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Abstract: Effective analysis, searching and browsing throughout arbitrary multi-
media collections is still a challenging task. To perform a search among multimedia
objects, first, a similarity model has to be defined. Such a model establishes
methods describing how the content of individual objects is processed and how key
features and descriptors, that are used for modeling similarity between objects, are
formed. This task is not trivial since there can be many ways of determining how
to comprehend the content of multimedia data. Furthermore, with the growing
size of contemporary database collections, multimedia retrieval and exploration
are extremely computationally intensive. Hence, researchers investigate support
indexing structures that can evaluate similarity queries and can respond to user’s
queries in almost real-time even on datasets counting billions of objects. Another
very important aspect of a retrieval system is the user interface for defining queries
as well as presenting retrieved results. A multimedia system should offer various
inputs for formulating user’s queries, especially for situations in which a user
cannot provide an ideal query example. Finally, a well-arranged and easy to
read interface for visualization of retrieved results is essential for the success of a
multimedia exploration and retrieval framework.

In this thesis, we showcase many aspects of content-based retrieval and multimedia
exploration in specific scenarios in multiple domains (e.g., images, video, network
traffic data). On top of that, we investigate state-of-the-art retrieval prototypes and
applications and discuss their advantages and limitations identified by automatic
and user experimental evaluations.

To deal with scalability issues, we profoundly study similarity joins for evaluating
queries in metric spaces implemented in a distributed MapReduce environment
adopting Hadoop and Spark platforms. We propose several variants of similarity
joins offering a wide range of algorithms with different speed/precision (accuracy)
trade-offs. Specifically, we study exact, approximate, and epsilon-approximate
joins based on different approaches to data processing parallelization. Moreover,
we have published java source codes of presented similarity joins for the Spark
platform on the GitHub.com server.

Keywords: Content-based multimedia retrieval, Similarity search, Multimedia
exploration, HT'TPS classification, MapReduce, Similarity joins
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Introduction

During past years a multimedia world has surrounded us. All of us consume
media in a smaller or greater amount, either actively or passively. We are exposed
to music and radio broadcast in public places and we watch movies, shows, and
various Internet channels on daily bases. The Internet combined with smartphones,
laptops, and tablets has become such an important part of our daily activities
that living without it is almost unthinkable. A big factor in the multimedia
world is also the influence of advertisement across all the media. Internet banners,
commercial spots, and even billboards follow us on every step and silently pressure
our desires to buy and consume even more multimedia products and content.

From many different sources, including among other things photo and video
collections, medical records, voice and sound snapshots, mankind observes enor-
mous volumes of multimedia data (Reinsel et al.|[2017]). Moreover, most of the
data are unstructured in a raw format and they are difficult to automatically
process by machines. Nevertheless, if some descriptive information such as a
label or a timestamp is provided with each present object, data can be processed
and searched more easily by taking advantage of such information. Another
way, which is the main focus of this thesis, is to consider the content of each
multimedia object to solve various retrieval tasks (Smeulders et al.| [2000], |Joshi
and Wang| [2005]). Multimedia retrieval systems usually employ similarity models
that require an object representation/descriptor universe U and relevance scoring
function (usually a distance function 9).

The essential challenge is to find an algorithm for detection and extraction of
key features f; (usually f; € R™) that are used to form descriptors of multimedia
objects o € U. The features should satisfy several conditions. They should be,
above all, representative and repeatedly detectable for the modeled objects, and
invariant to various deformations. Last but not least, the features and derived
descriptors should be as compact as possible, meaning that huge data collections
can be represented by significantly smaller representations. Another challenge
is to combine the descriptors with effective relevance scoring functions to rank
database objects in order to satisfy user needs.

The next aspect of the content-based similarity search are effective and conve-
nient search modes for a given task (e.g., query by sketch/example approaches)
and efficient query processing (e.g., Hamming embedding (Jégou et al. [2008]), or
vector /metric space filtering described in Chapter [1]) in multimedia databases. A
straightforward option is to consider established (open source) data management
frameworks that natively support querying and filtering of data. An example of
such a framework can be the Lucene Image Retrieval (LIRE) project[l] Vitrivr
projectﬂ, or applications developed by the DISA teamE] (e.g., image retrieval frame-
work Muﬁnﬂ or the motion retrieval demoﬂ). However, established multimedia
database frameworks do not have to fit intended retrieval models, data access
pipelines and implementation needs. In addition, it can be sometimes undesired

Thttp://www.lire-project.net
https://vitrivr.org
3http://disa.fi.muni.cz/demos
4http://mufin.fi.muni.cz/imgsearch
Shttp://disa.fi.muni.cz/mocap-demo



from the system design perspective to include a huge framework for only one
minor subtask. Hence, a popular option (especially for research purposes) is to
design and implement a custom data access prototype tailored for specific retrieval
tasks, considering just a more general framework (e.g., Spark framework).

There are two common scenarios for manipulating a multimedia database. The
first approach is to directly search and filter data by a suitable query object. In
such case, the most relevant objects are returned. Another approach is called
multimedia exploration (Heesch| [2008], Beecks et al.| [2011b]). The goal of the
exploration is to browse a collection, explore its content and refine user’s interests
during the process. The multimedia exploration is especially useful in cases when
a user cannot provide a perfect input query object. For example, cases when a
user saw a picture of a building, but they do not know what building that is, and
they cannot describe it in any specific way. In this thesis, we tackle both scenarios
with an emphasis on efficient query processing of large multimedia collections.

The key idea behind a fast query evaluation is the construction of some
support data access structures that consider distribution and additional properties
of database multimedia objects. These structures are called indexes. Indexes
can be static or dynamic determining whether an index is built only once before
performing any similarity queries or if it is updated with new data. Moreover,
when an index is built using a similarity function satisfying metric space postulates
(see Chapter [1)) it is called a metric index or a metric access method. Our research
focuses mainly on the metric space approach and we further develop indexing in a
distributed environment that satisfies the needs of fast query evaluation on big
databases.

The thesis draws from our research published in reviewed conference papers
Lokoc et al.| [2012] [2014a], Mosko et al. [2015b], Grosup et al.| [2015alb], |Cech
and Grosup| [2015], Mosko et al.| [2015a], (Cech et al.| [2016], Lokoc et al. [2016,
2017], Cech et al.| [2017], Lokoc et al. [2019alblc], |Loko¢ et al.| [2019] and in journal
papers Lokoc et al.| [2014b], Kohout et al.| [2018]. Chapter [5|is based on the work
of |Cech et al. [2020] published in the Information Systems journal written mostly
by the author of this thesis.

Contributions

In the thesis, different domains suitable for similarity search and multimedia
exploration are studied. In each domain, we investigate retrieval techniques
including feature extraction, effective similarity modeling and fast query evaluation
typically using some sort of support indexing structures. In order to process huge
volumes of data (i.e., beyond a single machine), we propose distributed similarity
join algorithms running on a cluster of computers. The areas of our contributions
are summarized in the following points:

e Multimedia exploration approaches for big image databases. We present
several prototypes demonstrating various similarity models and browsing
techniques. The applications were tested in multiple scenarios performed by
both expert and novice (voluntary) users.

e Video retrieval models and applications for interactive known-item and
ad-hoc search. We summarize approaches for effective exploration of large
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video collections which were (successfully) tested during the Video browser
showdownf| and Lifelog search challenge competitions.

e Network security retrieval and modeling. We study also a different domain
tackling HTTPS communication and discuss how to capture key features
in network communications, aggregate them into communication snapshot
descriptors, and how to detect malicious activities. Moreover, we present
demonstration applications for network data retrieval that can help domain
experts to interactively search for potentially infected nodes in a network.

e Centralized and distributed similarity queries. The main contribution of
the thesis covers distributed similarity joins based on the metric space
approach. We propose several algorithms for fast exact and approximate
(with or without an approximation guarantee) similarity joins, we discuss
the advantages and disadvantages of presented approaches and all joins are
compared in thorough experimental evaluations. On top of that, source
codes for MapReduce similarity joins are publicly available on Github{]

My contributions vary for specific topics. For image and video domain, I
mainly worked on interface design and implemented prototypes. I also studied and
developed responsive index/exploration structures that support fast evaluation
of similarity queries. In the network security project, I analyzed solutions for
distributed computation, focused on descriptor extraction methods in MapReduce
and evaluation of large scale k-NN joins in Hadoop. Finally, my main contributions
concern thorough work on distributed joins and analyses of various exact and
approximate solutions. I worked on three MapReduce-based pivot k-NN joins
for different levels of guarantee of an approximation error implemented in two
MapReduce platforms Hadoop and Spark.

Thesis overview

The thesis is organized in the following order. In Chapter [1| key definitions and
terms are presented, focusing on the basics of similarity search, metric space
approach, metric indexing structures, and distributed computing. In Chapter [2]
we summarize the essentials of multimedia browsing and exploration including
motivation, challenges, and difficulties that researchers encountered in this area.
Furthermore, we cite some state-of-the-art applications presented in this field of
research and we study visualization methods and interfaces as well. Beginning
with Chapter [3, we present our contributions to multiple domains. Specifically, in
Chapter |3| we recapitulate our interactive retrieval applications in image and video
domains starting with first pioneering prototypes to frameworks that have been
systematically developed by our research team for a couple of last years. Another
domain for searching and multimedia exploration is presented in Chapter [4 where
we debate similarity models, classification of HT'TPS requests, and applications
in (secured) network traffic. 'We focus mainly on the detection of malicious
communications and also on user-assisted applications that can expose suspicious

Shttp:/ /www.videobrowsershowdown.org/
"https://github.com/PremyslCech /kNN-joins-spark



traffic. Chapter [5| presents (with minor modifications) our journal paper by
Cech et al.| [2020] on distributed similarity joins with big data. Moreover, the
investigated approaches can be conveniently used to create similarity graphs (e.g.,
k nearest neighbors networks) that are beneficial in many exploration scenarios.
Finally, we conclude the thesis and discuss new challenges.



1. Preliminaries

Fundamental definitions and concepts for a proper understanding of the presented
methods and algorithms are summarized in this chapter. Notations come mainly
from works of Zezula et al.| [2006], Song et al.| [2016], (Cech| [2014], or are cited
directly in specific sections.

The chapter includes four sections. Similarity search, similarity queries and
characteristics of metric spaces are described first. We also show examples of
methods for modeling multimedia objects, the feature extraction process, and
examples of similarity measures. Then we explain how metric indexing structures
help with processing of similarity queries and we detail some selected structures.
Finally, we define distributed computations sticking to the MapReduce paradigm
including frameworks Hadoop and Spark. Hadoop and Spark are introduced also
with their main components such as the Hadoop file system, the YARN resource
manager and we discuss the advantages and disadvantages of both MapReduce
platforms.

1.1 Similarity search

Nowadays, research trends regarding big data analysis, analytics, transforma-
tion, and processing focus heavily on artificial intelligence and machine learning
algorithms (Pedregosa et al. [2011], |Abadi et al. [2016], |Jordan and Mitchell
[2015]). However, machine learning techniques usually rely on a lot of training
data to correctly setup models (learning process). In case of a lack of training
data, unsupervised learning can be viable to cluster or organize data. To achieve
that, some sort of similarity between studied data objects has to be defined.
First, for multimedia objects, descriptors are extracted. The extraction process
describes the transformation of objects from a domain D to a descriptor universe
U. Furthermore, a similarity function 0 is defined between two arbitrary objects
1,0 €U as: 6 : U x U — R. Finally, a set of mechanisms for querying, filtering,
browsing and manipulating the data D concerning the feature space U and the
function ¢ is specified for a similarity search system.

Similarity search can be useful not only for querying a database but also
for data browsing and exploration. Using similarity search we can, for example,
collect more training samples for machine learning algorithms. Or users can
explore a collection and iteratively narrow their interests and filter data according
to retrieved multimedia objects. Such process is called multimedia exploration.
In other words, multimedia exploration can be characterized as an iterative
user-assisted process of browsing, navigating and querying steps in a potentially
unknown database (Beecks et al.|[2013]). The exploration is described in more
detail in Chapter 2]

1.2 Metric Space

A dataset S C U containing many objects is usually hard to process sequentially.
Furthermore, an arbitrary function ¢ can be complex and expensive to evaluate.



Restricting § by a set of metric postulates enables to construct support structures
(see Section which can significantly speed up query processing. An important
postulate is the triangle inequality to estimate an unknown distance between two
objects from other pre-computed distances (for more details see Section .
Formally, a metric space (Zezula et al.|[2006]) is formalized in Definition

Definition 1 (Metric space). Let U be a descriptor (feature) space and 6 a distance
function measured on U. A tuple M = (U,6) is called the metric space, if the
distance function 6: U x U — R fulfill following postulates:

(pl) Yo,y €U, é(z,y) >0 non-negativity
(p2) Yo,y €U, d(z,y) = (y,x) symmetry
(p3) Yz €U, 6(z,x) =0 reflezivity
(pd) Ve,y eU, x #y = 0(x,y) >0 positiveness
(p5) Va,y,z €U, 6(x,2) < 0(x,y) + 0(y, 2) triangle inequality

One advantage of the metric space approach is that a dataset S C U is not
restricted just to n-dimensional vectors R™, but to any kind of multimedia data
(for example, text strings, feature signatures, DNA sequences, etc.).

In the following, we discuss in more detail selected examples of descriptors,
distances, query types, and evaluation metrics. We primarily inspect topics related
to our research, developed prototypes, and published papers.

1.2.1 Descriptor universe

In this subsection, examples of algorithms for obtaining objects’ key features and
descriptors (mapping of objects obj € D to descriptors x € U) are presented.
Extraction process can produce a set of features {f;} or one descriptor x for each
object obj. A set of features {f;} can be converted to one descriptor x by various
methods, for example, employing joint-histogram or the bag of features (BoF)
approaches (Sivic and Zisserman, [2003], Delaitre et al. [2010]) inspired by the bag
of words methods from the text retrieval domain. In this subsection, we cover
some of the popular image modeling techniques that were also investigated /tested
in our research.

In recent years, many algorithms related to content-based image retrieval
(CBIR) (Zhou et al.|[2017a]) as well as many techniques for extracting key features
from images (Karuppusamy and Marappan| [2016], Schettini et al.| [2018]) were
proposed. For images, the similarity is typically modeled by visual or conceptual
features recognizable in pictures. One image typically contains more features such
as color, texture or an interesting (key) point in a picture. A specific similarity
measure is usually connected with each type of descriptor.

Some decades ago, the SIFT (Lowe [1999, 2004]) and SURF (Bay et al.| [2006])
key features became very popular (Figure [I.1). SIFTs represent significant points
or regions in images using scale and rotation invariant vectors. For an image, a
set of so-called octaves is produced. Each octave represents one image scale and
contains a set of blurred images formed by employing Gaussian filters convolved
with the original image. Significant points are identified as local maxima or

8



Source: https://upload.wikimedia.org/wikipedia/commons/4/44/Sift_keypoints_ filtering.jpg

Figure 1.1: Example of SIFT key points.

minima of the difference of Gaussians that occur at multiple scales (octaves).
Furthermore, the SIFT extraction algorithm removes noisy points (e.g., spots
with low contrast or points located on edges without unique location specifics)
and outputs oriented key points. Finally, having an oriented SIFT key point, its
feature descriptor is computed as a joint vector of orientation histograms around
the key point (typically, 4x4 histograms from surrounding area 16x16 regions in
the neighborhood of the point). For each image, multiple key points are computed.
A whole image descriptor can be formed utilizing the BoF approach.

The SURF descriptors find relevant points by utilizing the Hessian detector
which is composed of convolutions of Gaussian second-order derivatives. SURF
features are not based on orientation histograms but describe a distribution of
Haar wavelet responses within the interest point neighborhood.

Furthermore, for local feature points utilizing BoF methods, several approaches
increasing the precision and/or speeding up evaluation time of such representa-
tions were proposed. For example, Jégou et al.| [2008] introduced the Hamming
embedding (HE) algorithm that encodes the geometric location of a descriptor in
a feature space using binary codes. Employing the BoF algorithm, features are
typically organized in an inverted file of visual features (words) b;. Hence, a query
feature f, matches another feature f; if they belong to the same visual feature b;
from the bag. Nevertheless, HE adds an additional comparison condition specify-
ing that f, matches f; if also the distance between hamming codes of features is
below the given threshold. It helps especially in cases in which bag features b;
represent wide clusters and even more distant features would belong to the same
bag word b;. On top of that, evaluating the hamming distance is very fast since it




can be computed exploiting bit operations such as XOR.

Another problem connected with matching local features is called geometric
verification (Stewénius et al.|[2012]). Tmages are considered similar if they share
some similar local features. However, it has to be verified that the matched
features are located in similar positions in images (considering also, for example
scale and rotation transformations) to confirm that the pictures are truly similar.

The biggest advantage of local feature approaches is good precision and
performance for searching near duplicatesﬂ Vector representations of the features
are not long (e.g., 128 dimensions for SIFT or 64 dimensions for SURF features)
and can be compared with the cosine similarity or other fast similarity measures.
However, the disadvantage is the extraction speed since computing multiple
derivatives and selecting significant and relevant points can be computationally
intensive (Grabner et al. [2000]).

e :

Figure 1.2: Feature signature descriptors based on color distribution in the images.
The illustration comes from the paper by Beecks et al. [2011a].

Another example of descriptors are position-color-texture (PCT) Feature
signatures (Rubner and Tomasi [2013], Beecks et al. [2011a], Krulis et al|[2016]).
An example is depicted in Figure[L.2] From a predefined set of selected (pixel)
features (position, color, and texture), a set of centroids can be formed by the
k-means algorithm. Final image descriptors consist of the centroids, each with
an assigned weight. Unlike BoF relying on a shared feature space dictionary,
feature signatures flexibly model the contents of each multimedia object. Feature
signatures are typically compared by the Signature Quadratic Form Distance
(SQFD) that considers similarity relations between centroids in the dynamically
computed matrix M.

Since 2012, state-of-the-art Deep Convolutional Neural Networks (DCNN
Szegedy et al.|[2015], He et al.[[2016], Krizhevsky et al.| [2017]) started to outperform
traditional approaches in many multimedia retrieval and classification tasks.
Networks are usually composed of convolutional, pooling and fully connected
layers. An example of a DCNN architecture is shown in Figure [1.3| Using
stacked convolutional layers enables to learn an effective hierarchy of features

'Nonetheless, today machine learning approaches such as deep convolutional networks usually
overcome the precision of the mentioned methods.

10
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Figure 1.3: An example of a deep convolutional neural network.

for classification tasks. The outputs from the last pooling, convolutional, or
fully connected layer can be used to represent images (Donahue et al. [2014]).
These representations showcase impressive effectiveness in many similarity search
tasks because they can capture semantic information in images. The DCNN
descriptors usually form long vectors which can be easily compared by, e.g., the
Euclidean or cosine distances. The problem of the DCNN approach is the training
phase. For training a neural network, a lot of annotated data have to be prepared
(ideally millions of images) and also the training itself can be very computationally
intensive. Nevertheless, there are DCNNs available for public use (e.g., DCNN
trained on the ImageNet: Russakovsky et al.| [2015], [Krizhevsky et al| [2017])
which are pre-trained and can be used directly or adjusted for specific needs by
just a smaller training sample. Lately, DCNNs were used to determine local
feature points as well (for example, LIFT by |Yi et al. [2016]).

Moreover, deep convolutional networks can be also used to obtain annotations
(e.g., class labels assigned to each picture) that enable keyword search and so the
initial query image is not necessary (see Chapter [2)). This approach is especially
handy in cases in which users cannot provide a suitable initial query image.

1.2.2 Distance measures

In this subsection, we list some commonly used distance functions. Distance
functions can be divided into two categories. The first category is composed of
continuous distances returning a wide range of values (typically infinity different
values). Examples are Minkowski or Quadratic form distances. The second class
contains discrete distances that return only a limited number of values. An
example is the edit distance on data represented as text strings.

Minkowski distances

The Minkowski distances represent a whole set of functions marked as L,, defined
in vector spaces R", where p > 1:

Ve,y € R": Ly(z,y)

11



One of the most popular Minkowski distance function is the Euclidean Lo
distance.

Cosine distance

The cosine distance is a similarity measure between two vectors in R"™. It measures
the cosine angle between them and because cos(0°) is equal to 1 and vectors with
the angle equal to 0° are the most similar ones, the result is subtracted from the
number 1 constant. Formally:

x-y
=] - [yl

Vo, y € R" : dpps(z,y) =1 — (1.2)

Quadratic form distance

The quadratic form distance (Zezula et al.| [2006]) is useful in scenarios where
some parts of vectors should be compared in a specific way. Formally,

Vo, y € R": 0gp(z,y) = \/(x —y)T-M-(x—y), (1.3)

where M is a positive semidefinite matrix modeling similarity relations be-
tween dimensions. This distance can be, for example, employed for vectors in
which dimensions have various meanings (e.g., a histogram of colors). For such
vectors, it can be desirable to compare different values from two vectors employing
different correlations. For example, the red color dimension should have the
strongest connection with the red counterpart, weaker relation with pink and
orange dimensions and zero (no) connection with the blue color part. Note that
the L, distance is a special case of the quadratic form distance when M is equal
to a diagonal 1-matrix.

The signature quadratic form distance (SQFD by Beecks et al.| [2009, [2011a])
inspired by dgr applies similar principles to sets of feature signatures presented
earlier and proved to be useful in similarity search and exploration.

Edit distance

The edit distance also called the Levenshtein distance (Levenshtein [1965]) is
defined as the smallest number of operations needed for a transformation of one
string to another one. In total, three operations are defined. Insert for inserting
a character somewhere in a string, delete for removing a character from a string
and replace for replacing one character with another one.

Similarly, we can define the tree edit distance measure. It defines the smallest
number of operations required for a transformation of a tree structure to another
one. There can be defined more operations for tree transformations (e.g., relabel)
which can be also weighted by a tree depth (Bille [2005]). XML documents can
be modeled also as trees so this distance can also measure the similarity between
the documents (Guha et al. [2002]).

12



Jaccard’s distance

The Jaccard’s distance is defined on sets. Simply, it represents the shifted ratio
between sizes of intersection and union of two sets A, B:

AN B
AU B

This measure is useful for comparing, for example, sets of words in documents
or bag of entities.

5,(A,B) =1

(1.4)

The time complexity of similarity measures has a huge influence on the perfor-
mance of the similarity search. To evaluate a query, a large number of similarity
computations have to be performed. A faster similarity function speeds up the
whole content-based querying framework substantially. In general, it is usually
more efficient to produce key features from multimedia data in a way that they can
be compared by a fast similarity function (e.g., an L, distance, having linear asymp-
totic complexity) even though such extraction could take longer pre-processing
time.

1.2.3 Similarity queries

Similarity queries formally express user’s desires and demands put on a similarity
querying system. Queries are usually specified by a given example (a query object)
and a threshold that limits the number of the most similar retrieved objects from
the database. The two most frequent queries are called the range and the k&
nearest neighbors query. In the similarity search area, there are other defined
similarity queries (e.g., skyline queries) but they are not much related to the
research presented in this thesis. Similarity joins, defined later in Chapter [3]
generalize query types for cases when provided input is composed of a whole set
of objects (queries) instead of just one query example.

Range query

0, «

x 05

X Og
3

Figure 1.4: Range query example from an object ¢ with a distance r. The image
comes from the work of Cech| [2014].
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Definition 2 (Range query). Let q € U be a query object, S C U be a dataset, and
r > 0 be a distance. The range query is defined as R(q,r,S) = {0 € S§,0(0,q) <},
where 0 is a distance function defined on U.

The range query returns objects o € & within the given distance r from ¢
(Figure . In the real world, this query can be used, for example, to find all gas
stations within 50 kilometers from the current location.

K nearest neighbors query
01 XY

H 0 4

x X07 Xos

O¢
Figure 1.5: Example of k-nearest neighbor query from an object ¢ with k£ = 3.
The figure was originally published in the work of |Cech| [2014].

Definition 3 (k-NN query). For a dataset S C U, an input query q € U, and
distance function 0 defined on U, the k nearest neighbors query is defined as:
ENN(q,S)={X CS;|X|=kAVz e X,VyeS—X:4d(q,x) <dq,y)}

The k nearest neighbors query returns the &£ most similar objects o € S to the
given input example ¢ (Figure . In the real world, this query can be used, for
example, to find the three closest restaurants or to find the closest one to your
location.

1.2.4 Precision, recall

The precision and recall represent popular measures to assess effectiveness of an
information retrieval system. Precision defines the ratio between the number of
retrieved relevant and all retrieved objects.

|retrieved relevant objects|

(1.5)

Precision = : :
|retrieved objects|

Recall defines the ratio between the number of retrieved relevant and all
relevant objects in a database S.

|retrieved relevant objects|

Recall =

1.6
|relevant objects| (1.6)

In similarity search frameworks, it is almost impossible to maximize both
criteria. Typically, with growing precision, the recall is dropping and, vice versa,
with growing recall the precision is lower. This behavior is explained by the fact
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that for getting more relevant results, the result set must be larger and, usually,
more irrelevant objects are returned leading to lower precision.

Other than that, precision can be also used for measuring an approximation
error. In that case, objects obtained by the exact search are considered relevant
and precision indicates how many objects from the exact search are missing when
some approximate rules are employed.

1.3 Metric access methods - indexes

The naive approach for evaluating similarity queries is to sequentially browse
a collection, evaluate distances and return the most similar objects. However,
for large multimedia collections, this approach is not viable or is just too slow.
Constructing support structures storing pre-computed distances helps filter out
and prune irrelevant database objects and only distance computations from the
query ¢ to suitable database candidates are evaluated. These structures are
called metric indexes or metric access methods. There are many known indexing
principles (Chen et al.|[2017]). First, we start with the basics of pruning and
filtering methods and then we present some related methods in the following
subsections.

1.3.1 Metric filtering principles

In this section (taken from the paper by (Cech et al.|[2020]), we briefly recapitulate
the fundamental principles of distance based metric indexing for exact similarity
search (Zezula et al.[[20006]) since filtering strategies are also important for similarity
joins studied in Chapter [5] Note that a range or k-NN query corresponds to a
metric space ball-region B = Ball(q,r,) (Definition 4] selecting objects from S
based on the dynamically estimated radius r, € Ry.

Definition 4 (Ball-region). Let p € U be an object in a universe U, § a similarity
measure, and r > 0 be a distance (radius). Then B(p,r) ={o €U | i(p,0) <1} is
called the ball-region.

Given a metric space M = (U, ), distance based approaches rely on pre-
computed distances to a set of reference points, so called pivots P C §. In
conjunction with the triangle inequality property of §, these distances can be
used to efficiently estimate the lower-bound d7,5 and upper-bound dy 5 distances
between a query object ¢ and a database object 0o € §. Formally, given a pivot
p € P and pre-computed distances (g, p) and (o, p):

o5(q,0) = 10(q,p) — d(0,p)| < 6(q,0) < d(q,p) + (0,p) = bup(g,0). (1.7

The k-NN query processing is usually designed as an algorithm that maintains
and greedily updates the actual set of k closest candidate objects from S, using
also the actual query ball radius 77, € RS, 1, > 1q. Hence, given the actual query
ball Q = Ball(g, ), an object 0 € S can be filtered if
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without the evaluation of §(q, 0) which gets costly with high-dimensional data.

The metric space approach provides also two basic data partitioning options for
filtering entire groups of objects. The first option is by making use of the already
mentioned ball-regions. Given a ball-region based data chunk X C Ball(p,r,)
containing selected dataset objects and the actual query ball Q = Ball(q,r}), all
objects in X can be filtered if

rp 41l < (p, q). (1.9)
Formally:

Lemma 1 (Overlap of two ball-regions). Let B, = B(o,r) be a covering ball-region
and B, = B(q,1q) be a range query ball-region. If 6(o,q) > r+r4 then B, and B,
do not share any object (Figure @)

Proof 1 (Overlap of two ball-regions). A possible intersection of two balls have
to be investigated. There are three assumptions:

(1) Vx,y € S, §(z,y) >0 from the metric space definition
(2) 6(o,q) > 1+, from the lemma assumptions
(3) Vo; € B, 6(0,0;) < from the ball-region definition
Now:
d(0,q) < 6(0,0;) + (04, q) from the triangle inequality
d(0,q) — (0,0;) < (04, q) subtracting §(o,0;) from both sides
8(0,q) —r < 8(04,q) using (1) and (3)
r+r,—1r <6(0,q) composition with (2)
re < 6(04,q)

If 6(0i,q) > 1, then it stands that for any o; € B, the query B, does not include
any object from B. O

The (generalized) hyperplane partitioning represents the second option, which
incorporates two pivots. Using pivots py, po € P, the metric space is divided into
two sets S; = {0 | 0 € §,0(p1,0) < d(p2,0)} and Sy = {o | 0 € S,5(p2,0) <
d(p1,0)}. Given a hyperplane based data chunk X C S; containing selected
dataset objects and the actual query ball Q = Ball(g, 1), all objects in X can be
filtered if

0(p1,q) — g > 0(p2, q) + 15 (1.10)

The presented principles are frequently used by various metric access methods
for an efficient exact k-NN search (Zezula et al. [2006]). The principles are directly
implied from metric axioms. However, in high-dimensional spaces, the distances
between dataset objects are often high and similar (the curse of dimensionality
effect mentioned in Section . Hence, the conditions to safely prune some
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Figure 1.6: Schema of a covering ball and query range ball-region overlap. The
figure was originally published in the paper by |Lokoc et al. [2014b].

objects or partitions are mostly not satisfied and the approximate and/or dis-
tributed search becomes necessary for more efficient retrieval (more details are
presented in Chapter [5)).

In the following sections, selected metric access methods are presented to give
an idea how pivots and pruning strategies are used to filter out irrelevant database
objects without computing distances 0.

1.3.2 Pivot table

One of the most straight forward indexes is the Pivot table (Figure . It
basically stores only pre-computed distances from a set of global pivots p; € P C S
to all database objects o € S. In the pre-processing phase, all distances to pivots
p; have to be evaluated. The distance matrix is usually stored in memory if
possible.

To evaluate a query ¢, it has to be mapped in the same pivot space P first,
meaning distances from ¢ to all pivots p; € P are computed. Then the lower
bounds of distances between all objects 0 € § and ¢ are evaluated as

LB(6(g; 0)) = max{|d(¢, pi) — 6(0, pi)l} < d(g, 0). (1.11)

The range query R(q,r,S) algorithm focuses only on such objects for which
the lower bound is smaller than the radius r. For those objects, the similarity
measure ¢ has to be computed and the distance is compared with the radius r. A
kNN(q, S) query processing algorithm can employ the Pivot table in the following
way. All objects o € S are ordered in the ascending order by the lower bound
values and until the lower bound of the currently processed object o is lower
or equal to the actual k-NN radius, (g, 0) is evaluated and compared with the
current k-NN result set (o is included in the current k-NN result set if d(q, 0) is
lower than the distance to the k™ neighbor, and then the k' neighbor is removed
from the set). When the actual k-NN query radius is smaller than the lower
bound of an object, the k-NN search is stopped and the actual k-NN result set is
returned.
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Figure 1.7: Figure illustrating the mapping of objects into the Pivot table with
respect to pivots P, P,. The query ¢ with the radius r is also mapped to the pivot
space. Using triangle inequality, all objects outside of the black dashed area are
irrelevant to the query ¢ and can be pruned from the search. The image comes
from the work of Cech| [2014].

1.3.3 Metric tree

Another notable metric access method is called the Metric tree or shortly M-Tree
(Ciaccia et al|[1997]). It is inspired by the R-tree indexing structure (Guttman
[1984]) and applies a similar idea in the metric space. The tree is composed of a
hierarchy of covering ball-regions (Figure that are formalized in Definition [4]

Figure 1.8: Example of a part of the metric tree hierarchy. Objects in the gray
ball-regions are stored in leaf nodes that are associated with entries stored in the
corresponding inner node. The figure comes from the work of (Cech| [2014].

The main idea of the indexing algorithm is that each inner node entry represents
a ball-region with a center o; and a covering radius r,, for covering all entries in
the corresponding subtree. Furthermore, each database object has to be assigned
to some leaf node. The tree can be constructed and maintained either dynamically
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or it can be built once statically if all data are known upfront. In the case of
a static structure, in the pre-processing phase, all database objects 0 € S are
clustered to a set of ball-regions of given capacity by the similarity function ¢
(a region contains the most similar objects) and then the regions are recursively
organized and again clustered to form up higher levels in the tree hierarchy. In the
second case, objects are, usually, inserted to the tree one by one and ball-regions
are dynamically adjusted and split according to inserted entities. A new tree
layer is formed when the root is overfull (like the R-Tree construction techniques).
Dynamically maintained M-Tree supports the delete operation as well. More
specifics are presented in the paper by |Ciaccia et al.| [1997].

A similarity query can be formalized also as a ball-region B, = B(g,r). In
the case of the range query, r is given. For the k-NN search, r is dynamically
changing according to the distance 6(q, k" neighbor) starting with r = co. For
evaluating queries, overlap of two ball regions (Lemma |1]) is employed.

Given a range query, the M-Tree is traversed starting in the root node and on
each level [ all ball-regions B; that do not overlap query ball B, are pruned. Then
the search continues on the lower level [ + 1 and only descendants of not pruned
balls from the level [ are considered for further search. On the leaf level, distances
d(q, 0) for objects o € S from visited (not pruned) balls are computed if the parent
filtering does not prune objects o and the final result set is formed. A k-NN query
is processed similarly. Since starting query radius » = 0o, no ball-regions can be
pruned when the search begins, hence, the k-NN evaluation processes the “closest”
ball-regions B; = (0;,7;) based on §; = max{d(q, 0;) —r;,0}. Every time the query
radius r is updated (the &' neighbor has changed), all ball-regions B;, for which
0; > r, are pruned.

1.3.4 Pivoting metric tree

A combination of the Pivot table with the M-Tree is called the Pivoting metric
tree or shortly PM-Tree (Skopal [2004]). The PM-Tree utilizes a set of global
pivots p; € P C S to further cut off empty areas in ball-regions. Formally, the
cut-regions (Lokoc et al.|[2012, 2014b]) are defined as:

Definition 5 (Cut-region). Let M = (U,6) be a metric space, B(o,r,) be a ball-
region, p; € P C U, |P| = j be a set of j global pivots from an ordered pivot set P,
and hr be a corresponding ordered set of j intervals hr; = (hr™® hrmax) A tuple
CR(0,71,,P, hr) is called the Cut-region. An object x € U is covered by the cut-
region (denoted as x € CR(o,1,,P, hr)) iff v € B(o,1,)AVi € (1,7) : 0(pi, x) € hr;.

Definition 6 (Minimal cut-region for a set X). Let X C U be a subset of a
universe U. Then a cut-region CR(0,1,,P, hr) is called the minimal cut-region for
X (denoted as CR(0,1,, P, hr, X)) iff r, = mea%{é(o, )} AV € (1,7) : hritin =

min{6(pi, )} A hri?™ = max{d(p;, 2)}.

For an example of minimal cut-region for a set X = {01,049, 03,04, 05} see
Figure (b). Cut-regions were also used for defining new similarity queries in
my diploma thesis (Cech| [2014].

The PM-Tree is composed of a hierarchy of cut-regions which form tighter and
more compact regions compare to ball-regions. Similarity queries in the PM-Tree
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Figure 1.9: (a) Cut-region (CR) (b) Minimal CR for a set X = {01, 02,03, 04, 05}.
The image comes from the paper by [Lokoc et al. [2014b].

are processed likewise queries in the M-Tree. The following lemma summarizes a
query ball and a cut-region overlap.

Lemma 2 (Overlap of a cut-region and a query ball-region). Let C'R(o,r,, hr) be
a cut-region and By(q,r,) be a range query ball-region, if §(o,q) > r, + 14 or for
some interval hr; it holds hr; N (0(pi,q) — 74,0(piyq) +14) = 0 then CR and B,
do not share any object.

P1

min

hry

h r) max hTZ min D2

Figure 1.10: Overlap of a cut and ball-region. The radius of cut and ball-region
overlap but structures don’t share any objects because the cut-region is more
compact thanks to the hr; boundaries. The illustration comes from the paper by
Lokoc et al.| [2012].

Proof 2 (Overlap of a cut-region and a query ball-region). In case of 6(o,q) >
To + Tq, the proof is evactly the same as the proof of Lemma [1]
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Otherwise, if balls overlap, the intersection with pivot rings have to be tested.
Because all objects in CR lie inside hr; boundaries, the test for overlap of B, with
all hr; is required. We know that 3i, for which hr; N {(0(pi, q) —74,0(pisq) +74) =0
and, for contradiction, assume that Jo,, € CR,§(0m,q) < r,. We know that o,
must be in hr; boundaries and there is no intersection with B, and hr;, hence,
(0m,q) > ry. O

On each level [ of the PM-Tree, all cut-regions are tested for an overlap of
the query ball-region using Lemma [2] and, like in the M-Tree, only not pruned
cut-regions are further investigated in the lower level [ + 1. The PM-Tree offers
faster query evaluation thanks to more compact cut-regions. However, the tree
has to store more information and dynamic operations on the PM-Tree are more
complex (more details are described in the paper by [Lokoc et al.|[2014b]).

1.3.5 Metric index

Figure 1.11: Example of the metric space partitioning in the M-Index. The region
close to the pivot P, displays the Voronoi partitioning of objects on the second
level. The image was originally published by [Cech| [2014].

Another metric access method combining more indexing principles is called
the Metric index, or shortly M-Index (Novak et al,|[2011]). Objects o € S are
distributed to Voronoi cells (or clusters) C; according to distances to a set of
pre-selected global pivots P, € P C §. This algorithm is called the Voronoi
partitioning (Aurenhammer| [1991]). Each cell C; (with the corresponding pivot
P;) contains objects o which are closer to the pivot P; than to other pivots
(VP; € P—{P;} : 6(0,P) < d(o, Pj)). Each cell C; also stores a covering radius

rj = max d(o, P;). This partitioning principle is applied recursively (Figure [1.11],
ocl;

inner cell P;) until cells on the lowest levels contain only predefined maxima
number of objects or a cell reached the maximal depth. Eventually, cells Cj, .
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form a cluster hierarchy tree. Besides, objects localized in every lowest bucket C;,
can be further organized in another index structure. Moreover, cut-regions were
implemented in M-Index as well (Lokoc et al. [2014b]) increasing the compactness
of cells C; even more. The biggest advantages of the M-Index are relatively fast
construction time and efficient query processing.

Briefly, a query defined by the ball B,(g,r) is evaluated in the M-Index by
traversing the cluster tree and checking overlap of B, with cells C;, on each level [
employing all metric space filtering principles (Section . On the next level
[+ 1, only not pruned cells Cj,,, are considered for further evaluation. On the
lowest level, objects are processed concerning leaf indexing structures (e.g., objects
in leafs can store distances to all pivots) and distance measures are evaluated
only for unfiltered query candidates. The persistent variant of M-index uses a
mapping of objects to one-dimensional domain and a B-Tree structure for accessing
candidates on disk (for more details see the work of |[Novak et al.| [2011]).

The M-Index can be also efficiently implemented in a distributed environment
(Novak et al. [2012]). The key idea is to share a cluster tree containing C; across
a worker cluster and store data in chunks including pre-computed object 1Ds
locally on different nodes (hence, data searching is independent of data storage).
To evaluate a query B,, candidate cells C,, from a cluster tree are retrieved
employing standard M-Tree querying principles and data from leaf cells C,,,, are
retrieved by IDs from local nodes. On each node, data objects can be organized in
a different index such as B+Tree to effectively return objects for a specific interval
of IDs. We were inspired by these techniques in our research intending to develop
scalable frameworks for evaluating distributed similarity joins. More details are
presented in Chapter 5]

The curse of dimensionality

An important thing to mention in connection with metric access methods is the
phenomenon called the intrinsic dimensionality (or the curse of dimensionality,
Zezula et al. [2006], |(Chavez et al. [1999], [Chavez et al. [2001]). Fundamentally,
data in a database S can be effectively organized in a metric index if distances
between objects in § are distinctive enough. However, in higher dimensions, which
are frequently seen in vector data representations, distances between objects can
be relatively similar. Frequencies of unique distance occurrences can be displayed
in a distance histogram that describes a distribution of distance values in a simple
plot. When more diverse distances are observed more frequently (Figure the
dataset is easier to index and metric access methods have better performance. On
the contrary, when this histogram is narrow and many distance values are almost
identical we say that the dataset S is hard to index (Figure .

The curse of dimensionality is also observable in the machine learning area.
With the growing number of dimensions in key features, the number of training
data has to be significantly larger to reliably distinguish objects with such features.
On the other hand, more complex multimedia objects may not be described with
enough expressiveness in lower-dimensional spaces.
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Distance distributions Distance distributions

01 02 03 04 05 06 07 08 09 1 01 02 03 04 05 06 07 08 09 1

Figure 1.12: An example of a dataset Figure 1.13: An example of a dataset

with a wider distance distribution. with a narrower distance distribution.
An index built on such a dataset has Indexing such a dataset can be chal-
better performance. lenging.

1.4 Distributed computing - MapReduce

Nowadays, centralized solutions for similarity search are becoming insufficient
or even not viable since multimedia collections can count billions or even more
objects. Therefore, the need for distributed data processing is emerging and is
requested. In this thesis, we focus on the MapReduce (Dean and Ghemawat
[2008]) paradigm that is often used for parallel processing of big datasets in the
divide and conquer like approach. The algorithms described later in Chapter [5| are
implemented in the Hadoo;ﬂ and SparkE] MapReduce environments which were
designed to run not only on designated server clusters but also on commodity
hardware (personal computers) connected in a network.

1.4.1 Hadoop

The Hadoop system is one of the pioneering projects build on the MapReduce
paradigm. It consists of several components that provide full support for storing
data, managing and organizing cluster resources, and it also exposes a code
skeleton for developers to design their MapReduce applications.

Datasets are typically stored in the Hadoop distributed file system (HDFS),
which is designed to form a big virtual file space to contain data in one place. From
the user’s perspective, the whole file space acts like one big storage. Physically, real
data files are stored on different data nodes across the cluster and are replicated in
multiple copies (protection against hardware failure or a data node disconnection).
Name nodes manage access to data according to the distance from a request source
to a data node (they find the closest data node to a request).

Another part of the Hadoop environment is YARN. Hadoop Yarn is a model
for resource management and job scheduling and monitoring across the cluster.
The main components are a global resource manager and application masters for
running jobs. The resource manager has two main parts: the scheduler and the

2https://hadoop.apache.org
3https://spark.apache.org
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applications master. Hadoop Yarn also defines node managers which serve as
agents of each machine (worker) and report to the resource manager (scheduler).
More information can be found on the official site referenced in the footnote.

In Hadoop, every program submitted to the cluster is composed of one or
more MapReduce jobs. Each job has three main phases: a map phase, a shuffle
phase, and a reduce phase. In the map phase, data are loaded from the HDFS
file system, split into fractions, and sent to mappers where a fraction of data
is parsed, transformed, and prepared for further processing. The output of the
map phase is (key,value) pairs. In the shuffle phase, all (key, value) pairs are
grouped and sorted by the key attribute and all values for a specific key are sent
to a target reducer. Ideally, each reducer receives the same (or similar) number
of groups to equally balance the workload of the job. In the reduce phase, all
reducers process their assigned groups and usually perform the main execution
part of the whole job. Finally, all computed results from the reduce phase are
written back to the HDFS. When an application contains more MapReduce jobs,
intermediate results are always written back to the file system. This is one of the
biggest disadvantages of Hadoop because iterative algorithms need a lot of 1/O
operations for each iteration.

When a program is submitted to the system, the applications manager has to
find a first application master which accepts the application. Then the application
master negotiates resources from the scheduler to get enough computation power
(worker containers from node managers) needed for the application execution. In
case of failure or an application error, the application manager tries to restart and
rerun the application. The system also provides monitoring statistics of running
applications, consumed and available resources for each application and status of
the cluster. The whole scheme is depicted in Figure [I.14]

MapReduce Status ———»
Job Submission ------ |
Mode Status

Resource Reguest -----....-

Source: https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/ YARN.html

Figure 1.14: The Hadoop YARN architecture.
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It is worth mentioning that for big clusters the name node and the global
resource manager may be a bottleneck of the Hadoop system.

1.4.2 Spark

In contrary to Hadoop, Spark is an in-memory distributed processing engine
utilizing the MapReduce design. Thanks to memory utilization, some iterative
algorithms (e.g., machine learning models) run substantially faster on Spark
compared to Hadoop. Spark uses resilient distributed datasets (RDDs) as its
data storage foundation. An RDD is a read-only multiset that is distributed over
a computer cluster and can be kept in memory or persisted to a file system if
needed. RDDs can be loaded directly from the file system, from a database or
can be generated directly in memory by an application.

Spark has several components that enable different types of data manipulation,
for example, Spark Core (supports core data processing), Spark SQL (provides
support for structured and semi-structured data and a domain-specific query
language), and Spark Streaming (supports analytics of streaming data).

Spark Core is one of Spark’s main data processing components. It defines a
wide array of distributed data manipulation operations including transformations
such as map, filter, reduceByKey, groupByKey, join and actions such as reduce,
collect and count. Most of these operations take RDDs as input and produce RDDs
as their output. All Spark transformation functions are evaluated lazily, meaning
operations are executed in one optimized data stream after an action function is
called. If an RDD is used multiple times, caching techniques can be employed.
Spark supports multiple levels of caching, e.g., MEMORY__ONLY persistence
(keep all objects or RDDs in main memory) or MEMORY__AND_ DISK persistence
(prefer main memory but if RDDs don’t fit there the rest is saved to hard drives).
Spark can run in different setups, for example on Hadoop or stand-alone. For our
testing purposes, we used Spark running on Hadoop utilizing the Hadoop Yarn
resource manager and HDF'S services.

In the next Chapter [2 we focus on multimedia searching, browsing, and
exploration in more detail. We study benefits, limitations, and challenges for
methods in the area of research and showcase some demonstrations of multimedia
retrieval frameworks presented in recent years.
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2. Basics of multimedia browsing
and exploration approaches

One of the first encounters with the concept of multimedia exploration can be
found in the paper written by [Santini and Jain| [1998]. The paper tackles a scenario
in which users cannot provide or formulate a satisfactory query example for a
retrieval system. Another difficulty can appear in a case in which a user provides
a query but a retrieval system returns results relevant for different concepts in
the query. For example, the input text query ”jaguar” is relevant to pictures of
animals as well as cars. In both cases, the exploration concept is useful to refine
and narrow the user’s interests.

In the work by Smeulders et al.| [2000] published at the beginning of this
century is defined a categorization that characterizes different approaches to the
exploration and exploitation of multimedia collections. From the formal point of
view there is a difference between the terms searching, browsing (or surfing) and
exploration. Users who are searching are typically just submitting well-defined
queries to a system that outputs relevant results to each query. In the browsing
scenario, users usually know what they want to find but are not able to provide
or define a query example. On the contrary, an exploration process typically
involves exploring a dataset and familiarizing with its content without a clear
target objective. Hence, searching and browsing is usually categorized as a direct
search while exploration is not.

This categorization is further augmented in the work by Datta et al.|[2008].
The authors define three types of users.

Browser. This term defines users who work with a database without clear intent.
Browsers typically switch between different topics and their work with a
retrieval framework consist of many different queries possibly covering a
whole database.

Surfer. Surfers are users who have a moderate idea of what they are looking
for. Surfers usually start with less specific queries but then their focus
gets narrower and more and more specific. Finally, queries just refine their
interests while users are closing to their goals.

Searcher. A searcher is a user who has a clear search objective which can also be
well formulated in a retrieval system. Searchers typically spend the least
time with a system and they just provide (perfect) queries (without any
further refinement) that, in general, give them information about what they
are looking for.

Various types of users have different requirements and expectations from a
multimedia retrieval framework. Whereas browsers (and surfers) appreciate a
more complex user interface with richer options for query formulation, searchers
welcome more detail results presentation with additional details about multimedia
objects because it is expected that retrieved results are relevant.
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Query initialization

To relate with the concept of a browser or a surfer user, the term mental queries
is proposed in the paper written by Heesch| [2008]. Basically, it characterizes users
who are limited by a retrieval system and queries are formulated iteratively in their
heads. Since a perfect query usually cannot be provided immediately for different
reasons (e.g., a multimedia object is too complex) the author proposes a couple of
alternatives for the query formulation. The first option is to browse a collection first
and find some suitable query candidates (for example a browsing system by Sclaroff
et al|[1997]). Another possibility is to draw or otherwise formulate sketches that
can roughly characterize multimedia objects (Miiller et al. [1999]). Nevertheless,
sketches can have limited expressive power and may be hard to formulate for some
users. One of the most promising alternatives is to (automatically) obtain some
kind of annotations for multimedia objects (e.g., images annotations described by
Zhang et al. [2006], [Yavlinsky et al,|[2005]). Assigning annotations to objects can
be, however, an exhausting and challenging task. Nowadays, machine learning
techniques can help with it, but they require training data that, typically, have
to be created manually. Nonetheless, no approach is almighty and can fail for a
certain domain or type of multimedia data.

However, one important thing to mention is that in cases when a perfect query
example cannot be formulated it still can be possible to filter or prune some parts
of a database. For example, if a user is looking for a picture of a building, it is
safe to prune images of nature and beaches. Hence, query initialization can be
used to shrink a set of objects that needs to be explored or browsed.

Since multimedia browsing and exploration is the main topic of this thesis,
we would like to go into more detail of two subjects that are studied and proved
to be challenging for this field of research (Beecks et al.| [2013, 2011b], Heesch
[2008]): structures for exploration and approaches for vivid and organized results
presentation. Specifically, Section [2.1]is tackling exploration structures and Section
characterizes visualization techniques.

2.1 Exploration structures

Arguably, one of the most challenging parts of an exploration framework is
designing exploration structures. Intuitively, exploration structures should form
some kind of hierarchy of multimedia objects in which higher levels contain only
selected representatives from layers bellow. The hierarchy can be useful for
exploration purposes since browsing in an excessive detail is, usually, too confusing
for users. Besides, to get a general notion of a multimedia database it is necessary
to overview only selected representatives of a dataset and digging into specific
details generally follow after users are more familiar with the dataset and they
can specify their search interests.

Moreover, similar objects should be organized close to each other. However, this
requirement can be hard to achieve since content-based similarity can have multiple
semantic interpretations and can utilize composite models (more modalities). For
such cases, multiple similarity models employing different key features have to be
respected. This situation can lead to constructing multiple exploration structures
that need to be maintained which results in an even more complex problem.
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In the work by Heesch/| [2008] three types of exploration structures are defined.

Static hierarchical structures. The general idea of this type is to form a static
hierarchy of clusters respecting a similarity model composed of key features
and a similarity measure. Such structure is, usually, not updated frequently
and retrieves objects only from clusters on the same level or one level up
or down from the level in which a query object is located. The browsing
of hierarchical structures is intuitive and easy. However, finding specific
objects can be challenging because users have to navigate throughout the
structure from the top to the lowest level following a correct path which
may not be clear to users. Imagine a user wants to find pictures of beaches
but on the top layer only images of people, buildings, computers, and trees
are displayed. In that case, it is very difficult to decide whether a beach is
more similar to a building or a tree, especially when a user is not familiar
with the utilized similarity model. An example of this method can be the

(P)M-Tree (Section [1.3.4)), MLES (Section [3.1.2)), or the ImageMap pyramid
(Figure [2.5)).

Static networks. Static networks are inspired by human brain activity. Similar
objects should be linked together based on semantic relations. Retrieving
objects is done by activating initial node(s) in a network and then spreading
the information further until a sufficient number of objects is fetched. Typi-
cally, data are organized in a network based on a similarity model. Examples
of static networks can be a nearest neighbors network (graph) (Figure [2.1)),
thresholded graphs or navigable hypercubes. The advantage of networks
is that they provide less constrained navigation compared to hierarchical
structures. On the other hand, in networks, it is more difficult to get a
general overview of a dataset. Another disadvantage of networks is that
they can be hardly indexed compared to hierarchies.

Dynamic structures. The previously mentioned approaches typically require one
or more query objects in each exploration step. Nevertheless, in cases in
which queries are hard to provide, other methods for browsing are presented
in the paper by |[Heesch [2008]. The authors discuss ostensive browsing
proposed by (Campbell and van Rijsbergen| [1996], Campbell [2000] in which
a tree structure is dynamically unfolding during navigation by updating
relevance feedback (users iteratively mark their interests). Another dynamic
method describes how to project high-dimensional object descriptors to, for
example, only 2D space and how to organize them in a map-like environment.
This approach is typically applied to only a subset of database defined by
retrieved results, hence it is not pre-computed. There are many known
techniques for dimensionality reduction such as principal component analysis
(PCA by Hotelling [1933], [Pearson| [1901]), multidimensional scaling or MDS
(by Rubner et al.| [1997], Young| [2013]) that uses optimization solvers for
2D mapping or self-organizing maps (by Kohonen| |[1990] or newly proposed
by Kratochvil et al.| [2019]) for 2D embedding. Searching and browsing by
sketches or annotations can be also considered as an exploration of dynamic
structures.

Another dilemma connected with exploration structures is the initial view
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Figure 2.1: Example of a static network, specifically a nearest neighbors network
(graph) by Heesch| [2008].

problem. It deals with a situation at the beginning of an exploration process in
which a user comes to a retrieval system and they have not provided any initial
input yet. Nevertheless, the system needs to show some objects to a user so
they can start browsing a collection. The problem can be easier for hierarchical
structures because it is possible to display objects from the top level as the initial
view. However, this solution might not be ideal as well since the top level can be
too general and may not reflect the nature of a dataset. For other approaches, it
can be harder to determine representatives to display. For example, self-organizing
maps can show center nodes but for networks, it can be unclear how to determine
representatives for the initial display (nevertheless, for example, randomly sampled
objects can work decently well in some cases).

In our works by (Cech and Grosup| [2015], Grosup et al.| [2015b], [Lokoc et al.
[2014a], [Mosko et al.| [2015a], we have also designed and proposed several explo-
ration structures generally based on static hierarchical structures. More details
are described in the following Chapter

Scalability challenges

In the work by Beecks et al.| [2011b] another arduous topic for multimedia explo-
ration is discussed. Since an exploration framework should retrieve results almost
immediately, it often has to deal with scalability issues. The bottleneck of each
system can be fast query evaluation requirements due to huge data volumes count-
ing millions or billions of objects each (typically) represented by high-dimensional
vectors. The authors debate the need for an index responding almost in real-time
that provides support for the evaluation process. However, because of the curse of
dimensionality effect (see Section [1.3.5)), constructing such index may be difficult
or even not feasible.

There can be several solutions for solving this problem but none of them is
universal or self-saving. One possibility is to apply some dimensionality reducing
algorithm (as mentioned in dynamic structures) such as PCA by Hotelling [1933]
or employ lower-dimensional embedding algorithms to make data easier to index.
A different strategy is to introduce an approximate search that can speed up
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query evaluation time substantially while keeping obtained results still relevant to
users if an approximation error is small. Nonetheless, if the approximation is not
controlled in any way it can produce poor results in some situations.

The need for research on scalable multimedia analytics (Worring et al.| [2016])
is discussed in the paper by Jénsson et al.| [2016] as well. The authors formalized
several objectives that should be accomplished to achieve fully scalable multimedia
analysis, visual analytics, and database management. Furthermore, |Jonsson et al.
[2016] established the following major axes of scalability required for multimedia
analytics: volume, variety, velocity, and visual interaction.

Nowadays, trends are leaning towards distributed computing. Lately, single
machine computational power is not increasing very much but parallelism can be
easily achieved by connecting worker machines in a cluster or utilizing graphic
cards that each contains thousands of cores. A query evaluating system built
utilizing a distributed environment (e.g., MapReduce presented in Section
can satisfy scalability issues at the cost of more complex algorithms that have to
work in parallel. Another complication connected with a distributed environment
is data storage. Usually, it is not possible to easily access a whole database on
each worker machine, therefore distributed systems have to reckon with the fact
that only a fraction of data can be available for each worker. In our work, we
have focused on distributed similarity joins that are presented in more detail in
Chapter [5]

2.2 Visualization techniques

Another very important part of a multimedia exploration system is the way
how results are presented to users. It can make a huge difference in overall
system popularity and acceptance in the community. Visualization techniques can
be directly connected with exploration structures (e.g., hierarchical exploration
structures can directly correspond to presented results) or the retrieved results
can be further rearranged to present multimedia objects to users in a more flexible
manner. Therefore, there is sometimes a very thin line dividing which component
of a retrieval system is part of an exploration structure and which is the member
of a more complex and sophisticated visualization component.

In the paper written by [Datta et al.| [2008] there are five categories of results
presentation (with the main focus on the image domain).

Relevance-ordered. This is one of the most popular methods of how to present
results adopted by many successful companies such as Google or Yahoo.
Results are just ordered by the relevance scoring to a query.

Time-ordered. Using this method, results are sorted in chronological ordering.
Such an ordering can be found, for example, in the Google photos servicd']

Clustered. Clustering is frequently used for either better results organization
(similar objects are presented on a display closer to each other whereas
dissimilar ones are further from each other) or to further filter obtained
multimedia objects (e.g., to prune almost identical objects).

Thttps://photos.google.com
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Hierarchical. Similar to hierarchical structures, results can be presented also
in tree order. Hierarchical results visualization can be especially useful in
scenarios in which objects can be organized in a hierarchy that is easy to
understand for users (e.g., text data with hypernyms and hyponyms).

Composite. The composite form combines more than one previously mentioned
approaches. For example, hierarchical clustering with the relevance ordering
can be a potent way of how to arrange multimedia objects for users.

Keep in mind that clear and easy to understand results visualization is one of
the key elements of a multimedia retrieval and exploration framework. Having
a great similarity model and fast and efficient indexing structure may not be
sufficient if users are unable to find and notice relevant objects. Furthermore,
a well-arranged visualization display can overcome shortcomings of similarity
models.

In the next subsection, we demonstrate some specific visualization techniques
that were used in recently published multimedia browsing and exploration systems.

2.2.1 Visualization examples

In this section, we present several layouts for result visualization that were
successfully used for state-of-the-art retrieval systems. Even though the well-
arranged visualization is crucial in many domains, we showcase applications
working mainly with images because pictures are easy to perceive by humans.
Moreover, for images, users can easily tell if ordering is understandable and if
objects are correctly organized by the similarity between them.

Figure 2.2: VIRET tool developed by |L0k0c et al.| ﬂ2019aﬂ.

The first example in Figure shows basic results grid. It is a common
approach for presenting results used in industry as well (e.g., the Google search
engine). Results are typically ordered by relevance measure from the top left to
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the bottom right corner. It is a great method for displaying a larger number of
objects (many objects fit on a display). Nevertheless, users can miss (overlook)
some relevant objects if the display is too large.

vitrive = ‘ OET)

)
L1

Figure 2.3: Vitrivr tool proposed by |Rossetto et a1.| ﬂ2019aﬂ.
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Figure 2.4: The hierarchical exploration system implemented by |Grosup et al.

2015h).

The image and video retrieval tool called Vitrivr developed by |Rossetto et al.|
portrayed in Figure demonstrates a more complex type of results grid.
In the example, each line represents results for one video and pictures on each line
are ordered in chronological order. Moreover, the color of background symbolizes
how relevant an image is to a query (darker green indicates more relevant results
while lighter green declares less relevant images). This visualization can be easier
to read by users because they are not overwhelmed by many images and results
are organized also by video content and time chronology. However, the result
display is not utilized effectively and contains a lot of unused white space.
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Figure 2.5: Example of a hierarchical structure called the ImageMap pyramid by
Barthel et al. [2015b].

Figure 2.6: Display mode called the Fractal tree map proposed by Barthel et al.

2015a).

Another visualization approach is depicted in Figure 2.4, This system presents
results on a canvas on which images are organized by an algorithm based on
the behavior of particles in physics. This algorithm spreads pictures over canvas
according to the similarity between images. In other words, similar images are
attracted to each other while dissimilar ones are repulsed. Furthermore, only some
result pictures are connected by edges based on their resemblance. The advantages
of this method are that close objects (according to utilized similarity model) are
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Figure 2.7: Demo application for navigating 2D image maps Picsbuffet by Barthel

|and Hezel| ﬂ2019ﬂ .

situated near to each other and results can be more easily comprehended by users.
On the other hand, establishing such layout can be computationally intensive
since distances between all retrieved objects have to be evaluated and then the
layout is typically generated in many iterative steps. Besides, such the layout
does not fully utilize display space and also contains white space.

In Figure Barthel et al| [2015b] presented a hierarchical visualization
structure called ImageMap. It organizes images in a pyramid by its visual and
semantic features employing sorting and clustering techniques. The pyramid is
built from the bottom to the top level. On each level, images are positioned by
self-organizing maps and representatives for higher levels are selected utilizing
principles of the Quad tree proposed by [Finkel and Bentley [1974]. Browsing a
dataset corresponds to the exploration of the tree structure. Retrieved results are
composed of images in a different level of detail in the tree depending on the user’s
interests. The advantages and limitations of this approach have been discussed in
the previous section. Shortly, this approach is good for getting an idea of what
type of objects a dataset contains (due to properly selected representatives) but
it may be difficult to locate specific objects because a path from the top to the
lowest level may be unclear.

Furthermore, the authors of the ImageMap application also presented a graph
structure called the Fractal tree map (Barthel et al| [2015a], Figure [2.5)). Specifi-
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Figure 2.8: ITEC (diveXplore) application developed by |Schoeffmann et a1.| ﬂ2019ﬂ.

cally, they proposed a method that creates a network in which images are located
in vertexes, and edges represent the similarity between them. Each vertex is
connected to three successors and users can easily choose which path they want to
follow. This structure enables quick navigation through pictures, nevertheless, it
can be more challenging to find specific images if the collection is large. Besides,
it may be difficult to notice relevant images since pictures in the top part of a
screen are rather small.

In the following work by Barthel and Hezel [2019)], the authors proposed a demo
application that combines hierarchy and map browsing strategies (Figure .
Images are organized in several layers and on each layer are sorted employing
the self-sorting map (SSM). Representatives for higher levels are selected from
an area of 2x2 pictures located on the lower layer. Users can navigate through
the structure either directly by processing queries defined by a picture example or
keywords or can pan, zoom in and out in the tree in a similar way to viewing a
map like Google maps.

Another map-like visualization method displayed in Figure [2.8 showcases a
browsing strategy of a large pre-computed 2D map on which images are organized
according to a similarity model. The map allows users to navigate (pan) throughout
the view and, eventually, jump to further parts faster via minimap available in
the left bottom corner.

Both approaches employing a pre-computed map for results presentation can
be easy to use by users and well-arranged for datasets with a lower number of
objects. However, browsing larger databases can be challenging because absorbing
that much information may be confusing for users. Or it may be slow to get an
idea where relevant objects are located on the map. It may be advised to employ
some pruning techniques to filter a result set first.

The following two examples illustrate visualization in 3D space. In Figure 2.9
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Figure 2.9: 3D cylinder proposed by |Schoeffmann et al.| ﬂ2011ﬂ.

the authors study visualization on 3D cylinders and 3D globes in a map-like
manner. The main motivation for these techniques is to display a larger number
of images on one display. In addition, the authors discuss visualization methods
for devices with a touch screen (e.g., tablets and smartphones) because controlling
such devices require support for other inputs like swipes or touch gestures.

3D visualization canvas is studied in Figure [2.10] as well. The authors propose
methods for generating 3D layout based on a particle physics model that can
effectively organize up to thousands of multimedia objects (e.g., images). The
efficiency is also discussed in the paper since determining such layout can be
computationally demanding and any multimedia retrieval system should be as
responsive as possible to be attractive to users.
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Figure 2.10: 3D image visualization introduced by |Macik et a1.| ﬂ2016ﬂ.

2.3 Evaluation strategies

It is also important to somehow measure the success rate and get feedback to
researchers of newly developed algorithms and techniques for multimedia browsing
and exploration. Although many experiments are performed in research papers,
they vary significantly, and it can be problematic for readers to get an idea which
methods are better under given circumstances because experimental methods
are usually not very unified. Among other methods, integration tests of a whole
multimedia retrieval system can be evaluated either manually or automatically.

Manual methods can consist of user studies (e.g., Hastings [1999]). User
studies are composed of a set of tests that are conducted by users with or without
prior knowledge of the retrieval system. Users can fill questionnaires or data are
collected automatically based on their executed operations during the time they
worked with the system. The advantages of user studies are a wide array of tested
scenarios and also the ability of users to express their experience with the system
in a much richer way. The main disadvantage of such experiments is that they
are very difficult to reproduce and repeat.

Automatic experiments of a whole multimedia framework can be performed
by, for example, simulations (e.g., Pietquin and Hastie [2013]). Simulations are
replicating user’s interactions. They are easy to reproduce but it is hard to properly
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mimic actions of different user types (e.g., ideal user, expert user, novice user, a
user with or without prior knowledge of the multimedia retrieval framework, etc.).
Simulations are also important in the current era of machine learning applications
to generate more training data applicable, for example, to reinforced learning
techniques.

Moreover, it is difficult to define test databases that could researchers use
for unified benchmarks because such datasets would require a lot of multimedia
objects (small databases would not test the scalability of retrieval systems). On
top of that, dealing with copyrights of many multimedia objects and sharing
and processing huge datasets can be troublesome as well. For an idea, examples
of some benchmark collections are ImageNet by Deng et al.| [2009] or the V3C
dataset by [Rossetto et al.|[2019b]. Other challenges regarding not only evaluation
strategies are debated in the survey by Lew et al.| [2006].

In the next Chapter [3| we present our proposed retrieval and exploration
applications concerning image and video multimedia collections and discuss exper-
imental evaluations performed automatically or with real users. We also present
results from international competitions.
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3. Interactive multimedia
retrieval applications

In this chapter, we present our contributions in the image and video domain that
is, mostly, focused on interactive research demonstration applications/prototypes
and effective and efficient indexing and exploration structures. Searching in
video collections is usually translated to a search over a collection of keyframes
detected in video shots, so both domains are usually employing techniques for
comparing images by visual or conceptual features. We started with desktop and
web applications and our goal was to apply (and adjust/improve if necessary)
models and algorithms from Chapter [I] and principles from Chapter [2] in various
multimedia search and exploration scenarios. Of course, video search engines can
take advantage of other information such as audio tracks or temporal context
(time-ordered sequences of images) which are further discussed in Section [3.2]

3.1 Image retrieval systems

For validating scientific assumptions and theorems, we implemented some demon-
stration applications which conveniently and comfortably visualize algorithms
for the multimedia exploration and similarity search. In such applications, we
observed precision and benefits of different key features and latency and perfor-
mance of indexing structures. The goal of our research team was also to design
structures for effective multimedia exploration that fulfill needs for traversing
through different layers of an objects hierarchy (zoom in/out in a multimedia
collection), panning (moving) on one layer or performing fast queries or multi-
queries in the system (an overview is described in the doctoral thesis by [Mosko
[2016]). Last, we also studied different forms of presentation and visualization
of retrieved results. Eventually, we developed an image exploration porta]E] that
can work with multiple datasets, many descriptors U (SIFTs, Feature signatures,
DCNN descriptors presented in Section and various indexing structures
(e.g., PM-Tree, M-Index, Pivot table, Multi-layer exploration structure).

3.1.1 Find-the-image

Our pioneering attempts started with the application called Find-the-image (FTT)
by [Lokoc et al.| [2014a]. We have implemented several indexing structures (M-Tree,
PM-Tree, M-Index) for exploration purposes and designed algorithms for browsing
the Profimedia dataset (Budikova et al.| [2011]). In this application, we have
employed Feature signatures descriptors U for the image comparison. The goal
of the tool is to find as many images from a selected image class (e.g., find all
climbers) in just ten user actions. One user action is typically one (approximate)
k-NN query from a selected image. This is, basically, a variation of the ad-hoc
search task explained in the following Section concerning video retrieval.

In the application interface, there are three main components. On the left side,
users can see an example of the wanted image class. There is also the history panel

Thttp://herkules.ms.mff.cuni.cz
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which allows users to go back and browse the dataset in a different direction. In
the center-right part, there is a canvas for results visualization. For visualization
purposes, we have utilized the physical particle model that pulls similar images
close to each other and repulse different ones. Hence, all retrieved results are
organized over the canvas by the similarity measure. In the bottom part, there
users can observe a list of found pictures relevant to the searched class.

The main purpose of the FTI tool was to understand the strengths and
weaknesses of different image similarity models and also the suitability of various
metric access methods for exploration purposes. We measured the success of
particular approaches in different aspects, such as recall, query evaluation time,
and the number of exploration operations needed to find the first relevant image.
Moreover, we performed even simpler user studies to determine which algorithms
worked better under given circumstances. Results were published in works by
Cech and Grosup, [2015], |Cech| [2014].

Briefly, we concluded that our proposed PM-Tree browsing algorithms that
used directly the index hierarchy outperformed other tested approaches in the
distance computations free scenario. However, to retrieve most objects from the
given class, it is better to use standard (approximate) k-NN queries in the M-Index.
Nevertheless, for larger datasets, it might be hard to find a first representative
object from the given image class using only k-NN queries if no representative is
shown in the initial display. In such cases, it is more efficient to define multiple
layers of detail over a dataset and perform queries only on the next layer so the
exploration does not immediately dive too deep. This idea led us to design a
structure for effective multimedia exploration presented in the following subsection.

3.1.2 Multilayer Exploration Structure

The Multilayer Exploration Structure (MLES) by Mosko et al| [2015alb] provides
support for multimedia exploration and querying a database from different points
of view and different levels of detail. The key idea behind MLES is to define
m layers L; of a set S C D which satisfy: Vi € {0,....,m — 1} : L; C L;;; and

A A/Zoom In

A
Pan

m B @B® @ S

Figure 3.1: Structure of MLES by |Mosk0 et al.| ﬂ2015aﬂ with described operations.
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L,, =S&. The MLES schema is presented in Figure |3.1}

Middle layer

1. Zoom-In

Figure 3.2: Example of MLES exploration operations (Mosko et al.| [2015a], [Mogko,

2016).

MLES also defines more exploration operations: pan and zoom in and out.
The panning queries allow us to move on the same level of MLES. Zooming enables
us to go higher or deeper in the hierarchy and explore objects in a different level
of detail. For quick querying responses, objects on each level are indexed in an
independent metric access method such as the PM-Tree or M-Index.

The exploration process always starts from the zero level (i = 0 — the initial
view). From that point, a user can pan, zoom in and zoom out throughout the
collection and refine their exploration interests. For this application, we utilized a
similar graphic interface to the Find-the-image system. An example is depicted in
Figure [3.2] The thorough description can be found in the papers by

2OT5all|

Furthermore, we evaluated experiments for MLES structures composed of 2
and 3 layers. We employed position-color-texture feature signature descriptors
U of images compared by the SQFD measure 9. The study was performed by
users without prior knowledge of our system. Their objective was to find as many
images from a given class as possible in 15 exploration steps. No image from a
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[20150)). [015D)).

searched class was presented in the initial view. We measured several statistics.
Among others, in Figures [3.3]and the performance of MLES for the percentage
of found objects and classes is presented for both men and women participants.
We concluded, that MLES containing 3 layers outperformed the other variant in
terms of recall and success rate of finding the first relevant image from the desired
class. More graphs and detailed discussions are presented in the paper by

et al] 20150

3.2 VIRET framework

Searching in video data proved to be a challenging task especially in today’s
collections with HD videos counting a large number of broadcasts
[2011]). The video retrieval research tackles many difficulties. To mention some,
we investigate the known item search (KIS), which studies the search for known
(previously observed) shots or video scenes, while in ad-hoc video search (AVS)
tasks users try to find as many images from a given topic as possible. KIS tasks
can be further divided by the quality of knowledge of the known item. If a user has
seen a whole video scene including a soundtrack the searching problem is typically
easier compared to a case when an investigated scene is described, for example,
only by a text paragraph. First, let’s take a look at methods for processing,
annotating and detecting keyframes and shot boundaries in videos based on their
content.

3.2.1 Video pre-processing

If additional information is stored within a video collection they might help with
the similarity search and exploration. Such information can contain for example
timestamps (date, time) of video files or audio tracks. Time information can be
used to filter only relevant data or to define queries concerning the time information.
The audio track can be translated to text using automatic speech recognition
(ASR). However, this information might not be completely reliable and ASR can
fail for different languages and can be sensitive to the sound quality. Hence, the
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video search is usually transferred to the search over an image collection based on
the picture’s content employing techniques mentioned in previous Section [1.2.1]

Video data are usually composed of sequences counting 25 frames per second
(FPS). The first challenge of video retrieval systems is to automatically detect shots
and key frames in videos. Searching over all frames from videos (25 FPS) would be
very exhausting and also close frames usually carry almost the same information,
hence, there would be too much redundancy. There are more approaches for
keyframes and shots detection. Our team has designed a convolutional neural
network for detecting basic shot transitions, which is inspired by the work of |Gygli
[2018]. The whole keyframe selection scheme is depicted in Figure 8.5 Details are
described in our paper by [Loko¢ et al.|[2019] accepted to the ACM Multimedia
2019 conference.

o . Detect
One Resize to shot Select KFs
video Crop 48 x 27 boundaries

Figure 3.5: Keyframe selection scheme. The image comes from the work of |Loko¢
et al. [2019].

—
Video
Database

Once shot boundaries are detected using the neural network, keyframes are ex-
tracted utilizing a hierarchical clustering algorithm considering temporal ordering
of frames.

Selected keyframes from a video collection are further processed to extract
annotations and descriptors for retrieval purposes. Nowadays, machine learning
techniques are frequently used to obtain DCNN descriptors U, detect faces and
texts and /or classify basic entities visible on the keyframes (e.g., person, car, beach,
tree, dog). Model combinations help in situations in which single model filter-
ing/pruning algorithms do not work sufficiently. Fusion strategies for aggregating
results from different models are used as using multiple models simultaneously can
improve retrieval results significantly (Atrey et al. [2010], Budikova et al. [2017]).
In our work, we usually evaluate every model independently, then we fuse results
and send the final sorted set to the visualization component.

3.2.2 VIRET tool description

Recently, a survey about video retrieval applications has been published by
Schoeffmann et al. [2015]). The goal of each application is to present several
similarity models, a friendly user interface and a well-arranged retrieved results
visualization. Some tools also tackled possibilities to control the interface using
touch gestures or discuss adjustments to online or mobile environments. In our
research team, we have been systematically developing a video retrieval application
called VIRET which we briefly describe in the following subsections.

Ranking models

In VIRET tool, we have implemented a bunch of similarity models for comparing
different features and descriptors extracted from keyframes (Loko¢ et al.| [2019]).
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Figure 3.6: VIRET tool by |Lokoc et al.|[2019a] showing results for the query
defined by black and white filters and two face sketches placed at the specific
locations.

The application works with pre-processed data assuming the phases of shots
and keyframes detection were already executed and, also, all key features for all
models have been extracted. Specifically, VIRET takes advantage of four main
similarity models. The first model compares the visual similarity of images based
on the DCNN descriptors x € R™ using the cosine distance d. The second model
employs image class labels (annotations) that were obtained by the classification
procedure using a retrained neural network with 1243 image classes selected from
the ImageNet database (Deng et al. [2009]). The third model uses color feature
signatures representing color regions in images and the fourth model works with
regions in which faces and texts were detected by deep neural networks (Hu and
Ramanan||2017], Zhou et al.|[2017b]). Each model accepts query inputs in a specific
form and employs a similarity-based relevance scoring function f: Ug x U — R
that assigns a score for a query ¢ € Ug and each database object representation
x € U. The scores are used to rank database objects and select top-ranked items
for further processing. For more details (particular functions, temporal queries
and multi-modal fusion) see the paper by |Loko¢ et al. [2019)

Prototype interface

On the left side of the VIRET tool, users can define queries for filtering and
sorting all keyframes by given criteria. Every time, one model is marked as a
sorting model and others are used for filtering. Filtering models always evaluate
similarity of database frames to the query and return only the top X% of the
frames where X is specified by the slider above each model. The intersection of
filtered results is ordered by the similarity scores given by the sorting model. Final
results are presented in the center panel of the VIRET tool. In Figure [3.6] you
may observe results for a query specified by two face sketches and the keyword
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Figure 3.7: VIRET tool by [Lokoc et al.| [2019a] in action. A results display for the
query specified by keywords “church” and “window” with the temporal context
defining the “church” is preceding a scene with the “window”.

“dancer” combined with black and white filters. Visualized results are sorted by
the keyword.

In VIRET tool, the keyword search model receives entered supported labels,
optionally combined to more complex queries. Color sketches and face/text
symbols are placed on a canvas. Each sketch element is defined by its center and a
surrounding ellipse with an indicator whether the color or face/text symbol should
be located in all space defined by the ellipse (full ellipse) or in just any area within
the ellipse (dotted gray ellipse). Searching by the semantics (DCNN descriptors)
is defined by examples selected from the result set. More examples can be selected
at once. Moreover, we have also implemented the semantic search described by
an external image. It is possible to drag and drop an image from a web browser
found by the Google images service into our application and the image is used
as a query for the semantic search. Our engine extracts the DCNN descriptors
in real-time utilizing the neural network. Hence, database frames can be easily
compared with the image from Google employing the same representation.

Moreover, all input fields on the left side in VIRET are duplicated. The
purpose of this interface is a possibility to define temporal queries. Every query
can be composed of two parts. An example is shown in Figure [3.7, in which
result frames are displayed for the temporal query composed of the primary query
defined by the “church” keyword followed by the latter query characterized by
the keyword “window”. The length of a temporal window is a parameter of the
retrieval engine and is usually set to lower numbers (e.g., 10) of selected frames.

In the result view on the right side, users can inspect not only retrieved key
video frames but also video context. Using mouse wheel scrolling actions on a
selected frame, users can “play” temporal context from the video corresponding to
the frame. Also, on the most right side, all selected frames from the same video
are shown. Another possibility is to click the “V” button on a frame and the
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whole set of selected frames for the video pops up in a new window.

Furthermore, the most relevant 2000 frames to the actual query can be dynam-
ically reorganized into an image map. This action is performed by clicking on the
“M” button on any retrieved frame. A new window shows up and the top 2000
frames are reorganized into a 2D layout concerning their similarity based on the
semantic DCNN descriptors. This ordering algorithm is inspired by ImageMaps
proposed by Barthel et al. [2015b], Barthel and Hezel| [2019].

Results in interactive video search competitions

The state-of-the-art video retrieval applications are tested every year during the
Video browser showdown?| (VBS) competition (Lokoc et al.| [2018], [Loko¢ et al|
2019]). In VBS, teams deal with KIS tasks, described by both visual scenes
including the sound footage and text sentences, and also AVS tasks. The goal of
each KIS task is to find a portrayed scene in the correct video as soon as possible.
A team gets points for the correct submission time. Teams are penalized for wrong
submissions. In 2019, the test collection for the competition counted 1000 hours

http:/ /www.videobrowsershowdown.org
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Figure 3.8: KIS results for the VBS 2019 competition by [Loko¢ et al.[[2019]. There
were all together 23 KIS tasks (one task is symbolized by one vertical line) and
each team is represented by one symbol and color. For each task the lower position
of symbols means faster correct submission time (the most bottom horizontal line
represents starting time 0). If a team symbol is missing for a vertical line it means
that the task was not successfully solved by that team.
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TID ranki t1 5 ranks to t5

v 44 96s 3 92s

‘/'371

Vi 1 243s | 279s

vy 46 107s

v 42 120s | 136s 13 10s

14 62 16s 64s

Vo 33 165s 222s

V3 117s

Vi 25 95s | 113s

Vs 2 58s 80s

Vi 125s

\%: 37 20s 174s

Vs 135 167s | 177s

Vo 51 27s 46s 84 23s

V1o 88 110s 84 141s 153s

T 49 35s 49 19s 290s

15 9 14s 96s b 6s

T3 35 22s 18 10s 96s

T

Ts 12s 8 11s 23s

Ts 38 249s

T 44 22s | 117s

T3 69 19s 352s
PC1, 140 frames / page PC2, 88 frames / page

Table 3.1: Table showing the success rate of the VIRET tool for all KIS tasks at
VBS 2019. It displays ranks of the first top occurrences of frames (or video) from
searched scenes, times of the occurrences, and submission time for both PCs. The
interesting observation is that several times the search scene appeared on the first
display relatively soon but the task was solved substantially later (e.g., tasks V7
or T7) or was not solved at all (task Tg). Detail description can be found in the
paper by |Loko¢ et al.| [2019).

of video data collected from 7500 videos. The data size was almost 2 terabytes in
the raw original format. In AVS tasks, the objective is to find as many scenes or
shots satisfying described situations (for example find scenes where people are
standing on a surf or find video shots of men jumping on a bike) as possible. It is
important to submit only the correct scenes (the correctness is decided by judges).
Points are obtained for correct submissions and also for total recall of submitted
scenes. For the wrong submissions, a team is penalized. The time limit is usually
set to 8 minutes for the KIS tasks and 5 minutes for the AVS tasks.

The effectiveness of all applications is tested not only by expert users (typically
researchers who developed the tools) but also by novice users. Novices are selected
from the crowd and have some time to familiarize themselves with a team and
their application. However, once novice sessions start, experts cannot interfere
with novices. This test case analyzes user-friendliness and comfort of presented
applications.

Now, let’s take a look at the results from the VBS competition in 2019. Figure

47



3.8| showcases KIS results of all teams for all tasks including novice sessions. In
2019, six teams participated at VBS. The vitrivr team (Rossetto et al.| [2019a])
from Switzerland, VIRET team (Lokoc et al. [2019a]) from the Czech Republic,
VIREO team (Nguyen et al|[2019]) from China and France, VISIONE team
Amato et al| [2019]) from Italy, ITEC team from Austria (Schoeffmann et al.|
2019]) and VERGE team (Andreadis et al|[2019]) from Greece. In 2019, the
overall winner was the vitrivr team who convincingly won the novice session
followed closely by the VIRET team who closely won the expert session.

Regarding KIS tasks, during the expert session, most tasks were solved by the
VIRET tool (Figure more details in Table [3.1). 16 out of 18 KIS tasks were
found in 1000 hours of video which is not an easy feat. However, many visual
KIS tasks were solved by the vitrivr application faster. This observation could
be explained also by the fact that the vitrivr team utilized the automatic speech
recognition that helped in scenarios in which distinguished English speech was
played in the searched video scene. Moreover, they supported OCR methods as
well to search for displayed text.

In the next subsection, more detailed log analyses of our VIRET tool results
from the video competition are presented.

Log analysis

During the VSB 2019 competition, we recorded (both locally and for VBS server
logs) most of the actions performed by both expert and novice users. From these
logs, we analyzed the effectiveness of used retrieval models, and utilization of
various approaches.

Following graphs 3.9 [3.10] [3.11] [3.12 show detailed interaction analysis for the
KIS tasks. Graphs are divided into two parts: graphs for the visual and textual
KIS tasks. Each line is described by a combination of an action A and a user U in
the format: A U. We define five actions A: B - browsing, C - color model change,
F - face model change, I - semantic image change, K - keyword model change. At
the VBS competition, each team could use up to two computers for solving tasks

Visual KIS browsing interactions

B E1 I 50
40
B_N1
30
BE2 20
10
B_N2
0

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280

Figure 3.9: Browsing interactions for the expert and novice visual tasks during

VSB 2019.
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Visual KIS query modifications
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Figure 3.10: Heatmap representing query changes (Color, Face, Image, Keyword
model changes) for the expert and novice visual KIS tasks during VBS 2019 by
Lokoc et al. [2019b)].

Textual KIS browsing interactions
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Figure 3.11: Browsing interactions for the expert textual tasks during VSB 2019.

in the video collection. Furthermore, all tasks were solved by experts and novices.
Thus, the user set U consists of four entities: E1 - expert 1, E2 - expert 2, N1 -
novice 1, N2 - novice 2. However, novices didn’t solve textual KIS tasks and are
not included in figures [3.11], .12

You may notice that various users took advantage of our tool differently. For
example, in Figure the novice 1 almost did not utilize the color model while
the novice 2 did not use semantic (image) model at all. In general, users tend to
use only one thing that works for them and sometimes forget about other models.
This behavior is more noticeable for novices because they have a relatively short
time to get familiar with a video search application and it is hard for them to get
a firm grasp on all features. In figures is depicted that browsing actions
are distributed over all task time span. It means browsing is an important part of
our video retrieval application and just formulating queries may not be sufficient
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Textual KIS query modifications
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Figure 3.12: Heatmap representing query changes (Color, Face, Image, Keyword
model changes) for the expert textual KIS tasks during VSB 2019 by

019

to solve the search task. Nonetheless, the browsing results are only indicative
due to a couple of network issues during the competition resulting in potentially
incomplete server logs used for the analysis.

AVS
virer [ o0
VITRIVR 76
ITEC 64
VIREO 45
VERGE 40
0 25 50 75 100

Source: https://videobrowsershowdown.org

Figure 3.13: The overall score of the AVS tasks at VSB 2019 during the expert
session. I thank organizers of VSB 2019 for the graph.

AVS tasks were solved by our tool relatively effectively (Figure . A great
benefit was the addition of the external image processing service using samples
from Google images which allowed us to retrieve results for the given scenario or
topic. This complemented automatic annotation used by the second member of
our team. Hence, the overall recall of our search was high with respect to other
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teams.

Our team also participated in the Lifelog Search Challenge (LSC) workshop
during the ICMR 2019 conference (Lokoc et al. [2019¢]). This competition ended
up with similar results to the VSB. Team vitrivr won the competition followed by
the VIRET team. VIRET closely won the expert session but lost points in the
novice session. At LSC 2019, there were only KIS tasks to solve.

Discussion

Even though our demo application proved to work decently well during two
competitions VBS and LSC (especially during the expert sessions), there is still
room for improvement. For the novice session part, we observed that our results
visualization grid is, perhaps, a little bit confusing. From our “behind seat”
observations and later log analysis, we realized that novices formulated queries
well, however, they sometimes did not notice retrieved correct frames.

5
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Figure 3.14: Figure displaying query changes (C - color/F - faces/KW - red
numbers determining the number of active words) and position of the searched

known scene in time (red line in the top). The graph was published in the work
of [Lokoc et al.| [2019)].

This observation is noticeable in Figure A novice user formulated queries
using keyword and sketch (color, face) models and the searched scene (red line in
the top part of the Figure appeared on the first display (even in the top 10
frames) few times. Nevertheless, the task wasn’t successfully solved because the
user did not notice the searched frames. More experimental results are presented
in our paper Lokoc et al.| [2019).

Besides that, from our experience, all similarity models worked adequately
well. We usually started the search by typing keyword annotations or sketch
that narrowed the number of frames. After that, we browsed retrieved results
and refined queries. Moreover, retrieval based on temporal context also helped
considerably since more frequent concepts in the dataset, that would be harder
to narrow when targeting just one frame, can be further specified by additional
queries targeting preceding or subsequent shots.

For the future, we would like to focus on the implementation of other similarity
models such as speech recognition, scanning of text content (OCR), and local
subimage search. Another challenge is to present obtained results in a more clear
and organized way without restricting global results overview too much. For
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instance, we would like to implement a results grid presenting retrieved frames
for each video on one line. Each line would represent relevant frames to a query
sorted in the time order. Moreover, each image would also show how much the
particular frame is relevant to the query formulated on the left side.

In the following Chapter [, we present similarity models and content-based
retrieval algorithms and frameworks for network data that are more difficult to
visually perceive by humans.
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4. Models for network security
domain

Besides the image and video domain, we also studied models for processing HT'TPS
network data with the main focus put on a network traffic classification and explo-
ration of large databases of HT'TPS requests. We worked together with researchers
from the Cisco research department who provided expert domain knowledge and
real use cases and applications. They mainly dedicated their research to modeling
network traffic and detecting malicious communications employing different ma-
chine learning classifiers while our findings helped substantially with large scale
log data processing, k nearest neighbors (k-NN) classification, and multimedia
exploration that can serve as a user-assisted tool for detecting and confirming
suspicious communications. In this chapter, we report primarily our contributions
in this area of research.

The Hyper Text Transfer Protocol (HTTP) [Fielding et al., [1999] is one of
the most popular protocols on the Internet. Over the years it has been adopted
to many applications and is widely used for transferring not only web browsing
context but also for exchanging large data volumes for services such as Dropbox or
Skype. However, broad HTTP protocol usages attracted many malicious programs
that can hide in common traffic and are hardly filtered and blocked in normal
communication. Moreover, current standards force encryption and security to the
HTTP protocol (shortly HT'TPS). In the HTTPS traffic, malicious activities are
even more easily camouflaged and hardly detected.

Our goal was to achieve the best possible precision and recall for the detection
of malicious communications among the HTTPS requests. Likely, the hardest part
is modeling HTTPS traffic because information about secured requests is limited.

4.1 Modeling HTTPS requests

Originally, we tried to model network data as a graph database where vertices
represent servers and clients and edges are communications between them. The
idea was to describe such a database as a histogram of entities called the graphlets
(Przulj [2007]) that were used for biologic data. A graphlet is a simple subgraph
of a typical size of 2 to 6 vertexes (nodes) with a predefined number of edges. A
graph descriptor is formed as a histogram of occurrences of each defined graphlet
in the whole graph. However, we realized soon that an HTTP(S) communications
graph is relatively simple and is mostly only bipartite (clients usually communicate
only with servers and servers only with clients). Thus, we abandoned the graphlet
approach and created descriptors directly from collected network requests.

The number of properties or attributes publicly obtainable from secured
HTTPS traffic is relatively small. In this work, we see a message as an individual
request that establishes an encrypted TLS tunnel. Requests are typically collected
by web proxies and are stored in proxy log files. The following four attributes can
be obtained from each message (request) (Kohout et al.| [2018]):

1. bytes sent m,, from the user’s machine to the target server,
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2. bytes received mgown by the client’s machine from the server,

3. duration: my,, of the tunnel, i.e., the length of the time interval for which
the tunnel was active,

4. inter-arrival time m;, (in seconds) elapsed between two consecutive re-
quests for establishing a tunnel from the same user and the same server.

A message m is then represented as a quadruplet (a point in R*)
m = {log(1 + muyp),10g(1 4+ Mdown), 10g(1 + Maur), log(1 + mia) }

In this paper, we present two types of feature descriptors presented in papers
by |[Kohout and Pevny| [2015a,b| and Kohout et al.|[2018]. Both descriptors are
modeled for an entity called a communication snapshot. Communication snapshots
represent a set of HTTPS web requests (quadruplets m) for one client or for a
fixed pair (server, client) for a given time frame (usually 5 minutes but it can be a
whole month as well). Messages for a snapshot are aggregated into a set M from
which a final descriptor is formed. The key idea behind modeling whole snapshots
is that single requests may not be expressive enough to detect malicious activities,
hence, we tried to monitor longer traffic (e.g., 5 minutes).

The first approach uses messages m directly and forms long sparse joint
histograms from quadruplets contained in a set of messages M. For each commu-
nication snapshot, we extract one descriptor. The final descriptor is composed
of a vector of real numbers of the fixed dimension 11* which is formed from
an equidistant lattice L = {0,...,11}*. Each message m € M contributes to
several bins in the lattice to smoothen data noise. The final vector is produced by
joining lattice indexes and normalizing all values. Each descriptor is saved in a
space-saving format since many bin values equal to zero. This algorithm does not
require any upfront training or parameters setup and is purely unsupervised.

The second approach utilizes Gaussian mixture model (shortly GMM) proba-
bilistic approach (Marin et al. [2005], Duda et al. [2001]). This approach is inspired
by the histogram bag of words method (Amores [2013]). The model is trained
on a subset of sampled messages to create and position a predefined number of
Gaussians. Then all requests m € M are mapped into space concerning Gaussians.
Specifically, a descriptor has the length equal to the number of Gaussians and
each message m from the set of messages M contributes to the descriptor’s bin ¢
according to a posterior probability that the message m belongs to the Gaussian 1.

We have implemented a distributed MapReduce-based (described in Section|1.4)
descriptor extraction algorithm that is visualized in Figure 4.1} The main purpose
of this algorithm is to process a vast amount of data and obtain descriptors for
the huge number of web requests generated every day. The program implemented
in Hadoop operates in two phases: the map and reduce phase. In the map phase,
data are loaded, processed and (key, value) pairs are emitted for each HTTPS
request. The key attribute of each request (one input line) should correspond to a
designated communication snapshot (e.g., one client or (server, client) pair and
a time stamp). In the reduce phase, requests are grouped by the key attribute
and the final descriptor is formed for a whole snapshot employing either the
joint-histogram or GMM approach for modeling descriptors.
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Key Value

<Clientld;
FiveMinuteld>

<48; 79147> 0;266:0.018495;267:0.051387;...

Descriptor

<48; 106> 0;266:0.000005;267:0.000275;...
<48; 8410> 0;519:0.006944,;520:0.047396;...
Requests
in the table format Reduce output
Map Reduce
l Map output
Key | Value
<Clientld;FiveMinuteld> | Bytesup Bytesdown Duration Inter-arrival
<48; 79147> 5.61 4.89 8.52 0.15
<48; 106> 8.79 9.60 7.35 1.74
<48; 79147> 5.61 4.89 8.52 0.16
<48; 8410> 7.55 8.80 11.58 5.02

Figure 4.1: Illustration of the distributed MapReduce-based feature extraction
algorithm presented by (Cech et al|[2016]. In the map phase data are parsed
and loaded and (key, value) pairs are formed where keys correspond to each
communication snapshot. In the reduce phase, all messages for one snapshot are
aggregated to form one descriptor using the joint-histogram or GMM algorithm.

4.2 Intrusion detection and data exploration

Our next focus was to detect malicious communications in HTTPS traffic using
extracted feature descriptors in the form of vectors R". We concentrated mainly
on two tasks: classification and exploration of network data. The goal of a
classification task is to design a function C : R™ ~— [0, 1] that assigns a score
between [0, 1] to each communication snapshot. The score closing to 0 means
that the snapshot is not infected (benign) while the score 1 represents malicious
communication. Classification tasks usually require some kind of supervised
learning approaches such as decision (regression) trees, neural networks or k
nearest neighbors classifiers. On the other hand, the exploration of network data
modeled by descriptors introduced previously can be computed by unsupervised
techniques such as clustering or k-NN graphs and can prepare data for domain
experts who decide whether some communication snapshots are infected or not.

For the classification task, we initially constructed a centralized (approximate)
k-NN classifier that detects suspicious snapshots based on the nearest neighbors
in a vector space modeled by extracted descriptors (Lokoc et al.| [2016]). The
main idea of the k-NN algorithm is to cluster objects in vector space using the
Voronoi partitioning algorithm (inspired by the M-Index described in Section
and then to search for neighbors only in the closest partitions to each query.
During the search, the metric space filtering and pruning principles (described in
Section are also employed to reduce the number of distance computations.
The approximation is involved by setting up an early stop rule defining how
many closest partitions are visited for query evaluation. Basically, this parameter
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reflects how many database objects are considered for the k-NN result. Hence,
the approximate search returns relevant results with high probability while the
query evaluation time is shortened significantly.

Nevertheless, as we presented later in the work of Kohout et al.| [2018], random
forests and neural networks displayed better classification results for this task.
Even so, a k-NN classifier can be used without a training phase required in
traditional machine learning algorithms and is suitable for unsupervised tasks.

Since the need for processing and classifying large batches of communication
snapshots emerged, we proposed distributed (approximate) k-NN algorithms for
the MapReduce (described in Section platform. We experimented with several
approached based on a space-filling curve, local sensitive hashing or metric access
methods principles. Specifically, the most promising method appeared to be the
approximate pivot-based k-NN similarity join (Cech et al.| [2016, 2017, [2020]) which
yield high approximation precision and fast execution time. Distributed k-NN
similarity join algorithms are described in full detail in the following Chapter [5]

Moreover, k-NN joins can be also used for data clustering or network data
exploration. The exploration is especially useful in scenarios where an expert user
searches for the most similar communication snapshots to selected queries and
obtains very similar communications that can be potentially malicious. Thus, the
similarity search can serve as a powerful tool for recommending servers or clients
that need to be further investigated.

4.3 Experimental results and applications

In this section, we present several selected experimental results from the works of
Lokoc et al. [2016, 2017], Kohout et al.| [2018]. We show the effectiveness of models
for communication snapshots classification and also introduce opportunities for
the similarity search and multimedia exploration in this domain.

Besides traditional metrics for measuring quality of methods like precision
and recall (Section we focused also on another metric called FP-50 that
is specific for the classification task. Formally, the value of the FP-50 error is
defined as (Pevny and Ker|[2015]):

1

FP50 =
-]

> 1[C(x;) > median{C(x;)|j € T*}], (4.1)

1€L~

where Z~ are indexes of the negative (benign) training samples, Z* are indexes
of the infected training samples (malware), C(z) is the output of the classifier
(classification score) for the sample = and I is an indicator function. The motivation
is to have as low false alarm rate as possible. In other words, the FP-50 error
indicates how many benign communication snapshots are present among the top
half of infected snapshots according to the classifier score.

First, we compared our centralized k-NN solution with the ECM linear classifier
proposed by [Pevny and Ker| [2015]. Experiments were measured on data collected
by Cisco’s cloud web security solution[]. Our experimental dataset contains data
from one day collected from many companies worldwide (altogether 145 822 799
connections to 475 605 unique servers with the total transferred data volume

Thttp://www.cisco.com/c/en/us/products/security /cloud-web-security /index.html
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equal to 10 082 GB). Descriptors were formed using the joint-histogram algorithm
and data were separated into 6 folds (each fold contains communication for 4
hour time period). For training purposes, communications were labeled by the
virustotal.com service. Specifically, some messages m also contained SHA
hashes of the binaries that started the HT'TPS connection. If the hashes existed
they were run by the service and if more than 10 anti-viruses claimed they were
infected, the whole communication snapshot containing such the message m was
labeled as infected.

time of
classifier FP-50  training classification
ECM 13.23%  56mins 0.3s
exact 4-NN no index 2.015% 0s 80mins
exact 4-NN 2.015% 44s 17mins
exact 4-NN with idf 2.247% 44s 23mins
approx. 4-NN (4% DB)  2.017% 44s 3mins

Table 4.1: FP-50 error and average training and classification times for data with
six-fold validation presented by |Lokoc et al.| [2016]. Results are displayed for the
4-NN classifier that demonstrated the best FP-50 outcomes.

The Table [4.1] summarizes FP-50 error results for the centralized solution
approach. We may observe that the k-NN classifier outperforms the ECM linear
classifier by a significant margin. Moreover, total training and classification time
of the k-NN classifier is shorter, especially for the approximate variant.

In the journal paper by Kohout et al.| [2018], we have further investigated
the classification experimental evaluations on bigger datasets and with more
advanced machine learning approaches. We compared four classifiers consisting of
neural networks, random forests, ECM linear, and XGBoost classifiers for different
representations of communication snapshots (employing both variants of GMM and
joint-histogram algorithms). The classification results are displayed in Figure .
The experiments proved that the concept of modeling aggregated network data
into communication snapshots is more efficient for classification purposes since
the precision is significantly higher. Specifically, the random forest and XGBoost
classifiers outperformed other methods and achieved the best accuracy. More
details are presented in the previously mentioned work by Kohout et al.|[2018].

4.3.1 Similarity search and exploration in network traffic

As discussed earlier, the similarity search can be used for unsupervised data
organization and pre-processing. In this subsection, we describe how similarity
and precision of modeled snapshot descriptors can be measured, and we showcase
a demo application working with HT'TPS data.

The precision of the k-NN similarity search for growing k and different data
(joint-histograms and two GMM methods — Gaussians determined by either
supervised and unsupervised method) is displayed in Figure . A set of queries
for the k-NN search was composed only of malicious snapshots. The point of this
figure is to show whether infected snapshots are close to each other in the space
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Figure 4.2: Precision, recall, and receiver operating characteristic (ROC) curves
for all tested types of descriptors and classifiers. I thank Tomas Komarek (Kohout

) for these images.

modeled by certain descriptors (histograms, GMM). This experiment was measured
on a bigger dataset described in more detail in the paper by Kohout et al. [2018].
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Figure 4.3: Precision for growing k for different descriptors (joint-histograms,
supervised and unsupervised GMMs). The mean value is described by the X mark
and median by the horizontal dash in each column (Kohout et al.|[2018]).

You may observe that supervised GMM presents the best precision. However,
this observation was expected because the training phase for the GMM600 SU
data treated benign and malicious snapshots separately. Nonetheless, in this
experiment, we focus mainly on unsupervised methods and you may observe that
GMM600_UN data present slightly better precision compared to joint-histograms.

We have also implemented a visualization and support too]E] for intrusion
detection experts that can help them organize suspicious communication snapshots
formed for clients and inspect potentially malicious clients or servers (Lokoc et al.
[2017]). The application shows infected nodes (either servers or clients) and
organizes them on a display utilizing the similarity model based on distances
between sparse joint-histograms (see Figure . More similar nodes are attracted
to each other while the dissimilar ones are repulsed. Users can inspect details of
each node (see Figure , switch to different views as well as dynamically change
parameters of the retrieval model (e.g., set weights of particular dimensions in
descriptors). Moreover, the tool can be also used for exploration purposes — users
can select nodes of their interest as a query and then perform the search for the
most similar ones. Retrieved results can be further investigated by the domain
experts who can assess their potential threat.

The next Chapter [5|describes details of algorithms for distributed computations.
From yet presented algorithms and content-based retrieval systems is evident that

2http:/ /herkules.ms.mff.cuni.cz/NetworkData
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Figure 4.4: Initial display of the network data exploration tool by Lokoc et al.
[2017]. Each node represents a client that can be potentially infected by one or

more malware (each malware has a different color). Clients with high similarity
according to the employed similarity model are organized in tighter clusters and

are connected by edges.

COPRO1,CAMZ03 [l
SERVER [}

Figure 4.5: Detail view of the network data exploration tool by Lokoc et al. [2017].
For each client, servers that the client communicated with are displayed. In this
view, experts can inspect if selected clients communicated with the same servers

and then point to potentially suspicious servers.

scalability issues are emerging for multimedia data and systems for evaluating
queries in parallel and storing data in a big cluster proved to be one of the solutions

dealing with such matter.



5. Distributed similarity joins

From all presented retrieval systems studied in different domains so far, the need
for effective and efficient query evaluation is evident. As discussed earlier, one of
the promising ways is adopting query evaluation systems and index structures
to a distributed environment to deal with scalability issues. One of the great
benefits of the parallel distribution is that an evaluation cluster can be relatively
easily reduced or enlarged depending on the size of a dataset and the needs of
a multimedia retrieval system. In the chapter, we describe similarity joins for
metric spaces that can calculate many queries altogether. Furthermore, joins are
useful for pre-computing large similarity graphs and networks that can be utilized
for multimedia exploration without the need for evaluating queries on the fly.

In this chapter, we introduce several algorithms working in the MapReduce
environment implemented in Hadoop and Spark platforms. The chapter is heavily
based on the journal paper by |Cech et al.|[2020] written mostly by the author of
this thesis. I am very grateful for all the discussions and numerous corrections to
my co-authors.

5.1 Motivation

The k-nearest neighbor (k-NN) similarity join is an asymmetric operation that
returns the k£ most similar objects in a dataset S for each query object in a dataset
R. In recent years, the study of k-NN joins attracted a considerable amount of
attention due to their applicability in various domains. In the data mining and
machine learning context, k-NN joins can be employed as a pre-processing step
for classification or cluster analysis. In data exploration and information retrieval,
similarity joins provide a similarity graph with potentially relevant entities for
each object in the database. k-NN similarity join applications can be found, for
example, in image and video retrieval (Ferhatosmanoglu et al. [2001], |Giacinto
[2007], |Cobarzan et al.| [2017], |Lokoc et al. [2018]), spatial databases (Hjaltason
and Samet| [1999]), pattern recognition (Muja and Lowe| [2014]), and network
communication analysis and malware detection frameworks (Cech et al|[2016],
Lokoc et al.| [2016]).

Because data volumes are often too large to be processed on a single machine
(especially for high-dimensional data), we focus on the distributed MapReduce
environment |Dean and Ghemawat| [2008| running on HadoopE] and Sparkﬂ MapRe-
duce is a widely adopted framework and is considered an efficient and scalable
solution for distributed big data processing. MapReduce programs are designed
to run on large clusters of commodity hardware and employ a programming
paradigm similar to the divide and conquer approach. Datasets are loaded, split
and pre-processed in the map phase and the main execution and evaluation of
an algorithm are performed in parallel on smaller data fractions in the reduce
phase. More details about MapReduce and specific platforms are described in

Section [1.4]

'http://hadoop.apache.org/
’http://spark.apache.org/
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In this chapter, we study approximate k-NN similarity join algorithms that
can provide significant speedup compared to the exact similarity join while still
preserving high results precision. In many domains, the difference between exact
and slightly different k& nearest results is acceptable. This is particularly the case
in scenarios where computing the exact similarity joins over big high-dimensional
data would take significantly large execution times.

Our study focuses on similarity joins for MapReduce environments based
on the metric space approach (Zezula et al. [2006]). This approach provides
a universal framework for the efficient processing of various similarity models.
For evaluations on vector data, we also revisited and extended two previously
proposed k-NN similarity join approaches designed for vector spaces. In this
chapter, we focus on algorithms employing data organizations and replication
strategies initialized randomly as these techniques can be conveniently applied to
Big Data in different domains. Although a study tackling related similarity joins
has been previously published for Hadoop by [Song et al.| [2015], the study focused
on low dimensional data. The subsequent journal paper by Song et al. [2016]
tested data up to 386 dimensions and highlighted limitations for most k-NN join
methods on such a high-dimensional dataset. The need for effective and efficient
k-NN similarity joins for high-dimensional data led us to (1) design distributed
similarity join techniques with thresholds or approximation guarantees, (2) revise
available MapReduce algorithms integrating extensions to more efficiently handle
high-dimensional data, (3) consider the implementation of such algorithms on
a different platform - Spark (in addition to Hadoop), and (4) experimentally
evaluate and compare the performance of the different approaches.

This chapter draws mainly from the journal paper by |Cech et al. [2020], from a
short conference paper that presented a comparison of our heuristic method with
two previously proposed approaches on Hadoop by (Cech et al.| [2017] and follows
the paper proposing the pivot-based heuristic k-NN join method by |Cech et al.
[2016] as well. We introduce several MapReduce based methods for processing
k-NN similarity joins in Hadoop and Spark environments. We study exact,
approximate, and e-approximate versions of pivot-based algorithms and also tackle
other related algorithms. Moreover, we provide implementation details and present
comprehensive evaluations of all mentioned approaches.

5.1.1 Contributions

The overall contribution of our work regarding similarity joins can be summarized
into four points:

e Extensions of previously proposed k-NN similarity join algorithms on MapRe-
duce to process big high-dimensional data more efficiently.

e The introduction of pivot-based k-NN similarity join heuristic approaches on
MapReduce that support approximation-related thresholds and guarantees.
We analyze an approach that provides the e-guarantee (which constrains the
distance from each query point to its furthest neighbor returned in the k-NN
join). We include a discussion of the theoretical foundations that support
the proposed methods.
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e The Spark and Hadoop implementation guidelines of the proposed MapRe-
duce join methods. We point out the limitations of different platforms and
show why Spark provides faster execution times. We also provide the source
code of the Spark implementation of all the evaluated methods, including
our new implementations of baseline related approaches based on space
filling curves (Z-curve) and locality sensitive hashing,.

e Thorough and extensive performance evaluation on large data with different
dimensionality (from 10 to 1000 dimensions) running on fully distributed
Amazon clusters, with most experiments evaluated on the Spark platform
processing up to tens of millions of objects. This analysis provides guidance
for selecting an appropriate algorithm for distributed k-NN join based on
workload and approximation precision requirements.

The remaining part of the chapter is structured in the following way. In
Section [5.2] basic formal definitions and common terms are revised. An overview
of similarity joins problems, two related methods, and several proposed extensions
of these methods are covered in Section [5.3] Section presents several exact
and approximate pivot-based k-NN similarity join algorithms on MapReduce and
provides their implementation guidelines. Finally, in Section [5.5] the performance
evaluation of all the implemented algorithms is presented and the results are
discussed.

5.2 Preliminaries

The fundamental concepts and basic definitions related to approximate k-NN
similarity joins are revised in the following subsections, considering the standard
notations by [Song et al.|[2016], |Zezula et al.| [2006].

5.2.1 Similarity model and k-NN joins

In this work, we address the efficiency of k-NN similarity joins of complex objects
obj; (e.g., images or network traffic snapshots) modeled by high-dimensional
vectors o; € R™. Unless otherwise stated, in the following text the term object
denotes the vector representation. In connection with a metric distance function
§:R" x R® — R{, the tuple M = (R",4) forms a metric space that serves as a
similarity model for retrieval (low distance means high similarity and vice versa)ﬁ
A popular basic similarity search operation is the k-NN query that returns &
nearest neighbors from a database S C R" to a given query object ¢ € R".

ENN(q,S)={X C S;|X|=kAVz e X,VyeS—X:0(¢qgx)<dqy} (51)

A more complex k-NN similarity join operator is defined for a database S C R"
and a set of query objects R C R™ as:

Rx S={(q,s)| g€ R,s € kNN(q,5)}. (5.2)

3The effectiveness of the distance function and feature extraction mapping from obj to o is
the subject of similarity modeling.
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Because of the high computational complexity of similarity queries especially
combined with similarity joins, approximations of the queries can be considered
to significantly reduce computational costs (increase efficiency) while maintaining
reasonable precision (trying to preserve effectiveness). An approximation can
be achieved by employing many techniques and is divided into two main types:
approximation with or without a guarantee. Typically, it is more difficult to
achieve any form of guarantee. For example, the guarantee can be enforced by
setting up a maximal distance parameter € (e-guarantee) or defining the worst
statistical error. Apart from that, methods without guarantee, usually, only limit,
for example, the maximum number of distance computation or query evaluation
time. Formally, e-approximation of the exact k-NN query (denoted as kN N,) is
defined as:

kNN,(g,S) = {X C S;|X| =k A

5 - 5 <. 5 (5.3)
e hNN(,5) (4. 2) = TR (g:2) < € PERNN (4.5) (@.2)}

where € > 1 is a constant affecting the level of approximation. The approximate
k-NN similarity join is then defined as:

Rx,S={(g,s)| g€ R,s € kNN,(q,5)}, (5.4)

While the previous definition of the (epsilon) approximate k-NN join has
been commonly used in the literature, to the best of our knowledge, no previous
paper has actually implemented a MapReduce k-NN similarity join algorithm
that receives € as a parameter and guarantees the e-related property specified
in the definition. Instead, previous papers have primarily proposed heuristic
methods that aim at (1) having shorter execution times than the exact k-NN
join, and (2) having a relatively high result quality quantified by alternative
approximation measures like precision and total distance error (these and other
measures are presented in Section . To present a comprehensive study and
the trade-offs of different types of approximate k-NN joins, in this chapter, we
present a method that satisfies the € guarantee and compares it with extensions
of several heuristic-based methods.

5.2.2 Approximation measures

Once approximate k-NN joins are considered, the similarity join approximation
quality and error have to be evaluated. For this purpose, different approximation
measures (Patella and Ciaccial [2008]) can be utilized.

The k-NN query approximation precision is defined with respect to the result
of exact k-NN search as:

_ |ENN(q,S) NENN,(q,S)|
a k

An object o, € kNN(q,S) matches an object o; € kNN,(q,S) iff either
ID(0;) = ID(oj) or §(q,0;) = d(q,0;) (equal distant objects from a query ¢ may
be present in the k-NN result in an arbitrary order). Final approximate precision
is computed as a sum of matching k nearest objects divided by the k.

precision(k, q,S) (5.5)
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Other approximation measures we use are the total distance ratio,

3 6(g. kNN (g, S)[i)
S50 8(q, kN Na(g, S)[i))
which represents a ratio between the sums of all neighbor distances in exact
and approximate join results and the effective (epsilon) error for the k** neighbor,

DR(k,q,5) (5.6)

€015k, g, S) = 0(q, kN Na(g, S)[]) (57)

6(¢, kN-N(q, S)[k])
comparing the distances to a specific neighbor (usually at the k* position).
In all definitions, the kN N(q, S)[i] expression stands for the i neighbor in a
sorted kNN (q, S) result.

5.3 Related work on similarity joins

Many types of different similarity joins have been defined and studied over recent
years. Specifically, previous work in this area studied k-Distance joins (Hjaltason
and Samet| [1998]) (returns the smallest k pairs between two datasets), range
query joins (Silva and Reed| [2012], Ma et al. [2016]) (returns all the pairs with
a distance equal to or smaller than a given threshold) and k-NN similarity joins
(for each record of the first dataset, it returns the k closest records in the second
dataset) by Bohm and Krebs| [2004], Lu et al. [2012]. Some join techniques focus
just on specific data types, e.g., set-similarity joins by Vernica et al. [2010], Rong
et al.| [2017] or string joins with edit distance constraints (Ed-Join by Xiao et al.
[2008], Trie-Join by |Wang et al.| [2010]). Other approaches, like QuickJoin by
Jacox and Samet| [2008|, use pivot-based iterative space partitioning or utilize grid
structure (Epsilon Grid — EGO by Bohm et al.|[2001]). Similarity joins were also
studied in the context of database systems and database operators (Chaudhuri
et al.| [2006], [Silva et al. [2015]). In this chapter, we focus on the last type of
similarity joins: the k-NN joins which return the k nearest neighbors for each
query object. The k-NN joins are usually specified on either metric spaces (Lu
et al.|[2012], Jacox and Samet| [2008]) or just vector data spaces (Kim et al.| [2016],
Tang et al. [2015]). Some centralized solutions for k-NN joins employ an index
structure providing a significant evaluation speed up, e.g., the R-tree (MuX by
Bohm and Krebs| [2004]) or B*-tree (iJoin by [Yu et al.| [2007]) based techniques.

Since sharing a complex index structure is not efficient and perhaps not
even viable in a distributed environment many algorithms cannot be optimally
parallelized. On the other hand, different algorithms were recently proposed
directly for the MapReduce framework which is designed to work in a fully
distributed environment composed of up to thousands of computing machines.
Specifically, for the MapReduce paradigm, multiple methods were proposed for
range query joins (Ma et al. [2016, 2017], |Silva et al. [2012]) and k-NN joins
utilizing pivot space partitioning (Cech et al. [2016], Lu et al. [2012], Kim et al.
[2016], [Hu et al.|[2016]), space filling curves (Z-curve by Zhang et al.| [2012]),
locality sensitive hashing (Stupar et al.| [2010], Zhu et al|[2015]) and Hamming
distance filtering by Tang et al|[2015]. The k-NN algorithms (e.g., [Zhang et al.
[2012], |Stupar et al. [2010]) usually work in three phases: a data partitioning
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phase, a partial k-NN join computation, and intermediate results merge phase.
However, not all methods need the third merge phase (e.g., Lu et al. [2012], |Kim
et al. [2016]) because the final results are already produced in the second phase.

Related papers by Moise et al. [2013bja], Guomundsson et al.| [2017], |Zaharia
et al| [2016] have analyzed the advantages, disadvantages and bottlenecks of
two of the most well-known distributed MapReduce platforms: Hadoop and
Spark. Hadoop is a framework with a high focus on disk persisting operations
while Spark aims to take advantage of distributed random access memory (RAM)
on cluster nodes and stores data on hard drives only when the main memory
space is insufficient. Since most of the previous work considering similarity k-NN
joins has been proposed only for the Hadoop framework, we also integrate the
implementation and performance evaluation on the Spark platform. Some of the
algorithm implementation details, in fact, significantly differ between these two
platforms.

In this chapter, we primarily focus on MapReduce-based general metric k-NN
similarity joins described in detail later in Section [5.4] For the experiments and
comparisons performed on vector data, we selected and revisited the implementa-
tion of two methods for vector spaces: space-filling Z-curve and locality sensitive
hashing. Since the metric joins use randomly selected database objects for index-
ing, we have selected methods that also use a convenient random initialization of
data partitions.

5.3.1 Space-filling curve based k-NN similarity joins
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Figure 5.1: Example of the Z-curve mapping objects to the one-dimensional space
and following partitioning for a parallel MapReduce processing.

A space-filling curve is an approach to map n—dimensional objects to a one-
dimensional domain and yet preserve (to some extent) proximity of the objects.
Such an approach can be used to design efficient approximate k-NN search methods
using the one-dimensional values. An example of the mapping is the popular
z-order curve method that easily creates so-called z-value from object coordinates
by interleaving their binary representations (see Figure . Different types of
space filling curves have been proposed for approximate k-NN search, e.g., Z-curve
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by Yao et al. [2010], Z-curve with projections by [Schubert et al.| [2015] or Hilbert
curve by Angiulli and Pizzuti [2005].

To improve the approximate search precision, |Yao et al.[[2010] have proposed
a centralized approach zk-NN where a randomly shifted copies of the dataset (by
v; € R™) are created. For each database copy S; (S; = U;{0i} : 0, =0+ v;,Yo € S
and for i = 0,5y = 5), z-values of modified objects are computed and sorted.
Similarly, all query objects in R are shifted to copies R;. Each ¢; € R; is used to
query S; for 2 - k objects with the k nearest lower and k nearest higher z-values
from S; to ¢;. The result of a k-NN query is then refined from 2 - « - k candidates
using the original representations from R".

In this thesis, we compare our methods to the work of Zhang et al.| [2012] who
adapted the zk-NN method for the MapReduce framework. For parallelization
purposes, z-values are also used for dividing objects in each copy .5; and R; into n
independent partitions. Every database and query object is sent to a designated
partition n;. Moreover, we must ensure that each query has the required nearest
neighbor candidates. Thus, database objects located close to partition boundaries
are also replicated (copied) to neighboring partitions to guarantee that each query
g will have k lower and k higher neighboring database candidates according to
z-values. In ideal case, the best boundary points would be %, %, cee ”T’l quantiles
of R; to define as equal query distribution as possible. Nonetheless, precise
partitioning may be very expensive due to large data volumes. Instead, objects are
sampled and depending on their values and the probability model, approximate
quantiles are determined.

Inside each partition, every present query object is used to find 2 - k nearest
database object candidates. Distances to the candidates are evaluated and in-
termediate k-NN results are returned. Each partition is processed by a separate
reducer. Using a suitable number of partitions and having data equally distributed,
the portion of data for each reducer is small enough to be stored in node memory.
Finally, the nearest objects for each query are detected by merging the candidate
k-NN results obtained from all copies S;. The Z-curve approach overview is
depicted in Algorithm

Implementation revision

The Hadoop application runs in three MapReduce jobs. We came out of the
Java source codes that were provided by the authors Zhang et al. [2012] of the
original paper. Then we made minor modifications such as data representation
changes and memory optimization which favor evaluation time. For purposes of
high-dimensional data computation, we also improved the z-values serialization
and implemented the z-value computation of floating point values (values are
converted to integers by scaling them by the given constant). The algorithm itself
has not been modified.

Our Z-curve implementation in Spark includes a few improvements and adjust-
ments. We integrated an option named OnlyZorder which decides how objects
with mapped z-value are stored. In case OnlyZorder = true the algorithm works
in the same way as Hadoop version while the OnlyZorder = false option means
that we store an original object’s vector together with the z-value which results
in a higher memory usage but the computation is faster because the back trans-
formation from the z-value to original vector coordinates does not have to be
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Algorithm 1 Z-Curve k-NN join(R, S, k, shifts, samplingRate)

10:
11:

12:
13:
14:
15:

16:
17:
18:
19:
20:

21:
22:
23:
24:
25:
26:

27:
28:
29:
30:
31:
32:

Zr = map objects R to z-values using shifts //for all shifts

Zs = map objects S to z-values using shi fts

Partr = partitions of Zg, employing samplingRate //Partr — no overlap
Partgs = partitions of Zg, employing samplingRate //Parts may overlap

for query ¢ in R do
for shift; in shifts do
24i = z-value corresponding to ¢ in shift; from Zp
Part; ; = get partition Id for z,, according to Partr
output pair [Part; j, z,;]  // the key = [shift id, partition index]
end for
end for

for db object 0 in S do
for shift; in shifts do
20 = z-value corresponding to o in shift; from Zg
Partitions,; = get partitions for z,; according to Partg
//the replication — db objects can belong to multiple partitions in each shift
for all Part; ; in Partitions,; do
output pair [Part; ;, 2]
end for
end for
end for

—partition, shuffle, group by key—
for all partitions Part;; do
parse all query objects to Zg, ; and db objects to Zs, ., order Zg,
for z, in Zg,; do //for all queries in the bucket
%, = binarySearch(z,, Zs, ;)
produce candidate set C;; = {2, — k, 2, + k} of db objects, |C; ;| = 2k
//C; ; contains k lower and k higher db objects based on the z-value
output intermediate result kN N,(q, C; ;)
end for
end for
for query ¢ in R do //final k-NN results are produced
merge intermediate results kNN, (q, C; ;) into final result kNN, (g, S)
end for
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performed (and we can also utilize a fast L2 distance for sparse vectors which is
used for other methods).

We also integrated a second parameter called EntirePartitions which deter-
mines how many database objects in each partition S; are considered for real
distance computations to a query q € R;. If EntirePartitions = false then the
algorithm uses the original 2 - k closest neighbors by z-values from an S;. In
case the EntirePartitions = true, all database objects in a specific partition
S; are considered and all distances d(q, s;),s; € S; are evaluated. The second
option (EntirePartitions = true) leads to higher approximation precision but
runs substantially longer. Detailed results for all options are presented in the
experimental Section [5.5]

Other than that, the Spark implementation follows the original Hadoop al-
gorithm and the best Spark programming practices. All shared data structures
are broadcasted to all executors and intermediate results are kept in memory
(persistence mode is set to the MEMORY__AND_ DISK mode) and, usually, don’t
have to be written to HDFS. Here we observe the most significant speed up for a
comparison between Hadoop and Spark implementations among all studied k-NN
join algorithms (concrete numbers are presented in Section . This observation
is explained by many disk operations performed by the Hadoop Z-curve implemen-
tation. Also, the Hadoop version is implemented in three separate MapReduce
jobs and utilizes the MultipleOutputs class for storing temporary results and
statistics (e.g., partitions). These results have to be merged and distributed to all
mappers and reducers in the following stages which require a lot of I/O operations.
Compared to that, the Spark implementation keeps all needed data in memory
and does not require repetitive (expensive) disk accesses (assuming a reasonable
amount of RAM is available on computing machines).

5.3.2 LSH-based k-NN similarity joins

%
%,
S
(}.
‘ °° ‘ ﬁ OOJ‘
/Sé 003 q3A ) .-'o . A
\Z . q *., %0 “ o
%, o 11A o 1 ces o U2
5

Hash functions

Figure 5.2: Schema of locality sensitive hashing.

Locality Sensitive Hashing (LSH, Datar et al|[2004]) is a well-known technique
that hashes similar objects into the same buckets with high probability. Thanks
to this property, LSH can be effectively used also for the k-NN search since
the nearest neighbors are likely to be located in the same bucket. Specifically,

69



RankReduce proposed by [Stupar et al|[2010] represents an approximate k-NN
join algorithm running in MapReduce environment to simultaneously process a
small number of k-NN search queries in a single MapReduce job using the LSH
algorithm. The key idea behind RankReduce is to use hashing to build an index
that assigns similar records to the same hash table buckets. Zhu et al.| [2015]
proposed an improved version of RankReduce which builds the index in more
efficient way and also compares queries only with database candidates that appear
more frequently in the same buckets as queries. However, both related MapReduce
techniques are oriented towards long-running querying systems. They maintain
the database index and the main goal is to provide fast responses to requested
k-NN queries. An important property is that they assume that the number of
queries is relatively small. On the other hand, many similarity join application
scenarios focus on evaluating a lot of queries at once and possibly only once.

Unlike the previously mentioned methods, our LSH approach does not build
persisting database indices because we focus mainly on performing independent
similarity joins. Nevertheless, our algorithm could be easily adjusted to store
hashed database objects for later use. Also, the previously proposed techniques
are not really scalable because they assumed only a small number of queries R in
the input which is a big limitation in many application scenarios. Considering
this, we implemented a new LSH algorithm. From a high level point of view, our
algorithm just compares database and query objects that fall into the same hash
bucket after performing hashing operations on both R and S sets. To increase
the approximation precision, intermediate k-NN results are produced for several
independent sets of hashing functions and the final k-NN join is formed by merging
the intermediate results. An illustration is depicted in Figure [5.2]

The presented method is composed of two main MapReduce jobs in Hadoop: a
hashing job including k-NN evaluation and a merging job. During the map phase of
the hashing job, both database (S) and query objects (R) are hashed using a set of
i hash tables each containing j hash functions of the form h, p(v) = | (a-v+B)/W |,
where W is a parameter and a and b are constants generated from the p-normal
distribution. For every input record v € S U R, a set of output keys (buckets)
hash; are evaluated. One hash; represents a unique string formed from j hash
functions corresponding to the hash table 7. The map phase emits pairs of the
form (hash;,v). In the reduce phase of the hashing job, local k-NN candidates are
computed for a subset of queries and database objects in every bucket identified
by the key hash;. In the second MapReduce job, all partial results are loaded,
grouped by the query object IDs and global k-NN results for all queries are
produced. The whole LSH application is also described in the Algorithm

Implementation revision

We implemented this algorithm from scratch and initially followed the algorithm
presented in Stupar et al.| [2010] until we realized different needs and limitations
of the original approach. From the original paper is unclear how to implement
hashing using pre-computed hash functions h, p(v). Because hashing objects
directly resulted in just one big hash bucket, we implemented a pre-processing
step including standard normal transformation (a value o; is transformed to
0; = “—) of all input objects.

Altogether, our LSH program is composed of three MapReduce jobs. In the
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Algorithm 2 LSH k-NN join(R, S, k, hashTables, W)

1: apply standard normal transformation to R and S //helps with hashing

2: for hash table HT; in hashTables do
3: for query ¢ in R do
//bucket B;; contains composed results from all hash functions in HT;

hash ¢ in B; ; using HT; and W
output pair [B; , ¢

end for

for db object 0 in S do
hash o in B;; using HT; and W
output pair [B; j, 0]

10: end for

11: end for

12: —partition, shuffle, group by key—

13: for all hash buckets B; ; do

14: parse queries to R; ; and db objects to .S; ;
15: for query ¢ in R, ; do

16: output intermediate result kNN, (¢, S; ;)
17: end for
18: end for

19: for query ¢ in R do //final k-NN results are produced
20: merge intermediate results kNN, (g, S; ;) into the final result kNN, (g, S)
21: end for

71



first job, statistics for the normal transformation are collected. The second job
performs the transformation of all objects and computes the hash values in the
map phase. In the reduce phase of the second job, the intermediate k-NN results
are computed across all buckets. In the last job, intermediate results are merged
and global k-NN results are produced.

Our Spark implementation follows the Hadoop one closely. There is no signifi-
cant difference, data are also transformed using normal standard transformation,
all hash tables are broadcasted to all executors, data are grouped by the output of
hashing functions and intermediate results are merged to produce final k-NN join
results. The only difference is that dimension statistics and intermediate results
do not have to be written back to the HDFS and are kept in memory which speeds
up the whole application execution.

5.4 Pivot-based k-NN similarity joins

Pivot-based methods represent a useful generic approach with the convenient
random initialization, which nevertheless reflects data distribution by dividing
a metric space into partitions centered around global objects (pivots) selected
from the dataset. The benefits of pivot-based methods have been investigated for
k-NN similarity joins on MapReduce in the work of Lu et al|[2012]. The authors
describe how mappers cluster objects into groups and reducers perform the k-NN
join on each group of objects separately. Distance function properties are used
to define exact rules for data replication and filtering of non-relevant objects.
However, in high-dimensional metric spaces the rules are not sufficiently efficient
(the curse of dimensionality effect). In this section, we investigate algorithms for
approximate k-NN similarity joins on MapReduce. First, the work of |[Lu et al.
[2012] is presented including our comments on revised parts (Section [5.4.2). Then,
we present our additional modifications of the exact search method to obtain a
heuristic method in Section [5.4.3]and we discuss a method with the e-guarantee in
Section [5.4.4 For better clarity, Table [5.1I] summarizes the symbols of frequently
used sets in the following subsections.

SCcR” A finite set of database objects

RCR" A finite set of query objects

rPcs A finite set of pivots selected from database objects

C; CR" Voronoi cell: {z|r € R"Ap; € PAVy,cp(6(z,pi) < d(z,p;))}

S, =SnNC; Database objects in the Voronoi cell C;
Ri=RNCC; Query objects in the Voronoi cell C;

||
C=U{C} Set of all Voronoi cells for the set of pivots P
i=1

Gy, ...,G,, C C" A decomposition of C' into m groups of Voronoi cells
St C S, Subset of database objects from .S; replicated to group G|
Rl = R; All query objects from R; are replicated to group G

Table 5.1: Symbols of frequently used sets.
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5.4.1 Exact k-NN similarity join approach

The original version of the pivot-based exact k-NN join algorithm by |Lu et al.
[2012] (referred to as PGBJ) utilizes a Voronoi partitioning based on the set of
pre-selected global pivots p; € P and a metric distance function 0. The algorithm
is composed of two main phases: data pre-processing and k-NN join evaluation.
The general evaluation workflow of the algorithm is depicted in Figure [5.3

Preprocessing k-NN join

(2) (3)
Voronoi

) partitioning -

@ Hadoop file system (HDFS) @

Figure 5.3: Workflow of the original implementation of the pivot-based approach
for MapReduce by |Lu et al|[2012]. Solid arrows represent data flow, dashed
arrows represent algorithmic steps.

(4)

k-NN
~\ evaluation

Voronoi
statistics

Pivot
selection

Grouping }--

E

The pre-processing phase consists of five steps. In step [5.3}1, pivots P are
selected from the set of database objects S by an external program (EP). In step
[5.3}2, a Map job is used to evaluate sets S; = SN C; and R; = RN C; for all
Voronoi cells C;. Specifically, distances from all objects S U R to all pivots P are
computed and for every object the nearest pivot is identified. For database and
query objects, the following records are created and stored (Table .

database object record rec, = [0 € S;, 1D,,, (0, p;)]
query object record rec, = [q € R;, ID,,,d(q,p;)]

Table 5.2: Records for database and query objects.

In step [5.3.3, statistics are computed for every set S; and R; including the
covering radius, the number of objects o; and the total size of all objects o;.
Moreover, the distances of the k nearest objects o € S; to the pivot p; are saved for
each set S; for replication rules. In step[5.34, the Voronoi cells C; are clustered
into bigger disjoint groups G, to limit the maximum amount of replication (see
step .6). The authors proposed a grouping algorithm considering both the
geometric and volume properties of cells to balance parallel workload of the
k-NN join. The number of groups G; should match the number of reducers (or
executors in Spark). In step [5.3]5, the lower and upper bounds (see Figure
are computed for replication that guarantees the correct execution of exact search
(see step [5.316). The following records (Table are created and stored for sets
Si and Rz

The second phase consists of two steps [5.316 and [5.3]7, where k-NN join of
the two sets (S and R) is performed as one MapReduce job. In the replication
step [5.316, all query objects ¢ € R; are assigned to a group G, iff C; € G,. We
will denote the corresponding group in the upper index (R!). Each database
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record for S;  recs, = [|Si|, size(S;), Ib, ub,{dy, ..., dy }]
record for R; recg, = [|R;l, size(R;), lb, ub]

Table 5.3: Records for sets S; and R; including the number of objects, size of
objects and the minimal (Ib) and maximal (ub) distance from the pivot p; to
objects in the set. recg, contains also distances to the k nearest objects to the
pivot p;. The records are distributed throughout the cluster (their size is relatively
small).

object o € S is assigned to all groups G} for which a lower bound LB(o, R;) is
less than or equal to an upper bound UB(R;) for any R; C C; € G,. The utilized
query radius upper bound UB(R;) is pre-computed in step [5.3}5 as depicted in
Figure |5.4] considering the distance R;.ub of the furthest ¢ € R; from p; and the
stored distances of the k nearest database objects to each pivot. The lower bound
distance to the furthest query object in R; for one database object o with the
closest pivot p; is determined by the formula:

LB(o, R;) = max{0,d(p;, p;) — Ri-ub— (0, p;)}.
Technically, the database object independent value
v;; = max{0,6(p;, p;) — Ri.ub— UB(R;)}

for a whole cell S; can be pre-computed and saved in the pre-processing phase and
only the comparison v;; < (o, p;) is performed for each object. A simple lower
and upper bounds scheme is visualized in Figure An important note is that
when Voronoi cells are aggregated into bigger groups, the values are computed
for the whole groups, selecting the minimal value across all R; in the particular
group. Objects o € S; replicated to a group G; form the set S!.

k=1
$ k-NN to pivot
pivots distance

R3 upper bound
(max distance)

Figure 5.4: An illustration showing how to compute an upper bound for the
Voronoi cell Cy (query objects in the cell Cs are denoted as R3) and given k = 1.
In this case, the result UB(R3) = Rs.ub + 0(ps, 03,) where Rs.ub is the upper
bound (maximal distance to a query object ¢ € R3 from the pivot p3) and o3, € S5
is the closest database object (1-NN) to the pivot ps.
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Figure 5.5: Simple visualization of lower and upper bounds.

Finally, every computing unit cu; (a reducer or executor corresponding to a
group () receives the query objects from all the sets R! and all the sets SJL of
database objects replicated to group Gy (step 7). Technically, the whole records
rec,, recy are sent to cu; as depicted in Algorithm , where the corresponding sets
of records are denoted as RecR! and RecS]l-. Then, for every query object ¢ € R!,
all sets S]l- are visited according to distances between the query’s nearest pivot and
pivots p;. The k-NN query is evaluated using metric space pruning techniques
for each set St. The authors of the original paper by |Lu et al. [2012] used parent
(Equation | and cosine law filtering strategies. After all sets SJ‘- are processed,

the final k-NN result for the query ¢ is produced.

5.4.2 Revisiting the exact k-NIN similarity join

In this thesis, we revise some ideas regarding the exact search and the overall
MapReduce k-NN join algorithm. We consider the efficient and convenient random
pivot selection in step [5.3}1 given that the benefits of more expensive complex
pivot selection techniques have been found with numbers of pivots significantly
smaller than the ones used in our work (we usually use thousands of pivots).
More details are presented in the paper by [Bustos et al.|[2003]. In step 4,
we implemented a grouping variant which reflects the total data size in addition
to the number of objects in each group Gj. In our previous work by |Cech et al.
[2016], we showed that such grouping is suitable for space-saving data formats
compressing sparse representations.

Regarding the k-NN evaluation step [5.3]7, we replaced the sorting of database
sets S! with respect to a query ¢ assigned to the group G;. The new version sorts
the sets based on the exact distances between the query ¢ and the pivots p;, unlike
the original algorithm which estimated the distances using the closest pivot to
q. The new ordering represents a heuristic trying to greedily reduce the actual
k-NN range radius and also improve the performance of the employed approximate
search heuristic. The authors of the original paper by Lu et al. [2012] used also the
cosine law for more efficient filtering. However, this technique cannot be applied
to all metric similarity functions so we omit this rule. On the other hand, we
propose the use of the ball (Equation and hyperplane (Equation filtering
strategies successfully employed in metric access methods (Zezula et al.| [20006]).

Algorithm [3] summarizes the revised PGBJ algorithm, highlighting primarily
the k-NN join steps[5.3].6 and [5.3}7. The algorithm closely follows the description
presented in the previous subsection. In the pre-processing phase, all support
data structures are computed and shared across the cluster (pivots, groups, lower
bounds). Specifically, the lower bound values v;; (line @ store values for whole
groups in ascending order. The function for computing upper bounds is presented
in Algorithm [4 This algorithm can compute upper bounds either for one query ¢

75



Algorithm 3 Exact pivot k-NN join(R, S, k)

T
8:
9:
10:
11:
12:

13:
14:
15:
16:
17:
18:

19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:

33:
34:
35:
36:
37:

pivots P = selected pivots from S

recg,recg = sets of db and query records with assigned closest pivot
Statsg, Statsgp = computed statistics for all Voronoi cells

groups G = grouped Voronoi cells using stats and pivots

upper Bounds UB(R;) = computeUB(null, R;, k, P, Statsg,recg,, true)
VG, € G: values v, = maX{O,}gneirGll{é(pi,pj) — R;ub—UB(R;)}}

for simplicity: o = rec,.0, ¢ = rec,.q, p; determines RecR; or RecS;

—map—
for query record rec, in recg do
G = get group ID for pivot rec,.ID,
output pair [G}; rec,]
end for
for db record rec, in recs do
//db objects can belong to multiple groups - the replication
for group ID G| in groups G do
if v; <rec,.0(0,p;) then //(o,p;) is pre-computed
output pair [Gy; rec,)
end if
end for
end for

—reduce— (each group G on one computing unit cu;)

for groups G; € G do //all records are grouped by the group id key
collect all sets with query and db records to RecR! and RecS"
for record rec, in RecR!,VRecR! € RecR' do

RecSt,,,.q = sort all RecS! € RecS' based on §(g, p;) in asc. order

kNN,s =0

r, = computeUB(rec,, null, k, P, Statsg, recg,, false)

for RecS! in RecS.,.,., do

sorte
if 6(q,p;) —ry > recy.6(q, p;) +r, then continue //Equation [1.10]
if §(q,p;) > RecSh.ub+r, then continue //Equation
for record rec, in RecS} do

if [6(q, p;) —rec,.6(0,p;)| > r, then continue //Equation

update kNN, s by o

if |kNN,s| =k thenr,= max d(q,z;)

.Z‘iEk‘NN(LS

end for
end for
output kNN, s
end for
end for

or for a whole query cell R, (the only difference is the part starting on the line |4
and is used for determining replications in PGBJ and in the e-guaranteed k-NN
similarity join algorithm (Section . In the map phase of Algorithm , the
query objects ¢ € R are sent to their corresponding group, while the database
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objects o, € S are distributed to multiple groups G; based on values v;; and

5(02,]9])
Algorithm 4 ComputeUB(rec,, Ry, k, P, Statsg, recg,, wholeCell)

1: PQ = () // priority queue in descending order by distance
2: for recg, in Statsg do
3: for distance d; in k distances to p; in recg,.{d1, ..., dx} do
//dist is computed either for one query ¢ or the whole cell R,

4: if wholeCell then

5: dist = recg,.ub + d(pg, pi) + d;j//p, is corresponding pivot to R,
6: else

7: dist = recy.0(q,pi) + d;

8: end if

9: if PQ.size < k then

10: add dist to PQ

11: else if P(Q).peek > dist then

12: remove the first (highest) distance from P@Q

13: add dist to PQ

14: else

15: break //distances d; are sorted in an ascending distance to p;
16: end if

17: end for

18: end for

19: return PQ).peek

In the reduce phase, the k-NN is computed for all queries using the suggested
metric space filtering methods and the exact k-NN results are produced.

Implementation revision

The Hadoop implementation is composed of two MapReduce jobs and was provided
by the authors Lu et al|[2012]. First, global pivots are chosen, they are stored
in HDFS and distributed via the Hadoop distributed cache class. Then, the first
MapReduce job computes the distances from all objects in both sets R and S to
all pivots, and collects Voronoi cell statistics in the map phase. After that, all
statistics are merged together, groups are determined and upper and lower bounds
are computed (these operations are implemented separately from any MapReduce
job). Statistics, group information and bounds are also distributed throughout the
cluster. Then, global k-NN results are computed in the second job. In the map
phase, all the objects are assigned to the designated groups (including replication).
In the reduce phase, the k-NN computation on a subset of queries and database
objects is performed as described previously in Section [5.4.1]

We also implemented the PGBJ algorithm in the Spark environment. The
main difference is that the distributed data structures (e.g., global pivots, records
with statistics for all sets, group information) do not have to be stored in the
HDFS but are kept in memory and broadcasted to all executors. Also, the entire
algorithm does not have to be split into two jobs so the total execution time
is faster. Empirical results of the comparison are presented in the evaluation

Section [5.5]
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5.4.3 Heuristic k-NN similarity join approach

Since the PGBJ replication algorithm uses pivot-based upper/lower bounds and
the replication strategy is designed for whole Voronoi cells, almost all database
objects are replicated to all groups in high-dimensional spaces. With the increasing
dimensionality, also the filtering rules lose their pruning power. Such behavior
is the consequence of the curse of dimensionality problem (Section . In
high-dimensional spaces, the distances between pairs of objects are more similar
and thus pivot-based lower bounds |§(p, 0) — d(p, ¢)| are usually very small, while
pivot-based upper bounds are often higher than the highest distance between two
objects. We build on our previous work by |Cech et al.| [2016], [2017], where we
proposed a heuristic k-NN similarity join method on Hadoop which significantly
speeds up the k-NN join time but preserves high approximation precision in the
average case. The method is labeled as the pivot approximate k-NN join (PAKJ)
and its high level schema is similar to the PGBJ method presented in Section [5.4.1
(Figure . Unlike the PGBJ method, the PAKJ method uses no guarantee
thresholds to limit replications and the number of visited sets S! by each query.

The replication step used by PAKJ is inspired by a repetitive Voronoi parti-
tioning used by the state-of-the-art metric indexing technique M-Index by [Novak
et al| [2011] (more details are described in Section [1.3.5). In each set S;, every
database object o further stores a list P° of identifiers of several closest pivots to
o (i.e., pivot permutation prefix by (Chavez Gonzalez et al. [2008]) detected in the
pre-processing step [5.3]2. Given the closest pivots to an object o, the proposed
replication heuristic assumes that the object o should be replicated mainly to the
groups containing Voronoi cells determined by the pivots (illustrated in Figure
for objects 01, 09,03 € S). The heuristic has a parameter Max RecDepth control-
ling the number of considered closest pivots for each object o € S;. The replication
heuristic utilizes directly the stored nearest pivot identifiers in step [5.3].6. Specifi-
cally, every database object o located in a set S; is replicated to groups G; C GG
that contain cells determined by pivots from P°. Hence, the step [5.3}5 designed
to compute upper/lower bounds can be skipped. Database records are stored in
the format displayed in Table [5.4]

database object record rec, =[o € S;,{ID, | p € P°},{d(0,p) | p € P°}]

Table 5.4: Adjusted database records for the PAKJ algorithm.

In the k-NN evaluation step [5.37, the new parameter called Filter Ratio is
employed to determine an early stop rule. The Filter Ratio parameter represents
the percentage of visited sets S! after which the k-NN search is stopped (e.g.,
Filter Ratio = 0.01 means that after visiting 0.01 - | P| sets the k-NN search is
terminated if at least k objects were found).

Our implementation of the PAKJ algorithm in Hadoop and Spark is similar
to the PGBJ join. New parameters during replication step and k-NN query
processing (early termination) are employed and also upper/lower bounds do not
have to be computed because they are not used for the replication strategy.
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Figure 5.6: An example of PAKJ replication of database objects 01, 0s, 03, given
MazxRecDepth = 2. All three objects are replicated, because their second closest
pivot is located in the other group.

5.4.4 k-NN similarity join approach with the e-guarantee

The PAKJ heuristic does not provide the worst case guarantees. This means that
despite a good performance in the average case, some k-NN queries forming the
join could result in a high effective (epsilon) error (Definition [5.7).

In this section, we investigate a MapReduce based k-NN similarity join method
for metric spaces that tackles the e-guaranteed approximation. Enforcing the
e-guarantee to support the approximately correct nearest neighbor (AC-NN)
queries has been presented in the paper by [Ciaccia and Patella) [1999] [2000]. More
specifically, given a query object ¢ € R and the distance to its nearest neighbor
r, € R{ the AC-NN query can return any object o € S such that 6(g,0) < €-ry,
e > 1. The authors present an exact nearest neighbor search algorithm that can
be adapted for AC-NN queries by substituting the distance to the actual nearest
neighbor candidate r, by *=. The same idea can be applied for approximate k-NN
similarity join methods on MapReduce with the e-guarantee. In the following
subsection, we summarize a sound formal background inspired by (Ciaccia and
Patella [2000] clarifying the correctness of the utilized approach for pivot-based
k-NN similarity joins on MapReduce.

Formal background

The goal of the following lemmas is to clarify that utilizing the = radius for
k-NN search in metric spaces preserves the e-guarantee (Definition . Moreover,
correct metric space filtering methods (object, ball and hyperplane filtering) can
be used to speed up approximately correct k-NN queries.

For all the following lemmas, we work with the next premises.

Premises. Let us assume a given metric space M = (R",6§), a query object
q € R", a finite data set S C R", an arbitrary candidate result set X C S,
| X| =k, an actual query radius r, = max d(q,x;), an approximation parameter

k2

e € R, e>1 and a set of pivots P C S.

Lemma |3 clarifies the idea that database objects o, € S — X that are in the
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“ring” < "z, 1, > centered in ¢ can be skipped and the e-guarantee will not be
violated.
Lemma 3. LetY = {o; € S| 6(q,0;) > ™} and ryy = max d(q, x;), then

z;€ENN(q,XUY)
it holds that == <'e.
zy
Proof 3. Trivial. 1y, > %, which implies that € > r"—l
zy

Note 1. As a consequence of Lemmal[3, skipping any database object o; € S — X,
d(q,0:) > ™= during query processing does not violate the e-guarantee condition for
e-approzimate k-NN search. Nevertheless, objects o; satisfying 6(q,0;) < r, can be
used to update the actual query radius r, and improve filtering efficiency.

Figure 5.7: An illustration of Lemma |3| Objects outside of the gray area can be
safely pruned.

Furthermore, Lemmas[d], 5] and [6]formalize the idea that filtering techniques de-

fined in Subsection (Definitions 1.10) do not violate the e-guarantee.
Lemma 4. Let Y = {o; € S| % < max|d(q,p) — 5(0;, p)[} and
P

Toy = max d(q,x;). Then it holds that == < e.
z;€kLNN(q,XUY) Tzy

Proof 4. Yo, € Y it holds that §(q,0;) > glgféw(q,p) —0(o,p)| = = In
p

€

connection with Lemma@ it holds that € > 7;—‘1/

Lemma 5. Letpe P, r, € R, Y = {o; € S | 0; € Ball(p,r,) A+ < 6(q,p)}
and 1y = max d(q,x;). Then it holds that == < e.

z;€kENN(q,XUY) Tzy
Proof 5. Yo; € Y it holds that 6(q,0;) > 6(q,p) — 1, > =. In connection with
Lemma@ it holds that € > r%y

Lemma 6. Let p1,p2 € P, S1 = {o; € S | §(p1,0:) < d(p2,0i)}, Y = {o; € S1 |

6(q¢,p1) — = > 6(q,p2) + =} and 1y = ... S 6(q,x;). Then it holds that

Tz < e,

Tzy

Proof 6. If 0(q,p1) — ™= > d(q,p2) + ™= then Yo; € Ball(q,™) it holds that
d(p1,05) > d(p2,05). Hence, Yo; €Y it holds that 5(q,0;) > *= and so € > =.

Yy
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The e-guaranteed pivot method

Following the Lemmas [3}{6, we present an algorithm called the pivot epsilon
guaranteed k-NN join on MapReduce (PEGKJ). It follows the revisited exact
k-NN join algorithm (Section and basically uses less strict rules (employing
the parameter €) during replication and k-NN query evaluation phases.

UB(R3)
<v3.s = 6(p3,ps) — R3.ub — T?’) < 5(0;,ps)

Figure 5.8: An example demonstrating the ¢ upper bound influence. Considering
the queries upper bound for the set R3 equals to UB(Rj3) (the black ball), for the
exact k-NN join algorithm some database objects from the set S5 are replicated
to the group G; (depending on the distance of an object o; to it’s corresponding
pivot). After the UB(R3) bound is lowered by the € (the dashed circle) parameter,
objects from the set S5 are no longer replicated.

We follow the schema in Figure [5.3| with several changes involving mainly the e
parameter. The first change is that the upper bound UB(R;) (estimate of a query
radius) for replication of objects to the group containing queries in R; is divided
by the € parameter. As the original UB(R;) radius estimate guarantees at least k
found objects possibly from more than one group, the PEGKJ method computes
UB(R;) using only the sets from the group containing R;. It is important to
realize that computing U B(R;) from all cells (i.e., from all groups) and lowering
the UB(R;) radius estimate by € could result into a situation where objects used
to compute the original UB(R;) are not replicated to the group containing R;.
Hence, k candidates for a query ¢ € R; and initial radius U B(R;) does not have to
be present in the group containing R;. Starting with a higher initial radius does
not help as it could lead to the violation of the k-NN e-guarantee for ¢ because
the approximate k" nearest neighbor could be located further than the € times
the distance to the exact k' nearest neighbor. Specifically, Algorithm {4 skips
pivots determining cells from different groups and in the last line of Algorithm [4]
the PQ.peek /e value is returned. An example and the effect of lowering UB(R;)
is depicted in Figure[5.8
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During the replication phase (potentially) less database objects o € S are
distributed and replicated among the groups because the pre-computed values v;;
are greater (UB(R;)/e is subtracted). Finally, in the k-NN evaluation phase the
€ parameter is utilized once first k nearest neighbor candidates are obtained for
initial radius estimate UB(R;). The initial query radius is computed in the same
way as in the original paper (using Algorithm I where the € is not employed to
guarantee a candidate set of size k). However, when k candidates are obtained, the
actual radlus ™ is correctly used for further query processing (Algorithm [3{lines
. based on previously presented Lemmas |4 I I @ Overall, the PEGKJ
algorlthm is e-correct because all replication and filtering techniques utilize rules
preserving the e-guarantee from Definition [5.4]

In the experiments, we observed that precision drops significantly with the
growing e parameter for the PEGKJ method (results are presented in Section .
This behavior is the consequence of too reduced actual query radius, indepen-
dently on the filtering rule. However, intuitively replication rules or metric
ball-ball overlap tests are less sensitive to approximation than, for example, par-
ent filtering. To increase precision of PEGKJ, we propose a parameter called
ExactParentFiltering (or shortly Ezact PF) which determines whether the par-
ent filtering rule (Algorithm , line considers e-approximation radius ¢ or
uses the actual radius 7.

We also observed that the PGBJ and PEGKJ algorithms tend to replicate
almost all database objects to all groups in high-dimensional spaces. Even if
we assume that UB(R;) is always estimated just from the cell C; (using the
equation: R;.ub+ 6(ps,0,),0;; € S;) and we inspect each set R; in the tested
group separately, then objects o € S; are not replicated by PGBJ only if 6(p;, p;) >
8(0,pj) +2- R;.ub+0(p;, 0;,) for all R; in the group. In high-dimensional spaces, all
distances between database objects are relatively similar and the probability that
d(pi, pj) is greater than the sum of four other involved distances in the replication
rule is low. Even if two of the distances forming U B(R;) are further divided by € in
the PEGKJ algorithm. Actually, LB(o, R;) = 0 and values v;; = 0 were observed
almost always for all datasets in our experiments (including the e-approximation).
In such cases, most database objects are replicated to all groups.

5.5 Experimental evaluation

In this section, the presented MapReduce k-NN similarity join algorithms are
experimentally evaluated and compared. The experiments focus on scalability,
precision and the overall execution time of all solutions for high-dimensional data.
First, we describe the test datasets and the evaluation platform, then we compare
selected methods on two MapReduce frameworks, where we present the benefits
of Spark. For Spark, we investigate parameters for all the presented methods
and, finally, we compare the performance of selected approaches in multiple
testing scenarios. We have also published all the Spark source-codes in a publicly
accessible repository on Githubﬁ

4https://github.com/PremyslCech /kNN-joins-spark
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5.5.1 Description of datasets and test platform
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In the experiments, we perform k-NN similarity joins on four vector datasets
with various number of dimensions: 10, 200, 512 and 1000. In the experiments, we
often refer to the datasets by their unique dimensionality and the concatenated
letter “D” (see Figures 5.9} [5.10] 5.11] and [5.12)).

The 10-dimensional dataset is a synthetic dataset made by generating 200,000
objects into a uniform [0, 1]'° cube. This artificial dataset was created to inves-
tigate and present the performance of compared methods on data with lower
dimensionality.

The 200 and 1000-dimensional datasets contain histogram vectors modeling
HTTPS communication (e.g., from web proxy logs). Only high-level communica-
tion features of HT'TPS requests (Kohout and Pevny| [2015b]) were aggregated into
vectors using two techniques. The 200-dimensional dataset was created by uniform
feature mapping into a 4-dimensional hypercube (Kohout and Pevny| [2015b]). In
the dataset with 1000 dimensions, HTTPS communication was modeled using
the Gaussian Mixture Models approach (GMM) (Marin et al.| [2005]). For more
details, see Chapter [, in which the feature extraction algorithms are presented in
more detail.

The 512-dimensional dataset consists of 335,944 selected keyframes from the
TRECVid IACC.3 video dataset (Awad et al.| [2016]). The descriptors for each
keyframe were extracted from the last fully connected layer of the pre-trained
VGG deep neural network by [Simonyan and Zisserman| [2014] and further reduced
to 512 dimensions using PCA.

All the datasets are divided into the database S and query points R. The
distance distributions on a smaller sample for all datasets are presented in Figures
b.9, 5.10, .11} and [5.12] The number of database and query objects ranges in
hundreds of thousands of objects for most of the experiments. Only the growing
data size experiment run on tens of millions of 200D objects. Every object
contains a unique object ID and a vector of values stored in the space saving
format presented in the work by (Cech et al.|[2016]. The size of the datasets varies
according to the number of dimensions from 0.5GB to 5GB of data in the space
saving format. We employ the Euclidean (L) distance as the similarity measure.
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The experiments run on a fully distributed Amazon clusters under the Elastic
MapReduce and EC2 services. We used clusters of 5 to 20 computing nodes each
containing the Intel Xeon processor having 4 Cores (8 threads) running at 2.5
Ghz, 15 GB RAM and 2x40 GB SSD disk (the Amazon m3.xlarge instance). Data
were stored in the S3 storage system.

5.5.2 Hadoop vs Spark

In the first set of experiments, we analyze the two most popular MapReduce
platforms Hadoop and Spark. We compare the platforms on three different
similarity k-NN join algorithms — PAKJ and the algorithms based on Z-curves
(Section and locality sensitive hashing (Section . In Figures ,
and [5.15] we compare the join evaluation time on both platforms for all datasets
given the same method settings (i.e., the join result was exactly the same on
both platforms). Graphs reflect the join evaluation time for the given parameter
setup for each method, but similar outcomes were observed for different settings
of parameters. All the tested algorithms run faster on Spark because intermediate
results and shared support data structures do not have to be serialized and stored
in HDF'S but are kept in memory for the whole algorithm execution. Also, all
k-NN join methods are implemented on Hadoop in multiple MapReduce jobs
(two or three) and results from previous jobs have to be written back to HDFS
and sometimes even merged or otherwise manipulated. The biggest difference
is noticeable for the Z-curve algorithm which uses multiple I/O operations on
Hadoop to provide proper partitioning and data pre-processing. On Spark, all
operations run in memory and temporary data structures do not need to be saved
on disk. Because of the convincing results on Spark for our datasets, all other
experimental analyses, evaluations, and tests are presented just for the Spark
platform.

PAKJ Z-curve © LSH
2 | W Hadoop < | H® Hadoop " | m Hadoop
— | B Spark N | m Spark B Spark
3 8 w S o
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Figure 5.13: PAKJ ap- Figure 5.14: Z-curve ap- Figure 5.15: LSH ap-
proach — join evaluation proach — join evaluation proach — join evaluation
time Hadoop vs Spark time Hadoop vs Spark time Hadoop vs Spark
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5.5.3 Fine tuning of k-NN join methods

We follow with the analysis of parameters for the PAKJ approach and methods
based on Z-curves and LSH, inspecting precision/speed trade-offs. We would like
to emphasize that all presented time values include both the running time of the
k-NN similarity join and the pre-processing time. Similar as in our previous work
by |Cech et al.|[2017], the 1000-dimensional dataset was employed and the k was

set to 5. Unless otherwise stated, similar behavior was observed also for other
datasets.
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In Figure we study the influence of the number of groups G and randomly
selected pivots P used for the Voronoi partitioning on the PAKJ algorithm
performance. According to our internal test cases, other pivot selection techniques
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in the original source codes provided by [Lu et al.| [2012] run substantially longer
and did not present any significant improvements for further evaluation. Based
on the results, we have fixed the number of pivots to 2,000 and the number of
groups to 20 in the remaining experiments. It is suggested to set the number of
groups to match the number of reducers or executors to achieve the best parallel
computation balance.

Figure [5.17 shows the observed behavior of MaxRecDepth and Filter Ratio
parameters for the PAKJ method (see Section. As expected, lower parameter
values lead to the faster processing time in most cases but achieve also limited
precision. For the rest of the experiments, the Max RecDepth parameter was fixed
to value 10 (if not specified otherwise) which promises a competitive precision
and running time trade-off for comparisons with methods based on Z-curves and
LSH. The Filter Ratio parameter was fixed to the values 0.01 or 0.05.

Please observe that the total k-NN join evaluation time for some lower param-
eter values is longer than for a bit higher values, e.g., MaxRecDepth = 10 and
20 for the Filter Ratio = 0.01. A similar effect was observed also in our previous
work by |Cech et al.| [2017]. We hypothesize that for a limited Filter Ratio there
is a level of replication that has positive effect on efficient candidate processing
on each executor, where metric filtering techniques are used (see Section .
Please note that closer candidate/nearest objects to query points may appear in
their group and so the actual ranges of k-NN queries get tighter. Hence, more
candidates can be filtered out, which was revealed also by a lower number of
evaluated distance computations.

For the Z-curve approach, the effect of the number of random vector shifts
and the EntirePartitions option (see Section is presented in Figure m
The experiments show that using more shifts improve approximation precision,
but the running time can be extended significantly. The difference between the
EntirePartitions = true and false options is substantial and offers a variety of
the precision/running time trade-offs. For the following experiments, we usually
fixed the number of shifts to 5 and used 20 partitions to fit the number of executors.
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The Z-curve sampling rate parameter was set to 0.005 which influences mainly
the partitions balance determining a proper level of parallelism.

Figure displays the k-NN join evaluation time and shuffle memory usage
for different levels of object storage settings described in subsection [5.3.1 While
the “All in memory” option is clearly the faster option, for larger datasets it
might not be viable (stored objects might not fit in memory). The “Only Z-
order” approach translates Z-order back to the original coordinates and, thus, is
considerably slower.

For the LSH approach (see Section we investigate the effect of the number
of hash tables, the number of hash functions and parameter W. Figure shows
that both precision and time increase with growing W (substantially for tested
values W > 20). Longer running time for higher W values is mainly caused by
hashing objects into bigger buckets (more objects have to be processed by the
k-NN join in a large bucket). However, this parameter heavily depends on the
specific dataset.

The effect of the number of hash tables and hash functions is presented in
Figure (for W = 10). With the growing number of hash functions both
running time and precision drops because more hash bins are generated and
queries do not meet all nearest objects in a bucket.

5.5.4 Approximate pivot methods comparison

In this subsection, we study different parameters and performance of both pivot-
based approximate algorithms: PAKJ (the pivot approximate (heuristic) algo-
rithm) and PEGKJ (the pivot epsilon guaranteed approach). All presented graphs
were measured on 512D and 1000D datasets and for K = 10.

In the first four Figures [5.22] [5.23] [5.24] and [5.25] we analyze the influence
of the PEGKJ parameter Ezxact ParentFiltering (EzactPF) on precision, k-NN
join evaluation time and effective error for the growing ¢ parameter. Observe that
the Exact PF = true option is significantly superior in terms of precision but its
running time is higher for increasing e (less database objects are pruned and more
distance computations are needed). Nevertheless, for e = 5 the precision of the
variant FxactPF = true is higher than the precision of the variant ExactPF
= false for € = 2, while their time is similar. Both the maximal and average
effective error is also smaller for the Ezact PF = true parameter. Based on these
observations, we conclude that once high e is acceptable, the variant EFxactPF =
true represents a better approximation option.

In Figures [5.26] [5.27], [5.28], and [5.29, we examine the same approximation
measures for the growing MaxRecDepth parameter. The FxactPF parameter
was set to true for the PEAKJ method. From these graphs, it is evident that
PAKJ runs considerably faster and presents only slightly lower precision. However,
the epsilon guarantee (effective error) in the worst case (Figure is violated
more for the PAKJ algorithm. The average effective error corresponds to precision.
In this case, PEAKJ presents lower average values.

In Figures [5.30}, [5.31], [5.32] [5.33], [5.34] and [5.35] we compare different aspects of
all approximate pivot-based methods. The Fxact PF parameter was set to true for
the PEGKJ method and experiments run on 512 and 1000-dimensional datasets.
In Figures and you may observe precision/running time trade-off for all
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methods for different setup of parameters. To highlight one method, PAKJ with
Filter = 0.1 is closing to 100% precision and is significantly faster than other
variants/methods reaching high precision. In general, the PEGKJ algorithm is the
slowest method and replicates objects (Figure to almost all groups G (the
reasons are explained in Section but provides approximation guarantees
(Figure . The replications directly affect transfered volumes of data (less is
better), thus minimizing them enables a method to process larger datasets. In
the last two graphs [5.34] and [5.35] we present cumulatively the number of query
objects reaching an effective (real) epsilon error presented on the X-axis. Here the
PEGKJ algorithm has the most objects with small effective error for lower € = 4,
which means that more approximate k® nearest neighbors from different queries
are closer to exact results. Nevertheless, PAKJ methods are following PEGKJ
results closely and PEGKJ for higher € = 10 is even worse for most queries than
all presented PAKJ approaches on the 1000-dimensional dataset. Average and
maximal effective errors for selected methods are presented in Table [5.5]
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512D 1000D
Method /variant AVG MAX AVG MAX
PAKJ, Filter=0.01, Depth=20 1.01329 | 1.95188 | 1.01095 | 6.23379
PAKJ, Filter=0.1, Depth=20 1.00400 | 1.81889 | 1.00681 | 6.21953
PAKJ, Filter=0.3, Depth=20 1.00371 | 1.81889 | 1.00615 | 6.21953
PEGKJ, EPF=true, Epsilon=4 | 1.00039 | 1.27834 | 1.00223 | 2.95698
PEGKJ, EPF=true, Epsilon=10 | 1.00735 | 1.85962 | 1.01325 | 4.48893

Table 5.5: Average and maximal effective (real) errors for pivot-based methods.

We conclude that all pivot-based algorithms perform well under different
conditions and a specific algorithm utilization must be decided based on the
desired approximation guarantee or an average approximation precision and

running time preference.
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5.5.5 Comparison of pivot-based approach with related
approaches

In this section, we compare pivot-based, Z-curve and LSH k-NN approximate
similarity join algorithms under several settings. Please note that all the methods
use a convenient random initialization of data partitioning.

Precision and k-NN join evaluation time

First, we analyze the performance of all the compared methods on all datasets in
Figures[5.36]and [5.37 Parameters were set as follows. PAKJ: Max RecDepth = 10,
Filter Ratio = 0.05; Z-curve: Shifts= 2, EntirePartitions = true; LSH: W
different for different datasets (20, 10, 200, 100), HT =5, HF = 20. The results
in Figure show that for given settings the PAKJ approach has the highest
precision, the Z-curve is the second best method on 200 and 1000-dimensional
datasets and the LSH method displays the second best precision on the 10 and 512
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datasets. In Figure [5.37, we can observe that despite having the highest precision,
the PAKJ method is also the fastest algorithm on all measured datasets. The
second fastest method is the Z-curve algorithm and LSH is the approach with the
longest execution time.

The effect of dimension size

In this subsection, we analyze the influence of the growing number of dimensions
on the performance of three main heuristic methods with fixed parameters. Data
were prepared from the 1000-dimensional dataset. For each testing scenario,
first D dimensions were used for experiments, where D € {100, 200, 300, 400, 500}.
Parameters for methods were set in the following way. PAKJ: MaxRecDepth = 10,
Filter Ratio = 0.01; LSH: W = 20, HT = 10, HF = 20; Z-curve: Shifts = 5,
EntirePartitions = false. You may observe in Figures and that the
PAKJ method has the highest precision, the Z-curve approach is the fastest
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and has similar precision compared to the LSH algorithm, which is the slowest
method. Also, the LSH W parameter is very sensitive for a specific dataset. This
observation is noticeable in Figure [5.39| where the total computation time changes
significantly for different dimensions.
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The effect of dataset size

In Figures [5.40] and [5.41], we study the behavior of the compared methods for
a significantly larger dataset. These tests run on the 200-dimensional dataset
which consists of about 1.2 mil. database objects S and 15.3 mil. query objects
R. With growing data size, we also increased the cluster size. Executors were
set to {20, 40, 60, 80} and cluster size to {5, 10, 15, 20} instances (computing
nodes) for objects count {4.1, 8.3, 12.4, 16.5} respectively. Despite our efforts to
run experiments for all methods utilizing all objects (we even increased executor
memory limits up to 4 GBs) not all methods were able to handle all test cases.
The LSH algorithm ran out of memory for the highest object count 16.5 mil.
For the Z-curve method, we had to set the memory saving option to the value
“Only Z-order” and EntirePartitions = false to satisfy the memory limits. The
results show that the PAKJ method provides the highest precision while keeping
reasonably fast running time, the Z-curve with fast evaluation time provides poor
precision and the LSH method is both slow and has low precision.

The effect of the number of nearest neighbors

In many applications, the number of requested nearest neighbors k£ may reach one
hundred or even more. Hence, we investigated also the effect of the increasing
value of k£ on the precision and the similarity join evaluation time of the com-
pared methods (see Figures and . The experiments were performed
on the 1000-dimensional dataset. The parameters of the methods were set as
follows. PAKJ: MaxRecDepth = 10, Filter Ratio = 0.01; Z-curve: Shifts = 2,
EntirePartitions = true; LSH: W = 50, HT = 10, HF = 20. The precision
slowly decreases for all methods, whereas the evaluation time is increasing for
the PAKJ method, but for the other two methods, the evaluation time (already
high) is not changing significantly. Similar to the previous graphs, the pivot space
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approach outperforms the other two considered approaches in the precision/speed
trade-off.
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5.5.6 Discussion

We analyzed the pivot-based approximate k-NN similarity join algorithms (mostly)
in the Spark environment. We studied approximation quality and guarantees
for pivot-based methods from the theoretical and experimental perspectives and
presented two different pivot-based approximate k-NN similarity join algorithms.
In experiments, we focused mainly on the approximation performance (precision,
effective error, distance ratio) concerning the number of replications and the
execution time of all algorithms. The PEGKJ algorithm presents a guaranteed e-
approximation but almost all objects are replicated to all groups on real data even
with higher € values, which results in longer execution times. With higher € values,
the approximation still provides a high precision for parameter ExactPF = true.
The PAKJ algorithm runs faster and, in the average cases, produces the results
with high precision and low effective error. However, a few PAKJ queries violate
the e-approximation significantly depending on a specific dataset. Nevertheless, the
distance-based approach proved to be a promising approach for MapReduce-based
approximate similarity joins in high-dimensional spaces.
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We also compared in the Spark environment the pivot-based approximate
method PAKJ with other heuristic methods designed for vector spaces — Z-curve
and LSH. We focused on variants of the methods that use a simple random
initialization of data partitioning structures. According to our evaluations with
real data, the pivot-based approach PAKJ considering for replication a list of
several nearest pivots for each database object outperformed the other two methods
in the precision/efficiency trade-off. However, given just a synthetic 10-dimensional
dataset the performance of the Z-curve and LSH based approaches was more
competitive. We hypothesize that in high-dimensional spaces the selected variants
of the related methods do not effectively reflect data distribution with random shifts
or hash functions. This affects also options to finetune investigated parameters of
the methods despite our effort to improve them. Hence, in the future, it would
be interesting to investigate some cheap form of dataset analysis (pre-processing
is part of the measured time) and use it for better initialization of the related
methods.

Additional improvements to similarity k-NN joins could be achieved by imple-
menting more sophisticated (but highly efficient) methods of space transformations
and data partitioning (in our work, we focused on simple and fast random ini-
tialization methods). We would like to verify the influence of specific (trained)
projections on the LSH method results, implement other types of space-filling
curves, and try to control the curve’s rotation direction. Moreover, we would
like to evaluate the effect of managed pivot selection methods such as k-means
clustering in more detail. Furthermore, restrictions on specific properties of given
distance measures could also bring improvements in the form of additional saved
distance computations and faster execution times.
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Conclusion

In this thesis, we have studied searching, browsing, exploration and retrieval
techniques for multimedia objects in multiple domains.

Beginning with preliminaries in Chapter [I we revised the basics of similarity
search and modeling, metric space postulates and methods for effective and efficient
processing of similarity queries. Moreover, we showed several content-based feature
and descriptor extraction examples mainly for images and we presented some
well-known similarity functions that are often utilized for comparing such extracted
descriptors. We debated the benefits and disadvantages of the descriptors and
we also summarized basic principles of selected metric access methods (metric
indexes).

Next, we have remembered retrieval /exploration strategies and challenges that
researchers are currently dealing with, and we mentioned what the key components
of effective and efficient content-based retrieval systems are in Chapter 2 We
discussed various types of exploration structures as well as methods for arranging
retrieved results in easy to read and comprehensive ways because the presentation
layer of any retrieval application is essential to users too.

Furthermore, we have presented interactive prototypes and applications for
image and video domain in Chapter [3] This area is concerning mainly the similarity
between images since video content is typically converted to a series of images. We
portrayed an array of demonstration applications and experiments for measuring
effectiveness of proposed models and exploration structures. Experimental results,
outcomes from user studies, and competition results brought interesting conclusions
that pointed out strong and weak spots in the design and composition of used
similarity models and interfaces.

In Chapter [4 we presented an approach for modeling and exploration of
secured network traffic data that contain only a limited amount of information.
We presented different descriptors for communication snapshots and studied
methods for detecting malware activities utilizing such descriptors. Moreover,
we demonstrated that such models can be used both for machine learning and
exploration of large volumes of network data. Finally, we presented retrieval tools
that can help domain experts with threat detection.

Since effective and efficient query evaluation needs for increasing data volumes
are emerging in many domains, we proposed several algorithms working in the
MapReduce distributed environment in Chapter 5| Such algorithms can process
an extensive amount of data in parallel and can evaluate many queries altogether.
We focused on similarity joins in metric spaces and studied various versions of
them. Besides the exact similarity joins, we focused on approximate versions with
or without guarantee as well. We experimentally investigated a wide variety of
methods for distributed approximate similarity joins with different speed /precision
trade-offs. On top of that, we publicly share source codes of all algorithms on
GithubPl

Altogether, our demo tools and applications have analyzed the performance
of various similarity models and exploration structures on real data in multiple
domains. We focused on precision, recall, and success rate of different methods and

Shttps://github.com /PremyslCech /kNN-joins-spark
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detected strong and weak points of different components of our multimedia retrieval
frameworks. Based on the observed needs from all the investigated applications and
areas, we developed and proposed scalable algorithms for evaluating (approximate)
similarity joins in a distributed environment that could bring many similarity
models for data analysis from small collections to a big data environment.

Future work

Many retrieval tasks in various domains still require more sophisticated and flexible
similarity models that capture the content of multimedia objects. For example,
approaches dealing with one-shot learning could bring significant improvements
in terms of precision and recall of retrieval systems. Next, we would like to
focus on the development of more convenient interactive search mechanisms and
visualization methods, especially for the challenging video retrieval domain. From
our experience from international competitions and user’s feedback, it was evident
that poor interface design can decrease the success rate of difficult video retrieval
tasks. Finally, we want to focus on further improvements of distributed similarity
joins and new applications of k-NN similarity graphs in the area of multimedia
exploration.

Particularly, we plan to utilize similarity search techniques and large-scale
computation algorithms in a new area concerning the detection of advertisement
and consumer behavior in video content recorded by smart glasses. Employing our
methods, we aim to survey media consumption (e.g., which newspapers people
read, what they watch), success of advertisement campaigns (e.g., detect banners,
spots or billboards that reached our respondents) and people’s interests in specific
products (e.g., what grocery stores are visited more frequently and what kind of
products draw people’s attention).
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