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Abstract
This diploma thesis introduces the measures of network connectedness in the
context of asset pricing. It proposes an asset pricing model in which the factor
of connectedness is included as one of the risk factors together with the three
Fama-French factors. The goal of the analysis is to examine whether the con-
nectedness represents a significant risk factor that should be considered while
determining the risk premium of the portfolio in different sectors in the market.
Using the realized volatilities and returns of 496 assets of SP 500 index over
the period 2005 – 2018, that are divided into 11 sectors, we firstly determine
the linkages of connectedness between the assets in the same sector. Applying
Fama-MacBeth two-step regression model, we explore the significance of the
connectedness factor for the determination of the risk premium. We argue that
the sector overall connectedness represents a significant risk in most of the sec-
tors and should be therefore taken into account by the investors in all sectors.
Moreover, the total directional connectedness that captures the spillover of
shocks to one asset from the other assets in the sector, is a significant risk fac-
tor that should increase the risk premium of the portfolio, especially in sectors
such as the financial, health care, consumer and real estate sector.
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Abstrakt
Tato diplomová práce se zabývá propojeností sítě a jejího vlivu v oblasti oceňování
akcií. Práce navrhuje model oceňování akcií, který zahrnuje faktor propo-
jenosti jako jeden z rizikových faktorů společně se třemi Fama-French fak-
tory. Cílem analýzy je zjistit, zda propojenost představuje signifikantní faktor
rizikovosti, který by měl být brán v úvahu při určování výše rizikové prémie
portfolia v různých sektorech na trhu. Za použití realizovaných volatilit a
výnosů 496 akcií zahrnutých v SP 500 indexu v období 2005 až 2018, které
jsou pro účely analýzy rozděleny do 11 sektorů, určíme nejdříve propojenost
mezi akciemi v jednotlivých sektorech. Aplikováním Fama-MacBeth dvoufá-
zového regresního modelu, je pak zjišťována signifikance faktoru propojenosti
pro určování rizikové prémie napříč jednotlivými sektory. Z výsledků vyplývá,
že faktor celkové propojenosti sektoru představuje významný faktor rizika v
mnoha sektorech. Celkovou propojenost systému by proto měli investoři zohled-
nit napříč všemi sektory při stanovování rizika. Celková směrová propojenost,
která zachycuje propojenost spojenou s přeléváním šoků z ostatních akcií v
daném sektoru na danou akcii, je významným rizikovým faktorem, který by
měl zvyšovat rizikovou prémii portfolia, a to zejména v sektorech jako je fi-
nanční, zdravotnický, spotřebitelský sektor a sektor nemovitostí.

Klasifikace JEL G10, G11, G12, C13, C58
Klíčová slova finanční síť, propojenost, riziková prémie,
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Motivation The current economic literature focuses its interest more and more fre-
quently on the topic of connectedness relating the time-varying network of relation-
ships. The presently available academic papers provide the information concerning
the econometric connectedness measures. The phenomenon of connectedness is nowa-
days studied in financial risk management as a determinant of the market risk and
macroeconomic risks. The network of connectedness can be estimated by the vari-
ance decompositions from a vector autoregression approximating model introduced
by Diebold and Yilmaz (2012). This approach using the variance decompositions is
often used in modern econometrics since it provides the information including the
future uncertainty of a particular variable due to shocks in another variable. More-
over, this method can be used to measure the connectedness of the system of many
variables using the aggregated information in variance decompositions.

The purpose of this thesis is to investigate how the connectedness among assets
should be priced by investors across different sectors i.e. what risk premium investors
should request. The main hypothesis of this work is that the stronger the connected-
ness, the higher the risk and hence higher compensation required by investors (risk
premium). The aim of the thesis is also to explore how the risk premium differs
across different sectors because the currently available literature does not provide
such comparison.

The main motivation for this thesis is to contribute to the expanding number of
the academic papers regarding the connectedness and to enrich it with the analysis
examining the size of the risk premium taking the connectedness of the asset prices
at different sectors into the consideration. Using the publicly available asset prices,
I would like to estimate the connectedness among the individual asset prices and use
this network of relationships as one of the determining factor in the risk premium re-
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gression. I believe that this work could be not only interesting for the readers but also
useful for the investors in the decision-making process of the portfolio composition.

Hypotheses

Hypothesis #1: A portfolio connectedness is priced in asset returns.

Hypothesis #2: Investors at different sectors require different risk premium
for bearing connectedness risk.

Hypothesis #3: Connectedness is a factor that approximates risk in financial
markets well.

Methodology In this diploma thesis, I will estimate the connectedness for the
particularly chosen asset prices of approximately 500 companies i.e. I will try to find
out how the shock in one asset price affects the other asset prices in the portfolio
and construct the network showing these relationships. Then I will use the factor
of connectedness as one of the criterions for evaluation of the risk premium i.e. as
a factor for risk pricing. All these procedures will be applied for 11 different sectors
and their results will be compared afterwards.

According to Diebold and Yilmaz (2012), connectedness measures based on vari-
ance decompositions tell us how much of entity’s future uncertainty is caused due
to the shocks arising from another entity. In this work, I will use VAR model in
order to estimate the coefficients through moving average. Moreover, the variance
decomposition including also the contribution of shocks to the system will show us
how the shock into the price of one variable affects the price of the other variable.

For clarity and better visualisation, I will create a table from the obtained values
of connectedness where higher values will signify stronger connectedness among the
asset prices indicating higher risk of the overall portfolio. Furthermore, from this
table we will be able to say how the shock in one of the asset prices from the portfolio
affects the prices of the other assets in the portfolio.

Using the estimated values of the connectedness among particular asset prices in
the portfolio from the constructed table and factors from Fama-French three- factor
model including market risk, the outperformance of small versus big companies, and
the outperformance of high book/market versus small book/market companies, I will
estimate the most probable value of the risk premium for the investor.
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Expected Contribution Diebold and Yilmaz (2014) suggested that the literatures
of connectedness, networks and asset pricing should be all considered together while
using network perspectives in economic context. Diebold and Yilmaz (2009) intro-
duced the method of connectedness using generalized forecast error variance decom-
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on sectoral linkages implications on asset pricing. Herskovic (2018) investigated the
asset pricing in multisector model, but he did not included the connectedness as a
factor affecting the size of the risk premium.

The purpose of diploma thesis is to contribute to currently available economic
literature by showing how the connectedness among the asset prices in the portfolio
influences the risk premium if the market prices are set correctly across different
sectors. The thesis will work with the data of approximately 500 companies from the
period 2005-2018 which will be divided based on the sectors. By using the real asset
prices data, this work aims to support the idea that the stronger is the connectedness
among the asset prices, the higher is the potential risk of the portfolio and therefore
there should be higher risk premium for the investors. The main contribution of
the thesis will be the comparison of the required risk premium concerning besides
the other factors the connectedness risk across 11 different sectors because current
literature have not provided such analysis yet.

I believe that the findings of this thesis working with the factor of connectedness
between assets prices can be useful for the potential investors at different sectors in
their decision-making process of the portfolio compositions.

Outline

1. Introduction of the topic and review of the currently available literature: study-
ing and summarizing the existing papers concerning the topics of connectedness
(measures and main findings), network theory (findings and methodology) and
asset pricing theory and models ( CAPM, Fama- French factors models)

2. Methodology: introducing the methods used in the thesis and explaining the
reasons why these methods were found suitable for the analysis

3. Empirical analysis of real data: description of the data, introduction of the
examined sectors, creating the models, estimating the models, interpretation
and discussion of the results
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Chapter 1

Introduction

Financial market interdependence represents an important part of the systemic
risk analysis, therefore the characterization of the interdependence has become
one of the main objectives of the economic literature. Over the last decades,
the descriptive measures of the interconnection of the financial markets went
through a significant transformation. A growing literature examines the role of
interconnections between firms and sectors as a potential mechanism for shock
propagation across the whole economy with the goal to identify and measure
possible sources of the systemic risk. The current economic literature focuses
its interest more and more frequently on the topic of connectedness relating
the time-varying network of relationships. Connectedness measures signify the
characteristics of financial system linkages, their direction and strength. The
recent academic papers suggest that this measure serves as an appropriate
framework to capture the systemic risk, since it provides valuable information
about the connectedness of the system, among all see Allen and Babus (2009);
Yilmaz (2010); Diebold and Yilmaz (2014) and Baruník et al. (2018).

One of the main problems in asset pricing and finance generally is to under-
stand and determine the differences in the expected asset returns. In the past,
many academic researches aimed to explain these differences through finding
the risk factors that affect the asset returns. As noted in Cochrane (2005),
there is a persisting need for a better understanding of the determinants of
the systematic risk. The phenomenon of connectedness is nowadays studied in
financial risk management as a determinant of the market risk and macroeco-
nomic risks. The network literature claims that the presence of the network
linkages between companies, industries, and countries can change the microe-
conomic shocks into aggregate fluctuations. In addition, the linkages between
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the individual assets in a network usually have a direction, so the issue is even
more complex, because there is difference whether a link goes from asset i to
asset j or the other way around. Moreover, as mentioned by Baruník et al.
(2018), the concept of network connectedness is still not completely defined
and the impact of network on the economy is not fully understood. There
exist several contributions to the literature of network analysis, among all see
Diebold and Yilmaz (2009), (2014); Acemoglu et al. (2012); Billio et al. (2016)
and Baruník et al. (2018).

The most prominent works concerning the connectedness and its measures
using generalized forecast error variance decompositions were introduced by
Diebold and Yilmaz (2009) and later elaborated in their papers (2012) and
(2014). Moreover, Diebold and Yilmaz (2014) suggested that the literature
of connectedness and networks may find its use in other fields such as asset
pricing, portfolio management or policy. As noted in Herskovic (2018), there
exists only a limited amount of academic works focusing on sectoral linkages
implications on asset pricing. The main purpose and motivation of this diploma
thesis is to contribute to currently available economic literature regarding the
connectedness by showing how the connectedness linkages among the assets in
the system influence the risk premium across different sectors.

Our main hypothesis is that a portfolio connectedness is priced in asset
returns. We aim to analyse whether the connectedness of assets should be
priced in the risk premium, since we argue that the connectedness linkages
between assets represent a significant risk factor for the overall portfolio and
should be therefore reflected in the risk premium. The economic intuition
behind this statement is that higher connectedness leads generally to higher
risk, which should be taken into account while determining the risk premium.
Moreover, this work examines whether the investors at different sectors should
require different risk premium for bearing connectedness risk. For analyzing
this hypothesis, we perform the analysis on 11 different sectors. Furthermore,
we are interested whether the connectedness is a factor that approximates risk
in financial markets well. By conducting the sector analysis, we explore the
situation in 11 sectors thanks to which we can approximate the connectedness
risk in the whole market.

The thesis is structured as follows. Chapter 2 briefly summarizes the ex-
isting literature that concerns and relates the phenomena of connectedness,
networks, and asset pricing. Chapter 3 provides the conceptual framework
of connectedness measures, network concepts and the asset pricing models.
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Firstly, we focus on the connectedness tables based on the variance decom-
positions and we describe the computations of spillover index. Secondly, we
present the system-wide connectedness measure and the total directional con-
nectedness measures. Lastly, we introduce the ideas behind the Capital asset
pricing model (CAPM), Fama-French factor models, and Fama-MacBeth two-
step regression model, which is later used in the empirical part of the thesis.
Chapter 4 displays all examined data, its description and summary statistics.
Chapter 5 shows the results from our data analysis following the introduced
methodology. Finally, chapter 6 summarize our main findings and conclusions
that can be inferred from the sector analyses. Furthermore, we provide sugges-
tions for future research.



Chapter 2

Literature Review

As proposed by Diebold and Yilmaz (2014), the literature of connectedness
and networks may find its use in other fields such as asset pricing, which aims
to determine which risks represent truly systematic risk, and therefore, should
be priced. However, current literature provides only very few researches that
connect the literature of connectedness, networks, and asset pricing, which is
the main goal and contribution of this diploma thesis. This chapter focuses
on presenting the connectedness, network, and asset pricing theories, and fre-
quently used approaches, which have been introduced in the existing economic
literature. The main purpose of this part is to provide the reader the theoreti-
cal knowledge which will be later applied on the examined dataset in order to
confirm or reject our hypothesis.

This chapter is divided into three main sections that provide a review of
currently available economic papers and literature. First section introduces the
topic of connectedness and spillovers among the financial variables, overview
of the most significant existing works in current economic literature concerning
this topic and the conceptual frameworks used in contemporary academic pa-
pers. Second section presents the theory of networks, most prominent works in
this field and the commonly used methodological approaches for constructing
the network. Last section of this chapter summarizes the most famous port-
folio theories and it concentrates on asset pricing, risk premium settings and
their link to connectedness and network literature. In addition, it provides
brief introduction of applications of Capital Asset Pricing Model (CAPM)and
Fama-French factors models using the network as a risk factor. This part serves
mainly for better understanding of the empirical part of this diploma thesis.
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2.1 Spillovers and Connectedness
“Issues of connectedness arise everywhere in modern life, from power grids
to social networks, and nowhere are they more central thank in finance and
macroeconomics - two areas that are themselves intimately connected (Diebold
and Yilmaz, 2015, page xi).”

Due to the fact that the financial market interdependence represents one
of the most important part of the systemic risk analysis, the characterization
of the interdependence has become one of the main objectives of the empirical
literature. Over the last decades, the descriptive measures of the interconnec-
tion of the financial markets went through a significant transformation. The
phenomenon of connectedness has been described by using different academic
terms such as co-movement of market, volatility transmission mechanism (char-
acterized by spillover index), and most recently by the volatility connectedness
measures. All of these terms are more or less synonyms concerning the same
phenomenon.

The concept of connectedness of financial markets represent an interest of
many areas of research. It is considered as central concern for modern risk
measurement and risk management as well as for portfolio allocation (Baruník
and Křehlík, 2018). It is linked to the credit risk (default connectedness),
market risk (return connectedness and portfolio concentration), counter-party
and gridlock risk (bilateral and multilateral contractual connectedness) as well
as to systemic risk (system-wide connectedness). In addition, understanding of
connectedness implications is also crucial for explaining macroeconomic risks
such as business cycle risk (Diebold and Yilmaz, 2014).

The volatility spillovers across the financial as well as other markets are
higher in magnitude, when the high market interdependence is present. More-
over, the correlation of market returns is larger when the volatility increases.
Hence the high volatility periods are connected with market downturns or
crashes (WU, 2001). Crisis development associated with market volatility
spreads expeditiously across markets. The volatility is transmitted across mar-
ket via spillovers which exhibit asymmetries and signify negative correlation of
past returns with present volatility (Bekaert and Wu, 2000). These asymme-
tries are thought to originate from qualitative disparities connected with bad
and good uncertainty. Since both volatility and spillovers serve as informa-
tive measures related to risk valuation and portfolio diversification approaches,
asymmetries should be properly controlled for (Garcia and Tsafack, 2011).
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The phenomenon of connectedness still remains elusive due to incomplete
definition and poor measures as noted by Diebold and Yilmaz (2014). To the
most widespread measures in this respect belong the correlation-based mea-
sures focusing on pairwise associations. This concept is close to the linear
Gaussian thinking which limits their value in financial market field. Other of-
ten used approaches in this context are equi-correlation approach (using the
average pairwise correlation), CoVaR or marginal expected shortfall (MES)
using the association between overall market and individual-firm movements.
Unfortunately, these measures capture slightly different phenomena (Diebold
and Yilmaz, 2014).

The measures of the gross and net directional spillover were proposed by
Diebold and Yilmaz (2009). Using the generalized vector autoregressive frame-
work, Diebold and Yilmaz (2009) argued that these measures do not depend
on the ordering used for volatility forecast error variance decompositions. In
this paper, authors focused on the nature of cross-market volatility transmis-
sion with the goal to characterize daily volatility spillovers across U.S. finan-
cial markets during the period from 1999 to 2010. In comparison with other
authors studying the volatility spillovers (e.g., Engle et al. 1990; Edwards
and Susmel, 2001), Diebold and Yilmaz (2009) used a different approach for
analysing this phenomenon. The main difference of this approach is that it of-
fers continuously-varying indexes and examines econometrically a huge number
of assets. The authors showed that despite the fact that the financial markets
exhibited significant volatility fluctuations during the whole examined period,
the volatility spillovers remained mostly limited until the year 2007, when the
global financial crisis erupted. However, higher intensity of the crisis caused
higher volatility spillovers.

In order to show that volatility and returns spillovers act differently during
the crisis and non-crises periods, Yilmaz (2010) applied the Diebold-Yilmaz
spillover index approach to the main 10 East Asian stock markets. This paper
examined the behaviour of return and volatility spillovers in East Asian region
during the years 1992 - 2009. Plotting the volatility spillovers proved that
during the major crisis, there was a burst in volatility spillovers rather than
returns spillovers in the markets. Yilmaz (2010) also pointed out that due
to the increasing market integration of Asian stock markets during the studied
period, the markets became more interdependent which results in higher return
spillovers. Therefore, he argued that the systemic nature of the global financial
crisis refers to the burst in returns spillover index. During the financial crisis
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in 2008, the index in the examined area reached the highest level.
Simple measure framework concerning the relationships between asset re-

turns and asset volatilities was introduced by Diebold and Yilmaz (2013). In
their work, they focused on the return spillovers and volatility spillovers us-
ing the variance decomposition in vector regressions. They argued that their
definition of measures conveys valuable information while avoiding vigorously
discussed concept of episodes of “contagion”. This paper works with not only
the crisis but also non-crisis episodes while taking into account both trends
and bursts in spillovers. To support their claims, they analysed the data of
19 global equity markets, using the period of more than 20 years. The re-
sults showed that there exists a divergent behavior in dynamics of return and
volatility spillovers. The main finding of the work was that the return spillo-
vers display no bursts and increasing trend which is considered to be a result of
increasing financial market integration over the past years. On the other hand,
the analysis revealed that the volatility spillovers display no trend and bursts
associated with the “crisis” events. Therefore, the authors claimed that it is
important for the future analysis to distinguish between return and volatility
spillovers.

To reveal the network linkages among the publicly-traded subsets of banks,
Demirer et al. (2018) worked with the data of world’s top 150 banks between
the years 2003 - 2014. In this paper, the so called lasso methods were applied
with the goal to estimate the static connectedness network using the full-sample
estimation. Moreover, they used rolling-window estimation in order to find dy-
namic network connectedness. In static case, they came to the conclusion that
global banking connectedness is related to the bank location, but not to bank
assets. In dynamic case, authors concluded that global banking connectedness
displays both secular and cyclical variation. “The secular variation corresponds
to gradual increases/decreases during episodes of gradual increases/decreases in
global market integration. The cyclical variation corresponds to sharp increases
during crises, involving mostly cross-country, as opposed to within-country,
bank linkages (Demirer et al., 2018, page 1).”

Another application of the connectedness measures using the Diebold - Yil-
maz Spillover (Connectedness) index framework is introduced in the paper of
Bilgin and Yilmaz (2018). This paper presents the analysis of transmission of
producer price inflation. It works with the monthly data from the industries in
the United States between years 1947 - 2018 using the generalized variance de-
compositions from vector autoregression. The authors came to the conclusion
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that producer price inflation connectedness across industries is caused by the
system-wide connectedness of the input-output networks. The results showed
that the input-output network and the inflation connectedness are stronger
during the aggregate supply shocks and weaker during the aggregate demand
shock. These conclusions coming from the static as well as dynamic analy-
ses of inflation connectedness are similar to those of Acemoglu et al. (2012)
who argued that supply shocks are transmitted from downstream industries,
and demand shocks from upstream industries through the input-output net-
works linkages. Another significant result of this paper is that the increase in
system-wide connectedness in the United States in 2018 was caused by the U.S.
President Donald Trump’s decision of imposing additional tariffs i.e. by shocks
mostly transmitted from tariff-targeted industries.

Furthermore, in order to estimate the network structure of global sovereign
credit risk, Bostanci and Yilmaz (2020) applied Diebold-Yilmaz spillover index
methodology on sovereign credit default swaps (SCDSs). The authors used
elastic estimation method with the goal to estimate network of daily SCDS
returns and volatilities of examined 38 countries. The results showed that the
network of returns and volatilities differs in structure. Moreover, the global
factors play more important role than domestic factors in pinpointing of SDCS
returns and volatilities. Emerging market countries represent the key determi-
nants of connectedness of sovereign credit risk shocks, while the developed and
problematic countries account only for a small share in the determination.

In addition to the spillover index created by Diebold and Yilmaz (2009),
which depends on the ordering of the variables in the VAR model, Klößner and
Wagner (2014) came up with the idea of new algorithm for faster calculating
the spillover index’s maximum and minimum. Analyzing the same dataset of
Diebold and Yilmaz (2009), but using the new algorithm, Klößner and Wagner
(2014) argued that using small number of permutations in order to estimate
the range of the spillover index results in underestimating the true range.

Spillovers of policy uncertainty was the main interest of Klößner and Sekkel
(2014). They measured the spillovers using the Spillover index created by
Diebold and Yilmaz (2009) and the algorithm introduced by Klößner and Wag-
ner (2014) using the idea of Economic Policy Uncertainty Index of Baker et al.
(2016). For the analysis, they used monthly data of 6 developed countries from
January 1997 to September 2013. They concluded that spillovers accounts for
more than one-fourth of the dynamics of policy uncertainty, while this fraction
can reach even one-half during the period of financial crisis. The paper found
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that since the time of the financial crisis, significantly large fraction of spillo-
vers is caused by United States and the United Kingdom,however, the other
examined countries are all net receivers of policy uncertainty shocks.

Another approach of measuring the financial connectedness in the US econ-
omy was suggested in the paper of Uluceviz and Yilmaz (2018), who examined
how the shocks to the real and financial sectors in United States are connected
to each other. The real side of the United States economy is represented in
the DYCI analysis by the ADS index created by Aruoba et al. (2009). The
financial side is represented by range-based volatilities of returns in different
financial markets (stock, bond and foreign exchange market). In order to reveal
the shock dynamics and interactions of real and financial sides, ADS index and
the market return volatilities are then applied to Diebold- Yilmaz framework.
The paper concludes that shocks to real sector of economy results in connected-
ness consequences on the financial sector. Furthermore, when the real activity
index (derived from dynamic factor model of the real side) was included to rep-
resent the real sector, the direction of net connectedness changed to positive
net connectedness between financial markets and the real side of the United
States economy.

In addition to the previously mentioned approaches, Cotter et al. (2017)
created a new methodology to study the spillovers between the real and fi-
nancial side of the economy using the mixed-frequency modelling approach.
This approach allows to use directly high-frequency financial and low- fre-
quency macroeconomic data series without data aggregation and loss of in-
formation. This paper showed that analysing the macro-financial spillovers
using the mixed-frequency approach leads typically to higher estimated spillo-
vers than by using common-frequency approach. It also revealed that financial
markets transmit the shocks to the real side of the economy. However, the
bond and equity market behave heterogeneously in transmitting and receiving
shocks to the non-financial side.

Another paper inspired by the Diebold and Yilmaz (2014) methodology is
the Demirer et al. (2019) paper. This study developed a volatility connected-
ness index applying Diebold-Yilmaz framework on the daily stock prices of 40
large US financial institutions. Using the data of non-financial US companies,
the authors estimated the contemporaneous return sensitivity to this index.
The analysis revealed that the firms’ returns significantly vary depending on
positive or negative exposures to financial connectedness. As stressed by the
authors, applying the bivariate portfolio tests showed robustness of abnormal
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returns to book-to-market ratio, market beta, size, and idiosyncratic volatil-
ity. Asymmetric abnormal returns are mainly driven by firm whose correlation
between returns and index is negative.

2.2 Network Literature
Economic research papers on networks provide insights into the application
of network analysis to financial systems. Even though that there are a lot of
academic papers linking the network analysis to the financial systems, the liter-
ature focusing on this concept is still in its early stage. The currently available
researches investigating the network theory focus mostly on the issues such as
financial stability and contagion. Furthermore, most of the academic papers
examine the effects of networks rather than the formation of networks. Jack-
son (2005) contributed to the network literature by broad survey of different
concepts of network formation. As pointed by Diebold and Yilmaz (2014),
connectedness measures based on variance decompositions are closely related
to the modern network theory, in particular to recently-proposed measures of
systemic risk.

The network representation of financial systems captures the structure of
connections among the financial institutions. The concept of network is gener-
ally described as collection of nodes and the links between them. The so called
nodes can represent individuals, firms, countries as well as collections of such
entities. Any link between two nodes describes their direct relationship. For
instance, the link between countries can be a mutual agreement on free trade
or defense pact. In financial systems’ network, the nodes represent financial
institutions, while the connections are caused by banks’ mutual exposures. For
this reason, economists argue that network theory can serve as a conceptual
framework for analyzing and describing the various patterns of connections. A
concept of network in financial system is useful for assessing financial stability
and capturing the externalities stemming from the risk that single institution
can cause to entire system. Regulations imposed on the individual institutions
and considerations of account vulnerabilities stemming from network interde-
pendencies may help preventing the local crisis from expanding to global crisis
(Allen and Babus, 2009).

In general, network theory analyses the process of the network formation
and the effect of the structure of the network. The formation process highlights
the differences between socially desirable outcomes and outcomes resulting from
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individual self-interested actions. The network formation studies the process
of forming the connections among financial institutions. As noted in Allen and
Babus (2009), deeper understanding of how financial institutions form connec-
tions if they are exposed to the risk of contagion, can provide new information
on the systemic risk. Risk sharing can be then considered as one of the main
driving factors in forming connections between financial institutions. In case
that the risk related to lending funds in the interbank market is too high, the
links between institutions bring more costs in proportion to benefits. In such
case, network formation game provides empty network i.e. the banks disagree
to form a link with each other.

The effect of structure captures the factors linked with social efficiency and
examines the fixed network processes. For example, it studies the impact of
financial network structure on the response of the bank to contagion. Allen
and Babus (2009) argued that different network structures respond in different
way to propagation of shocks. However, the system fragility is dependent on
the network’s location of institution that was originally affected. Thus, certain
structures of network of the financial institutions can gain additional benefits
from exploiting the position as intermediaries between other institutions. More-
over, in microfinance the structure of network can also affect the effectiveness
of mutual monitoring in enforcing risk-sharing agreements.

Current literature applies the network theory to a wide range of situations.
In addition to the labor markets, the economists have examined framework of
network theory in markets in general. The Arrow - Debreu model of economy
works with the assumptions that in centralized markets the agents interact
anonymously and the prices are formed according to independent decision-
making process. In other case, markets are not centralized and include com-
plex structure of bilateral relationships and trades. Some researchers (Durlauf
1996, Ellison 1993) pointed out that some agents choose to interact only with
the neighbours in the network rather than with all agents in the economy.
Corominas-Bosch (1999) proposed bargaining model in which buyers and sell-
ers are linked by the exogenously connected network. The model assumes that
buyers and sellers, who are connected by a link, transact a purchase with each
other. However, the agent that has more links, has several possibilities of
transactions. Hence, the bargaining power of buyers and sellers is basically
determined by structure of network. Similarly, Gale and Kariv (2003) exam-
ined the effect of intermediation between sellers and buyers on network. In
this concept, the traders are organized in incomplete framework of network.
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Although that one might argue that the incomplete network is a source of po-
tential friction, the authors proved that the trade is nonetheless efficient and
the convergence of prices to the equilibrium takes place very fast.

The network structures under which the bilateral insurance framework is
self-enforced were examined by Bloch and Jackson (2006). The paper claims
that network connections play two main roles - provision of insurance (tool for
transfers) and monitoring (stream of information). The monitoring punishes
the individuals who deviate from the insurance scheme by excluding them. Indi-
viduals are therefore more likely to deflect under intermediate level of connect-
edness, whereas under thickly or thinly connected levels the insurance schemes
are self-enforceable.

Moreover, Bramoulle and Kranton (2007) investigated the formation of risk-
sharing networks. They showed that efficient networks include full insurance
and connect indirectly all individuals if the distribution of income shocks is
random in the population. Nevertheless, the network links fewer individuals
in the equilibrium and yields the outcomes with asymmetric risk sharing. In
addition, the results of studying the community risk sharing suggest that under
idiosyncratic and community-level shocks, networks involving all agents within
a village yield usually lower welfare than networks connecting communities.

As suggested by Ahern (2013), more central industries in intersectoral trade
gain higher stock than the less central industries. The study shows that the
result is economically substantial and robust when leverage, firm size, stan-
dard asset pricing factors, industrial concentration, and other return determi-
nants are controlled for. Furthermore, the sector-specific shocks aggregate into
macroeconomic fluctuations, which stand behind the findings. In case of the
stock returns, systematic risk originates from idiosyncratic shocks that spillover
from one industry to the others through the intersectoral trade. Therefore,
stocks in more central industries have greater systematic risk and gain higher
returns due to its greater exposure to idiosyncratic shocks.

2.2.1 Network Centrality

Network centrality measures are often considered as an industry’s exposure to
the random shocks. In the current literature, it is frequently assumed that
more central industries face greater risks, and hence, earn higher stock returns
(Ahern, 2013). This hypothesis has two main assumptions. Firstly, the aggre-
gated shocks start as idiosyncratic events. Contrary to the general notion that
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aggregate shocks simultaneously have effect on all sectors, it is probable, that
demand shock as well as technological and shocks of natural resources originate
in one single sector. For instance, macroeconomic events such as interest rate
or currency shocks affect directly certain industries (e.g. banking industry)
rather than industries such as legal services or car repair shops. Secondly, ran-
dom local shocks do not cancel out. One might argue that positive shock in
one industry is cancelled out by a negative shock in another industry i.e. on
average, the economy stays unaffected. However, this argument assumes uni-
formness and randomness between the sector networks of connections, which is
usually not true. The conducted studies (Ahern and Harford, 2014; Acemoglu
et al., 2012) showed that the network of sectors is asymmetric with non-uniform
connections. The random shocks to sectors do not cancel each other, but they
might even aggregate and form wide-spread events in the economy. Since the
local shocks do not cancel out each other, it is often hypothesized that more
central industries in the SAM (spillover asymmetry matrix) network are more
exposed to the systematic risk, and therefore, should gain higher stock returns.

To present the network of connections, the literature often use Social Ac-
counting Matrix, which shows the circular flow of transactions between a com-
plete set of economic agents, including factors of production (capital and labor),
institutions (government, households and firms) and production activities. This
matrix can be considered as expanded input-output (IO) table that presents
connections between capital account, government and foreign sector. Each row
of the matrix represents the receipts of an agent and each column represents
the expenditures. For each economic agent, the receipts are equal expenditures
(Ahern, 2013).

The oil shocks can serve as an illustrative example demonstrating how the
shocks in one sector lead to aggregate effects. Despite of the fact that oil shocks
are reckoned as systematic risks, they originate locally. Oil extraction firms are
generally first to be hit by the oil shocks, but the shock spillovers also quickly
to refineries since the oil is the main input in gasoline. Hence, the prices of
gas have effect not only on the transportation and delivery services, but also
on general consumers. The oil shocks can be thus considered as sequential
shocks which affect all sectors because the oil-related products are important
intermediary inputs in the economy. It is often claimed that all sectors are
connected to some degree, so every sector can influence the whole economy.
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2.2.2 Network Concepts

The economic model of networks explains the social and economic phenomena
by the choices of the rational agents. According to the model, the agent’s choice
whether to connect or not to connect with other agent is given by comparing
costs and benefits resulting from this connection (the cost-benefit analysis).
The model assumes that there is a function that determines the agent’s benefits,
which depend on the relative position in the connections network. Thus, the
externalities among agents are network dependent. It is believed that the
individuals form connections with respect to the potential benefits. These
relationships are then modelled through a game of network formation.

In the past few years, different concepts of bilateral connections formation
have been elaborated assuming agent’s awareness of the network shape from
which their benefits are derived. The difficulty of the bilateral connection is
caused by the fact that both sides have to consent to the interaction. Thus,
non-cooperative concepts such as Nash equilibrium do not help to solve the
problem of formation network game. Jackson and Wolinski (1996) suggested
simpler approach of looking directly at stable networks. They argued that net-
work is considered to be pairwise stable if it satisfies the following two assump-
tions. Firstly, the formation of the link between any two individuals, which is
absent from the network, cannot be beneficial to both of them. Secondly, by
deleting the present link between two individuals in the network, neither of the
individuals gains strict benefit.

Moreover, another connection game was suggested by Bloch and Jackson
(2007). Players demand or offer the transfers according to their preferred links.
This allows players to contribute to the formation of particularly chosen links.
In case that the mutual consent is not necessary for the formation, and the
agents can unilaterally form new links, this concept is close to the Nash equi-
librium (Bala and Goyal, 2000).

In addition to static equilibrium approaches, some authors provides also
studies with dynamic processes in which the network gradually evolves in time
(Jackson and Watts, 2002; Page et al., 2005). In this concept, players can
add or remove the links in each period based on their myopic considerations of
potential payoffs.

Moreover, some models do not only look on the network formation game
but also study the behavior in networks. These studies claim that choices of
the individuals are significantly impacted by patterns of connections between
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individuals. They use the theoretical game tools in order to measure how the
expected payoff affects the choices made by the linked individuals. The existing
studies provide the information of the effects of network structure on beliefs,
dependence of investments in public goods on the network or learning strate-
gies in networks. Galeotti and Goyal (2007) proposed a theoretical model for
analyzing strategic interactions considering the neighbourhood structure. Fur-
thermore, there exists the models of networks in the non-economic literature as
well. The academic researches provide a set of common properties used for the
description of real-world networks for example metabolic network, transmission
of infections etc. These models usually exhibit similar characteristics - a small-
word property (i.e. the distance (number of links) between two nodes in the
social network is on average very low), unequal degree distribution (i.e. high
inequality in number of nodes links), and high clustering (i.e. high tendency of
linked nodes to have more neighbours).

2.3 Asset Pricing
“Asset pricing theory tries to understand the prices or values of claims to un-
certain payments. A low price implies a high rate of return, so one can also
think of the theory as explaining why some assets pay higher average returns
than others (Cochrane, 2005, page 8).”

As noted in Cochrane (2005), in order to value an asset one has to take
into consideration the delay and the risk. The effects of time are considered
to be not that difficult to account for. However, the corrections of the risk
are essential for determination of the values of the assets. Therefore, the main
challenges of the asset pricing are the uncertainty and corrections for risk.

One of the main questions of the asset pricing is: “What determines the
risk premium of an asset”. Asset pricing theory is based on concept that price
equals expected discounted payoff. The asset pricing theory works with two
main approaches: absolute pricing and relative pricing. The absolute pricing
approach is commonly used in the asset pricing theory. In absolute pricing, each
of the asset prices is set based on its exposure to macroeconomic risk. The
most well-known models using this approach are consumption-based models
and general equilibrium models. These concepts explain why the prices are
what they are, and predict the changes in prices caused by the policy changes.
On the other hand, relative pricing focuses on the prices of others assets in
order to learn something about some particular asset’s value. In this approach,
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the information of fundamental risk factors is rarely used. Typical example of
this model is Black-Scholes option pricing (Cochrane, 2005). However, in many
application the asset pricing problems are solved using both approaches rather
than using just one of the pure approaches. The choice of approaches depends
on asset question and on the purpose of calculation. The paradigms of absolute
approaches are the CAPM model and the factor models. These models price
assets relative to risk factors without considering determinants of market or
factor risk premia and betas (Cochrane, 2005).

The main task of absolute pricing is to explain and measure the sources of
macroeconomic or aggregate risk that affect the value of asset prices. This is
also a central task for researchers who want to understand the fundamentals
in macroeconomics and finance. For instance, expected returns differ across
assets as well as within time. These changes are connected to macroeconomic
variables or variables forecasting the macroeconomic events. That is why a
lot of models signify that factors of recession and financial distress lie behind
asset prices. The results suggest that the risk premium of stock is larger and
varies more than the interest rate. Due to this fact, lining investment up
with interest rate is considered to be useless because most of the variation in
the cost of capital stems from changing risk premium. In comparison with
standard macroeconomic model, asset pricing models predict that people care
about business cycles in order to prevent from substantial fall in return premia
during recessions (Cochrane, 2005).

The currently available literature, which applies theory of networks to fi-
nance and macroeconomics, has been concentrating mainly on documentation
of stylized facts and creation of microfoundation for business cycles and other
macroeconomic phenomena. However, there is only a limited amount of aca-
demic works focusing on sectoral linkages implications on asset pricing (Her-
skovic et al., 2018).

As noted by Ahern (2013), the industries, which have more central network
position, earn on average higher returns. The relationship between the size
of firm’s distribution and level of firm’s volatility using the network model of
customer-supplier was examined by Herskovic et al. (2018). However, this work
does not consider the asset pricing implications of customer-supplier model
linkages. In addition, the paper of Herskovic et al. (2016) presents commonly
used factor structure in idiosyncratic firm-level return volatility and describes
how the idiosyncratic volatility factor is priced.

The asset pricing in multisector model, where the sectors are linked through
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an input-output network, was studied by Herskovic et al. (2018). The study
suggests that the source of systematic risk, which is reflected in equilibrium
asset prices, is caused by the changes in the network. Moreover, there are two
main properties of the network that affect the asset prices, namely network
sparsity and network concentration. Network concentration measures to which
extent the output in equilibrium is dominated by large sectors. The equilib-
rium output share of each sector identifies the importance of given sector to
the other sectors. The output has high equilibrium share provided that the
output is used by the other sector in large amount. Network sparsity is a mea-
sure of distribution of linkages across sectors. The number of linkages signifies
the flow of input in the economy and shows the importance of each input to
particular sector. A network that has fewer but stronger linkages is denoted
as high sparsity network. In such a network, firms count only on few input
sources. The structure of the network determines these two production-based
asset pricing factors. These factors can be calculated from input-output data
and they characterize attributes of the linkages between sectors based on the
fundamentals of the economic system. Therefore, network sparsity and con-
centration are sufficient statistics for determination of aggregate risk. Thus,
even though that the network of input-output has more dimensions, for the
analysis of assessing systematic risk, it is enough to concentrate only on these
mentioned characteristics (Herskovic et al., 2018).

In addition, the asset pricing in economies with large information networks
was examined by Ozsoylev and Walden (2011). It shows that the network the-
ory can work as a useful tool for understanding how the information translate
into the asset prices. The social networks as well as the information networks
have been used in many researchers (Cohen et al. (2008); Hong et al. (2004))
with the purpose to explain the investors’ decisions and portfolio performance.
As claimed by Ozsoylev and Walden (2011), the price volatility as well as av-
erage expected profits are a non-monotone function of network connectedness.
Furthermore, the distribution of profits among the investors is related to the
information network’s properties.
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2.3.1 Asset Pricing and Network as Risk Factor

An interesting study concerning the effect of network in the asset pricing was
introduced by Billio et al. (2016), who analysed the impact of network connec-
tivity on factor exposures using the variation of traditional CAPM model. This
paper contributes to both, network as well as asset pricing literature, by extend-
ing the classic factor-based asset pricing model by the network connections in
linear factor models. Such model captures then the impact of the contempora-
neous links that are present across assets and are determined in the network of
connectedness. As noted in Billio et al. (2016), networks bring the information
of the links existence as well as the information of the intensity of the links
between particular assets. Therefore the combination of the systematic and
idiosyncratic risks together with network risk introduce the cross-dependence
information to model. Moreover, the effect of diversification is reduced if the
network connections are present.

The asset pricing model introduced by Billio et al. (2016) assumes that
the interconnection and links between the risky assets are captured by the
network. Therefore, the network relations are expected to represent the actual
states between the examined assets. The existence of the interconnections
signifies the exposure of risky assets to the movements of the other risky assets.
Furthermore, the interconnections of risky assets vary with other assets, which
cause an additional form of heterogeneity together with those related to various
exposures to common risk factors and to different level of idiosyncratic shocks.

Billio et al. (2016) defined the model capturing the network exposure as
follows

A(Rt − E[Rt]) = βFt + ηt (2.1)

where A represents a parameter matrix capturing the relations across assets
and the coexistence of the common factors, ηt represents the covariance ma-
trix capturing the structural idiosyncratic risk, Rt represents set of risk assets
returns, Ft stands for observable zero-mean risk factors and β is a matrix of
parameters monitoring the exposure of the risky assets to the common factors.
Such model enables to recover a risk decomposition similar to the one for the
standard linear factor model equation:

Rt = α + βFt + ϵt (2.2)



Chapter 3

Methodology

This chapter presents the theoretical background and the applied methodology
used throughout the empirical part of the thesis. It is divided into three main
section regarding the methodologies of the three main theory concepts which
will be later merged together and mutually used for analysis confirming or re-
jecting the hypothesis. The first part concerns the connectedness methodology
approaches. Firstly, it introduces the connectedness tables and the main math-
ematical and econometric ideas behind the connectedness measures using the
variance decompositions. Secondly, the main ideas behind the spillover index
and connectedness measures are introduced. Then this section discusses the
realized volatility and its decomposition into realized semivariances. The sec-
ond part explains the interdependence of financial markets using the theories
of networks and describes the way how the networks are constructed. Third
part introduces the asset pricing models, namely CAPM, Fama-French model
and Fama-MacBeth model. The Fama-MacBeth model is discussed in more
detail, since the used model in this diploma thesis is based mainly on the ideas
of this model.

In the existing researches, the term connectedness is often used in the mean-
ing of the economic system’s interdependence. In this diploma thesis, the term
connectedness will refer to the robust measures based on variance decomposi-
tions proposed by Diebold and Yilmaz (2009). Throughout this chapter the
employed connectedness measurement and methodology follow the ideas sug-
gested by Diebold and Yilmaz (2009) and Diebold and Yilmaz (2014) and
the framework of generalized vector autoregressive model, more specifically
the variance decomposition method. This method allows us to measure the
amount of information that one variable brings to other variables in the regres-
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sion. Moreover, it also demonstrates the fraction of the forecast error variance
of each of the variables that can be explained by exogenous shocks to the other
variables. This approach enables to estimate the system-wide as well as total
directional volatility connectedness (Diebold and Yilmaz, 2014).

Since this diploma thesis merges the literatures of connectedness, networks
and time series, which all have their own terminology, it is useful to point
out the terms that are used as synonyms throughout this work in order to
avoid the confusion. The terms connectedness matrix (connectedness literature
introduced by Diebold and Yilmaz (2009)), adjacency matrix (literature of
networks) and variance decomposition (literature of time series ) come from
different literatures but they are concerning same phenomenon, and therefore,
they are used interchangeably in the text.

3.1 Connectedness Methodology
The main approaches used in this diploma thesis proceed from the suggestions
of Diebold and Yilmaz which were firstly introduced in their academic paper
released in 2009, and later further specified and elaborated in papers published
in 2012 and 2014. The leading advantages of this econometric approach are
that there are minimum model assumptions, and the only needed data for
estimation are the daily prices. Moreover, this methodology provides weighted
directed network.

Diebold and Yilmaz (2009) proposed the so called Spillover index, a simple
quantitative measure concerning the financial market interdependence, together
with spillover tables and spillover plots. They argued that spillover intensity
varies over time and that time-variation is not same for returns and volatilities.
The return and volatility spillovers measurement is based on vector autoregres-
sive models (VAR) introduced by Engle et al. (1990). Diebold and Yilmaz
(2009) used the concept of variance decompositions for calculations, because
this approach allows aggregation of spillovers effects across markets into single
spillover measure while keeping the valuable information.

Diebold and Yilmaz (2014) introduced several connectedness measures us-
ing the concept of variance decompositions. They used the unified framework in
order to conceptualize and measure the connectedness at different levels (from
pairwise to system-wide connectedness) applying variance decompositions. Us-
ing the daily time-varying connectedness of recent stock returns volatilities of
US financial institutions, they showed that variance decompositions are related
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to the key measures of connectedness which are often applied in the network
literature.

3.1.1 Connectedness Table

The variance decomposition identifies the amount of information that each
variable contributes to other variables in autoregression. In other words, it in-
dicates the size of forecast error variance of each of the variables which results
from the exogenous shocks to the other variables. Diebold and Yilmaz (2014)
proposed the connectedness measure approach proceeding from assessing the
proportions of forecast error variation in different locations due to shocks orig-
inating “elsewhere”. This approach is linked to the econometric concept of
decomposition variance. The H-step forecast error variance share dij is un-
derstood as the fraction of i’s H-step forecast error variance due to shocks
in variable j. Connectedness table is then defined as the full set of variance
decompositions. The system of connectedness measures from simple pairwise
to system-wide system can be seen in the Figure 3.1. It depicts the various
connectedness measures and their mutual relationships. The variance decom-
positions are shown in the main upper-left NxN block. The upper-left block is
called variance decomposition matrix. The rightmost column of the connected-
ness table contains row sums, the leftmost column contains column sums and
bottom-right element includes the average for i ̸= j.

Figure 3.1: Connectedness Table

Source: Diebold and Yilmaz, 2014, page 3
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3.1.2 Spillover Index

The initial idea of spillover index, created by Diebold and Yilmaz (2009), is
based on the variance decomposition of the forecast errors in a vector autore-
gressive model (VAR). It shows how much of the H-step-ahead forecast error
variance of some asset i is caused by the changes in another asset j. Therefore
it represents a simple way of measuring volatility spillovers (Baruník et al.,
2016). However, this approach has some substantial drawbacks, both method-
ological and substantive. Firstly, the original idea of variance decompositions
uses the Cholesky factorization of the covariance matrix of the VAR residuals.
This fact may result in the dependence of the variance decomposition results,
which can affect the ordering of variables in the underlying VAR process. Fur-
thermore, the original framework of spillover index enables us to measure only
the total spillovers i.e. only the transmission from one market to other markets
or vice versa. However, it does not allow us to measure the directional spillo-
vers, which tell us how the volatility from one given market i is transmitted to
another specific market j or vice versa. Secondly, the application of method-
ology is considered to be to some extent limited because it only regards the
spillovers across identical assets in different countries. It does not concern the
other types of spillovers such spillovers of different assets within one country
or spillovers across asset classes (e.g. between bond and stock markets within
one country). The researchers are especially interested in the spillovers across
asset classes since they are the key factor for analysing the recent global finan-
cial crisis which is believed to originate in credit market and later spilled to
other markets. Fortunately, these limitations were later solved by Diebold and
Yilmaz (2012) by instead of using Cholesky factor orthogonalization, the gener-
alized vector autoregressive model is employed. By following directly variance
decomposition in the generalized VAR framework, the forecast error variance
decomposition is invariant to the variable ordering. Moreover, this approach
allows to measure both, total and directional volatility spillovers.

Total spillover index proposed by Diebold and Yilmaz (2012) consists of
two parts - cross variance shares (spillovers) and own variance shares. Cross
variance shares are understood as fractions of the H-step-ahead error variances
in forecasting xi due to shocks to xj , for i; j = 1,2, ..., N such that i and j are
not equal. On the other hand, own variance shares are understood as fractions
of the H-step-ahead error variances in forecasting xi due to shocks to xi, for i =
1, 2, ..., N. More details about the construction of the total spillover index can
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be found in Baruník et al. (2016). The spillover index is defined by Diebold
and Yilmaz (2012) as a measure of the spillover contribution (originating from
volatility shocks across four asset classes) to the total forecast error variance.

SH = 100 × 1
N

N∑︂
i,j=1,i ̸=j

wH
ij (3.1)

3.1.3 Directional Spillovers and Net Spillovers

Although it is important to examine the total volatility spillover index in order
to understand how the shocks to volatility spillover across the asset classes,
by using the generalized VAR framework the so called directional spillovers
can be identified. This method allows us to decompose the total spillovers
into spillovers coming from the observed assets and spillovers coming to the
observed assets i.e. it tells us the direction of volatility spillovers (Diebold
and Yilmaz, 2012). The directional volatility spillovers caused by asset i and
transmitted to the other assets j ( TO spillovers) are defined as follows:

SH
i→• = 100 × 1

N

N∑︂
i,j=1,i ̸=j

wH
ji (3.2)

Similarly, the directional spillovers received by asset i from the other assets
j (FROM spillovers) are defined as follows:

SH
i←• = 100 × 1

N

N∑︂
i,j=1,i ̸=j

wH
ij (3.3)

Once the directional spillovers are obtained, the simple measures of net
spillovers can be derived. As suggested by Diebold and Yilmaz (2012), the
net spillovers can be computed as a difference between gross volatility shocks
transmitted to and received from other assets

SH
i = SH

i→• − SH
i←• (3.4)

The already mentioned measures describe the contribution of each asset to
the volatility of the other assets in net terms (Baruník et al., 2016). The net
pairwise spillovers between assets i and j are then calculated as the gross shocks
translated from asset i to asset j minus gross shocks from asset j to asset i:

SH
ij = 100 × 1

N
(wH

ji − wH
ij ) (3.5)



3. Methodology 24

3.1.4 Realized Volatility and Realized Semivariances

In order to describe the asymmetries in spillovers which originate from quali-
tatively different variations in asset prices which correspond to bad and good
volatility, the idea of realized semivariances is often used. Realized semivari-
ances estimate the changes in asset prices and show the direction of this change.
Negative realized semivariance measures the negative change in prices or re-
turns, while the positive semivariance measures the positive changes in these
variables. Therefore the asymmetry in spillovers mainly captures the quali-
tative rather than quantitative changes in variation. The realized semivari-
ances measure the volatility that takes the volatility asymmetries into account
(Baruník et al., 2016). As noted in Barndorff-Nielsen et al. (2010), the real-
ized variance can be decomposed into positive realized and negative realized
semivariances as follows:

RV = RS+ + RS− (3.6)

RS+ =
n∑︂

i=1
r2

i I[r>0] (3.7)

RS− =
n∑︂

i=1
r2

i I[r<0] (3.8)

where RS+ and RS− represent the positive and negative semivariances,
respectively. From the equation above, it can be seen that the realized semi-
variances cover a complete decomposition of realized variance and can be used
as a measure of downside and upside risk. This decomposition works for any n.
RS− measures the downside risk and detects the variation caused by decrease
of prices of the assets, whereas RS+ captures the variation caused by increase
in prices. RS− also shows the fact that future volatility is more dependent
on the past negative returns. Furthermore, RS+ and RS− correspond to the
positive and negative states of the given variable and therefore serve as a proxy
for good and bad volatility. The drawback of the realized semivariances lies in
the the fact, that the behaviour of RS is limited.

Despite the universality of spillover index introduced by Diebold and Yil-
maz (2009), it does not recognize the potential asymmetry in spillovers that
arises due to good and bad uncertainty. The bad uncertainty is defined as
the volatility that is connected with negative evolution in quantities (e.g. re-
turns) and the good uncertainty is understood as volatility that brings positive
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shocks to these variables (Segal et al., 2015). Baruník et al. (2016) contributed
to this topic by fitting the N- variable vector autoregression model to the semi-
variances instead of to the volatility. This approach enables to focus on the
individual effects i.e. on the effect of volatility of one asset on the other assets’
volatilities, while distinguishing between negative and positive shocks on the
asset prices. Particularly, this method allows to account for spillovers caused
by negative returns (S−), positive returns (S+), as well as for directional spill-
overs originating from volatility caused by negative returns (S−i←•, S−i→•) and
positive returns (S+

i←•, S+
i→•).

Baruník et al. (2016) also proposed an extension of this methodology thanks
to which it is possible to isolate asymmetric volatility spillovers by replacing the
vector of volatilities RVt = (RV1t; ...; RVnt)′ by vector of positive semivariances:
RS+

t = (RS+
1t; ...; RS+

nt)′ or by the vector of negative semivariances: RS−t =
(RS−1t; ...; RS−nt)′. This method also enables to differentiate the effects caused by
positive and negative shocks on volatility spillovers. This idea therefore makes
possible to test which type of volatility affects more the volatility spillover
transmission and also to compare the magnitudes of the effects.

As suggested by Baruník et al. (2016), the spillover asymmetry measure
(SAM) is defined as the difference between negative and positive spillovers as
follows:

SAM = S+ − S− (3.9)

where S+ and S− represent the volatility spillovers connected with positive
and negative semivariances RS+ and RS−, with H-step-ahead forecast at time
t. The main advantage of this measure is the straightforward interpretation of
the results. The SAM is equal to zero, if the spillovers coming from RS+ and
RS− have the same magnitude. The SAM < 0, if the spillovers coming from
RS− are larger than the spillovers coming from RS+ and vice versa.
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3.2 Financial Network Methodolology
The theory of networks follows primarily two methodological approaches. First
approach originates in the literature of network economics and involves microe-
conomic perspective on the agent’s behavior which is assumed to be driven by
incentives. The second approach follows statistical physics literature and it is
considered as more mechanical since it includes various stochastic procedures.

Connectedness can be understood as a speed of global communication which
results in spread of information, news as well as financial crisis. These facts
produce networks that include the behavior of groups of people, the incentives,
and most importantly links that connect everything. In such interconnected
world, the decisions of one person have consequences on the outcomes of others
(Easley and Kleinberg, 2010). To explore the important financial phenomena,
the commonly used approach is to analyze the linkages within and across dif-
ferent financial systems. The system of linkages then creates corresponding
network.

3.2.1 Formal Representation of Network

Formally, the network is represented by nodes which are linked into a total set
of nodes that forms the network. In financial systems, the network structure
is formed from the nodes, each of them representing an asset or value of ei-
ther financial or non-financial institutions. It is often argued that through the
system of network, shock to one node transmits to the other connected nodes.
Generally, the networks are represented graphically for better understanding.
Nonetheless, networks are frequently displayed as square matrix known in net-
work literature as adjacency matrix. Usually the network N is composed of N
nodes and L represents the number of links between the nodes.

Let W be the N-dimensional square matrix, where N is the number of
financial assets/companies in the network i.e. N represents the number of
nodes. Each wij represents potential connection (links) between asset i and
asset j. A zero entry signifies that the particular two assets are not connected,
whereas non-zero entry signifies connection between given two assets.

Let present some illustrative example for better understanding. From ma-
trix W (Equation 3.10), it can be seen that there are only zero elements on
the diagonal, which indicate that no asset influences itself. This matrix is not
symmetric since for example the first element is connected to the fourth ele-
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ment, but not vice versa. The network also shows the directions of the links.
The network is said to be symmetric, if the links are bidirectional. In general,
non-zero element wij signifies asset j affects asset i, i.e. there is a link between
asset i and asset j.

W =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 1 0
1 0 1 0 1
0 1 0 1 0
1 0 1 0 1
0 1 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.10)

Furthermore, matrices similar to given matrix W are commonly used in
other statistical and economic applications associated with spatial statistics
and econometrics. In these specific fields, the nodes neighbour with each other
in physical way (for example buildings, villages, cities or regions). The matrix
W then represents the neighbouring connections. Such matrices are usually
called spatial matrices and are normally row-normalized. Furthermore, the
matrix W contains only zero elements on the diagonal by the convention in
spatial statistics and econometrics (Billio at al., 2016).

Matrix representing the financial networks can be considered as a financial
parallel of spatial matrix. In such matrix, the neighbouring relationships are the
outcomes of specific model, measurement approach of estimation. In graphical
projection of the network, the neighbours represent the connected nodes such as
assets or firms. As stressed by Billio et al. (2016), the concept of “first-order
contiguity” is followed, if the matrix monitors only the connection between
assets i.e. the entry represents the connection and denotes that the given
two assets are neighbours. Moreover, by convention in spatial statistics and
econometrics, there are only zero elements on the main diagonal of the matrix
W. Such matrix, which monitors the network connections, provides relevant
information of the evolution of asset returns.

In order to properly understand the network, it is useful to graphically
describe it. For this reason, the following Table 3.1 provides an explanation
of the main attributes of the network, namely size of the node, location of
the node, node color and the thickness of the connectedness lines. Table 3.1
also explains other important terms that are essential for understanding the
network theory, concretely the degree of node, strength of the node and the
node clustering.
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The centrality of the network is calculated from the adjacency matrix of the
network graph. The commonly used method to measure the centrality is to use
the degree of node, which measures the number of edges that link the particular
node with the others. However, there are some other methods that are more
informative since they work with the weights attributes of the edges. Since
the network centrality determines the agent’s exposure to the random shocks
coming from the network, it is argued that the more central is the agent, the
greater is the risk and the higher is the stock return (Ahern, 2013).

Table 3.1: Network Attributes

Attributes Explanation
Node size The size of node is usually determined from the

TO spillover, because it captures the sources of
systemic risk in the studied system. Size of the
node can also be defined as the size of the asset.

Node location The location of the node expresses the average
pairwise directional connectedness. The particu-
lar position is determined from the connectedness
tables and by using the adjacency matrices.

Node colour The colour of node shows the origins of the volatil-
ity connectedness. Each node and its edges (con-
nections) are assigned with the same colour. This
approach enables to recognize the spread of the
volatility connectedness.

Thickness of line The thickness of each line represents the strength
of the connections between the assets (the pairwise
directional connectedness).

Node degree The degree of node tells us the number of adjacent
edges of particular node and it is considered as a
main indicator for the node’s centrality.

Node strength The strength of node indicates the value of total
effect that the particular node has on the system.

Node clustering The node clustering is given by the clustering co-
efficient that gives us the information about the
number of the node’s linkages and their strength.

Source: Demirer (2018), Buraschi and Tebaldi (2017)
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3.3 Asset Pricing Models
Linear return models have been widely used in the financial economic literature
and had a significant effect on researchers. However, since the introduction of
the multifactor generalizations of the capital asset pricing models (CAPM),
which attracted huge interest in the last decades, the multifactor models be-
came as widespread as the single-factor models. The first multifactor model was
purposed by Ross (1977), Arbitrage Price Theory (APT) model. Other com-
monly used methods in pricing include the developments of Fama and French
(1992), and Cahart (1997), concerning the three-factor and four-factor CAPM
models. This diploma thesis works with the multifactor asset pricing model
based on the Fama and MacBeth (1973) two-step regression model, using the
Fama-French factors and connectedness as risk factors determining the risk
premium.

3.3.1 Capital Asset Pricing Model

Capital Asset Pricing Model (CAPM) is said to be the first and most widely
used model in the asset pricing. Cochrane (2005) provided detail derivations
of the CAPM model for exponential utility, normal distributions; two-period
quadratic utility; log utility; quadratic value function, dynamic programming.
In his book, Cochrane (2005) defines the CAPM model as:

m = a + bRw (3.11)

where m is the discount factor, Rw is the wealth portfolio return, a and b

are free parameters.
As noted by Cochrane (2005), thinking in terms of discount factors is usu-

ally easier than thinking in terms of portfolios. Cochrane (2005) argues that
insisting on the fact that there is positive discount factor is less difficult than
checking that every possible portfolio (dominating to the others) has larger
price.

The following equation 3.12 shows how the CAPM ties the discount factor
to the return on the wealth portfolio. The function is linear:

mt+1 = a + bRW
t+1 (3.12)
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The CAPM is frequently stated in expected return form:

E(Ri) = α + βi,RW [E(Rw) − α] (3.13)

The central aasumption of the CAPM is that the market portfolio is mean-
variance efficient. The CAPM model also assumes that there is a positive
relationship between expected returns on securities and their market betas
(risk premiums) i.e. the higher is beta, the higher is the expected return.
However, the serious problem of this model is that the risks of the stock are
multidimensional i.e. beta does not explain whole cross-section of the average
stock returns. There are also some empirical contradictions to CAPM, namely
size effect (Banz, 1981), leverage effect (Bhandari, 1988) and existence of other
variables related to stock returns such as for example earnings-price, book-to-
market equity or market equity.

3.3.2 Fama-French Three Factor Model

Fama-French Three Factor Model, introduced by Fama and French (1992), is
considered as one of the first and also one of the most used asset pricing models
based on multiple factors. Fama and French (1992) evaluated the joint role of
different characteristics of stocks. The factors, which they primarily studied in
their work, are size, book-to-market equity, earnings-to-price ratio and leverage.
The Fama-French model is regarded as a milestone and benchmark framework
for the asset pricing models. As concluded by Fama and French (1992), the
relationship between average return and the size of the stock is negative and
robust to the inclusion of other variables. Moreover, there is a positive corre-
lation between the average return and book-to-market equity. This work also
revealed that the combination of book-to-market equity and size absorbs the
role of leverage and earnings-to-price in the average returns of stocks.

The following equation 3.14 specifies the main idea:

E(Ri) − Rf = βw
i [E(Rm) − Rf ] + βsmb

i E(Rsmb) + βhml
i E(Rhml) + ϵF F

i (3.14)

where Rsmb represents the return of the small stocks minus the return of
the large stocks, and Rhml represents the return of stocks with high book-to-
market values minus the return of stocks with low book-to-market values. For
the purpose of testing the validity of the model, Fama and French (1992) used
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two linear regressions. First regression relates to the CAPM (Equation 3.15)
and the second one applies Three-Factor Model (Equation 3.16).

E(Ri) − Rf = αCAP M
i + βw

i [E(Rm) − Rf ] + ϵCAP M
i (3.15)

E(Ri)−Rf = αF F
i +βw

i [E(Rm)−Rf ]+βsmb
i E(Rsmb)+βhml

i E(Rhml)+ϵF F
i (3.16)

3.3.3 Fama-MacBeth Two-Step Regression

Like many other theories, also the CAPM suffers from fair share of problems.
These problems were already recognized by Lintner (1965), whose study found
statistically insignificant relationship between market betas and expected re-
turns. Black et al. (1972) claimed that the bias of the regression coefficients
result from the errors-in-variables problem. Solution to this problem was pro-
vided by Fama and MacBeth (1973). This approach significantly contributed
to the testing of hypothesis in asset pricing literature. It is used for estimating
the parameters for asset pricing models such as CAPM.

One of the main goals of the asset pricing theories is to explain the asset
returns using the risk factors. These factors are associated with the macroeco-
nomic phenomena (e.g. consumer inflation, unemployment rate, etc.) as well
as financial factors such as firm size. The Fama-MacBeth two-step regression
is considered as useful way of testing how these factors affect the overall port-
folio or the asset returns. The purpose of this approach is to determine the
premium corresponding with the exposure to these factors i.e. Fama-MacBeth
regression estimates the asset’s betas (factor exposures) and risk premia for
any risk factors that are assumed to determine asset prices.

The parameters of the regression are estimated in two steps. Firstly, each
portfolio’s asset return is regressed on the time series of particular risk factors in
order to determine the exposure of each return to the risk factors i.e. the asset’s
beta is obtained for each risk factor. Secondly, the cross-section of portfolio
returns is regressed on the asset’s betas to determine the risk premium for each
risk factor (Hoechle, 2011).

Let assume n portfolio or asset returns and m risk factors. In the first step,
the factor exposures βs are estimated by conducting n regressions. Each time,
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each portfolio or asset return is regressed on m factors. The corresponding
regression equations are defined as follows:

R1,t = α1 + β1,F1F1,t + β1,F2F2,t + ... + β1,FmFm,t + ϵ1,t

R2,t = α2 + β2,F1F1,t + β2,F2F2,t + ... + β2,FmFm,t + ϵ2,t

...

Rn,t = αn + βn,F1F1,t + βn,F2F2,t + ... + βn,FmFm,t + ϵn,t

(3.17)

where Ri,t represents return of portfolio or asset i at time t for i= 1,...,n;
t=1,...,T; Fj,t is the risk factor j at time t for j=1, ..., m; βi,Fj

stands for the risk
factor exposure and expresses how the individual returns are exposed to the
risk factors. To determine the exposure of each portfolio’s return to a particular
set of risk factors, same factors Fj are used in each of the regressions.

In the second step, T cross-sectional regressions of the returns are calculated
using the m estimates of the βs ( = β̂) that were estimated in the first step.
This time each regression uses the same βs calculated in the first step, because
the main purpose is to examine the exposure of the n returns to the m factor
loadings over time. The new set of regressions look as follows:

Ri,1 = γ1,0 + γ1,1β̂i,F1 + γ1,2β̂i,F2 + ... + γ1,mβ̂i,Fm
+ ϵi,1

Ri,2 = γ2,0 + γ2,1β̂i,F1 + γ2,2β̂i,F2 + ... + γ2,mβ̂i,Fm
+ ϵi,2

...

Ri,T = γT,0 + γT,1β̂i,F1 + γT,2β̂i,F2 + ... + γT,mβ̂i,Fm
+ ϵi,T

(3.18)

where the return R are same as in the first step, γ represents the regression
coefficients that are used to compute the risk premium for each factor.

Finally, there are m + 1 series γ (including the constant) of length T for
each factor. Let assume that ϵ is i.i.d. The risk premium γm for factor Fm is
calculated by averaging the mth γ over T.

Another possible approach is to replace the second step with T regressions
by a single cross-sectional regression of n portfolio returns (averaged over time)
and to regress the average returns on m factor exposures with lengths n from
the first step. This regression is defined as follows:

Ri = γ0 + γ1β̂i,F1 + γ2β̂i,F2 + ... + γmβ̂i,Fm
+ ϵi (3.19)



Chapter 4

Data

The empirical part of this diploma thesis works with the daily data of 496 as-
sets included in the SP 500 index. Using two datasets of returns and realized
volatilities of these assets, the thesis aims to examine the volatility connected-
ness and return connectedness and to estimate the effect of the connectedness
linkages between the assets on the risk premium. In other words, the goal of
the thesis is to study how the market’s volatility of one asset is transmitted
to the other assets in the system (such as market, sectors or portfolios), and
particularly how this transmission affects the overall level of the portfolio risk.

The examined datasets consist of data of 496 companies which were divided
into 11 groups based on the sector in which the studied companies run their
business. The analysed dataset of stock returns was obtained from the stock
exchange which provided the data to Charles University in Prague. The data
spans from July 1, 2005 to December 31, 2018, i.e. the dataset includes 3 280
trading days. Our dataset therefore covers the pre-crisis period, the global
financial crisis of 2008 as well as the after-crisis period. Thus it includes the
information concerning the market development during both stable periods and
financial crises. This work provides the analyses working with two datasets
- the asset realized volatilities and the asset returns. Results of both assets’
measures are provided in order to compare the differences between the volatility
connectedness and return connectedness in 11 different sectors.

The examined sectors include Consumer sector (divided into two subgroups-
Discretionary and Staples), Health Care sector, Industry sector, Sector of In-
formation Technology, Sector of Materials, Real Estate sector, Financial sec-
tor, Energy sector, Sector of Telecommunications and Sector of Utilities. The
overview of the sectors, their code and the number of companies in individual
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sectors can be found in the Table 4.1. From this table, it can be seen that
the sample of telecommunication sector is very limited and its results can be
therefore misleading. For the proper analysis of the situation in this sector,
larger sample would be definitely more informative. Otherwise, we argue that
the datasets of the other sectors are sufficient to provide the valid results and
conclusions for our hypotheses.

Table 4.1: Overview of Analysed Sectors

Sector Code Total
Consumer Discretionary COND 73
Consumer Staples CONS 34
Health Care HLTH 53
Industry INDU 73
Information Technology INFT 67
Materials MATR 33
Real Estate REAS 29
Financials SPF 66
Energy SPN 36
Telecommunication TELS 6
Utility UTIL 26

As stressed by Diebold and Yilmaz (2009), the results of connectedness mea-
sures calculated from the returns are less informative than the results calculated
from the volatilities in terms of the connectedness dynamics. We conduct the
analysis for both, returns and realized volatilities, in order to see the differ-
ences in results of connectedness and to confirm the conclusions of Diebold
and Yilmaz (2009). However, in the interpretations and conclusions we focus
mainly on the volatility connectedness. Volatility connectedness provides us
the dynamics associated with the shock events and brings more information
that enable us to confirm or reject our hypotheses, and hence, we consider it
as more suitable for the connectedness analysis.

The original dataset, which was provided to Charles University in Prague
by the stock exchange, includes one-minute stock return data of the companies
included in the SP 500 index during the examined period. From these data,
the daily returns were calculated together with the realized variances by the
Institute of Economic Studies, Faculty of Social Sciences, Charles University
(IES FSV UK). Due to the fact that the SP 500 index changes frequently in
time, the newly created dataset includes only those companies which were fre-
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quently present in the index during the examined period and showed sufficient
liquidity during that time. As sufficiently liquid companies were considered
such companies who had at least five active hours of trading during the trad-
ing days. The log returns were obtained on the one-minute data, which were
then accumulated for one day. The daily data were computed then as a dif-
ference of the values of the opening returns and closing returns at the stock
exchange. The realized variances were obtained using the five-minute data. All
of the processes were conducted by the researchers at the IES FSV UK and
their modified daily data are the source for this diploma thesis. The summary
statistics of the dataset of asset returns and asset realized volatilities for the
individual sector are provided in the Table 4.2. and Table 4.3.

Table 4.2: Summary Statistics of Sectors - Realized Volatilities

Sector Min. 1stQu. Median Mean 3stQu. Max.
Consumer Discretionary 0.0027 0.0105 0.0143 0.0177 0.0207 0.4124
Consumer Staples 0.0019 0.0075 0.0098 0.0121 0.0137 0.3218
Health Care 0.0000 0.0090 0.0120 0.0149 0.0169 0.3788
Industry 0.0019 0.0097 0.0132 0.0164 0.0190 0.5328
Information Technology 0.0012 0.0101 0.0137 0.0162 0.0189 0.2909
Materials 0.0029 0.0105 0.0145 0.0189 0.0211 0.2617
Real Estate 0.0024 0.0092 0.0119 0.0159 0.0174 0.4155
Financials 0.0012 0.0087 0.0120 0.0167 0.0181 0.9656
Energy 0.0029 0.0123 0.0168 0.0199 0.0234 0.4761
Telecommunication 0.0033 0.0092 0.0138 0.0177 0.0219 0.1864
Utility 0.0027 0.0078 0.0098 0.0116 0.0130 0.1912

From the summary statistics tables, it can be seen that the daily returns
in the sectors (Table 4.3) are quite comparable in magnitude with one another
over the examined period. The same is true for the daily realized volatilities
across the sectors (Table 4.2). In terms of the extreme values, we can see that
the financial sector shows the most extreme minimum and maximum in both
returns and realized volatilities. The highest mean of realized volatilities can be
found in the energy sector (0.0198) and the lowest mean of realized volatilities
in the sector of utilities (0.0116). The sector of information technology together
with the real estate sector indicate the highest mean returns (0.0004 and 0.0003
respectively). The lowest mean return is in the sector of telecommunications
(-0.0007).
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Table 4.3: Summary Statistics of Sectors - Returns

Sector Min. 1stQu. Median Mean 3stQu. Max.
Consumer Discretionary -0.3830 -0.0091 0.0000 0.0007 0.0092 0.6309
Consumer Staples -0.2222 -0.0059 0.0003 0.0002 0.0065 0.2962
Health Care -0.3757 -0.0072 0.0003 0.0003 0.0080 0.3565
Industry -0.5520 -0.0081 0.0003 0.0001 0.0086 0.3629
Information Technology -0.3719 -0.0080 0.0005 0.0004 0.0090 0.3280
Materials -0.3109 -0.0091 0.0000 -0.0001 0.0091 0.2815
Real Estate -0.4396 -0.0078 0.0005 0.0003 0.0086 0.2942
Financials -0.7765 -0.0076 0.0002 -0.0001 0.0078 0.8205
Energy -0.4129 -0.0109 0.0000 -0.0003 0.0106 0.3466
Telecommunication -0.3004 -0.0089 -0.0002 -0.0007 0.0078 0.1953
Utility -0.2001 -0.0059 0.0003 0.00012 0.0065 0.1741

This diploma thesis uses the daily returns data and the daily realized volatil-
ities of 496 companies divided into 11 sectors. We calculate the realized volatil-
ities by extracting the root of the realized variances as follows:

RV olt =
√︂

RVt (4.1)

Finally, as proposed by Diebold and Yilmaz (2014) and Baruník et al.
(2018), we use the log transformation of the realized volatilities in order to
maintain the log-normality of the data for the VAR estimation, which we need
as an assumption for the calculation of the connectedness measures.

Due to the extensiveness of the dataset of some sectors, the LASSO (least
absolute shrinkage and selection operator) method is applied. LASSO is a re-
gression analysis method that does both variable selection and regularization.
It improves the accuracy and interpretability of the predictions which are pro-
duced by the statistical model (Tibshirani, 1996). This method is frequently
used in case of problems with dimensions that are often present while using
VAR. It shrinks the coefficients that do not provide any information to zero.
The obtained matrix of results then includes a lot of zero coefficients. The
nonzero coefficients show the informative links.

For the estimation of factor pricing in the Fama-MacBeth regression frame-
work, we use the the daily realized volatilities/returns data and the three Fama-
French factors - the excess return on the value-weighted equity market portfo-
lio, the Small minus Big portfolio, and High minus Low value premium. We
obtained the Fama-French factors from the website of Kenneth French. This
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dataset includes daily values of these three factors that span from July 1, 1926
to February 29, 2020. For the purpose of our analysis, we adjust the dataset so
that it includes the period that coincides with the period of the asset dataset
in order to facilitate some comparisons i.e. the period starts from July 1, 2005
and ends by December 31, 2018. Table 4.4 provides the overall overview of
the information about the used datasets which are merged and analysed in the
Chapter 5.

Table 4.4: Information about Analysed Datasets

Start Date End Date Observations Number of Assets
Asset volatilities 01-07-2005 31-12-2018 3 280 496
Asset returns 01-07-2005 31-12-2018 3 280 496
MKT 01-07-2005 31-12-2018 3 280 496
SMB 01-07-2005 31-12-2018 3 280 496
HML 01-07-2005 31-12-2018 3 280 496

According to Kenneth French website, the Fama-French factors are con-
structed using combinations of the six value-weighted portfolios formed on size
(small/large) and book-to-market (value/neutral/growth). Small Minus Big
(SMB) represents the average return on the three small portfolios minus the
average return on the three big portfolios. It is defined as follows:

SMB = 1
3(SmallV alue + SmallNeutral + SmallGrowth)

−1
3(BigV alue + BigNeutral + BigGrowth)

(4.2)

High Minus Low (HML) is defined as the average return on the two value
portfolios minus the average return on the two growth portfolios:

SMB = 1
2(SmallV alue + BigV alue) − 1

2(SmallV alue + BigV alue) (4.3)

The excess return of the market on the risk-free rate (MKT) is the value-
weighted returns of all CRSP firms incorporated in the US and listed on the
NYSE, NASDAQ, or AMEX. It is defined as :

MKT = Rm − Rf (4.4)

where Rf is the simple risk-free rate equivalent to a one-month Treasury
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bill rate (Kenneth French, website). The summary statistic of the Fama-French
factors can be found in Table 4.5.

Table 4.5: Summary Statistics of Fama-French Factors

Sector Min. 1stQu. Median Mean 3stQu. Max.
MKT -8.9500 -0.4100 0.0700 0.03636 0.5500 11.3500
SMB -3.7500 -0.3300 0.0100 0.00549 0.3300 3.81000
HML -4.2400 -0.3000 -0.0200 -0.00377 0.2600 4.83000

To analyse the correlation of the market factors, we calculate the correla-
tion matrix. The correlation matrix generally shows the correlation coefficient
between the variables and it is used for summarizing the data. The correlation
matrix is symmetric and the main diagonal shows that each variable is perfectly
correlated with itself. From the correlation matrix of the three Fama-French
factors concerning the correlation of the market (Table 4.6), we can see that
there is a positive correlation between market excess return and HML (approx-
imately 37%), and between market excess return and SMB (16%), and negative
correlation between the SMB and HML (9%).

Table 4.6: Correlation Matrix of Fama-French Factors

Factors MKT SMB HML
MKT 1.0000 0.1637 0.3694
SMB 0.1637 1.0000 -0.0879
HML 0.3694 -0.0879 1.0000



Chapter 5

Results

This chapter provides the calculated connectedness measures of the assets for
the examined sectors, graphical representation of the sector connectedness ta-
bles using the heat maps, and finally the application of estimated connectedness
measures as one of the risk factors in Fama-MacBeth factor model with the goal
to determine the significance of connectedness linkages between the assets on
the overall level of risk. The chapter is divided into three main subsections.

First section 5.1. provides the information about the connectedness analysis
using the variance decomposition approach and it describes the results from the
connectedness tables in each of the studied sectors. Due to the extensiveness of
the connectedness tables, this section includes the graphical representations of
the connectedness linkages across the sectors using the heat maps. Moreover,
it shows the results of overall connectedness across the sectors and examines
the directional connectedness measures by analyzing the net transmitters and
net receivers in each sector. The second section 5.2. presents the asset pricing
analysis using different connectedness measures as a risk factor for determining
the factors that significantly affect the risk premium of the portfolio in dif-
ferent market sectors, namely it works with the overall connectedness, FROM
connectedness and TO connectedness. All of these measures together with the
three Fama-French factors are analysed using the Fama-MacBeth two-step re-
gression.

The purpose of this chapter is to reveal whether the effect of connectedness
is a significant risk factor across the sectors, so that we can confirm or reject the
hypothesis that the factor of connectedness should be priced while determining
the true value of risk premium for the investor. Furthermore, by analyzing the
effect of connectedness at different sectors, we answer the question, whether the
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investors at different sectors should require different risk premium for bearing
connectedness risk. Finally, based on our data and our previously conducted
sector analysis that serves as robustness check, we conclude whether the con-
nectedness is a factor that approximates risk in financial markets well.

5.1 Connectedness Analysis
The companies in the market are thought to be directly connected through
the counterparty linkages related to the positions in various assets, contractual
obligations associated with providing services to the customers and other insti-
tutions, and in other various ways. As noted by Diebold and Yilmaz (2012), it
is possible to use the stock market returns and the return volatilities for mea-
suring the connectedness and its evolution, because they provide the needed
information. Studying the connectedness volatility is therefore useful for two
main reasons. Firstly, it reflects the connectedness of investor fear which is ex-
pressed by market participants while trading. For this reason, economists are
particularly interested in the level, variation, patterns and clustering of this
fear connectedness. Secondly, volatility connectedness is crisis-sensitive. Since
the volatility is latent, it must be estimated.

In this section, we present the results of the connectedness measures estima-
tion based on the realized volatilities of the assets and the asset returns. These
measures are based on the methodology introduced by Diebold and Yilmaz
(2012), which were already described in the methodology section of this diploma
thesis. To study the connectedness between the assets’ realized volatilities and
the asset returns within each sector, we use the connectedness measures using
the VAR model, more specifically the variance decomposition approach, which
allows us to examine the transmission mechanism measures. These measures
work with the whole datasets of the sectors and produce the estimations of the
overall connectedness and the directional connectedness measures FROM and
TO.

One of the VAR model assumptions is the stationarity process in time series
data. Since our estimations of connectedness are based on variance decompo-
sitions, we would like to test the stationarity of our datasets. The frequently
used methods for testing the stationarity of realized volatilities of time series
are Dickey-Fuller or Augmented Dickey-Fuller (ADF) test. The null hypothesis
is the presence of unit root in the realized volatilities, hence non-stationarity,
and the alternative hypothesis is the stationarity. If these tests reject the null
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hypothesis, we can assume that the time serie has a stationary process. Other
type of unit root test is Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test. In
comparison with other tests, presence of unit root is an alternative hypothesis
in this test. The testing of stationarity of time-series data on such extended
datasets like our datasets is very complex, and hence, it is out of the scope
of this diploma thesis. Nonetheless, we need to be aware of the possibility of
the non-stationarity nature of the realized volatilities, and mainly the asset
returns, since the measured volatilities and returns are usually strongly serially
correlated and non-stationary. Fortunately, the recent literature argues that
the violation of the assumption of the global stationarity is possible. Instead of
concentrating on the global stationarity, we can focus on the locally stationary
structure of the data by using an approximation of locally non-stationary data
by stationary models (Baruník and Křehlík, 2018, Starica and Granger, 2005).
Moreover, to approximate normality of our data for further analysis, we take
the natural logarithms of the realized volatilities as proposed by Baruník et al.
(2018).

To determine the lag order for the VAR model, the information criteria
such as Akeike Information Criterion (AIC), Bayesian Information Criterion
(BIC) or Schwarz Criterion (SC) can be used. As suggested by Diebold and
Yilmaz (2012), who provided a sensitivity analysis of Diebold-Yilmaz index to
the length of VAR lag, the results do not significantly change for lags 2 to 6.
They showed that the results are almost similar if we apply 2, 3 or 4 lags. Due
to extensiveness of our data sample, we follow the suggestion of Diebold and
Yilmaz (2012), and we choose the VAR with 2 lags. This decision is consistent
with the other existing academic works (Baruník et al., 2016; Baruník and
Křehlík, 2018). In addition, Baruník et al. (2016) suggests running the usual
diagnostics to control for possible deviations from the VAR assumptions. These
checks are crucial for checking that there is no dependence left in the residuals,
so that our estimates are consistent.
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5.1.1 Connectedness Tables

Let us now briefly summarize the main types of connectedness measures for
better understanding of each of them. Table 5.1 provides the overview of the
types of connectedness measures together with a simple explanation.

Table 5.1: Overview of Connectedness Measures

Type Explanation
Overall Connectedness Connectedness of all assets in the system
Pairwise Connectedness Connectedness from jth asset to the ith asset
TO Connectedness Connectedness from ith asset to all assets in the system
FROM Connectedness Connectedness to ith asset from all assets in the system
NET Connectedness Difference between TO and FROM connectedness of asset i

For each studied sector, the connectedness table was estimated based on
the methodology of Diebold and Yilmaz (2012) using the variance decomposi-
tions from a vector autoregression model. From the connectedness tables, one
can see the pairwise, TO and FROM connectedness and easily compute NET
connectedness. In comparison with the overall connectedness measure, which
is represented by one single number for each sector (or generally for one system
or one portfolio), the directional connectedness measures such as TO connect-
edness, FROM connectedness, NET connectedness and pairwise connectedness
can not be that easily presented in the text, especially for the sectors with
large number of companies. The connectedness tables for large sectors are
unfortunately very extensive, and hence, it is not possible to fit them to the
standardized A4 pages. For this reason, we show only the connectedness table
for the Telecommunication sector (Table 5.2) that includes only six compa-
nies and serves as an illustrative example of given connectedness measures for
the readers. The other sectors’ connectedness tables are constructed in the
analogical way.

To illustrate the connectedness linkages between the individual assets’ re-
alized volatilities and asset returns in each of the sectors, we provide two heat
maps for each sector that display the intensity of the linkages based on the cal-
culated connectedness tables. A heat map serves as a graphical representation
of data in which the individual values included in the matrix are represented
by certain shadow of colour. In our heat maps, the darker is the colour, the
higher is the factor of connectedness between the individual assets in the sector.
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Table 5.2: Illustrative Connectedness Table, Telecommunication Sec-
tor

X.cien. X.ctl. X.ftr. X.s. X.t. X.vz. FROM
X.cien. 0.993 0.003 0.000 0.002 0.001 0.001 0.124
X.ctl. 0.002 0.992 0.003 0.001 0.001 0.000 0.133
X.ftr. 0.001 0.005 0.992 0.001 0.000 0.001 0.141
X.s. 0.002 0.003 0.000 0.987 0.005 0.004 0.212
X.t. 0.001 0.003 0.000 0.005 0.989 0.002 0.183
X.vz. 0.001 0.002 0.001 0.005 0.003 0.989 0.179
TO 0.107 0.257 0.064 0.256 0.159 0.128

Therefore, the dark shadows of grey colour represent higher exposure to the
risk associated with the connectedness of the given asset i and other assets j
in the particular sector/portfolio.

When we compare the heat maps based on the calculated connectedness
tables of returns and connectedness tables of realized volatilities (Appendix
A), we can notice obvious differences between these two measures of asset
performance. In all sectors, we can spot the same pattern. The heat maps of
volatility connectedness are significantly darker than the heat maps of returns
connectedness in all sectors. This means that the volatilities of assets are
more connected to other volatilities of assets than the asset returns. This
fact confirms the assumption that the connectedness of returns is lower than
the connectedness of volatilities, since the returns are generally not that much
persistent. We can therefore conclude that if we consider the asset volatilities,
the factor of connectedness plays a larger role than in case of asset returns. In
other words, the volatilities of assets in the sector are generally more affected
by the shocks coming from the other assets in the sector than the asset returns.

Comparing the sectors, we can see that the telecommunication sector ex-
hibits weaker connectedness linkages between the assets than for example the
financial or the real estate sector. This can be seen from the shadows of grey
colour in each sector. Therefore, we argue that the factor of connectedness
plays different role at different sectors i.e. there is a different level of risk asso-
ciated with the connectedness of assets in different sectors. Considering these
results, the risk premium for the investors should reflect the risk associated
with the connectedness linkages especially in the financial, real estate, health
care and consumer sectors, in which the heat maps as well as original con-
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nectedness tables signify stronger connectedness linkages between assets, and
hence, higher risk for investors.

Figure 5.1: Heatmap of Financial Sector, Volatility Connectedness

Figure 5.1 and Figure 5.2 show a simple representation of the connected-
ness tables in the financial sector by using the heat maps. Figure 5.1 contains
volatility connectedness table of 66 companies representing the connectedness
linkages within the financial sector, Figure 5.2 displays the connectedness link-
ages in the same sector based on the return connectedness table. In both heat
maps, the strength of the connectedness linkages is expressed by the scale from
0 (white colour) to 100 (black colour). This means that the darkest shadows
of black colour in the heat maps represent the strongest linkages between the
assets. We present here the connectedness tables of the financial sector, be-
cause the connectedness linkages reach the highest and most significant values
among the examined sectors. The heat maps of other sectors are provided at
Appendix A of this diploma thesis. For the clarity, the diagonal of the con-
nectedness tables was in all cases set to zero, otherwise the own spillovers,
spillovers originating shock to/from asset i from/to asset i, would be repre-
sented by the darkest colour, because these spillovers reach from their design
always the highest values.
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Figure 5.2: Heatmap of Financial Sector, Return Connectedness

5.1.2 Overall Connectedness

The overall connectedness is the aggregated measure of the system-wide con-
nectedness. It is calculated as a sum of the total directional TO and FROM
connectedness. Thus this measure determines the overall level of the connect-
edness in the studied system during the particular period of time. The inter-
pretation is intuitive, the larger is the value of the overall connectedness, the
higher is the volatility/ return connectedness in the system. The overview of
the size of the overall connectedness in each sector is shown in Table 5.3.

From Table 5.3, we can conclude that the overall volatility connectedness
of each of the sectors are significantly higher than the overall return connect-
edness, and therefore, we can state that the realized volatilities of the assets
are more connected than the asset returns. The highest overall connectedness
of the returns as well as of the realized volatilities can be found in the financial
sector, 37.9 and 63.71 respectively. We can see that the difference between
these two values is significantly different. The other sectors marked with high
overall volatility and return connectedness are the real estate sector and the
industry sector. On the other hand, the lowest overall connectedness of the
returns and volatilities is in the telecommunication sector. However, these re-
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sults can be caused by the small sample of the telecommunication companies.
Using another sample of telecommunication sector, we could come to different
conclusions. From the results, it can be also seen that the difference between
the sector with highest and lowest connectedness measure is significantly large,
using both returns and realized volatilities.

From the results in Table 5.3, we can see that if we order each column based
on the values of the overall connectedness in ascending order, the ordering of
the sectors would not be the same for the overall connectedness of returns and
volatilities. We can notice especially high value difference between the overall
volatility connectedness and the overall return connectedness in the consumer
discretionary sector.

Although the analysis of system-wide connectedness in the sectors provides
a valuable information, it does not reveal the time-frequency dynamics of con-
nectedness, and hence the structure of systemic risk. For such analysis we
would have to study the distinct time-persistence in which the shocks impact
the sectors and we would have to decompose the connectedness measures into
frequency bands such as high frequency, medium-term and low-term frequency.
However, this analysis is out of the scope of this diploma thesis.

Table 5.3: Overall Volatility and Return Connectedness

Sector Overall Volatility Overall Return
Connectedness Connectedness

Consumer Discretionary 47.332 7.568
Consumer Staples 24.918 5.666
Health Care 48.494 9.602
Industry 50.438 18.788
Information Technology 42.759 12.749
Materials 37.635 7.932
Real Estate 49.747 29.474
Financials 63.720 37.923
Energy 47.472 11.227
Telecommunication 16.377 0.973
Utility 37.024 11.230

The above described overall connectedness analysis shows only the overall
level of connectedness present in the sectors for the whole studied period from
July 1, 2005 to December 31, 2018. We will concentrate more on the dynamics
of the overall connectedness in the following sections, in which we will use the
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time-series of the overall connectedness, determined by using the connectedness
rolling window, as one of the risk factors in the risk premium analysis.

5.1.3 Directional Connectedness

The total directional connectedness linkages between the studied assets can be
more precisely analysed by using the TO and FROM connectedness. These
two measures tell us to what extent is the particular asset affected by the
changes/shocks in the other assets in the system (FROM ) and how much it
transmits its changes to the others in the system (TO). In order to distinguish
between net receivers and net transmitters of volatility/return connectedness
among the assets, we use the total directional NET connectedness measure,
which expresses the difference between TO and FROM connectedness. The
positive difference (net connectedness > 0) signifies that the asset is considered
as net transmitter, the negative difference (net connectedness < 0) indicates
the net receiver.

To construct the directional connectedness measures, we need to measure
first the pairwise directional connectedness. This measure provides us the in-
formation about the sources of volatility/return connectedness and it is crucial
for creating the networks. Through aggregation of the pairwise connectedness
of one given asset in one direction, we obtain TO and FROM connectedness.
All of these measures are displayed in the previously mentioned connectedness
tables. From TO and FROM connectedness, we can then calculate the NET
connectedness as well.

From the obtained results of FROM connectedness of asset i, we can then see
the share of forecast error variation that is explained by the shocks originating
from the other assets j in the particular sector. The results of TO connected-
ness of asset i shows the volatility/return transmission towards assets j in the
analysed sector or portfolio (Diebold and Yilmaz, 2012).

To sum up, the directional connectedness implies the exposure to the risk of
the particular asset that is associated with the connectedness linkages with the
other assets in the system. From the perspective of the investor, the FROM
connectedness of the given asset should be considered as a risk that is caused
by the other assets in the system. The higher is the effect of the shocks coming
from the other assets on the investor’s asset, the higher is the risk of given
asset as well as the risk of the overall portfolio. Contrariwise, the regulator
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should focus also on the TO connectedness to see which assets are probable to
transmit their shocks to the other assets in the market.

To illustrate these three measures of connectedness, we provide Table 5.4
and Table 5.5 that describe the connectedness situation of the individual assets
in the telecommunication sector based on the returns (Table 5.4) and realized
volatilities (Table 5.5) of the assets. As previously mentioned, we have to
take the results of the telecommunication sector with caution due to the size
of this sector. Other sample of companies in telecommunication sector could
result in different conclusions. Nonetheless, these tables confirm our previous
assumptions and conclusions that the volatility connectedness is higher than
the return connectedness.

Table 5.4: Return Connectedness, Telecommunication Sector

X.cien. X.ctl. X.ftr. X.s. X.t. X.vz.
TO 0.107 0.257 0.064 0.256 0.159 0.128
FROM 0.124 0.133 0.141 0.212 0.183 0.179
NET -0.017 0.124 -0.077 0.044 -0.024 -0.051

Table 5.5: Volatility Connectedness, Telecommunication Sector

X.cien. X.ctl. X.ftr. X.s. X.t. X.vz.
TO 2.974 0.935 2.925 2.528 4.853 2.162
FROM 2.581 2.972 1.791 1.091 3.051 4.891
NET 0.393 -2.037 1.134 1.437 1.802 -2.729

From the results of the connectedness table using the dataset of realized
volatilities (Table 5.5), we can see that in our telecommunication sector we have
2 net receivers, i.e. 2 companies (marked as X.ctl. and X.vz.) in which the
FROM connectedness is higher than TO connectedness, and 4 net transmitters,
i.e. 4 companies (marked as X.cien, X.ftr, X.s. and X.t) in which FROM
connectedness is lower than TO connectedness. We can see that the company
marked as X.ctl. has the lowest TO connectedness from the whole sample with
the above-average FROM connectedness. This means that shocks received from
the other companies in the sector affect significantly this company, however
shock to company X.ctl. has only a small effect on the other companies in the
sector. On the other hand, the opposite situation is true for company marked
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as X.t., which has the highest TO connectedness. When we look at Table
5.4, we can see that the number of net receivers and net transmitters in the
telecommunication sector changes if we use the returns of assets. In the same
way as we analyse the telecommunication sector, we can analyse all sectors,
however due to extensiveness of the tables, it was not possible to include the
conducted sector analyses in the text.

Table 5.6: Net Transmitters and Net Receivers

Volatility Volatility Return Return
Transmitters Receivers Transmitters Receivers

Consumer Discretionary 23 50 28 45
Consumer Staples 8 26 14 20
Health Care 14 39 20 33
Industry 22 51 23 50
Information Technology 23 44 24 43
Materials 12 21 12 21
Real Estate 10 19 7 22
Financials 18 48 22 44
Energy 12 24 16 20
Telecommunication 4 2 2 4
Utility 11 15 8 18

In addition, Table 5.6 provides the number of the net transmitters and net
receivers in each sector. It can be seen that the net receivers dominate by sig-
nificant number in all sectors, except the telecommunication sector. This fact
can correspond to some extent with the lowest overall connectedness factor of
the telecommunication sector. However, this specific result can be also biased
due to the small sample of firms in the telecommunication sector. From Table
5.6, we can also notice that in most of the sectors, we have more net trans-
mitters than net receivers when we use realized volatilities than if we apply
the returns. From the results of the previously conducted analysis concerning
the magnitudes of the sector overall connectedness (Table 5.3), we can hence
assume that high sector overall connectedness corresponds with high number
of net receivers. We can see that high sector overall connectedness is present
in the sectors, in which the net receivers significantly dominate to the net
transmitters.
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5.2 Asset Pricing Analysis
As noted by Cochrane (2005), the risk premium represents more than 80% of
the asset prices. The main goal of this thesis is therefore to contribute to the
main question of the asset pricing concerning the pricing of the uncertainty of
the future cash flow. We aim to find out whether the factor of connectedness
should be considered by asset pricing model as one of the risk factors affecting
the price.

In this section, we present the results concerning the asset pricing model
extended by the factor of the connectedness linkages, which were estimated in
the previous section 5.1 and now they will serve as a one of the risk factor.
This analysis aims to show how the connectedness measures can contribute to
pricing of the risk premium while using the robust methodology. Each of the
presented analysis of the risk premium factors is conducted separately for each
sector in order to determine the differences in exposure to the risk resulting
from the connectedness linkages between the assets at different sectors. This
chapter intends to answer the question whether the connectedness factor has a
significant effect on the risk premium pricing, and therefore, should be included
in the asset pricing model and taken into the account by the investors. More-
over, we attempt to examine whether the connectedness between the assets
plays the same role in all sectors, and can be priced similarly, or whether there
exists some sectors in which the connectedness affects the risk premium more
significantly than in other sectors.

Our asset pricing model uses the dataset consisting of three Fama-French
factors provided on the webpage of Professor Kenneth R. French, daily asset
returns, and our daily estimated connectedness measures based on the returns
and realized volatilities. All of these data span from 22.11.2005 to 31.8.2018
and include 3181 trading days. The time series of the connectedness measures
for all the assets are obtained by a connectedness rolling window over 100
days. Therefore, the first date to which we estimate the connectedness factor is
22.11.2005 (1.7.2005 + (100-1) trading days = 22.11.2005). Due to the method
of connectedness rolling window estimation, we have to drop almost 5 months
of observations from the initial dataset of the asset returns that includes the
period from 1.7.2005 to 31.8.2018 (3 280 trading days). Connectedness rolling
window estimation provides us the connectedness tables for each of the day
for the examined period. Baruník et al. (2016) created the spillover index
based on the 200-day, 150-day and 100-day window and tested the robustness
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of the results based on the estimates of different lengths of rolling window.
They came to conclusion that the results do not change materially, and hence,
they are robust to the selection of the rolling window and the horizon. Based
on these results, we choose the 100-day rolling window to maintain highest
possible length of observations in time series.

Using the ideas of Fama-MacBeth regression model (1973), we first regress
the returns of each company on four risk factors in order to determine the
asset’s betas for each risk factor. Secondly, we regress all average asset returns
on the estimated betas from the first step in order to determine which of the risk
factors have a significant effect on the risk premium. The aim of this analysis
is to confirm or reject the hypothesis, whether the connectedness factor should
be priced in the risk premium, i.e. whether the effect of connectedness linkages
represent a significant risk factor. The Fama-MacBeth regression is conducted
for each sector.

Our main analysis is based on the equation using four main risk factors -
the connectedness factor and three Fama-French factors. The equation for the
first step is defined as follows:

Rit = β0,i + β1,iCit + β2,iMKTt + β3,iSMBt + β4,iHMLt + uit (5.1)

where Rit is the total return of a stock i at time t, Cit stands for the
connectedness factor of a stock i at time t, MKTt represents the excess return
on the market portfolio (index) at time t, SMBt stands for the size premium
(small minus big) at time t, HMLt stands for the value premium (high minus
low) at time t and β1,2,3,4 are the risk factors coefficients.

The estimated equation for the second step is defined as follows:

Ri = α0 + α1β̂1,i + α2β̂2,i + α3β̂3,i + α4β̂4,i + ϵi (5.2)

where β̂1,2,3,4 are the estimated coefficients from the first step, Ri is the aver-
age return over time of asset i, and α1,2,3,4 are the risk premiums for the factors
of connectedness, excess return on market portfolio, size and value respectively.

Both of the equations (5.1, 5.2) stated above are estimated using the Or-
dinary Least Squares (OLS) method with the HAC standard errors, which are
recommended by the existing literature to use in case of the potential threat of
heteroscedasticity and the autocorrelation. Since the error term uit in the given
model may be serially correlated due to correlation of Rit determinants not ex-



5. Results 52

plicitly stated in the specified model, it is useful to apply heteroskedasticity- and
autocorrelation-consistent estimators of the variance-covariance matrix that
solve the problem of both, autocorrelation and heteroscedasticity. In case that
error term uit is serially correlated, and the HAC standard errors are not used,
the statistical inference that is derived from the standard errors may be invalid,
and therefore strongly misleading while making the conclusions. However, if
we use the HAC standard errors even though there is no serial correlation, the
assumptions are not violated, and the OLS estimators remain consistent and
unbiased, the only drawback of this approach is the reduction of the efficiency.

To properly analyse the effect of connectedness on the overall risk of portfo-
lio in given sector, we performed series of the Fama-MacBeth regressions, using
three different measures of connectedness. Firstly, we use the rolling window
estimates of the overall connectedness factor as one of the four factors determin-
ing the risk premium. In this case, we are interested whether the connectedness
linkages between the assets in the sector on the whole have a significant effect
on the level of risk. Secondly, we apply the FROM connectedness as a risk fac-
tor in our equation. In comparison with the overall connectedness factor that
is same for all the assets in given sector, FROM connectedness is related to the
particular asset, and hence, it differs for each of the assets. This factor deter-
mines the risk of connectedness that is related to the shocks that originate in
the other assets in the sector and are received by our particularly chosen asset
i. In these regressions, we match the individual FROM connectedness factor
with the given asset. On the analogical basis, for a third type of analysis, we
apply the TO connectedness factor to our asset pricing equation. This factor
provides information about the risk connected with the shocks that are caused
by the examined asset i and transmitted to the other assets in the system. In
all of these analyses, we firstly apply the connectedness factor based on the
realized volatilities, and secondly based on the returns.

Each section in this chapter provides a summary of the results of the sectors
using different connectedness measures as risk factors. The tables displayed in
the following sections present only the results of the sectors, in which the factor
of particular connectedness measure is significant. The tables of each of the
estimated models for each sector can be then found in the Appendix B, which
is attached at the end of this diploma thesis.
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5.2.1 Overall Connectedness as Risk Factor

With the purpose to analyse whether the connectedness linkages between assets
represent a significant risk factor that should be included while determining the
risk premium, we use firstly the overall connectedness measure. We know that
the overall connectedness, known also as system-wide connectedness, is the
most aggregate measure that equals the overall level of connectedness between
all the assets in the system, in our case in one sector. This means that there is
only one system-wide connectedness measure for one studied sector, which is
obtained from generalized variance decomposition.

Using the rolling window of 100 trading days (100 observations in our
dataset), we estimate the time series of the overall connectedness for each
sector, so that we can run the model using the multiple time-series of each
variable. Following the Fama-MacBeth regression, we estimate the following
equation in the first step:

Rit = β0,i + β1,iC
Overall
t + β2,iMKTt + β3,iSMBt + β4,iHMLt + uit (5.3)

where COverall
t stands for the overall connectedness of the given sector at

time t.
In the first step, we regress the daily returns of each asset in the sector

on the daily overall connectedness of the given sector, and on the three Fama-
French factors. We obtain the coefficients of betas for each asset in the sector.
In the second step, we regress the average return on the estimated betas from
the first step, and we obtain the coefficients gammas, which tell us whether the
exposure to the risk caused by the sector overall connectedness is significant
for determining the risk premium. The second step follows the Equation 5.2.

Table 5.7, 5.8 and 5.9 provide the estimates of the risk factors from OLS
regression (second step of Fama-MacBeth two-step regression).The standard
errors are displayed in the parantheses. The risk factors are MKT, the excess
return on the value-weighted equity market portfolio, SMB, the Small minus
Big portfolio, and HML, High minus Low value premium, all obtained from
Kenneth French’s website, and C_Overall, representing the overall connected-
ness of the given sector. The Constant tells us the estimated constant in the
affine price of risk specification for each pricing factor.

Firstly, we focus on the volatility connectedness results (Table 5.7 and
5.8). When we use the overall connectedness factor estimated from the real-
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ized volatilities, the connectedness factor is significant in many sectors, namely
financial sector, consumer discretionary, consumer staples, health care, mate-
rials, real estate and utility sector. We can see that the beta coefficients of
the sector overall connectedness is not only statistically, but also economically
significant in many cases.

From the results, we can therefore conclude that the value of the sector
overall connectedness is a significant risk factor, and should be therefore taken
into account while determining the risk premium. This information can be
especially important for the investors, whose portfolio comprises of the assets
just from one sector or primarily from one sector. In that case, the information
of overall connectedness in given sector can be valuable for estimating the
potential risk of the portfolio and determining the size of the requested risk
premium.

These results can be further generalize for the randomly chosen system of
assets, portfolio or market as a whole. With the purpose to request the true
risk premium, it is useful to find out whether the overall connectedness of
the system/portfolio is low or high. If the overall connectedness of the sys-
tem/portfolio is high, then it can be expected that the system/portfolio suffers
from higher risk associated with shocks coming from/to one asset to/from other
assets. Hence, we argue that the overall connectedness should be priced in the
risk premium because it represents a significant exposure to the risk.

Let us now focus on the results obtain by using the dataset of returns
(Table 5.9). In comparison with the overall connectedness based on the realized
volatilities, the overall connectedness factor estimated from the returns is highly
significant in only two systems - sector of materials and real estate sector.
It is also significant in utility and consumer staples sector, but only on 10%
significance level. In all of these sectors the overall volatility connectedness
was significant on 5% significance level. We can therefore conclude, that the
sector overall connectedness is generally lower and less significant, when it is
determined from returns, however, there exists some sectors in which the overall
return connectedness is significant, not only statistically, but also economically.
These results are in accordance with the results of Diebold and Yilmaz (2009),
who claimed that the results of the connectedness measures calculated from
the returns provide less information of connectedness dynamics in comparison
with the volatility connectedness.
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Table 5.7: Results - Overall Volatility Connectedness, Part A

Dependent variable:
Average return

Financial Health Consumer Consumer
Discretionary Staples

(1) (2) (3) (4)
C_Overall 4.799∗∗∗ 7.529∗∗∗ 1.722∗ 0.918∗∗

(0.540) (2.279) (0.932) (0.442)

MKT -0.039 -0.049 0.031 0.087
(0.026) (0.066) (0.045) (0.052)

SMB -0.049∗∗∗ 0.0003 -0.045∗ -0.011
(0.016) (0.032) (0.023) (0.030)

HML -0.016∗ -0.106∗∗∗ -0.080∗∗∗ -0.075∗
(0.009) (0.038) (0.027) (0.038)

Constant 0.0004∗∗ 0.0004 0.0003 -0.0003
(0.0002) (0.0003) (0.0003) (0.0004)

Observations 66 53 73 34
R2 0.740 0.347 0.473 0.457
Adjusted R2 0.723 0.293 0.442 0.382
F Statistic 43.414∗∗∗ 6.384∗∗∗ 15.272∗∗∗ 6.100∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 5.8: Results - Overall Volatility Connectedness, Part B

Dependent variable:
Average return

Materials Real Utility
Estate

(5) (6) (7)
C_Overall 1.649∗∗ 1.335∗∗ 1.935∗∗∗

(0.606) (0.523) (0.672)

MKT -0.176∗∗∗ 0.035 -0.041
(0.038) (0.065) (0.039)

SMB 0.006 -0.070∗∗ 0.040
(0.035) (0.027) (0.064)

HML -0.132∗∗∗ -0.002 -0.096
(0.045) (0.024) (0.085)

Constant 0.001∗∗∗ 0.0001 0.0003
(0.0003) (0.0005) (0.0002)

Observations 33 29 26
R2 0.616 0.476 0.481
Adjusted R2 0.561 0.388 0.382
F Statistic 11.222∗∗∗ 5.442∗∗∗ 4.868∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 5.9: Results - Overall Return Connectedness

Dependent variable:
Average return

Real Utility Materials Consumer
Estate Staples

(1) (2) (3) (4)
C_Overall 1.335∗∗∗ 5.385∗∗∗ 1.380∗ 0.733∗

(0.357) (0.496) (0.733) (0.418)

MKT 0.023 -0.502 -0.048 -0.073
(0.055) (0.816) (0.056) (0.056)

SMB -0.060∗∗ -0.466 -0.045 -0.045
(0.024) (0.455) (0.054) (0.042)

HML 0.005 -0.166 0.081 -0.021
(0.021) (0.514) (0.054) (0.062)

Constant 0.0002 0.00001 0.0003 0.001∗∗
(0.0004) (0.00001) (0.0004) (0.0003)

Observations 29 26 33 34
R2 0.579 0.944 0.192 0.324
Adjusted R2 0.509 0.934 0.077 0.231
F Statistic 8.254∗∗∗ 89.342∗∗∗ 1.668 3.478∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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5.2.2 FROM Connectedness as Risk Factor

As suggested by Branger et al. (2019), directed links in cash flow networks
have an effect on the cross-section of risk premia through three main channels-
spreading channel, receiving channel and hedging channel. The spreading chan-
nel includes the shocks that propagate through the economy a higher market
price of risk, and should therefore increase the risk premium. Receiving chan-
nel lays in the fact that the shock-receiving assets earn an extra premium for
spillover risk because their valuation ratios drop upon shocks in connected
assets, and hence, should increase the risk premium. The hedging channel
comprises of the hedge effect that pushes risk premia down, because when a
shock propagates through the economy, an asset that is unconnected to this
propagated shock becomes more attractive and the valuation ratio increases.
Moreover, the direct connectedness linkages from and to a particular asset
determined the spreading and the receiving channel. However, the hedging
channel is determined by all linkages in the network. This fact implies that
the risk premium of an asset is affected as well by the cash flow linkages in
unconnected or very remote parts of the economy (Branger et al., 2019).

Our connectedness analysis focuses on the receiving channel i.e. on the
shock-receiving system. The main intuition behind the receiving channel, which
is represented by the connectedness factor in our analysis, is easily explained
by a stylized example. Let assume a market with three assets. Shocks can be
transmitted from asset 1 to asset 2, but there exists no other linkages between
assets. Therefore, asset 3 is unconnected to the rest of the market (in our
case to asset 1 and asset 2). The spreading channel works in the way that
the shocks to the cash flow of asset 1 increases cash flow risk in the market,
in our example in the asset 2. These shocks are hence more systematic and
bring a higher market price of risk than the cash flow shocks of assets 2 or asset
3. Therefore, the more connected are the assets to the cash flow risk of other
assets, the higher should be the risk premium. The receiving channel is usually
determined by the direct linkages from and to a particular asset (Branger et
al., 2019). In our analysis, the receiving channel is represented by the FROM
connectedness that captures the shocks coming to asset i from the other assets
j in the sector.

From the construction and the information that are provided by different
connectedness measures, it is expected that we need to employ the total di-
rectional FROM connectedness, if we want to capture a significant risk factor
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determining the risk premium. We claim that this factor is related to the risk
of the assets, because it provides the information to which extent is the asset
affected by the volatility transmissions from the other assets in the system. In
other words, this measure shows the shares of the forecast error variance of
asset i that originates from the shocks coming to assets j in the sector, and
signifies an exposure to the risk .

Hence, as a second type of analysis, we apply the FROM connectedness as
risk factor in our asset pricing model. In comparison with the overall connected-
ness measure which is same for all assets in one sector, the FROM connectedness
is unique for each of the assets in the sector. For this reason, we match each
asset with the individual time series of FROM connectedness derived by using
the connectedness rolling window. To analyse the connectedness linkages, we
employ again the Fama- MacBeth regression.

The estimated equation in the first step of this regression is defined as
follows:

Rit = β0,i + β1,iC
F ROM
it + β2,iMKTt + β3,iSMBt + β4,iHMLt + uit (5.4)

where CF ROM
it represents the FROM connectedness of the given asset i at

time t. By regressing these daily frequency factors, we want to test whether
the FROM connectedness factor affects the risk premium differently in different
sectors, and whether this effect is significant or not.

Let us first focus on the connectedness results based on the realized volatil-
ities of the assets (Table 5.9). From the results, it can be seen that the variable
Connectedness, representing the FROM connectedness, is either highly signifi-
cant or insignificant among the sectors. The overview of sectors in which this
connectedness measure is significant can be found in Table 5.10, the rest of the
results for the remaining sectors is displayed in Appendix B. We can conclude
that the connectedness among the assets plays an important role in financial,
real estate, health care, materials and consumer staples sectors. In all of these
sectors, the FROM connectedness factor is significant on 5% significance level.
These results correspond with the values of the overall connectedness which
were generated based on the whole datasets of the sectors (Table 5.3). We can
see that in those sectors, in which the sector overall connectedness is generally
high such as financial, real estate, materials and health care sectors (Table 5.3),
the time-series sector overall connectedness factor is significant (Table 5.7 and
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5.8), and the FROM connectedness is also significant (Table 5.10).
These results can serve as a valuable information for the investors. If the

FROM connectedness is high for asset i, the shocks coming to the other assets
in the system transmit in large extent to asset i. By conducting the Fama-
MacBeth regression, we showed that this connectedness measure is a significant
risk factor in determination of the risk premium. This confirms our hypothesis,
that the more is the asset i affected by the shocks originating in the assets j in
the sector, the more risky is the asset i, and this risk should be priced in the
risk premium. This corresponds with the ideas of Branger et al. (2019).

However, we can notice that FROM connectedness factor is insignificant
in some sectors, especially in telecommunication sector, in which all the con-
nectedness measures are estimated to be rather small and insignificant. These
results can signify that the connectedness of linkages between the assets in the
telecommunication sector is insignificant, and that there is no need to price
the connectedness while determining the risk premium in telecommunication
sector. On the other hand, we should consider that there are only six assets in
our telecommunication sector, and that using different assets or larger dataset
we may come to different patterns in the results. The connectedness factor is
also estimated to be insignificant factor for determining the risk premium in
the sector of information technology and industry sector. In comparison with
the telecommunication sector, the samples of these two sectors are larger, they
comprise of 67 and 73 companies respectively, and hence, they could be con-
sidered as more representative samples providing more informative and valid
results. Moreover, all measures of connectedness used in our analyses are esti-
mated to be insignificant for determination of the risk premium in these three
sectors (information technology, industry and telecommunication sector), which
suggests that the connectedness linkages between the assets do not represent a
significant risk factor in these sectors.
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Table 5.10: Results - FROM Volatility Connectedness

Dependent variable:
Average return

Financial Health Materials Real Consumer
Estate Staples

(1) (2) (3) (4) (5)
Connectedness 0.060∗∗∗ 0.133∗∗ 0.063∗∗ 0.055∗∗∗ 0.061∗∗

(0.017) (0.052) (0.029) (0.015) (0.024)

MKT -0.061∗ -0.032 -0.188∗∗∗ 0.063 0.076
(0.036) (0.068) (0.039) (0.060) (0.050)

SMB -0.050∗∗ -0.018 0.019 -0.065∗∗ -0.023
(0.022) (0.032) (0.035) (0.025) (0.029)

HML -0.031∗∗ -0.144∗∗∗ -0.127∗∗ -0.017 -0.069∗
(0.013) (0.040) (0.047) (0.023) (0.037)

Constant 0.001∗∗ 0.0003 0.002∗∗∗ 0.00002 -0.0002
(0.0003) (0.0004) (0.0003) (0.0004) (0.0003)

Observations 66 53 33 29 34
R2 0.503 0.297 0.586 0.565 0.492
Adjusted R2 0.470 0.238 0.526 0.492 0.422
F Statistic 15.412∗∗∗ 5.060∗∗∗ 9.892∗∗∗ 7.791∗∗∗ 7.014∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 5.11: Results - FROM Return Connectedness

Dependent variable:
Average return

Health Real Estate Materials
(1) (2) (3)

Connectedness 0.032∗∗∗ 0.045∗∗∗ 0.063∗∗
(0.008) (0.011) (0.027)

MKT -0.042 0.003 -0.033
(0.068) (0.051) (0.055)

SMB -0.026 -0.065∗∗∗ -0.065
(0.032) (0.023) (0.054)

HML -0.082∗∗ -0.007 0.096∗
(0.039) (0.021) (0.054)

Constant 0.0004 0.0005 0.0003
(0.0004) (0.0003) (0.0004)

Observations 53 29 33
R2 0.429 0.615 0.238
Adjusted R2 0.375 0.551 0.129
F Statistic 7.897∗∗∗ 9.584∗∗∗ 2.184∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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5.2.3 TO Connectedness as Risk Factor

In the third analysis, we run the Fama-MacBeth regression using the TO con-
nectedness and apply the same method as in the previous subsection 5.2.2. We
estimate the following regression:

Rit = β0i + β1iC
T O
it + β2iMKTt + β3iSMBt + β4iHMLt + uit (5.5)

where CT O
it is the TO connectedness of the given asset i at time t.

We provide the results of the second step of Fama-MacBeth regression in
Table 5.12 and 5.13. The standard errors are in both tables displayed in the
parantheses. The variable TO_Connectedness represents the linkages that cap-
tures the connectedness between the assets and the shocks that originate at
given asset i and are transmitted to the other assets j in the sector. This fac-
tor of connectedness shows therefore the risk that given asset i brings to the
other assets j in the sector or generally in the system or portfolio.

Table 5.12 and Table 5.13 display the sectors in which the TO connected-
ness factor is significant. In comparison with the FROM connectedness, there
are only few sectors, in which the TO volatility connectedness and TO re-
turn connectedness are significant. Moreover, we can spot negative correlation
between the risk premium and TO connectedness in most of the cases. TO con-
nectedness factor is negative and significant in the health care and consumer
discretionary sector and positive in the sectors of energy and consumer staples.
Unfortunately the current literature does not have yet the explanation for the
signs of this connectedness measure. However, as in the previous analyses, we
can assume that the significance of this measure of connectedness signifies a
presence of potential risk, and hence, we argue that the connectedness between
the assets should be taken into account by the investors while considering the
risk factors of the assets in the consumer, health care and energy sectors.

Finally, we can conclude that by performing the series of sector analyses
using different connectedness measures, we tested how the connectedness is
priced in different market sectors. Based on the results from all performed sec-
tor regressions serving as a robustness check, we argue that the connectedness
is a factor that approximates the risk on the financial market well. Unfor-
tunately, the currently available methodology does not allow to perform the
market connectedness analysis using the dataset of all 496 asset in the same
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way as we conducted the individual sector analyses due to the extensiveness of
the sample.

Table 5.12: Results - TO Volatility Connectedness

Dependent variable:
Average return

Health Energy Consumer
Discretionary

(1) (2) (3)
TO_Connectedness -0.418∗∗∗ 0.403∗∗ -0.108∗

(0.125) (0.162) (0.058)

MKT 0.006 -0.055 0.011
(0.065) (0.067) (0.045)

SMB -0.028 -0.141∗∗∗ -0.030
(0.030) (0.045) (0.024)

HML -0.147∗∗∗ -0.030 -0.107∗∗∗
(0.038) (0.063) (0.026)

Constant 0.00005 0.0004 0.0004
(0.0003) (0.001) (0.0003)

Observations 53 36 73
R2 0.354 0.577 0.474
Adjusted R2 0.300 0.522 0.443
F Statistic 6.562∗∗∗ 10.568∗∗∗ 15.307∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 5.13: Results - TO Return Connectedness

Dependent variable:
Average return

Health Consumer
Staples

(1) (2)
TO_Connectedness -1.524∗∗∗ 0.265∗∗

(0.350) (0.097)

MKT -0.032 -0.055
(0.066) (0.053)

SMB -0.019 -0.051
(0.031) (0.040)

HML -0.079∗∗ -0.059
(0.038) (0.061)

Constant 0.0003 0.0005∗
(0.0003) (0.0002)

Observations 53 34
R2 0.460 0.405
Adjusted R2 0.408 0.323
F Statistic 8.939∗∗∗ 4.929∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Conclusion

The central contribution of this diploma thesis is the analysis of connectedness
characteristics of assets at 11 different market sectors and the analysis of the
significance of factor of connectedness for determination of the risk premium
on the sector and subsequently on the market level. The currently existing
literature has studied market risk using the variance decompositions (Diebold
and Yilmaz, 2014; Demirer et al., 2018) or the network measures (Ahern, 2013;
Herskovic, 2018). However, none of these studies examined the connectedness
measures as one of the risk factor while determining the risk premium at dif-
ferent sectors. Based on the performed analyses and the results in this diploma
thesis, we confirmed the hypotheses that the connectedness is a factor that
should be priced in the risk premium and that the investors at different sectors
require different risk premium for bearing connectedness risk. Moreover, we
showed that the connectedness serves as a good factor for approximation of the
market risk.

The graphical analysis using the heat maps of each sectors, which are based
on the realized volatilities and asset returns, provides an efficient visual tool
for identification of the connectedness that represents a potential source of the
systemic risk. The heat maps reflect the connectedness linkages in each sec-
tor, which are determined by using the variance decomposition framework of
Diebold and Yilmaz (2014). Comparing the heat maps based on the calcu-
lated return connectedness and volatility connectedness, we can notice obvious
differences between these two measures. In all sectors, we find the same pat-
tern. The heat maps of volatility connectedness are significantly darker than
the heat maps of returns connectedness in all sectors. Since darker colours
represent stronger linkages between the individual assets, we can conclude that
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the volatilities of assets are more connected to other volatilities of assets than
the asset returns. This fact confirms the assumption that the connectedness of
returns is lower than the connectedness of volatilities, because the returns are
generally not that much persistent. These conclusions are also in accordance
to Diebold and Yilmaz (2014) who claimed that the volatility connectedness is
more appropriate for connectedness analyses, because it provides more infor-
mation in terms of dynamics.

Our analysis focused mainly on two measures of connectedness, sector over-
all (system-wide) connectedness and the total directional FROM connected-
ness. We obtained both of the measures, firstly from the data of asset realized
volatilities, and then from the data of asset returns. Calculated connectedness
tables, graphical visualizations, and the asset pricing model confirmed our as-
sumption that the volatility connectedness provides more information about
the connectedness dynamics than the return connectedness. In all of these
analyses, the volatility connectedness showed to be more significant.

Using the Fama-MacBeth two-step regression, we showed that the sector
overall connectedness is a significant risk factor in consumer, financial, health
care, materials, utility and real estate sector. Based on the results, we argue
that the sector overall connectedness plays a significant role in the determina-
tion of the risk premium, and should be taken into account while considering
the risks in all sectors. This information can be especially important for the
investors, whose portfolio comprises of the assets just from one sector or pri-
marily from one sector. In that case, the information of overall connectedness
in given sector can be valuable for estimating the potential risk of the portfolio
and determining the size of the requested risk premium. These results can be
further generalize for the randomly chosen system of assets, portfolio or market
as a whole.

Apart from analyzing the sector overall connectedness, we concentrated also
on the total directional connectedness, namely total directional FROM connect-
edness that provides the information to which extent is the asset affected by
the volatility transmissions from the other assets in the system, and hence, it
captures the shares of the forecast error variance of asset i that originates from
the shocks coming to assets j in the sector. As the results suggest, connect-
edness linkages among the assets represent a significant risk factor especially
in financial, real estate, health care, materials and consumer staples sectors.
These results correspond with the sector overall connectedness results, and can
serve as a valuable information for the investors. If the FROM connectedness is
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high for an asset i, the shocks coming to the other assets in the system transmit
in large extent to the asset i, and hence, it makes the asset i more risky. This
confirms our hypothesis, that the more is the asset i affected by the shocks
originating in the assets j in the sector, the more risky is the asset i, and this
risk should be priced in the risk premium.

By performing the series of sector analyses, we tested robustly how the
connectedness is priced in different sectors of the market. Based on the results
from all the sector regression analyses using various measures of connectedness,
we conclude that the connectedness is a factor that approximates the risk on
the financial market well. Future works might extend this market analysis by
calculating the connectedness measures from the whole dataset of 496 assets
(data of all 11 sectors together). Such analysis could serve as check for our sec-
tor analyses and could bring new information about the market risk associated
with the connectedness of the market. Unfortunately, the currently available
methodology does not allow such analysis on such an extended dataset. Fur-
thermore, it would be also interesting to test the riskiness of individual assets
in the asset pricing model based on its individual connectedness factors on the
market.
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Appendix A

Heatmaps of Sectors

Figure A.1: Heatmap of Telecommunication Sector, Volatility Con-
nectedness

Figure A.2: Heatmap of Telecommunication Sector, Return Connect-
edness



A. Heatmaps of Sectors II

Figure A.3: Heatmap of Consumer Discretionary Sector, Volatility
Connectedness

Figure A.4: Heatmap of Consumer Discretionary Sector, Return Con-
nectedness



A. Heatmaps of Sectors III

Figure A.5: Heatmap of Consumer Staples Sector, Volatility Connect-
edness

Figure A.6: Heatmap of Consumer Staples Sector, Return Connect-
edness



A. Heatmaps of Sectors IV

Figure A.7: Heatmap of Health Care Sector, Volatility Connectedness

Figure A.8: Heatmap of Health Care Sector, Return Connectedness



A. Heatmaps of Sectors V

Figure A.9: Heatmap of Industry Sector, Volatility Connectedness

Figure A.10: Heatmap of Industry Sector, Return Connectedness



A. Heatmaps of Sectors VI

Figure A.11: Heatmap of Information Technology Sector, Volatility
Connectedness

Figure A.12: Heatmap of Information Technology Sector, Return
Connectedness



A. Heatmaps of Sectors VII

Figure A.13: Heatmap of Materials Sector, Volatility Connectedness

Figure A.14: Heatmap of Materials Sector, Return Connectedness



A. Heatmaps of Sectors VIII

Figure A.15: Heatmap of Real Estate Sector, Volatility Connected-
ness

Figure A.16: Heatmap of Real Estate Sector, Return Connectedness



A. Heatmaps of Sectors IX

Figure A.17: Heatmap of Energy Sector, Volatility Connectedness

Figure A.18: Heatmap of Energy Sector, Return Connectedness



A. Heatmaps of Sectors X

Figure A.19: Heatmap of Utility Sector, Volatility Connectedness

Figure A.20: Heatmap of Utility Sector, Return Connectedness



Appendix B

Fama-MacBeth Regressions

Table B.1: Volatility Connectedness, Consumer Discretionary Sector

Dependent variable:
Average return

Overall FROM TO
(1) (2) (3)

Connectedness 1.722∗ 0.011 -0.108∗
(0.932) (0.016) (0.058)

MKT 0.031 0.023 0.011
(0.045) (0.046) (0.045)

SMB -0.045∗ -0.043∗ -0.030
(0.023) (0.024) (0.024)

HML -0.080∗∗∗ -0.089∗∗∗ -0.107∗∗∗
(0.027) (0.028) (0.026)

Constant 0.0003 0.0004 0.0004
(0.0003) (0.0003) (0.0003)

Observations 73 73 73
R2 0.473 0.450 0.474
Adjusted R2 0.442 0.418 0.443
F Statistic (df = 4; 68) 15.272∗∗∗ 13.929∗∗∗ 15.307∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01



B. Fama-MacBeth Regressions XII

Table B.2: Return Connectedness, Consumer Discretionary Sector

Dependent variable:
Average return

Overall FROM TO
(1) (2) (3)

Connectedness -0.011 0.0004 0.029
(0.022) (0.006) (0.239)

MKT -0.033 0.065 0.064
(0.067) (0.051) (0.051)

SMB 0.039 -0.009 -0.009
(0.038) (0.028) (0.028)

HML -0.002 -0.113∗∗∗ -0.112∗∗∗
(0.042) (0.030) (0.030)

Constant 0.0001 -0.00000 -0.00000
(0.0004) (0.0003) (0.0003)

Observations 73 73 73
R2 0.060 0.423 0.423
Adjusted R2 -0.031 0.368 0.368
F Statistic (df = 4; 68) 0.657 7.684∗∗∗ 7.683∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01



B. Fama-MacBeth Regressions XIII

Table B.3: Volatility Connectedness, Consumer Staples Sector

Dependent variable:
Average return

Overall FROM TO
(1) (2) (3)

Connectedness 0.918∗∗ 0.061∗∗ 0.142
(0.442) (0.024) (0.143)

MKT 0.087 0.076 0.092
(0.052) (0.050) (0.055)

SMB -0.011 -0.023 0.003
(0.030) (0.029) (0.033)

HML -0.075∗ -0.069∗ -0.105∗∗∗
(0.038) (0.037) (0.038)

Constant -0.0003 -0.0002 -0.0003
(0.0004) (0.0003) (0.0004)

Observations 34 34 34
R2 0.457 0.492 0.400
Adjusted R2 0.382 0.422 0.317
F Statistic (df = 4; 29) 6.100∗∗∗ 7.014∗∗∗ 4.824∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01



B. Fama-MacBeth Regressions XIV

Table B.4: Return Connectedness, Consumer Staples Sector

Dependent variable:
Average return

Overall FROM TO
(1) (2) (3)

Connectedness 0.733∗ -0.030 0.265∗∗
(0.418) (0.029) (0.097)

MKT -0.073 -0.062 -0.055
(0.056) (0.061) (0.053)

SMB -0.045 -0.052 -0.051
(0.042) (0.044) (0.040)

HML -0.021 0.006 -0.059
(0.062) (0.065) (0.061)

Constant 0.001∗∗ 0.0005∗ 0.0005∗
(0.0003) (0.0003) (0.0002)

Observations 34 34 34
R2 0.324 0.278 0.405
Adjusted R2 0.231 0.178 0.323
F Statistic (df = 4; 29) 3.478∗∗ 2.792∗∗ 4.929∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01



B. Fama-MacBeth Regressions XV

Table B.5: Volatility Connectedness, Health Care Sector

Dependent variable:
Average return

Overall FROM TO
(1) (2) (3)

Connectedness 7.529∗∗∗ 0.133∗∗ -0.418∗∗∗
(2.279) (0.052) (0.125)

MKT -0.049 -0.032 0.006
(0.066) (0.068) (0.065)

SMB 0.0003 -0.018 -0.028
(0.032) (0.032) (0.030)

HML -0.106∗∗∗ -0.144∗∗∗ -0.147∗∗∗
(0.038) (0.040) (0.038)

Constant 0.0004 0.0003 0.00005
(0.0003) (0.0004) (0.0003)

Observations 53 53 53
R2 0.347 0.297 0.354
Adjusted R2 0.293 0.238 0.300
F Statistic (df = 4; 48) 6.384∗∗∗ 5.060∗∗∗ 6.562∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01



B. Fama-MacBeth Regressions XVI

Table B.6: Return Connectedness, Health Care Sector

Dependent variable:
Average return

Overall FROM TO
(1) (2) (3)

Connectedness -0.033 0.032∗∗∗ -1.524∗∗∗
(0.022) (0.008) (0.350)

MKT -0.010 -0.042 -0.032
(0.078) (0.068) (0.066)

SMB -0.047 -0.026 -0.019
(0.037) (0.032) (0.031)

HML -0.123∗∗∗ -0.082∗∗ -0.079∗∗
(0.043) (0.039) (0.038)

Constant 0.00004 0.0004 0.0003
(0.0004) (0.0004) (0.0003)

Observations 53 53 53
R2 0.250 0.429 0.460
Adjusted R2 0.179 0.375 0.408
F Statistic (df = 4; 48) 3.506∗∗ 7.897∗∗∗ 8.939∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01



B. Fama-MacBeth Regressions XVII

Table B.7: Volatility Connectedness, Industry Sector

Dependent variable:
Average return

Overall FROM TO
(1) (2) (3)

Connectedness 0.655 0.014 0.031
(0.763) (0.010) (0.047)

MKT -0.111∗∗∗ -0.083∗∗∗ -0.114∗∗∗
(0.029) (0.026) (0.028)

SMB 0.026 0.025 0.030
(0.024) (0.022) (0.024)

HML -0.081∗∗ -0.081∗∗∗ -0.091∗∗∗
(0.031) (0.029) (0.031)

Constant 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗
(0.0002) (0.0002) (0.0002)

Observations 73 73 73
R2 0.425 0.405 0.422
Adjusted R2 0.391 0.369 0.388
F Statistic (df = 4; 68) 12.568∗∗∗ 11.386∗∗∗ 12.428∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01



B. Fama-MacBeth Regressions XVIII

Table B.8: Return Connectedness, Industry Sector

Dependent variable:
Average return

Overall FROM TO
(1) (2) (3)

Connectedness -0.002 0.004 -0.155
(0.010) (0.005) (0.242)

MKT -0.184∗∗∗ -0.187∗∗∗ -0.186∗∗∗
(0.032) (0.032) (0.032)

SMB 0.060∗∗ 0.059∗∗ 0.059∗∗
(0.029) (0.029) (0.029)

HML -0.135∗∗∗ -0.133∗∗∗ -0.134∗∗∗
(0.037) (0.036) (0.037)

Constant 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗
(0.0002) (0.0002) (0.0002)

Observations 73 73 73
R2 0.583 0.587 0.586
Adjusted R2 0.543 0.548 0.547
F Statistic (df = 4; 68) 14.677∗∗∗ 14.939∗∗∗ 14.876∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01



B. Fama-MacBeth Regressions XIX

Table B.9: Volatility Connectedness, Information Technology Sector

Dependent variable:
Average return

Overall FROM TO
(1) (2) (3)

Connectedness 2.935∗∗ 0.024 -0.039
(1.190) (0.027) (0.083)

MKT -0.076 -0.081 -0.075
(0.065) (0.067) (0.068)

SMB -0.040 -0.042 -0.045
(0.032) (0.033) (0.033)

HML -0.059∗ -0.078∗∗ -0.079∗∗
(0.031) (0.031) (0.032)

Constant 0.001∗∗ 0.001∗∗ 0.001∗∗
(0.0004) (0.0004) (0.0004)

Observations 67 67 67
R2 0.332 0.276 0.269
Adjusted R2 0.289 0.229 0.222
F Statistic (df = 4; 62) 7.694∗∗∗ 5.909∗∗∗ 5.709∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B.10: Return Connectedness, Information Technology Sector

Dependent variable:
Average Return

Overall FROM TO
(1) (2) (3)

Connectedness 0.002 0.003 -0.062
(0.019) (0.009) (0.417)

MKT -0.057 -0.051 -0.055
(0.086) (0.087) (0.087)

SMB -0.026 -0.027 -0.026
(0.044) (0.043) (0.043)

HML -0.055 -0.052 -0.054
(0.049) (0.050) (0.050)

Constant 0.001 0.001 0.001
(0.001) (0.001) (0.001)

Observations 67 67 67
R2 0.091 0.093 0.091
Adjusted R2 0.004 0.007 0.004
F Statistic (df = 4; 62) 1.050 1.076 1.050

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B.11: Volatility Connectedness, Materials Sector

Dependent variable:
Average return

Overall FROM TO
(1) (2) (3)

Connectedness 1.649∗∗ 0.063∗∗ 0.047
(0.606) (0.029) (0.187)

MKT -0.176∗∗∗ -0.188∗∗∗ -0.200∗∗∗
(0.038) (0.039) (0.042)

SMB 0.006 0.019 0.053
(0.035) (0.035) (0.035)

HML -0.132∗∗∗ -0.127∗∗ -0.157∗∗∗
(0.045) (0.047) (0.056)

Constant 0.001∗∗∗ 0.002∗∗∗ 0.002∗∗∗
(0.0003) (0.0003) (0.0003)

Observations 33 33 33
R2 0.616 0.586 0.516
Adjusted R2 0.561 0.526 0.447
F Statistic (df = 4; 28) 11.222∗∗∗ 9.892∗∗∗ 7.459∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B.12: Return Connectedness,Materials Sector

Dependent variable:
Average return

Overall FROM TO
(1) (2) (3)

Connectedness 1.380∗ 0.063∗∗ 0.052
(0.733) (0.027) (0.127)

MKT -0.048 -0.033 -0.054
(0.056) (0.055) (0.059)

SMB -0.045 -0.065 -0.033
(0.054) (0.054) (0.057)

HML 0.081 0.096∗ 0.053
(0.054) (0.054) (0.058)

Constant 0.0003 0.0003 0.0004
(0.0004) (0.0004) (0.0004)

Observations 33 33 33
R2 0.192 0.238 0.091
Adjusted R2 0.077 0.129 -0.039
F Statistic (df = 4; 28) 1.668 2.184∗ 0.700

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01



B. Fama-MacBeth Regressions XXIII

Table B.13: Volatility Connectedness, Real Estate Sector

Dependent variable:
Average return

Overall FROM TO
(1) (2) (3)

Connectedness 1.335∗∗ 0.055∗∗∗ -0.161
(0.523) (0.015) (0.173)

MKT 0.035 0.063 -0.037
(0.065) (0.060) (0.065)

SMB -0.070∗∗ -0.065∗∗ -0.073∗∗
(0.027) (0.025) (0.032)

HML -0.002 -0.017 0.016
(0.024) (0.023) (0.026)

Constant 0.0001 0.00002 0.001∗
(0.0005) (0.0004) (0.0004)

Observations 29 29 29
R2 0.476 0.565 0.356
Adjusted R2 0.388 0.492 0.249
F Statistic (df = 4; 24) 5.442∗∗∗ 7.791∗∗∗ 3.320∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B.14: Return Connectedness, Real Estate Sector

Dependent variable:
Average return

Overall FROM TO
(1) (2) (3)

Connectedness 1.335∗∗∗ 0.045∗∗∗ 0.004
(0.357) (0.011) (0.035)

MKT 0.023 0.003 -0.037
(0.055) (0.051) (0.067)

SMB -0.060∗∗ -0.065∗∗∗ -0.084∗∗
(0.024) (0.023) (0.032)

HML 0.005 -0.007 0.020
(0.021) (0.021) (0.027)

Constant 0.0002 0.0005 0.001∗
(0.0004) (0.0003) (0.0004)

Observations 29 29 29
R2 0.579 0.615 0.326
Adjusted R2 0.509 0.551 0.214
F Statistic (df = 4; 24) 8.254∗∗∗ 9.584∗∗∗ 2.900∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B.15: Volatility Connectedness, Financial Sector

Dependent variable:
Average return

Overall FROM TO
(1) (2) (3)

Connectedness 4.799∗∗∗ 0.060∗∗∗ -0.063
(0.540) (0.017) (0.065)

MKT -0.039 -0.061∗ -0.069∗
(0.026) (0.036) (0.039)

SMB -0.049∗∗∗ -0.050∗∗ -0.054∗∗
(0.016) (0.022) (0.025)

HML -0.016∗ -0.031∗∗ -0.052∗∗∗
(0.009) (0.013) (0.012)

Constant 0.0004∗∗ 0.001∗∗ 0.001∗∗∗
(0.0002) (0.0003) (0.0003)

Observations 66 66 66
R2 0.740 0.503 0.413
Adjusted R2 0.723 0.470 0.375
F Statistic (df = 4; 61) 43.414∗∗∗ 15.412∗∗∗ 10.739∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B.16: Return Connectedness, Financial Sector

Dependent variable:
Average return

Overall FROM TO
(1) (2) (3)

Connectedness 0.012 -0.010 0.507
(0.014) (0.007) (0.308)

MKT -0.081 -0.048 -0.050
(0.051) (0.054) (0.052)

SMB -0.042 -0.039 -0.038
(0.029) (0.028) (0.028)

HML -0.063∗∗∗ -0.058∗∗∗ -0.057∗∗∗
(0.017) (0.016) (0.016)

Constant 0.001∗∗∗ 0.001∗∗ 0.001∗∗
(0.0004) (0.0004) (0.0004)

Observations 66 66 66
R2 0.437 0.455 0.462
Adjusted R2 0.383 0.403 0.410
F Statistic (df = 4; 61) 8.144∗∗∗ 8.777∗∗∗ 9.007∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B.17: Volatility Connectedness, Energy Sector

Dependent variable:
Average return

Overall FROM TO
(1) (2) (3)

Connectedness 0.521 -0.006 0.403∗∗
(0.436) (0.015) (0.162)

MKT -0.075 -0.051 -0.055
(0.073) (0.075) (0.067)

SMB -0.123∗∗ -0.137∗∗ -0.141∗∗∗
(0.048) (0.051) (0.045)

HML -0.072 -0.062 -0.030
(0.065) (0.070) (0.063)

Constant 0.001 0.0004 0.0004
(0.001) (0.001) (0.001)

Observations 36 36 36
R2 0.514 0.494 0.577
Adjusted R2 0.452 0.429 0.522
F Statistic (df = 4; 31) 8.210∗∗∗ 7.568∗∗∗ 10.568∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B.18: Return Connectedness, Energy Sector

Dependent variable:
Average return

Overall FROM TO
(1) (2) (3)

Connectedness 0.119 0.007 -0.028
(0.279) (0.012) (0.068)

MKT -0.061 -0.067 -0.059
(0.073) (0.074) (0.073)

SMB -0.134∗∗ -0.128∗∗ -0.129∗∗
(0.049) (0.049) (0.049)

HML -0.069 -0.057 -0.065
(0.067) (0.069) (0.069)

Constant 0.0004 0.0005 0.0004
(0.001) (0.001) (0.001)

Observations 36 36 36
R2 0.495 0.498 0.496
Adjusted R2 0.430 0.433 0.431
F Statistic (df = 4; 31) 7.594∗∗∗ 7.683∗∗∗ 7.620∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B.19: Volatility Connectedness, Telecommunication Sector

Dependent variable:
Average return

Overall FROM TO
(1) (2) (3)

Connectedness -2.889 0.732 -2.700
(10.971) (4.560) (11.168)

MKT 0.080 0.279 -0.111
(0.337) (0.737) (1.154)

SMB 0.002 -0.102 0.084
(0.182) (0.352) (0.547)

HML -0.623 -0.495 -0.477
(0.287) (0.326) (0.277)

Constant -0.0001 -0.001 0.001
(0.002) (0.004) (0.006)

Observations 6 6 6
R2 0.979 0.977 0.978
Adjusted R2 0.893 0.885 0.889
F Statistic (df = 4; 1) 11.397 10.573 11.038

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B.20: Return Connectedness, Telecommunication Sector

Dependent variable:
Average return

Overall FROM TO
(1) (2) (3)

Connectedness 0.524 -1.583 -0.875
(6.886) (6.577) (1.758)

MKT 0.192 -0.049 0.117
(0.382) (0.908) (0.160)

SMB -0.060 0.048 -0.032
(0.176) (0.403) (0.055)

HML -0.531 -0.667 -0.510
(0.236) (0.516) (0.106)

Constant -0.001 0.001 -0.001
(0.002) (0.005) (0.001)

Observations 6 6 6
R2 0.977 0.979 0.983
Adjusted R2 0.883 0.894 0.913
F Statistic (df = 4; 1) 10.442 11.504 14.194

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B.21: Volatility Connectedness, Utility Sector

Dependent variable:
Average return

Overall FROM TO
(1) (2) (3)

Connectedness 1.935∗∗∗ 0.029 -0.077
(0.672) (0.042) (0.275)

MKT -0.041 -0.080∗ -0.093∗∗
(0.039) (0.046) (0.041)

SMB 0.040 0.009 -0.002
(0.064) (0.073) (0.076)

HML -0.096 -0.059 -0.042
(0.085) (0.099) (0.101)

Constant 0.0003 0.0005∗ 0.001∗∗
(0.0002) (0.0003) (0.0002)

Observations 26 26 26
R2 0.481 0.293 0.280
Adjusted R2 0.382 0.158 0.142
F Statistic (df = 4; 21) 4.868∗∗∗ 2.174 2.038

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B.22: Return Connectedness, Utility Sector

Dependent variable:
Average return

Overall FROM TO
(1) (2) (3)

Connectedness 1.298∗ 0.010 -0.005
(0.652) (0.031) (0.102)

MKT -0.054 -0.091∗∗ -0.096∗∗
(0.043) (0.042) (0.046)

SMB 0.042 0.005 0.002
(0.070) (0.074) (0.079)

HML -0.099 -0.051 -0.045
(0.094) (0.098) (0.108)

Constant 0.0004∗ 0.001∗∗ 0.001∗∗
(0.0002) (0.0002) (0.0003)

Observations 26 26 26
R2 0.391 0.280 0.275
Adjusted R2 0.275 0.143 0.137
F Statistic (df = 4; 21) 3.375∗∗ 2.041 1.994

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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