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Kĺıčová slova: všesměrová kamera, rektifikace, 3D rekonstrukce

Title: Stereo reconstruction from wide-angle images
Author: Jan Heller

Department: Department of Software and Computer Science
Education

Supervisor: Ing. Tomáš Pajdla, Ph.D.
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1 Introduction

Since the introduction of omnidirectional cameras into computer vision community
in late 90-ties, the omnidirectional cameras, i.e., cameras with a large field of view,
remain subject of extensive study. Omnidirectional vision has proved useful for mo-
tion estimation and thus for stereo-reconstruction. The geometry of omnidirectional
cameras as well as epipolar geometry of omnidirectional stereo pair is now well under-
stood. Even state-of-the-art epipolar geometry calibration methods for omnidirectional
cameras however still fail to produce satisfactory results in certain situation.

A pair of images is thought to be rectified when a parametrized pair of images is
produced in the way that epipolar lines coincide. Rectification is typically a pre-step
for methods of dense stereo matching and is mostly parametrized so that epipolar
lines coincide with image scanlines. This type of rectification simplifies following dense
stereo matching and various methods for scanline rectification have been developed.
A pair of perspective images is commonly rectified by projecting epipoles into infinity
using homographies [4]. Although this method performs well in case when epipoles
are not present in original images, it produces infinitely large images in case when
epipoles are present. Pollefeys et al. [7] proposed rectification method based on polar
parametrization, producing finite area images even for cases when epipoles are located
in the images.

However, in case of omnidirectional images epipolar lines become epipolar curves,
thus homographies cannot be used. Another difference between perspective and om-
nidirectional epipolar geometries is the existence of a second epipole in a single image.
As the closest equivalent to the method described in [7], spherical parametrization
can be considered. In [1], Arifan and Frossard used spherical parametrization in con-
nection with an energy minimization based approach to estimate dense disparities for
omnidirectional images. In [2] Geyer and Daniilidis proved the existence of conformal
rectification of omnidirectional stereo pairs, superposing bipolar coordinate system
onto an image’s two epipoles. Nonetheless, both spherical and bipolar parametriza-
tions inherit a significant setback congenital to all types of scanline rectifications – a
severely disproportional expansion of the area near epipole. Since at least one epipole
is always present in an omnidirectional image, every scanline rectified omnidirectional
image suffers from this blowout. This might not pose a problem in cases when recti-
fied stereo pair is used as a pre-step for epipolar lines marching techniques, since the
epipolar lines are parametrized anyway. However, it can be heavily counterproductive
when techniques not primarily concerned with epipolar lines are employed.

The goal of our work is to present general methods of rectification of an omni-
directional stereo pair and implementation of these methods in computer. We also
show how to use images rectified using presented methods for 3D reconstruction of
the original scene. Further, we propose a rectification method based on stereographic
projection. Using stereographic projection, scanline rectification cannot be achieved,
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1.2. Basic definitions

epipolar curves are again mapped into curves – circles. In exchange for such a mapping
we get a parametrization that in certain sense minimizes distortion of original omni-
directional images as well as spacial distance between corresponding image points.
Further, we devise a method based on this rectification to automatically judge quality
of a essential matrix.

In Chapter 2 we review the theory of geometric image transformation. In Chapter 3
we summarize the theory of omnidirectional projection and and epipolar geometry of
central omnidirectional cameras to a level necessary to our work. In Chapter 4 the
stereographic projection is discussed, as it serves as a underlying method for various
rectification methods presented in Chapter 5. In Chapter 7 we propose a method
for measuring and comparison of quality of essential matrices. Appendix A covers the
documentation of the Matlab rectification toolbox and Appendix B presents examples
of image pairs rectified using the toolbox.

1.1 Notation

a, b, . . . scalars
A, B, . . . sets
a,b, . . . ,A,B, . . . vectors
A, B, . . . matrices
Rn, Pn, . . . n-dimensional spaces
A,B, . . . transformations

1.2 Basic definitions

1.2.1 Vectors and matrices

All vectors in this work are column vectors and are considered 3×1 matrices when mul-
tiplied by a matrix.

(
a1 a2 . . . am

)
denotes a matrix A ∈ Rn×m, which columns

are vectors a1, a2, . . . , am ∈ Rn.

Definition 1 Let a = (a1, a2, a3)
> ∈ R3\{(0, 0, 0)>}, then [a]× is a skew-symmetric

matrix

[a]×
def
=

 0 −a3 a2

a3 0 −a1

−a2 −a1 0

 .

Definition 2 Let a = (a1, a2, . . . , an)> ∈ Rn. Then

bac def
= (ba1c , ba2c , . . . , banc) ,

where b·c is the floor function.

Definition 3 Let a ∈ Rn, R ⊂ Rn. Then

∆(R, a)
def
= inf

b∈R
‖a− b‖

is the distance between the vector a and the set R.
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1.2. Basic definitions

Definition 4 Let A, I ∈ Rn×n, I the unit matrix. Then if

A>A = AA> = I,

A is called the orthogonal matrix.

1.2.2 Unit sphere

Definition 5
S3 def

= {v ∈ R3 : ||v|| = 1}

is the unit sphere.

Definition 6 Let a,b ∈ S3. Then

δS3(a,b)
def
= arccos(a>b)

is the spherical distance between the vectors a and b.

Definition 7 Let a ∈ S3, S ⊂ S3. Then

∆S3(S, a)
def
= inf

b∈S
δS3(a,b)

is the spherical distance between the vector a and the set S.
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2 Geometric image
transformations

Since a stereo rectification is basically a geometric transformation of a pair of digital
images, a rigorous definition of a digital image and geometric image transformations
is needed. In this chapter we present theory of geometric transformations and image
transformations, based on [3] and [14].

A digital image is a representation of a two-dimensional real world image – pro-
jection on an eye’s retina, a photograph, a picture, or to put it more mathematically,
continuous two-dimensional signal – as a finite set of values called pixels. In a com-
puter, this set is typically represented by a continuous block of memory, with memory
cells interpreted as various value types, such as char or double, depending on number
of values a pixel can assume. One-dimensional pixel values are sufficient to represent
a grayscale image – in order to represent a color image, higher dimensional values are
needed. A 3D RGB color model is the most commonly used, however, in our definition,
we allow for higher dimensions as well.

2.1 Discrete image

Definition 8 Let Φ = [0, a1]× [0, a2] ⊂ R2, n ∈ N. Then a mapping

Pc : Φ → Rn

is called a continuous image, where a1 ∈ R is the width of the image and a2 ∈ R is the
height of the image.

Such a continuous image, however mathematically appealing, is far from a data set
acquired by a digital camera. Both range and domain of a digital image are finite.
However, Definition 9 allows for an infinite domain. This is only a mathematical
simplification. In the “real world”, the domain of a digital image is always clamped to
some conveniently representable interval, typically [0, 255] ⊂ N.

Definition 9 Let Ψ = [0, a1]× [0, a2] ⊂ N2, n ∈ N. Then a mapping

P : Ψ → Zn

is called a discrete image, where a1 ∈ N is the width of the image and a2 ∈ N is the
height of the image.

In the following, only discrete images are considered and terms discrete image and
digital image denote the same type of mapping.
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2.2. Geometric image transformations

2.2 Geometric image transformations

Firstly, we have to distinguish two terms: geometric transformation and image trans-
formation based on a geometric transformation. Geometric transformation, such as
rotation and translation, is an intuitive term. Since we deal with two-dimensional
images, we will only consider two-dimensional geometric transformations, i.e.,

G : R2 → R2.

Because we are equally interested in describing image rectification as a geometric trans-
formation as in producing adequate images based on such geometric transformation,
we introduce the term image transformation based on a geometric transformation. By
the term we understand the process of creating new discrete image, i.e., defining a
new map, by applying given geometric transformation to a given discrete image. In
literature, these term often coincide or are distinguished implicitly. For convenience,
we abbreviate the term image transformation based on a geometric transformation as
geometric image transformation.

A geometric transformation of a digital image is not, in contrary to the underly-
ing geometric transformation, an uniquely defined mathematical transformation, but
rather a set of methods, which differ in computational complexity as well as in their
results. Let’s formulate a geometric image transformation based on image interpolation
and inverse geometric transformation.

Definition 10 Let P : Ψ = [0, a1]×[0, a2] ⊂ N2 → Zn be a discrete image, Φ = [0, a1]×
[0, a2] ⊂ R2, ϕ an interpolating synthesis function. Then a mapping Iϕ

I : Φ → Zn such
that

∀x ∈ Φ : Iϕ
P(x) =

⌊∑
k∈Ψ

P(k)ϕ(x− k)

⌋
,

is called interpolation of the image P using the synthesis function ϕ.

The floor function b·c guaranties that the domain of the interpolated image is again Zn.
In a computer program, the floor function can be replaced by the round function or by
simple retyping. The synthesis function ϕ : Rn → Rn is the only thing deciding the
quality and the properties of the interpolation. The desired properties of a synthesis
function are

• interpolating property

∀k ∈ Zn : ϕ(k) =

{
1 for k = (0, . . . , 0)>,

0 otherwise,

• separability

∀x = (x1, x2, . . . , xn) ∈ Rn : ϕ(x) =
n∏

i=1

ϕi(xi),
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2.2. Geometric image transformations

• symmetry
∀x ∈ Rn : ϕ(−x) = −ϕ(x),

• and partition of unity

∀x ∈ Rn : 1 =
∑
k∈Zn

ϕ(x− k).

The most common interpolation techniques use in 2D computer graphics are the nearest
neighbor interpolation and the bilinear interpolation. Let’s define synthesis function
that, together with Definition 10, lead to such interpolations.

Definition 11 Let ϕ : R → R such that

∀x ∈ R : ϕ(x) =


1 for |x| < 1

2
,

1
2

for |x| = 1
2
,

0 else,

then ϕNN : R2 → R2 such that

∀x = (x1, x2) ∈ R2 : ϕNN(x) = ϕ (x1) ϕ (x2) , (2.1)

is called the nearest neighbor interpolating synthesis function.

Definition 12 Let ϕ : R → R such that

∀x ∈ R : ϕ(x) =

{
1− |x| for |x| < 1,

0 else,

then ϕBL : R2 → R2 such that

∀x = (x1, x2) ∈ R2 : ϕBL(x) = ϕ (x1) ϕ (x2) , (2.2)

is called the bilinear interpolating synthesis function.

The function ϕBL can be conveniently rewritten as

ϕBL(x) = max (1− |x1| , 0) max (1− |x2| , 0) .

Consequence 1 Let P : Ψ = [0, a1]×[0, a2] ⊂ N2 → Zn be a discrete image, G : R2 →
R2 an invertible geometric transformation, ϕ : R2 → R2 an interpolating synthesis
function. Then a discrete image PG : Ψ′ = [0, a′1]× [0, a′2] ⊂ N2 → Zn, such that

∀x ∈ Ψ′ : PG(x) = Iϕ
P
(
G−1(x)

)
,

is an image transformation of the image P based on the geometric transformation G.
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3 Geometry of Central
Omnidirectional Cameras

Central omnidirectional camera is any panoramic camera having a single effective view-
point. In this chapter the spherical model of central omnidirectional cameras is review,
as well as the epipolar geometry of two omnidirectional cameras. Finally, a pair of
transformations called epipolar alignment is derived.

3.1 Omnidirectional projection

Standard central perspective camera model is based on projective geometry and states
that

∃α 6= 0 : αx = PX, (3.1)

where X ∈ R4\{(0, 0, 0, 0)>} is a scene point, P ∈ R3×4 is a camera projection matrix
and x ∈ R3\{(0, 0, 0)>} represents an image point [4]. In this model all scene points
lying on the same line passing through the optical center of the camera – in front
as well as behind the camera – are represented by one image point, see 3.1(a). This
representation may be sufficient for directional cameras with field of view smaller than
180◦, however, is unsuitable for modeling omnidirectional cameras, where points behind
the camera and points in front of the camera are projected onto different image points.
This issue is addressed by the spherical model, where lines are split into half-lines, see
Figure 3.1(b). In this model, represented by unit vectors in R3, one vector represents
one half-line, so that one image point represents all scene points lying on a half of a
line passing through the center of the camera and another image point represents all
scene points lying on the opposite half of the same line. This fact formulates as

∃α > 0 : αx = PX, (3.2)

where X and P are the same as in equation 3.1 and x ∈ R3\{0, 0, 0} is a vector
representing an image point.

(a) (b)

Figure 3.1: (a) Directional camera. Scene points are represented by straight lines. (b)
Omnidirectional camera. Scene points are represented by half-lines. (Adopted from [6])
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3.2. Image formation and camera calibration

x

y

z

p
′′

x
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y

x

u
′′

(a) (b)

Figure 3.2: Omnidirectional image formation: (a) Projection of a scene point to a sensor
plane. (b) The sensor plane with field of view circle. (Adopted from [6])

3.2 Image formation and camera calibration

By image formation we will understand the formation of a digital image from a sur-
rounding scene through an optical system and the process of digitization. Let us briefly
summarize the mathematical formalism of image formation of central omnidirectional
cameras, as described in [6], to a level significant to our work. In the next, it is assumed
that the lenses and mirrors are

i, symmetric w.r.t. an axis and

ii, the axis of the lens, or the mirror, is perpendicular to a sensor plane.

Figure 3.3 shows the process of image formation. Using spherical model described in
Section 3.1, the projection of a scene point X is represented by unit vector q′′ ∈ S3.

From assumptions i, and ii, one infers that there always exists a vector p′′=
(
x′′>, z′′

)> ∈
R3 and a vector u′′ ∈ R2 in the sensor plane, for which following holds:

∃α ∈ R+ : p′′ = αq′′,

∃β ∈ R+ : x
′′

= βu′′, (3.3)

p′′ =

(
h (||u′′|| , a′′)u′′
g (||u′′|| , a′′)

)
. (3.4)

Functions h, g : RN × R → R are rotationally symmetric and depend on ||u′′||,
that is on the distance between the optical axis and u′′, and on a vector of parameters
a′′ ∈ RN , where N is the number of parameters. The functions capture the type of
a omnidirectional camera. Function g typically depend on the shape of the mirror
for catadioptric omnidirectional cameras, function h captures the projection of the
camera. Note that β from Equation (3.3), explicitly stating the collinearity between
u′′ and x′′, equals h (||u′′|| , a′′) from Equation (3.4). Figures 3.2(a, b) show general
relation between an image point u′′ and corresponding vector p′′, Figures 3.4(a, b)
show the relation in case of a fish-eye lens.
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3.2. Image formation and camera calibration

y
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Figure 3.3: Omnidirectional image formation: (a, b) Digitization process – affine trans-
formation of the field of view circle. (Adopted from [6])

The next step in the image formation process is digitization. Process of trans-
forming sensor plane point u′′ into digital image point u′ can be modeled by an affine
transformation

u′′ = A′u′ + t′, (3.5)

where A′ ∈ R2×2 is a regular matrix, t′ ∈ R2 is a translation vector and u′ is a point in
a digital image. The digitization process is depicted in Figure 3.3(a, b). By plugging
the image formation process into Equation (3.2) the complete projection equation for
omnidirectional cameras can be written as

∃α > 0 : αp′′ = α

(
h (||u′′|| , a′′)u′′
g (||u′′|| , a′′)

)
= α

(
h (||A′u′ + t′|| , a′′) (A′u′ + t′)

g (||A′u′ + t′|| , a′′)

)
= PX.

(3.6)
The objective of the camera calibration is to find mapping from a digital image

point u′ to a corresponding 3D ray represented by a vector q′′ for a given camera. This
means, that affine transformation from a digital image to the camera’s sensor plane,
as well as the mapping from camera’s sensor plane to scene rays have to be recovered.
The process of calibration of various central omnidirectional cameras is beyond the
scope of our work and can be found in great detail in [6].

Definition 13 Let g, h, A,u′′, t′, a have the same meaning as in Equation (3.6) for an
omnidirectional camera C. Then a map CC : R2 → S3 so that

∀u′ ∈ R2 : CC(u′) =

(
h (||A′u′ + t′|| , a′′) (A′u′ + t′)

g (||A′u′ + t′|| , a′′)

)
∥∥∥∥( h (||A′u′ + t′|| , a′′) (A′u′ + t′)

g (||A′u′ + t′|| , a′′)

)∥∥∥∥
realizing the mapping from a digital image point u′ to a corresponding 3D ray for the
omnidirectional camera C is called the calibration transformation of a camera C.
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3.3. Epipolar geometry
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′′
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Figure 3.4: Mapping of a scene point X into a sensor plane point u′′ for a fish-eye lens.
Since orthographic camera projection is assumed, h = 1. (Adopted from [6])

Since a calibration function of a camera is always a compromise between correctness
and computability, simple definitions of g, h are preferred, with invertibility in mind.
In our work the existence of an inverse mapping C−1

C for a camera C is always assumed.
Further, orientation such that CC((0, 0))> = (0, 0,−1)> is assumed.

3.3 Epipolar geometry

The epipolar geometry is motivated by stereo matching, i.e., by searching for the
projections of a scene point X in two different views of the same rigid scene. Let’s
suppose that X ∈ R3 projects onto u1 ∈ P2 in the first view and onto u2 ∈ P2 in the
second, see Figure 3.5. From the fundamental properties of central projection follows
that the centers of the cameras C1, C2 and the points u1,u2 and X are coplanar.
Scene points together with baseline C1C2 create a pencil of planes called epipolar
planes. Every of such planes intersects the projective planes of the two views in straight
line – epipolar line. Epipolar lines again form a pencils of lines in their respective
projective planes, that intersect in two respective points, called epipoles. Epipoles can
be equivalently described as projections of camera centers into the image planes of the
opposite view. An example of epipolar geometry of two perspective cameras is given
in Figure 3.5(a).

The fact that if a scene point X is projected onto an point u1in the first view, then
the image of the point X in the second image u2 must lie on a epipolar line l′ ∈ P2,
which is the projection of the epipolar plane corresponding to the point u1, is called
the epipolar constraint. The epipolar constraint can be algebraically written as

(
u>2 1

)
F

(
u1

1

)
= 0,
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3.3. Epipolar geometry
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Figure 3.5: (a) Epipolar geometry of standard perspective cameras. (b) Epipolar
geometry of omnidirectional central cameras. (Adopted from [6])

where F ∈ R3×3 is a fundamental matrix. The fundamental matrix realizes the mapping
u1 7→ l′, i.e.,

l′ = Fu1,

from which follows that rank(F) = 2.
An analogy to the epipolar geometry of central perspective cameras for central

omnidirectional cameras can be formulated likewise. The difference between directional
and omnidirectional cameras is the shape of the retinas as well as the distinguishability
of the rays orientations. The pencil of planes intersect the spherical retinas of the
spherical model in great circles, which are projected into sensor plane as epipolar curves,
intersecting the C1C2 baseline in two epipoles, e1,1, e1,2 in the first view, e2,1, e2,2 in the
second view, see Figure 3.5(b). The epipolar curves are conics for quadric catadioptric
cameras [10], more general curves for fish-eye lenses [6]. Since vectors p′′1 and p′′2,
as depicted in Figure 3.5(b), create an epipolar plane, an epipolar geometry can be
formulated for them. The epipolar constraint for a pair of omnidirectional images
reads as

p′′>2 F′′p′′1 = 0, (3.7)

where F′′ ∈ R3×3 is an analogy to the fundamental matrix called essential matrix, map-
ping one-dimensional subspace, p′′1, to a two-dimensional subspace in R3, the epipolar
plane containing p′′2, from which again follows that rank(F′′) = 2. Figures 3.6(a, b,
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3.3. Epipolar geometry

c, d) show example of two image pairs with denoted epipolar geometries. The main
difference between epipolar geometries of perspective directional cameras and omnidi-
rectional cameras lies in the fact that whereas the epipolar constraint of directional
cameras applies directly to image points, the epipolar constrain of omnidirectional
cameras applies to 3D vectors acquired by camera calibration using functions g, h.

Since for any vector p′′ other than e1,1, e1,2 the epipolar plane specified by the
normal vector n = F′′p′′ contains epipoles e2,1, e2,2, equations

∀p′′ ∈ R3 : e>2,1(F
′′p′′) = 0 & e>2,2(F

′′p′′) = 0

hold true. It follows, that e>2,1F
′′ = e>2,2F

′′ = 0, i.e., e2,1 = −e2,2 is the left null-space
of F′′. Analogously F′′e1,1 = F′′e1,2 = 0, , i.e., e1,1 = −e1,2 is the right null-space of F′′.
Given an essential matrix F′′, epipoles are standardly computed using singular value
decomposition (SVD) of F′′, see Result 1.

Result 1 Let (u1,u2, e2) diag(1, 1, 0) (v1,v2, e1)
> be SVD of an essential matrix F′′ ∈

R3×3, rank(F′′) = 2. Then F′′e1 = 0, e>2 F
′′ = 0, and e1,−e1, e2,−e2 are the respective

epipoles of the epipolar geometry specified by F′′.

Following result explicitly states the ambiguity of epipoles computed from F′′.

Result 2 Let (u1,u2, e2) diag(1, 1, 0)(v1,v2, e1)
> be SVD of an essential matrix F′′ ∈

R3×3, rank(F′′) = 2. Then

(u1,u2,−e2) diag(1, 1, 0) (v1,v1,−e1)
>,

(u1,u2, e2) diag(1, 1, 0) (v1,v2,−e1)
>,

(u1,u2,−e2) diag(1, 1, 0) (v1,v2, e1)
>,

are also SVD of F′′.

In the following, epipole orientation such that e1,1, e2,1 are always directions to the
same scene point X and such that if only one epipole is visible in the first view, e1,1 is
that epipole is assumed.

Theorem 1 Let F be an essential matrix and e1,i, e2,i, i = 1, 2 the respective epipoles,
u ∈ R3\{(0, 0, 0)> such that u and e1,2 are lineary independent. Then vectors u and
[e2,2]× Fu lie in the same epipolar plane.

Proof. Seeing that n′ = Fu is the normal to an epipolar plane P′ = {v ∈ R3 :
v>n′ = 0} in which u is lying, it holds that

∀u′ ∈ P′ : u′ × n′ = [u]× n′ ∈ P′.

Since e2,2 lies in every epipolar plane, e2,2 lies in P′ as well. Thus

e2,2 × n′ = [e2,2]× n′ = [e2,2]× Fu ∈ P′.

�
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3.3. Epipolar geometry

ue1,2
ue1,1

ue2,2
ue2,1

(a) (b)

ue1,1 ue2,1

(c) (d)

Figure 3.6: Two image pairs acquired by a fish-eye lens with field of view of 180◦ with
respective epipolar geometries. Images were transformed so it would appear as like they
had been acquired by para-catadioptric camera in order to transform epipolar curves
into circles. (a) An image pair resulting from by lateral move of the camera. Both
epipoles are visible. (b) An image pair resulting from forward move of the camera.
Only one epipole is visible.
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3.4. Epipolar alignment

3.4 Epipolar alignment

Given two calibrated images of the same rigid scene and an essential matrix describing
the epipolar geometry of the image pair, the goal of this section is to derive transforma-
tion A1 from the coordinate system of the first camera C1 and transformation A2 from
the coordinate system of the second camera C2 to the world coordinate system, so the
respective epipole pairs e1,i, e2,i, i = 1, 2 coincide with the z axis and the corresponding
epipolar circles are superimposed, see Figure 3.7. The pair [A1,A2] will be called the
epipolar alignment of an image pair. Is is a simple observation, that transformations
A1,A2 : R3 → R3 are linear automorphisms and as such algebraically expressed as
matrix multiplications

∀q ∈ R3 : A1(q) = A1q, A2(q) = A2q,

where A1, A2 ∈ R3×3. Since A1,A2 are automorphisms, there always exist inverse linear
transformations A−1

1 ,A−1
2 , such that

∀q ∈ R3 : A−1
1 (q) = A−1

1 q, A−1
2 (q) = A−1

2 q,

mapping z axis of the world coordinate system onto the respective epipoles.

Definition 14 Let e be an epipole in an image from an omnidirectional stereo pair.
Then a coordinate system Σu

e = [x,y, e], so that

u ∈ R3\{(0, 0, 0)>} : ¬ (∃α ∈ R : αu = e) ,

x =
[e]× u∥∥[e]× u

∥∥ ,

y =
[x]× e∥∥[x]× e

∥∥ ,

is called the epipolar coordinate system incident to the epipole e with up-vector u.

Let F be an essential matrix and e1,i, e2,i, i = 1, 2 the respective epipoles, as de-
scribed in section 3.3, Ω =

[
(1, 0, 0)>, (0, 1, 0)>, (0, 0, 1)>

]
the world coordinate system.

Transformation from the ordered basis Σu1
e1,2

to the ordered basis Ω and transformation

from the ordered basis Σu2
e2,2

to the ordered basis Ω, for u1,u2 ∈ R3, where u1 is not
collinear with e1,2 and u2 is not collinear with e2,2, would solve the goal of superim-
posing epipoles with z axis, however, in order to superimpose epipolar circles as well,
another constraint to these mappings must be introduced. In order ensure superpo-
sition of epipolar circles, up-vectors u1,u2 have to “select” the same epipolar circle,
i.e., lie in the same epipolar plane. From Theorem 1 follows that u2 = [e2,2]× Fu1 is a
sufficient condition for u1,u2 to lie in the same epipolar plane.

Let us derive A−1
1 realizing transformation from ordered basis Ω to the ordered basis

Σu1
e1,2

= [x,y, e1,2]. After specifying that

A−1
1 =

 a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

 ,
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3.4. Epipolar alignment

e1,2

e1,1

C1

e2,2

e2,1

C2

e1,1

e1,2

e2,2

e2,1

z

z

x

x C1

C2

z

x

A1(e1,1) = A2(e2,1)

(a) (b) (c)

Figure 3.7: Epipolar alignment. Red dots denote camera centers and vectors incident
to the respective centers of the fields of view. Grey areas represent vectors in the fields
of view of the respective cameras. (a) An example of epipolar geometry of an image
pair. (b) Positions of the epipoles as computed by camera and epipolar calibration,
i.e., from SVD of an essential matrix. (c) Positions of the epipoles after the epipolar
alignment.

it holds that

x = A−1
1 (1, 0, 0)> = (a1,1, a2,1, a3,1)

>,

y = A−1
1 (0, 1, 0)> = (a1,2, a2,2, a3,2)

>,

e1,2 = A−1
1 (0, 0, 1)> = (a1,3, a2,3, a3,3)

>,

that is
A−1

1 =
(

x y e1,2

)
.

By analogy, matrix A−1
2 realizing the transformation from the ordered basis Ω to the

ordered basis Σu2
e2,2

= [x′,y′, e2,2] , where u2 = [e2,2]× Fu1, reads as

A−1
2 =

(
x′ y′ e2,2

)
.

Finally, we can derive the pair of transformationsA1,A2 forming the epipolar alignment
of an image pair connected by essential matrix F as

∀q ∈ R3 : A1(q) = A1q =
(

x y e1,2

)−1
q, A2(q) = A2q =

(
x′ y′ e2,2

)−1
q,
(3.8)

where [x,y, e1,2] = Σu1
e1,2

, [x′,y′, e2,2] = Σu2
e2,2

, u2 = [e2,2]× Fu1 and e1,i, e2,i, i = 1, 2 are
the respective epipole pairs.
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4 Stereographic projection

Stereographic projection is a well known transformation of the surface of a sphere
onto the surface of a plane. Since it is a crucial transformation to several rectification
methods, this chapter discusses it in detail.

4.1 Stereographic projection

In the canonical definition of the transformation, the unit sphere centered in the origin
and plane z = 0 are considered. The sphere is mapped onto the plane by means of
central projection, where the center of the projection is the North Pole N = (0, 0, 1)>,
see Figure 4.1. Since the North Pole itself is not projected onto the plane, it is custom-
ary to add a new point, called ∞, to the plane, and to complete the map by mapping
the North Pole onto ∞. This step turns stereographic projection into a bijection, and
leads to the following definition [5]:

Definition 15 Let q = (qx, qy, qz)
> ∈ S3 be a point on the surface of the unit sphere.

Then the stereographic projection S : S3 → R2 ∪ {∞} maps q onto a point u ∈
R2 ∪ {∞} on the plane z = 0 extended by ∞ so that

u =


∞ for q = (0, 0, 1)>,(

qx

1−qz
qy

1−qz

)
else.

(4.1)

Consequence 2 Let u = (ux, uy) ∈ R2 ∪ {∞} be a point on the plane z = 0 extended
by ∞. Then the inverse stereographic projection S−1 : R2 ∪ {∞} → S3 maps u onto
the unit sphere onto a point q = (qx, qy, qz)

> ∈ S3 on the unit sphere S3 so that

q =


(0, 0, 1)> for u = ∞,

2ux

1+u2
x+u2

y
2uy

1+u2
x+u2

y

−1+u2
x+u2

y

1+u2
x+u2

y

 else.
(4.2)

4.2 Changing the center of projection

In the canonical definition of stereographic projection, the center of projection is the
North Pole. That is, S(N) = ∞, S(−N) = (0, 0)>. How about a projection from an
arbitrary point on the unit sphere?
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4.2. Changing the center of projection
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N

q

u

P

z

x

N′

q

N

u′

q′′

u′′

P′

P

(a) (b)

Figure 4.1: Stereographic projection: (a) Projection of a vector q ∈ S3 onto a vector
u ∈ R2 by means of central projection from the North Pole N to the plane P. (b)
Projection of a vector q ∈ S3 from N′ to the plane P′ is equivalent to the projection of
a vector q′′ to a vector u′′ under the canonical stereographic projection, i.e., u′P′ = u′′P.

Definition 16 The central projection SN′ : S3 → R2 ∪{∞} of the unit sphere S3 with
the center of projection N′ ∈ S3 to the plane N′ · (x, y, z)> = 0 is called stereographic
projection from the point N′.

Figure 4.1(b) depicts such a mapping.
Note, that the Definition 16 is not an uniquely defined transformation, but rather

a set of plausible transformations, i.e., for an arbitrary vector N ∈ S3 there exist
more that one non-identical transformations that fit the definition of the stereographic
projection from the point N.

Theorem 2 Let R ∈ R3×3 be an orthogonal matrix, N′ = RN = R(0, 0, 1)>. Then

∀q ∈ S3 : SN′(q) = S(R−1q).

Proof. Since R is an orthogonal matrix, R−1 always exits. The stereographic pro-
jection from the point N′ of a point q ∈ S3 is equivalent to finding the intersection of
the ray emanating from the center of projection through the projected point, x

y
z

 = (N′ − q) u,

where u ∈ R, and plane with normal vector N′ and containing the origin (0, 0, 0)>,

N′ ·

 x
y
z

 = 0.

Plugging the equation of the ray into the plane equation we get
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4.2. Changing the center of projection

N′> (N′ − q) u = 0. (4.3)

From the assumption N′ = RN and the orthogonality of the matrix R

(RN)> (RN− q) u = 0

N>R−1 (RN− q) u = 0

N> (N− R−1q
)
u = 0 (4.4)

which is the equation of the intersection of the plane z = 0

N ·

 x
y
z

 = 0

and the ray emanating from the North Pole through the point R−1q, x
y
z

 =
(
N− R−1q

)
,

Let’s suppose u′ ∈ R solves the identical Equations (4.3) and (4.4), then

∀q ∈ S3\{N′} : SN′(q) = R> (N′ − q) u′

= R−1 (N′ − q) u′

= R−1 (RN− q) u′

=
(
R−1RN− R−1q

)
u′

=
(
N− R−1q

)
u′

= S(R−1q)

To complete the transformation,

SN′(N′) = S(N) = ∞.

�

Consequence 3 Let R ∈ R3×3 be an orthogonal matrix, N′ = RN = R(0, 0, 1)>. Then
the inverse stereographic projection from the point N′ reads as

∀u ∈ R2 : S−1
N′ (u) = RS(u).
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5 Rectification of an
omnidirectional image pair

The theory of previous chapters allows us to present a general technique for rectification
of an omnidirectional image pair.

Let [P1,P2] be an omnidirectional image pair, such that P1 : [0, a1] × [0, a2] →
Zm,P2 [0, a′1]× [0, a′2] → Zm, i.e., [a1, a2] and [a′1, a

′
2] being the respective dimensions of

the images. Let C1 be the calibration transformation of the camera C1 that acquired
the image P1, C2 the calibration transformation of the camera C2 that acquired the
image P2. Let F be an essential matrix describing the epipolar geometry of the cam-
eras C1 and C2 and [A1,A2] the epipolar alignment based on the essential matrix F.
Then a rectification of the omnidirectional image pair [P1,P2] can be viewed as a pair
of dependent geometric image transformations with the underlying geometric trans-
formations connected by the epipolar alignment [A1,A2]. A pair of such underlying
geometric transformations [G1,G2] is called a rectification method. The inner structure
of the geometric transformations is the following:

G1 = C1 ◦ A1 ◦ T ◦ F ,

G2 = C2 ◦ A2 ◦ T ◦ F ,

where T : R3 → R2 is the characteristic transformation of a rectification method and
F : R2 → R2 a final affine transformation. The first part C1,2 ◦ A1,2 is clearly mutual
to all methods, thus to fully define a rectification method only the second part T ◦ F
needs to be specified.

In order to derive a rectification of an image pair based on the image interpolation,
inverse transformations

G−1
1 = F−1 ◦ T −1 ◦ A−1

1 ◦ C−1
1 ,

G−1
2 = F−1 ◦ T −1 ◦ A−1

2 ◦ C−1
2 ,

need to be derived. Since we assume the existence of C−1
1,2 and previously derived A−1

1,2,
again, only F−1 ◦ T −1 needs to be specified. The rectification of an image pair [P1,P2]
using method [G1,G2] based on image interpolation using interpolating synthesis func-
tion ϕ then reads as [

Iϕ
P1

(
G−1

1

)
, Iϕ

P2

(
G−1

2

)]
.

In this chapter we present three scanline rectification methods, i.e., methods that
transform epipolar curves to the scanlines of the resulting rectified image pair. The
first two are based on spherical parametrization, the third is the conformal rectifica-
tion method described in [2]. Futher, we present a rectification method based on the
stereographic projection. Finally, properties of the respective rectification methods are
discussed using various examples of image pairs from Appendix B, rectified by the
OmniRect Matlab toolbox described in Appendix A.
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5.1. Spherical rectification
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P
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Figure 5.1: Spherical parametrization of a point P on the unit sphere.

5.1 Spherical rectification

The characteristic transformation of the spherical rectification (SR) is based on the
spherical parametrization. The Spherical coordinates (ρ, ϕ, θ), see Figure 5.1, are ob-
tained from Cartesian coordinates as [13]

ρ =
√

x2 + y2 + z2,

ϕ = arctan

(√
x2 + y2

z

)
,

θ = arctan
(y

x

)
,

where ρ ∈ [0,∞), ϕ ∈ [0, π], θ ∈ [0, 2π]. The Cartesian coordinates can be recovered
as

x = ρ sin ϕ cos θ,

y = ρ sin ϕ sin θ, (5.1)

z = ρ cos ϕ.

The characteristic transformation of the spherical rectification T : R3 → R2 consists
of spherical parametrization of the unit sphere, thus ρ is always 1. Further, for epipolar
circles – after epipolar alignment coinciding with meridians of the unit sphere – to be
mapped to scanlines, ϕ must coincide with the first coordinate.

Definition 17 TSR : R3 → R2 such that

∀p = (p1, p2, p3) ∈ S3 : TSR(p) =

 arctan

(√
p2
1+p2

2

p3

)
arctan

(
p2

p1

)
 , (5.2)

is the characteristic transformation of the spherical rectification.

The function arctan used in Definition 17 must be defined so that is takes into ac-
count the correct quadrant of a

b
. The function atan2(a, b) available in various program-

ming languages can be used. However, note that the range of the function atan2(a, b) is
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5.2. Swapped spherical rectification

(−π, π]. The inverse transformation to the characteristic transformation of the spher-
ical rectification T −1

SR : R2 → R3 then reads as

∀u = (ϕ, θ) ∈ R2 : T −1
SR (u) =

 sin ϕ cos θ
sin ϕ sin θ

cos ϕ

 . (5.3)

Seeing that the effective range of TSR is [0, π]× [0, 2π] the respective affine transforma-
tion FSR : R2 → R2 for an image with width w and height h derives as

∀u ∈ R2 : FSR(u) =

(
w
π

0
0 h

2π

)
u, (5.4)

∀u ∈ R2 : F−1
SR(u) =

(
π
w

0
0 2π

h

)
u. (5.5)

5.2 Swapped spherical rectification

Swapped spherical rectification (SSR) is almost identical to the spherical rectification,
the only difference being that the domain intervals of the spherical coordinate system
[0, π]× [0, 2π] are, indeed, swapped. This swap leads to somewhat different results from
the spherical rectification.

Definition 18 TSSR : R3 → R2 such that

∀p = (p1, p2, p3) ∈ S3 : TSSR(p) =

 arctan

(√
p2
1+p2

2

p3

)
arctan

(
p2

p1

)
 , (5.6)

is the characteristic transformation of the swapped spherical rectification.

Note that TSSR = TSR. The inverse transformation to the characteristic transformation
of the spherical rectification T −1

SSR : R2 → R3 again reads as

∀u = (ϕ, θ) ∈ R2 : T −1
SSR(u) =

 sin ϕ cos θ
sin ϕ sin θ

cos ϕ

 .

The difference between spherical and swapped spherical rectifications lie in the final
affine transformation. Seeing that the range of TSSR is [0, 2π] × [0, π] the respective
affine transformation FSSR : R2 → R2 for an image with width w and height h derives
as

∀u ∈ R2 : FSSR(u) =

(
w
2π

0
0 h

π

)
u, (5.7)

∀u ∈ R2 : F−1
SSR(u) =

(
2π
w

0
0 π

h

)
u. (5.8)
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5.3. Bipolar rectification

F1 = [−a, 0] F2 = [a, 0]

y

x

d1
d2

P = [x, y]

σ

Figure 5.2: Bipolar coordinate system. A few σ isosurfaces are shown as dotted circles,
dashed circles denote τ isosurfaces .

5.3 Bipolar rectification

The bipolar rectification (BR) is based on a conformal rectification described in [2].
The work describes rectification of a stereo pair acquired by a para-catadioptric camera
based on direct bipolar parametrization, where the foci of the parametrization are iden-
tified with epipoles. Since para-catadioptric projection is equivalent to stereographic
projection, a method based on the bipolar parametrization of the stereographic projec-
tion of the spherical model can be used for every omnidirectional central camera. How-
ever, it remains a conformal rectification only for images acquired by para-catadioptric
camera.

The Bipolar coordinates (σ, τ) of a point P = (x, y), see Figure 5.2, are defined as
[12]

x = a
sinh τ

cosh τ − cos σ
,

y = a
sin σ

cosh τ − cos σ
,

where σ ∈ [−π, π] is the angle F1PF2 and τ ∈ (−∞,∞) the natural logarithm of
distances d1 = |F1P| and d2 = |F1P|,

σ = arccos

(
x2 + y2 − a2√

(a− x)2 + y2
√

(a + x)2 + y2

)
,

τ =
1

2
ln

(
(a− x)2 + y2

(a + x)2 + y2

)
.
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5.3. Bipolar rectification

x

y

z
y = 0

A1(e1,1)

A1(e1,2)

N
′

y

x

SN′(A1(e1,1)) SN′(A1(e1,2))

(a) (b)

Figure 5.3: Bipolar rectification. (a) Stereographic projection from N′ = (1, 0, 0)>

to the plane y = 0. A few epipolar circles are shown to be projected onto dotted
circles in the plane y = 0. (b) The unit sphere after stereographic projection. The
epipolar circles are mapped onto circles going through (−1, 0)> and (1, 0), or to put it
alternatively, onto σ isosurfaces in bipolar coordinate system with F1 = (−1, 0)> and
F2 = (1, 0)>.

The bipolar rectification is based on the fact that the spherical rectification projects
circles onto circles. After the epipolar alignment the epipoles are situated in (0, 0, 1)>

and (0, 0,−1)> respectively, thus the canonical stereographic projection is not suitable.
To obtain the projection so that

A1 (e1,1) = A2 (e2,1) = (0, 0,−1)> 7→ (0,−1)>,

A1 (e1,2) = A2 (e2,2) = (0, 0, 1)> 7→ (0, 1)>,

stereographic projection from N′ = (1, 0, 0)> has to be used, see Figure 5.2. The
projection plane of such a projection is y = 0. An orthogonal matrix

R =

 0 0 1
0 1 0
1 0 0


satisfies the condition of Theorem 2, that is R(0, 0, 1)> = (1, 0, 0)> = N′, and we get

∀q ∈ R3 : SN′(q) = S(R−1q),

as well as

SN′ (A1 (e1,1)) = SN′ (A2 (e2,1)) = SN′((0, 0,−1)>) = S(R−1(0, 0,−1)>) = (−1, 0)>,

SN′ (A1 (e1,2)) = SN′ (A2 (e2,2)) = SN′((0, 0, 1)>) = S(R−1(0, 0, 1)>) = (1, 0)>.

To finalize the bipolar rectification, the resulting stereographic projection has to be
converted into bipolar coordinates, so that the foci of the bipolar coordinate system

28



5.4. Stereographic rectification

are F1 = (−1, 0)> and F2 = (1, 0)>, see Figure 5.3(b). Seeing that the epipolar lines
– that we want to map onto scanlines – are σ isosurfaces, positions of σ and τ in the
canonical definition of bipolar transformation need to be swapped.

Definition 19 B : R2 → R2, such that

∀u = (u1, u2) ∈ R2 : B(u) =

 arccos

(
u2
1+u2

2−1√
(1−u2)2+u2

1

√
(1+u2)2+u2

1

)
1
2
ln
(

(1−u2)2+u2
1

(1+u2)2+u2
1

)


is called bipolar transformation.

The inverse bipolar transformation reads as

∀u = (u1, u2) ∈ R2 : B−1(u) =

( sinh u1

cosh u1−cos u2
sin u2

cosh u1−cos u2

)
.

Now, we can define the characteristic transformation of the bipolar rectification.

Definition 20 Let

R =

 0 0 1
0 1 0
1 0 0

 .

Then TBR : R3 → R2 such that

∀q ∈ R3 : TBR(q) = B(S(R−1q)) (5.9)

is the characteristic transformation of the bipolar rectification.

Using Consequence 3, inverse characteristic transformation of the bipolar rectification
reads as

∀u ∈ R2 : T −1
BR(u) = RS−1(B−1(u)). (5.10)

The range of B is (−∞,∞) × [−π, π] and not even the final affine transformation
can map the unlimited interval to the limited image. Using an additional parameter
δ, the visible range of B can to be limited to [−δ, δ] × [−π, π]. Now the final affine
transformation transforming the origin to the center of the image and limiting the
visible range using parameter δ formulates as

∀u ∈ R2 : F δ
SR(u) =

(
w
2δ

0
0 h

2π

)
u +

(
w
2
h
2

)
, (5.11)

where w is the width and h the height of the resulting image. The inverse transforma-
tion derives as

∀u ∈ R2 : F δ
SR

−1
(u) =

(
2δ
w

0
0 2π

h

)
u−

(
δ
π

)
. (5.12)
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5.4. Stereographic rectification

N

p1

p2

p3

S(p3)

S(p1)
x

z

y

S(p2)
ϕ

ϕ

Figure 5.4: Spherically equidistantly positioned vectors p1,p2,p3 and their respective
stereographic transformations S(p1),S(p2),S(p3).

5.4 Stereographic rectification

The stereographic rectification (SGR) is a stereographic projection from a certain point
of the stereo pair after elipolar alignment. The basic difference between stereographic
rectification and previously described rectification methods is the fact that since it only
employs stereographic projection in its characteristic transformation, it does not map
epipolar curves onto scanlines but onto general circles.

The inherent setback of the stereographic projection is the fact, that areas near the
center of projection on the sphere are projected onto “disproportionally” large areas
on the projection plane, see Figure 5.4, to be more precise, the ratio of the area on
the sphere and its stereographic projection is non-linear. The Theorem 3 formally
substantiates this assertion.

Theorem 3

¬
(
∃α ∈ R ∀p ∈ S3\{(0, 0,±1)>} :

δS3((0, 0,−1)>,p)

‖S(p)‖
= α

)

Proof. The assertion becomes apparent after transformation using modified spher-
ical coordinates

p =

 sin(π − ϕ) cos θ
sin(π − ϕ) sin θ

cos(π − ϕ)

 , (5.13)

where ϕ ∈ [0, π], θ ∈ [0, 2π]. The only difference to the canonical spherical coordinate
transformation from Equation (5.1) is the fact that the meridians are parametrized
starting in the South Pole and the fact that since we parametrize unit length vectors
only, there is no need for the parameter ρ. The domain S3 \{(0, 0, 1)> becomes [0, π)×
[0, 2π].
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5.4. Stereographic rectification

Starting with δS3((0, 0,−1)>,p), from the definition we have

δS3((0, 0,−1)>,p) = arccos((0, 0,−1)p).

After reparametrization using Equation (5.13), we have

δS3(p) = arccos((0, 0,−1)(sin(π − ϕ) cos θ, sin(π − ϕ) sin θ, cos(π − ϕ))>),

= arccos(− cos(π − ϕ)),

= arccos(cos(ϕ)),

and finally since ϕ ∈ (0, π)

δS3(p) = ϕ.

After denoting p = (p1, p2, p3)
> the denominator ‖S(p)‖ reads as

‖S(p)‖ =

√(
p1

1− p3

)2

+

(
p2

1− p3

)2

.

Using Equation (5.13) again, we have, after a few trigonometric recombinations,

‖S(p)‖ =

√(
sin(π − ϕ) cos(θ)

1− cos(π − ϕ)

)2

+

(
sin(π − ϕ) sin(θ)

1− cos(π − ϕ)

)2

,

=

√
1− cos(2ϕ)

3 + 4 cos ϕ + cos(2ϕ)
,

=

√
1− cos(ϕ)

1 + cos(ϕ)
,

and finally, again since ϕ ∈ (0, π),

‖S(p)‖ = tan
(ϕ

2

)
.

The assertion can now be rewritten as

¬

(
∃α ∈ R ∀ϕ ∈ (0, π) :

ϕ

tan
(

ϕ
2

) = α

)
.

Indeed, the function ϕ

tan(ϕ
2 )

= ϕ cot ϕ
2

is clearly non-linear. �
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5.4. Stereographic rectification

N = (0, 0, 1)⊤

q

z

S(q)

(a) (b)

R
−1q

S(R−1q)

N = (0, 0, 1)⊤

z

(c) (d)

Figure 5.5: The effect of the change of the center of stereographic projection on a
calibrated omnidirectional image. (a) The unit sphere colored using calibration trans-
formation. (b) Stereographic projection of the calibrated image. (c) The unit sphere
transformed by an arbitrary orthogonal matrix R−1. (d) Stereographic projection of
the transformed sphere.
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5.4. Stereographic rectification

A consequence of the Theorem 3 is the fact that in order to obtain as equally
dimensioned stereographic projection of an area on the unit sphere as possible, the
center of projection has to be on the unit sphere as far as possible. To put it formally,
for an area Ω ⊂ S3, the center of projection so that SN′(Ω) is as “large” – or distortless
– as Ω as possible, is

N′ = arg max
p∈S3

∆S3(Ω,p),

where ∆S3 is the spherical distance between p and Ω, see Definition 7. If more that
one area is considered, a compromise in distortions introduced to the respective areas
can be achieved by projecting from a point maximizing the distance from the union of
the areas,

N′ = arg max
p∈S3

∆S3(
⋃
i∈I

Ωi,p).

In the case of the stereographic rectification the areas of interest are the respective
field on views. If we denote Vi, i = 1, 2 as sets of pixels lying in the fields of view
of the respective images, i.e., the field of view ellipses, the “visible” directions in the
coordinate systems of the respective cameras reads as

Ω′
i = {p : p ∈ S3 & C−1

i (p) ∈ Vi},

where i = 1, 2 and Ci are the respective calibration transformations. After the epipolar
alignment Ω′

i, i = 1, 2 transform to

Ωi = {p : p ∈ S3 & C−1
i (A−1

i (p)) ∈ Vi}.

Now the characteristic transformation of the stereographic rectification can be formu-
lated.

Definition 21 Let Ωi = {p : p ∈ S3 & C−1
i (A−1

i (p)) ∈ Vi},
N′ = arg maxp∈S3 ∆S3(

⋃
i∈I Ωi,p), i = 1, 2. Then TSGR : R3 → R2, such that

∀q ∈ R3 : TSGR(q) = SN′(q)

is called the characteristic transformation of the stereographic rectification.

Although the Definition 21 is a mathematically correct definition of a transforma-
tion, it says little about its actual enumeration. The obstacle lies in the computation
of the center of the stereographic projection N′, which in its general formulation poses
a rather difficult optimization problem. However, with some supplementary assump-
tions, this can be heavily simplified, at least in the case of two sets. Let’s assume
that the visible angle of both cameras is 180◦. Then Ω′

i, i = 1, 2 become exactly the
southern hemisphere Ω′

i = {p : p ∈ S3 & (0, 0, 1)p ≤ 0}, where N′
i = (0, 0, 1)> are the

hemisphere “normals”. After the epipolar alignment Ω′
i, i = 1, 2 transform into arbi-

trary positioned hemispheres Ωi = {p : p ∈ S3 &N>
i p ≤ 0}, where Ni = Ai((0, 0, 1)>)

are the new normals, see Figure 5.6. Another plausible simplifying assumption is the
restriction 1 > N>

1 N2 > 0. This assumption constrains the angle between the normals
to be less than 180◦. The opposite case would result in hemispheres facing in almost
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5.4. Stereographic rectification
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Figure 5.6: The epipolar alignment of Ωi, i = 1, 2 with the assumption that the visible
angle of both cameras is 180◦. Both figure (a) and (b) depict the identical situation,
only from a different viewpoints

opposite direction, “seeing” almost different scenes, which is not a reasonable setup
for stereo matching. In the case that N>

1 N2 = 1, the optimal projection point is, in-
deed, N′ = N1 = N2. Using these constraints, Theorem 4 explicitly states the optimal
projection center.

Theorem 4 Let i = 1, 2, Ai be the epipolar alignment of a stereo pair,Ni = Ai((0, 0, 1)>)
such that 1 > N>

1 N2 > 0, Ωi = {p : p ∈ S3 & (0, 0, 1)A−1
i (p) ≤ 0} . Then

N′ = arg max
v∈S3

∆S3(
⋃

i∈{1,2}

Ωi,v) =
N1 + N2

‖N1 + N2‖
.

Proof. Since Ωi, i = 1, 2 are hemispheres, it follows that the boundaries ∂Ωi, i = 1, 2
are great circles on the unit sphere and

L = S3\
⋃

i∈{1,2}

Ωi

is a lune on the unit sphere, see Figure 5.6. Now the unknown N′ can be rewritten as

N′ = arg max
v∈L

∆S3(∂L,v).

Let PΣ = {p : p ∈ R3 & p>(N1 ×N2) = 0} be a plane containing both N1 and N2,
Σ = {p : p ∈ S3 & p ∈ PΣ} a great circle defined by the plane PΣ, see Figure 5.6(b).
Let PN1 = {p : p ∈ R3 & p>N1 = 0}, a plane defined by the normal vector N1,
PN2 = {p : p ∈ R3 & p>N2 = 0}, a plane defined by the normal vector N2. Let

N′
1 = PN1 ∩ Σ ∩ ∂L,

N′
2 = PN2 ∩ Σ ∩ ∂L,
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5.4. Stereographic rectification

see Figure 5.6(b). It is an easily conceivable geometrical fact, that the vector N′ ∈ L
maximizing the distance ∆S3(∂L,N′) lies on the “equator” of L, precisely between N′

1

and N′
2. A vector dissecting the equator between N′

1 and N′
2 is constructed as N′

1 +N′
2

and since N′ ∈ S3 is required,

N′ =
N′

1 + N′
2

‖N′
1 + N′

2‖
.

N′
1 explicitly quantifies as

N′
1 =

(N1 ×N2)×N1

‖(N1 ×N2)×N1‖
,

since ((N1 × N2)
>N′

1 = 0) ⇒ N′
1 ∈ Σ and (N1 × N′

1 = 0) ⇒ N′
1 ∈ PN1 . The

requirement N′
1 ∈ ∂L is guarantied by the order of the members of the cross products.

By analogy,

N′
2 =

(N2 ×N1)×N2

‖(N2 ×N1)×N2‖
.

Using Lagrange’s formula, the fact that N1,N2 are unit vectors and the commutativity
of the scalar product, we have

(N1 ×N2)×N1 = −(N1(N1 ·N2)−N2(N1 ·N1)) = N2 −N1(N
>
1 N2),

(N2 ×N1)×N2 = −(N2(N2 ·N1)−N1(N2 ·N2)) = N1 −N2(N
>
1 N2).

The addition N′
1 + N′

2 now reads as

N2 −N1(N
>
1 N2) + N1 −N2(N

>
1 N2) = (N1 + N2)− (N1 + N2)(N

>
1 N2)

= (N1 + N2)(1− (N>
1 N2)).

To finally express the vector N′, exploiting the assumption that 0 < N>
1 N2 < 1,

N′ =
N′

1 + N′
2

‖N′
1 + N′

2‖
=

(1− (N>
1 N2))∣∣(1− (N>
1 N2))

∣∣ (N1 + N2)

‖(N1 + N2)‖
=

N1 + N2

‖N1 + N2‖
.

�

Since 0 < N>
1 N2 < 1 is assumed, ∃α∀p,q ∈

⋃
ı∈I Ωi : ‖S(p)− S(q)‖ < α, i.e.,

the image of the union of the areas of interest – S
(⋃

i∈I Ωi

)
– will be always a limited

set. However, a boundary of such a set is not easily computable for general areas.
A final affine transformation based on a parameter δ, cropping the range of TSGR to
[−δ, δ]× [−δ, δ], can be derived to circumvent the problem.

The final affine transformation with the parameter δ, FSR : R2 → R2 for an image
with width w and height h reads as

∀u ∈ R2 : FGSR(u) =

(
w
2δ

0
0 h

2δ

)
u +

(
w
2
h
2

)
. (5.14)

The inverse mapping then derives as

∀u ∈ R2 : F−1
GSR(u) =

(
2δ
w

0
0 2δ

h

)
u−

(
δ
δ

)
. (5.15)
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5.5. Discussion

5.5 Discussion

This section discusses the presented methods using examples of rectified image pairs
presented in Appendix B. The focus of the discussion is the distorsion produced by
the respective rectification methods.

The first sequence presented in the Appendix B is the ‘Street’ sequence from Fig-
ure B.1. It documents behaviour of the presented rectification methods in cases when
an epipole is located near the boundary of the field of view – lateral move – and cases
when an epipole is located near the center of the field of view – forward move. All
scanline rectification methods perform reasonably well in the case of a lateral move, see
Figures B.2(a, b), B.3(a, b), B.4(a, b), B.5(a, b), yet there is noticable area enlargement
around epipoles in the case of bipolar rectification. The measure of this enlargement
is directly dependent of the size of the parameter δ of the final affine transformation.
However, all scanline rectification methods produce heavily distorted results in the case
of a forward move, see Figures B.2(c, d), B.3(c, d), B.4(c, d), B.5(c, d). Again, in the
case of bipolar rectification the areas near the epipoles are heavily enlarged at the ex-
pense of the rest of the image. On the other hand, stereographic rectification performs
well for both lateral and forward move, see the rectification overlay in Figure B.6 – the
images produced using stereographic rectification feature the least distorsion from the
original images.

The second sequence presented in the Appendix B is the ‘Office’ sequence from
Figure B.8. It documents behaviour of the presented rectification methods in cases
when an epipole is present between the center of the field of view and its boundary. In
case of images with the field of view up to 180◦, there is always at most one epipole
visible in the field of view. The closer the epipole is to the center of the field of view,
the greater distorsion is introduced by all scanline rectification methods, see B.2(a, b,
c, d), B.3(a, b, c, d), B.4(a, b, c, d). The stereographic rectification produces heavy
distorsion as well, see Figures B.5(a, b, c, d). However, as expected, the areas near the
center of the rectified images are mainly unaffected. On the contrary, the matching
features lie closer to each other than in the original image pair, see Figures B.6(a, b)
vs. B.6(c, d). The area enlargement produced by the stereographic rectification, see
Figure B.6(e, f), is limited to the parts of the respective fields of view that do not
overlap and is thus no problem for stereo matching.
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6 3D Reconstruction

The rectification of a stereo pair is usually used as a pre-step to a dense stereo corre-
spondence algorithm. Such an algorithm tries to determine for every pixel u1 in the
first image a pixel u2 in the second image, that correspond to the same scene point as
pixel u1. Let’s denote the relation as u1 ↔ u2. Various methods have been proposed
to solve the dense stereo correspondence problem [8].

Definition 22 Let P = [P1,P2] be a rectified stereo pair, where D = [0, w] × [0, h] is
the domain of P1,P2. Then a map DP : D → R2 is called the disparity map for the
stereo pair P .

Definition 23 Let P = [P1,P2] be a rectified stereo pair, where D = [0, w] × [0, h] is
the domain of P1,P2. Then a map DT

P :→ R2 such that

∀u ∈ D :
(
DT

P (u) = v ⇐⇒ u ↔ (u + v)
)
,

is called the ground truth disparity map for the stereo pair P .

The result of running a dense stereo correspondence algorithm on a rectified stereo
pair P = [P1,P2] is usually a disparity map, see Definition 22, such that DP (u) = v′,
if the algorithm flags, possibly not correctly, the pair u,u + v as corresponding to the
same scene point. Let’s denote this relation u↔DP

u+v. The goal of the algorithm is
to produce a disparity map as close to the ground truth, see Definition 23, as possible.
The accuracy of the resulting disparity maps varies from method to method. In case
that the pre-step rectification was a scanline rectification, the disparity map will have
the following property:

∀u ∈ D :
(
DP (u) = v =⇒ v = (vx, 0)>

)
.

Let’s suppose that a stereo pair P = [P1,P2] was rectified using rectification method
G = [G1,G2],

G1 = C1 ◦ A1 ◦ T ◦ F ,

G2 = C2 ◦ A2 ◦ T ◦ F .

Further, let’s suppose that a dense stereo correspondence algorithm produced a dispar-
ity map DP for the rectification of the stereo pair

[
Iϕ
P1

(
G−1

1

)
, Iϕ

P2

(
G−1

2

)]
. The disparity

map applies to the pixel position in the rectified images, however, the relation “↔DP
”

can be directly transformed into a relation of 3D vectors as

∀p,q ∈ S3 :

(
p↔
DP

q ⇐⇒ F (T (A1 (q)))↔
DP

F (T (A2 (q)))

)
.
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To elaborate, according to the disparity map DP , a vector p ∈ R3 in the the Cartesian
coordinate system of the first camera and a vector q ∈ R3 in the Cartesian coordinate
system of the second camera point the the direction of the same scene point X, iff
F (T (A1 (q)))↔DP

F (T (A2 (q))) .
Having vectors p = (p1, p2, p3),q = (q1, q2, q3) such that p↔DP

q, the observed
scene point X ∈ R3 can be reconstructed up to scale using a simple linear triangulation
method presented in [6]. Remind from Equation (3.2) that

∃α > 0 : αx = PX, (6.1)

where P ∈ R3×4 is a projection matrix. Let P1, P2 ∈ R3×4 be the respective projection
matrices for cameras that acquired the image pair P , then it holds that

α1p = P1X, (6.2)

α2q = P2X. (6.3)

After specifying matrices P1, P2 as

P1 =
(

r1
1 r2

1 r3
1

)>
, P2 =

(
r1
2 r2

2 r3
2

)>
,

i.e., vectors rj
i , i = 1, 2, j = 1, 2, 3 are the rows of the respective matrices, Equa-

tions (6.2) and (6.3) rewrite as

α1p1 = r1>
1 X,

α1p2 = r2>
1 X,

α1p3 = r3>
1 X,

α2p1 = r1>
2 X,

α2p2 = r2>
2 X,

α2p3 = r3>
2 X.

The respective scales α1, α2 can be eliminated by mutual division of the equation. After
recombining the six equations as

AX = 0, (6.4)

where

A =


p1r

3>
1 − p3r

1>
1

p1r
2>
1 − p2r

1>
1

p2r
3>
1 − p3r

2>
1

q1r
3>
2 − q3r

1>
2

q1r
2>
2 − q2r

1>
2

q2r
3>
2 − q3r

2>
2

 ,

the Equation (6.4) can be standardly solved for X using SVD. In the case that p ↔ q,
i.e., noiseless correspondence, rank(A) = 3.
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7 Measuring the accuracy of an
essential matrix

The standard method of derivation of an essential matrix for a stereo image pair is based
on a computation of putative correspondences followed by ransac-based estimation
of the essential matrix [4, 6]. The goal of this chapter is to devise a method to judge
the accuracy of an already computed essential matrix based on a rectification method
and a partially defined disparity map.

7.1 Accuracy of an essential matrix

Let’s suppose that a stereo pair P = [P1,P2] was rectified as a pair of images R =[
Iϕ
P1

(
G−1

1

)
, Iϕ

P2

(
G−1

2

)]
using an essential matrix F and using rectification method G =

[G1,G2],

G1 = C1 ◦ A1 ◦ T ◦ F ,

G2 = C2 ◦ A2 ◦ T ◦ F .

After the epipolar alignment [A1,A2] the 2D epipolar curves of the original stereo
pair are aligned with the meridians of the unit sphere and after the characteristic
rectification transformation T followed by the final affine transformation F are the
epipolar curves again transformed onto 2D curves, in the case of scanline rectification
method onto lines parallel to y = 0, in case of stereographic projection onto circles.
Let εv be a 2D epipolar curve after rectification containing a point v ∈ R2,

εv =
{
v′ : ∃n ∈ S3

(
((0, 0, 1)n = 0) &

(
n>v′ = 0

)
&
(
n>T −1(F−1(v)) = 0

))}
.

then a set E containing all epipolar curves reads as

E =
{
εv : v ∈ R2

}
.

As a consequence of the Equation (3.7) and the construction of the rectification method
G, following holds for vectors p,q ∈ R3

q>Fp = 0 =⇒ ∃ε ∈ E : F (T (A1 (p))) ∈ ε & F (T (A2 (p))) ∈ ε.

Suppose there is a method capable of producing, possibly not inaccurate, disparity
map DP : D → R2, see Definition 22, derived from the rectified image pair R. Let’s
call such a method disparity method. Then the accuracy of the essential matrix F with
respect to the disparity map Dp, can be quantified by the amount of diversion of the
vectors defined by the disparity matrix from the epipolar lines E defined by F. Such a
as measure leads to the Definition 24.
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7.2. ∆ based on stereographic rectification

Definition 24 Let P be an stereo image pair, G = [C1 ◦ A1 ◦ T ◦ F , C2 ◦ A2 ◦ T ◦ F ]
a rectification method, R = [R1,R2] the rectification of P using G and and an essential
matrix F, such that D′ is the range of R1,R2. Let DP : D ⊂ D′ → R2 be a disparity
map based on R, |D| the cardinality of D. Then

EDP
(F) =

∑
v∈D ∆(εv,v +DP (v))

|D|
, (7.1)

is the accuracy of the essential matrix F with respect to the disparity map DP .

Since the function ∆ is always non-negative, the measure EDP
is also always non-

negative. For a perfectly accurate disparity map EDP

(
FT
)

= 0 for perfectly accurate
essential matrix FT .

Suppose an essential matrix F′ 6= F aiming to describe the same epipolar geometry
of the stereo pair P . Let R′ be the rectification of P based on the rectification method
G and the essential matrix F′. Let D′

P : D′ → R2 be a disparity map derived by the
same method as DP and based on the rectification R′. Then if ED′

P
(F′) < EDP

(F), F′

can be judged to be better describing the epipolar geometry of the image pair P as F,
with respect to the disparity maps DP ,D′

P .
It is obvious that such a method for judging and comparison of quality of essen-

tial matrices stands and falls with – so far undisclosed – method of producing sparse
but fairly accurate disparity maps of rectified image pairs. Obviously, dense stereo
correspondence algorithms discussed in Chapter 6 are useless as a disparity method,
since such algorithms are designed to search for disparities only exactly on the epipolar
lines, i.e., EDP

(F) = 0 for every DP produced by such a algorithm. An usefull dispar-
ity method has to be based on another assumptions. Method [9] is a candidate for
a reasonable disparity method. The disparity method as well as the methodology of
measuring the accuracy of an essential matrix remain the subject of futher study.

7.2 ∆ based on stereographic rectification

The stereographic rectification was designed specifically as a rectification method suit-
able for measuring the accuracy of an essential matrix. It introduces the least distortion
to the original stereo pair from the rectification methods discussed in this work and
does not suffer from the distortion of the area near the epipoles and thus is suitable as
a pre-procesing step of a disparity method. Further, the epipolar curves in the recti-
fied stereo pair are easily parametrized as circles or lines. In this section, the explicit
formula for the function ∆ from the Equation (24) is derived for the case when the
stereographic rectification is the underlying rectification method.

Let G = [C1 ◦ A1 ◦ T ◦ F , C2 ◦ A2 ◦ T ◦ F ] be the stereographic rectification method
based on an essential matrix F. In the case that none of the epipoles is projected onto in-
finity, i.e., e = (e1, e2) = F

(
T
(
(0, 0, 1)>

))
∈ R2, ė = (ė1, ė2) = F

(
T
(
(0, 0,−1)>

))
∈

R2, and a point v ∈ R2, not collinear with e and ė, the epipolar curve containing v is
a circle and can be parametrized using the formula for a circle defined by three points
[11] as

εv =
{
u : u = (x, y)> ∈ R2 & |A| = 0

}
,

where
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7.2. ∆ based on stereographic rectification

A =


x2 + y2 x y 1
v2

1 + v2
2 v1 v2 1

e2
1 + e2

2 e1 e2 1
ė2
1 + ė2

2 ė1 ė2 1

 .

The center and the radius of the epipolar circle εv then reads as

cεv =

(
− β

2α
,− γ

2α

)>

, rεv =

√
β2 + γ2

4α2
+

δ

α
,

where

α =

∣∣∣∣∣∣
v1 v2 1
e1 e2 1
ė1 ė2 1

∣∣∣∣∣∣ ,
β = −

∣∣∣∣∣∣
v2

1 + v2
2 v2 1

e2
1 + e2

2 e2 1
ė2
1 + ė2

2 ė2 1

∣∣∣∣∣∣ ,
γ =

∣∣∣∣∣∣
v2

1 + v2
2 v1 1

e2
1 + e2

2 e1 1
ė2
1 + ė2

2 ė1 1

∣∣∣∣∣∣ ,
δ = −

∣∣∣∣∣∣
v2

1 + v2
2 v1 v2

e2
1 + e2

2 e1 e2

ė2
1 + ė2

2 ė1 ė2

∣∣∣∣∣∣ .
The function ∆ for quantifying the distance of the vector v +DP (v) and the epipolar
circle εv reads as

∆(εv,v +DP (v)) = |‖cεv − (v +DP (v))‖ − rεv | .

In the case that v is collinear with e and ė, or, without loss of generality, ė = ∞,
the epipolar line containing the point v is a straight line, parametrized as

εv =
{
u : u ∈ R2 & (∃α ∈ R : e + α(e− v) = u)

}
.

The function ∆ for quantifying the distance of the point v + DP (v) and the epipolar
line εv reads as

∆(εv,v +DP (v)) =

∣∣∣∣(v − (v +DP (v)))−
(

(v − (v +DP (v))) · (e− v)

‖e− v‖

)
(e− v)

‖e− v‖

∣∣∣∣ ,
=

∣∣∣∣(e− v)>DP (v)

‖e− v‖2 (e− v)−DP (v)

∣∣∣∣ .

41



8 Conclusion

The thesis presented rectification methods of an omnidirectional stereo pair. Several
methods were developed and a novel rectification method called stereographic recti-
fication was introduced. A Matlab toolbox for rectification of a stereo pair using
the methods developed in this work was implemented as a part of this thesis. The
appendices of this work include the documentation of the toolbox as well as examples
of the results obtained using the toolbox.

In the second part of the thesis we presented a method of 3D reconstruction of a
stereo pair rectified using an arbitrary of the adduced methods based on linear tri-
angulation method and an externally supplied disparity map. Further, a method of
judging the accuracy of an essential matrix based on the stereographic rectification was
devised.
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A OmniRect toolbox

OmniRect toolbox is a direct Matlab implementation of the rectification methods
presented in this work. The implementation is for speed optimization purposes divided
between two parts written Matlab and C programming languages respectively. This
appendix describes version 1.0.0 of the toolbox. The toolbox is known to work with
Matlab 7.5 and gcc 4.1.2.

A.1 OmniRect distribution

The toolbox distribution can be found as archive omnirect-1.0.0.tar.bz2 on the
CD-ROM. Following listing shows the content of the distribution:

omnirect.m

orect.c

demo.m

data/

Following list explains function of the individual files:

• omnirect.m – Implementation of the Matlab function omnirect. The function
omnirect only prepares data for the function orec.

• orect.c – Implementation of the C function orect. The function orect does
the actual computing.

• demo.m – The demo script demonstrates the usage of the toolbox on several ex-
amples.

• data – The directory data contains files necessary for the demo demonstration
script.

A.2 Usage

The only entry point to the toolbox is the function omnirect. The input of the function
is the image pair and various parameters, output is the rectified image pair. The
following shows and explains how to call the Matlab function omnirect:

[rim1, rim2] = omnirect(im1, im2, calib1, calib2, F, ...

rectfunc, affine, intfunc);
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A.2. Usage

• im1 – The first image from the stereo pair. The format of parameter im1 is a
width×height×3 matrix of type uint8, i.e., RGB values in the range [0, 255]. The
type is compatible with imread function from the Matlab’s Image Processing
Toolbox.

• im2 – The second image from the stereo pair. The fomat of parameter im2 is
identical to parameter im1.

• calib1 – An instance of the calib structure for the first image, see Section A.2.1.

• calib2 – An instance of the calib structure for the second image, see Sec-
tion A.2.1.

• F – Essential matrix describing the epipolar geometry of im1 and im2, see Sec-
tion 3.3.

• rectfunc – Selects the desired rectification method, see Section A.2.2.

• affine – Parameters of final affine transformation of the rectification method
selected by the parameter rectfunc, see Section A.2.2.

• intfunc – Selects an interpolation method to be used, see Section A.2.3.

• rim1, rim2 – The resulting rectified image pair.

A.2.1 Calibration

Two calibration transformations are supported: one-parametric linear model of a fish-
eye lens and two-parametric non-linear model of a fisheye lens. The calibration trans-
formation of the one-parametric model is defined as

∀u ∈ R2 : Ca =

(
u
‖u‖

tan(a ‖u‖)

)
. (A.1)

The transformation of the two-parametric non-linear model is defined as

∀u ∈ R2 : Ca,b =

(
u
‖u‖

tan( 1
b

arcsin( b‖u‖
a ))

)
. (A.2)

The properties of both models are discussed in detail in [6].
The calib structure provides necessary data for computation of the calibration

transformation. However, not a general affine transformation as proposed in Equa-
tion (3.5) is implemented, only scaling and translation is supported at the moment,
see Figure A.2.1. The following lists members of the calib structure.

• cam – Selects the calibration transformation, set to ‘fisheye1p’ for one-parametric
model, set to ‘fisheye2p’ for the two-parametric non-linear model.

• a – Parameter a of the one-parametric model, see Equation (A.1), and the two-
parametric model, see Equation (A.2), respectively.
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A.2. Usage

c

y

x

r

(a) (b)

Figure A.1: The meaning of the calib.c and calib.r parameters.

• b – Parameter b of the two-parametric model, see Equation (A.2). Undefined for
calib.cam == fisheye1p.

• c – 2×1 vector denoting the center of the field of view in pixels, see Figure A.2.1.

• r – Radius of the circle bounding the field of view in pixels, see Figure A.2.1.

• e – Parameter e denotes the first epipole of the epipole pair. Let

(u1,u2, e2) diag(1, 1, 0)(v1,v2, e1)
>

be the SVD decomposition of an essential matrix F passed to the function omnirect,
as computed by standard Matlab function svd, i = 1, 2. Then calibi.e == 0
selects ei as the first epipole, i.e., ei,1, calibi.e == 1 selects −ei as the first
epipole for the respective image.

Note that since two instances of calib structures are passed to the omnirect function,
it is possible to use different calibration transformations for one image pair.

A.2.2 Rectification

The rectification method is selected by the parameter rectfunc, which can assume one
the following values:

• ‘sr’ – Spherical rectification, see Section 5.1.

• ‘ssr’ – Swapped-spherical rectification, see Section 5.2.

• ‘br’ – Bipolar rectification, see Section 5.3.

• ‘sgr’ – Stereographic rectification, see Section 5.4.

Although all of the final affine transformations from Chapter 5 correctly map the
reasonable range of the respective characteristic transformations to the dimensions of
final images, OmniRect toolbox introduces a modification to the final transformations
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A.2. Usage

to produce visually more appealing results without changing the desirable properties.
If

F(u) = Au + t

is the final affine transformation for transformation into domain [0, w] × [0, h] ∈ R2,
when

F ′(u) = v + R (Au + t + p) , (A.3)

where o = (o1, o2)
> ∈ {0, 1} × {0, 1}, v = (o1w, o2h)>, p ∈ R2 and

R = R−1 =

(
1− 2o1 0

0 1− 2o2

)
.

is the modified final affine transformation used in OmniRect. The vectors o,p are user
supplied. The vector o = (o1, o2)

> “flips” the images along the respective axis if set
to 1. The vector p is an arbitrary translation vector. The vector p is particular useful
for spherical and swapped spherical rectifications since the characteristic functions of
these rectification methods are periodical functions. The inverse transformation F ′−1

reads as
F ′−1(u) = A−1 (R (u− v)− t− p) .

The parameters specific to the selected rectification method are passed through the
affine structure. The following lists members of the affine structure.

• width – Width of the resulting images.

• height – Height of the resulting images.

• p – see Equation (A.3).

• o – see Equation (A.3).

• param – Parameter referred to in the final affine transformations of the respective
rectification methods as δ. Undefined in case the δ parameter is not featured in
the final affine transformation.

A.2.3 Interpolation

Two interpolation methods are supported: nearest neighbor interpolation and bilinear
interpolation. The following lists allowed values of the parameter intfunc:

• ‘nn’ – Nearest neighbor interpolation, see Equation (2.1).

• ‘bl’ – Bilinear interpolation, see Equation (2.2).
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B Comparison of rectification
methods

This appendix presents results obtained using the rectification methods described in
this work through the OmniRect Matlab toolbox. The images are direct output of
the demo script included in the OmniRect toolbox.

B.1 ‘Street’ sequence

‘Street’ sequence was acquired using Canon EOS 1Ds with Sigma 8mm-f4-EX fish-eye
lens. Rectification of two image pairs

PL =
[
P1

L,P2
L

]
, PF =

[
P1

F ,P2
F

]
is performed using all of the presented methods, see Figure B.1. The image pair PL

resulted from a lateral move of the camera between the shots. Essential matrix used
for the image pair PL

FL =

 0.0002 0.0350 −0.0090
−0.0502 0.0622 0.9968
0.0052 −0.9974 0.0623


Calibration structure calib for P1

L

a = 1.5708

b = 0

c = (1050, 680)>

r = 641

e = 0

cam = fisheye1p

Calibration structure calib for P2
L

a = 1.5708

b = 0

c = (1050, 680)>

r = 641

e = 1

cam = fisheye1p

The image pair PF resulted from a forward move of the camera between the shots.
Essential matrix used for the image pair PF
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B.1. ‘Street’ sequence

FF =

 −0.0212 0.9516 0.1913
−0.9782 0.0093 0.0832
−0.1900 −0.2375 −0.0315


Calibration structure calib for P1

F

a = 1.5708

b = 0

c = (1050, 680)>

r = 641

e = 0

cam = fisheye1p

Calibration structure calib for P2
F

a = 1.5708

b = 0

c = (1050, 680)>

r = 641

e = 1

cam = fisheye1p
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B.1. ‘Street’ sequence

ue1,2
ue1,1

ue2,2
ue2,1

(a) (b)

ue1,1 ue2,1

(c) (d)

Figure B.1: (a, b) The image pair PL = [P1
L,P2

L] acquired by a lateral motion of the
camera. (b, c) The image pair PF = [P1

F ,P2
F ] acquired by a forward motion of the

camera.
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B.1. ‘Street’ sequence

B.1.1 Spherical rectification

(a) (b)

(c) (d)

Figure B.2: (a, b) Spherical rectification of the image pair PL. (b, c) Spherical rectifi-
cation of the image pair PF .

The affine structure for PL The affine structure for PF

width = 500
height = 500

o = (0, 1)>

p = (0, 0)>

param = 0

width = 500
height = 500

o = (1, 0)>

p = (0,−height/2)>

param = 0
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B.1. ‘Street’ sequence

B.1.2 Swapped spherical rectification

(a) (b)

(c) (d)

Figure B.3: (a, b) Swapped spherical rectification of the image pair PL. (b, c) Swapped
spherical rectification of the image pair PF .

The affine structure for PL The affine structure for PF

width = 500
height = 500

o = (1, 1)>

p = (0,−height/2)>

param = 0

width = 500
height = 500

o = (1, 0)>

p = (−width/2,−height/2)>

param = 0
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B.1. ‘Street’ sequence

B.1.3 Bipolar rectification

(a) (b)

(c) (d)

Figure B.4: (a, b) Bipolar rectification of the image pair PL. (b, c) Bipolar rectification
of the image pair PF .

The affine structure for PL The affine structure for PF

width = 500
height = 500

o = (1, 1)>

p = (0,−height/2)>

param = 5

width = 500
height = 500

o = (0, 0)>

p = (0, 0)>

param = 0
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B.1. ‘Street’ sequence

B.1.4 Stereographic rectification

(a) (b)

(c) (d)

Figure B.5: (a, b) Stereographic rectification of the image pair PL. (b, c) Stereographic
rectification of the image pair PF .

The affine structure for PL The affine structure for PF

width = 500
height = 500

o = (0, 0)>

p = (0, 0)>

param = 1.2

width = 500
height = 500

o = (0, 0)>

p = (0, 0)>

param = 1.2
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B.1. ‘Street’ sequence

B.1.5 Rectification overlay

(a) (b)

(c) (d)

Figure B.6: (a) Overlay of PL,P1
L in the red channel, P2

L in the green channel. (b) Over-
lay of PF ,P1

F in the red channel, P2
F in the green channel. (c) Overlay of stereographic

rectification of PL. (d) Overlay of stereographic rectification of PL.
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B.1. ‘Street’ sequence

(a) (d)

(b) (e)

(c) (f)

Figure B.7: (a, b, c) Overlay of spherical, swapped spherical and bipolar rectifica-
tion of PL respectively. (d, e, f) Overlay of spherical, swapped spherical and bipolar
rectification of PF respectively.
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B.2. ‘Office’ sequence

B.2 ‘Office’ sequence

‘Office’ sequence was acquired using Kyocera Finecam M410R with custom mounted
Nikon FC-E8 fish-eye lens. Rectification of two image pairs

PO1 =
[
P1

O1
,P2

O1

]
, PO2 =

[
P1

O2
,P2

O2

]
,

is performed using all of the presented methods, see Figure B.1. The image pair PO1

resulted from moving the camera along a 1/4 of a circle with diameter of about 2m, the
view direction facing the center of the circle. Essential matrix used for the image pair
PO2

FO1 =

 0.0258 0.6456 0.0007
0.6904 −0.0152 0.7232
−0.0186 −0.7630 0.0110


Calibration structure calib for both P 1

O1
and P 2

O1

a = 1.5693

b = −0.0446

c = (1166, 846)>

r = 794

e = 1

cam = fisheye2p

The image pair PO1 resulted from moving the camera along a 1/8 of a circle with
diameter of about 2m, the view direction facing the center of the circle. Essential
matrix used for used for the image pair PO2

FO2 =

 −0.0001 0.3735 −0.0034
0.3575 −0.0063 0.9339
−0.0055 −0.9276 −0.0065


Calibration structure calib for both P 1

O2
and P 2

O2

a = 1.5693

b = −0.0446

c = (1166, 846)>

r = 794

e = 1

cam = fisheye2p
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B.2. ‘Office’ sequence

ue1,2

ue2,1

(a) (b)

ue1,2
ue2,1

(c) (d)

Figure B.8: (a, b) The image pair PO1 =
[
P1

O1
,P2

O1

]
. (b, c) The image pair PO2 =[

P1
O2

,P2
O2

]
. Note that P1

O1
= P1

O2
.
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B.2. ‘Office’ sequence

B.2.1 Spherical rectification

(a) (b)

(c) (d)

Figure B.9: (a, b) Spherical rectification of the image pair PO1 . (b, c) Spherical
rectification of the image pair PO2 .

The affine structure for PO1 The affine structure for PO2

width = 500
height = 500

o = (0, 1)>

p = (0, 0)>

param = 0

width = 500
height = 500

o = (0, 1)>

p = (0, 0)>

param = 0
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B.2. ‘Office’ sequence

B.2.2 Swapped spherical rectification

(a) (b)

(c) (d)

Figure B.10: (a, b) Swapped spherical rectification of the image pair PO1 . (b, c)
Swapped spherical rectification of the image pair PO2 .

The affine structure for PO1 The affine structure for PO2

width = 500
height = 500

o = (0, 1)>

p = (0, height/2)>

param = 0

width = 500
height = 500

o = (0, 1)>

p = (0, height/2)>

param = 0
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B.2. ‘Office’ sequence

B.2.3 Bipolar rectification

(a) (b)

(c) (d)

Figure B.11: (a, b) Bipolar rectification of the image pair PO1 . (b, c) Bipolar rectifi-
cation of the image pair PO2 .

The affine structure for PO1 The affine structure for PO2

width = 500
height = 500

o = (1, 1)>

p = (0, height/2)>

param = 5

width = 500
height = 500

o = (1, 1)>

p = (0, height/2)>

param = 5
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B.2. ‘Office’ sequence

B.2.4 Stereographic rectification

(a) (b)

(c) (d)

Figure B.12: (a, b) Stereographic rectification of the image pair PO1 . (b, c) Stereo-
graphic rectification of the image pair PO2 .

The affine structure for PO1 The affine structure for PO2

width = 500
height = 500

o = (0, 0)>

p = (0, 0)>

param = 2.7

width = 500
height = 500

o = (0, 0)>

p = (0, 0)>

param = 2.7
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B.2. ‘Office’ sequence

(a) (b)

(c) (d)

Figure B.13: (a, b) Stereographic rectification of the image pair PO1 . (b, c) Stereo-
graphic rectification of the image pair PO2 .

The affine structure for PO1 The affine structure for PO2

width = 500
height = 500

o = (0, 0)>

p = (0, 0)>

param = 1

width = 500
height = 500

o = (0, 0)>

p = (0, 0)>

param = 1
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B.2. ‘Office’ sequence

B.2.5 Rectification overlay

(a) (b)

(c) (d)

(e) (f)

Figure B.14: (a) Overlay of PO1 ,P1
O1

in the red channel, P2
O1

in the green channel.
(b) Overlay of PO2 ,P1

O2
in the red channel, P2

O2
in the green channel. (c,d) Overlay

of stereographic rectification of PO1 and PO2 respectively, param = 1. (e,f) Overlay of
stereographic rectification of PO1and PO2 respectively, param = 2.7.
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B.2. ‘Office’ sequence

(a) (d)

(b) (e)

(c) (f)

Figure B.15: (a, b, c) Overlay of spherical, swapped spherical and bipolar rectification
of PO1 respectively. (d, e, f) Overlay of spherical, swapped spherical and bipolar
rectification of PO2 respectively.
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