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Abstract:  Nanoelectronics and spintronics are concerned with writing, trans-
porting, and reading information stored in electronic charge and spin degrees of
freedom at the nanoscale. Past few years have shown that two spintronics effects
discovered in the 19th century, namely anisotropic magnetoresistance and anoma-
lous Hall effect, can be used also for sensing antiferromagnetism which opened
the field of antiferromagnetic spintronics. The more than a century of controver-
sial studies of these effects have shown their relativistic spin-orbit coupling and
spin-polarisation symmetry breaking origin. However, a complete understanding
of these effects and a fully predictive theory capable of identifying novel suitable
antiferromagnetic materials are still lacking.

Here, by extending modern symmetry and topology concepts in condensed matter
physics, we have further developed the theory of anisotropic magnetoresistance
and spontaneous Hall effect. Our approach is based on magnetic symmetry and
topology analysis of antiferromagnetic energy bands, Bloch spectral functions,
and Berry curvatures calculated from the state-of-the-art first-principle theory.
This guided us to the prediction of two novel, previously unanticipated effects:
relativistic metal-insulator transition from antiferromagnetic Dirac fermions, and
crystal Hall effect from collinear antiferromagnetism. Signatures of both effects
have been already observed, in collaboration with experimentalists, in MnyAu and
RuOs thin films. Our results have contributed to the emergence of the field of
topological antiferromagnetic spintronics. The field promises to provide unprece-
dented insights into many different physics problems, ranging from dissipationless
currents to axion dark matter detection.
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Introduction

“Just knowing the correct laws of quantum mechanics does not mean that we un-
derstand all the strange phenomena that it allows”

Duncan Haldane

Dutch tulips bulbs, the dot-com bubble, rise of personal computing or bitcoin
prices are a few historical examples of black swans. Effects hardly predictable but
of magnificent influence characteristic for a typical exponential rise and fall of its
value over a certain period as described by Nassim Nicholas Taleb [1]. This thesis
is devoted to the investigation of novel topological magnetic phases of matter
exhibiting black swans in magnetotransport effects in the emergining field of
topological antiferromagnetic spintronics. Here topology refers to robust physical
properties preserved under continuous deformations of the parameter space of
the system. Antiferromagnetism describes an order magnetically modulated on
the atomic scale with zero or negligible net magnetization, as firstly foreseen by
Louis Néel [2]. Finally, spintronics studies the spin generation, transport, and
detection aiming at a new type of nanoelectronic devices [3]. We will show in this
text that antiferromagnets represent a favourable class of materials in topological
spintronics research [Smejkal et al., 2018].

We will focus on two effects - relativistic metal-insulator transition (RMIT)|in
Dirac quasiparticle antiferromagnets [émejkal et al., 2017b), émejkal et al., 2018,
and spontaneous [crystal Hall effect (CHE)| from collinear antiferromagnetism
[émejkal et al., 2019]. Both effects are characterized by an unexpectedly large
magnitude and by spikes in dependencies of the effects on the Néel vector orien-
tation. This opens attractive prospects for both fundamental types of research
of magnetic topological phases and nanoelectronic applications. The RMIT and
associated gigantic intrinsic [anisotropic magnetoresistance (AMR)[ can revolu-
tionize magnetic storage with the possibility of smaller devices, and thus im-
proved integration, and faster readout [émejkal and Jungwirth, 2018]. The CHE
[Smejkal et al., 2019] or Dirac fermions in magnets [Smejkal et al., 2017a] repre-
sent, possible routes towards low dissipation electron and spin transport with high
mobility in the next generation of nanoelectronics materials, or building blocks
of quantum transistors [Smejkal et al., 2018].

Last 15 years of research of topological phases of matter focused primarily
on nonmagnetic systems which are less difficult to simulate than their magnetic
counterparts. The Hubbard correlations, often arising in magnetic systems, com-
plicate the calculations and are difficult to determine because of typically many
competing magnetic ground-states. Furthermore, to realise the magnetic topolog-
ical phases of matter, it is necessary to study, instead of 230 crystallographic space
groups, the 1651 |magnetic space group (MSG)E [émejkal and Jungwirth, 2018|.
From the common intuition gained from studies of Dirac quasiparticle systems as
graphene, topological insulators, or 3D Dirac semimetals, our prediction of mag-
netic 3D Dirac semimetals is surprising since ferromagnetism always spin-splits
the bands and thus prevents the required spin degeneracy.

The thesis is divided into four thematic chapters. The first two chapters
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present important symmetry, topology and ab initio theory essentials for the un-
derstanding of the RMIT and CHE. These two chapters illustrate the dichotomy
of relativistic physics manifestation in our effects. First, the magnetic topolog-
ical quasiparticles in energy bands can take an effective form of Dirac or Weyl
quasiparticles NSmeJkal et al. 2017aﬂ known from high energy physics. Second,
the existence of AMR and CHE relies on the [spin-orbit coupling (SOC)| which
originates from the true Dirac equation describing the many-particle electronic
wavefunctions of our materials. Besides the summary of state-of-the-art imple-
mentations and approximations used in our theories and calculations, we include
also our results on antiferromagnetic Kramers theorem, symmetry protection and
classification of antiferromagnetic Dirac fermions, energy band splittings, antifer-
romagnetic tight-binding models, and Bloch spectral formulation of AMR within
the [tight-binding (TB)|[linear muffin tin orbital (LMTO )| formalism.

In the first chapter of the thesis, we will formulate a generalised Kramers
theorem for antiferromagnets ﬂémejkal et al., 2017b|\ and we will discuss mag-
netic symmetries, our analysis of topological properties of wavefunctions, and
our model systems.

In Chapter 2 we present the relativistic [density functional theory (DFT)|
our numerical methods, and computational framework |Ciccarelli et al., 2016,
Bodnar et al., 2018|, [Wagenknecht et al., 2019b, Wagenknecht et al., 2019a]. We
will use it in the latter two chapters to predict material candidates for new mag-
netic topological semimetals and relativistic spintronics effects. We will also
present our Bloch spectral function calculation formalism and we illustrate in
Fig. [1| Bloch spectral function for antiferromagnetic MnsAu alloys.

The third chapter is devoted to our study of the dependence of the longi-

Energy (eV)

Figure 1: A Bloch spec-
tral function in antiferro-
magnetic MnsAu exhibits
a spectral weight redis-
tribution when the Néel
vector is rotated (lower

panels) from being paral-
lel to perpendicular with
respect to the current
(green arrows).  Panels
were adapted from Ref.

[Bodnar et al., 2018§|.




Figure 2: Schematics of Dirac quasiparticles and relativistic metal-insulator
transition in antiferromagnetic orthorhombic CuMnAs. (a) Topological Dirac
semimetal phase for the magnetic moment along the c-crystal axis. (b) Antifer-
romagnetic semiconductor phase for moments along the a-crystal axis. Panels
were adapted from Ref. ﬂémejkal et al., 2018“.

tudinal conductivity on Néel vector orientation in antiferromagnets from first
principles. We start our discussion by identifying antiferromagnetic Dirac quasi-
particles in orthorhombic CuMnAs Némejkal et al., 2017b|\. We show that the
symmetry sensitivity to the Néel vector N orientation allows us to switch on and
off Dirac quasiparticle masses, as can be seen from the simplified exemplar band
dispersion:

hUF

E(k) = :I:thJ k2 + k2 + k2 + <@> : (1)

where vp is the Fermi velocity, K = q — qo is the crystal momentum measured
from the Dirac point at gg, m is the mass (in units of energy). Such an electronic
structure exhibits RMIT from the Dirac semimetal state to the semiconductor
state with a global bandgap as we show in Fig. a) and (b). The associated
huge changes in the conductivity correspond to the ultimate, topological intrinsic
limit of AMR. In the second part of the third chapter, we present our first prin-
ciple calculations of the angular dependence of AMR in ferromagnetic NiMnSb
establishing the strong crystalline and small non-crystalline AMR contributions
|Ciccarelli et al., 2016]. The final part of the chapter is devoted to the first princi-
ple study of AMR in a P7T (combination of spatial inversion P and time reversal
T) symmetric antiferromagnet MnyAu. We show that the dominating contribu-
tion to AMR is from a redistribution of the Bloch spectral function linked to
the changes of the electronic structure close to the avoided Dirac crossings (see
Fig.|l) |[Bodnar et al., 2018§|.

In Chapter 4 we will present our theory of a new type of spontaneous Hall
effect NSmejkal et al., 2019'\. We will classify all possible symmetries of the Hall
vector o:

o=jyxE (2)

which determines the Hall transport plane. Here E is the applied longitudinal
electric field, and jj is the measured transversal Hall current. The Hall vector
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is in conventional ferromagnets oriented typically along the magnetization M as
we illustrate in Fig. [3(a).

In recent years the spontaneous Hall effect was also found in zero net moment
systems with complex non-collinear, non-coplanar or spin liquid magnetism (Ref.
NSmejkal and Jungwirth 2018“ and references therein). Simple collinear antifer-
romagnets, on the other hand, are commonly believed to be prevented from Hall
effects, referring to the intuitive cancellation of the opposite spin channels due
to an effective time-reversal symmetry, as we illustrate in Fig. b) for MnyAu
with the PT symmetry. However, collinear antiferromagnets host many appeal-
ing properties such as robust intrinsic magnetism, high Néel temperature, and
available means of Néel vector reorientation.

o || M on =0 on | N
Q l O ’
o U
(@) (b) ()

Figure 3: Crystal Hall effect from collinear antiferromagnetism. (a)
Anomalous Hall effect from net magnetization in a ferromagnet with a spherical
magnetization density. (b) In antiferromagnets such as MnyAu the anomalous
Hall effect is prohibited by symmetry. (c¢) In antiferromagnets such as RuO, the
low symmetric magnetization densities can generate crystal Hall effect.

We will show in Chapter 4 that certain collinear antiferromagnets with non-

magnetic atoms distributed at low symmetry lattice positions can break required
symmetries to generate a large Hall conductivity parallel (or perpendicular) to
the Néel vector:
We will discuss this crystal Hall effect mechanism and we will identify simple
rules for a non-zero Hall conductivity in antiferromagnets and calculate large
magnitudes in antiferromagnetic RuOy and CoNb3Sg. The Hall conductivities
correspond to a large magnitude of intrinsic emergent relativistic magnetic fields
which can be expressed in terms of geometric topological properties of Bloch
functions, namely the Berry curvatures, as we explain in the first two chapters.
To produce an equally strong deflection of electrons in conventional non-magnetic
systems, we would need an excessive external magnetic field, e.g. ~200 T in the
case of Mn3Ge [].

Generating such a large magnitude of an external magnetic field is unfeasible.
The observation that a perfectly compensated collinear antiferromagnet can host
strong internal fields is remarkable, since other related relativistic effects, such as
canting due to the Dzyaloshinskii-Moriya interaction are usually of a perturbative
relativistic origin and have tiny magnitudes. These strong deflecting fields orig-
inate from the low symmetry magnetization densities shown in Fig. c). Our
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investigation not only sheds new light on symmetry breaking mechanisms and
theory of spontaneous Hall effects in general but provides evidence of our effect
in the RuO, antiferromagnet.

Signatures of both AMR in MnyAu, and CHE in RuO, [5] were confirmed in
magnetotransport experiments[Bodnar et al., 2018]. The spectra obtained from
the photoemission experiments on tetragonal CuMnAs [Veis et al., 2018] are con-
sistent with the electronic correlation strength of approximately 3 eV which can
substantially influence also the Dirac fermions in the orthorhombic CuMnAs. Re-
sults presented in this thesis thus provide compelling evidence that antiferromag-
netism represents a favourable magnetic order for exploring and exploiting novel
and technologically relevant magnetic topological phases of matter and spintron-
ics effects. The antiferromagnetic materials and systems studied in this thesis can
find applications ranging from the building blocks of beyond von-Neumann com-
puter architectures, as neuromorphic computers, to more esoteric fundamental
research of dark matter detection [Marsh et al., 2019]. Results presented in this
thesis contributed to establishing a field of topological antiferromagnetic spintron-
ics [Smejkal et al., 2018].
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1. Topological antiferromagnetic
band theory

"By symmetry we mean the existence of different viewpoints from which the sys-
tem appears the same. It is only slightly overstating the case to say that physics
is the study of symmetry.”

Philip Warren Anderson [6]

Before the 1980s the phases of matter were conventionally classified by the
symmetry breaking paradigm [7]. The discovery of the|quantum Hall effect (QHE)
introduced an additional label, the topological index or Chern number of the elec-
tronic wavefunctions [7, [§]. QHE refers to the quantization of the Hall conductiv-
ity in a quasi-2D electron gas in a strong magnetic field. Topology is concerned
with properties of an object preserved under continuous deformations. The con-
ventional spaces in condensed matter physics are the manifolds which are a subset
of topological spaces [9]. Topology in electronic structure can be associated with
robust quasiparticles in energy bands [10]. For instance, the bandstructure of
the trivial insulator can be continuously deformed to the atomic limit, while this
is impossible with the bands of topological insulators. Avoided and unavoided
band crossings were investigated since the very early days of quantum mechanics
[11], and the critical phases of matter existing at the transition between metallic
and insulating state were discussed already in 1970s [I2]. In part owing to the
predictions of the intrinsic spin Hall effect [13, [14] and experimental discovery
of graphene [15], many different types of Dirac quasiparticles were predicted and
found in non-magnetic systems in the past 15 years: topological insulators [16],
Dirac and Weyl semimetals [17), 18, [19, 20], higher-order degeneracies with no
high-energy physics counterparts [21], or higher-order topological insulators [22],
to name a few. This invasion of topology into physics was recognized by the 2016
Nobel Prize.

The fundamental science exploration of quantized observables and correspond-
ing low dissipation states are driving the search of novel topological phases of
matter. However, the intrinsic magnetic systems are less investigated, partly due
to the complicated nature of the many-particle and relativistic quantum nature of
the (antiferro)magnetic ordering [23] 24]. In this chapter, we focus on the basic
classification of Dirac quasiparticles in antiferromagnetic solids within a single
particle picture. Such a picture can be useful for understanding energy bands,
their topological characterization and associated spin transport effects in itin-
erant antiferromagnets [25, 26], or in antiferromagnets with localised moments
whose bandstructure is possible to describe within + Hubbard correlation
U approximation. Firstly, we will introduce an antiferromagnetic generalisation
of the Kramers theorem [27, 28]. In the second part of this chapter we will
discuss Berry phases [10, 29, [30), BT, 32] and topological characterization of elec-
tronic states [33], 34}, 35, [36], magnetic symmetries [26] and a Dirac quasiparticle
catalogue in antiferromagnets and symmetries of linear response coefficients. In
the last part of the chapter, we will formulate and discuss minimal TB models
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illustrating tunable Dirac quasiparticles in an antiferromagnet, and nodal chains
generating spontaneous Hall conductivity in perfect collinear antiferromagnets.
We will illustrate the role of discrete symmetries (spatial inversion and time re-
versal) in the classification of Dirac quasiparticles and Berry phases on exemplar
band structures. We will show that antiferromagnetism plays a crucial role both
from a fundamental symmetry perspective, as well as from a practical technolog-
ical viewpoint. The former manifests itself, for instance, in the existence of 3D
Dirac antiferromagnets, while 3D Dirac ferromagnetism is prohibited (the energy
bands are Zeeman split). The latter is reflected in the abundance of antiferro-
magnetism in nature when compared to relatively rare ferromagnetism, in the
fast internal THz frequencies of the antiferromagnetic order parameter, robust
intrinsic magnetism, high Néel temperatures and versatility of a wide palate of
reported electronic phases [3| 23] 37,38]. The results presented in this chapter will
be used to understand our fist principle calculations in real materials discussed
in Chapters 3 and 4, namely in CuMnAs, MnyAu, RuOy and CoNbsSe.

1.1 Antiferromagnetic Kramers theorem

Discrete symmetries such as unit-cell and partial unit-cell translation, time rever-
sal, or spatial inversion have profound consequences on electronic structure, the
band splitting, spin polarisations, topological properties of the electronic quasi-
particles, and transport effects.

We start discussing time-reversal 7 which is an operation which reverses direc-
tion of time in our systems. Time-reversal does not change the position operator
#, however, momentum p changes sign under 7. Since T[Z,p|T * = TihT ! =
—[Z,p] = —ih we need to make the time-reversal operator proportional to com-
plex conjugation, in other words antiunitary. In spinless theories, 7 = I, where
K marks complex conjugation operator [32].

We are interested here in spinfull systems. The 7T action on the particles
spin S changes its sign, and we define S = % (0,,0,,0.) with the help of Pauli

matrices:
01 0 —i 1 0
0'1:<10>7 0'2:<i 0), 0'3:<0 _1> (].].)

The spinfull 7 thus acquires an operation rotating the spin, and we use a common
convention for choosing the rotation axis along y axis,

mathcalT = =™K [32]. The square of the operator gives, T2 = ¢~™%  where
we have used Eq. . Rotating twice integer spin particles gives identity, while
rotating twice half-integer spins gives a factor —1. In the half-integer case we can

perform matrix exponentiation [32] to obtain:
T =io,K. (1.2)

We can verify that our operator squares to —1, as can be demonstrated by Dirac’s
belt trick [39].

Wigner [40] demonstrated that the time-reversal symmetry enforces Kramers
theorem [41]: In systems with an odd number of half-integer spin particles, the
enerqgy levels are at least double degenerate. The proof can be found elsewhere
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[32], and we will focus now on band-degeneracies in Brillouin zones of magnetic
periodic solids which can be labelled by the quantum number: crystal momentum
k. The electronic states in periodic crystal are assigned Bloch wavefunctions,
modulated plane waves delocalised in real space:

Uk = €F Ui (), (1.3)

where we have introduced the band index n, and the lattice-periodic wavefunction
part:
unk(r) = unk(r + R), (14)

with R being lattice vector. Time reversal changes the sign of the crystal mo-
mentum, the Hamiltonian at k is transformed to the same Hamiltonian at —k
[32] and we obtain for energy:

TE..(k)=FE, (k). (1.5)

The Hamiltonian is invariant under 7 at specific points in the Brillouin zone, the
so called [time-reversal invariant momentum (TRIM)| which we denote G/2, e.g.,
(0,0,0), (m,0,0), ..., (m,m,m) [42]. The corresponding states have thus in time-
reversal invariant system the same energy due to the Kramers theorem.

Is there a way how to make states Kramers degenerate for arbitrary crystal
momentum? Can we expect Dirac quasiparticle double degenerate dispersion in
certain solids? The answer is yes and we need to realise that we can get help
from another discrete symmetry: spatial inversion P. P transforms spin, crystal
momentum, and energy bands as:

PE,, (k) = Ep (k). (1.6)

We can combine last equation with Eq. to obtain that in systems with both
P and T symmetries (centrosymmetric non-magnetic systems), energy bands are
Kramers degenerate [32].

Does this mean that we cannot obtain double degenerate bands over the entire
Brillouin zone in magnetic systems? We will show that also certain antiferromag-
netic systems can have double degenerate bands everywhere in the Brillouin zone
and we will formulate a generalised Kramers theorem [27].

Theorem 1: Generalized Kramers.

In antiferromagnetic systems with P o 7 or P and Tt symmetries and
in non-magnetic systems with P and 7 symmetries the energy bands are
Kramers spin degenerate for arbitrary momentum.

Proof. Let us consider a wavefunction 1 with energy Ej. Since P7T is a
symmetry of the Hamiltonian, the two operators commute. Consequently

Hypr = HyPT Y = ExPT Yy = Epoy. (1.7)

This means that the PT transformed state with a wafunction ¢, = PT vy is also
an eigenstate of the Hamiltonian. P7 is antiunitary, (PT)2 = —1 making the

PT partner states,
(ks 10) = (PT b1es PTx) = (PT)” (dn, V) = — (ke V), (1.8)
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Figure 1.1: Antiferromagnetic Kramers theorem. (a) Ferromagnetic exchange
field J splits spin-degenerate bands and prevents Kramers theorem. (b) The ef-
fective time-reversal symmetry connecting the antiferromagnetic sublattices can
protect the Kramers theorem. (c) Example of an antiferromagnetic crystal with
combined time reversal and spatial inversion symmetry P7T - orthorhombic CuM-
nAs. We number also the Mn atoms and we include the Wyckoff positions labels.

orthogonal, i.e. (¢, 1) = 0, where (,) denotes scalar product. ¢, and ¥y
are thus degenerate states and the spectrum of the P7T symmetric Hamiltonian
is doubly degenerate for a generic crystal momentum. The theorem is proven
analogically for the case of the P and Tt symmetry, q.e.d.

Our theorem proves useful in analysing magnetic topological phases of matter
since it represents a necessary ingredient for forming a Dirac fermion dispersion
in antiferromagnets which we will discuss in the third section of this chapter.

1.2 Berry phases

Before turning our attention to the crystal momentum space we will briefly discuss
geometric and adiabatic character of Berry phases [29, 43, 44]. Let us consider
quantum systems with a Hamiltonian H(A(¢)) where the parameter evolves adi-
abatically with time ¢. The eigenstates at a given instant can be obtained from
the Schrodinger equation:

H(A)[n(A)) = En(A)|n(A)), (1.9)

where n labels again the quantum number. To study phases arising during the
adiabatic motion we assume solutions in the form:

[¥(t) = c(t)e™ " In(1)), (1.10)

where the eigenstate |n(t)) is evaluated at A = A(t). 7,(t) is the conventional
dynamical phase [30]:

() = %/Ot B, (t)dt. (1.11)
14



We substitute the ansatz ((1.10) into the time-dependent Schrodinger equation
and we obtain:

0= ¢(t)|n(t)) + c(t)|n(t)). (1.12)
By applying (n(t)| from the left side of the last equation we get [10]:
c(t) = ic(t) (n(t)]ion(t)) . (1.13)

The last equation has a solution, c(t) = ¢*®, and we have thus obtained the
additional factor called the Berry phase:

o) = [ AL @)t (1.14)

where

A,(t) = (n(t)lidm(1)) (1.15)

is the Berry connection. We can change variables by applying the time-derivative
chain rule on J¢|n(A(t))) to obtain:

At)

o(t) = / A (N, (1.16)
A(0)

where the transformed Berry connection A, (\) = (n(\)|idxn(A)). As long as the

dynamics is adiabatic the Berry phase does not depend on the rate at which the

path was travelled through but instead depends only on the path in the parameter

space, and sometimes is called geometrical phase [10], 32, [45].

In the adiabatic approximation, the Hamiltonian variation with the parame-
ters is small enough such that the Hamiltonian remains in the (non-degenerate)
eigenstate during the evolution. This adiabatic condition for a vanishingly small
probability of the transition of state n into a different state m can be estimated
by the adiabatic perturbation theory (related to the Steinheimer formula[l0]) to
be [45]:

Bl{(m|H|n)| < |Em — Eu|*. (1.17)

Under this assumption, the system returns into its initial state after cyclic evo-
lution in the parameter space.

Stokes theorem. The cyclic Berry phase can be expressed with the help of
the Stokes theorem[46] as:

qs:ngA-dA:/SQstMdsy, (1.18)

where the the second integral is over N dimensional space S with the element
ds, N ds, (the wedge product marks in differential geometry higher-dimensional
generalisation of the vector product in the context of manifolds and form inte-
grations), while the first integral is over the N — 1 dimensional boundary, J.S.
Furthermore, we introduce the Berry curvature:

Q. =0,A, — 0,4, = —2Im (9,n|0,n) (1.19)

as an antisymmetric real second-rank tensor. In three-dimensional parameter
spaces, e.g. crystal momentum, we can take advantage of the pseudovector nota-
tion:

Q=—Im(Vyn| x |Vyn), (1.20)

15



eg. §, = Q, = —2Im(9,n|0yn). This motivates the analogy of the Berry
connection A(A), and Berry curvature (A) with the electromagnetic field vector
potential A(R) and magnetic field B(R) = V x A(R) in real space. While the
potentials (Berry connection) are gauge-dependent, the fields (Berry curvature)
are gauge independent since the V x operations removed it. We will discuss gauge
dependence of the multiband formulation of Berry curvature in the next section
[10].

Berry curvatures and Chern numbers in the crystal mo-
mentum space

So far we have discussed the generic space of parameters A. We will illustrate
now that we can apply this formalism to periodic Brillouin zone wavevectors,
aka crystal momentum torus. The crystal momentum parameter space is unique
since it represents internal parameters of the systems, in contrast to external
parameters such as magnetic fields [31]. The built-in periodicity is very appealing
since a finite Berry phase is accumulated when the state is driven by an external
perturbation (e.g. electric field) to vary through the entire Brillouin zone. Since
inner products of Bloch wavefunctions are ill defined due to the averaging
[10], we will use the well-behaving cell-periodic parts of the Bloch functions
and we will label the states of a solid correspondingly |u,(k)). The Berry phase
of nth band reads:

b = j{An(k) . dk (1.21)

with crystal momentum Berry connection:
Apu(k) = (Unk|iOyung) - (1.22)

The Berry curvature in the crystal momentum space takes the form:

Q (k) = 0,An, (k) — 0,A,,(k) = —21Im (0, unk|Optnk) - (1.23)
We can transform this formula by inserting quantum unity decomposition of the
Hamiltonian, (n'|Vn) = %'Yg"?, to the form

by =1 3 IOHOR ) (0 (OHOR) ) — (v ) (o

n'#n <€n —&n )

This formula is useful in numerical implementations, when we want to circumvent
the numerical derivative of the rapidly oscillating Bloch functions. Instead, we
evaluate in Eq. the derivative of the Hamiltonian.

Chern number. Two-dimensional Brillouin zone has a topology of a torus.
The Berry curvature integrated over a two-dimensional torus takes a 2m quantized
value [10, 33],

/ Qo d®k = 27C,0, (1.25)
BZ

where C,, is a Chern number. This equation represents a specific two-dimensional
case of a general mathematical Chern formula proven in any even dimension [10]

and it is also sometimes called the TKKN formula [33]. The two-dimensional
manifold can be, for instance, a Brillouin zone in the quantum (anomalous) Hall

16



system where the Chern number corresponds to the observable Hall conductiv-
ity [47], or spherical surface around three dimensional sphere surrounding Weyl
points [32, 48]. Chern number is an example of the topological invariant, a quan-
tity which can be ascribed to bandstructure quasiparticles which does not change
upon smooth transformation of the Hamiltonian. Various generalizations of the
Chern number were introduced to describe topological quasiparticles in materi-
als, example being the crystalline Chern number and its analogy can be used
in Dirac quasiparticle antiferromagnets |27, 28] 149, [50]. We have gauge freedom
to transform the Bloch functions as s = € *®uy,, and the Berry connection
depends on the gauge as:

A, (k) = A, (k) + ViB(k). (1.26)

In contrast, Chern numbers are invariant under gauge transformations.
Multiband Berry phase and curvature. So far we have explicitly or im-
plicitly considered isolated energy bands, however, the concept of Berry curvature
and Chern numbers can be straightforwardly generalised to multiband systems
[51L 52, B3, 54]. Multiband cases arise commonly in the metallic system where
the bands can be entangled in a complicated way and we will describe a nu-
merical method to calculate the multiband Berry curvature in antiferromagnetic
metals from first principles in Chapter 2. Multiband Berry curvatures are called
also sometimes nonabelian or noncommutative since the matrices in multiband
cases are not diagonal and do not commute in general and thus form nonabelian
symmetry groups. The Berry connection generalises to the expression [10, [48]:

-Amn,a =1 (umk ]8a| Unk> . (127)

The corresponding multiband Berry curvature can be written in the covariant
form [48, 55):

an,w/ = an,/u/ —1 [A/m AV] (128)

mn
where:

an,,uu(k) = a,uAmn,V(k) - aVAmn7M<k)

1.29

By a covariant form we mean here that the Berry curvature is in gauge-covariant
form as it was in the single band case. This property is not recovered for the
naive generalisation of the single band Berry curvature given by Eq. . This
procedure is required since the physical quantities of interest which we calculate
from the Berry curvature ought to be gauge-invariant [10].

The observable quantities which can be expressed in terms of Berry phases
and also can take quantized values are e.g. polarization, Hall conductivity, and
magnetoelectric polarisability [22]. The Hall conductivity can be expressed in the
differential geometry form [33] 54, [56]:

62

Oy = ———
m orh JBz

Tr[dA+iA N A, (1.30)
where A refers to the Berry connection, for the sake of brevity we have dropped
the momentum and band indices, and the integral is taken over the entire Brillouin
zone (BZ). We will describe the numerical calculation of the Hall conductivity
from first principles in Chapter 2.
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The diagonal part of the magnetoelectric polarisability tensor [35, 57] is called
in axion electrodynamics 6. It can be expressed in terms of the Berry connection:

62

= ———— T
4th JBZ g

A/\dA+%A/\A/\A , (1.31)

where the trace is taken over occupied states. 6 can be taken as defining property
of topological non-magnetic insulators, where it takes a § = 7 value in contrast to
trivial non-magnetic insulators with # = 0. We use this parameter to characterize
Dirac quasiparticle antiferromagnets useful for axion dark matter detection [58,
59, [60] and it defines the topological magnetoelectric effect and static magnetic
axion insulators [61].

(@) i : : :(C)
K M K
k:‘!
| o : i (@)
kg

Figure 1.2: Symmetries of Berry curvature in the crystal momentum space. (a) 7T
preserved and P broken. The Berry curvature is locally nonzero while its Brillouin
zone integral vanishes. (b) 7 broken and P preserved. (c¢) Both 7 and P broken.
(d) As in (c), additionally the system exhibits an integer Chern number and a
quantized Hall conductivity. In the middle inset we show the Brillouin zone of
the Haldane honeycomb model used for the Berry curvature plots and described
in details in the TB model section.

The Berry curvature pseudovector transforms identically as a spin vector and
depends on the magnetic point group (MPG)| symmetries and we can list useful
properties:

1. The Berry curvature is odd under time-reversal:
TQk) = —Q(—k), (1.32)

and thus in the time-reversal symmetric system the integrals over the Berry
curvature vanish, as can be seen from Semenoff model of graphene with its
Berry curvature shown in Fig. [[.2[a).
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2. The spatial inversion symmetry transforms Berry curvature as:
PQk) = Q(—k), (1.33)

and we illustrate this Berry curvature property on the centrosymmetric
Haldane model [62] in Fig. [1.2|b).

3. If both P and T, or more generally only the combined PoT are present, the
Berry curvature vanishes identically. Exemplar systems include the Dirac
quasiparticle antiferromagnets (CuMnAs, MnsAu).

4. The spatial unitary and antiunitary symmetries operate as [63]:

(_Qxa va _Qz>(k27 _kya kz>7

(_Qxa Qy> _Qz)<_k:m kyv _kz)a

(_Q:va Qy7 Qz)(kxv _ky> _kz>7

(=%, Qy, ) (ko by, k2.

Analogical symmetry transformations can be obtained for symmetries de-
rived from the three-fold, four-fold and six-fold rotations [63].

In Fig. (C—d) we demonstrate a Haldane model with broken both P and
T and preserved three-fold rotation. While panel (c) illustrates a Chern number
equal to zero, panel (d) corresponds to a nonzero Chern number and a quantum
anomalous Hall state, as we will explore in greater detail in Section 1.5 on TB
models.

Numerical evaluation. Numerically we will evaluate Berry curvatures on
finite meshes and thus let us consider state vectors |u,) discretized along the
closed loop. Berry phase can be written as:

¢ = —Imln [(ugluy) (ui|ug) ... (un—1|ug)] (1.34)

Here we use the expression for a phase of a complex number [10] and we consider N
state vectors (u;_1|u;) with i = 0,..., N—1. We can rotate for each state vector its
phase, perform gauge transformations, and since expression contains always
a pair of bra and ket, the local phase factors out and do not affect the value of
the Berry phase. This illustrates that the Berry phase measures how the relative
phase (u;_1|u;) varies along the loop. The Berry phase has also an interpretation
in differential geometry as an anholonomy angle, loosely corresponding to the
choice of the local basis aligned as possible with its neighbours [10], 45].

The expression used in numerical calculations on minimal models [64] can be
obtained from the discretized formula:

¢ =—> Imlndet MPAit) = —TmIn ] det M Aohivn), (1.35)

where M is N, x N, matrix:

MAiAirr) — <u(Ai)

mn m

uee)) (1.36)

where A are closely spaced discretized points in the parameter space. The Berry
phase is calculated around each small plaquette with vertices A;.

19



The continuous limit of the discretized formula can be also used to illustrate
the interference nature of the Berry phase and its short memory. We can take

continuous limit as:
d|U)\>
AN—AL 4L
(\w>+ ) + )

=1In (14 dX (ux|Oxur) + -+ )
= d\ (u)|O\uy) + - -

In <U)\|U)\+d)\> =In <U)\
(1.37)

where in the last equality we neglect terms higher than second-order in dA. We
obtain

gb = — Im?{ <uk|8,\u,\> d\ = % (u,\|8,\iu,\> d)\, (138)

where we have used the fact that the integrand in the first equality is purely
imaginary and corresponds to the Berry connection (potential). By considering
only lower order terms in the adiabatic perturbation theory, the time evolved
eigenstates have short memory of the path in history [I0]. Despite the common
intuition prevailing till the 1980s that in quantum mechanics only probabilities
and thus squares of wavefunctions matter and not the phases, the latter can be
important in interference phenomena. An example of such a coherence effect is the
Berry phase arising from spin-split energy bands in the crystal momentum space
in magnetic solids which produces an intrinsic contribution to the spontaneous
Hall effect [51], [65]. We will investigate an unanticipated symmetry breaking
mechanism, the crystal Hall effect, and evaluate its Berry phase contribution in
Chapter 4.

1.3 Magnetic symmetry groups and classifica-
tion of Dirac quasiparticles

Introduction of the antiunitary, time-reversal operator T leads to the four types
of [26]. The ordinary 230 (Type I, colourless) space groups are labelled
by G. In addition, we have three new types of MSG. The type II MSGs (grey) is
defined by:

Gg=6+T7G. (1.39)

The type-II MSG is thus obtained by adding the 7 operation to the type-I sym-
metry group and we have thus also 230 of them.
A type III, black-and-white MSGs is constructed as:

MU =H+T(G-H), (1.40)

where H is a halving subgroup of G and ¢ — H contains no pure translations.
There is in total of 674 MSGs of type-III. The type-IIT MSGs have the same
size of the Brillouin zone in the non-magnetic and magnetic state and all the
important real materials studied in this thesis belong to this class. We illustrate
an example of P7T symmetric antiferromagnetic tetragonal crystal CuMnAs in
Fig. [1.3|a).

The last, fourth type of MSGs is based on black-and-white Bravais lattices.
The black-and-white lattice is formed by introducing a second lattice site gener-
ated by the combination of nontrivial translation t and time reversal 7 operations.
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Example is EuCdyAss antiferromagnet shown in Fig. b) with t = (0,0, %)
The definition of the type-IV MSG is:

MY =G+ T{E|t}G, (1.41)

where £ is an identity operator. The total of 517 MSGs of type-IV can be con-
structed by taking all the 32 grey point groups and combining them with 36
black-and-white Bravais lattices. Clearly, type IV MPGs do not allow for un-
compensated moments since each moment on black sublattice is by definition
compensated by the moment on the white sublattice. Consequently, ferromag-
netism, ferrimagnetism, but also spontaneous Hall effect are prohibited in the
type-IV MPGs.

Out of 230 conventional space groups, there are 157 non-symmorphic ones
(spatial operations coupled with partial unit cell translation, e.g. screw rotation).
Furthermore, there are 65 Sohncke groups with no improper rotations which are
found in chiral crystal structures, out of which 22 groups are itself chiral (11
enantiomorphic pairs) [66].

(1) (1V)

S,
s | H
| PT L2
TG —H) Ma
G

g M G

Figure 1.3: Schematics of magnetic symmetry groups of type I, II, III, and IV
derived from non-magnetic centrosymetric systems. We mark the important sym-
metry relations, S marks screw rotation, M marks mirror plane. (a) Tetrago-
nal crystal of CuMnAs in the non-magnetic and antiferromagnetic phase. The
antiferromagnetic phase hosts a type-I1I magnetic space group. (b) Crystal of
EuCdsAs, in the non-magnetic and antiferromagnetic state. The magnetic space
group is of type-IV, and the unit cell is doubled.

We use here the BNS (Belov-Nerenova-Smirnova) notation, e.g. Pn'm/a.
Within this notation, the conventional Hermann-Mauguin space groups labelling

21



is extended by two symbols. First, a prime remarks antiunitary operation, e.g.,
m' refers to mirror plane combined with time reversal. Second, the potential
subscripts indicate the magnetic Bravais lattice in the type-IV MSGs. Formally,
the band degeneracies can be obtained by analysing little groups in crystal mo-
mentum space defined as:

Gr = {9 € Glgk = k}. (1.42)

Here the crystal momentum vector is defined modulo reciprocal lattice vector and
the translation acts trivially in momentum space. We find a n-fold degeneracy
if the little group irreducible corepresentation at given k is n-dimensional. Irre-
ducible means that the representation cannot be further decomposed into a direct
sum of representations. Corepresentation refers to a group representation with
antiunitary elements. The non-magnetic degeneracies can be found by using the
Bilbao Crystallographic server and were recently enumerated [21]. Because of the
additional crystalline symmetries, solids can host higher-order degeneracies not
available in high energy physics, e.g. 3, 6, and 8-fold degeneracies.

The magnetic degeneracies can be found by analysing the tables [67] of re-
maining 1191 MSGs of type-III and IV as described in Ref.[24]. For the type-111
MSG MM also the corresponding G, G’, and H poses the same Brillouin zone,
and G’ has more symmetries than G. One can scan tables of type-III MPGs with
the numerical index starting with the non-magnetic G’ symmetry groups with
degeneracies. Instead of 3-, 6-, and 8-fold degeneracies listed in [24], we focus
here on type-III MSGs and 2-fold (Weyl), or 4-fold (Dirac) quasiparticles which
seem to be more common in spin-orbit torque (tetragonality) or spontaneous Hall
effect (low symmetry) systems.

When we strip partial unit cell translation we obtain which are useful
for obtaining the symmetry of the spatially averaged linear response coefficients,
or Berry curvature. The type-I (colourless) MPGs are the usual point groups
marked G, they do not contain 7 at all, and there are 32 of them. Type-II
(grey) MPGs are the direct product M = G 4+ TEG, where £ is the identity
operator. They contain explicitly 7 and there are 32 of them. Type-III (black
and white) MPGs are constructed as M = G+AG, where A = TR, is antiunitary
symmetry combining time-reversal and crystalline symmetry and does not belong
to G. There exist 58 MPGs of type-III. There are in total 22 MPGs with P, and
22 with PT [68].

The energy bands can be expanded around the band-touching points and
their topological character can be classified based on the ten-fold-way studied
also for random matrices [34, [69]. Analysis of the action of internal symmetries:
chiral X (sublattice symmetry X' H (k)X = —H(k) is not spatial inversion),
time-reversal T, and particle-hole C symmetries leads to the periodic table of
topological insulators with 10 different classes. For our topological antiferromag-
netic spintronics effects are rather relevant time-reversal 7, spatial inversion P,
and crystalline unitary and antiunitary symmetries R and A = TR. We focus
on catalogue and classification in terms of these symmetries.

Dirac quasiparticle classification

Dirac quasiparticle energy bands require P7T invariant solid with two double
degenerate bands separated from the rest of the band structure. When we choose
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T = i0,K (see Section 1.1), we have three possibilities of choosing the P operator:
+79,£7, and £7,, where 7 are Pauli matrices referring to the orbital degree of
freedom, and o are Pauli matrices referring to (pseudo)spin degree of freedom.
In Tab. we derive all PT allowed representations for the basis matrices, and
one can easily check that the listed I' matrices commute with the P7T symmetry
operator.

P Allowed T'; d;(k), ds(k) Realization
70 Ty, 02Ty, OyTy, 0.7y, T, dj(k) = —dj(—k),ds(k) = ds(—k) CuMnAs][28]
7y Tu, Ty, 04Tz, 0yTs, 0.7, dj(k) =d;(—k),ds(k) = ds(—k) Models

+T, Ty, 0Ty, 0uTe, 0yTe, 7> dj(k) = —dj(—k),ds(k) = ds(—k) EuCdaAs,[70]

Table 1.1: We choose T = i0,K allowing the three different representation of
spatial inversion P. d;(k) are coefficients in front of I' matrices in the expansion
of Hamiltonian in Eq. ((1.43)).

The choice of basis has physical meaning in solids. For instance P = 7,
swaps orbitals, and the Pauli matrices ¢ can refer not only to physical spin but
also to pseudospin. An example is a graphene, where the P = 7, swaps the
two orbitals and pseudospin is a sublattice degree of freedom or valley degree
of freedom. The form of P operator also constraints the odd/even character of
expansion coefficients under swapping the direction of the crystal momentum [59).
We see in Tab. that the PT symmetry reduces the number of independent
basis Gamma matrices I' from 16 to 6 (5 excluding unit matrix) [36], and the
corresponding Dirac Hamiltonian can be written as:

H(k) = 25: d;(K)L;, (1.43)

where d;(k) are functions of crystal momentum. This Hamiltonian can be diag-
onalized analytically:

Eu(k) = do(k) + i &2 (k). (1.44)

J
=1

The 3D Dirac quasiparticles are in general massive since it is generically impos-
sible to tune simultaneously five functions d;(k) to zero by varying just three
components of the crystal momentum k. Additional crystalline and magnetic
symmetries can do the job of protecting crossing for us as we will show later on
our models and realistic crystal potentials of CuMnAs in Chapter 3.

Depending on the set of symmetries we can distinguish different types of
massive and massless Dirac quasiparticle in non-magnets and antiferromagnets.
(We emphasize that as we have seen in the Antiferromagnetic Kramers theorem
section 1.1, ferromagnetic 3D Dirac quasiparticles cannot be realised.) We can
group the Dirac quasiparticles based on (i) the type of discrete PT symmetries
depending on the MSG, (ii) the dimensionality and mass of the band crossing
(nodal points vs nodal lines and topological metal vs insulator), and finally (iii)
the stable accidental band-crossing at high symmetry lines, or Kramers band
crossings at TRIMs.
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We start by discussing the first classification. There are 22 out of 122 MPGs
with the P7T symmetry. We distinguish three types of Dirac quasiparticles de-
pending on the type of the MSG operation protecting the Kramers theorem (see
section 1.1 of this chapter) and we list the material candidates in Tab. [L.1]

1. Non-magnetic Dirac quasiparticles. When the system hosts both P
and 7 symmetries it belongs to the Type-II MSG. Examples are the non-
magnetic Dirac semimetals NagBi,or Cd3Asy. Massive Dirac quasiparticles
of this type are also found in BisSes type topological insulators with two-
dimensional massless Dirac surface states.

2. Magnetoelectric antiferromagnetic Dirac quasiparticles. When
both P and 7 symmetries are broken on their own, but their combina-
tion PT is preserved, the system belongs to the Type III MSG, and is also
compatible with magnetoelectric response. Examples are massless Dirac
semimetal CuMnAs [27], or massive dynamical axion insulator candidates,
Fe-doped BiySes [60].

3. Non-symmorphic antiferromagnetic Dirac quasiparticles. For cen-
trosymmetric systems with antiferromagnetic lattices connected via non-
symmorphic Tt symmetry, where t is partial-magnetic-unit cell translation,
we obtain MSG of Type-IV. We show in Fig. [1.3(b) an illustrative antiferro-
magnet EuCdsAs,. Also antiferromagnetic topological insulator MnBisTey
belong to this class.

To ensure the stable accidental band-crossing, the expression under the square
root in Eq. must vanish [36, [71]. We can reduce the number of free func-
tions to three by additional crystalline symmetries, which can further reduce
the number of I' matrices in the Hamiltonian . Depending on additional
symmetries we can obtain distinct topological antiferromagnetic phases:

e Dynamical axion insulator antiferromagnet. If we have broken in-
version and time-reversal symmetries on their own while their combination
is still preserved we can obtain dynamical axion insulator antiferromagnet.
The Hamiltonian can be obtained from the Hamiltonian of BisSes topolog-
ical insulator by introducing Fe doping (which can randomly substitute Bi-
sites [59] and thus preserving on average the PT symmetry) which tends for
certain concentration to order antiferromagnetically. We have shown that
coupling of these Dirac quasiparticles with antiferromagnetic fluctuations
[59] can be useful for the detection of axion dark matter [60].

e (Antiferromagnetic) topological insulator. If we have in addition P
and 7t (or possibly other effective 7 symmetries [72, [73]) preserved on
their own, we can obtain Dirac quasiparticle surface states on a bulk anti-
ferromagnetic insulator |74, [75].

e Dirac semimetal antiferromagnet. Finally, the Néel vector provides in
principle two tunable parameters in the Gamma matrices expansion in ad-
dition to crystal momenta. We can thus expect that for certain orientation
of the Néel vector, the antiferromagnetic systems will host crystalline sym-
metry which will prevent hybridization at the four-fold Dirac crossing. We
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have found minimal model describing this situation and a realistic material
candidate CuMnAs, which we will describe in Chapter 3 of the theses. The
Dirac fermions are in this material protected by the non-symmorphic screw
rotational symmetry.

Energy (1)
o
Energy (1)
o

-1t -1t

-M X M -M X M

Figure 1.4: (a) TRIM type of non-magnetic Dirac semimetal. (b) Accidental
band-touching type of antiferromagnetic Dirac semimetal. (We plot the energy
dispersion of the quasi-2D antiferromagnetic model discussed in Eq. for
J, =0, and 0.8¢.)

Finally, the generic band touching points [36] (and also Dirac points) can be
of the two types: (i) Dirac points at TRIMs, and (ii) accidental band touching
induced Dirac points found along the high symmetry lines invariant under higher-
order or non-symmorphic rotational symmetries. In the case (i) an argument pre-
sented by Young [76] explains the stable crossing. At TRIM, a non-symmorphic
symmetry Rt and P have simultaneous eigenvalues +1 and they commute with
T . Since also {Rt, P} = 0, the degeneracy is four-fold. We illustrate Dirac points
in Fig.[1.4(a) at TRIM £ = X. In the case (ii), the crystalline symmetry prevents
hybridization at some accidental point along the high-symmetry axis (plane) as
we will explain on our model in Section 1.6 of this chapter and on CuMnAs in
Chapter 3 and we illustrate this case in Fig. [L.4(b). The §-BiO, is of type (i)
[77], and 3D |Dirac semimetal (DSM)k NasBi [78] and CdsAs, [79] are of the type
(ii) and are protected by the rotational C3 and C; symmetries, respectively. For
antiferromagnets, the type (ii) case was discussed for model systems [27, [80],
CuMnAs [27, 28], and EuCdaAs, [70], while the type (i) only for model systems
50.

Weyl fermions classification.

Furthermore, we can break P7T symmetry to lift the Kramers degeneracy and
to construct Weyl fermion quasiparticles and Weyl semimetals [20]. WSM is
described by the generalized two-band Weyl Hamiltonian [81], [82]:

J=0e
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where we measure the crystal momenta from the Weyl points, o; (j = 1,2,3)
marks Pauli matrices and oy is unit matrix. Weyl points always come in pairs with
opposite topological charges as can be straightforwardly proven in 1D. For each
quasiparticle with positive momentum there will be corresponding quasiparticle
with negative momentum since the energy dispersion has to match at 1D Brillouin
zone boundary to preserve periodicity. The generalisation to higher dimensions
was proven by Nielsen and Ninomiya [83]. The Weyl points can be stable in 3D
or in 1D, e.g., in the form of edge states in quantum (anomalous) Hall effect
[20]. In 3D the effective Hamiltonian uses all three Pauli matrices and thus any
small perturbation just shifts but not gaps the Weyl point (consider, for instance,
perturbation mo,). The energy dispersion reads:

ex(k)= > kidot | > (Z kidij> =T(k)xU(k). (1.46)

Z:x7y7z J:x7y7z Z:x7y7z

Here T'(k) corresponds to a kinetic term breaking the Lorentz symmetry describ-
ing tilting of the cone, and U(k) can be seen as a potential energy term [84].

cr  C
(a) (b) (c)
3l = 7K
' 0 L
= > =
2 0 2 =
[ [} -3F [0
c f= c
] ] w
_3tk
-JT 0 7T -7 0 T
Crystal momentum (1/a) Crystal momentum (1/a) Crystal momentum (1/a)

Figure 1.5: Catalogue of Weyl fermions. (a) Magnetic Weyl semimetal (7 broken
and P preserved. (b) The same as (a) but with tilted Weyl cones. (c¢) Kramers
Weyl semimetal.

Depending on the symmetry breaking and terms in the Weyl Hamiltonian we
can distinguish several categories. First three categories are mutually exclusive
and are defined by the three types of symmetry breaking, namely only 7 breaking,
only P breaking, and both 7 and P breaking. When the kinetic energy term
T'(k) is not important we call them type-I. Fourth and fifth category represent
alternative dispersion shapes which can be found in all three symmetry types.

1. Magnetic Weyl fermions. With only broken 7T, there exist minimal Weyl
semimetals with only two Weyl cones. In the minimal ferromagnetic Weyl
semimetal shown in Fig[L.5|a), the Hall conductivity is semi-quantized [81],

Oy = ——A, (1.47)

where A = 2|kyy| is the Weyl point separation. The slices of constant k,
between the Weyl points can be seen as 2D quantum anomalous Hall effect

26



(QAHE) states. We will discuss the Haldane model of the QAHE in Section
1.5.

2. Noncentrosymmetric Weyl fermions. In non-magnetic systems with
broken P the Weyl points come (with exception of Kramers-Weyl in next
point) in multiples of four (this is due to the Nielsen-Ninomiya theorem [83]
combined with 7 symmetry). Non-centrosymmetric non-magnetic mono-
pnictides of the TaAs type [85] 80, 87] were shown experimentally as the
first systems to host the Weyl fermions.

3. Generic Weyl fermions. This type showcases systems simultaneously
magnetic and noncentrosymmetric. An example being reported here are
LaCeSi type antiferromagnets [8§].

4. Kramers-Weyl fermions. Weyl points can be found also at TRIMs.
They were originally reported in chiral non-magnetic crystal [89, [90], how-
ever, our symmetry analysis shows that they can be identified also in mag-
netic and centrosymmetric systems. In contrast to standard Weyl points
in centrosymmetric crystals, they do not have to come in four since they
reside at TRIMs. Kramers-Weyl fermions are not energy degenerate what is
promising for the observation of quantized photogalvanic effects [89]. Such
states are characterised by long Fermi arcs (open surface states) and were
suggested to host peculiar negative magnetoresistance [90].

5. Type-II Weyl fermions. Furthermore, the first term in the Weyl equa-
tion can generate tilting of the Weyl cone or modulation by the
quadratic dispersion. When the former is important we talk about type-II
Weyl semimetal with electron-hole pockets. The type-II Weyl semimetals
can host nonlinear (in electric field) Hall effect, e.g. Berry curvature dipole
is nonzero when the Weyl cone is tilted [91], 92].

Despite numerous ab initio predictions [82) 93], the observation of true mag-
netic WSMs is very challenging as the existing candidates are often also strongly
correlated, disordered, and the symmetry breaking is provided by magnetism
which complicated both the experiment and theory. Promising material systems
are kagome ferromagnets [82], or antiferromagnets [94] and other candidates can
be found in Refs.[23, 82, 03].

1.4 Linear response theory and Dirac-Néel an-
tiferomagnets criteria

We start by writing the electrical current response as a series in applied electric

field:
j=cVWE+EcPE + .. (1.48)

where the first term corresponds to the linear response, second term to the
quadratic response (e.g. nonlinear Hall effect or magnetoresistance [91], 95]),
etc.
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Any second rank tensor can be decomposed into part even o (symmetric,
polar) and odd ¢“ (axial, pseudo) under reversal of magnetic field H and spin
ordering S:
ob/*(H,8) £ o?/*(—H, -8)

7 ;
Since the spins can be reversed by the application of time reversal symmetry 7
these components are alternatively called T-symmetric or antisymmetric.

Now we can expand the conductivity tensor into series in applied magnetic
field:

oP/*(H, 8) = (1.49)

0,0 (H,8) = 09(8) + algyk(S)Hk + aW)kl(S)HkHl + . (1.50)

where we fix the spin order S. By using the Onsager relation (4.7) [65] and
decomposition (|1.49)) we can derive the transformation properties of the expansion
coefficients. For instance,

c0(S) — ) (-8) o0 (—8) — c0)(S)

o (8) = HE e = e = —004(=8), (151)
(1)a U,Sly)k(s)Hk ,(Alu)k( S) (—Hx) (1)a
ori(S)Hy = : =\ (—S)H,.. (1.52)

We summarized the derived transformation properties under 7 up to the third
order in the following table, where we also list the number of allowed symmetry
point groups.

T even  Longitudinal of)” (122) HE o\)" (122) QMR o) (122)
T odd  Spontaneous HE a(o)“ (31) LMR a.,” (66) Quad. HE aln;" (66)

zgk

Table 1.2: Transformation properties of Hall and magnetoresistance tensors.
The effects even in T, longitudinal conductivity o ?,)’p, ordinary Hall effect
(HE) ,S,),;a, and quadratic magnetoresistance (QMR) o W,jl” are present in all
magnetic point groups. The effects odd in 7 are called in literature magnetic
and are present only in a subset of MPGs. The spontaneous Hall effect is present

in 31 ferromagnetic point groups, the linear magnetoresistance (LMR) zylz and
(2),a

quadratic Hall effect o;;;)" are present in 66 magneto-piezoelectric point groups.
Now we focus on a specific linear response but we formulate it for two generic
operators, not only for the response of a charge current to an electric field.

Change in the expectation value of an observable A, due a time dependent
perturbation B, can be written within the Kubo linear response theory [96], [97]
as two operator correlation function:

0o B
X (H) = /0 dt /0 d\Tr p(H) A, B,,(t + ih\; H), (1.53)

where p(H) is the density operator for the canonical ensemble [97], the operators
are in Heisenberg picture and H is the magnetic field intensity.

Considering independent electron approximation and zero frequency and zero
temperature leads to an expression [98], 99]:

2 = 1 > Jrk — Fnk <¢nk ‘ > <1/fmk ‘B ‘¢nk>

v
# Vv kn,m Enk — Emk Enk — Emk + ol

(1.54)

28



where fx = f(€nk) is the Fermi distribution function, &,,, and ), are the
eigenvalues and eigenstates of the Hamiltonian and I is the quasiparticle spectral
broadening (scattering rate). We are interested in this theses in effects depending
on the applied electric field to (semi)metallic antiferromagnets. We can thus
choose B; = —ev;, where v; is velocity component due to the applied field, and
formally separate the transport coefficient into two parts [98] 100, [T0T]:

The first part,
) _ _ch 5~ T*Re(nkl Amk) (mk)(v - E),jnk)
X =7 2 (B — er)® + D)[(Br — emi)? + 17

k,n,m

(1.56)

is energy degenerate [98] and dissipative current driven part, and under time-
reversal changes sign when the two operators have different transformation prop-
erties under time-reversal. This part is sometime called Boltzmann-like, and
can be within Green’s functions formalism of longitudinal charge conductivity
expressed by the Kubo-Greenwood formula.
The second part is usually considered in the I' — 0 limit and can be written
as:
an _ Im (nk|A,|mk) (mk|(v - E),|nk)
X;w = —2he Z ( 2
kn#m €nk — emk)

, (1.57)

as is energy non-degenerate [98], nondissipative electric field driven part, which
changes sign under time-reversal if both operators transform under time-reversal
in the same manner. In contrast, the spatial inversion changes sign of both y(,
and YD if the inversion partner eigenvalues of operators A, and B are different.

Since our systems are promising candidates for a novel type of spin conduc-
tivities and staggered |[Néel spin-orbit torque (NSOT)| we summarize the transfor-
mation properties in Tab.

A Y& YU
—ev even (conductivity) odd (anomalous Hall conductivity)
3 {s, v} [101] odd (spin current) even (spin Hall conductivity)

M x VM H (E)[100] odd (field-like torque) even (antidamping-like torque)

Table 1.3: Transformation properties under time-reversal operation of spintronics
response tensors to electric field.

Remarkably, the nonequilibrium steady-state properties can be according to
the linear response theory expressed in terms of solely equilibrium ground state
wavefunctions and operators. This method is thus conveniently implemented
within diverse first-principle [DFT] formalisms. Examples of spintronics quan-
tities of interests hosted in our materials are charge conductivities, anisotropic
magnetoresistance, spontaneous Hall effect, spin Hall effect, magnetic spin Hall
effect, [spin-orbit torque (SOT)|, and [NSOT}

We will use the Kubo-Greenwood formulation to evaluate the longitudinal
conductivity and anisotropic magnetoresistance of our antiferromagnetic Dirac
semimetal model and the disordered antiferromagnets in Chapter 3. The nondis-
sipative part corresponds to the charge Hall conductivity and can be expressed
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in terms of the Berry curvature (cf. (1.24)) and we will use it to calculate the
Berry curvature in nodal chain antiferromagnetic model and in Chapter 4 for the
calculations of the Hall conductivity.

We are now in a position to formulate symmetry criteria allowing for the
simultaneous presence of Dirac quasiparticles and NSOT [27, 102, 103}, 104]. We
can illustrate the serendipitous overlap of symmetry criteria by comparing the

graphene Dirac quasiparticle systems to the tetragonal CuMnAs crystal shown
in Fig. [1.3(a) where the NSOT has been experimentally verified [103].

1. The two-Mn-site primitive cell of CuMnAs favours band crossings and a
semimetallic density of states character. This is analogical to the two-C-
site graphene crystal further discussed in Section 1.5.

2. In the paramagnetic phase, the Kramers degeneracy is guaranteed due to
the 7 and P symmetries of the CuMnAs crystal shown in Fig. (a). In
the AF phase, the AF Kramers theorem applies since the combined P7T
symmetry is preserved, although the 7 symmetry and the P symmetry are
each broken [25], 27, 28] [105].

3. Finally, the combined PT symmetry also provides for the NSOT control of
the antiferromagnetic Néel vector [102, [106]. Furthermore, because the A
and B Mn-sites are non-centrosymmetric, a non-equilibrium spin polariza-
tion ds4 p is generated under the applied electric current. The nonequilib-
rium spin-polarisations are opposite on the opposite sublattices since the
inversion symmetry is broken in the opposite sense, aka the two Mn-sites are
connected by the inversion in the non-magnetic state. This spin-polarisation
can be calculated from the formula In turn, the current-induced non-
equilibrium spin polarization and the equilibrium antiferromagnetic mo-
ments are both staggered and commensurate. The exchange interaction
couples them and the resulting current-induced SOT was shown to effi-
ciently reorient the Néel vector [102] 103} [104].

To further control the Dirac quasiparticle masses we require, in addition,
symmetry dependence on the Néel vector orientation.

e We need at least one orientation of the Néel vector N which prevents hy-
bridization of bands and protects the four-fold degeneracy of Dirac crossings
of two Kramers pair bands. In our case of CuMnAs model, we identified
off-centred mirror symmetry present for N || [100]. In contrast, the Dirac
quasiparticles in graphene are not symmetry protected and the Dirac points
gap in the presence of SOC, producing a quantum spin Hall effect [107].

1.5 Tight-binding method and spin-orbit cou-
pling

models simplify the problem of electronic structure description of the in-
principle infinite Hilbert space to an only very limited number of atomic-like basis
functions corresponding usually to orbitals centred at atoms in the crystal and
usually describing important valence and conduction bands of the system. The
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TB models played an important role in understanding topological insulators and
semimetals since many properties such as Berry phases and Hall conductivities
can be calculated explicitly and transparently for the minimal models. After
introducing the general TB scheme and an example of graphene Haldane TB
model, we will formulate our two topological antiferromagnetic models.

The TB Hamiltonian eigenstates can be expanded as [10]

Pn(r) = Z Chjipj(r —15), (1.58)

where ¢; are atomic-like orbitals, and C,,; are expansion coefficients of the n-th
eigenstate on the orbital labelled by j. We use the shorthand composite index
notation where j = {ar} comprises orbital index v and « labels the basis atoms.
By substituting Eq. into the Schrodinger equation we obtain a matrix
equation for the coefficients:

(H - E,S)C, =0. (1.59)
Here the matrices

Hi; = (@i|H|pj), (1.60)

Sy = {@ile), (1.61)

are the Hamiltonian and overlap matrices of dimensions M x M, where M is the
total number of orbitals in the system. Diagonal elements of H are called site
energies and the off-diagonal terms are hoppings. The hopping terms are usually
truncated at few nearest neighbours, and the overlap matrix is assumed to be unit
matrix and referred to as orthogonal tight-binding. We have thus transformed
the differential Schrodinger equation in a large Hilbert space to a sparse matrix
equation which can be conveniently solved numerically.

To obtain crystal momentum Hamiltonians, we construct Bloch-like basis
states via Fourier transformation. We have gauge freedom in constructing the
states as manifested in multi-sublattice systems. We present here two common
conventions related by a unitary gauge transformation. The first, periodic gauge
convention [10, [64] expands Bloch-like crystal momentum basis functions as:

XF) = ;e"’“'(mm [ (1.62)

and we use the normalization to a single unit cell and the basis is labelled by t;.
The Bloch eigenstates can be expanded in terms of these basis functions:

i) = D2 O X5 ) - (1.63)

The Hamiltonian transformed into the Bloch basis can be obtained from the
following equation:

1 = (HHIG) = 3 eIy (R), (1.69)
R
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In the second, Bloch gauge [10} 64] convention the definitions do not contain
the basis phase factor e’** and we have:

) = e* ™ om;),
R
[ar) = 3 C7* %5), (1.65)

J

HY = (F[HIXY) = Ze““RH

In the periodic gauge, the Hamiltonian is manifestly cell periodic [42],
Hk+G)=H(k), (1.66)

in analogy to cell periodic up(r) functions in Eq. (I.4). This convention is less
common in literature, however, PythTB [64] package implements this one. We
will use in our numerical calculations the periodic gauge since we have seen in the
second section that the cell periodic functions are convenient for the definition
and calculation of the Berry phase. In the Bloch gauge the Hamiltonian is not
periodic and the coefficients are analogical to Bloch functions. The conventions
are related by:

HE = erttgk, (1.67)

Ct = e*N0; . (1.68)
After we choose the convenient gauge, we solve the eigenvalue equation:
H.Cor = B Crg, (1.69)

where Hy is an M x M matrix of elements H k, and (), is a column vector of the
elements C’"k. The eigenvalues can be obtamed from the corresponding secular
equation: det (Hi — En) = 0.

Haldane graphene model We will illustrate the TB method, gauge trans-
formation and basic topological characterization of energy bands on minimal two-
band models of graphene [15] and its Haldane quantum anomalous Hall extension
[62]. We start with the simplest TB honeycomb lattice nearest neighbour Hamil-
tonian describing gra\pﬁhene We choose the graphene unit cell translation vectors

1

a; = (1,0),as = (5, 7) giving rise to the reciprocal lattice unit cell translational

vectors by = (1,0), by = (2, \f) as we show in Fig. a), and inset of Fig.
The unit cell contains two atoms labelled A, and B. e Hamiltonian is thus a
2 X 2 matrix which can be expanded in terms of Pauli matrices and the sublattice
degree of freedom is thus commonly called pseudospin. The nearest neighbour

hopping Hamiltonian in the pseudospin second quantization basis (¢4, cp) reads:
- At
H(r) ==Yty (clej + he.) (1.70)
(ig)
where h.c. stands for the hermitian conjugate term. Each C atom has three

neighbours at relative vectors d;. The Hamiltonian in crystal momentum space
takes the form in the Convention II:

0 3 tetkd cA
H = el N B 1.71
5 (ki) (o a0 ) (0 1)
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Figure 1.6: Haldane graphene magnetic model. (a) Graphene honeycomb crystal
with marked inversion centre P. (b) Centrosymmetric (A = 0) graphene and
Haldane graphene energy bands. (c) Haldane model energy bands in the topo-
logical phase with marked band-inversion (full and empty circles). (d) Haldane
model energy bands in topologically trivial phase. (e) Two counterpropagating
edge state localisation in the ribbon of the graphene crystal (left) and the surface
energy spectrum showing the two counterpropagating edge modes in the bandgap
(right). The surface spectrum corresponds to the topological phase.

This form illustrates that in the chosen basis the Hamiltonian is not in Bloch
periodic form, H(k + G) # H(k). We can transform the Hamiltonian to the
periodic Bloch form by

cg — cpe*®, (1.72)

where &3 connects A — B atoms in Fig. The energy bands can be obtained
analytically:

er(k) = :l:t\/3 + 2cos (\/gk:za) + 4 cos (\/gk:za/Q) cos (3kya/2), (1.73)

and are shown in Fig. [L.6[b) by the full red line.

This simple graphene Hamiltonian does have P = o, (swaps A, and B sites),
T = K (representation when spin-orbit interaction is switched-off), and also
particle-hole symmetry o, H*(—k)o, = —H (k). The Dirac points at K and K’
are protected locally by the P, and T symmetries [32]. Local protection means
that small perturbation shifts Dirac points in momentum space but does not gap
the Dirac points, but the Dirac points are not protected to annihilate with each
other. The Berry phase 7 of the massless Dirac point can be straightforwardly
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estimated by the two-level system Berry phase formula and can be associated with
vorticity [32]. The graphene crystal possesses also threefold rotational symmetry
(U5, which protects the Dirac points globally meaning pins their position at K,
and K'.

We will now illustrate the P and 7 symmetry breaking on energy bands of
Haldane model [62] which we previously discussed in terms of its Berry curvature
maps around Fig. Haldane found, that the Landau levels are not necessar-
ily needed to obtain quantized Hall conductivity. Alternatively, a mechanism of
spontaneously broken time-reversal symmetry in the system is sufficient. He illus-
trated the idea on a model TB Hamiltonian of spinless electrons on the graphene
lattice with two additional terms [17), 62]:

H:HO—FAchcmLtg > ei®elc;. (1.74)
g (@)

The first term is the nearest neighbour hopping in graphene from Eq. (1.70).
The second one is a mass term (see blue dashed line in Fig. [1.6[b)) originating
from inversion symmetry breaking due to the chemical non-equivalence of the two
basis atoms as e.g. in boron nitride crystal and removes the six-fold symmetries
[62]. The final term, is a complex Haldane phase term which breaks time-reversal
symmetry. v;; = sign(dy x dy), = %1, where d; are the bonds along the next-
nearest-neighbour vectors (red and blue arrows in Fig. (a) for ¢ = 7). We see
that the phases are chosen as to be compensated when summed over the whole
unit cell.

The Fourier transformed crystal momentum Hamiltonian can be written in a
compact form as:

Hy, = e(k) + d(k) - o, (1.75)

We list the parametrization:

e(k) =2tycos[cos(k - ay) + cos(k - az) + cos (k- (a1 —az))], (1.76)
di(k) =t (cos(k - k1) +cos(k-a;)+1), (1.77)
dg(kﬁ) = tl (sm(k : CL1> + sin(k: . GQ)) s (178)
ds(k) = A+ 2tysing[sin(k-a;) —sin(k - az) —sin (k- (a; — az))] (1.79)

In order to make first three terms in the Hamiltonian invariant under 7, we have
e(k) = e(—k), di(k) = di(—k), da(k) = —do(—k), and d3(k) = d3(—k). Simi-
larly, to preserve P = o, around the A — B bond centre, we have ¢(k) = ¢(—k),
di(k) = di(-k), da(k) = —da(-k), and d3(k) = —d3(—k). The P symmetry is
broken by the Semenoff mass, e.g. A # 0. Finally, 7 symmetry is broken by
e(k) # 0, when ¢ # 0, 7.

In Fig. [l.6)(c), and (d) we plot the energy bands for a topological and triv-
ial phase. We see that the origin of the band inversion is the interplay of the
Seemenof mass and Haldane terms, and when they are both present the K, and
K’ valleys are not equivalent. The Berry curvature integration is quantized in
the topological phase and gives a Chern number. The topological phase also
hosts two counterpropagating edge state on opposite edges of a ribbon used in
numerical calculation and shown in Fig. [1.6{e). The inversion symmetry break-
ing mass term A shifts the crossing of the counterpropagating edge modes off
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the point Z. Although not discussed in a general context, this conclusion indi-
cates the role of broken both time-reversal and spatial inversion symmetry for
the quantized Hall conductivity and we will use this implication in construct-
ing spontaneous Hall antiferromagnet model in Section 1.7 and we will observe
that the crystal chirality due to the non-centrosymmetricity plays a central role
in symmetry breaking mechanism responsible for the spontaneous Hall effect in
collinear antiferromagnets.

Spin-orbit coupled lattices

(@)

das P,

Figure 1.7: Spin-orbit coupling and symmetries of an antiferromagnetic quasi-
two-dimensional crinkled crystal. (a) Notorious Rashba spin-orbit dispersion and
spin-orbit coupling. (b) Side view with marked P7T symmetry. (c¢) Top view with
spin-orbit fields corresponding to the next-nearest neighbour hoppings on the A
sublattices marked with red arrows.

To facilitate transparent understanding of our topological antiferromagnetic
effects we will construct two crystals with additional TB [SOC|and antiferromag-
netic terms. Antiferromagnetic ordering can originate from various microscopic
mechanism: Anderson superexchange, Hubbard correlations, itinerant electrons,
frustrated magnetic interactions, spin-liquid etc. The mean-field expression can
be derived from the Hubbard term Hy = U ;nin; and we can consider a
collinear staggered on-site term [108]:

—UZ Z me'f ClA—{-U Z mfaf]c“g (180)

it f=zy,2 f=zy,z

[SOC] is a consequence of relativistic effects from the Dirac equation as we
will discuss in Chapter 2. In the energy bands, SOC in combination with local
(global) inversion asymmetry manifests by spin-splitting and local (global) spin-
polarisations. We have listed all the possible spin polarisation symmetries in
Refs.[23] 109] arising from the global or local non-centrosymmetricity which can
be constructed from the Rashba, Dresselhaus, or Weyl symmetry. Rashba cor-
responds to the surface inversion asymmetry and we show typical energy bands
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splitting around TRIM and spin-polarisation in Fig. (a). We note that analog-
ical spin-momentum locking arises at the surfaces of topological insulators [110].
The local inversion asymmetries are producing localised spin-polarisations around
atoms [102, T1T], 1T2] which were shown useful for manipulation of P7T antifer-
romagnets [102, [103]. Dresselhaus corresponds to the bulk inversion asymmetry
and manifests, for instance, in NiMnSb [I09]. Finally, Weyl spin polarisation
arises in Kramers-Weyl-like crossings discussed in Section 1.3.

Effective SOC due to the specific symmetries of crystals with a heavy elements
can be derived from a real space Hamiltonian [42] 113]:

Hsoc(r) = 3 iX(ry — ;) (i x dyy) - ocle; (1.81)

(6,5,k)

In Fig. [l.7(b) we illustrate the construction of spin-orbit fields for the electron
second nearest neighbour hopping (A; — A; or B; — B;). During the hopping the
electron traverses the nearest neighbour atom from the second sublattice. We
have constructed the crystal as two non-centrosymmetric Rashba systems com-
bined into one with opposite sublatices exhibiting opposite inversion symmetry
breaking. In Fig. [1.7(c) we illustrate the spin-orbit fields from this term for the
sake of brevity only for one unit cell and sublattice A. In the finite slab geome-
tries required for the calculation of the edge states or conductance, a discretised
version of the second quantized Hamiltonian can be used:

A
Hgoc = % ZCICH_(;JC — cj»cz-_gx —1 ( ZT»CZ-JF% + c}ci_(;y) + h.c., (1.82)

where 0,, 0, mark shifts by one unit cell in z, y directions. Eq. corresponds
to the Rashba spin-orbit coupling on the A sublattice, for the B sublattice we
obtain term with the same structure but opposite sign. We will formulate in
the next two sections lattice SOC Hamiltonians modelling Dirac quasiparticle
antiferromagnet and spontaneous Hall antiferromagnet.

1.6 Dirac quasiparticle antiferromagnet model

Here we present our Dirac quasiparticle antiferromagnetic model based on our
paper [27]. We show the crystal structure in Fig. [[.§(a) and the Brillouin zone
in Fig. [L.§(b).

Now we construct a minimal model of the tetragonal CuMnAs antiferromag-
netic sublattice. We consider s — d type itinerant TB model with only the Mn
atoms and with one orbital per atom of s symmetry. We start with only a single
layer of the crinkled quasi-2D square crystal shown in Figs. (b,c) by neglect-
ing the coupling between the stacked quasi-2D planes. This is justified since
the distance between the planes is larger than first and second nearest neigh-
bour distances within the quasi-2D plane. The crinkling generates model SOC
term among the second nearest neighbour bonds (inter-sublattice hoppings). In
the real space we construct the Hamiltonian for our crystal. We consider
inter-sublattice A — B hopping ¢ (nearest-neighbour term), intra-sublattice A — A
hopping (second nearest neighbour term), the second-neighbour SOC of magni-
tude A [107], and J,, labels the antiferromagnetic exchange coupling strength. We
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Figure 1.8: Antiferromagnetic Dirac semimetal model. (a) Unit cell with marked
off-centred mirror symmetry. (b) Brillouin zone with marked position of Dirac
points Dy, and Ds. (c¢) Energy bands of the non-magnetic and antiferromagnetic
states with Néel vector along [001] direction. (d) Energy bands for the Néel vector
along [100] and [010] directions.

use the gauge convention I (Eq. (1.62f)) and we transform the real space second
quantized Hamiltonian ((1.81)) into the crystal momentum space,

ks k
H = —2t7, cos 5 Cos ?y — t'(cos ky + cosky) +

AT, (0ysink, — o, sink,) + 7.J,0 - N, (1.83)

where the wavevector k,(,) is in units of the inverse lattice constant. 7 and o
are Pauli matrices describing the orbital site A/B and spin degrees of freedom,
respectively. As we have seen earlier in Eq. the 4 x 4 Dirac Hamiltonian
can be diagonalized analytically,

k, k

By = —t'(cosk, + cosk,) + [4t* cos® 5 cos? Ey +
(JuN, — Asink,)? + (J,N, + Asink,)? + JAN?]V/2. (1.84)
We plot in Fig. c) the energy bands measured from the Fermi energy for
parameters set as A = 0.8¢, .J,, = 0.6¢, and ¢’ = 0.08¢ and magnetic moment along
the c-crystal axis. For comparison we also plot the bands in the non-magnetic
state (J, = 0) [76].

Our model hosts two Dirac point (DP)g for the Néel vector NJ|[100], as shown
in Fig. [1.§(d). We indicate the two DPs in the first Brillouin zone along the
M — X axis at wave-vectors:

Q. = (7, arcsin %) and Qg = (7, ™ — arcsin %), (1.85)

as we show in Figs. (b,d).

We will now show explicitly that the DPs are protected by an off-centred
mirror line symmetry, M, = {M;A%OO} M, is a combination of the mirror
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symmetry M, along the (100)-plane and the half-unit cell translation along the
[100] axis. We mark the symmetry in Fig.|1.8(a) and the eigenvalues are my = =i.
The hybridization of the Kramers partner bands can be prohibited and the four-
fold degeneracy of the DP is protected by the M, symmetry (as we show in
Fig. |1.4(b)) when [27]:

1. The crossing is located at the Brillouin zone sub-manifold invariant under
Mg, e.g. k., =0,+7 planes.

2. The two Kramers pair bands with the wave-functions ¢ and P71y can be
labelled by the same eigenvalue of M,. We use the commutation relation
of M, and PT to obtain that this condition is met only at k, = +.

3. The two pairs of Kramers partners forming the crossing are assigned the
opposite eigenvalue of M,. We verify this by k - p perturbation theory
expanded around the DPs. Around the @ point in the k, = 7 plane the
dispersion reads:

EQ1+ky,:|: = :thvp’yl{?y, (186)

and the two Kramers pairs follow:

Mbps = MuPT s = Fithps. (1.87)

We illustrated the symmetry eigenvalue assignment to the bands in Fig.[1.4{(b).
Our CuMnAs model exhibits the lowest-order (N-independent) component of
non-equilibrium spin polarisations ds4 g which are staggered and can generate
an efficient field-like dubbed the NSOT [102, [103]. We can define a tensor
corresponding to the even under time-reversal spin-orbit field ds = xy*"*"E (see
Eq. ), where E is applied electric field. Explicitly, the T-even field is (i)

staggered x4 = —x3", and (ii) of Rashba symmetry %% = x@'9; [102} 106]
(12 are spatial indexes). The field allows for the control of the orientation of N
in the (001)-plane in the direction perpendicular to the applied in-plane current.
In Figs. [1.8(b),(d) we see that for N ||[010], the DPs move to the M’ — Y line
and they are protected now by the /T/l; = {My|0%0} symmetry.

Remarkably, since at intermediate in-plane angles there is no symmetry re-
maining which would protect DPs, the entire spectrum is gapped. We show bands

for the transition from N [|[100] to [110] in Fig. [L.9(a,b). This represents RMIT

driven by the Néel vector reorientation. The DP band-gap A(Q;) ~ /1 — cos(¢),
is a continuous function of the in-plane Néel vector angle ¢ measured from the
[100] axis. The transport counterpart of the RMIT is the topological AMR which
we define as,

AMR = [O-(Qb) - O-min]/a-max- (188)

Here o(¢) is the ¢-dependent conductivity with current along the [100] axis and
Omin(max) labels the conductivity minimum (maximum). We calculate the AMR of
our model via standard Boltzmann equation applied for the longitudinal
conductivity [82]. The resulting angular dependence is the plot in Fig. [1.9(c).
High AMR values correspond to ¢ = 0(w/2) with the massless DPs at M — X
(M'—Y). The difference in magnitudes of the AMR at ¢ = 0(7/2) corresponds to
the anisotropic dispersion of the DPs. The spikes in AMR are a distinct feature
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Figure 1.9: Relativistic metal-insulator transition and topological in-
trinsic anisotropic magnetoresistance. (a) Topological Dirac metal to (b)
insulator transition in our minimal model driven by the Néel vector reorienta-
tion from (a) [100] to (b) [110]. (c) Schematics of the corresponding angular
dependence of the topological anisotropic magnetoresistance.

of our topological AMR since the conventional AMR in a magnetic metal exhibits
harmonic angular dependence [I14].

We can generalize our model to 3D by reinstating the couplings between the
quasi-2D planes. Our Hamiltonian is renormalized as:

27, 2B (2 +t. cos k)T, + t. sin k.7, (1.89)
t'(cos ky + cos ky) 2B ¢/ (cos ky + cos k) + t, cos ks, (1.90)
and\ 28 X — A, cos k.. (1.91)

Now M, protects, instead of DPs in 2D, nodal lines in 3D. We obtain equations
describing these lines:

Q3 (7, arcsin W) (1.92)
This formula gives an open nodal line for A, < A\/2, as shown in Fig. [[.10|a,b)
for A, = 0.2t. Note that in our Dirac antiferromagnet model, the nodal lines are
dispersive in contrast to the paramagnetic J,, = 0 model [49]. We have shown in
our paper [27] also energy bands of the realistic material candidate, tetragonal
CuMnAs, where we found nodal lines deep in the Fermi see (about 3 eV below the
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Figure 1.10: Antiferromagnetic Dirac nodal line semimetal model. (a)
Energy bands of the full 3D crystal. (b) The open and closed nodal lines in the
Brillouin zone.

Fermi level). In Chapter 3 we discuss a realistic material candidate - orthorhombic
CuMnAs utilizing the first-principle calculations.

In the following section, we discuss a minimal model of collinear antiferro-
magnetism generating nonzero Hall conductivity.

1.7 Spontaneous Hall and nodal chain antifer-
romagnets

We start to construct our minimal model for spontaneous Hall effect from a body
centred tetragonal lattice with two atoms with opposite magnetic moments and
single s-like orbital per lattice site. This model has a black and white magnetic
point group 4/mmml’ generated by the Teg = Ttap symmetry combining time
reversal with a half-lattice unit cell translation t p = (%%%) connecting the
two sublattices A,B. This symmetry prevents a non-zero Berry curvature and
spontaneous Hall effect. Now (by extending the Haldanes idea [62]) we construct
spin-orbit fields Bgo = A;;jdy on the links connecting the 4, j (A, B) sublattices
in a way to break the effective 7o but preserve the inversion symmetry P as we

show in Fig. [L.11}(a). The real space SOC ([1.81) can be written as:
Hsoc = > Ayjdg - ocle;, (1.93)

ij,k

where the summation is taken over the nearest neighbours ¢, 7 and over all the
spin-orbit fields k& on the bonds connecting them. The corresponding Hamiltonian
in the gauge I in the crystal momentum space,

k., k k.
H(k) = —4tr, cos ~ cos gy cos — +1,J,0 - N +

k., ky +k .k, —k
44\ sin 5 <0:(E;) sin % + ol sin Ty> : (1.94)
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Figure 1.11: Minimal model calculations of a spontaneous Hall effect in
a nodal chain antiferromagnet. (a) A minimal model of a collinear antiferro-
magnetic order (black arrows) and spin-orbit fields (red arrows) corresponding in
rutile structure to the local chirality of the electron hopping on a bond connecting
the nearest neighbour sites of magnetic sublattices. (b) Energy bands calculated
for the Néel vector along the [100]-axis with (full line), and without (dashed line)
spin-orbit coupling. (c) Berry curvature component €2, at the k, = 7 plane (color
plot) and nodal lines in the electronic bands (black lines) for the Néel vector
along the [100]-axis. (d) Same as (c) for the Néel vector along the [110]-axis. The
model parameters are: A = 0.4t J, = 1.7¢.

consists of the first nearest neighbour hopping ¢, the SOC of strength A, and
ag(cfyt) = 0, £ 0. The wavevector k,/,,, is in units of the inverse lattice constant,
and 7 and o are Pauli matrices describing again the crystal sublattice A, B and

spin degrees of freedom, respectively. Our model can be solved analytically:

&ﬂ@:i¢ﬁ+ﬁ+ﬁiJ%E+ﬁM%MUﬂM—%MM,(w@

where
Jio= 4 I+ U2 (1.96)
Ty = 4tcosk,/2cosk,/2cosk,/2, (1.97)
A = 8Asink,/2cosk,/2sink,/2, (1.98)
Aoy = 8Asink,/2sink,/2cosk,/2, (1.99)
A = Apg+idog (1.100)

and we plot in Fig. [1.11{b) the resulting bands for .J,, = 0.6t, and A = 0.8¢ (full
lines), and A = 0.0¢ (dashed lines). While the exchange and jasymmetric spin-|
forbit coupling (ASOC)| (second and third term in Eq. (1.94])) separately do not
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break 7 symmetry; their combination does break the MPG T-symmetry. In turn,
we do not have Kramers theorem and the bands are for generic momentum not
degenerate [82, [105]. As we see in Fig. (b—d) the model is at a half-filling an
antiferromagnetic generalisation of the topological nodal-chain semimetal [115]
protected also by the multiple mirror symmetries present in our model.

For the Néel vector along the [001] axis, the Tt4p symmetry is not anymore
present, however, we have still multiple mirror and rotation point group symme-
tries preventing Hall conductivity. The spontaneous Hall effect is allowed only
when N has a projection to the (001) plane. We show this on the intrinsic Hall
conductivity which we obtained by integrating the Berry curvature in the
crystal momentum space. For N || [100], we obtain non-vanishing integral com-
ponent (k) and we illustrate this in Fig. [I.11]c) showing that [ dk,Q,(k) is
even in k,. The corresponding spin-orbit entangled bands around the nodal-lines
generate a Berry curvature effective field in crystal momentum space akin to an
ordinary magnetic field generated by real space loop currents. The reconfigura-
tion of the nodal-lines between N || [100] and [110] results in a dramatic change
in Berry curvature maps, as shown in Figs. (c,d) and thus we expect a large
anisotropy of the spontaneous Hall effect.

(a) (b)
\ C \ P

O-ZUZ
0.5 0.5 1
=
N 0.0 0.0 0
~
035 0.0 05 %3 0.0 05
ky(2m) k,(2m)

Figure 1.12: Crystal chirality control of Berry curvature. (a-b) Two pos-
sible orientations of spin-orbit fields generated by the non-magnetic (red) atom
interlaced along the bond connecting the two antiferromagnetic sublattices (top).
The corresponding Berry curvature maps (bottom).

We can also give the vector ij a specific material interpretation by referring
to electron hopping along with the nonmagnetic atom along with the bond be-
tween two magnetic sites such as in the rutile RuOs crystal which we will discuss
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in detail in Chapter 4. Here, ij = d; x d;, where d; and d; are unit vectors
connecting two nearest-neighbour Ru atoms with the common interlaced oxygen
atom as we show in Fig.[1.12|(a). Flipping the sign of this "Dzyaloshinskii-Moriya”
vector ij in , and thus the spin-orbit term, corresponds to the transfor-
mation between the two “enantiomorphs” in the crystal shown in Fig. [[.12|(a,b).
The transformation flips also the sign of the spontaneous Hall conductivity and
thus transparently illustrates the possibility to control the Hall conductivity by
the local crystal chirality.

We have also calculated the electronic structure of our model with canted
moments. We have observed only slight renormalization of the bands with a
large Berry curvature contribution around the Fermi level and consequently also
the Berry curvature changes only slightly. This demonstrates that the dominating
contribution in such a canted antiferromagnet is from the antiferromagnetism and
the conventional ferromagnetic anomalous Hall effect is small. We discuss the
spontaneous Hall effect in collinear antiferromagnets in great detail in Chapter 4
[116].

1.8 Summary: catalogue of Dirac quasiparticle
antiferromagnets

In this chapter, we have introduced the basic results of our topologi-
cal antiferromagnetic band theory. We have formulated and proven the
antiferromagnetic generalisation of the Kramers theorem. The antifer-
romagnetic Kramers theorem allows for 3D Dirac quasiparticles in an-
tiferromagnets with effective time-reversal symmetries combining time-
reversal 7 and spatial inversion P. The 3D Dirac quasiparticles are not
compatible with ferromagnetic ordering. We have classified the antifer-
romagnetic Dirac and Weyl quasiparticles based on the 7 and P sym-
metries and their representation revealing two types of antiferromagnetic
Dirac semimetals: magnetoelectric (type-III MSG) and non-symmorphic
(Type-IV MSG). We list the simplified catalogue in following table.

magnetism nonmagnetic antiferromagnetic
symmetries Type IT P,T Typelll PoT  TypelV P, Tt
Topological metal Cd3Asy[79]  CuMnAs [27, 28] EuCdaAse[70]
Topological insulator  BisSes [110] Fe-BiaSes [59)] MnBisTey [117]

We have also formulated symmetry criteria allowing to simultaneously
host Dirac quasiparticles and NSOT. We will discuss the former in greater
detail in Chapter 3 on the realistic material candidate CuMnAs. We have
shown how to use the existing symmetry tables to reveal high symmetry
points and lines in Brillouin zone which can host band degeneracies.

We have discussed also the symmetries of single-band Berry curvature
and its nonabelian extension required for the calculation of Berry curva-
ture in metallic systems. In contrast to single-band Berry curvature, the
multiband generalisation is in general not gauge invariant. However, it

43



can be transformed into the gauge covariant form. We will use this form
in Chapter 4 to evaluate the spontaneous Hall conductivity in antiferro-
magnets. We have also discussed the separation of linear response coef-
ficient into Boltzmann and Berry curvature like formulas. We have seen
that the former picture can be applied to understand anisotropic magne-
toresistance and field-like NSOT in minimal antiferromagnetic models.

Finally, we have discussed the multi-sublattice formulation of the TB
models. We have shown that the Hamiltonian in the crystal momentum
space depends on the gauge choice of the Fourier transformation factors
and for the transport calculations, it is convenient to work in the peri-
odic gauge convention I. We have presented the derivation of spin-orbit
coupled minimal antiferromagnetic model Hamiltonians. We formulated
two such Hamiltonians for two novel effects we predicted in our works.
First, the Dirac quasiparticle antiferromagnet hosting relativistic metal-
insulator transition driven by the reorientation of the Néel vector and
associated with a large, previously unidentified topological contribution
to the anisotropic magnetoresistance [27]. Second, a nodal-chain anti-
ferromagnet hosting a new type of spontaneous Hall effect in perfectly
compensated collinear antiferromagnet [I16]. We will discuss details of
the former in Chapter 3, and of the latter in Chapter 4.
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2. First principle theory of
relativistic antiferromagnets

"Perfection is achieved, not when there is nothing more to add, but when there’s
nothing left to take away.”

Antoine de-Saint Exupery

For topological phases of matter and spintronics transport effects are essential
to understand the consequences of SOC arising from relativistic quantum field
theory. The relativistic quantum description of materials relies in principle on
the calculation of the many-particle wavefunction ¥; of N interacting electrons
with spins. According to quantum theory [30} 118], the measure

\I/g (I'10'17 e ,I'NO'N) \PZ (1'10'1, . 7I'NO'N) dI‘l R dI'N (21)

represents a probability of finding first particle at position r; with spin oy, in
the infinitesimal region dr; around the spatial point ry, and similarly for all the
other particles. Corresponding density matrix describing the mixed quantum
mechanical state is written as [30]:

p(rhol, ... . ryo|rior, ..., rtnoN) (2.2)
=3V, (o, .. o) VS (roq, ..., eNON) :

where n labels state degeneracy. Neglecting spin and looking at single time in-
stant, the complex wavefunction depends on 3N variables. Thus, we obtain a
humongous number of possibilities of choosing complex scalar field per point in
real space 002" (mapping from 0o to co? [I19]). Even just storing a wave-
function table for nitrogen atom with 7 electrons and extremely coarse real-space
grid with only 10 points along a linear dimension we would get 10?* points cor-
responding to 1.5 x 10* tons of 64 GB SD cards [120]. Such a description of a
quantum system is not only unfeasible for simulating realistic materials but is
also unwanted. While various aspects of the richness of the wavefunctions can
be proven useful for quantum computing in future, for us, there can be a lot
of information contained in the many-particle wavefunction which is redundant.
After all, we are rather interested in the observable manifestation of the relativis-
tic quantum effects which can generate useful spin transport and low dissipation
movement of electrons.

Tremendous simplification of this problem, celebrated by the Nobel Prize
in 1998, can be achieved by utilizing [DFT] The central advantage of DFT is
the mapping of the problem of determining the impractically rich many particle
wavefunction to the calculation of a spin density matrix [I121] n,g(r) which is
function of only three spatial coordinates. Furthermore, o, 3 correspond to spin,
and the density matrix can be expressed in terms of effective single particle Kohn-
Sham wavefunctions 1;q:

Nag(r) = Z:: bip(r) s (r). (2:3)

i CiaEF

1=
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From this ground state electronic density we can determine observables of inter-
est, for instance, topological quasiparticles in electronic energy bands, disordered
Bloch spectral functions in alloys, anisotropic magnetoresistance, or spontaneous
Hall conductivity.

In this chapter, we will introduce the main ideas of the relativistic DFT in
antiferromagnetic materials, and its numerical implementation within pseudopo-
tential and methods. Finally, we will describe numerical schemes
employed on supercomputers for calculating intrinsic Hall conductivity within
the Berry curvature approach, and anisotropic magnetoresistance in disordered
alloys within the Kubo-Greenwood framework.

2.1 Relativistic Kohn-Sham-Dirac theory

By employing the Born-Oppenheimer adiabatic approximation we can decouple
the equation of motion for electrons and nuclei [I120]. Since we want to formulate
relativistic and magnetic single-particle Kohn-Sham Hamiltonian, we start with
studying single-particle Dirac equation. The Hamiltonian density of relativistic
quantum field theory of electrons in an external field can be written as [118, [122]:

H(r) =: ' (r) hica -V + Bmc® —ed(r) +ea- A(r)| ¥(r) : +Hext(r).  (2.4)

Here the internal fields described by wavefunctions i (r) are quantized and in-
teract in the radiation part Hey(r) with the classical external fields [123] and
the external classical fields due to the nuclei are neglected, : ... : denotes normal
ordering [122]. The rest mass, reduced Planck constant, and speed of light are
denoted as m, h, and ¢, and the Clifford-algebra structure [I19] of the Dirac
equation is captured by the Dirac matrices in the standard representation [I1§],

where:
a=<2g>,6=<(1) _01>, (2.5)

and we span the 2D subspaces via the Pauli matrices and the unit matrix.

The DFT is based on two Kohn-Sham-Hohenberg theorems. Hohenberg and
Kohn [124] expressed the ground state energy in terms of a functional of the
electron density. Kohn and Sham [I25] then considered the Schrodinger equa-
tion of N noninteracting Kohn Sham electrons and the corresponding density to
uniquely describe the physics of N interacting electrons. We state the usual form
of the two theorems without proofs which can be found in many textbooks, e.g.

[118].

Theorem 2: Hohenberg, and Kohn.

The total ground state energy can be expressed as a unique functional of
the electron density.
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Theorem 3: Kohn, and Sham.

The ground state energy is obtained by minimizing the energy functional
with respect to the electronic density while the number of electrons N is
fixed. The ground state of these N interacting electrons is described by the
N single-particle Kohn Sham equations.

The total energy density in external scalar electric potential ¢ and magnetic
vector potential A can be written as,

Flo.4) = Flo.g + [ @roofe) - - [ @rj(r) - Awr) (2:6)

and can be determined by varying the energy as a functional of the electronic
density, and current density:

o(r) = —e(: YT (r)e(r) 3),
j(r) = —e(: ¥l (r)ay(r) o). (2.7)
During the minimization process the total number of electrons can be formally
included as Lagrange multiplier. We explicitly mark in the equations normal
ordering since otherwise the positron solutions would give unwanted negative
energies.
Finally, F|o, j] marks the Kohn-Sham universal functional

F[Qaj]:’C[Qaj]+UHartree [Q?j]+EXC[Q7j]7 (2'8)

where the K[o, j] is the kinetic energy of the noninteracting Kohn-Sham elec-
trons with the same densities as interacting original electrons, Unariree [0, 7] is the
electron-electron interaction energy within Hartree approximation, and Fy.|o, ]
is the exchange and correlations potential which is in general unknown and needs
to be approximated, e.g. within the [local spin density approximation (LSDA)|

Non-collinear magnetic and electric fields

In the realistic Hall effect and magnetoresistance measurements the crystal is ex-
posed to the external electric and magnetic fields. While the scalar fields can be
treated in straightforward way, in both nonrelativistic and relativistic approxima-
tions, the magnetic field and related orbital moments represent additional formal
complications. The single-particle Kohn-Sham-Dirac equation reads [118]:

(ca- (b — eA™(x)) + Bme® + v (x)) vi(x) = ei(r). (2.9)

Formally, the equation has a form of a single-particle Dirac equation. However, 1);,
e, and v, AT are now effective Kohn-Sham wavefunctions, eigenenergies and ef-
fective potentials, respectively. The effective potentials v*F, A°T are expressed as a
sum of internal and external potentials. In principle, the corresponding exchange
and correlation potential can be solved by relativistic Monte-Carlo methods [11§].
Eqgs. , and are solved self-consistently. By introducing a useful notation
[118] we can write down the energy functional including the external fields as:

EJu(r)] = K [Ju(r)] + G [Ju(r)]

+/ (n(r)v<r) —m(r)-B(r) + J(r) AeXt( ) — iaga(t r) Aext< )) dr. (2.10)
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The last two terms correspond to the diamagnetic effects and are difficult to treat
numerically. Since these effects are often weak, the existing DFT codes usually
neglect these two terms. The resulting expression is taking the form:

(a P+ pme* + v (r) — m(r) - B (r)) vi(r) = sy, (2.11)

with the corresponding electronic and magnetization densities:

n(r) = Z@(r)%(r), (2.12)

m(r) = pup ZM )Boi(r (2.13)
The magnetic density functional can be written also in a compact way as [126]

1 1 n4+m, Mg —imy
p—2(n1+a.m)_2<mx+imy n—m. | (2.14)

Analogously, the electric and magnetic potentials can be decomposed as:

v (r) = v(r) + 1o [ 25 dy! + Exeln)m(],
el o) 5n(r) (2.15)

eff _ ext 5Exc[n(r)

Importantly, the energy functional is now expressed in terms of quantities known
from magnetism and nonrelativistic DFT, which allows us to use the numerical
methods developed for solving the nonrelativistic Kohn-Sham equations. Since
we couple the fields only to the spin of the electrons, this approximation is called
spin-only relativistic DF'T. In Fig. we show an example of charge and magne-
tization densities of a non-collinear antiferromagnet IrMngs, extensively explored
in the spintronics context, calculated in the VASP code. We note that the ap-
proximation tends to fail for systems which are at the present moment not useful
for practical spintronics applications, e.g., f-electron materials or stars with huge
internal magnetic field [127].

The net magnetic moment can be calculated as a sum of the orbital and spin
part:

m(r) ~ —ug(: ¥ (r) Er XV + E] D(r) ). (2.16)

The numerical prefactor has value 5.2 x 1072 in Rydberg atomic units and thus
magnetic effects are small and represent challenges for the numerical evaluations.

We note that we use here the ordering of the spin components up-down-
down-up corresponding to the spin angular momentum operator %757, where =
are Dirac matrices. Alternative references use the basis up-down-up-down, spin
angular momentum operator %7504 and in turn, there is an additional 8 matrix
in front of the magnetic interaction terms.

In calculations of non-collinear magnetic moments, the magnetic part of the
exchange correlation potential can be assumed to point locally along the spin
density: R

B.(r) = $(r) Buspalo(r), S(r). (2.17)
Practically, we will constrain in our calculations the field to point along the
single spin-quantization axis within each atomic sphere. This approximation
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Figure 2.1: Non-collinear antiferromagnetic magnetization density cal-
culated from density functional theory. (a) Unit cell of non-collinear antifer-
romagnet Mnglr. (b) Electronic charge density n(r) generated from the PROCAR
file of VASP code. (b) Corresponding magnetization density m,(r) isosurface.

turns out to work well in magnetic transitional metals and we will adopt here the
approximation. The orbital moment is in these systems quenched, represents only
small correction to the net moment, and will not change qualitative conclusions
obtained from the spin-only LSDA.

Relativistic effects

Relativistic corrections, in the expansion of the fine structure constant of the
kinetic term in Eq. , are represented by the The additional Dar-
win term can be also important, e.g., in the description of band inversion in
topological insulators [I28]. The SOC can be seen as a dynamical kinetic ef-
fect. The SOC correction contributes to the magnetic anisotropies, antisym-
metric [Dzialoshinskiy—Moriya interaction (DMI)| and is a necessary ingredient
of theories of the spontaneous anomalous Hall effect in most magnetic materi-
als (identified so far). In contrast, the relativistic perturbations to the Hartree
term (e.g. the Breit interaction) contribute to the shape anisotropy and dipole-
dipole interactions [I18, [122]. The corrections are in principle present also in the
exchange-correlations terms, however, they tend to be smaller than the errors
originating from the approximation to the functional per se [122].

To study the form of the SOC we can rewrite the four-component bi-spinor
YT = (¢, x) Dirac equation as two coupled spinor equations:

clo-px=(c-V—-mc) o,
clo-p)p= (e =V +mc?)y, (2.18)

where V' marks now the (effective) potential, and p momentum.

To gain additional insight and also derive further approximations (e.g. atomic
sphere approximation) it is convenient to assume a spherically symmetric poten-
tial [121) [123] 129]. We can classify the equations of motions and solutions of the
Dirac equation by crystal momentum (Bloch theorem employing the crystal peri-
odicity) and by the additional quantum numbers. The total angular momentum
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can be written as a sum of the orbital L and spin ¥ part:
1
J=L+ h§§3, (2.19)

where ¥ = o ® 1. In contrast to nonrelativistic (and zero SOC) theory, L and
¥ are not conserved on their own. However, the total angular momentum J?, J,,

and K
([ o-L+h 0
K-( 0 —cr-L—h) (2.20)

commute with the Dirac Hamiltonian in the spherical potential approximation,
have common set of eigenvalues[121]:

—kh,j(j + 1)h? and j.h, (2.21)

and are related as kK = + (j + %), which is a nonzero integer. For x > (<)0 the
spin is parallel (antiparallel) to the total angular momentum in the nonrelativistic
limit. The relativistic notation can be conveniently written as

¢ g(r) Vi
= - o, 2.22
v ( v) T \ir) v (2.22)
where f, and ¢ are standard radial functions known from the radial solutions to
the Schrodinger equation [129]. Furthermore, the Pauli spinors can be combined

with spherical harmonics Y, (m,[ are standard nonrelativistic magnetic and
angular momentum quantum numbers):

: C+j45 11 (Fjet 35, 0
VE z T oy da—1/2 2T 2y dat1/2
Vi =t Vi o |ty Y L) (223

where we used shorthand notation j = ¢ 4 1/2, and the following identities hold:

kK=j+3 thenl=j+ 30 =j—3, (2.2
/i:—(j—i-%) then {=j— 1.0 =j+1. '

In turn the set of Eq. (2.18)) can be written in the radial form as:

hc(jf_(lt@f) — _(g—V—mCQ)g,
hc(i}i%—(ljﬁ_@g) = (6—V—m02)f, (2.25)

where we have used the identity [121]:

(c-1)

o-p=
P 72 r dr

(0 1(op)) = T (-md +io - L) L (2:26)

We are in the position to derive the scalar relativistic approximation [130),
131]. In this approximation the SOC interaction is separated and is included
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variationally or in perturbation theory. We can rewrite the second Eq. (2.25))

as:
_h (dg  (1+k)
= oMo (dr + . g) , (2.27)

where M = m + % generates a mass-velocity correction, e.g., the mass of
the electron increases with its velocity approaching speed of light. We substitute
the last equation into the first Eq. (2.25)) and we proceed with the differentiation:

R* 1.d [ ,dg h? k(k+1)
————— (P2 + |V g,

2M r?dr (7‘ dr 2M 2 g

r?  dV dg R: dV (1 + k) ,
— —_— = —_— =eg.
AMPE dr dr 4M2E Ar 1 Y g
This equation takes the form of the Schrodinger equation with two additional
terms. The last but one term in Eq. (2.28) is the Darwin term, and finally the
last term is the SOC term. The Darwin term does not have classical analogue
and corresponds to the Zitterbewegung, the fluctuations around mean position of
the electron due to the interference between positive and negative energy states.
The scalar relativistic approximation is obtained by dropping the SOC term, and
can be formally solved as Schrodinger equation. The SOC can be added in the
last step of the calculation. The four-component wavefunction is rewritten as

Q; o ( gYLXs )
- s (ox r 1~
1 (T) (_f + QMCT-gO- ' L) YLXS

[131]: )
(ﬁ) (2.29)
1

where y, = < 0 > S X = ( (1) ) Finally, the Dirac Hamiltonian is applied to

(2.28)

the wave function ¢ and we obtain [121]:

A h 1dV (a' . L)]_ ~

where the last term is the spin-orbit interaction. This term measures how much
the relativistic solution differs from the radial scalar relativistic wavefunction ¢
(large component). Technically, the SOC term is computed in the given basis
and is added in the variational process [132]. In nonmagnetic systems, spins are
degenerate and this term lifts this spin degeneracy. However, certain types of
collinear antiferromagnetism may remove this degeneracy already without SOC
as we will see in Chapter 4 in RuO, antiferromagnet and the crystal Hall effect.
The validity of this approximation was discussed by MacDonald [131], and details
within linear methods in band theory were formulated by Andersen [133].

Approximations to potential and wafunctions

Local spin density approximation (LSDA). The exchange correlation poten-
tial is generically unknown, and the (relativistic) Monte-Carlo determination can
represent an overwhelming task. The exchange correlation potential functional
is commonly approximated within the LSDA as a function of the local electronic
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density n(r) [120]:

SELOA oy n_] (r)

vPAE ny n ] (r) = 5na (1) : (2.31)
where
EUSPA [, n ] (r) = / n(r)Exe [y, n_] (r)dPr. (2.32)

The meaning of the approximation is to divide the inhomogeneous electronic gas
into infinitesimal regions approximated to have homogeneous electron gas with
the density n(r). In our TB-LMTO calculations of IrMns and MnyAu alloys, we
use the Vosko-Wilk-Nusair parametrization [134].

Generalised gradient approximation (GGA). LSDA is known to over-
estimate the correlations and underestimate the exchange energy. More accurate
potentials were developed and their proper usage depends on the problem at
hand, they were organized into Jacobs ladder according to their accuracy [135].
For our antiferromagnetic systems, GGA is convenient which expresses the en-
ergy in terms of not only the density but also its gradients Vn(r). Spin-polarised
GGA can be written as [130, [137]:

ESGA[R] = / (1) Exe 04 (r), n_(r), Vo (r), Va_ (1) &r.  (2.33)

We will use the Perdew Burke Erzenhorf (PBE)[137, 138, 139] implementation of
the GGA approximation in the VASP calculations.

Electronic correlations on the DFT+U level. DFT is known to de-
scribe well-delocalised s and p electrons, however, DF'T can fail to describe more
localised d or f orbitals. Furthermore, many antiferromagnetic systems are also
strongly correlated, and certain systems require to stabilise in DFT calculation
the antiferromagnetic order by the inclusion of the Hubbard repulsion U among
the electrons. This problem can be alleviated by adding the Hubbard potential
to the localised orbitals. The total energy within DFT4U is given as [120, [140]:

E[n(r), {n;}] = E*’4n gn,n] Eq4(U, J), (2.34)

where the second term is the Hubbard interaction, n; ; are electron occupancies
of the subspace with correlated orbitals (e.g. of d-type), and the last term is the
double-counting correction depending on the Hubbard U and exchange parameter
J. The last term needs to be subtracted since the on-site interaction energy was
already accounted for in the effective LSDA potential.

Three most used forms of the approximation include fully localised, around-
mean field and spherically symmetric (Dudarev) approach [I41]. We will use for
the RuOs the last approximation, which takes the form:

(2.35)

Ersparu = Eispa + (U—‘] D [(Z n> (Z ngn ﬂ>

We note that the correction now depends only on the difference U — J and con-
siders spherically averaged U, and J.
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While the LSDA works well for itinerant systems with screened correlations,
the DFT+U can describe well systems with strong correlations. In the systems
where the electronic correlation strength is comparable to the bandwidth, the
dynamical mean-field theory (DMFT) and nonlocal extensions were developed
[142]. However, the DMFT in systems with strong SOC suffers from sign problem
in the Monte-Carlo solvers of the corresponding impurity problem. This is at
present an unsolved problem which is NP-hard. This type of problems presumably
requires to invent new mathematical tools as fundamental as the quantum theory
itself. Finally, we remark, the DMFT has interesting common roots with the
CPA method described later in this chapter.

The electronic structure methods can be, besides the type of approximations
to the exchange-correlation potential and relativistic corrections to the momen-
tum, grouped according to the used approximations in the Schrodinger equation
[143]:

e Effective potential form. All electrons (full or spherical potential) -
pseudopotential - structureless jellium.

e Wavefunction approximations. Real space grids - nonlinear methods
(augmented plane waves, Kohn-Korringa-Rostocker scattering and Green
functions) - linear (LMTO) - linear combination of atomic orbitals.

We will discuss later in this chapter the two wavefunction approximations which
we will use in our simulations of topological antiferromagnets: pseudopotential
[projector-augmented-wave (PAW)| and [TBJLMTO] methods. In our papers, we
use also full potential methods such as FLAPW (implemented in FLEUR, and
ELK codes), but we will not discuss these methods here.

2.2 Dirac linear muffin-tin orbitals and Green’s
functions method

A computationally suitable ab initio method for calculations of relativistic spin-
tronics effects in antiferromagnets with heavy elements is the [fully relativistic
Dirac (FRD)YTBHLMTO}atomic sphere approximation (ASA)| in combination
with [coherent potential approximation (CPA)| for the alloying disorder. The
FRD method is sometimes also called spin-polarized Dirac (SPD) [118), 131, [144],
and besides using the spin-only DFT Dirac-Kohn-Sham Hamiltonian, it relies on
several approximations. For details on the general theory and implementation,
we refer to the original works by Andersen [133], Ebert[145], Solovyev, and Schick
[146], 147, 148], and books by Skriver [149] and Turek [I50]. Here we outline the
physics of the approximations relevant to our antiferromagnetic topological rela-
tivistic quantum description of the AMR and spontaneous Hall effect within the
linear response theory.

Linear muffin tin method and atomic sphere approximation. The
muffin tin method partitions the solid into non-overlapping spheres and interstitial
regions (see Fig.[2.2|(a)) and substitutes the interstitial potential by a flat function.
Further simplification is achieved by the [ASA] where the space is filled only by
the slightly overlapping spheres with a Wigner-Seitz radius rg such that the total
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volume of the spheres corresponds to the crystal unit cell volume. In the spin-only
variant, the ASA considers [148]:

1. The effective potential Veg[p, m] by a spherically symmetric potential Vg (r)
within each Wigner-Seitz sphere, and

2. the effective spin-dependent potential Beg as a magnetic field Bgr(r) =
Brng, where B(r) is a spherically symmetric amplitude, and ng is a unit
vector. Without loss of generality we can choose ng = e,, where e, is the
unit vector along the z axis, and simplify the Kohn-Sham-Dirac Hamilto-

nian (Eq.(2.9)):
Hygsp = ca-p+ (6 — L)me® + VE(r) + upX.8B(r). (2.36)
The variational principle for the Schrodinger equation leads to the eigenvalue

equation [I50] [I51]:

where H;; is the Hamiltonian matrix, and O;; is the overlap matrix in the given
basis (recall the TB section in Chapter 1).

Figure 2.2: Crystal partitioning and Euler angles. (a) Linear muffin tin
orbital method and muffin tin radius r,,. (b) Atomic sphere approximations and
Wigner-Seitz radius rws (¢) Euler angles parametrization for magnetic moments.

The trial wavefunctions can be expanded in terms of muffin tin orbital basis
functions y;(r) as

Up(r) = ZCLQDZ(T)YLO”, E)= Z crxe(r), (2.38)

where () are solutions of the spherically symmetric Schrédinger equation, L
is a composite quantum number index, and Y7 (r, E) are spherical harmonics.
Unfortunately, the basis is energy dependent and in turn also the secular equation
for determining eigenvalues is energy dependent, which slows down the numerical
calculation. Andersen suggested to expand the single muffin tin-like potential
xr(e,r) around a reference energyE,, [133] [151]:

xo(r, E) = x1 (r, Ey) + x1 (Ey,7) (E— E,) . (2.39)
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Here y, is the energy derivative of orbital y evaluated at the reference energy
E = E,. The corresponding secular equation takes a form:

det ‘HLL(IC) — €kOLL(k)‘ = 0, (240)

where all the energy eigenvalues €, can be obtained in single diagonalization
which tremendously speeds up the numerical evaluation. The overlap matrices
and Hamiltonian can be expressed [I50] in terms of muffin tin orbitals, single
sphere solutions in terms of spherical harmonics, and TB structure constants
of the systems [I50], and similarly the Hamiltonian matrix. Consequently, the
secular equation can be transformed to form:

in a new orthogonal basis and defines the potential parameters which we list in
the following paragraph.

Relativistic quantum numbers. The Hamiltonian can be conveniently
expressed in terms of TB-LMTO quantities as [148] 150} [152]:

H=C+(VA)S (1-75°) VA (2.42)

Here C, /A and ~ are variables parametrising the potential and are site diagonal,
SO are matrices of the canonical structure constants. For the sake of brevity,
we drop the site index and relativistic quantum numbers A = (ux) (Eq. (2.24))
following the notation of Turek [I50]. Unlike the nonrelativistic and nonmagnetic
standard LMTO method, the C,+v/A and ~ matrices are not diagonal in these
quantum numbers. Otherwise, the form of the Hamiltonian is formally preserved.
We note an additional approximation used for the magnetic version of the
Hamiltonian [I48] which is not commonly discussed. The matrix elements

/N Nl ,,1
{kploK'n'y = dwdue 3 sen(s)CUjg;in =580 gip—s5)  (2.43)

41
s=%3

can be expressed in terms of Clebsch-Gordan coefficients C'. The coupling between
solutions with a different [ is proportional to the magnetic SOC in the form:

1 dB(r
HMSOCN% d7(“)

Usually B(r) (the spherically symmetric amplitude of the effective magnetic field
in Eq. ) might be treated as slowly varying with respect to r, and the mag-
nitude is small of the order of 1/¢? and thus the term is neglected. However
it was noted that this term might contribute importantly to magnetocrystalline
anisotropies and in systems with rapidly varying effective magnetic field. In
certain complicated antiferromagnetic textures the justification of this approxi-
mation remains an open problem.

Green’s functions and relativistic structure constants. The linear re-
sponse Kubo formulas for the transport coefficients can be conveniently expressed
with the help of Green’s functions. The Green’s function (resolvent (z — H)™! of
the Hamiltonian (2.42)) [I53]) within TB-LMTO can be written as:

G(2) = A*(z) + p%(2)g" ()" (2). (2.45)

L-S. (2.44)
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Here the site-diagonal matrices,

A(z) = p*(2)(y — a) [(VA)T]
p(z) = (VA L+ (0 =) P(2)], (2.46)
[ .

are expressed in terms of TB-LMTO (superscript ) screened potential functions:

1

P(z) = [VA(z = C) ' (VA) +7—a] . (2.47)

The auxiliary Green’s function,
9*(2) = [P(z) = 5°] 7, (2.48)
can be written in terms of screened structure constants:
§*=5(1- aSO)_l , (2.49)

where « is site-diagonal matrix of screened constants. The auxiliary Green’s
function is convenient for the numerical treatment and the relation (2.45) was
proven in Appendix of paper by Turek [152].

Coherent potential approximation. [T50, 153], 154, 155, [156], 157] is
a method for calculating Green’s functions of disordered systems. In the context
of electronic structure theory, CPA was proven successful for understanding the
substitutional disorder in alloys, and in recent years also finite temperature effects
from first principles, e.g. magnons, and phonons. We discuss its specific imple-
mentation in our paper [I58]. We will consider random substitutional disorder
which can be described by a random alloy configuration. The configuration is
determined by the occupation numbers, and physical quantities are determined
by the configurational averaging. For a simple physical quantity we can write:

(X)) = Ecjp(C)(fQ(C), (2.50)

where p(C) is the probability of occurrence of the configuration C. A single particle
Hamiltonian, H = Hy 4 U, can be separated into the part with full translational
invariance Hy and the random configuration depend part U with a corresponding
random configurationally averaged Green’s function:

(2) = (G(2)) = 2_p(C)G(2,€). (2.51)

Qb

The disordered Green’s function can be expressed in terms of the self-energy ¥(z)
[157]:

A

G(z) = [1 - Hy—S(2)] . (2.52)
Different approximations for calculating averaged Green’s functions are based on
the approximations to the self-energy. Examples include virtual crystal approx-
imation (used, for instance, in combination with VASP [132]), or self-consistent
Born approximation. Here we describe the CPA which can be derived from the
Dyson equation.
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The Hamiltonian can be decomposed by introducing a self-energy:

A

H = [Hy+%(2)] + [0 - £(2)] (2.53)

and we can rewrite the Green’s function:

A
A fay

G(2) = G(2) + G)[U = B()G(2) = {1 — GR)U — S 'G(2).  (2.54)

We can express the Green’s function with the help of a matrix 7'(z), which is in
the scattering theory known as the T-matrix:

A
A 2

G(2) = G(2) + G(2)T(2)G(2), (2.55)

with

A

T(z) = [U -2 - GR)U -%(=)" (2.56)

By the configurational averaging we obtain an exact condition
(T(z)) =0. (2.57)

Furthermore, we decompose the quantities into the contributions from lattice
sites, U —2(2) = Y r 0r(2), 9r(2) = Ur — Sr(2), and similarly for self-energy.
Soven[154] assumed uncorrelated perturbation potentials vg and vy to arrive at
a condition for the site self-energy[159):

A

([0r — £ (2)] {i — G(2) [Or - Er(2)] }1> 0. (2.58)

We briefly visualise the physical meaning of Soven approximation. Nodal self-
energy contribution defines effective non-random atoms placed on the lattice sites
(e.g. Au atoms placed on Mn site in MnyAu alloys). Real atoms on each site
which randomly substitute the effective atom then generate zero scattering on
average.

The Soven equation gives an iteration recipe for the determination of the CPA
self-energy, and simple examples can be found in Ref. [I59]. The CPA can ad-
vantageously (e.g. in comparison to virtual crystal approximation) describe band
splitting due to the strong disorder. This scenario is reminiscent of the DMFT
description of the metal-insulator transition. For the correlated perturbation
extension of CPA, e.g., cluster CPA was developed.

The CPA can be conveniently implemented within the TB-LMTO framework
[150]. The screened potential functions in the auxiliary Green’s functions
generalise to the coherent potential functions P*(z), and the averaged auxiliary
Green’s function takes the form [150, 152]:

(9°(2)) = 3°(2) = [P*(2) = 5], (2.59)

where P%(z) are site diagonal matrices. The corresponding physical configura-
tionally averaged Green’s function can be written as:

Crr(2) = {(z — H(2)) (2.60)

R,R’
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Figure 2.3: Bloch spectral function calculations in MnyAu alloys. (a) Primitive
unit cell of the antiferromagnetic crystal. (b) Body centred cubic Brillouin zone
cut notation. (c¢) Comparison of energy bands obtained in VASP and TB-LMTO.
(d) Bloch spectral function calculation around avoided band crossing.

where the effective Hamiltonian,

il = Cr(=)on e, A (2) [SOU = 4(2)9) 7] | AR (2), (2.61)
has formally the same structure as in the conventional orthogonal LMTO for-
malism. However, the random potential parameters are substituted by the non-
random and energy dependent complex coherent potential parameters CR(z), OR,
and ¥(z). The coherent potential parameters are again site-diagonal, but are not
diagonal in quantum number indices L, L'.

Bloch spectral function and life-time of quasiparticles. Energy shifts
and electron lifetime can be estimated either from the self-energy function or
from the Bloch spectral function. The latter can be calculated from the configu-
rationally averaged physical Green’s function:

1 _
ABL(’C,E) = —;Im GBL,BL(k7E + ZO), (262)

where B labels the multicomponent atomic basis of the alloy, and L is again a
shorthand composite label of quantum numbers. The analysis can simplify to the
self-energy of a given band, when |X../(2)| << |X..(2)| for L # L'. The Bloch
spectral function in disordered systems substitutes the energy bands of perfect
systems. The Bloch spectral function A(k, F) ~ Y, A;(k, E) can be suggestively
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rewritten with the help of

1 ImY,; (k,E; +1
Ak, E) ~ — m i (k, B + 0)

. , 2.63
T [E — E; — ReY; (k, E)]> + [Im %, (k, E; + 40))? (2.63)

where i corresponds to the particular band of the non-random reference Hamil-
tonian. This approximation works well when the bands interact by disorder or
hybridization only weakly with each other. An example of spectral functions
evaluated close to the Fermi level in Au-rich MnyAu is shown in Fig. [2.3(d). We
show also a comparison of energy bands calculated in VASP and TB-LMTO of
stoichiometric antiferromagnetic Mn,Au in Fig. [2.3]c).

The CPA potentials are numerically obtained from an iterative self-consistent

procedure:
1

Wg,(n-‘rl) (Z) _ ng(n)<z) . [g%:%’b)(z)}_ , (264)

where Wg’(")(z) is a coherent interactor described in detail in Chapter 10 of [I50].

2.3 Kubo-Greenwood formula

We can express the Kubo formula ((1.53)) within the Green’s function formalism
as Bastin formula [160] [161]:

ie*h [+oo dG™(¢)

O = Vv | def(e) Tr (vu

dG~(¢)
de )’
(2.65)
where V' is volume factor. We have added configurational averaging and we have
used the identity [161]:

v,0(e — H) —v,6(e — H)v,

. 1 . d 1
lim — = lim — <> (2.66)
s—0t (e, —€) (e, —€+1is)  s=0+de \g, —e+1is
While the original derivation given by Bastin employed an explicit Schrodinger
form of the Hamiltonian and velocities, Crépieux and Bruno have shown the
validity of this approach also within Dirac and Pauli approaches [161]. Employing
integration by parts on part of the last equation, Streda [56] was able to separate
the formula into 6, = 6IIW + 551, with the two contributions at zero temperature
and frequency given by:

O = 3 1 (v (G =G )u,G™ —0,GT0, (GT = G7)) |
2
Gy = —4;‘/ Tr <(G+ — G_) (ruv, — T,,UM)>C (2.67)

The Kubo-Streda formula can be implemented within the TB-LMTO formalism
[162] with the help of auxiliary averaged CPA Green’s functions and vertex correc-
tions [163]. For the diagonal longitudinal conductivity, &i[j[ is zero and we obtain
Kubo-Greenwood formula, which can be expressed in terms of TB-LMTO-ASA
CPA quantities as [104] [152, 158, 164} [165]
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where for the sake of numerical convenience the conductivity is expressed in
terms of auxiliary quantities, and the vertex corrections (v.c.) are calculated as
described by Carva [163]. The numerical implementation uses an intra-atomic
current approximation [164]. The true continuous coordinate is substituted by a
step function (position matrix diagonal in position vector and quantum numbers)
within each atomic sphere. The conductivity thus describes only the net electron
motion between neighbouring atomic sites. In our calculations of MnyAu alloys,
the vertex corrections turn out to be negligible and isotropic (less than 1% of the
total conductivities). Details of the application of CPA TB-LMTO for calculating
quantities at nonzero temperature were discussed by Wagenknecht [I58]. Details
of Kubo-Streda calculations of spontaneous Hall conductivity are presented by
Turek [162]. In our test spontaneous Hall calculations in non-collinear antiferro-
magnets within FRD-TB-LMTO-CPA, we neglect the term called Fermi sea in
[162].

The [finite-relaxation time (FRT)| model corresponds to the spin and orbital
independent scattering which is technically accounted for by adding a finite imag-
inary constant (Im z) to the Fermi energy in corresponding Green’s functions in
the Kubo-Bastin equation. The FRT model gives zero vertex corrections and
does not allow to separate the phonon and spin-disorder contributions to the
conductivity tensor.

Computational scheme

We calculated conductivity tensor within FRD-TB-LMTO-ASA in combination
with RTA or CPA in NiMnSb, and MnsAu, and non-collinear antiferromagnets
presented in Chapter 3 and 4. Technically the calculation is carried out in the
following steps:

1. The electronic structure and the potential function are calculated within
the FRD-TB-LMTO-ASA method. The input file inpge contains informa-
tion about lattice vector, atomic positions, and parameter controlling the
spread of the TB basis (CUTRAT). inpch is composed of chemical occu-
pation of atomic sites and their number of valence electrons considered in
the calculation. We list the input parameters of the systems in Tab.
inpmd comprises orientations of local magnetisations in three Euler an-
gles (¢,0,v) in m units illustrated in Fig 2.2(c). For instance, in the case
of the non-collinear antiferromagnets IrMj3, we introduce the Euler angles
¢/m,0/m, /7 for the Mn atoms in the weak ferromagnetic phase and anti-
ferromagnetic phase described in Chapter 4 and listed in Tab.

The starting potential functions are stored in inpmd. The file is constructed
from atomic potential functions stored in atoms.all. The functions need to
be concatenated (cat command) together in the correct order and recalcu-
lated for the entered Wigner-Seitz radius (see Tab. . In the final step,
the potential functions are transformed into the relativistic basis with rela-
tivistic quantum numbers. Finally, input controls the DFT loop. In this file
we set the basis type spd or spdf (orbital quantum number NL), number
of spin components (NS), NSYM and INVE (symmetry flags, we have im-
plemented only several symmetries, INVE control inversion symmetry), the
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CuMnAs(o) NiMnSb  MnsAu IrMns  RhgsPtosMng

a(A 6,577
b((A; 3,854 5,925 3,330 3,785 3,820
c(A) 7,310 8,537
Volume(A?) 185,200 207,980 94,662 54,225 55,743
Number of atoms 12 12+4 6 4 4
rws(A) 1,545 1,459 1,556 1,479 1,493
Valence electrons 11-7-5 10-7-0-5 11-7 9-7 9-10-7

Table 2.1: Parameters of calculated materials. NiMnSb unit cell comprises of
also empty-sphere to fill the empty lattice site in the half-Heusler structure.

number of crystal momentum points along one dimension (NK), the num-
ber of energy points for the Green’s function contour integrals (NE), the
number of DFT iterations, the type of the exchange-correlation potential,
and mixing parameters for the CPA and DFT loop. The fortran compiled
program rbes is run via:

./rbes &>tmp&,

where we redirect the output into a temporary file tmp. Output files are
outit (information of the iteration DFT procedure and final physical param-
eters: magnetic moments, total energy, Fermi energy, iteration change in
energy), outld (final potential parameters), outcp, outsz (coherent potential
functions and spin components).

2. The Kubo formula calculations proceed by evaluating (possibly averaged)
auxiliary Green’s functions and velocities, and vertex corrections. inpge,
inpch, and inpmd can be copied from the DFT step. outld from the DFT
step is copied as inppp while adding at the second line the energy (pos-
sibly Fermi energy) at which the conductivity tensor is evaluated. The
control parameters are stored in the inprr file containing information about
the number of crystal momentum points for the Kubo formula integration
(NKF), NSYM, INVE. The calculated conductivity tensor is saved in the
outrr file. We parallelised conductivity crystal momentum integration in
OpenMP allowing us to calculate larger systems with finer meshes. The
calculation is executed as:

./rrere &>tmp &.

The mesh of 160 x 160 x 160 k-points in the Brillouin zone was commonly
used for transport calculations if not specified otherwise. Smaller numbers of k-
points than common for, e.g., pure metals, are required because of the large self-
energy term originating from chemical or temperature disorder. In Fig.[2.4we plot
an example of the convergence of our parallelised calculations of the longitudinal
conductivity and anisotropic magnetoresistance in MnyAu alloys within FRT.
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Weak ferromagnetic Antiferromagnetic

Euler angles ¢/ v/ o/ v/
Shin, -0.75000  0.19591  -0.25 -0.50
Shiny -0.14758  0.63386  -0.50 0.25
Sing -0.35241 -0.63386  0.00 0.75

Table 2.2: Euler angle parametrization of sublattice moments in non-collinear
antiferromagnetic phases.
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Figure 2.4: Convergence of resistivity and anisotropic magnetoresistance (AMR)
calculations in MnyAu antiferromagnet. (a) Longitudinal resistivity (b) AMR vs
number of sampling points along single dimension in the Brillouin zone.

2.4 Plane wave pseudopotential method

The solution of the Schrédinger equation for free electrons are plane waves. For a
weak potential it is possible to expand the wavefunction in the plane wave series
[151]:
Gi(r) = 3 Cralk - G). (2.69)
G

This expansion can be substituted into the Schrodinger equation to obtain:

(82_6; — 5k> Ck—G + Z [ (G/ — G) Ok—G’ = 0. (270)
G/

This equation has a nontrivial solution if:
det| (eg_G — ek) dea +v(G' —G)|=0. (2.71)

The equation contains formally infinite number of plane waves an in practical
calculation the size has to be truncated. Since the potential v(G) rapidly changes
close to the nuclei, its Fourier transform requires large G' in the expansion, and
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thus in general Fourier components will not decay fast with increasing G. This
problem can be migitiated by using pseudopotentials.

A pseudowavefunction matches the real wavefunction for r > r.u.og and the
rapid oscillations for r < 7reu.of are substituted by nodeless functions. Simi-
larly, the potential diverges close to the nuclei and we can substitute this part
by some smoother form, where the complete pseudopotential has the same scat-
tering properties as the real one. For instance, Hamman et al. [I66] substituted
within certain core radius the all-electron wavefunction by a soft nodeless pseudo-
wavefunction while requiring conservation of the norm within this radius. Outside
the radius, the wavefunctions are identical. For localised orbitals such as 3d, this
leads to the requirement of a large basis set of plane waves. Vanderbilt sug-
gested using atomically localised augmentation charges to relax the condition of
the norm. A drawback of the method in terms of a complicated practical con-
struction of the pseudopotential can be mitigated by the PAW method developed
by Blochl [167]. He transforms systematically the all-electron wavefunction to
the pseudopotential wavefunction to avoid the complex augmentation charges or
many plane waves needed in the basis. The formal link between the ultrasoft
pseudopotential method by Vanderbilt and the PAW method by Blochl was dis-
cussed by Kresse and Joubert [I68] and its method numerically implemented in
VASP code.

method. Within the PAW formalism the psudopotential wavefunction
is derived from the all electron wavefunction by means of a linear transformation:

W) = [.)+ Y (16) -

6:)) (Bil¥n). (2.72)

All electron wavefunctions and partial waves are denoted as T, and Di, respec-
tively. The pseudopotential counterparts are marked by the tilde symbol. The
index 1 = (R, [, m, €y) is composed of angular quantum numbers and reference
energy.

All-electron 1; are calculated for the reference atom, pseudopotential ¢; are
identical to all-electron ones outside the cut-off radius and are required to match
continuously at the radius. The radius is often chosen about one half of the
distance between nearest neighbour atoms. Finally, the projector functions are
constructed as dual quantities to the pseudopotential partial waves:

<ﬁi|(5j> = 0jj. (2.73)

Details of the methods and the link between PAW and the ultrasoft pseudopo-
tential can be found in Ref. [16§].

Variational inclusion of spin-orbit coupling. The VASP code imple-
ments SOC effects in the variational scheme as a correction to the nonrelativistic
Schrodinger equation, rather than fully relativistic treatment implemented within
TB-LMTO and discussed in the previous section.

SOC originates mainly from the regions close to the nuclei and the effects are
assumed to be negligible outside of the PAW radii. Under this assumption, the
SOC term can be written as an all electron, one center contribution:

ﬁsoc = z Ipi) (9 | Hso| @) (p;] - (2.74)

ij
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The spin-orbit elements are in the zero order approximation given as:

o W K(r)dv(r) ,

(2m60)2 T dr ’

(2.75)

where o are Pauli matrices and the angular momentum operators L = r x p, V()
is the spherical part of the effective potential within the PAW sphere, and K (r) =

-2
K(r)= (1 — Y0 ) . The spin-orbit term action on the pseudowavefunction can

2Mec?
[05) = %ﬂggc 05 (2.76)

be expressed as:

Here the spinor up and down components are labelled ov and (3, respectively. We
employ the two-component non-collinear magnetism formalism [I32]. The spin
orbit operator can be derived from Eq. by the transformation to spherical
harmonics, ¢;(r) = R;(|r])Y},m, (F):

h2

gaﬂzi ~i Ri'o_!a Ez N‘, 2.77

SO (2mec) %: |Di) j9a8 J<p]| ( )
where K(r) dv ()
Te r r

Ry = 4 /O Ri(r) =2 D Ry (), (2.78)

Eij = <Y17mi [_:]Y}jmj>, and Y}, label the real spherical harmonics. The spherical

harmonic basis can be used for calculating projected quantities, e.g., local spin
polarisations [111].

2.5 Wannier functions and intrinsic Hall con-
ductivity
We have seen in Chapter 1 how to express the intrinsic Hall conductivity in terms

of the Berry curvature by comparing the linear response expression in Eq. (1.57))
to the Berry curvature formula [55]:

OH (k) OH (k)
ke ‘ uck> <uck kg

[E.(k) — B, (k)]

Qus(k) = —2m 3 3 <uk uk> (2.79)

The Berry curvature rapidly oscillates in the crystal momentum space and the
large contributions, hotspots, can originate from spin-orbit avoided crossings or
bands split by other mechanisms. The precise evaluation of the Berry curvature
and the associated intrinsic Hall conductivity thus requires millions of crystal
momentum sampling points. Furthermore, the summation in Eq. runs
over many Bloch states.

This problem is suitable for Wannier interpolation scheme developed by Souza,
Marzari, Wang, Vanderbilt and others [54} 169, 170, I71] which is schematically
described around Fig. 25 of the review article [I71]. Within this approach, the
Wannier functions are determined by using conventional Bloch states calculated
ab initio in a certain energy range on a coarse grid. In the second step, the
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Wannier function interpolation on a finner mesh is constructed and the Berry
curvature and linear response quantities as Hall conductivity are calculated on
the finer mesh. In Fig. (a) we show Wannier interpolated bands on top of
the VASP DFT calculation of antiferromagnetic RuOs antiferromagnet (Hubbard
U =16 ¢eV). Fig.[2.5 illustrates the Berry curvature of antiferromagnetic RuO,
calculated along with the high symmetry line (bottom panel (a)) and map (b)
using the Wannier90 code.
Wannier functions can be defined as duals to the Bloch functions:

WY = %:eik'R|Rn> (n=1,...,J). (2.80)

This is an analogous formula to the method with the Wannier projected
functions effectively representing the atomic orbitals. However, the Wannier
atomic orbitals are obtained from first-principles rather than by the Slater-Koster
method. The gauge freedom in choosing the phase factors of Bloch functions al-
lows us to optimize the Wannier functions into its maximally localised form by
reducing the tails of the Wannier functions in the real space. The gauge freedom
in choosing the Bloch states can be expressed by an unitary operator

1%
|Rn) = @ Jo dke *R Z ) ) - (2.81)

Within the method, the localisation potential is constructed as:

2 =2
W = Z [<On‘ ‘On> (On|r|0n) } => Kr >n - rn} (2.82)
n
and measures the spread of the Wannier functions around their centres. The
localisation potential is transformed into the crystal momentum space and mini-
mized with respect to the U(¥) matrices. The Hamiltonian matrix in the Wannier
gauge reads:

Hy = (O HIM, ) =3 R (0n| H[Rm). (2.83)
R

The eigenenergies can be obtained by a transformation:

This transformation formally defines Hamiltonian gauge quantities, including
wavefunctions, in which the Hamiltonian takes a diagonal form (recall the non-
abelian Berry curvature analysis in Chapter 1). The corresponding transforma-
tion for Bloch functions reads:

o) = ) Uk (2.85)

For the DFT wavevectors we recover the eigenvalues and eigenvectors of the DF'T
calculations. At arbitrary wavectors we obtain a smooth interpolation between
DFT wavevectors, if we consider a set of disentangled bands. In the case of
entangled bands, the interpolation is set to work well only within a fixed (so
called frozen) energy window. The evaluated Hamiltonian matrices in the Wan-
nier gauge can be inexpensively evaluated by fast Fourier transformation and
diagonalization of matrices of rank J.
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To obtain the Berry curvature in the Hamiltonian gauge we differentiate both

sides of the gauge transformation (2.81)) and we substitute the expressions into
an alternative formula for Berry curvature:

Fop = 0aAp — 03As = i (Oqu|0su) — i (Ogu|Oyu) . (2.86)

After a technical manipulation we obtain:
]:gﬁ = Fop — {Da,f_lﬁ] + [Dg,fla] — 1 [Dy, D], (2.87)

where F g3, 1215, and D, = UT9,U are quantities in the Wannier gauge, e.g. A =
U,IAXU,C. By summing the diagonal terms

tOt Z fn af,nn (288)

we obtain the total Berry curvature:

;%t - Z fn aff,;nn + Z n ( anmAﬁ,mn

_Dﬁ,nmAmmn + ZDa’an57mn) .

(2.89)

The summation is now running over a small set of J Wannier bands. Energy
eigenvalues, occupation factors, U and D matrices are automatically obtained by
the Wannierization scheme. The Berry connection and Berry curvature informa-
tion is encoded in matrix elements:

AY =>"e*R(0|r,| R) (2.90)
R

and the Berry curvature is obtained by analytical curl of this equation.
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Figure 2.5: Berry curvature calculations in the RuO, antiferromagnet. (a) (top
panel) Energy bands calculated in VASP (red circles) and by Wannier inter-
polation (green line). (bottom panel) Berry curvature calculated by Wannier

interpolation. (b) Berry curvature map in k, = 0 crystal momentum plane for
Hubbard U = 1.6 eV.
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By Brillouin zone integration we get an expression for the Hall conductivity:

2
AH € dk i
Ong = 7 |, (271.)3'7-’0:045‘ (2.91)

We will study the Berry curvature and Hall conductivity pseudovectors in anti-
ferromagnets in great detail in Chapter 4 of this text.

Computational scheme

The VASP code can be run in three magnetic (lag NONCOLMAG = .TRUE.)
and SOC (flag LSOC=.TRUE.) approximations: (i) no SOC, and collinear mag-
netism; (ii) no SOC, and non-collinear magnetism; and (iii) SOC and non-
collinear magnetism. We describe the practical calculation of the Berry curvature
and Hall conductivity by employing the VASP code in combination with Wan-
nier90 code to generate an effective TB Wannier Hamiltonian.

Practically, we evaluate the Hall conductivity, in four steps.

10000
(a)

100 £ &
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T 001
W
‘©0.0001
1x10C |
1x10°8 | E
0O &5 10 15 20 25 30 0 20 40 60 80 100120140
Iteration (number) Iteration (number)

Figure 2.6: Convergence of VASP and Wannier90 calculations in or-
thorhombic CuMnAs and RuO; antiferromagnets. (a) Changes in energy
vs number of iterations in VASP. (b) Changes in control parameter of Wannier-
ization vs number of iterations.

1. First principle self-consistent calculation. We set-up and run a
self-consistent VASP calculation. We cat input pseudopotential files to create
POTCAR. In POSCAR we set the crystal lattice geometry and atomic positions.
In KPOINTS file we set the number of crystal momentum points used in the self-
consistent calculation. INCAR file contains control parameters of the calculation,
e.g., energy cut-off, type of potential, starting magnetization orientations and
magnitudes, SOC flag, LDA+U settings, number of processors, etc. We also
switch off symmetries (ISYM=-1), since we study low symmetry magnets with
SOC and we do not want to reduce the Brillouin zone. We set-up supercomputer
parameters and the calculation parameters (include modules, time and memory
requirements, etc.) and run the VASP code in parallel:

srun /home/user/vaspfolder/bin/vasp_ncl
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We use an accurate, magnetic and relativistic mode of our calculations. For
relatively small unit cells (e.g. 6 atoms of RuQO,), the self-consistent cycles take
around 5-48 hours of real-time when using 4 nodes with 16-32 processors each,
giving in total 64-128 processors. One should keep in mind that in VASP it is
convenient to set the number of processors to be congruent with the number of
crystal momentum points.

We can also calculate the structure by setting a non-self-consistent calcula-
tion (ICHARG=11) and defining the wavevector path in the momentum space in
KPOINTS. We show exemplary energy bands for antiferromagnetic RuO, with
moments along the [110] crystal direction calculated in VASP. In our calculations,
we use the PAW pseudopotential in combination with the GGA [Perdew—Burke-|
IErnzerhof (PBE)| parametrization [137, 138]. For RuOy and orthorhombic CuM-
nAs we use an energy cut-off of 500 eV, in the case of CoNbsSg, and MnoAu we
use 300 eV. We show the convergence for the CuMnAs calculation in Fig. [2.6]a).

2. Non-self-consistent first principle calculation of matrix overlaps
and projections. In the second step we set up the basic wannier90.win file by
including the number of bands (for our RuO, crystal we set 96) and Wannier
functions (56), and we choose the projection states (Ru: s, d, and O: s, p). We
run VASP in the nonparallel and non-self-consistent mode (ICAHRG=11) with
two Wannier90 flags: NBANDS = (rule of thumb is 1.4 times the number of
electrons), and flag LWANNIER90 = .TRUE.

/home/user/vaspfolder/bin/vasp_ncl

VASP calculates overlaps and projections required for the next step.

3. Disentanglement of bands and Wannierization. We add to the
wannier90.win file disentanglement a Wannierization setting. We also grep the
Fermi energy from the VASP calculation and set it in the wannier90.win file. We
run the Wannier procedure

wannier90.x wannier90

We show in Fig. (b) the convergence of control parameters during the calcu-
lation the Wannier functions.

4. Post-processing: Berry curvature and Hall conductivity. In the
last step, we set the parameters for the Fermi surface, energy bands, Berry cur-
vature, and Hall conductivity in wannier90.win. We run the wannier90 library in
post-processing parallel mode

srun postw90.x wannier90

As a prerequisite, we need VASP compiled in non-collinear mode and linked
with Wannier90. At the moment of writing, we use an older version of Wan-
nier90 compatible with VASP in the second step, and for wannierization and
post-processing (step 3 and 4) we use the latest version of Wannier90. Post-
processing can be alternatively calculated in WannierTools or home-made rou-
tines for integration.
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2.6 Summary: first-principle methods

r

In this chapter, we have reviewed the relativistic first-principle theory of
electronic structure. We have described TB-LMTO and PAW methods.
The former is useful for understanding effects originating from disor-
der scattering and extrinsic contributions to the anisotropic magnetore-
sistance in high symmetry materials (where ASA is applicable and the
atoms have similar Wigner-Seitz radii). The latter is useful in combina-
tion with maximally localised Wannier functions for calculations of the
intrinsic spontaneous Hall conductivity in antiferromagnets with lower
symmetry. We have developed:

e parallelisation of the codes for the transport calculation of the
Kubo-Greenwood formula within the Green’s function CPA + TB-
LMTO method,

e scripts to calculate and visualise crystal momentum and energy-
resolved Bloch spectral functions (see Fig. , three-dimensional
energy bands (see Fig. , spin-projected quantities, magnetization
density isosurfaces, etc.,

e set-up of VASP, TB-LMTO and our codes on supercomputing cen-
tres - METACENTRUM, IT4AINNOVATION, MOGON (ranked as
number 65 (19 within Europe) in 2017 and 131 in 2019 computa-
tional performance worldwide list), and TYPHOON.

e contribution to the calculation of the spin-resolved, finite-relaxation
time, and finite-temperature codes and methodology described in
our papers which are part of David Wagenknecht’s thesis [158, [172].

We have compared first principle methods implemented in VASP and
TB-LMTO and we have tested our convergence and band structure re-
sults against our calculations in full-potential FLAPW codes FLEUR
and ELK. We describe these calculations in Refs. [27, [104]. Our spin-
resolved conductivity calculations within TB-LMTO for antiferromag-
netic FeRh exhibit large sublattice conductivities. This technical obser-
vation inspired our work in Chapter 4. We have tested the computa-
tional framework on numerous magnetic system: ferromagnetic NiCo,
and NiMnSb, antiferromagnetic FeRh, CuMnAs, non-collinear antifer-
romagnet MnzSn, antiferromagnetic MnPt, and non-collinear antiferro-
magnetic alloys IrMng, and MnyAu, and obtained results consistent with
existing literature.

We studied the convergence and time-scaling of our calculations, and
we explored the applicability of these methods for the description of the
relativistic spin transport and topological quasiparticles. The limitation
of the CPA relates to our usage of the ASA, which likely can artificially
relax band touching (unphysically prevent hybridization). However, the
method works well for the calculation of scattering effects, as we will
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illustrate on our large anisotropic magnetoresistance prediction in Mns Au
alloys, which is consistent with experimental data [104].

On the other hand, the effective Wannier TB + VASP + Berry curva-
ture method is useful for studying the symmetry protection of topological
quasiparticles, and magnetic symmetry properties of low symmetry crys-
tals, and intrinsic band structure effects as we will describe in the next
two chapters.
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3. Anisotropic magnetoresistance
in Dirac antiferromagnets

“Antifragility is beyond resilience or robustness. The resilient resists shocks and
stays the same; the antifragile gets better.”

Nassim Nicholas Taleb

In this chapter, we study a Dirac fermion antiferromagnet candidate CuMnAs
and in ferromagnetic NiMnSb and antiferromagnetic Mn,Au by magnetic
symmetry analysis and first-principle calculations. In the first part, we discuss
the tetragonal and orthorhombic CuMnAs electronic structure and the magnetic
ground-state of the orthorhombic CuMnAs. We demonstrate the presence of
Dirac fermions [23], 27, 28, 38, 82, 173] in CuMnAs antiferromagnetic energy
bands and their protection by the non-symmorphic screw axis symmetry. We
also show that this material can host the relativistic metal-insulator transition
which we have introduced in Chapter 1 on the TB model.

In the second part, we present conventional phenomenology of crystalline and
non-crystalline AMR in ferromagnets [174] [175] [176], 177, [I78]. We also calculate
the AMR in NiMnSb ferromagnet from our first-principle [fully relativistic Dirac-|
tight binding-linear muffin tin orbital-coherent potential approximation (FRD-|
[TB-LMTO-CPA)| method [109} 152} 158, 172]. NiMnSbh was used to demonstrate
SOT due to its noncentrosymmetric unit cell [I09]. We observe opposite sign of
the AMR to the sign commonly observed in elemental ferromagnets Fe, Co, Ni,
and their alloys [152].

In the last part, we study the electronic structure, residual resistivity, and
AMR in MnsAu alloys by employing our FRD-TB-LMTO-CPA theory. Our
calculation of Au-rich MnyAu predicts residual resistivities and a large AMR ~
6%, consistent with current-induced Néel vector reorientation experiments [104].
We show that this correspondence can be explained with the help of our Bloch
spectral function calculations described technically in Chapter 2. Finally, we
summarize different contributions to the AMR. Results presented in this chapter
fill the gap between minimal model theories with free fitting parameters, and
the so far black box ab initio calculations in specific materials using no free
parameters. Our theory is based on (i) magnetic symmetry analysis depending
on the Néel vector orientation, and (ii) Bloch spectral function calculated within
[CPA]and visualised over the large part of the high symmetry lines in the Brillouin
zone.

3.1 Electronic structure of tetragonal CuMnAs

We start by briefly discussing symmetries of the tetragonal CuMnAs [179] [180]
with its crystal structure shown in Fig. (a). Tetragonal CuMnAs is driving
antiferromagnetic spintronics research since the manipulation of the Néel vector
was for the first time observed in this material [I03]. The nonmagnetic crystal
of CuMnAs exhibits the P4/nmm MSG. Our calculations on the minimal Dirac
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Néel vector Magnetic space group Important symmetry

[100] Pm/nm(8) PT M,
[110] P2 /c(4) PT
[001] Pn'm’a’ (8) PT

Table 3.1: Dependence of the magnetic space group on the Néel vector orientation
in tetragonal CuMnAs. The numbers in brackets mark number of symmetry
operations.

quasiparticle antiferromagnet points towards the possibility of the Dirac nodal
lines in the antiferromagnetic tetragonal CuMnAs [27]. The |[density of states|
exhibits semimetallic character with a dip near the Fermi level and is
sensitive to the electronic correlations [82]. The comparison of DOS with pho-
toemission spectroscopy data point towards Hubbard U ~ 3 €V.

In the energy bands calculated with SOC for the NJ|[100], we indeed ob-
tained nodal lines with an open geometry. The MSG reduces to eight symmetry
elements: Identity, off-centred mirror planes M, and M, = {MZ%%O}, non-

symmorphic screw-axis Sgy:{ng|O%O}, and four P7T conjugated symmetries.

When we rotate the Néel vector to N||[110] and N||[101], M, and S,, remain
symmetries of the system, respectively. In both cases we have obtained gapped
nodal-lines. These symmetries are thus excluded from protecting the nodal-lines.
The nodal-lines are protected as in the model by the M, symmetry. This protec-
tion is distinct from the earlier identified screw-axis protection in nonmagnetic
ZrSiS [I81). The dependence of the MSG on the Néel vector orientation is listed
in Tab. B.1l

The field-like NSOT has the same symmetry as in the minimal model from
Chapter 1 and allows for the current-induced manipulation of the Néel vector
[103, 106]. This illustrates the possibility to control the Dirac crossings in re-
alistic material. Tetragonal CuMnAs is, however, not a convenient candidate
for observing the relativistic metal-insulator transition since the Dirac crossings
are buried in the Fermi sea [27]. Remarkably, this drawback can be mitigated,
according to our calculations, by lowering the symmetry from tetragonal to or-
thorhombic and we will discuss in the next section the electronic structure of
orthorhombic CuMnAs in greater detail.

3.2 Electronic structure of orthorhombic anti-
ferromagnetic CuMnAs

The volume of the unit cell of the orthorhombic phase is doubled with respect
to the tetragonal CuMnAs crystal. The space group Pnma (number 62) is cen-
trosymmetric and we list the experimental unit cell parameters and Wyckoff po-
sitions in Tab. 3.2l There are four Mn atoms and we have calculated electronic
structure of the three antiferromagnetic orderings which preserve the size of the
nonmagnetic unit cell (and thus will be of Type-III MSG) [I73]: AF1 1], AF2
1Y, and AF3 10}T. We list the MSGs and the calculated total ground state
energies in VASP in Tab. The AF2 phase is centrosymmetric with a ferro-
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Atom Wyckoff position Experimental coordinates

Cu dc (m.) 0.62230 0.25000 0.06000
Mn dc (1m.) 0.54020 0.25000 0.67800
As dc (1m.) 0.24590 0.25000 0.12340

Table 3.2: Wyckoff positions of the orthorhombic CuMnAs. The experimental lat-
tice parameters are 6.5773, 3.8540, and 7.3096A. Remaining atomic positions are
determined for the Wyckoff position 4c as (z, §,2), (—z+3,3,2+3), (-2, 3, —2),
and (z + %, i, -z 4+ %) .m. denotes site symmetry group containing only iden-
tity and glide-mirror plane {Mﬂ(O%O)} The experimental parameters are taken
from [182] (Tab.II).

magnetic symmetry group and thus can in principle host the spontaneous Hall
effect. We will discuss the possibility of spontaneous Hall effects in collinear anti-
ferromagnets in Chapter 4. The phases AF1 and AF3 exhibit antiferromagnetic
symmetry groups with P7T symmetry and the AF1 phase tends to be the energy
ground-state [28] [173].

We show the corresponding energy bands in Fig. The phases AF1 and AF2
fulfil the prerequisites for the antiferromagnetic Kramers theorem and the energy
bands (see Fig. 3.I(a) and (c)) are Kramers degenerate. Both phases exhibit
also band-crossings close to the Fermi level. The location of these crossings in
the lowest energy phase AF1 is pinned at the Fermi level. In further discussion,
we will present calculations in the AF1 phase only. We show its unit cell in
Figs. [l.1|(c) and [3.3(a) with a marked P7 symmetry centre.

A more detailed inspection of the non-spin-orbit coupled energy bands points
towards the existence of the nodal line in the I' = X — U crystal momentum plane
(we use the conventional orthorhombic Brillouin zone notation). This nodal-line

is related to the presence of the off-centred mirror plane My = {/\/lylo, %,O}
[27, 28, [49] 183] (in the spin space group aka magnetic symmetry group without
SOC [184]). We remark that in our papers [27, [82] we used FLEUR [I85] and
ELK [I86] codes for the band structure calculations, while in this thesis we present
mostly the VASP calculations which give consistent results with our paper and

other works [28] [173].

Phase  Space (point) group Energy Important symmetry/effect

AF1 ML Pn'm/d' (m'm'm') 0 PT Dirac fermions
AF2 11l Pnm/d'(m'm'm)  +2.5eV P Spontaneous Hall effect
AF3 1117 Pnm/a(mmm) +0.2 eV PT Dirac fermions

Table 3.3: Magnetic symmetry groups, calculated ground-state energy, and char-
acteristic symmetry/effect for different collinear antiferro<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>