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Abstract

This work takes one of the most prominent behavioral New-Keynesian models
from the shelf and estimates it via the simulated method of moments. The
model exhibits a remarkably good fit to the auto- and cross-covariance pro-
files of the euro area macroeconomic time series, especially compared to the
standard rational expectations model. This result corroborates the claim that
central banks which implement strict inflation targeting are better off reacting

to the output gap, on top of inflation.
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Abstrakt

Vv,

nesianskych modeli pomoci metody simula¢n¢h momenti. Behavioralni model
fituje kovarianéni matici makroekonomickych casovych rad euro oblasti po-
zoruhodné dobre, zvlast v porovnani se standardnim racionalnim modelem.
Tento vysledek podporuje tvrzeni, ze centralni banky, které se pecuji o cen-
ovou stabilitu, mohou dosahnout tohoto cile 1épe, pokud budou reagovat nejen

na inflaci, ale i na mezeru vystupu.
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Chapter 1
Introduction

Expectations play an important role in macroeconomics. The New-Keynesian
framework with the assumption of rational expectations (RE) has become the
dominating paradigm in macroeconomic theory. Thanks to its analytical tracta-
bility, RE models provide a convenient framework for monetary policy analysis.
However, this comes at a price, since the assumption that economy consists ex-
clusively of cognitively unlimited agents with full understanding of the under-
lying model and perfect foresight about the future and other agents’ decisions
seems rather unrealistic.

One way to find a more solid expectation formation mechanism in this
respect is to design an experiment in which the way the agents form their ex-
pectations about the future is directly observable. This is exactly what the
so-called learning-to-forecast experiments (LtFE) are dealing with. A typical
learning-to-forecast experiment consists of 6 human subjects whose goal is to
predict the future value of a variable, most commonly the price of an asset.
The participants are equipped with a basic grasp of how the underlying lab-
oratory economy works and with a full knowledge of past realizations of the
variable as well as his/her past predictions. Not only such experiments allow to
gauge the true expectation formation process of the economy participants, but
they also provide an opportunity to assess different monetary policy regimes
without making any assumptions about the way agents form their expecta-
tions. The external validity of laboratory experiments may seem questionable
at first glance, but, as argued by Cornand and Hubert (2020), the outcomes
of learning-to-forecast experiments are comparable to other common sources
of information about agents’ expectations, such as surveys or financial market

data. And this sort of reinforces the view of Hommes (2011) who concentrates
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on the LtFE literature and concludes that expectations of economic agents can
hardly be classified as homogeneous and rational.

Aiming at explaining stylized facts from these laboratory experiments by
one expectation formation mechanism, Anufriev and Hommes (2012) modify
the discrete-choice model by Brock and Hommes (1997) and populate it with
four heuristics, four rules-of-thumb which deliver the best fit to human subjects’
forecasts. This set of heuristics includes both stabilizing and destabilizing rules
which, when properly framed into the switching mechanism with some inertia
in agents’ decisions taken into account, are able to generate different patterns
in time series. This is the main idea of the Heuristic Switching Model (HSM),
one of the most prominent expectation formation mechanisms in the LtFE lit-
erature, both in asset-pricing experiments (Hommes et al. 2005; 2008), and
— importantly enough — in the New-Keynesian macroeconomic environments
(Assenza et al. 2019; Hommes et al. 2019).

It is no surprise, then, that Hommes et al. (2019) employ the HSM as the
behavioral counterpart of RE in their optimal monetary policy exercise which
reveals that central banks implementing strict inflation targeting are at risk
or running a sub-optimal monetary policy, if they are assuming RE. More
specifically, they find that, instead of reacting only to fluctuations in inflation,
such central banks as the European Central Bank (ECB) are better off react-
ing to the output gap fluctuations on top of inflation, even though under the
standard assumption of RE it might seem detrimental to its main priority, in-
flation stability. Although this claim is not entirely new in the literature (see
De Grauwe 2011, among others), it is quite remarkable that the New-Keynesian
model (NKM) in Hommes et al. (2019) is fully microfounded (another recent ex-
ample is De Grauwe and Ji 2020). In addition to that, they provide a sort of ro-
bustness check to these results by conducting a learning-to-forecast experiment
with human subjects where the only difference between the two treatments is
the central bank’s behavior with respect to the output gap fluctuations: re-
acting to the output gap in addition to inflation or not reacting at all. The
authors find that all macroeconomic variables — the output gap, the inflation
rate and the nominal interest rate — display more stable dynamics when the
central bank reacts also to the output gap fluctuations.

However, it is important to note that the calibration of the NKM in Hommes
et al. (2019) is taken from Clarida et al. (2000) who estimate the model on the
US data, whereas their monetary policy recommendations are addressed to

other central banks. Moreover, the parameters of the switching mechanism
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between the four heuristics are set in accordance with Anufriev and Hommes
(2012) who arrive at this calibration “after some trial and error simulations”.
And although the latter does not undermine the credibility of the LtFE part of
their study (because in such experiments the expectations are formed directly
by participants), together with the US calibration it may cast some doubts on
the applicability of the results of the experimental as well as the theoretical
exercise to the euro area, the territory where the ECB actually operates.

Even more importantly, a very basic question whether the NKM with HSM
actually fits the euro area macroeconomic time series is still open. This is
exactly the question this work aims at answering. As a natural benchmark, we
make use of the standard RE model. And provided the HSM outperforms RE
in terms of fitness to the macroeconomic data, we repeat the monetary policy
exercise from Hommes et al. (2019) under the resulting ‘euro calibration’ to
check the robustness of their optimal monetary policy recommendations with
respect to the underlying calibration.

To execute this, we employ the simulated method of moments (SMM) along
the lines of Jang and Sacht (2019; 2016) who are also concerned with estimation
of a behavioral macroeconomic model. Simply put, SMM is a transparent and
straightforward estimation technique which seeks to bring the model’s simu-
lated moments as closely as possible to its empirical counterparts. As another
important part of methodology, we utilize Monte Carlo simulations to verify
that our estimation procedure is capable of recovering the pseudo-true param-
eters and has a sufficient power to discriminate between the two models.

In short, we find that HSM fits the empirical data much better than RE.
The resulting ‘euro calibration’ yields qualitatively the same monetary policy
implications as those in Hommes et al. (2019), namely, that central banks which
target inflation should also react to the output gap fluctuations. This result
seems especially relevant for the ECB. On the methodological side, a closer
inspection of moment matching suggests that SMM may have some room for
improvement, at least when dealing with behavioral macroeconomic models.
As a preliminary response, three alternative fitness measures are proposed.

The contribution of this work is thus clear: essentially, it certifies that
one of the most prominent behavioral macroeconomic models together with its
main monetary policy implication is empirically valid. As a by-product, this
work identifies a minor methodological caveat. To the best of our knowledge,
these issues have not been addressed in the literature before. The most closely

related work to ours, Jang and Sacht (2019), is concerned with behavioral
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specifications of NKM which are neither microfounded, nor have a solid support
in macroeconomic LtFE literature, as opposed to the model investigated in this
work.

The remainder of the work is organized as follows. The next chapter of-
fers a brief overview of related literature. Chapter 3 introduces the behav-
ioral macroeconomic model and demonstrates its monetary policy implications.
Chapter 4 describes the estimation procedure and Monte Carlo simulations.
Chapter 5 reports the results of empirical application and performs the ro-
bustness check of the implications for monetary policy. Chapter 6 provides
a deeper assessment of the empirical results and discusses the methodological
caveat. Chapter 7 concludes. Supporting materials for Chapters 3, 4, 5 are rel-
egated to Appendices A, B and C, respectively. Online Appendix D contains
the underlying scripts for Monte Carlo experiments, empirical estimation and

reproduction of figures presented in this work.



Chapter 2
Literature Review

The history of estimation of the behavioral NKM is not long. We identify Mi-
lani (2007) as one of the main pioneers in this area. Being concerned with the
well-known inability of NKM to reproduce the persistence observed in macroe-
conomic time series, he takes the hybrid NKM from the shelf and challenges
its “mechanical” constructs, namely, the price indexation and habit forma-
tion terms. Using Bayesian approach and US data, he compares the empirical
fitness of RE with that of constant-gain learning mechanism. He finds that,
in presence of behavioral expectation formation, NKM does not need explicit
backward-looking components to explain the inertia in empirical time series.

On the other hand, Liu and Minford (2014) find evidence that behavioral
expectations do not really add value to the NKM framework. After arguing
that Bayesian methods are not appropriate for testing different models against
empirical data, they employ the method of indirect inference to compare the
RE model with behavioral specification of NKM by De Grauwe (2010) on the
US post-war data. They report that RE outperforms its behavioral counterpart
decisively.

Meanwhile, having taken a taste of SMM in a simple asset-pricing model esti-
mation exercise in Franke (2009), he, together with his younger colleagues, cus-
tomizes this method for a hybrid NKM and contrasts it with Bayesian approach
in Franke et al. (2015). They report that the two methods yield somewhat dif-
ferent results and seem to focus on different aspects of data and suggest that,
thanks to its transparency, explicitness and lower computational burden, SMM
is a more appropriate estimation method for such models as NKM. Building on
the newly-developed moment-matching estimation framework, Jang and Sacht
(2016) introduce behavioral expectations from De Grauwe (2011) into NKM
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and compare its empirical performance against the standard hybrid specifica-
tion with backward-looking components. They find evidence for behavioral
expectation formation in the euro area, as the corresponding model provides a
solid fit to macroeconomic data. Jang and Sacht (2019) bring this aspiration to
the next level by setting up a “horse race” of RE and different combinations of
behavioral heuristics from De Grauwe (2011) and Gaunersdorfer et al. (2008)
both on the euro area and US data. They conclude that expectations seem to
be emotional for US and technical in nature for the euro area.

At the same time, Kukacka et al. (2018) bring the simulated maximum like-
lihood estimation (SMLE) to the multivariate macroeconomic framework by es-
timating behavioral model from De Grauwe (2011) and RE specification of NKM
both on the US and euro area data. Their main contribution is that they man-
age to pin down the intensity of choice, one of the most challenging behavioral
parameters to estimate. Focusing instead on one element of the New-Keynesian
framework, the New-Keynesian Phillips curve (NKPC), Cornea-Madeira et al.
(2019) provide a considerable evidence for behavioral heterogeneity in US in-
flation dynamics.

Finally, Franke (2019) demonstrates a more mature version of the SMM by
estimating the Harrod-Kaldor business cycle model and effectively allows us
to help materialize perhaps one of the biggest ambitions of Milani (2007) — to

perform an empirical test of a truly microfounded behavioral version of NKM.



Chapter 3

The Model

This chapter describes the macroeconomic model of interest. The emphasis is
put on the underlying expectation formation mechanism. The model’s main
implications for monetary policy are then examined. Basically, this chapter

reiterates its counterpart from Hommes et al. (2019).

3.1 The Model

The slightly modified! version of the baseline 3-equation NKM from Hommes
et al. (2019) reads as follows:

Yt = Yiy1 — 7(ry — 7?1;-1) + €yt (3.1)
T = VT + Ky + Eny (3.2)
T = QT + Oyls, (3.3)

where y; is the output gap, m; is inflation rate gap and r; is the nominal interest
rate gap. Variables y;, ; and 77 ; are the expected output gap and inflation
gap at time ¢t + 1, respectively. Both represent averages over population of
agents, and both are formed at time ¢t when only information up to time ¢ — 1
is available. Variables ¢,; and €, are independent and identically distributed
random shocks.

Equation (3.3) is the central bank’s monetary policy rule, equation (3.2)
is the NKPC, and equation (3.1) is the dynamic IS curve. ¢, and ¢, are non-
negative parameters which determine how the central bank reacts to the shocks

to inflation gap and the output gap, respectively. The shocks ¢,; and ., are

'See Appendix A for description and discussion of the modifications made.



3. The Model 8

Table 3.1: The Set of Heuristics

1 ADA  Adaptive rule 2] 441 = 0.3527 ; + 0.6524—1

2 WTR Weak trend-following rule 5,01 =21 +0.4(z 1 — 74 2)

3 STR  Strong trend-following rule T§ 41 = Te—1 + 1.3(x4—1 — T¢—2)

4 LAA  Anchoring and adjustment rule 2§, ; = 0.57; 1 + 0.5z 1 + (-1 — T4-2)

Note: Symbol z;_; denotes simple average of all observations up to period ¢ — 1.

normally distributed random variables with zero mean and standard deviations
0. and o,, respectively. Non-negative parameters 7 and « represent the slopes
of the IS curve and NKPC, respectively.

We now introduce the key element of the model in the context of this
work — the expectation formation mechanism. The expectations about future
inflation gap and output gap are formed in the following way. There are four
types of agents in the economy. Each of these four sub-populations uses its
own prediction strategy. An example of such a strategy is a simple trend-
following rule. Once the expectations are formed, they are aggregated across
the population based on the corresponding proportions of different types of
agents. The number of agents utilizing a particular rule-of-thumb depends
mainly on the past performance of the heuristic. The degree of persistence
of the population proportions, the agents’ willingness to switch between the
heuristics and their memory capacity with respect to the long-run performance
of the heuristics are determined by parameters which are fixed in time.

More formally, let z; be the macroeconomic variable of interest (in our case,
Yy or my). Assuming that we have four prediction rules, let h € {1,2, 3,4} refer
to one of these heuristics. The four rules-of-thumb can then be described by
Table 3.1.

Let np; be the fraction of agents following heuristic i at time ¢. Then the

aggregate expected x at time t + 1 is given by

4
h=1

The fraction of agents at time t is assumed to exhibit some degree of persis-
tence and to depend on the relative performance of the corresponding heuristic.

This can be expressed by

eXP(VUh,t—Q
Z%:l eXp(’YUh,t—l) ’

Nht = NMpt—1 + (1 —n) (3.5)
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where U, is the absolute performance measure for heuristic A based on
observations up to time t — 1, v is the so-called intensity-of-choice parameter
and 7 is the parameter which determines the degree of persistence in the relative
sizes of sub-populations. It can be thought of as the fraction of agents who
decide not to change their strategy regardless of its recent performance. Note
that when n = 0, we have the discrete-choice mechanism from Brock and
Hommes (1997); when 0 < n < 1, we are dealing with its modified version by
Anufriev and Hommes (2012).

For those agents who decide to consider changing their prediction rule, the
question is how sensitive are they to the superiority of heuristic A over the
rest of the heuristics in terms of performance Uj;—;. This is exactly what
v, the intensity-of-choice parameter, formalizes. It is non-negative, and we
can observe that when v = 0, the superiority of heuristic h does not raise its
popularity among the agents at all: the relative performance of the heuristics
is disregarded and all fractions are equal to i (for those who have decided to
consider switching their strategy). When the intensity of choice ~ is high, even
slightly better performance of heuristic h would make it much more favorable
choice for the new prediction rule.

Finally, the absolute performance of heuristic h is evaluated as follows:
Uht—1 = F(¢”i,t-1 —Tp1) + PUn 2, (3.6)

where F' is the forecast error and 0 < p < 1 is the memory parameter which
determines how much do agents value past performance of their heuristics.
From the upper bound of p it is clear that the long-run performance of a rule-

of-thumb can have 50% weight at best. The forecast error is calculated as

100
1+ ‘xz,tfl - mtfl‘.

Flaf, i) = (3.7)

The expectation formation mechanism described above holds both for the
output gap and inflation gap. That is, y;,; and 77, are formed in the same
way, and the underlying behavioral parameters, namely p, v and 7, are assumed
to be the same for the two variables.

The model’s microfoundations are based on Kurz et al. (2013) and are
spelled out in Appendix A of Hommes et al. (2019).
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Table 3.2: Calibration of the Model

T oy K Or O Py p vy 7
1.00 0.10 0.30 0.10 1.50 0.00 0.70 0.40 0.90

3.2 Monetary Policy Implications

This model is interesting, because it departs from the strong assumption about
expectation formation process — the agents’ rationality — by introducing perhaps
the most prominent expectation formation process in the LtFE literature, both
in macroeconomic and financial experiments (Hommes et al. 2019; Assenza
et al. 2019; Hommes et al. 2008; 2005). This changes the way the forward-
looking NKM behaves significantly. Specifically, under calibration from Clarida
et al. (2000) and Anufriev and Hommes (2012), the model implies different
(from that implied by RE specification) optimal monetary policy for central
banks which follow strict inflation targeting strategy: to stabilize inflation,
such central banks should not react only to fluctuations in inflation gap, but
also to the output gap fluctuations. The calibration is presented in Table 3.2.

Note that ¢, = 0 here. This emphasizes our focus on the central banks
which have inflation stability as their primary goal. As a warm-up, let us have
a look at a realization of the behavioral model and contrast it with that of RE
model, i.e. setting y7, ; =y = 0 and 77 ; = 7 = 0. Figure 3.1 depicts both of
them.

Thanks to its expectation formation mechanism with backward-looking
components, the behavioral model seems to generate more persistent time series
with higher variance. As a consequence, HSM implies different optimal policy
rule at least for central banks which have inflation stability as its primary goal.
In particular, as shown in Hommes et al. (2019), even if a central bank is only
interested in inflation stability, it can achieve better results if it also reacts
to fluctuations in the output gap. Figure 3.2 depicts the relationship between
the output gap reaction coefficient ¢, and inflation gap volatility as well as
volatility of output gap and interest rate gap and contrasts it with RE model.

The volatility is measured using formula v(z) = YL, (2, — x,1)?. This
measure has at least one advantage over mean squared deviation, perhaps a
more common volatility measure: the latter “does not distinguish between
erratic behavior around the target with decreasing distance from the target

and slow convergence if the absolute distance to the target is always equal”



3. The Model 11

Figure 3.1: RE and HSM Realizations
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(Hommes et al. 2019).

Turning to the discussion of different shapes of the curves from Figure 3.2,
the intuition behind this difference can be illustrated by the following example
from Hommes et al. (2019). Consider a situation when there is no shock to the
inflation gap, but there is a positive shock to the output gap. Under rational
expectations, the best thing a strict-inflation-targeting central bank can do is
to idle. However, under backward-looking expectations, leaving the interest
rate unchanged might lead to an endogenously-generated upward pressure on
inflation in the future: high output gap today will fuel expectations about
future output gap, which in turn will pull the inflation gap along. Although
reacting to the initial output shock by rising the interest rate would destabilize
inflation, too, this would well pay off in the near future, when the resulting
modest expectations would not disrupt the steady state too much, so the total
inflation volatility is lower.

Figure 3.2 is produced using 7" = 188 with first D = 100 time periods being
discarded as the burn-in period; the number of simulations for each ¢, is 10,000;
inflation volatility is summarized by the simple average of the 10,000 values.
Other combinations of D and T produce similar results. Other volatility metrics
as well as different calibrations produce qualitatively very similar results, too
(see Appendices in Hommes et al. 2019).

It is worth noting that comparable results are obtained by De Grauwe (2011)
who exercises his specification of behavioral expectations in the NKM framework
in a similar way. His model is not based on the results of macroeconomic or
financial LtFE, nor is it microfounded, but nonetheless, it is estimated several
times (cf. Jang and Sacht 2016; Kukacka et al. 2018; Jang and Sacht 2019). In
contrast, the model described here is fully microfounded and is grounded on
the most recent developments in macroeconomic and financial LtFE literature,
which makes it more interesting, perhaps more promising, but certainly not

easier to estimate.



Chapter 4
Methodology

This chapter describes the way we bring the HSM to macroeconomic data. The
first sub-section introduces the SMM, while the second one is devoted to Monte

Carlo experiments.

4.1 The Simulated Method of Moments

We estimate the model from Hommes et al. (2019) via the method of moments.
Since the moments for HSM can hardly be derived analytically, we have to ap-
proximate them by the moments calculated from a large number of simulations
and try to bring them as closely as possible to its empirical counterparts. This
is the main idea of the SMM.

The estimation procedure described below is relying on the exposition from
Franke (2019), which is in turn based on Lee and Ingram (1991) and Duffie and
Singleton (1993). Other classic papers on this topic include McFadden (1989)
and Pakes and Pollard (1989).

Let {z;"?}I_, be the empirical time series, where T is the total number

P

of periods, and zy" is in our case a 3-tuple of 3 macroeconomic variables:

emp

Yt
Sacht (2019), Jang and Sacht (2016) and Franke et al. (2015) who solve similar

problem and consider a set of 78 basic moments: variances, auto-covariances

emp

emp
y Tt .

, Ty In defining our moments of interest, we follow Jang and

and cross-covariances. The lag length is 8, i.e. 2 years backward. The set of 78
moments thus consists of 3 variances, 3 contemporaneous cross-covariances, 24
auto-covariances (3 variables times 8 lags) and 48 lagged cross-covariances (2
times 8 for each of the 3 pairs of variables). Translating this into the language of

moment functions, let m; denote one of the 78 moment functions. We illustrate
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the way these moment functions work by defining moment function for cross-
covariance between y; and m;_4. Assuming that this cross-covariance is, for

example, 32" moment out of 78, for t € {5, ..., T’} ms, is defined as
o g (T — 7). (4.1)

where g = L7 4™ and 7P = LY ™ are averages over the whole
sample.? The resulting 32"¢ empirical moment is then given by the average of

all available values of the moment function, i.e.

emp

Mr32 = T 1 Zm32 (4.2)

The rest of the 78 empirical moments are defined similarly. Once all of
them are calculated, we end up with the vector of empirical moments my " =
[ml; m78].

Now that we have calculated m7",

we want to find such parameter vector
0 = [1;04; K; Ox; Ox; Gy; p; 73 m) that, under this calibration, the model generates
the same or almost the same moments as the empirical time series. That is, we
want to minimize the distance between simulated moments and its empirical
counterparts with respect to . But before we formalize this aspiration into a
metric, we need to introduce the way we calculate simulated moments.

Given parameter vector 0, we generate N simulations, each with length
T (after initial D periods are discarded). For n € {1,..., N} we denote the
n' simulation as {#7}L_,. For each of these N simulations we calculate the
vector of 78 moments in the same way as in case of empirical realizations. We
then summarize N vectors of moments by taking their average over these N
simulations. This is our vector of simulated moments m$™(6) for given 6.

Recall that our goal is to minimize the distance between m7 ™ and m5™(6).
Having introduced both vectors, we can define the metric which summarizes
the distance between them. We consider the sum of squared differences as
our objective function. More formally, we are looking for such 6 € © that

expression

Z wi(my (0) —m7")” (4.3)

is minimized; where w; is the weight attached to the 7*» moment. To attach

2Note that by supplying a moment function with time index ¢, we implicitly provide it
with the whole realization {z{""}Z_;.
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greater importance to deviations of more stable moments, it is common to set
w; to reciprocal of the standard error of the i** empirical moment.?

Unfortunately, we do not know the true standard errors of the moments, as
we have only one realization with rather small number of observations. There
are several ways how to estimate standard errors of the moments from one
realization, but we stick to the bootstrapping procedure suggested in Franke
(2019) and justified by the fact that he has rather small sample size T' =
190, which is almost the same sample size as ours. The procedure is fairly
straightforward.

Returning to our example with covariance between ¥, and m;_4, we sample
with replacement 7' — 8 (because the lag length is 8 in our case) indices from
the index set {9, ..., T’} and obtain the new set of indices {t1,...,tr_g}. We then
calculate the bootstrapped moments similarly as the empirical ones — just take

the average of the values of a given moment function across the time periods:

b 1 T-8
Mg = g > maa(tr), (4.4)
k=1

where b denotes the iteration of bootstrapping. The total number of repetitions
is B = 5000. The standard errors of the moments are then calculated as the

standard deviations of the moments over all repetitions B.

4.2 The 4-round Cross-Validation

Now we have an objective function which takes 6 as argument and returns
the summary of distance between average moments generated by the model
under # and its empirical counterparts. We minimize it two times: once under
assumption that the true data-generating process (DGP) is HSM and once under
assumption that it is RE. It is worth noting that when calculating simulated
moments for RE, we make use of its analytical tractability and set all of its
auto-covariances and non-contemporaneous cross-covariances to zero.

Our basic null hypothesis is that J&F < J#SM n case we do not reject this

hypothesis, we would conclude that behavioral model fits macroeconomic data

3Strictly speaking, multiplying each term in Equation 4.3 by w; is just a special case of
a more general procedure — multiplying the vectors of differences between the corresponding
moments by the reciprocal of the covariance matrix of the moments. This approach is
described in more detail, for example, in Jang and Sacht (2019), but because of problems
associated with the sample size — as is the case of our work — they used the diagonal matrix
anyway.
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not better than RE model. Thus, monetary policy discussions from Chapter
3 are rather premature. Although outperforming the purely forward-looking
RE in terms of fitness to macroeconomic data model does not seem to be a
big challenge, it is the first, necessary step which has to be executed. And
assuming that it outperforms RE in terms of fitness to the data, the question
is how do the resulting point estimates of the parameters look like; in case the
estimates are completely different from the calibration used in Chapter 3, the
question is whether the policy implications based on the updated calibration
still hold.

Before we bring both models to the data, we want to make sure that the
procedure described above is able to discriminate between the two models. One
might have a feeling that HSM is a more general model than RE — that under
certain calibration of behavioral parameters (small memory and persistence
parameters and large intensity-of-choice parameter, for instance) HSM fits the
data not worse than RE, even if the true DGP is RE. Although the difference
between the resulting JZ5M and JBF in such case is expected to be rather
small, it seems fruitful to analyze this issue more rigorously.

One way to do that is to generate a large number of realizations of RE model
and ‘estimate’ each of these realizations twice: one time assuming that the true
model is RE and one time assuming that the true DGP is HSM, and then compare
the corresponding JEE and JHSM  where ¢ denotes the random seed used to
generate a particular realization of RE. Ideally, we want to have JEE < JHSM
for all ¢ € 1, ..., C, where C' is the number of such different realizations, i.e. the
number of different random seeds. In effect, we also obtain a glimpse of sample
variance of our procedure for RE, when assuming that DGP is RE. That is, we
assess the capability of our estimation procedure to recover the pseudo-true
parameters. Ideally, in all C' cases the estimates of the parameters are equal to
the pseudo-true values. We can do the same for HSM: generate C' realizations
of HSM and ‘estimate’ each of them with HSM — to assess the sample variance of
our estimator — and with RE — to make sure that our procedure discriminates
well.

The 4-round cross-validation described above is inspired by Kukacka et al.
(2018) who estimate behavioral NKM from De Grauwe (2011) via the simulated
maximum likelihood method and assess the capability of their procedure to
recover pseudo-true parameters of the underlying model. A similar procedure
is also employed by Franke et al. (2015) as a proxy for confidence intervals for

the resulting parameter estimates.
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Figure 4.1: Results of Simulations: RE<+RE
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Note: The bold vertical lines indicate what are the true parameters of the underlying DGP.
Our constrained optimization is supplied with the search range from Kukacka et al. (2018).
For each parameter, the lower and upper bounds of the search range are reflected by the

leftmost and the rightmost values on the x-axis, respectively.

We set C' equal to 100 and use the calibration from Chapter 3 with pseudo-
true ¢, = 0.00. Also, we follow Kukacka et al. (2018) and Hommes et al. (2019),
among others, and set v = 0.99 and do not estimate it at all. As a warm-up,
let us have a look at the capability of our procedure to recover the pseudo-
true parameters of RE under assumption that the true DGP is RE. Figure 4.1
presents the histograms of the estimates of the pseudo-true parameters.?

Our estimator seems to be downward biased in case of 7. Estimation of
does not seem to be an easy task for our procedure, either. In addition to being
downward biased (even though the pseudo-true value is well inside the search
range), it seems to have the highest variance among all parameters. On the
other hand, parameters oy, 0, ¢, ¢, are recovered by our estimation procedure
easily with estimators of ¢, and ¢, being remarkably sharp. This is in contrast
with results of similar exercise from Kukacka et al. (2018) who report that their
SMLE struggles to recover the true parameters in case of forward-looking RE
model. So, we can be fairly proud of our procedure in this respect.

Let us now shatter our confidence in the estimation procedure by looking at

the same graph for HSM. Figure 4.2 provides a glimpse on the variance and bias

4All main computations in this work are done using the Julia Language, v1.3.0 (https:
//julialang.org/). On the optimization side, we utilize the package called ‘BlackBox-
Optim.jl’ (https://github.com/robertfeldt/BlackBox0Optim. j1, accessed on October 19,
2019) with ‘de_rand_1_bin’, one of its differential evolution algorithms, as our workhorse
optimization method. More details can be found in Online Appendix D.


https://julialang.org/
https://julialang.org/
https://github.com/robertfeldt/BlackBoxOptim.jl
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Figure 4.2: Results of Simulations: HSM<+-HSM
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Note: The bold vertical lines indicate what are the true parameters of the underlying DGP.
The search range for behavioral parameters is clear in case of memory p and population
persistence n — it is interval between 0 and 1; the search range for the intensity of choice ~
as well as the NKM parameters is taken from Kukacka et al. (2018). For each parameter, the
lower and upper bounds of the search range are reflected by the leftmost and the rightmost

values on the x-axis, respectively.

of the estimators of behavioral parameters as well as NKM parameters under
heterogeneous expectations.

Under behavioral expectations our procedure seems to be able to recover
parameters 7 and & slightly better than in case of RE; we may even hope that
estimators of these parameters are unbiased in case of HSM. The estimators of
standard deviations of the shocks seem to have higher variance in case of HSM,
but are still rather unbiased. What might be disappointing for us is the distri-
butions of estimates of reaction coefficients ¢, and ¢,. The estimators of both
parameters seem to be upward biased. Regarding the behavioral parameters,
perhaps the most striking observation is total impotence of the estimator of
v to recover the pseudo-true value of the parameter. This is in high contrast

with Kukacka et al. (2018) whose SMLE procedure recovers the pseudo-true
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value of v with remarkable precision. In addition, their estimators of ¢, and
¢r seem to work better under bounded rationality than under RE. On the other
hand, they find the estimator of k to be working much better under behavioral
expectations, similarly to what we see here. Performance of estimators of the
rest of the behavioral parameters leaves much to be desired: although none of
them seems to be completely helpless, as in case of v, both demonstrate rather
high variance.

Anyway, the main goal of this work is to bring the HSM to macroeconomic
data and evaluate its empirical performance by comparing it to that of RE
model. Our null hypothesis is that the true DGP behind the realized macroe-
conomic time series for the euro area is RE. More formally, we reject our null
hypothesis if and only if J®¥ > JHSM — But when testing hypotheses, it is
critical to know, or at least assess, what is the p-value associated with the test
and what is the probability of type II error.

Before we provide the results of such assessment, it is good to make up
our minds regarding the painfulness of the two probabilities. We argue that
rejecting the null hypothesis when in fact it is true would be more painful in our
case. That is, rejecting the hypothesis that RE model is the true driver behind
the dynamics of macroeconomic variables in the euro area and recommending
the policy makers of the ECB to revise their modeling toolkit in favor of HSM
when in fact RE is the true model is not the impact we want to make. Surely,
reviewing one’s assumptions about the way the economy works is never a bad
thing, but we aim at being conservative here.

Unfortunately, as discussed above, the scenario when we falsely conclude
that HSM is the true DGP is more likely than the other way around, as HSM
might seem a more general model than RE. Before we face the results of
perhaps the most important round of our cross-validation, let us have a look
at the outcome of assessment of probability of type II error. Figure 4.3 depicts
the fitness measures for the two competing models J?¥ and J75M when the
true DGP is HSM.

The fitness measure of the pseudo-true model J#5M does have lower values
than J®# in all C = 100 cases. This is all that can be desired. The average
relative difference between the two measures is 21.14. It is worth noting that
the ability of RE to recover parameters does not seem to have deteriorated sig-
nificantly: only standard deviation parameters o, and o, seem to overestimate

the pseudo-true values.®

5Details, mainly in graphical form, can be found in Appendix B.
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Figure 4.3: Results of Simulations: Fitness Measures for HSM<+HSM
and HSM<«RE
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Figure 4.4: Results of Simulations: Fitness Measures for RE<~RE and
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Now that we know that type II error is unlikely to happen in our case, we
can finally gauge the risk of committing a type I error. Figure 4.4 illustrates the
behavior of J#5M and J®¥ across different random seeds ¢ when the underlying
true model is RE.

The difference between the corresponding fitness measures is much smaller
than in case of type II error: the average relative difference % is only 2.28.
The two curves even seem to be tangent three times. In fact, in all of these

cases JHIM is less than JIF although only marginally. Our estimate of p-
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value is thus 1—30 = 3%. In addition to that, we can conclude that if empirical
data produce almost identical J75M and J®F then it is probably the case that
the true model is RE, because should HSM be the true model, J75M would be
much lower than JF as suggested by Figure 4.3. Although we would formally
reject our null hypothesis in the former case, we would suspect that we have
committed a type I error. Another feature that would indicate that we have
falsely rejected RE is having the estimate of v equal or almost equal to its upper
bound, 10.9

In summary, given our main goal — comparing the empirical fitness of HSM
to that of RE — the estimation procedure described in this chapter seems to
be appropriate enough: the estimated probability of type II error is 0%, and
the estimated probability of type I error is 3% with reservation that we would
probably know that we are about to reject RE falsely, and so the probability
of type I error is practically almost 0%. Thus, the bottom row of the table
with estimation results is going to be interesting and fairly reliable reflection
of empirical fitness of the two competing models. Regarding the parameter
inference, we are not expecting our procedure to recover all true parameters
extremely accurately, but we do have some glimpse on bias and variance of
our estimators, so the upper rows of the table with results are not going to be

completely uninformative, too.

SHistogram for this as well as the rest of parameters can be found in Appendix B.



Chapter 5
Results

This chapter is devoted to empirical application of the methodology described
in Chapter 4. First, the macroeconomic data are introduced. Then, the results
of the estimation are presented. Finally, optimal monetary policy recommen-

dations discussed in Chapter 3 are stress-tested.

5.1 Empirical Application

We follow Kukacka et al. (2018) and retrieve the euro area macroeconomic time
series from the Euro Area Business Cycle Network. In particular, we utilize
the 18" update of the area wide model database which covers the time window
from 1970Q1 to 2017Q4 on the quarterly basis (for a detailed description of the
dataset see Fagan et al. 2001).” For our purposes, we need three variables: YER
(real GDP), YED (GDP deflator) and STN (the short-term nominal interest
rate). Once GDP and its deflator are transformed to year-over-year difference,
we filter out the trend in all three variables using the Hodrick-Prescott filter
with usual smoothing parameter A = 1600. The resulting time series are plotted
in Figure 5.1.8

Now we are all set to bring the HSM to macroeconomic data. The results
of the estimation are presented in Table 5.1.° Optimization constraints are
reflected in the angle brackets.

The ratio % is equal to 22.45, which is slightly greater than 21.14, the

"Available at: https://eabcn.org/page/area-wide-model [Accessed on December 2,
2019].

8See Appendix C for the same graph before the application of the Hodrick-Prescott filter.

9Note that the initial search range for parameter oy was set to <0, 1>. But because RE
produced estimate of o, equal to 1.00, the upper optimization constraint was raised to 2.
The results of the original estimation are presented in Appendix C.
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Figure 5.1: Empirical Time Series
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Table 5.1: Results of Estimation

Parameter HSM RE

T 0.33 0.95
<0, 1>

oy 0.21 1.86
<0, 2>

K 0.05 0.21
<0, 1>

O 0.00 0.83
<0, 1>

bn 2.01 1.62
<1, 3>

Oy 0.43 0.28
<0, 1>

p 0.00 -
<0, 1>

vy 7.04 -
<0, 10>

n 0.53 -
<0, 1>

J 5.96 133.83
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corresponding Monte Carlo benchmark from Chapter 4. This indicates that the
behavioral model does fit the macroeconomic data better than the RE model.
More formally, the null hypothesis from Chapter 4 is rejected on the 3% level.
In other words, the true DGP behind the macroeconomic time series for the
euro area is rather HSM than RE. This result is not surprising: fitness measures
from Jang and Sacht (2019) and Kukacka et al. (2018) tend to favor behavioral
models, too.

Regarding the coefficients, it might be tempting to proclaim that our study
confirms the results from Kukacka et al. (2018) whose SMLE procedure manages
to pin down the intensity-of-choice parameter v to 7.01, but Figure 4.2, namely,
the flat shape of the distribution of estimates of 7, suggests that one should
be cautious in this respect. The estimate of another behavioral parameter,
memory p, is almost zero, which supports its insignificance reported by Jang
and Sacht (2016) and implied by Kukacka et al. (2018), among others. This
is at odds with the calibration by Hommes et al. (2019) who set it to 0.7.
Finally, the population persistence parameter 7 is estimated to be 0.53, which
is far from what is suggested by Hommes et al. (2019), too, but can hardly be
compared to empirical studies by Jang and Sacht (2016), Jang and Sacht (2019)
or Kukacka et al. (2018), either, as they implicitly, by design of the discrete
choice mechanism, assume that it is equal to zero. Notably, the estimates of
all behavioral parameters depart from the calibration by Hommes et al. (2019)
in the same direction as in Bao et al. (2020) who test the robustness of the
results of LtFE by Hommes et al. (2008) with respect to a larger number of
participants.

The estimates of the structural parameters 7, k, ¢, and ¢, as well as stan-
dard deviations of the error terms o, and o, from this work are generally closer
to those from empirical studies by Jang and Sacht (2019) and Kukacka et al.
(2018) than to the calibration by Hommes et al. (2019), keeping in mind that
the estimators of standard deviations of shocks are very likely downward biased
in Kukacka et al. (2018). This is especially true in case of the central bank’s
reaction coefficients ¢, and ¢,, whose true values are likely to be less than what
is reported in Table 5.1, because its estimators seem to be upward biased.

Interestingly enough, the estimates of the parameters of RE model are quite
close to the calibration by Hommes et al. (2019), except for the standard devi-
ations which are much greater here. In contrast, the behavioral model does not
need big exogenous shocks to explain the covariance profiles of the empirical

data: its endogenous expectation formation process seems to be sufficient to
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Figure 5.2: Results of Estimation: RE vs. HSM
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account for given features of macroeconomic time series. Let us have a look
at the examples of realizations of these two models under the calibration from
Table 5.1. Both are depicted in Figure 5.2.°

All in all, the behavioral model outperforms the RE model in terms of
fitness to macroeconomic data, both formally and visually. However, the set
of parameters which ‘secured victory’ over RE is very far from being equal to
that from Hommes et al. (2019). And although the estimates look plausible,
before declaring that HSM has passed the empirical validation and that the ECB

10The underlying population fractions for HSM are contained in Appendix C.
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Figure 5.3: Inflation Volatility: A Robustness Check
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should revise its optimal monetary policy rule, it should be verified that the

optimal policy implications discussed in Chapter 3 hold.

5.2 Monetary Policy Exercise

Ideally, HSM with calibration from Table 5.1 should be able to reproduce Fig-
ure 3.2, at least qualitatively. That is, inflation volatility should still be de-
creasing for low ¢, and increasing for ¢, greater than, say, 0.5. Figure 5.3
depicts the results of the same exercise as in Chapter 3.

The setup (volatility measure, number of simulations, etc.) is the same
as that used for producing Figure 3.2. The only difference is the underlying
calibration of the models. The curves for HSM look a bit weird. Before we
discuss its ups and downs, let us consider the curves for RE.

This version of RE model generates very similar curves in terms of dynamics.
That is, v(y) decreases as ¢, increases; v(p) demonstrates the opposite; and
v(r) is decreasing for small ¢,. What is different is that v(r) soon starts to
rise, as opposed to its counterpart from Figure 3.2 where the curve is decreasing
over the whole sensible range of ¢,. This has to do with the fact that o, is
now much larger than o, as opposed to the original calibration where both are
equal.

Turning to the curves for HSM, let us first investigate the model’s explosions
when ¢, is small. Figure 5.4 shows an example of such realizations.

Not surprisingly, the most frequently used heuristic during this realization
is the strong trend-following rule.!* So, the logic here is similar as in the case

of Figure 3.2: not reacting to the initial shock to the output gap fuels the

11See Appendix C for corresponding graphs.
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Figure 5.4: An Example of HSM Explosions (¢, = 0.00)
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Figure 5.5: An Example of HSM Oscillations (¢, = 1.20) — Short Run
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expectations about the future output gap and thus leads to a higher output
gap in the future. In addition, because the calibration from Table 5.1 yields
much smaller estimate of x, only 0.05, inflation and output gap do not go hand-
by-hand, and without the central bank’s attention (¢, = 0) the output gap can
easily ‘go wild” and consequently blow the whole economy up, especially given
that the central bank is having hard times bringing inflation back to its steady
state, since the monetary policy channel is clogged (k = 0.05 and 7 = 0.33).
Regarding the ‘time warp’ to the right, this one is really puzzling. Only a
small fraction of all time series fall into the ‘singularity’ at ¢, ~ 1.2. Figure 5.5

depicts one of these ‘ill-starred’ realizations.
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Figure 5.6: An Example of HSM Oscillations (¢, = 1.20) — Long Run
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This is not the way a healthy economy behaves. Although ¢, = 1.2 is not
the most sensible calibration, neither it is completely off. One might wonder
what happens to the model in the subsequent periods. Figure 5.6 answers this
question.!?

And this is not the kind of equilibrium macroeconomic DSGE models aim
at producing. This graph also emphasizes the importance of having sufficient
burn-in period length B. Turning to the drivers behind these bizarre dynamics,
Figure 5.7 indicates what kind of force is holding everything together.!3

Expectations play a very important role in macroeconomics. And popu-
lation fractions play an important role in expectation formation mechanism.
Especially when the underlying persistence parameter 7 is close to one half,
which is our case. Setting 7 to 0.7 neutralizes the ‘black hole’ at ¢, ~ 1.2.
Although it is rather a slice of a ‘black ravine’, as illustrated in Figure 5.8 with
natural logarithm of v(p) on the ‘z-axis’.

Regardless, even at the epicenter of the ‘singularity’ at ¢, ~ 1.2 most of
the realizations are well-behaved. What is much more important is that the U-
shape from Figure 3.2 is generally present. In a way, it is now more pronounced,
since setting ¢, to small values would blow the economy up. Moreover, as
suggested in Figure 5.8, setting any reaction coefficient close to zero might

upset the whole economy, which might be relevant for all central banks.

12Gee Appendix C for a deeper look at the dynamics of the macroeconomic variables of
this realization.

13See Appendix C for a deeper look at the dynamics of the population fractions of this
realization.
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Figure 5.7: An Example of HSM Oscillation (¢, = 1.20) — Population
Fractions
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Figure 5.8: Inflation Volatility for HSM: The ‘Black Ravine’
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To sum up, HSM fits the macroeconomic data much better than RE. The
resulting parameter estimates of the behavioral model are completely different
from the calibration by Hommes et al. (2019). The inflation volatility exercise
based on the new calibration shows that the optimal monetary policy implica-
tions for central banks which target inflation generally hold, with the provision
that the underlying calibration might not represent an accurate reflection of
the true DGP, since the precision of the underlying estimators leaves something

to be desired, as is indicated in Chapter 4.



Chapter 6
Discussion

This chapter deepens the grasp of the empirical results and provides a discussion
on the related issues. First, a second layer of parameter inference is added.
Next, the distributions of the underlying fitness measures J are presented and
the empirical results from Chapter 5 are checked against the moment-matching

graph. Finally, alternative fitness measures are proposed.

6.1 A Deeper Look at the Estimation Results

When looking at the results of the 4-round cross-validation from Chapter 4
and Appendix B and the results of the estimation from the previous chapter,
one might question the applicability of the former in assessment of the variance
of the estimators. That is, since the true parameters of the underlying DGP
seem to be in a completely different interval of the parameter space © than
that implied by the calibration used in Chapter 4, the estimators might be-
have differently. We may well discover that our estimators, for example, have
high variance, and this would undermine the results of the inflation volatility
exercise from Chapter 5. Let us thus have a look at Figure 6.1 — the empirical
counterpart of Figure 4.2 based on the estimation results from Chapter 5 and
sample length 7" = 188.

Apart from the underlying calibration, the extended search range for o,
and the sample length T, the whole setup is the same as that used for produc-
ing Figure 4.2. If anything, the accuracy of the parameter estimators seem to
have slightly improved compared to what we have seen in Chapter 4: although
their variances are still non-negligible and a couple of them are somewhat bi-

ased, none of the estimators is glaringly biased, as is the case of ¢, and ¢,
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Figure 6.1: Results of Simulations Based on Empirical Results:
HSM<+HSM

tau sigma_y kappa

00 02 04 06 08 1.0 00 02 04 06 08 1.0

sigma_p phi_p phi_y

00 02 04 06 08 1.0 00 02 04 06 08 1.0

rho gamma eta

00 02 04 06 08 1.0 00 02 04 06 08 1.0

Note: Vertical violet lines locate the underlying calibration.
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Figure 6.2: Results of Simulations Based on Empirical Results:

HSM<«+RE
tau sigma_y kappa
g
00 02 04 06 08 1.0 0.0 0.5 1.0 1.5 2.0 00 02 04 06 08 1.0
sigma_p phi_p phi_y
00 02 04 06 08 1.0 1.0 1.5 2.0 25 3.0 00 02 04 06 08 1.0

Note: Vertical violet lines locate the underlying calibration, while the coral lines mark the
locations of the actual empirical estimates.

in Figure 4.2. Even the distribution of the estimates of the intensity-of-choice
parameter 7 is no longer flat.

Let us complete the second layer of parameter inference by repeating the
same exercise under assumption that the true model is RE. Our hope is that
the estimates are distributed around its empirical counterparts from the third

column of Table 5.1 in Chapter 5. Figure 6.2 depicts the resulting distributions.

The idea of the distributions in Figure 6.2 is to show how does the estimation
procedure behave if the true DGP is HSM with calibration based on empirical
results and the assumption of the estimation is that the true model is RE. At
first glance, the locations of the empirical estimates look very good: when the
true model is HSM, the estimation procedure under assumption that the true
DGP is RE does seem to produce estimates similar to what we have obtained in
Chapter 5. This is especially true in case of 7. Together with the locations of
oy, 0 and k, it does not seem unlikely that the true model is HSM. However,
the estimates of the reaction coefficients ¢, and ¢, are completely off here: the
extreme sharpness of the estimators of ¢, and ¢, under assumption that the
true model is RE seems to be highly robust to the underlying DGP. That is,
these parameters are consistently recovered with remarkable precision which
can be seen already from Figure B.1. So, chances are the calibration from the
second column of Table 5.1 — estimation results for HSM — is far from being an

accurate reflection of the true parameters standing behind the empirical data,
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at least in case of the central bank’s reaction coefficients.

This calls for fixing ¢, and ¢, in accordance with the rightmost column
of Table 5.1, should the model be re-estimated. Another sound candidate for
fixing is the memory parameter p which is consistently estimated to be zero
(see Jang and Sacht 2016, among others). Finally, one can make use of the
results of Kukacka et al. (2018) and fix the intensity-of-choice parameter 7 to
their estimate, 7.01. Anyway, the main goal of this work is to compare the
empirical fits of the two models, so our primary concern is not the parameter
estimates, but the fitness measures J’s.

Speaking of J’s, a meticulous reader might have noticed that something is
uneasy with these measures already in Chapter 4 and Appendix B. In partic-
ular, what might make a clumsy impression is that only absolute and relative
differences between the two metrics are considered (see Figure B.3 and Fig-
ure B.4), and its values are not even presented. Which is enough to compare
the two models’ fits once they are brought to the macroeconomic data, but
the question is whether HSM fits the data well and RE fits the data poorly or
both models are inaccurate approximations of the underlying DGP, but the RE
model is even worse than the behavioral one.

Recall that the values of J are 5.96 and 133.83 for HSM and RE, respectively.
In contrast, the median J for Figure 4.2 (HSM<«+HSM) is 0.09 and 1.35 for
Figure B.1 (HSM<+RE), which might suggest that both models fit the data
very poorly. Before we investigate this suggestion, let us have a look at the
distributions of the fitness measure under different setups. Figure 6.3 discloses
all the six distributions of J — one for each of the sets of histograms presented
in this work, including those from Appendix B.

Looking at the top middle histogram, one might conclude that J = 5.96
implies a remarkably bad fitness, although still much better than that implied
by 133.83, the value for RE. However, when the upper right distribution en-
ters the reasoning, it does not seem very unlikely that the true DGP is HSM
with parameters from Table 5.1. Theoretically, the weighting matrix should
take care of such movements in the parameter space ©, but in practice, when
some subspaces of © produce on average less stable time series than the other,
there is no guarantee that all the candidate models are brought to the same
metrics. This seems to be exactly the case of our model, where the interval
around #* from Table 5.1 appears to occasionally generate wild realizations, as
is suggested, for example, by Figure 5.8.

Luckily, we can assess both relative and absolute fits of RE and HSM to
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Figure 6.3: The Underlying Fitness Measures .J
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Note: The histograms to the right are the underlying distributions of J based on the empirical
calibration (i.e. Figure 6.1 and Figure 6.2). The vertical coral lines locate the ‘realized’
empirical J’s.

00 02 04 06 08 0 200 400 600 800 1000

macroeconomic data in a more transparent way. Instead of solely relying on the
power of the 4-round cross-validation from Chapter 4, we can simply plot the
auto- and cross-covariance profiles of the two models resulting from Table 5.1
against its empirical counterparts. Figure 6.4 provides a visual check of the
results obtained in Chapter 5.

Clearly, not only HSM comfortably outperforms RE in terms of fitness to
macroeconomic data, but it also exhibits a remarkably good fit to the covari-

ance profiles of the empirical dataset in general.

6.2 Alternative Fitness Metrics

While we are on the subject of moment matching, it is worth emphasizing that
the simulated moments in Figure 6.4 represent the average moments across all
simulations 1,...N. A very meticulous reader might have already been ques-
tioning the validity of computing moments for each of these N simulations,
summarizing these moments by taking their simple average and then using
these average moments to calculate the distance measure J. Indeed, a legit-
imate concern is that it is not obvious that averaging a moment across the
simulations does not distort the true picture and favor parameter vectors 0’s
which should otherwise be discarded during the optimization. The problem is
that the distribution of the moment across the simulations does not necessarily

have to be unimodal and symmetrical, as is implicitly assumed in this step.
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Figure 6.4: Moment Matching: HSM vs. RE
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Note: The red and the blue lines depict the simulated moments of RE and HSM, respectively.
The black lines stand for their empirical counterparts; the dark ribbons indicate its confidence
intervals as calculated as two times standard error of the corresponding moment.
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Figure 6.5: Moment Matching: Examples of the Underlying Distribu-
tions for HSM

y(®, y(t) r(t), p(t-8)

7.5 10.0 -1.2

Note: The blue vertical lines are the corresponding averages, the black ones are its empirical
counterparts with confidence bands.

And this concern is especially relevant in case of HSM, where the underlying
DGP is highly non-linear.

Perhaps the best basic check we can perform here is to consider the dis-
tributions of the moments which allow HSM to outperform RE in Table 5.1.
And the best outcome we can hope for is that all moments have symmetrical
unimodal distributions, so the loss of information caused by averaging them
across the simulations is rather negligible.

Unfortunately, this is not the case. The resulting distributions are far from
looking delightfully unimodal. Although none of them look bimodal, almost all
of them exhibit other unpleasant features, such as having outliers. Figure 6.5
depicts typical examples of these troublesome distributions.

Apart from being skewed or having relatively extreme values which pull the
resulting average away from what might seem a more appropriate summary of
the distribution, it is not uncommon to observe a moment being ‘insignificant’,
i.e. when the moment’s histogram breaches the zero threshold considerably,
even though the empirical moment is not always likely to come from a dis-
tribution with zero mean, based on the confidence bands and the method of
summarizing the distribution. The histogram to the right is exactly the case.

Thus, the distances between the simulated moments and its empirical coun-
terparts are a bit warped, and therefore, fitness measure .J is probably not an
extremely trustworthy metric at least in some neighborhood of ¢ from the HSM
column of Table 5.1. As a consequence, the credibility of the results of em-
pirical application as well as the inflation volatility exercise from Chapter 5 is

undermined somewhat.
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There is not much one can do about it at this stage. Perhaps the simplest
way to resolve this issue would be to replace the average by median. That is,
when we have N atomic vectors of simulated moments, we can aggregate them
into one vector by taking the median of each moment, not the average. This
metric — let us call it ‘J-outlier’ — would take care of the outliers and skewness
and supply us with a more intuitive summary of the moments. But should the
distribution of the moments be, for example, bimodal, we would question the
competency of our fitness measure again, although this would rather indicate
more serious problems with parameter identification or optimization algorithm.

Nevertheless, to better account for potential multimodality, we may decide
not to summarize the moments across the simulations at all. Instead, we can
first calculate J,, for each simulation, and then aggregate them, for example, by
taking their average across all n =1, ..., N simulations. This metric is inspired
by Franke (2019) who employs a similar approach to calculate the p-value for
his estimation. The idea is not to waive the valuable information contained
in the distributions of the moments too early, but to leverage it to obtain
the distribution of the sums of distances between the corresponding moments
across different random seeds. This distribution can then be summarized, for
example, by computing its average or median — we label them as ‘J-bar’ and
‘J-median’, respectively. The difference between these two is of a similar nature
as in case of the standard metric and J-outlier: J-bar is more straightforward
and computationally cheaper, but is prone to outliers. It should be noted that
this approach cannot be complemented by a direct graphical check of fitness,
such as Figure 6.4, which can be seen as its drawback.

In summary, the second round of parameter inference as well as a deeper
look at the empirical fit and the underlying fitness measures presented in this
chapter do not discredit what is reported in Chapter 5 entirely. Although there
seems to be some room for a methodological ‘horse race’ in the future, given
the results of the 4-round cross-validation and the second layer of parameter
inference, none of the SMM aspects discussed here look critical in the context of

this work, and so the conclusions made in the previous chapter generally hold.



Chapter 7
Conclusion

Being concerned with the gap between the theoretical soundness and empirical
relevance of one of the most prominent behavioral macroeconomic models in
the literature, we bring the model from Hommes et al. (2019) to empirical
data using the simulated method of moments (SMM). We employ the standard
rational expectations (RE) specification of the New-Keynesian model (NKM) as
a benchmark and utilize Monte Carlo experiments to assess the discriminatory
power of the estimation procedure. We also provide a robustness check to the
implications of behavioral expectations for optimal monetary policy presented
in Hommes et al. (2019) and De Grauwe and Ji (2020), among others. Finally,
we discuss possible methodological caveats and propose three alternative fitness
metrics.

The Heuristic Switching Model (HSM), one of the leading behavioral expec-
tation formation mechanisms in the learning-to-forecast experiments (LtFE)
literature, delivers a remarkably good fit to the auto- and cross-covariance pro-
files of the euro area macroeconomic time series and outperforms RE at the
3% significance level. The inflation volatility exercise based on the resulting
calibration corroborates the claim that central banks which implement strict
inflation targeting are better off reacting to the output gap fluctuations, on top
of inflation. On the methodological side, the newly proposed metrics — a very
preliminary response to one minor concern related to the fitness measure J —
appear to have a potential to enhance the SMM approach in this respect and
allow it to reinforce its status of a sound framework for estimating macroeco-
nomic models with behavioral expectation formation mechanisms.

All in all, based on our empirical examination, it may be said that HSM

is validated with minor conditions: the model matches empirical moments
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supremely well with a remark that there seems to be a scope for improve-
ment of the underlying estimation procedure, at least in one aspect. Once it is
studied more extensively and the SMM is tweaked accordingly, the model can
be challenged by other microfounded behavioral specifications of NKM, such as
‘fundamentalists-chartists’ models by De Grauwe and Ji (2020) or Hommes and
Lustenhouwer (2019). Effectively, this comparison might also shed more light
on the applicability of the results of laboratory experiments to the real macroe-
conomic environment, as the more parsimonious ‘fundamentalists-chartists’
setup has a weaker support in the LtFE literature than the more sophisticated
HSM, but may well outplay the latter when applied to the real macroeconomic
data. Either way, this work adds a considerable piece of evidence for behavioral
heterogeneity in macroeconomic expectations in the euro area, which seems rel-
evant for the ECB already now, although the final specification of the potential
behavioral replacement of RE in its modeling toolkit is to be determined by

further research.
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Appendix A

A Note on Notation

The model described in Chapter 3 is a slightly modified version of the model
from Hommes et al. (2019). This appendix describes these modifications and
discusses its implications.

The forward-looking version of the baseline 3-equation NKM from Hommes
et al. (2019) reads as follows:

Y = Y1 — Plic — Tipq) + ge (A1)
T = Ay + plgq + W (A.2)
it = Max{fr + ¢7r(7Tt — 7_T) + ¢y(yt — g), 0}, (A3)

where y; is the output gap, m; is inflation rate and r; is the nominal interest
rate. yy,, and 77, are the expected output gap and inflation at time ¢ + 1,
respectively. Both represent averages over population, and both are formed at
time ¢ when only information up to time ¢t — 1 is available. 7 and y are the
steady-state inflation rate and output gap, respectively. ¢; and u; are random
shocks.

Equation (A.3) is the central bank’s monetary policy rule, equation (A.2)
is the NKPC, and equation (A.1) is the dynamic IS curve. ¢, and ¢, are
non-negative parameters which determine how the central bank reacts to the
shocks to inflation rate and output gap, respectively. The shocks ¢g; and u; are
normally distributed random variables with zero mean and standard deviations
o and o, respectively. ¢ and A are non-negative parameters which represent
the slopes of the IS curve and NKPC, respectively. The ‘Max’ operator in (A.3)
represents zero lower bound for the nominal interest rate.

To prepare this system for further analysis and estimation, we make two
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Table A.1: Mapping of the Notation
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adjustments. First, we set the central bank’s inflation target m to 0. This
implies zero steady-state output gap y (follows from equation 3.2) and zero
steady-state nominal interest rate i, (follows from equation 3.3). Removing zero
lower bound on the nominal interest rate allows us to read and treat y;, m, %
as the output gap, inflation rate gap and interest rate gap, respectively.!4

Second, in terms of symbols, we make use of the notation from Kukacka
et al. (2018). This switch is summarized in Table A.1.

As a result, we arrive at the following 3-equation NKM:

Yt = Yiy1 — 7(re — 7_rf+1) + eyt (A4)
Ty = UTgpy + KYp + En (A.5)
Ty = OnTy + Oy, (A.6)

which is exactly the system of equations described in Chapter 3.

Switching to this set of letters allows us to work with MATLAB scripts
related to Kukacka et al. (2018), Jang and Sacht (2019), Jang and Sacht (2016)
more conveniently; it keep the notation flexible for potential introduction of
hybrid NKM into this work; and most importantly, it enables us to compare
our estimation results to those of the authors above more directly.

It has been verified that the switch from non-zero steady state to zero steady
state does not alter our conclusions, at least those related to Figure 3.2. In
fact, since equations (3.1) and (3.2) “are typically derived by log-linearizing
around a steady state with zero inflation rate” (Hommes et al. 2019), setting

inflation target to zero might be a better, more general, choice. The reason why

1A more elaborated discussion of this treatment can be found in Franke et al. (2015).
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inflation target is greater than zero in Hommes et al. (2019) is probably that
these equations are used as the underlying model for their LtFE experiment;
and since the goal of the participants of the experiment is to predict inflation
rate as accurately as possible, it would be too easy for them to discover true

inflation in their experiment in case it is set to 0%.



Appendix B

Methodology Figures

This appendix presents four figures closely related to the assessment of our
estimation procedure from Chapter 4.

First, we present two sets of histograms. Figure B.1 shows how does the
estimation procedure from Chapter 4 behaves when the pseudo-true DGP is HSM
and we assume that it is RE — a byproduct of the assessment of the probability
of type II error.

Similarly, Figure B.2 shows the distributions of the estimates when the roles

are reversed — a byproduct of the assessment of the probability of type I error.

Figure B.1: Results of Simulations: HSM<+RE

tau sigma_y kappa
00 02 04 06 08 1.0 00 02 04 06 08 1.0 00 02 04 06 08 1.0
sigma_p phi_p phi_y

00 02 04 06 08 1.0 1.0 1.5 2.0 25 3.0 00 02 04 06 08 1.0
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Figure B.2: Results of Simulations: RE<~HSM

tau sigma_y kappa

00 02 04 06 08 1.0 00 02 04 06 08 1.0 00 02 04 06 08 1:0
sigma_p phi_p phi_y

00 02 04 06 08 1.0 1.0 1.5 2.0 25 3:0 00 02 04 06 08 10
rho gamma eta

00 02 04 06 08 1.0 0 2 4 6 8 10 00 02 04 06 08 1.0

When reading the assessment of the probability of type I error in Chapter 4,
one might wonder whether the differences between J75M and J®¥ are stable
across different random seeds. Figure B.3 depicts the distributions of both
absolute and relative differences between J75 and J#¥ when the pseudo-true
model is RE.

Finally, Figure B.4 depicts the same for type II error, that is, the distri-
butions of differences between J&F and J#5M when the pseudo-true model is
HSM.
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Figure B.3: Results of Simulations: Difference Between Fitness Mea-
sures for Type I Error

absolute difference relative difference

Figure B.4: Results of Simulations: Difference Between Fitness Mea-
sures for Type II Error

absolute difference relative difference

100 150 200 250



Appendix C

Results Figures

This appendix includes supplementary graphical materials for Chapter 5.
First, Figure C.1 depicts the macroeconomic data before the application of
the Hodrick-Prescott filter.

Figure C.1: Empirical Time Series

15% —

ST <

10% —

5% —

0% —

5% (—

1970Q4 1980Q4 1990Q4 2000Q4 2010Q4 2017Q4



C. Results Figures

VIII

Table C.1: Results of the Estimation With a Binding Constraint

Parameter HSM RE

T 0.35 0.04
<0, 1>

oy 0.28 1.00
<0, 1>

K 0.04 0.00
<0, 1>

Ox 0.03 0.69
<0, 1>

o 2.15 1.58
<1, 3>

Oy 0.46 0.22
<0, 1>

p 0.04 -
<0, 1>

~ 9.69 -
<0, 10>

n 0.53 -
<0, 1>

J 6.45 137.16

Next, Table C.1 presents the results of the very first estimation of the

models, when the upper bound of the search range for o, is binding.



fractions for HSM.
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Figure C.3: An Example of HSM Explosion (¢, = 0.00) — Population
Fractions
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Related to the analysis illustrated in Figure 5.3, Figure C.3 shows the de-

velopment of population fractions over time for the realization with ¢, = 0.00.
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Figure C.4: An Example of HSM Oscillation (¢, = 1.20) — a Deeper
Look
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When looking at Figure 5.6, one might be curious how exactly do the

macroeconomic variables oscillate. Figure C.4 provides an answer.
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Figure C.5: An Example of HSM Oscillation (¢, = 1.20) — a Deeper
Look at the Population Fractions
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Finally, Figure C.5 shows the population fractions counterpart of the above.
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