**Abstract** 

Lot of attention is paid to biological control agents of plant pathogens as it will reduce the

amount of pesticides used in agriculture. Pythium oligandrum oomycete is already used

commercially in the form of watering and spraying. In this work the properties of other

isolates were characterized, and the metabolic changes were studied in plants of oilseed rape

(Brassica napus subsp. Oleifera), whose seeds were treated with preparates based on

Pythium oligandrum.

In the first part of the thesis the properties of compounds secreted by isolates of *Pythium* 

oligandrum were tested. The amount of phenolic substances and the activity of

endoglycosidase endo-β-1,3-glucanase, cellulase, chitinase as well as proteases were

measured to assess the ability of oomycete Pythium oligandrum mycoparasitically protect

the plant. Substances, especially oligandrin, which during interaction with the plant are

responsible for "priming", have been observed, enabling the plant to respond rapidly to

pathogen infection through systemic plant resistance. Differences between individual

isolates also manifested themselves in electrophoretic separation in the protein

representation.

In the second part of the work, the effect of rapeseed seed treatment with isolates of *Pythium* 

oligandrum on plant metabolism was monitored. While many properties of rapeseed plants

were not affected, the effect of the treatment was manifested in the activity of NADP

dependent dehydrogenases, namely shikimate dehydrogenase, which is involved in the

synthesis of aromatic amino acids and phenolic substances. The number of phenolic

compounds, the activity of some antioxidant enzymes such as superoxide dismutase and

peroxidases were increased compared to untreated plants control.

With a narrower selection of isolates, the effect of seed treatment on plant metabolism after

exposure to the pathogen Verticillium longisporum was measured. Metabolic differences

were manifested in the activity of both antioxidant enzymes and glycosidase.

(In Czech)

Key words: biological control agents, *Pythium oligandrum*, rapeseed