference to each

other. A message-oriented middleware can be seen as a special case of the tuplespace-based

middleware, where tuples are implemented as messages.

 12

Remote procedure call (RPC) is the oldest coordination paradigm and it allows a

component to invoke procedures executed on remote hosts without explicitly coding the

details for these interactions. The cross-platform nature (due to bindings for multiple

operating systems and programming languages) is a huge advantage of this type of

middleware, but it also suffers from a number of disadvantages (such as small fault tolerance,

limited scalability, no support for multicast or asynchronous communication). All of that has

resulted in limited use of RPC in modern distributed systems. One such middleware is XML-

RPC.

An object and component oriented middleware represents the evolution of RPC-based

middleware. This kind of middleware allows a creation of stubs, obtaining of reference to

remote objects, establishing synchronous communication and invoking requested method by

marshalling and unmarshalling data. The best known middleware initiatives were Object

Managements Group’s CORBA (Common Object Request Architecture), Microsoft’s

COM/DCOM (Component Object Model) and Sun’s EJB (Enterprise Java Beans).

A service-oriented middleware is a further step of evolution toward the Service Oriented

Architecture. In these systems resources are available as autonomous software services that

can be accessed without any knowledge of their underlying technologies. The three basic

architectural components are a service provider, service consumer and a service registry. The

service-oriented middleware introduces languages for exact description of services in order to

hide the heterogeneous underlying environment. The service-oriented middleware is usually

based on XML standards and example of such middleware is Java API for XML Web

Services (JAX-WS) [21].

2.2.1 CORBA

Common Object Request Broker Architecture or CORBA is an architecture offering an access

to services in the form of objects with a unified interface. In other words, the main purpose of

CORBA is the interoperability of CORBA-based programs independent on the vendor,

operating system, programming language and/or the network environment. CORBA was

developed and standardized by the Object Management Group [26].

The Object Model Architecture (OMA) is composed of an Object Model and a Reference

Model. While the Object Model defines the description of objects in a heterogeneous

environment, the Reference Model describes interactions between these objects. So called

Object Request Broker (ORB) is the component mainly responsible for facilitating

communication between clients and objects. In the client/server architecture the objects would

 13

be considered the server side. In CORBA a client and a server are merely roles, as they can

change on a per-request basis (as a “client” containing an object can serve as a “server” for

another service).

Figure 3: The basic architecture of CORBA

The main features of CORBA according to Vinoski [31] are ORB Core, OMG Interface

Definition Language, Interface Repository, Language Mappings, Stubs and Skeletons,

Dynamic Invocation and Dispatch, Object Adapters.

The uniqueness of CORBA lies in the usage of ORB. ORB delivers requests to objects and

returns responses to the clients. The key feature of ORB is the transparency as it hides the

objects location, implementation, execution state and the communication mechanism.

Some of other features as stubs and skeletons usage are nowadays used in other

technologies as JAX-RPC [19]. A stub is a mechanism that creates and issues request on

behalf of a client, while skeleton is its server-side mirror and it serves by delivering requests

to objects (in case of CORBA).

Even-though CORBA has never become the next-generation technology for e-commerce

as it was envisioned during the 90’s there are still some systems based on CORBA in use and

even in development. CORBA is nowadays used mainly to run inside companies’ networks,

where the communication is protected. In the area of embedded and real-time systems the use

of CORBA is actually growing.

The main problems and reasons of the downfall of CORBA are the technical issues, such

as the high complexity, that caused some parts of the CORBA specification never to be

 14

implemented. Other technical issues were insufficient features. CORBA is lacking on security

and versioning. The unencrypted traffic enables eavesdropping and different attacks if

CORBA was to be used over the internet. The other technical difficulty was a conflict with

corporate security policies. CORBA needed special ports to be opened in companies’

firewalls, unlike SOAP that uses port 80 to its advantage. There are also a vast number of

other technical issues such as design flaws, redundancy in on-the-wire encoding, missing

threading support and the lack of mappings for different programming languages [15].

Also many procedural issues within the OMG organization together with the high price of

CORBA from commercial vendors contributed to the downfall of CORBA. In the 1999 SOAP

has emerged as a technology using XML as the encoding for remote procedure calls. SOAP

has taken the place of CORBA as the technology for e-commerce.

2.2.2 MS DCOM/COM

Distributed Component Object Model or DCOM is a proprietary technology developed by

Microsoft for software components across several networked computers to communicate with

each other [33]. The traditional COM components can only perform interprocess

communication across the process boundaries on the same machine. DCOM with the usage of

RPC (Remote Procedure Call) enables sending and receiving of information between the

COM components over the network.

DCOM addresses many different issues such as a location independence, connection

management, bandwidth and latency, scalability, security, load balancing, fault tolerance,

protocol and platform neutrality [25].

In comparison to CORBA DCOM addresses security issues and is able to tunnel TCP to

run on the port 80. It distinguishes between four fundamental aspects of security: access,

launch, identity, and connection policy. DCOM supports not only single-threaded apartments

(STA) in which each COM object lives in a single thread, but also multithreaded apartments

(MTA) in which clients from any thread within the process can directly call any object inside

the MTA. In MTA COM objects do not live in any specific thread.

One of the key mechanisms of COM is for establishing connections to components and

creating new instances of the components. These mechanisms are commonly referred to as

activation mechanisms. The creation of new components is handled by the communication of

service control managers (SCM) on each side (client and server). In order to communicate the

server name and the class identifier are needed.

 15

Other important feature of COM is marshalling. Marshalling is the serialization and

deserialization of arguments and return values of method calls in order to allow their transport

over different protocols and media. This is needed in order for remote procedure calling to

work. Parameters marshalling is nontrivial because parameters can be arbitrary complex (such

as pointers to arrays or pointers to structures). The counterpart to marshalling is

unmarshalling, the process of reading serialized data and recreating their original structure.

For a COM object to marshal and unmarshal all parameters correctly the data types are

defined by the distributed computing environment remote procedure call (DCE RPC) and the

method signatures are described by the interface definition language (IDL).

DCOM also handles the distributed garbage collection. This aims to solve the problem

with garbage collection in distributed environment, dealing with process crashes and

connection problems. DCOM uses the reference counting as the primary mechanism for

controlling object’s lifetime. As the remote reference counting would work only if clients did

not terminate abnormally when holding a remote reference, DCOM uses pinging to determine

a client’s abrupt termination [16].

The Microsoft DCOM technology has been deprecated in favor of the Microsoft .NET

architecture. DCOM was developed in the year 1997 as the answer to CORBA. As .NET was

released in the year 2002, DCOM has died as a perspective technology.

2.2.3 Java RMI

The Java Remote Method Invocation (Java RMI) framework offers an alternative to the direct

handling of sockets in Java. It enables the programmer to call remote methods as if they were

local, while the framework packages and ships the arguments to the target of the remote call.

Stubs are used as local surrogate objects on which the call is invoked and they manage the

invocation on a remote object. The Java RMI framework integrates the distributed object

model into the Java programming language while preserving as many features of the Java

language as possible.

Java RMI handles three different things. The first is the location of remote objects. This is

done by the rmiregistry, where an application can register remote objects. The second is

the actual communication with remote objects and the third is the loading of class bytecodes

of objects passed as references to and from remote objects.

Java RMI uses a standard mechanism of RPC systems. It employs the stubs and skeletons

in order to manage the communication between a local application and remote objects. The

implementation of remote objects has to be thread-safe as they might be executed in separate

 16

threads. The garbage collection is handled by reference counting of live references within

each Java virtual machine (JVM).

The Java RMI calls are made directly from a socket to a socket, but this kind of traffic is

usually not allowed on many firewalls. The newest version of Java RMI provides an

alternative to run RMI on a HTTP-based mechanism. The authors of Java RMI specification

[1] and others [20] warn that the calls transmitted via HTTP requests are at least an order of

magnitude slower than the direct calls.

2.2.4 Web Services

W3C defines Web Services as "a standard means of interoperating between different software

applications, running on a variety of platforms and/or frameworks. Web services are

characterized by their great interoperability and extensibility, as well as their machine-

processable descriptions thanks to the use of XML. They can be combined in a loosely

coupled way in order to achieve complex operations. Programs providing simple services can

interact with each other in order to deliver sophisticated added-value services."

The Web Service architecture is based on the exchange of SOAP (Simple Object Access

Protocol or Service Oriented Architecture Protocol) messages between a service requester

(client) and a service provider (server). Before the client can access the server, it has to learn

about the Web Service. The Web Service discovery is done via a service broker. The service

broker distributes via UDDI (Universal Descrition Discovery and Integation) protocol WSDL

(Web Service Description Language) documents describing given services.

Figure 4: The Web Service architecture

 17

Many different specifications exist that add new capabilities to Web Services. These

specifications are generally referred to as WS-*. Some of them are: WS-Security, WS-

Reliability, WS-ReliableMessaging, WS-Addressing and WS-Trasanction [34].

Web Services have been evolved with the knowledge gained from older middleware

frameworks, such as CORBA or Java Remote Method Invocation. The main emphasis was on

the interoperability. Web Services have been developed to enable a service-oriented

architecture (SOA) for business aplications, to intergrate with existing legacy systems, to

increase the programming productivity by simplifying the development.

2.3 XML-RPC

XML-RPC is a very simple XML-based protocol for remote procedure calls. It defines a

framework for transmitting the method calls and the resulting responses between processes

across hosts. The XML-RPC approach differs from the traditional RPC systems in several

ways [4].

XML-RPC does not generate stubs in order to allow invoking the remote procedures in a

client. It rather provides several primitives that allow the programmers to invoke the remote

procedures. This reduces the amount of work required by the programmers, because they do

not have to tightly specify the procedures for a stubs generator. On the other hand, as the stubs

are not generated, better knowledge of the underlying system is required.

XML-RPC uses a standard XML encoding strategy, therefore is it highly interoperable.

Since the XML-RPC systems are only loosely coupled by XML documents they exchange, it

is possible for them to communicate as long as they obey the specification.

Since XML-RPC uses HTTP (Hyper Text Transfer Protocol) [6] it is really easy to

integrate with other applications. The usage of HTTP also provides the convenience of being

able to pass through the most of firewalls, since it usually runs on the standard port 80.

The mayor inconvenience of this protocol is that it can handle only simple data structures.

For this reason this protocol was not adopted by W3C [22] as a standard.

2.3.1 Protocol Structure

This short description is based on the full specification available at [35].

XML-RPC is a protocol based on transferring XML documents over HTTP. Each message

contains a simple HTTP header and a XML body. The protocol differentiates between request

and response messages. The request contains a <methodCall> element while the response

contains a <methodResponse> element. The <methodCall> contains an element

 18

<methodName>, with a unique method name and an element <params>. The element

<methodResponse> contains only the element <params>.

The element <params> contains a list of parameters of the given method. Each parameter

has its own element <param>. XML-RPC supports only few scalar value types such an

integer, Boolean, string, double, data and base64-encoded binary. It also supports <array>

and <struct>, that can contain a list of named (in case of <struct>) or unnamed (in case of

<array>) values of different types. Both <struct> and <array> may contain even another

<struct> and/or <array>.

The element <methodResponse> may contain an element <fault> instead of the element

<params>, but only in case of some error happening.

An example of a XML-RPC message follows:

POST /RPC2 HTTP/1.0
User-Agent: Mozilla/5.0 (Windows NT 5.1; en-US) Firefox/2.0.0.9
Host: localhost:8080
Content-Type: text/xml
Content-length: 166

<?xml version="1.0"?>
<methodCall>
<methodName>example</methodName>
 <params>
 <param>
 <value>
 <i4>1</i4>
 </value>
 </param>
 </params>
</methodCall>

2.4 SOAP

„SOAP is fundamentally a stateless, one-way message exchange paradigm, but applications

can create more complex interaction patterns (e.g., request/response, request/multiple

responses, etc.) by combining such one-way exchanges with features provided by an

underlying protocol and/or application-specific information. SOAP is silent on the semantics

of any application-specific data it conveys, as it is on issues such as the routing of SOAP

messages, reliable data transfer, firewall traversal, etc. However, SOAP provides the

framework by which application-specific information may be conveyed in an extensible

manner. Also, SOAP provides a full description of the required actions taken by a SOAP node

on receiving a SOAP message.“ [32]

 19

Simple Object Access Protocol (SOAP) is a protocol based on exchanging XML-based

messages enabling remote procedure calls. As SOAP message is just a XML document, the

protocol allows the communication of applications written in different languages and

deployed on different platforms over the network. In comparison to the XML-RPC protocol,

SOAP can handle any arbitrary complex data type and was adopted by W3C as a standard.

The common transportation protocol for SOAP is HTTP as the HTTP binding (that enables

SOAP to be transported over HTTP) is described directly by W3C. SOAP can be transported

also over other network protocols like SMTP, UDP and TCP with the usage of the SOAP

binding framework [27]. The other transportation protocols besides HTTP are used and

supported only on rare occasions. For instance, SOAP-over-UDP is a suitable solution for

mobile applications.

SOAP supports even other message exchange patterns (MEPs) than the request/response

MEP. A MEP has to be supported by the underlying transport protocol binding in use,

otherwise it is not really usable. The request/response and response MEPs are supported by

the HTTP binding (the only binding provided by W3C). Other MEPs have to be defined and

supported by other bindings.

The main advantage of SOAP and the reason why it is today an industrial standard is its

interoperability and the binding to the most common application protocol (HTTP), which

solves the firewall issue that was encountered by the older rivals (CORBA, DCOM).

The disadvantage of SOAP is the overhead it carries, such the computational complexity of

XML parsing and processing, usage of HTTP when it might not be needed or the fact that the

application protocol (HTTP) is used as a transport protocol.

2.4.1 Protocol Structure

The SOAP message is contained within an element <env:Envelope>, which may contain one

or more <env:Header> elements and exactly one element <env:Body>. Other elements are

always contained within these two elements.

The element <env:Header> is optional and serves to pass control information (not related

to the payload inside the <env:Body> element) to final or intermediary nodes. These elements

may be inspected, inserted, deleted or forwarded by SOAP nodes encountered along the

SOAP message path. The element <env:Body> is obligatory and contains the whole payload

aimed for the ultimate SOAP receiver.

SOAP recognizes three role attribute values: next, none and ultimateReceiver. If an

element has a role, each type of SOAP node (sender, intermediary, ultimate receiver) knows

 20

how to act in given role. Users may define other roles and the behavior of nodes in those

roles.

Headers may contain an attribute mustUnderstand, and if this attribute is set true, the

processing of this header block is mandatory. Headers may contain also a relay attribute; if

this is set true, the header has to be relayed if is not processed.

If an error occurs while processing a SOAP message, a message containing a <env:Fault>

element as the only child of the <env:Body> element has to be created and send to the

originator of the faulty message.

In order to invoke the SOAP RPC, the following information is needed: the address of the

target SOAP node, the procedure name, the identities and values of the input and output

parameters and the MEP to be employed to convey the RPC.

An example of a SOAP message follows:

Host: localhost:8080
User-agent: Mozilla/5.0 (Windows NT 5.1; en-US) Firefox/2.0.0.9
Accept: text/xml,application/xml,text/html;q=0.9,text/plain;
Accept-language: en-us,en
Accept-charset: ISO-8859-1,utf-8
Content-type: text/xml
Content-length: 355

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <ns:resourceReservation
 xmlns:ns="http://cz.cuni.mff.coloring/">
 <resourceId>99</resourceId>
 <processId>99</processId>
 </ns:resourceReservation>
 </soap:Body>
</soap:Envelope>

2.5 WSDL

WSDL or Web Service Description Language is a XML-based language used to describe a

public interface of a Web Service. The WSDL file is a XML document used by a service

consumer to learn about the service. WSDL defines an XML grammar for the description of

network services as collections of communicating nodes capable of exchanging messages.

A Web Service defined by a WSDL document is not dependent on implementation on any

particular platform and programming language. The interface of the Web Service is described

 21

as an abstract PortType, defined by the input and output SOAP messages for each procedure.

The WSDL document also defines the location and implementation style of given service.

The input and output message types for each method are usually defined using the XML

Schema Definition (XSD) language. The type definition might be separated into a XSD file,

which is imported into the WSDL file with the <xsd:import> element.

A WSDL document serves as an input for automated generation of proxies as stubs,

skeletons and templates, needed to implement the Web Service and/or the client. The

development of Web Services with automated generation of proxies does not require any (or

minimal) knowledge of SOAP.

While the current recommended version by W3C is 2.0, the version 1.1 is still the only

supported version by most of the software development kits for Web Services.

2.5.1 Protocol Structure

As defined by [9]:

“A WSDL document defines services as collections of network endpoints, or ports. In

WSDL, the abstract definition of endpoints and messages is separated from their concrete

network deployment or data format bindings. This allows the reuse of abstract definitions:

messages, which are abstract descriptions of the data being exchanged, and port types which

are abstract collections of operations. The concrete protocol and data format specifications for

a particular port type constitutes a reusable binding. A port is defined by associating a

network address with a reusable binding, and a collection of ports define a service. Hence, a

WSDL document uses the following elements in the definition of network services:

• Types– a container for data type definitions using some type system (such as XSD).

• Message– an abstract, typed definition of the data being communicated.

• Operation– an abstract description of an action supported by the service.

• PortType–an abstract set of operations supported by one or more endpoints.

• Binding– a concrete protocol and data format specification for a particular port type.

• Port– a single endpoint defined as a combination of a binding and a network address.

• Service– a collection of related endpoints.“

 22

Chapter 3 IMPLEMENTATIONS OF XML-BASED

PROTOCOLS IN JAVA

3.1 Why Java?

Over the last few years many implementations of SOAP in different programming languages

have been developed. Most of these are of course in Java and C++, but there are some

implementations available in other languages such as PHP (PHP SOAP), Perl (SOAP::Lite

[29]), Ruby (SOAP4R) and some other languages developed on academic grounds.

The best known open source implementations of SOAP are Apache Axis [5] (primarily

Java, but now also C++) and gSOAP [12] (C++). While Apache Axis is a robust system,

gSOAP is just a modest framework with a set of tools. The performance of a Web Service

system is largely dependant on the performance of the XML parser in use. The gSOAP’s

XML parser performs really well in comparison with the other parsers and XERCES (Java

and C version), parser used by Apache Axis, performs terribly in comparison to gSOAP [14].

The best known proprietary implementations are GlassFish JAX-WS and .NET. Both of

these implementations provide a huge framework consisting of many additional features.

JAX-WS used to be a part of Sun’s proprietary J2EE platform, but nowadays it is developed

as a part of GlassFish community project [18] as an open source, production-quality

enterprise software. The .NET platform is Microsoft’s proprietary technology.

We took three of the relevant frameworks into consideration: gSOAP, JAX-WS and .NET.

Each of these has its advantages and disadvantages.

3.1.1 gSOAP

The gSOAP framework is the only framework out of the chosen three that is developed on

academic grounds. It is somewhat ‘lightweight’ in comparison to the other two frameworks. It

does not have its own IDE, but it can be integrated into the Microsoft Visual C++. gSOAP

provides its own web server and supports even SOAP-over-UDP and the XML-RPC protocol.

Its ‘lightness’ contributes to its high performance according to its developers and some

 23

research [14]. gSOAP is also very portable as it covers not only the common platforms like

Win32, Unix-like platforms and Max OS X, but handheld platforms like WinCE, Palm OS

and Symbian too. gSOAP is distributed under several different licenses and it is easy to find

the right one.

The downside of gSOAP is that the Web Service creation is not fully automated and it is

uses a generation old approach compared to its opponents. The creation of Web Services is

very similar to Java API for XML Remote Procedure Call (JAX-RPC [19]), which is the

ancestor of JAX-WS.

3.1.2 .NET

The .NET framework is a proprietary framework developed by the Microsoft Corporation.

The .NET framework in its current version 2.0 (3.5 is being released) comprises a large

variety of tools and not only for the development of Web Services. This framework supports

fully automated creation of Web Services in its own IDE MS Visual Studio. The free version

of this IDE is available for personal usage, it is provided with a web server for the

development and testing.

The Web Service development and testing is fully automated within the provided IDE. A

specialized package called Web Service Enhancements (WSE) is available in version 3.0.

This package ads the possibility to use SOAP-over-TCP without the usage of HTTP.

The main disadvantage of the .NET framework is its dependence on the Windows platform.

The only possible way to run any application developed under .NET on other platforms is

Mono Project [28] that allows for .NET applications to be run and developed on Unix-based

systems. However, since this allows only partial compatibility, it is possible to say that .NET

is dependent on the Windows platform.

3.1.3 JAX-WS

JAX-WS as a part of the GlassFish project is developed by Java Community Process as an

open source project. The GlassFish project is an application server implementing newest Java

EE 5 platform features such as Java Server Pages (JSP), Java Server Faces (JSF), Servlet,

Enterprise Java Beans, JAX-WS, Java Architecture for XML Binding (JAXB) and many

others.

JAX-WS is distributed as a part of the GlassFish project together with the NetBeans IDE.

The current version is 2.1. The Web Service development and testing is fully automated and

integrated into the NetBeans IDE as the development of clients is.

 24

GlassFish is as platform independent as Java Enterprise Edition, therefore it is possible to

run in on most of known platforms (including handheld platforms for clients).

The only disadvantage of this framework is its performance, which might not be as high as

the performance of gSOAP, due to Java’s reputation and some comparisons [14]. Since the

comparisons were done on much older implementation, it is hard to take them into account.

We have decided to use the JAX-WS framework. The reasons were:

• the platform independency, that opens large testing possibilities needed for distributed

algorithms

• automated Web Service and client generation speeds up the development process, as it

allows to concentrate on the algorithmic part, as opposed to having manually create

interfaces or WSDL files

• previous experience with Java, which sped up the development process a lot

3.2 XML-RPC

For comparison purposes we have decided to create an implementation of a distributed

algorithm not only in a full fledged SOAP/WSDL framework, but also in a much simpler

XML-based protocol, namely XML-RPC. For this purpose we have decided to use the

Apache XML-RPC, version 3.1, implementation [35].

This implementation is in Java and for testing purposes it supplies a very simple embedded

web server. A brief description of the creation of basic server and client classes follows.

3.2.1 Client Classes

The creation of a client is very simple; just two classes are to be used: XmlRpcClient and

XmlRpcClientConfigImpl. XmlRpcClient is a stateless, thread safe object.

XmlRpcClientConfigImpl is a simple object allowing setting of few properties of the

HTTP client. The creation of the client as described by [5]:

import org.apache.xmlrpc.client.XmlRpcClient;
import org.apache.xmlrpc.client.XmlRpcClientConfigImpl;

XmlRpcClientConfigImpl config = new XmlRpcClientConfigImpl();
config.setServerURL(new URL("http://127.0.0.1:8080/xmlrpc"));
XmlRpcClient client = new XmlRpcClient();
client.setConfig(config);
Object[] params = new Object[]{new Integer(33), new Integer(9)};
Integer result = (Integer) client.execute("Calculator.add", params);

 25

3.2.2 Server-Side XML-RPC

The server consists of an XmlRpcServer class and a class implementing methods that the

server will be providing. The purpose of the XmlRpcServer class is to receive and execute

XML-RPC calls made by the clients. It can be embedded into another HTTP server, and the

simplest possibility is to embed it into the minimal web server, that comes with XML-RPC.

The only non-trivial action is the process of letting the XmlRpcServer class know,

where to find the implemented methods. This can be done in several ways. It is possible to let

the server load a property file, that describes the class with the implementations of methods,

or just simply to add the class with the implementations to the server’s handler. The code for

creating the server part by [5] follows:

 26

import java.net.InetAddress;

import org.apache.xmlrpc.common.TypeConverterFactoryImpl;
import org.apache.xmlrpc.demo.webserver.proxy.impls.AdderImpl;
import org.apache.xmlrpc.server.PropertyHandlerMapping;
import org.apache.xmlrpc.server.XmlRpcServer;
import org.apache.xmlrpc.server.XmlRpcServerConfigImpl;
import org.apache.xmlrpc.webserver.WebServer;

public class Server {
 private static final int port = 8080;

 public static void main(String[] args) throws Exception {
 WebServer webServer = new WebServer(port);

 XmlRpcServer xmlRpcServer = webServer.getXmlRpcServer();

 PropertyHandlerMapping phm = new PropertyHandlerMapping();

 /* Load handler definitions from a property file.
 * The property file might look like:
 * Calculator=org.apache.xmlrpc.demo.Calculator
 */
 phm.load(Thread.currentThread().getContextClassLoader(),
 "MyHandlers.properties");

 /* You may also provide the handler classes directly,
 * like this:
 * phm.addHandler("Calculator",
 * org.apache.xmlrpc.demo.Calculator.class);
 */
 xmlRpcServer.setHandlerMapping(phm);

 XmlRpcServerConfigImpl serverConfig =
 (XmlRpcServerConfigImpl) xmlRpcServer.getConfig();
 serverConfig.setEnabledForExtensions(true);
 serverConfig.setContentLengthOptional(false);

 webServer.start();
 }
 }

3.3 JAX-RPC

Java API for XML Remote Procedure Call (JAX-RPC [19]) was a first generation of SOAP

frameworks in Java. Nowadays it is a part of JAX-WS, which is the second generation of

SOAP framework in Java.

Two major implementations exist. One is the implementation by The Apache Foundation:

AXIS version 2 and the second is the GlassFish project by Java Community Process,

implementing JAX-RPC as part of JAX-WS. I have decided not to use JAX-RPC, but the

newer JAX-WS.

 27

The AXIS framework provides a set of tools for developing Web Services. The tool

Java2WSDL serves to create a WSDL file from a Java interface. The tool WSDL2Java creates

a stub, a skeleton and a Java interface from a WSDL file. The framework supports different

MEPs and transport over various protocols such as SMTP and FTP. The support for the

Apache Tomcat server is great and deployment is fairly easy. AXIS extends the JAX-RPC

specification by great measures and offers a wide range of additional features that are not in

the JAX-RPC specification.

The JAX-RPC specification basically defines the following: a WSDL to Java mapping,

Java to WSDL mapping, SOAP binding, JAX-RPC core APIs, models for Service Client and

Endpoint, Service Context, SOAP message handlers and other implementation details.

3.4 JAX-WS

As mentioned before, JAX-WS is a part of the GlassFish project by Java Community Process.

The JAX-WS specification defines what has been already defined in the JAX-RPC definition

and adds to it many new features to it.

JAX-WS uses Java annotation to simplify the development of both the client and the

server. It uses JAXB for XML to Java and Java to XML bindings instead of private binding

facilities as in JAX-RPC. JAX-WS supports asynchronous calls, non-HTTP transport, direct

access to underlying message exchange and an enhanced session management.

3.4.1 Server Side Development

As JAX-WS is fully integrated into the NetBeans IDE, the development of a Web Service is

really easy. It is accomplished by following these few steps:

1. Create a Web Application project

2. Right-click on the created project and select New – Web Service

3. Create operations of the newly created Web Service in the graphical editor.

4. Right click on the Web Service and select Deploy

5. The Web Service is deployed and running on the pre-selected web server

3.4.2 Client Side Development

The client creation is also fully automated in the NetBeans IDE. By following these few steps

a client is created:

1. Create a Java application project

2. Right click on the created project and select New – Web Service Client

 28

3. Choose a WSDL file for a client to be created from

4. Right-click inside any class of the created project and select Web Service Client

Resources – Call Web Service Operation, choose a service operation to be invoked

5. A method call is inserted into the chosen place

try { // Call Web Service Operation
 testws.TestService service = new testws.TestService();
 testws.TestService port = service.getTestServicePort();
 // TODO initialize WS operation arguments here
 java.lang.String par = "";
 // TODO process result here
 java.lang.String result = port.test(par);
 } catch (Exception ex) {
 // TODO handle custom exceptions here
}

 29

Chapter 4 DISTRIBUTED ALGORITHMS

A distributed algorithm is an algorithm designed to run and function in a distributed system.

A distributed system is a computer application, where several computers or processors

cooperate in some way. This includes networks of different kinds (local or wide area

networks) and multiprocessors systems. We will refer to the computers or processors (or even

processes) as to nodes. The nodes have to be autonomous – have their own control and have

to be interconnected to allow the exchange of information. This is a definition according to

[30].

There are distributed algorithms of different kinds. They vary in different attributes

according to [24]:

• The interprocess communication (IPC) method: most common algorithms use access

to shared memory or sending point-to-point or broadcast messages.

• The timing model: basically processes can be synchronous or asynchronous, but

algorithms with different level of synchronization exist and are called partially

synchronous.

• The failure model: the algorithm may have no fault tolerance or tolerance to failures

of some degree. Most commonly it is the tolerance to stopping failures (where process

just stops) or to more severe Byzantine failures, where process can behave arbitrarily.

Faults may occur also on communication channels as message loss or duplication.

• The problems addressed: typical problems addressed are resource allocation,

communication, consensus, database concurrency, deadlock detection, global

snapshot, synchronization

We will be focusing on implementing only a small subset of distributed algorithms known.

These are the asynchronous algorithms based on message sending without any failures (no

process or communication failures). In the two implemented algorithms we will focus on

 30

resource allocation and leader election problems. Formal definitions of these problems are

provided in the later chapters focused on particular implementations.

The implementation of other types of distributed algorithms in the client/server

architecture based environment is rather difficult and we will not be focusing on it. In fact,

only partially synchronous or asynchronous distributed algorithms based on message sending

with different failure models can be implemented directly. The synchronous algorithms and

algorithms based on memory sharing have to be simulated.

4.1 Formal Description

We have decided to use a formal description as defined by [24]. The distributed system is

formally described as a graph or digraph (directed graph)),(EVG = , where V is a set of

nodes (or processes, or computers in the network) and E is a set of (directed) communication

channels between these nodes. We use letter n to denote the V . We use the notation out-nbrsi

and in-nbrsi to denote the outgoing and incoming neighbors in the digraph, or simple nrbsi in

the graph. We suppose to have some fixed message alphabet M, and null as a placeholder for

the absence of a message. We model the processes and the channels as I/O (input/output)

automata.

With each process (node) , we associate an I/O automaton, Pi. Pi has defined input

and output actions to communicate with an external user. Additionally Pi has outputs of the

form , where j is an outgoing neighbor of i and m is a message, element of M. Pi

has additional inputs of the form , where j is an incoming neighbor of i. Except

for these restriction Pi can be an arbitrary I/O automaton. An I/O automaton A consists of five

components:

Vi∈

jimsend ,)(

ijmreceive ,)(

• sig(A), a signature is a triple consisting of three disjoint sets of actions: the input

actions, in(sig(A)), the output actions, out(sig(A)), and the internal actions, int(sig(A)).

We define locally controlled actions as local(sig(A)) to be out(sig(A))∪ int(sig(A)),

acts(sig(A)) to be all actions of sig(A).

• states(A), a (not necessarily finite) set of states.

• start(A), a nonempty subset of states(A) known as the start states or initial states.

• trans(A), a state-transition relation, where ××⊆))(()()(AsigactsAstatesAtrans

)(A . This relation is described in a precondition effect style. The code specifies

the condition, under which the action can take place, as a predicate on the pre-state s.

states

 31

Then it describes the actions that change s to s’. The code gets executed indivisibly, as

a single transaction.

• tasks(A), a task partition, which is an equivalence relation on local(sig(A)).

The channels are modeled as simple I/O automata. We will consider only reliable FIFO

channels. Let communication channel Ci,j be such a channel. Let M be a fixed message

alphabet. Then the I/O automaton looks like this (start(Ci,j) are described in terms of a list of

state variable and their initial values):

Communication channel I/O automaton

Signature:

Output:
 Mmmreceive ij ∈,)(,

Input:
 Mmmsend ji ∈,)(,

States:
queue, a FIFO queue of elements of M, initially empty

Transitions:

ijmreceive ,)(
 Precondition:
 m is first on queue
 Effect:
 remove first element of queue

jimsend ,)(
 Effect:
 add m to queue

Tasks:

}:)({ , Mmmreceive ij ∈

Algorithm 1: The FIFO channel

4.2 I/O Automata in Client/Server Architecture

The precondition effect style description of I/O automata enables easy conversion into

programmer languages. The difficulty for us arises in the necessity to use the client/server

architecture. The client/server architecture prohibits direct translation of the I/O automata.

The usage of network technologies developed for business application brings different

problems. These are described in the next chapter. This section describes possible translation

of I/O automata into client/server based programming.

The receive and input transitions are to be translated into methods of a server (remote

methods). These methods change objects containing the implementation of the states. The

server has to run in independent threads, in order to be able to react to incoming method calls.

 32

The states can be translated as objects containing the declared variables. These can be

either passive (not implementing any functionality), or they might react to changes done on

them. The translation of some internal and output actions can be done in the states objects,

but these actions must contain preconditions. The reaction on the change of a state would in

fact be a check of the precondition and the following action would have to have the necessary

effect. As changes on state objects are done from the client and server, any functionality in

these objects has to be put into separate threads, in order not to block the part of application

that has changed the state.

The tasks are translated into a client. The client has to perform output and internal actions

defined in tasks or actively wait for the server to get the input. The send and output transitions

are translated into the client methods. The client has to check actively the state objects for

changes done by the server methods and react to them accordingly. The client usually runs in

the main thread of the application, but the output actions are preferably handled in separate

threads, as the calls made, are usually blocking in the client/server architecture.

 33

Chapter 5 SOAP VS. DISTRIBUTED ALGORITHMS

The SOAP protocol has been created to be a building stone for the development of Web

Services. Its main emphasis is the interoperability of all of the components. The Service

Oriented Architecture (SOA) allows for the functionality only in the form of services. SOAP

provides the tools that SOA needs.

The distributed algorithms theory does not know the term services (or Web Services).

Instead it operates with nodes, located in a graph or a digraph, that communicate with their

neighbors. Several problems arise from the differences of these two assumed environments.

Other problems are simply caused by the characteristics of the SOAP protocol. The following

sections will describe and deal with these problems.

5.1 Data Management

The size of data sets in the implementation of many distributed algorithms may vary a lot.

Small data sets can be included into a SOAP message without any problems. The problems

arise when the data sets grow. The (de)serialization of data becomes a performance issue, the

inclusion of large data in SOAP envelope is a problem, due to the restriction on the envelope

size imposed by many implementations and due to the overhead it creates (a large data set

creates even larger XML data).

Unfortunately, there is no way to solve this problem entirely. More powerful XML parsing

engines are being developed and used in each new generation of SOAP frameworks in order

to deal with the (de)serialization performance problem. The envelope size limitation can be

addressed by dividing the remote call into two calls, but this brings a huge overhead.

5.2 Asynchronous Calls

SOAP was primarily designed to handle the synchronous communication, although it supports

even asynchronous calls. In distributed algorithms the synchronous interaction model might

not be desired or possible many times, as certain computation might take up a long time.

 34

Some implementations impose a time limit on the wait for a response, which might prove to

be a problem, as a client might signal an error on overdue calls. The problem also arises when

an overly large SOAP message is sent, as it might take a long time to transport it.

Luckily, this problem has been solved in the newest generation of SOAP frameworks, as

the support for asynchronous calls was added. Also the timeouts can be set to a higher value.

5.3 Performance

The main performance issue arises from the usage of XML messages and the need to parse

them. According to [20] up to 27% of the server response time is needed for the XML

serialization and deserialization. The XML deserialization is done by XML parsers and the

speed of the XML parsers varies a lot as shown by [14]. The XML parsers based on the DOM

architecture are performing very poorly, when it comes to handling large data structures.

Another factor contributing to the overall low performance is the usage of HTTP.

Unfortunately, the HTTP protocol, as the main transportation protocol, is not very suitable.

HTTP is in fact an application protocol and not a transportation protocol. This contributes to

the overhead that the usage of HTTP brings. It is not possible to optimize the data size (so it

fits in a packet) as a HTTP packet might be divided into several TCP packets.

The data overhead caused by the usage of HTTP instead of TCP or UDP is somewhere

around 50% and the response time is up to three times higher compared to UDP, according to

Phan et al. [27].

In the last few years the performance of different frameworks has been improved, mostly

by improving the XML parsers, using SAX based XML parsers, allowing the usage of

different protocols (SOAP-over-UDP, SOAP-over-TCP). Never-the-less, SOAP technology is

not build to bring high performance and simple RPC brings always a higher performance

mainly because it does not need to deal with the XML serialization, as shown by [20].

5.4 Client/Server as P2P Node

The communication in the client/server architecture is based only on the request/respond

message exchange pattern (MEP). The client/server architecture strictly separates the roles of

the requester (client) and the responder (server). On the other hand the peer-to-peer (P2P)

architecture is based on independent nodes, each fulfilling the role of the server and the client

alike. The MEPs in use in P2P architecture vary greatly and are not restricted to the

request/respond MEP.

 35

The P2P architecture can be simulated with the usage of the client/server technologies by

combining a server and a client into one. Such entity from outside behaves like a node and

internally uses the server and client technologies running concurrently in multiple threads.

Figure 5: A P2P node simulated in the client/server architecture

A problem arises when a different MEP than the request/respond is required. With a set

request/respond pattern it would be impossible to emulate certain other MEPs without a

considerable overhead. For example, to emulate a simple request pattern with the

request/response pattern would mean the need to send an empty response. So the overhead to

sending one message is 100% - a sending of another message.

The newest generation of SOAP frameworks implements not only the request/response

MEP, but also other MEPs. Most of the frameworks can also provide a suitable environment

for a client/server combined application to be developed and run.

5.5 WSDL Target Endpoint Problem

Allow us to reiterate that according to WSDL each WSDL file contains a service element that

contains one or more port elements. Each port element is an abstract endpoint defined by

associating a network address with a reusable binding. This constitutes a problem for the

distributed algorithm computing.

The usual scenario encountered in the distributed algorithm computing is a network of

nodes of an unknown topology, size and diameter. The nodes presume only the knowledge of

the existence of their neighbors. Many times not even the direction of the neighbors is to be

known. The WSDL file of every node is essentially the same, as they have the same

functionality, except for the port definition. The port definitions contain different addresses

for each node. With such premises it is not possible to have a common WSDL file for every

 36

node, as it would have to contain the list of ports comprising the addresses of every node

about to participate in the distributed algorithm.

The solution is to build the client part of each node from a default WSDL file with some

default port defined. Then at runtime change the port address attribute, defined in the client,

just before invoking a method. Each node will use the same client to reach each of its

neighbors. The change of a port during runtime is supported in most of the frameworks, but it

is not desirable or advisable.

5.6 Network Topology

As mentioned previously the distributed algorithms computing scenario assumes for each

node the knowledge of the neighboring nodes in the network. In present switched networks,

the topology of the network is usually a lot different from what is assumed by distributed

algorithms. Mainly a node does not have any knowledge about any ‘neighboring’ nodes.

In fact, there are usually no neighboring nodes as each node is connected to a switch. It is

possible talk about a ‘neighborhood’ or a local area network (LAN), as a network ‘hidden

behind a switch’. One of the usual characteristics of a LAN is that each node can be reached

by a broadcast within the LAN. The broadcast is nowadays by default stopped by routers.

Any other configuration of routers could cause serious problems in the network.

As for the simulation of the environment for a distributed algorithm computing, we have to

consider two different cases. The first case is that nodes participating in an algorithm

computation are not in a single LAN, or their location is unknown or wide spread. That is a

large scale case. The second case that all nodes to participate are in a single LAN, or in

neighboring LANs, if even the connecting router is participating in the computation of the

algorithm. That is the small scale case.

5.6.1 Large Scale Solution

The Universal Description Discovery and Integration (UDDI) [10] protocol provides a neat

utility for discovering Web Services. It serves as a catalog of registered Web Services. A Web

Service can register into a UDDI server. Afterward, it is possible to search for this service and

download its WSDL file.

For the large scale scenario of the distributed algorithm computing, it is possible for nodes

to register at a chosen UDDI server. Then search the UDDI server for a certain service type

(the same as the node just registered) and download WSDL files of those services. These

WSDL files would be used just to gain the knowledge of ports of those other services. These

 37

ports would become addresses of the “neighboring” nodes in the distributed computing. This

of course requires access to a private UDDI server.

The proposed solution has few more problems. The first node to register into a UDDI

server would not discover any ‘neighboring’ nodes and the last service registered would have

all nodes as ‘neighbors’. This can be solved by all nodes sending the list of their ‘neighbors’

to all of their ‘neighbors’ after the end of the discovery phase of the distributed computing. A

full graph would be formed by this action.

Another problem is the synchronization. All nodes have to be synchronized as when to end

the discovery phase and be ready to start the algorithm computation. A solution to this

depends mainly on the purpose of the algorithm. One of the solutions might be a fixed time

interval for renewing the graph (repeat the sending of the list of ‘neighbors’) then repeat the

algorithm. While the registration to the UDDI server would be possible at any time, only the

nodes, which have registered before the fixed time, would participate in given ‘round’ of the

computation.

5.6.2 Small Scale Solution

In the case of the small scale environment it is not necessary to employ such a heavy weight

solution as an UDDI server. As all the nodes are within the range of a broadcast or at least

they are connected by nodes in the range of different local broadcasts, it is easy to use

broadcasting as a discovery method.

Each node broadcasts its address and receives a broadcast from other nodes in the range.

Each node creates a list of addresses it received in the broadcasting (or discovery) period.

After the end of its broadcasting period it sends to each discovered neighbor a confirmation

that it is ready to participate in the computing of the algorithm. Each node waits to receive a

confirmation from each of its neighbors and only then it starts the computation of the

distributed algorithm.

The UDP broadcast is mostly not supported by the SOAP frameworks. Therefore is it

necessary to implement broadcasting using directly the UDP protocol. The messages to be

broadcasted do not have to be SOAP messages as they will not be received and processed by a

SOAP server, but rather by a private server implemented to receive the UDP broadcast.

 38

5.6.3 Other Solutions

It is, of course, possible to simulate the environment for the distributed algorithm computing

in many ways. The two previously mentioned solutions are just examples and many others are

possible, depending on the distributed algorithm and the network environment.

One solution is to provide each node at start with a list of its neighbors. This list can be

provided manually or by some completely independent application.

The topology of a connected graph is not the only topology that can be simulated in

today’s network environment. Sometimes it might be necessary or desired to simulate

topologies like ring, torus or full graph, depending on the distributed algorithm in mind.

 39

Chapter 6 XML-RPC LEADER ELECTION

IMPLEMENTATION

We have implemented an algorithm solving the problem of a leader election in an

asynchronous network environment. The distributed algorithm is based on the principle of

broadcast and convergecast and is described in details in the first section. The

implementation of this algorithm is done by using the XML-RPC implementation from The

Apache Foundation in Java language. The second section is concerned about the problems

that had to be solved in order to implement this algorithm as well as with other

implementation details. The third section presents the performance results from the testing of

the XML-RPC protocol.

6.1 Problem Definition

A leader election algorithm solves the problem of breaking symmetry in a distributed

environment. In the distributed environment it is sometimes necessary to have a central

coordinating node (a leader), but it might not be possible to designate it manually. As the

processes at each node are identical, with the exception of their universal identifiers (UIDs), it

is necessary to have a leader election in order to decide on who is the leader. By the end of the

algorithm, every node has to know the UID of the leader and the leader must be aware of the

fact that it is actually the leader.

6.2 Algorithm Description

We have implemented a leader election algorithm for the asynchronous network environment.

This algorithm is based on a broadcast and a following convergecast. The convergecast is a

mirror process to the broadcast, where messages originating from multiple nodes converge to

a single endpoint. This endpoint is the originator of the corresponding broadcast. As usual in

 40

the distributed algorithm computing the leader is elected the node with the highest universal

identifier (UID).

The algorithm starts with each node (root) making its own spanning tree with child

pointers across the network. This is done by sending setAsChild messages to all of node’s

(root’s) neighbors and waiting for the response. If a node receives the setAsChild message, it

responds to it positively, unless it has already received a setAsChild message in the process of

creating a spanning tree for given root. The node sends a negative response, if it does not send

a positive one. After a positive response to the setAsChild message a node repeats the process

in the same way as root did, except for not sending the setAsChild message to its parent. If a

node receives negative responses from all of its neighbors, it knows that it is a leaf in the

spanning tree of given root. The spanning tree construction is done for each node and the

constructions of multiple (possibly all) of the spanning trees are done at the same time.

The second phase of the algorithm begins when a leaf node is determined. At that moment

the leaf node begins the convergecast to the root of the spanning tree, in which it is a leaf. The

convergecast is begun by sending a sendMax message to the parent node in the spanning tree.

The sendMax message contains the UID of the leaf node that is sending it. If a node receives

the first sendMax messages from one of its children, it compares the received UID with its

own UID and saves the greater one as the maximum. As the node continues to receive the

sendMax messages, it always chooses the greatest UID to be saved as the maximum. After the

node receives the sendMax messages from all of its children and had already received

responses from all of its neighbors, it sends the sendMax message to its parent in the spanning

tree. The sendMax message contains the greatest UID that has the given node seen. This way

the convergecast continues up to the root of the spanning tree. The spanning tree root behaves

just like any other node, with the sole exception, that after hearing from all of its children, it

does not send any sendMax message, but instead it knows the leader, as it has the value of the

highest UID.

The convergecast is done simultaneously for each spanning tree that has been constructed

in the broadcasting phase. This way by the end of the convergecast phase each node knows

the greatest UID and the node with the UID equal to the greatest UID knows that it is the

leader.

6.2.1 Formal Description

We assume the existence of an n-node undirected graph G = (V,E). V is a set of nodes; each

has its own UID. E is a set of communication channels between the nodes. W is the set of

 41

UIDs of all nodes participating in the algorithm. The M set of messages is {(“setAsChild”,w) :

w∈ W} {(“sendMax”, w, u) : w, u∪ ∈W} {(“ack”,w) : w∪ ∈W} {(“noAck”,w) : w∪ ∈W}.

We will refer to the set of neighbors of given node as to nrbs. The formal description of the

leader election algorithm run at each node i is as follows:

AsynchronousLeaderElectioni

Signature:

Internal:
 declareWinner

Input:
 receive(m)j,i, m∈M, j∈nbrs
Output:
 startCCasti,k, i∈nbrs, k∈W
 continueCCasti,k, i∈nbrs, k∈W
 send(m)i,j, m∈M, j∈nbrs

States:
leaderElected, a Boolean, initially false
maxk : k∈W, a set of values w∈W, initially i,
parentk : k∈W, a set of values u∈nbrs∪ {null}, initially null
ackedk : k∈W, a set of subsets of nbrs, initially Ø
childrenk : k∈W, a set of subsets of nbrs, initially Ø
childAckk : k∈W, a set of subsets of nbrs, initially Ø
for every j∈nbrs:

send(j), a FIFO queue of messages in M, initially contains a single element
(“setAsChild”,i)

Transitions:

 42

Tasks:

send(m)i,j

 Precondition:
 m is first on send(j)
 Effect:
 remove first element of send(j)

receive(“ack”, k)j,i
 Effect:
 ackedk := ackedk {j} ∪
 childrenk := childrenk {j} ∪

receive(“noAck”, k)j,i
 Effect:
 ackedk := ackedk {j} ∪

receive(“sendMax”, k, w)j,i
 Effect:
 childAckk := childAckk {j} ∪
 if maxk < w then
 maxk := w

declareWinneri
 Precondition:
 ackedi = nbrs
 childAcki = childreni
 Effect:
 leaderElected := true

receive(“setAsChild”, k)j,i
 Effect:
 if parentk = null then
 parentk := j
 add (“ack”,k) to send(j)
 for all l∈nrbs-{j} do
 add (“setAsChild”, k) to send(l)
 else add (“noAck”,k) to send(j)

startCCasti,k (for i≠ k)
 Precondition:
 parentk≠ null
 ackedk = nbrs - {parentk}
 childrenk = Ø
 Effect:
 add (“sendMax”, k, i) to send(parentk)

continueCCasti,k (for i≠ k)
 Precondition:
 parentk≠ null
 ackedk = nbrs - {parentk}
 childrenk≠ Ø
 childAckk = childrenk
 Effect:
 add (“sendMax”, k, maxk) to
 send(parentk)

for every j∈nbrs:
 {send(m)i,j : m∈M}

Algorithm 2: The Leader Election

6.2.2 Complexity Analysis

The broadcasting phase of each node has the complexity)(EO , as maximum of four

messages (“setAsChildj,i”, “acki,j”, “setAsChildi,j”, “noAckj,i”) is send along each edge. |E|

might be equal to in a full graph. As the broadcasting is done by each node, the

complexity of the whole broadcasting phase is .

2n

)(3nO

During the convergecast phase the convergecast to each node has the complexity as

only one message is send along each edge of the spanning tree. The convergecast is done to

each node, so the complexity of the whole phase is .

)(nO

)(2nO

 43

The algorithm has a high message complexity . On the other hand

it deals with the stopping problem commonly encountered in distributed algorithms.

)()()(323 nOnOnO =+

The time complexity of both phases is))((dlnO + , where l is the maximum time between

two tasks in each process and d is the maximum network delivery time. Both, the broadcast

and the convergecast might travel on the path of maximum of n nodes.

6.3 Implementation Details

The whole implementation handles the leader election as a set of concurrent broadcasts started

from different nodes. Each of these broadcasts is followed by a convergecast in the direction

of the broadcast originator. A couple, the broadcast and the following convergecast, form a

session for the purpose of variable keeping. Each of these sessions is handled by a separate

thread. The sending and receiving is done in two completely separate threads.

The XML-RPC protocol supports only the request/response MEP, hence, all the method

invocations are blocking. This somehow interferes with the formal specification of the

algorithm, as it allowes for a request not be followed immediately by a response. In the

implementation, this would require a separate thread for each method invocation. As the

number of concurrent method invocations might be equal to the number of neighbors of the

node in every separate broadcast (and convergecast, or so called session), the total number of

threads would grow to the square of the number of neighboring nodes, which might not be

acceptable.

The whole implementation is divided into three packages. The main package

cz.cuni.mff.leaderElection handles the implementation of the algorithm itself.

The other two packages are concerned with the preparation of prerequisites for the main

algorithm. The package cz.cuni.mff.leaderElection.broadcast serves for the

discovery of neighbors and the package

cz.cuni.mff.leaderElection.synchronizer has the only purpose to

synchronize the start of the main algorithm. The synchronizer and the main package use the

XML-RPC protocol, while the broadcasting is done on the pure UDP protocol, without any

usage of XML.

6.3.1 Package cz.cuni.mff.leaderElection

The cz.cuni.mff.leaderElection package is the main package and handles the

leader election, the XML-RPC server and client and the embedded web server. The main

 44

principle is to get synchronized with the other nodes after the UDP broadcast is done, and

start the leader election by beginning the XML-RPC simulation of the broadcast. The UDP

broadcast and synchronization is dealt with in the other packages.

The Main class coordinates every part of this program. At first the web server (class

WebServ) is started in a separate thread. This is done to ensure that the program will listen

for XML-RPC synchronization calls as soon as possible. Next the UDP broadcast is started by

calling a cast method on an instance of a Broadcast class. After the UDP broadcasting is

done, the set of neighboring nodes is known. The Synchronizer is setup with the list of

neighbors. Next, the session handling is initiated (class SessionHandler) and a client

(class Client) is initiated. The client is used to send out a ready signal to the neighboring

nodes and the Synchronizer to wait for other nodes to get ready. After the

synchronization is done, the leader election algorithm is started in the client.

The WebServ class sets up and runs the embedded web server (class

org.apache.xmlrpc.webserver.WebServer). This class also sets up the XML-

RPC server within the web server by setting the Server class as the handler for incoming

XML-RPC requests.

Inside the Server class the server (receiving) part of the logic of the leader election

algorithm is implemented. Methods setAsChild and sendMax implement the receiving of

the corresponding messages as described in the algorithm description. This class also

implements the method setReady for synchronization purposes. This method adds the

invoker of the method (identified by a UID) to the list of ready nodes by calling the

addReady method in Synchronizer. As XML-RPC does not support any other MEP

beside the request/respond MEP, it is necessary to simulate them. The sendMax message does

not require any response as it is a pure one way call, but it is necessary to send an empty

response to it. This is done in the method sendMax.

The Client class serves few different purposes. The first is that it hides the private class

PhysicalClient. The Client class uses a map of the instantiated PhysicalClient

classes to serve as a universal client. When the Client class is started in a new thread it

does the initiation of the broadcast by sending the setAsChild messages to all of the neighbors.

After the messages are sent, the Client thread waits for all the children to respond and it

defines the leader as the maximal UID found.

The private class PhysicalClient implements the client (sending), but not the logic of

the leader election algorithm. Each instance of the PhysicalClient serves as a

 45

connection to one of the neighbors. It comprises the methods setAsChild, sendMax,

setReady and execute, which executes the call on the XmlRpcClient object

instantiated within this class. These methods have to be declared as synchronized as they

might be called from different threads at the same time and they are not reentrant.

The SessionHandler class is a simple class serving as a container for instances of

Session classes. The SessionHandler does also the initialization of sessions. An

instance of the Session class stores the variables for a broadcast and convergecast initiated

by given node. It implements the rest of the server logic of the algorithm that is not done by

the Server class. Its main purpose lies in allowing the access to all of the session variables.

These are accessed by the Server and the ClientThread classes. The Session class

also keeps track of children responses and keeps a status variable allResponded, defining

whether all the children have already responded.

The ClientThread class is instantiated and run in a separate thread by the Session

class, when a setAsChild message is received and the node is set as child of the sender in

given session. Most of the client (sending) logic of the leader election algorithm is in this

class, except for the initialization of the broadcast. After the separate thread is started,

ClientThread continues the broadcast and waits for acknowledgements. Decides, whether

the node is a leaf in given session and starts a convergecast if it is, by sending the sendMax

message with its own UID. If the ClientThread class decides that it is not a child, then it

waits until it hears from all of its children (the receiving is done by Server,

ClientThread just checks Session). Afterward it continues the convergecast by sending

the sendMax message to its parent and finishes its work.

6.3.2 Package cz.cuni.mff.leaderElection.broadcast

The cz.cuni.mff.leaderElection.broadcast package is an auxiliary package

implementing the UDP broadcast server and client. The purpose is the discovery of

neighboring nodes and the announcement of its own existence to them.

The Broadcast class serves as the main class of this package. Other classes are not

accessed by other packages. The only method is the cast method that returns a collection of

Node classes. This method starts the Server class and then Client class in separate

threads. It waits the preset time and then interrupts the Client and the Server.

The Node class is a very simple class for storing a node’s address and port. The port

number is not really needed as it is not used anywhere.

 46

The Client class has first to compute the broadcasting address in given LAN, as the

default 256.256.256.256 may not be supported in every LAN. The broadcasting address can

be computed from the local IP address and the local subnet mask, where broadcastAddr =

(localAddr & subnetMask) | (~ subnetMask) (& is a bitwise and, ~ is a bit negation and | is a

bitwise or). The problem is that the subnet mask can not be determined in the Java

environment. It has to be set as an option by the application startup. The only other possibility

is to use the default broadcasting address. After the Client class determines the correct

broadcasting address, it broadcasts in a loop a simple message containing just a word. The

broadcasted message does not have to contain the sender’s address as it can be determined

from the UDP package containing the message. The Client fulfills the role of announcing

the existence of the node to the other nodes.

The Server class is responsible for collecting the addresses of neighbors into a list. This

class does it by creating a UDP socket and calling receive in a loop. After a message is

received successfully, the sender’s address is added to the set of collected addresses, in fact it

is a set of Node classes.

6.3.3 Package cz.cuni.mff.leaderElection.synchronizer

The cz.cuni.mff.leaderElection.synchronizer package contains only one

class and it is the Synchronizer class. The purpose of this package (and class) is to

synchronize the start of the leader election algorithm after the broadcast and other preparation

is done. The Synchronizer class is a singleton class and it is automatically instantiated as

soon as it is needed. The Server class from the cz.cuni.mff.leaderElection

package calls the addReady method in order to add a neighbor to the list of ready neighbors.

The method allReady serves for determining whether all neighbors are ready, but the

checks are done internally in the private method checkReady, where the set of ready nodes

is compared to the list of all neighbors of the node, if this list is already available. The list of

all neighbors has to be given to the Synchronizer class; otherwise it is not possible to

synchronize with all neighbors. As the Synchronizer might be instantiated before the list

of all neighbors is known, method setUpSynchronizer serves to hand over the list to the

Synchronizer class.

 47

6.4 Performance Measurements

In the former chapters, we have several times mentioned the performance issue that is

connected with the XML-based remote procedure call (RPC) systems. In this section we will

identify the problems causing the performance issues, describe the testing environment,

mention some results and do a comparison.

6.4.1 Underlying Problems

The XML-based RPC systems, like XML-RPC, have different disadvantages performance

wise in comparison to RPC systems that transport binary data. The data overhead caused by

the use of XML as the transport format, is very large, as shown by [4]. The XML data can

take up anywhere from 6 to 300 times more space than the binary data would. This might not

look so significant, as the enlargement of larger data is usually closer the lower boundary of

the range (so they are approximately 6 times bigger), but all of it has to be transported over a

network, which makes every byte count.

The XML format carries the problem of all text formats. In comparison to binary formats,

the data does not have a fixed length. For instance, a double has always 64 bits in a binary

format, but in the XML format, a “3.1”, takes up 3 characters, but “0.234235222” takes up 11

characters. This problem prohibits any optimization of fitting data into packets (of whatever

transport protocol is used).

The other problem, that we have already mentioned, is the usage of HTTP as a transport

protocol. This only adds to the data overhead and even further limits (or prohibits) any

possible optimization to be done.

The usage of XML brings up the need of XML parsing, where in the past the XML parsers

were not known for their overall great performance. The DOM-based parsers were too slow

and took too much memory, if they were to handle a bigger XML file. The SAX-based

parsers handle the large XML files a lot better. The overall performance of XML parsers has

improved in the course of the last few years.

6.4.2 Testing Environment

We have implemented a simple test to measure the speed of the XML-RPC protocol in the

implementation by The Apache Foundation. The test was performed on two computers, one

AMD Athlon XP 3000+, 1024 MB DDR RAM, serving as a client and the second Intel Core

Duo 1.6 GHz, 2 GB DDR2 RAM, serving as a server. The network was 100Mbps LAN,

without any noticeable traffic.

 48

The test consists of an application client and server. The test implements six different

methods. Four methods are short requests with short responses, but each with a different type.

This is to determine whether the speed of marshalling depends on the type of the parameter.

The types tested are integer, string, double and Boolean. The other two methods have a

variable size of requests and responses, as each contains an array of up to 20,000 arguments.

One method handles an array of strings, the second one handles an array of doubles.

The parameters sent and received are not the same, but are chosen pseudo-randomly from a

static array of random pre-generated arguments. This way it is not possible for the client or

server to cache the messages and this way to optimize the handling of messages. The methods

with arrays change only the first attribute pseudo-randomly, the rest is fixed.

The timestamps were taken after each single call to a method has been made. All

unnecessary code was moved out of the timestamp range on the client side. The returned

value is not handled in any way, just saved into a variable. On the server side, the methods do

not perform any operation; just return a parameter chosen in exactly the same fashion as the

parameters in the client. After twenty calls have been made, the test continues with another

method. The test was run at least five times.

The server part of the application was not deployed on any production server, but rather

used the embedded web server. This did not affect the results in any way as the only traffic

was caused by the test client application and all calls were made in succession. The purpose of

this test was not to test the server’s performance, but rather the performance of the XML-RPC

framework.

6.4.3 Results

The results measured are shown in the Table 1. These results will be compared in the next

chapter to the results measured for JAX-WS.

The performance of XML-RPC was compared by [4] to the performance of java.net

package. The size of the data in a XML-RPC message is up to fifty times larger than the size

of the same data in the message created by java.net package, when we talk about a

transfer of small data. The amount of data transferred is approximately six times bigger with

XML-RPC than with java.net package, considering large data sets. The enlargement of

small data by so large magnitude does not yield such a great difference in the performance, as

both java.net and XML-RPC need just one (or few) TCP/IP package(s) to transfer the

data. It is a lot worse with larger data. The time difference between XML-RPC and java.net

package grows by a magnitude of an order.

 49

The parameter type in the case of small request and small response does not affect the

performance so much. The difference between string and Boolean is only 7.82%. The string is

supposedly the simplest type to marshal, as it does not need any processing. The double, on

the other hand, is the hardest type to marshal according to [8]. The measured differences are

really small and the highest time achieved by string messages is probably caused the slightly

bigger message size of string messages in comparison to Boolean messages. The average size

of the string was 25.1 characters, where the average size of a Boolean is only 4.5 characters.

Also the longest string was over 200 characters long.

The difference between marshalling an array of 10,000 strings and 10,000 doubles is

36.45%. This difference proves that marshalling of doubles is not a trivial task, as the array of

strings was in fact a larger chunk of data.

Parameter type Integer String Double Boolean
Array
String

Array
Double

Time for 1 call (ms) 7 9 7 5 112 143
Time for 1 call (ms) 5 5 5 4 107 148
Time for 1 call (ms) 10 11 7 12 106 146
Time for 1 call (ms) 5 6 5 5 107 143
Time for 1 call (ms) 6 4 12 11 106 148
Time for 1 call (ms) 9 6 8 4 105 147
Time for 1 call (ms) 7 7 6 4 106 143
Time for 1 call (ms) 6 5 5 5 105 145
Time for 1 call (ms) 12 4 10 4 106 148
Time for 1 call (ms) 5 5 4 4 106 146
Time for 1 call (ms) 5 5 6 4 105 145
Time for 1 call (ms) 5 5 8 5 105 143
Time for 1 call (ms) 7 4 4 7 111 145
Time for 1 call (ms) 5 7 5 4 106 142
Time for 1 call (ms) 5 5 5 4 105 149
Time for 1 call (ms) 5 6 5 5 107 146
Time for 1 call (ms) 4 5 5 8 106 143
Time for 1 call (ms) 4 10 4 5 107 145
Time for 1 call (ms) 4 10 3 10 106 146
Time for 1 call (ms) 4 5 4 5 105 144
Average for 1 call (ms) 6 6.2 5.9 5.75 106.45 145.25

Table 1: The XML-RPC performance measures – parameter type dependency

The time dependency on the number of parameters was measured by increasing the size of

the array of parameters in ten steps: 1, 10, 100, 1000, 2000, 3000, 5000, 7000, 10 000, 20 000.

These tests were done for arrays of integers and doubles. The average size of a double value

in the text form was 10.4 characters, where the average size of a string was 25.1 characters.

The time seems to grow linear to the number of parameters once the size of the array

reaches one thousand parameters. Before that, the time seems to grow logarithmic to the

 50

number of parameters. This is caused by the added overhead, as the message containing the

parameters contains a large amount of data that is constant relatively to the number of

parameters contained in the message. The difference between the string and double parameter

type becomes apparent with the increasing number of parameters. For a larger number of

parameters the time elapsed for an array of strings is 35% shorter than the time elapsed for an

array of doubles.

The dependencies are shown on the two graphs below. The table containing the exact

values is located below the graphs.

Time dependency on parameter count

0

50

100

150

200

250

300

1 10 100 1000 10000 100000

of parameters

Ti
m

e
in

 m
s

XML-RPC String XML-RPC Double

Figure 6: The time dependency on the parameter count in logarithmic scale

 51

Time dependency on parameter count

0

50

100

150

200

250

300

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

of parameters

Ti
m

e
in

 m
s

XML-RPC String XML-RPC Double

Figure 7: The time dependency on the parameter count in linear scale

 Values displayed are an average time in ms
Number of parameters 1 10 100 1000 2000
Array of strings 5.40 11.24 14.97 19.18 23.67
Array of doubles 5.33 9.81 17.50 26.97 33.29
Number of parameters 3000 5000 7000 10000 20000
Array of string 33.95 56.08 77.65 108.44 214.54
Array of doubles 46.26 75.26 104.08 146.03 290.49

Table 2: The XML-RPC performance measures – size dependency

 52

Chapter 7 JAX-WS RESOURCE RESERVATION

IMPLEMENTATION

We have implemented a distributed algorithm for the resource-allocation in an asynchronous

network environment. The distributed algorithm is derived from the Coloring algorithm for

shared memory systems.

The Coloring algorithm for shared memory systems is based on coloring the resource

graph for given resource requirements. The processes seek required resources in order based

on the coloring in order to avoid the deadlock.

Our resource reservation algorithm simulates the Coloring algorithm by node (or process)

simulating one process of the shared memory algorithm plus some subset of the resource

processes. The reservation is done by sending a message to a process that simulates the

desired resource.

The implementation of this algorithm was done by using the JAX-WS implementation by

the GlassFish project. The second section describes the implementation details together with

the problems that had to be solved to simulate the P2P environment by using JAX-WS. The

third section presents the performance results of the JAX-WS implementation of Web

Services. These results are briefly compared to the performance results gained from the XML-

RPC testing.

7.1 Problem Definition

The resource-allocation problem is a problem commonly encountered in the distributed

computing. The scenario is that several different processes (nodes) are trying to reserve (for

exclusive use) some resources in order to execute whatever they need to execute. As each

resource can be held just by one process at the time, some strategy is needed for the order of

reservations for the processes to be able to execute their tasks. Without any strategy it is

possible that the scenario would end in a deadlock.

 53

The deadlock is easily explained on a simple scenario with two processes and two

resources. Let us have processes A and B and resources 1 and 2. Both processes (A and B)

need both resources (1 and 2) for the execution of their tasks. If the process A reserves the

resource 1, while the process B reserves the resource 2, then if the process A tries to reserve

the resource 2, it fails and has to wait until the resource 2 is released. Meanwhile, the process

B tries to reserve the resource 1, but it fails too, as it is currently held by the process A. Both

processes (A and B) continue trying to reserve the resource currently held by their opponent

and neither of them is able to finish its task.

More formally, a deadlock is a situation where oriented graph , where V are

resources and processes, and edges exist where a process is trying to reserve a resource (from

the process to the resource) and a resource is held by a process (from the resource to the

process), contains a circle.

),(EVG =

An algorithm solves the resource-allocation problem if in any execution of the algorithm

the deadlock situation can not occur. This way it is ensured that tasks of each process will end

in a finite time.

Figure 8: A graph of a deadlock situation

7.2 Algorithm Description

We have implemented a resource reservation distributed algorithm based on the coloring of

the resource graph. This algorithm is a simulation of a similar algorithm for the memory

sharing environment. The main purpose of the algorithm is to prevent the occurrence of

deadlocks during the resource allocation, this characteristics is called the lockout-freedom.

 54

A resource specification by [24] for n processes consists of a universal finite set R of

objects known as resources and for every i, ni ≤≤1 , a set . In other words, every

process has a set of resources that it requires, which is a subset of all available resources.

RRi ⊆

A resource graph is a graph of a particular resource specification, where nodes represent

resources and where is an edge from one node to another exactly if there is some process that

uses both associated resources.

Resource specification:

N1 : {r1, r2}

N2 : {r1, r3}

N3 : {r2, r4}

N4 : {r3, r4}

N, set of nodes {N1, N2, N3, N4}

R, set of resources {r1, r2, r3, r4}
Resource

 r1

Resource
 r2

Resource
 r3

Resource
 r4

Figure 9: A resource graph example

A coloring is a process, where each node of a graph is given a color and no adjacent nodes

have the same color. The problem is to minimize the number of used colors, as the trivial

solution of assigning each node a different color would usually not serve the purpose, for

which the coloring is constructed. The problem of obtaining minimal number of colors is a

NP-complete problem.

The resource reservation algorithm, that we have implemented, first builds a resource

graph. Then it colors the resource graph by a simple greedy approach. The greedy approach

consists of taking an arbitrary node and assigning it a color. Then take all of its neighbors one

by one assigning them a newly determined color. The determination of a new color is simple.

If an already used color that is not used by the node’s neighbors exists, then the node is

assigned such color. If there are more colors that can be assigned, the assigned color is chosen

in any way. This coloring process is then repeated for the neighbors. As the resource graph

might not be connected, it is necessary to repeat this whole process for each node that does

not have any color yet.

The coloring provides a partial ordering on the resources. This partial ordering has to be

extended into a total ordering. This can be done by topologically sorting the resource nodes.

 55

The resource reservation of each node is done in the order set by the total ordering. This

way no deadlock situation can occur.

7.2.1 Formal Description

We assume an existence of a n-node undirected graph G = (V,E). V is a set of nodes. E is a set

of communication channels between the nodes. W is the set of UIDs of all nodes participating

in the algorithm. R is a set of resources and Ri, where , is the set of resources located

at the node i. Di is a list of resources that the node i requires in order to execute its task. The

resource distribution function d() maps a resource the to node at which it is located, (

RRi ⊆

ird =)(:

). C is the total ordering of resources computed from the coloring of the resource

graph. The M set of messages is {(“reserve”,r) : r

ViRr ∈∈ ,

∈R} {(“acquired”,r) : r∪ ∈R }

{(“release”,r) : r∈R}. We will refer to the set of neighbors of given node as to nrbs. The

formal description of the resource reservation algorithm run at each node i is as follows:

∪

ColoringResourceReservationi

Signature:

Internal:
 performTask
 reserve

Input:
 receive(m)j,i, m∈M, j∈nbrs

Output:
 makeReservation
 confirmReservationr, r∈Ri
 release
 send(m)i,j, m∈M, j∈nbrs

States:
resourcesQueuek : k∈Ri, a set of queues, each queue initially empty
canAcquirer: r∈Ri, a set of Booleans, initially all true
for every j∈nbrs:

send(j), a FIFO queue of messages in M, initially empty
resAcquired, a set of resources r, Rr∈ , initially Ø
startRerserving, a Boolean, initially false
reserving, a Boolean, initially false
taskDone, a Boolean, initially false

Transitions:

 56

send(m)i,j

 Precondition:
 m is first on send(j)
 Effect:
 remove first element of send(j)

receive(“reserve”, r)j,i
 Effect:
 add j to resourcesQueuer

receive(“acquired”, r)j,i
 Effect:
 reserving := false
 add r to resAcquired

receive(“release”, r)j,i
 Effect:
 remove j from top of
 resourceQueuer

 canAcquirer := true

confirmReservationr
 Precondition:
 resourceQueuer∪Ø
 canAcquirer = true
 Effect:
 canAcquirer := false
 add (“acquired”,r) to send(d(k)), k
 is the top of the resourceQueuer

reserve
 Effect:
 order Di by C
 startReserving := true

makeReservation
 Precondition:
 startReserving = true
 reserving = false
 Di ≠ Ø
 Effect:
 reserving := true
 remove first r from Di
 add (“reserve”,r) to send(d(r))

performTask
 Precondition:
 reserving = false
 Di = Ø
 Effect:
 taskDone := true

release
 Precondition:
 taskDone = true
 Effect:
 for every r dresAcquire∈
 add (“release”, r) to send(d(r))

Tasks:
{reserve}

Algorithm 3: The Coloring Resource Reservation

7.2.2 Complexity Analysis

The complexity of resource-allocation algorithms is not measured in the number of messages

sent (as this is fairly constant), but in the time that is needed for a process to acquire all of its

resources and be ready to start performing its task. The time complexity depends on the

process delay time (the delay between two requests for resources), message-delivery time, the

performed task time, the number of colors and the maximum number of processes trying to

access one resource.

Let l be the upper bound on the process step time, let c be the upper bound on the time of

the task that is performed after the resources are acquired and let k be the number of colors

 57

needed to color the resource graph. Also let m be the maximum number of processes that

require any single resource. Then worst-case time bound is according to [)(lkmcmO kk + 24].

7.3 Implementation Details

The resource reservation algorithm implementation with the Web Service technology has to

do a lot more than that is described by the algorithm. To meet the premises assumed by the

algorithm a non-trivial amount of work has to be done.

First, the problem of an unknown network topology has to be solved. This can be done in

different ways, as we have described previously. We have decided to use the same UDP

broadcast as with the XML-RPC implementation, as this enables an easy way to test this

algorithm. The large scale solution is only suitable for a permanent installation (or so to say

deployment) of the application.

Then the resource distribution across the network has to be done. Each node claims to

have a set of resources and has to let know the other nodes about them, that they might

reserve them. After the node gains the knowledge about all the resources available in the

network, it has to choose those that it wants to reserve and it has to let other nodes know

about its choice of resources.

Afterward, the node has finally enough information to build the resource graph and run the

coloring algorithm on it. Each node has to make exactly the same coloring, because the total

ordering of the resources acquired from the coloring has to be the same.

Only after the coloring is known, the resource reservation can begin. With the resources

acquired, the critical tasks can be performed. At last the resources are released. As this

implementation is only an example and not a real-life critical application, the resources are

only integer numbers and no real task is performed.

The implementation was done using the NetBeans IDE for Web Services development.

The JAX-WS generates quite a few classes for the Web Service client. This implementation

uses the default settings and does not perform any changes in the generated files.

The implementation of the leader election algorithm consists of four packages. The main

package cz.cuni.mff.coloring consists of a Web Service implementing class and two

other classes implementing auxiliary objects for the Web Service. The

cz.cuni.mff.coloring.client package implements the client for the Web Service

together with the resource reservation algorithm. The package

cz.cuni.mff.coloring.client.algorithm is concerned with the preparation of

 58

the resource graph and with its coloring. The

cz.cuni.mff.coloring.client.broadcast package handles the UDP broadcast

that serves to discover the neighborhood and to let the neighborhood know about the

existence of the node.

7.3.1 Package cz.cuni.mff.coloring

The cz.cuni.mff.coloring package contains the main server class

ColoringServer. It defines and implements the Web Service. This class implements two

methods for the resource reservation and one method needed for the prerequisites’

preparation. The methods resourceReservation and resourceRelease use the

Queue class for keeping track of who requires the local resources. The

resourceReservation method blocks the caller. It first puts the caller’s UID into the

queue and then actively waits for it to appear on the top of the queue. The

addRequirements is an auxiliary function for collecting the requirements of other nodes.

It uses the NodeList class to collect the requirements. The activate method is special

and serves to initialize the whole algorithm. It starts and runs the

cz.cuni.mff.coloring.client.Main class in a separate thread. This method has to

be called in order to start the application within the deployed Web Service.

The NodeList is a singleton class serving actually two purposes. The first it is to collect

all requirements from other nodes into a single set. The second is to synchronize the

application run after the broadcast phase, as every node has to wait for the complete list of

requirements in order to prepare the requirement graph. This is secured by NodeList

(method isListReady) comparing the list of nodes that have already claimed their

requirements with the list of all known nodes. The list of all known nodes is known only after

the broadcast is done and NodeList has to be additionally informed about it (method

setFullSet).

The Queue class is a simple singleton class providing access to a set of queues. For each

local resource the algorithm needs one queue. This class provides basic methods as peek,

poll and add.

 59

7.3.2 Package cz.cuni.mff.coloring.client

The Main class coordinates all activities done by this application, except for starting the Web

Service. As this application is written as a web application and it is distributed as a .war file,

it has to be deployed to a web server.

First, the broadcast is initialized and the list of all participating nodes is collected. The

NodeList class is given the list of the participating nodes. That is followed by generating

local resources and initializing the Queue class with these resources. Then the requirement

distribution is done and the list of requirements of the node is generated by the

ResourceDistribution class.

Next, the resource graph is prepared and a coloring is done. The colored resource graph

finally yields the total ordering (provided by the Coloring class). Afterward, everything is

ready for the resource reservation algorithm. This is implemented by a for cycle through the

ordered list of the required resources. The ColoredResourceReservation class is

instantiated with the address of one of the required resources and on it a reserve call is made.

This call is blocking. After it succeeds, the reservation is added to a list of reservations.

The application does not do any task after the resources are reserved, but immediately

starts to release them. The resource releasing is done in a for cycle too. This would be

preferably implemented with SOAP-over-UDP with the request MEP. That way no blocking

would occur, as no request/response MEP is required. The usage of SOAP-over-UDP after the

required request/response pattern would create larger overhead (both programmers and

computing wise) than the simple empty response and the blocking call.

The ColoredResourceReservation class serves the only purpose to communicate

with the Web Service of the node that it has been initiated to communicate with. This way the

connection to a certain node does not have to be initiated multiple times, and the generated

client classes are instantiated only once for each connection.

The change of the endpoint has to be done when instantiating a generated client, as the

client is generated with a local endpoint in the WSDL file. The change is done by the shown

code:

 60

String url = “http://www.example.com/ColoringServer”
ColoringServerService service = new ColoringServerService();
port = service.getColoringServerPort();
BindingProvider bp = (javax.xml.ws.BindingProvider) port;
Map<String, Object> context = bp.getRequestContext();
context.put("javax.xml.ws.service.endpoint.address", (Object)url);

The ResourceControl class solves the problem of uniqueness of resources. As the

resources are generated as random integer numbers, it is possible, although highly unlikely,

that two different nodes may generate the same resource as their own. The

ResourceControl checks for multiplicities in the resource list and erases every

occurrence of a resource, if it is declared more then once. The method

getLocalResource checks the list of local resources against the list of all resources for

multiplicities. Another solution to the uniqueness problem is to take as an ID of a resource not

only the generated integer, but a tuple consisting of the generated integer and its generator’s

ID.

7.3.3 Package cz.cuni.mff.coloring.client.algorithm

The cz.cuni.mff.coloring.client.algorithm package handles the coloring of

the resource graph. The Coloring class implements the greedy coloring algorithm and

determines the order of the resources. Methods computeColoring, color and

determineColor are used for the computation of the greedy algorithm. The

computeColoring method invokes the color method on each node of the resource

graph. The color method adds a color to an uncolored graph node and recursively calls

itself on neighbors of the uncolored graph node. The determineColor method is called by

the color method to determine a suitable color for the uncolored graph node. This is done

by checking colored neighbors of the node in order to determine the lowest unused color (as a

color is just an integer). If all already used colors are used by the neighbors a new color is put

into use. The getOrder method sorts the colored nodes on the color. This way a total

ordering is created and the partial ordering determined by the coloring is preserved.

The RequirementDistribution class serves three roles. At first it creates the local

requirements of the node. In order to do this the makeDemandList method randomly

ventures through the resource list and adds a randomly chosen number (from 1 to 10) of

randomly chosen resources. The second role is the distribution of such created requirements

 61

to the other nodes. This is done in the sendResourceRequirements method by

changing the endpoint context on a single Web Service client in a for cycle. This is not

advisable, but we have not encountered any problems with this solution. The third role is to

prepare the resource graph, but first it is necessary to wait until all data is ready for the

creation of such graph. The waiting is done in the prepareResourceGraph method

together with some data gathering. The graph making is done in the makeGraph method.

The classes ResourceGraphNode and ColoredResourceGraphNode are just

auxiliary classes for storing the graph and colored graph nodes.

7.3.4 Package cz.cuni.mff.coloring.client.broadcast

The cz.cuni.mff.coloring.client.broadcast package contains almost the

same implementation of the UDP broadcast as was used in the XML-RPC implementation of

the leader election algorithm. For more details please refer to the Package

cz.cuni.mff.leaderElection.broadcast section.

The difference is in the distribution of local resources in the generated broadcasted

message. The Client class generates and sends a random number (from 1 to 10) of random

integers. These integers are to be the local resources of the node. The Server class is

modified to read the contents of the received message and add the resources into the Node

class, which has been modified to contain them. The port number, on which the web server

hosting the Web Service runs at each node, is distributed within these messages too. The

Node class stores these port numbers as they are later used to connect to the Web Services.

7.4 Performance Measurements

The performance tests for JAX-WS Web Services are similar to the test done for the XML-

RPC protocol. This section is concerned mostly with presenting the JAX-WS performance

test results and comparing them to the results of the XML-RPC framework test.

7.4.1 Underlying Problems

Web Services as a RPC framework add few other issues to those of XML-RPC. The usage of

SOAP creates even greater data overhead than the XML-RPC protocol. The overhead created

by the SOAP protocol is best illustrated below. This is a simple Google Search messages

generated by gSOAP by [2]. It carries the three key words for the search and few other

parameters.

 62

POST / HTTP/1.1
Host: api.google.com
User-Agent: gSOAP/2.7
Content-Type: text/xml; charset=utf-8
Content-Length: 664
Connection: close
SOAPAction: "urn:GoogleSearchAction"

<?xml version="1.0" encoding="UTF-8"?><SOAP-ENV:Envelope xm
lns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" xm
lns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/" xm
lns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:x
sd="http://www.w3.org/2001/XMLSchema" xmlns:api="urn:Google
Search"><SOAP-ENV:Body SOAP-ENV:encodingStyle="http://schem
as.xmlsoap.org/soap/encoding/"><api:doGoogleSearch><key>XXX
XX</key><q>Binghamton Grid Computing</q><start>0</start><ma
xResults>10</maxResults><filter>true</filter><restrict></re
strict><safeSearch>false</safeSearch><lr></lr><ie>latin1</i
e><oe>latin1</oe></api:doGoogleSearch></SOAP-ENV:Body></SOA
P-ENV:Envelope>

7.4.2 Testing Environment

We used the same testing environment as was used by the test conducted for the XML-RPC

framework. The server application was run under the GlassFish Java Enterprise Server. The

results were measured exactly the same way as the results for the XML-RPC framework to

enable an easy comparison of the performance of these two frameworks.

7.4.3 Results

The performance dependency on the parameter type in case of a small request and a small

response is again very low. The difference between the slowest and fastest type of parameter

is only 0.32%, which is well under the accuracy of measuring tools. The results presented are

not real life values, as in the measured values a significant delay caused by unknown reasons

presented itself with periodical regularity. As the delay is probably caused by transfer or Java

Virtual Machine and does not have anything to do with the speed of processing messages, we

have eliminated affected values from the chart and further comparison.

 63

Parameter type Integer String Double Boolean
Array
String

Array
Double

Time for 1 call (ms) 15 16 16 15 203 203
Time for 1 call (ms) 16 16 15 16 172 234
Time for 1 call (ms) 15 16 16 16 156 203
Time for 1 call (ms) 16 15 16 16 156 188
Time for 1 call (ms) 16 16 16 15 172 187
Time for 1 call (ms) 16 15 15 16 172 188
Time for 1 call (ms) 15 15 16 16 172 187
Time for 1 call (ms) 16 16 15 16 187 219
Time for 1 call (ms) 16 16 16 15 188 203
Time for 1 call (ms) 15 15 16 16 187 172
Time for 1 call (ms) 16 16 15 16 204 188
Time for 1 call (ms) 15 15 16 15 187 187
Time for 1 call (ms) 16 16 16 15 203 188
Time for 1 call (ms) 16 16 16 16 172 187
Time for 1 call (ms) 16 15 16 16 219 188
Time for 1 call (ms) 15 16 16 15 172 203
Time for 1 call (ms) 16 16 15 16 203 187
Time for 1 call (ms) 15 15 16 16 187 218
Time for 1 call (ms) 16 16 16 16 172 219
Time for 1 call (ms) 16 16 15 16 156 187
Average for 1 call (ms) 15.65 15.65 15.7 15.7 182 196.8

Table 3: The JAX-WS performance measures – parameter dependency

The time dependency tests were done in the exact same fashion as the tests of XML-RPC.

The time dependency on the number of parameters shows the same behavior as was seen in

the XML-RPC tests. The time seems to grow linear to the number of parameters once the size

of the array reaches one thousand parameters. Before that, the time seems to grow logarithmic

to the number of parameters. The cause is again the same; the constant data overhead caused

by the usage of the XML-based protocol, in this case SOAP.

The difference between a string and a double parameter type is very small and does not

depend on the number of parameters. The actual difference is less than 5%. The results show

that the performance does not depend on the type of the parameter, but only on the number of

parameters. This seems to be an improvement in comparison to tests done by [8].

The dependencies are shown on the two graphs below. The table containing the exact

values is located below the graphs.

 64

Time dependency on parameter count

0

100

200

300

400

500

600

700

1 10 100 1000 10000 100000

of parameters

Ti
m

e
in

 m
s

JAX-WS String JAX-WS Double

Figure 10: The time dependency on the parameter count in logarithmic scale

Time dependency on parameter count

0

100

200

300

400

500

600

700

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

of parameters

Ti
m

e
in

 m
s

JAX-WS String JAX-WS Double

Figure 11: The time dependency on the parameter count in linear scale

 Values displayed are an average time in ms
Number of parameters 1 10 100 1000 2000
Array of strings 15.68 22.97 25.17 40.08 66.73
Array of doubles 15.65 22.40 24.26 41.28 69.44
Number of parameters 3000 5000 7000 10000 20000
Array of strings 95.47 155.48 206.94 302.10 594.74
Array of doubles 98.11 160.26 212.31 303.04 609.71

Table 4: The JAX-WS performance measures – size dependency

 65

7.4.4 Comparison to XML-RPC

The performance differences between JAX-WS and XML-RPC are large. The time elapsed by

JAX-WS varies between 139% and 294% of the time elapsed by XML-RPC. The maximal

difference was measured between the times elapsed for the message containing a single

double value. The average time of XML-RPC is only 5.33 ms and the average time of JAX-

WS is 15.68 ms, which is 194% more. The minimal difference was measured for the message

containing an array of one hundred doubles. The average time of XML-RPC is 17.50 ms and

the average time of JAX-WS is 24.26 ms, which is 39% more. The time elapsed by JAX-WS

stabilizes at around 237% of the time elapsed by XML-RPC with messages containing a large

number of parameters.

This shows that the XML-RPC protocol is lot faster when it comes to handling any number

of parameters. The cause of this lies in the large overhead that is introduced by SOAP.

Number of parameters 1 10 100 1000 2000
XML-RPC Array of strings (ms) 5.40 11.24 14.97 19.18 23.67
XML-RPC Array of doubles (ms) 5.33 9.81 17.50 26.97 33.29
JAX-WS Array of strings (ms) 15.68 22.97 25.17 40.08 66.73
JAX-WS Array of doubles (ms) 15.65 22.40 24.26 41.28 69.44
Ratio of strings 2.90 2.04 1.68 2.09 2.82
Ratio of doubles 2.94 2.28 1.39 1.53 2.09
Average ratio 2.92 2.16 1.52 1.76 2.39
Number of parameters 3000 5000 7000 10000 20000
XML-RPC Array of strings (ms) 33.95 56.08 77.65 108.44 214.54
XML-RPC Array of doubles (ms) 46.26 75.26 104.08 146.03 290.49
JAX-WS Array of strings (ms) 95.47 155.48 206.94 302.10 594.74
JAX-WS Array of doubles (ms) 98.11 160.26 212.31 303.04 609.71
Ratio of strings 2.81 2.77 2.67 2.79 2.77
Ratio of doubles 2.12 2.13 2.04 2.08 2.01
Average ratio 2.41 2.40 2.31 2.38 2.38

Table 5: The comparison of JAX-WS and XML-RPC

 66

Time dependency on parameter type and count

0 100 200 300 400 500 600 700

1

10

100

1000

2000

3000

5000

7000

10000

20000

XML-RPC String XML-RPC Double JAX-WS String JAX-WS Double

Figure 12: The time dependency on the parameter type and count

 67

Chapter 8 CONCLUSION

The aim of this work was to use the SOAP-based Web Services as a tool or environment for

computing the distributed algorithms. The XML-based SOAP protocol has been designed for

the usage in business applications, with the interoperability being its highest priority. Only if

we keep this in mind, it is possible to find a suitable usage for Web Services in the distributed

algorithm computing.

The theoretical part of this thesis went through the history of middleware up to the newest

technologies – Web Services. Then it described the protocols that are behind Web Services.

We have shown the differences between the SOAP-based Web Services and the distributed

algorithms as described by the academic world. We tried to find solutions to the problems

implied by the differences of those two environments.

In the practical part we have implemented two simple distributed algorithms. The purpose

of these implementations was to show the solutions necessary in order to make Web Services

and similar technologies work as distributed algorithms. The first implementation was created

using SOAP as the main XML-based technology used for remote procedure calls. The second

implementation was done in XML-RPC, which is one of the first XML-based protocols for

remote procedure calls. We have also created tests in order to measure the performance of the

used technologies.

Web Services, even in their newest generation, proved to be somewhat slower than the

older technologies, like XML-RPC. This is caused mainly by the overhead that the

interoperability of the SOAP protocol brings. The only way that a distributed algorithm

implemented with the usage of a Web Service can be comparable performance-wise to a

distributed algorithm implemented using some private communication protocol is that it

abuses the interoperability. Also it is quite necessary that the chosen distributed algorithm

does not require a large number of messages, or large data to be send. Basically, the Web

Service based distributed algorithm can cover a large number of nodes, but it is suitable only

 68

for algorithms that are heavy on the computing, but light on the communication.

Unfortunately, not too many algorithms fit this description.

The Web Services are suitable for massively distributed computing (as project

SETI@Home or others). The Web Service would serve to distribute the data (small amount

and not too often) and the clients would do the processor heavy computing. The development

of the Web Service and clients for different platforms would be easy, as suitable integrated

developer environments (IDEs) are available. The clients and services would be able to

cooperate thanks to the interoperability granted by the usage of SOAP. This scenario does not

correspond to the model of classic distributed algorithms as presented by [24] and was not the

aim of this work.

 69

Appendix A CONTENTS OF THE CD

The included CD contains the implementations of both algorithms. Both algorithms are

included as the compiled .jar or .war file and as the NetBeans projects.

A.1 Leader Election Algorithm

The leader election algorithm is simply started by typing:

java –jar LeaderElection.jar option

in the Distributions/LeaderElection/ directory. The option defines the subnet mask of the

network, where the application is to be started. If no option is provided, the default

(255.255.255.255) broadcasting address is used. The UDP broadcast server uses the port

number 7026 and the web server runs at port 8080.

The NetBeans projects is stored at Projects/LeaderElection/. It was created in the version

6.0 Beta 1.

A.2 Resource Reservation Algorithm

The resource reservation has to be deployed to a running Java Enterprise server. The .war file

is located in the Distributions/ResourceReservation/ directory. After the application is

deployed, the algorithm is started by calling the Activate method of the Web Service. The

Activate method can be called by running the Starter.jar from the

Distributions/ResourceReservation/ directory:

java –jar Starter.jar option1 option2

The option1 defines the port number of the web service at which the .war file is deployed.

The default port number is 8080, this is used as default by the embedded web server in the

NetBeans IDE. If you are using a different web server, please specify its port number. The

port number has to be specified. The option2 defines the subnet mask of the network,

where the application is to be started. If no option2 is provided, the default

 70

(255.255.255.255) broadcasting address is used. The UDP broadcast server uses the port

number 7026 and the Web Service runs within the web server.

Easier way to run this algorithm is to open the NetBeans project in the NetBeans IDE with

the embedded Java Enterprise Server. After the project is opened in the IDE, the application

has to be deployed. Then the easy way to start the computing is by invoking the Activate

method in the Web Service test page. The NetBeans project is located in the

Projects/ResourceReservation directory. It was created in the version 6.0 Beta 1.

 71

 BIBLIOGRAPHY

[1] Java Remote Method Invocation Specification. Technical report, Sun Microsystems,

Inc., 2004.

[2] N. Abu-Ghazaleh and M. J. Lewis. Differential deserialization for optimized SOAP

performance. In Proceedings of the 2005 ACM/IEEE conference on Supercomputing, page 21.

IEEE Computer Society, November 2005.

[3] B. Aiken, J. Strassner, C. B, I. Foster, C. Lynch, J. Mambretti, R. Moore, and

B. Teitelbaum. Network policy and services: A report of a workshop on middleware.

http://www.ietf.org/rfc/rfc2768.txt, February 2000.

[4] M. Allman. An evaluation of XML-RPC. In ACM SIGMETRICS Performance

Evaluation Review, volume 30, pages 2–11. ACM, March 2003.

[5] T. F. Apache. Web Services - AXIS. http://ws.apache.org/axis/.

[6] T. Berners-Lee, R. Fielding, and H. Frystyk. Hypertext transfer protocol – HTTP/1.0.

http://www.ietf.org/rfc/rfc1945.txt, May 1996.

[7] A. Chaudhury and H. R. Rao. Introducing client/server technologies in information

systems curricula. In ACM SIGMIS Database, volume Volume 28, pages 20–32. ACM,

September 1997.

[8] K. Chiu, M. Govindaraju, and R. Bramley. Investigating the limits of SOAP

performance for scientific computing. In Proceedings of the 11th IEEE International

Symposium on High Performance Distributed Computing, page 246. IEEE Computer Society,

2002.

 72

[9] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services

Description Language (WSDL) 1.1. http://www.w3.org/TR/wsdl, March 2001.

[10] L. Clement, A. Hately, C. v. Riegen, and T. Rogers. UDDI spec technical committee

draft, dated 20041019. http://uddi.org/pubs/uddi_v3.htm, 10 2004.

[11] W. Emmerich. Distributed software architecture using middleware. Advanced Software

Engineering Course, 2002.

[12] R. v. Engelen and K. Gallivan. The gSOAP toolkit for Web Services and peer-to-peer

computing networks. In 2nd IEEE International Symposium on Cluster Computing and the

Grid (CCGrid2002), pages 128–135, Berlin, Germany, May 2002.

[13] A. Harrison and T. Ian. Service-oriented middleware for hybrid environments. In ACM

International Conference Proceeding Series, volume 181, November 2006.

[14] M. R. Head, M. Govindaraju, R. v. Engelen, and W. Zhang. Benchmarking XML

processors for applications in grid Web Services. In Conference on High Performance

Networking and Computing, number 121, November 2006.

[15] M. Henning. The rise and fall of CORBA. Queue, 4(5):28–34, June 2006.

[16] M. Horstmann and M. Kirtland. DCOM architecture. Technical report, Microsoft

Developer Network, July 1997.

[17] V. Issarny, M. Caporuscio, and N. Georgantas. A perspective on the future of

middleware-based software engineering. In Proc. Future of Software Engineering FOSE '07,

pages 244–258, 23–25 May 2007.

[18] C. P. Java. Glassfish project. https://glassfish.dev.java.net/.

[19] C. P. Java. Java API for XML-based RPC JAX-RPC 1.1. Sun Microsystems, 2003.

[20] M. B. Juric, B. Kezmah, M. Hericko, I. Rozman, and I. Vezocni. Java RMI, RMI

tunneling and Web Services: Comparison and performance analysis. In ACM SIGPLAN

Notices, volume 39. ACM, May 2004.

[21] D. Kohlert and A. Gupta. The Java API for XML-Based Web Services (JAX-WS) 2.1.

Sun Microsystems, May 2007.

 73

 74

[22] R. M. Lerner. Introducing SOAP. Linux Journal, 83:Article No. 11, March 2001.

[23] S. M. Lewandowski. Frameworks for component-based client/server computing. In

ACM Computing Surveys (CSUR), volume 30, pages 3–27, March 1998.

[24] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, Inc., 1996.

[25] Microsoft. DCOM technical overview. Technical report, Microsoft Developer Network,

November 1996.

[26] OMG. The Object Management Group (OMG). http://www.omg.org/.

[27] K. A. Phan, Z. Tari, and P. Bertok. Mobile computing and applications (MCA): A

benchmark on SOAP's transport protocols performance for mobile applications. In

Proceedings of the 2006 ACM symposium on Applied computing SAC '06. ACM Press, April

2006.

[28] J. D. Quintana. Getting to know Mono. Linux Journal, 111:4, July 2003.

[29] R. J. Ray and P. Kulchenko. Programming Web Services with Perl. O'Reilly, December

2002.

[30] G. Tel. Introduction to Distributed Algorithms, Second Edition. Cambridge University

Press, February 2000.

[31] S. Vinoski. CORBA: integrating diverse applications within distributed heterogeneous

environments. IEEE Communications Magazine, 14(2):46–55, 1997.

[32] W3C. SOAP version 1.2 part 0: Primer (second edition).

http://www.w3.org/TR/2007/REC-soap12-part0-20070427/, April 2007.

[33] Wikipedia. Distributed Component Object Model.

http://en.wikipedia.org/wiki/Distributed_Component_Object_Model.

[34] Wikipedia. Web Service. http://en.wikipedia.org/wiki/Web_service.

[35] D. Winer. XML-RPC specification. http://www.xmlrpc.com/spec, June 2003.

	Chapter 1 Introduction
	1.1 Theoretical Part
	1.2 Practical Part
	1.3 Overview of Chapters 2-7

	Chapter 2 XML-based internet technologies
	2.1 Client/Server Architecture
	2.1.1 Client/Server vs. Peer 2 Peer
	2.2.1 CORBA
	2.2.2 MS DCOM/COM
	2.2.3 Java RMI
	2.2.4 Web Services

	2.3 XML-RPC
	2.3.1 Protocol Structure

	2.4 SOAP
	2.4.1 Protocol Structure

	2.5 WSDL
	2.5.1 Protocol Structure

	Chapter 3 Implementations of XML-based protocols in Java
	3.1 Why Java?
	3.1.1 gSOAP
	3.1.2 .NET
	3.1.3 JAX-WS

	3.2 XML-RPC
	3.2.1 Client Classes
	3.2.2 Server-Side XML-RPC

	3.3 JAX-RPC
	3.4 JAX-WS
	3.4.1 Server Side Development
	3.4.2 Client Side Development

	Chapter 4 Distributed Algorithms
	4.1 Formal Description
	4.2 I/O Automata in Client/Server Architecture

	Chapter 5 SOAP vs. Distributed Algorithms
	5.1 Data Management
	5.2 Asynchronous Calls
	5.3 Performance
	5.4 Client/Server as P2P Node
	5.5 WSDL Target Endpoint Problem
	5.6 Network Topology
	5.6.1 Large Scale Solution
	5.6.2 Small Scale Solution
	5.6.3 Other Solutions

	Chapter 6 XML-RPC Leader Election Implementation
	6.1 Problem Definition
	6.2 Algorithm Description
	6.2.1 Formal Description
	6.2.2 Complexity Analysis

	6.3 Implementation Details
	6.3.1 Package cz.cuni.mff.leaderElection
	6.3.2 Package cz.cuni.mff.leaderElection.broadcast
	6.3.3 Package cz.cuni.mff.leaderElection.synchronizer

	6.4 Performance Measurements
	6.4.1 Underlying Problems
	6.4.2 Testing Environment
	6.4.3 Results

	Chapter 7 JAX-WS Resource Reservation Implementation
	7.1 Problem Definition
	7.2 Algorithm Description
	7.2.1 Formal Description
	7.2.2 Complexity Analysis

	7.3 Implementation Details
	7.3.1 Package cz.cuni.mff.coloring
	7.3.2 Package cz.cuni.mff.coloring.client
	7.3.3 Package cz.cuni.mff.coloring.client.algorithm
	7.3.4 Package cz.cuni.mff.coloring.client.broadcast

	7.4 Performance Measurements
	7.4.1 Underlying Problems
	7.4.2 Testing Environment
	7.4.3 Results
	7.4.4 Comparison to XML-RPC

	Chapter 8 Conclusion
	Appendix A Contents of the CD
	A.1 Leader Election Algorithm
	A.2 Resource Reservation Algorithm

	Bibliography

