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1 Introduction
In this thesis we introduce the concept of Wiener–Luxemburg amalgam spaces
which are a modification of the more classical Wiener amalgam spaces. The
principal idea of both kinds of amalgam spaces is to treat separately the local
and global behaviour of a given function, in the sense that said function is required
to be locally in one space and globally in a different space. The exact meaning of
being locally and globally in a space varies depending on the desired generality
and author’s preference.

The classical Wiener amalgams approach this issue in a very general, albeit
quite non-trivial, manner. They were, in their general form, first introduced by
Feichtinger in [4], although the less general cases were studied earlier, see for
example the paper [9] due to Holland, and some special cases date as far back as
1926 when the first example of such a space was introduced by Wiener in [17].
The different versions of these spaces saw many applications in the last decades,
great surveys of which have been conducted, concerning a somewhat restricted
version, by Fournier and Stewart in [7] and, concerning the more general versions,
by Feichtinger in [5] and [6]. Probably the most famous example is the Tauberian
theorem for the Fourier transform on the real line due to Wiener (see [18] and [19]).

One unfortunate property of Wiener amalgams is that their construction does
not preserve the properties of Banach function spaces, nor does it preserve rear-
rangement invariance. This approach is therefore unsuitable when one wishes to
work in this context. But this often is the case, since there are many situations
when the need arises naturally to prescribe separately the conditions on local
and on global behaviour of a function. One such situation is the study of optimal
Sobolev type embedding over the entire Euclidean space in the context of rear-
rangement invariant Banach function spaces as performed by Alberico, Cianchi,
Pick and Slav́ıková in [1]. A very natural example is the optimal target space, in
the context of rearrangement invariant Banach function spaces, for the limiting
case of the classical Sobolev embedding over the entire Euclidean space, which
has been found by Vyb́ıral in [16]. Another such situation arised during the study
of generalised Lorentz–Zygmund spaces which led to the introduction of broken
logarithmic functions to allow separate treatment of local and global properties
of functions in this context. For further details and a comprehensive study of
generalised Lorentz–Zygmund spaces we refer the reader to [14].

This led us to develop the theory of Wiener–Luxemburg amalgam spaces,
which aims to eliminate these limitations and to provide a general framework for
separate prescription of local and global conditions in the context fo rearrange-
ment invariant Banach function spaces. The starting point is provided by the
non-increasing rearrangement, which is the crucial element in the theory of said
spaces and which naturally separates the local behaviour of a function from its
global behaviour, at least in the sense of size. This allows us to define Wiener–
Luxemburg amalgam spaces in a very easy and straightforward manner.

The upside of Wiener–Luxemburg amalgam spaces is that they retain most
of the properties of Banach function spaces as well as rearrangement invariance.
The downside is that they lose one property (which Wiener amalgams do not
loose), namely, while they are always quasinormed, they may be not normable.

The thesis is structured as follows. In Chapter 2 we present the basic theo-
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retical background needed in order to build the theory in later chapters.
In Chapter 3 we show some abstract results concerning quasinormed spaces

which we will need later in the thesis and which we believe to be both new and
of independent interest.

In Chapter 4 we present some counterexamples which show that our claim that
Wiener amalgams are usually neither Banach function spaces nor rearrangement
invariant is justified. Those results are quite simple and are certainly known to
the experts in the field of Wiener amalgams but we present them here for the
reader’s convenience since we were unable to find them in literature.

The Chapter 5 is the main part of the thesis where the abstract theory of
Wiener–Luxemburg amalgam spaces is developed in some detail. We show that
they are quasinormed linear spaces and that they satisfy every axiom of rear-
rangement invariant Banach function spaces, except normability, then we provide
(partial) characterisation of their associate spaces, full characterisation of their
embeddings and put them in relation with the concepts of sum and intersection
of Banach spaces. Furthermore we generalise the well known classical result that

L1 ∩ L∞ ↪→ A ↪→ L1 + L∞

by showing that L1 is the locally weakest and globally strongest rearrangement
invariant Banach function space, while L∞ is, in the same setting, the locally
strongest and globally weakest space. Needless to say, our definition of Wiener–
Luxemburg amalgam spaces is general enough to cover all the spaces obtained in
the applications outlined above.

Finally, in Chapter 6 we apply this theory to two classical classes of spaces,
namely to that of Lebesgue and Orlicz spaces. By doing so, we provide a concrete
examples of application of the general theory and hopefully provide some insight
into why we believe our approach to be the right one.

Our main contribution is Chapter 5 which consists entirely of new results
(or, in one case, a new alternative proof of a classical result). Chapter 3 is also
new and due to the author, although the method at the heart of the proofs has
been obtained by Nekvinda in [13]. The counterexamples in Chapter 4 cannot be
found in literature and their proofs are due to the author, however these results
are not new as they are known by experts in the field of Wiener amalgams. The
results in Chapter 6 are either classical or known but the proofs are new and, as
we believe, provide more insight into the matter than the classical ones.
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2 Preliminaries
This chapter serves to establish the basic theoretical background upon which we
will build our theory of Wiener–Luxemburg amalgam spaces. The definitions and
notation is intended to be as standard as possible. The usual reference for most
of this theory is [2].

Throughout this thesis we will denote by (R, µ), and occasionally by (S, ν),
some arbitrary (totally) sigma-finite measure space. Provided a µ-measurable set
E ⊆ R we will denote its characteristic function by χE. By M(R, µ) we will
denote the set of all extended complex-valued µ-measurable functions defined on
R. As is customary, we will identify functions that coincide µ-almost everywhere.
We will further denote by M0(R, µ) and M+(R, µ) the subsets of M(R, µ) contain-
ing, respectively, the functions finite µ-almost everywhere and the non-negative
functions.

For brevity, we will abbreviate µ-almost everywhere, M(R, µ), M0(R, µ) and
M+(R, µ) to µ-a.e., M , M0 and M+, respectively, when there is no risk of con-
fusing the reader.

When X, Y are two topological linear spaces, we will denote by Y ↪→ X that
Y ⊆ X and that the identity mapping I : Y → X is continuous.

As for some special cases, we will denote by λn the classical n-dimensional
Lebesgue measure, with the exception of the 1-dimensional case in which we will
simply write λ. We will further denote by m the counting measure over N. When
p ∈ [1,∞] we will denote by Lp the classical Lebesgue space (of functions in
M(R, µ)) defined by

Lp =
{︃
f ∈ M(R, µ);

∫︂
R

|f |p dµ < ∞
}︃

equipped with the usual norm

∥f∥p =
(︃∫︂

R
|f |p dµ

)︃ 1
p

,

with the usual modifications when p = ∞. In the special case when (R, µ) =
(N,m) we will denote this space by lp.

Note that in this thesis we consider 0 to be an element of N.

2.1 Non-increasing rearrangement
In this section we present the concept of the non-increasing rearrangement of a
function and state some of its properties that will be important later in the thesis.
We proceed in accordance with [2, Chapter 2].

The first step is to introduce the distribution function which is defined as
follows.

Definition 2.1. The distribution function µf of a function f ∈ M is defined for
s ∈ [0,∞) by

µf (s) = µ({t ∈ R; f(t) > s}).

The non-increasing rearrangement is then defined as the generalised inverse
of the distribution function.
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Definition 2.2. The non-increasing rearrangement f ∗ of function f ∈ M is
defined for t ∈ [0,∞) by

f ∗(t) = inf{s ∈ [0,∞);µf (s) ≤ t}.

For the basic properties of the distribution function and the non-increasing
rearrangement, with proofs, see [2, Chapter 2, Propositin 1.3] and [2, Chapter
2, Propositin 1.7] respectively. We consider those basic properties to be classical
and well known and we will be using them without further explicit reference.

An important concept used in the thesis is that of equimeasurability defined
below.

Definition 2.3. We say that the functions f ∈ M(R, µ) and g ∈ M(S, ν) are
equimeasurable if µf = νg.

It is not hard to show that two functions are equimeasurable if and only if
their non-increasing rearrangements coincide too.

A very important classical result is the Hardy–Littlewood inequality which
we will use extensively in the thesis. For proof, see for example [2, Chapter 2,
Theorem 2.2].

Theorem 2.4. It holds for all f, g ∈ M that∫︂
R

|fg| dµ ≤
∫︂ ∞

0
f ∗g∗ dλ.

It follows directly from this result that it holds for every f, g ∈ M that

sup
g̃∈M

g̃∗=g∗

∫︂
R

|fg̃| dµ ≤
∫︂ ∞

0
f ∗g∗ dλ.

This motivates the definition of resonant measure spaces.

Definition 2.5. A sigma-finite measure space (R, µ) is said to be resonant if it
holds for all f, g ∈ M(R, µ) that

sup
g̃∈M

g̃∗=g∗

∫︂
R

|fg̃| dµ =
∫︂ ∞

0
f ∗g∗ dλ.

The property of being resonant is an important one. Luckily there is a straight-
forward characterisation of resonant measure spaces which we list below. For
proof and further details see [2, Chapter 2, Theorem 2.7].

Theorem 2.6. A sigma-finite measure space is resonant if and only if it is either
non-atomic or completely atomic with all atoms having equal measure.

2.2 Norms and quasinorms
In this and the following section we provide the definitions for several classes of
functionals we will study in the thesis. All definitions should be standard or at
least straightforward generalisations of standard ones.

The starting point shall be the class of norms.

5



Definition 2.7. Let X be a complex linear space. A functional ∥·∥ : X → [0,∞)
will be called a norm if it satisfies the following conditions:

1. it is positively homogeneous, i.e. ∀a ∈ C ∀x ∈ X : ∥ax∥ = |a|∥x∥,

2. it satisfies ∥x∥ = 0 ⇔ x = 0 in X,

3. it is subadditive, i.e. ∀x, y ∈ X : ∥x+ y∥ ≤ ∥x∥ + ∥y∥.

Because the definition of norms is sometimes too strong we will need a class
of weaker functionals, namely quasinorms.

Definition 2.8. Let X be a complex linear space. A functional ∥·∥ : X → [0,∞)
will be called a quasinorm if it satisfies the following conditions:

1. it is positively homogeneous, i.e. ∀a ∈ C ∀x ∈ X : ∥ax∥ = |a|∥x∥,

2. it satisfies ∥x∥ = 0 ⇔ x = 0 in X,

3. there is a constant C > 0, called the modulus of concavity of ∥·∥, such that it
is subadditive up to this constant, i.e. ∀x, y ∈ X : ∥x+ y∥ ≤ C(∥x∥ + ∥y∥).

It is obvious that every norm is also a quasinorm with the modulus of concavity
equal to 1 and that every quasinorm with the modulus of concavity less than or
equal to 1 is also a norm.

We will, for technical reasons, always assume that the modulus of concavity
of any quasinorm is at least 1. This does not lessen the generality in any way,
since it is obvious that if C > 0 is a modulus of concavity of ∥·∥ then so is any
C ′ > C.

It is a well-known fact that every norm defines a metrisable topology on
X and that it is continuous with respect to that topology. This is not true
for quasinorms, but this can be remedied thanks to the Aoki–Rolewitz theorem
which we list below. Further details can be found for example in [11] or in [3,
Appendix H].

Theorem 2.9. Let ∥·∥X be a quasinorm over the linear space X. Then there is
a quasinorm ∥·∥X̃ such that

1. there is a finite constant C0 > 0 such that it holds for all x ∈ X that

C−1
0 ∥x∥X ≤ ∥x∥X̃ ≤ C0∥x∥X ,

2. there is an r ∈ (0, 1] such that it holds for all x, y ∈ X that

∥x+ y∥r
X̃ ≤ ∥x∥r

X̃ + ∥y∥r
X̃ .

The direct consequence of this result is that every quasinorm defines a metris-
able topology on X and that the convergence in said topology is equivalent to
the convergence with respect to the original quasinorm, in the sense that xn → x
in the induced topology if and only if limn→∞∥xn − x∥ = 0.

Natural question to ask is when do different quasinorms define equivalent
topologies. It is an easy exercise to show that the answer is the same as in the
case of norms, that is that two quasinorms are topologically equivalent if and
only if they are equivalent in the following sense.
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Definition 2.10. Let ∥·∥X and ∥·∥X̃ be quasinorms over the linear space X. We
say that ∥·∥X and ∥·∥X̃ are equivalent if there is some C0 > 0 such that it holds
for all x ∈ X that

C−1
0 ∥x∥X ≤ ∥x∥X̃ ≤ C0∥x∥X .

In the last part of this section, we recall the concepts of sum and intersection
of normed spaces.

Definition 2.11. Let X and Y be normed linear spaces equipped with the norms
∥·∥X and ∥·∥Y respectively. Suppose that there is a Hausdorff topological linear
space Z into which X and Y are continuously embedded. We then define the
spaces X + Y and X ∩ Y as

X + Y = {z ∈ Z; ∃x ∈ X ∃y ∈ Y : z = x+ y} ,
X ∩ Y = {z ∈ Z; z ∈ X, z ∈ Y } ,

equipped with the norms

∥z∥X+Y = inf {∥x∥X + ∥y∥Y ;x ∈ X, y ∈ Y, x+ y = z} ,
∥z∥X∩Y = max {∥z∥X , ∥z∥Y } ,

respectively.

The concepts presented above play a crucial role in the theory of interpolation.
For further details, we refer the reader to [2, Chapter 3], where one can also find
the following result (as [2, Chapter 3, Theorem 1.3]).

Theorem 2.12. Let X and Y be as above. Then X+Y and X∩Y , when equipped
with their respective norms, are normed linear spaces. Furthermore, if X and Y
are Banach spaces, then so are X + Y and X ∩ Y .

2.3 Banach function norms and quasinorms
In this section we turn our attention to the case which we are most interested
in, that is the case of norms and quasinorms acting on spaces of functions. The
approach taken here is the same as in [2, Chapter 1, Section 1], which means that
it differs, at least formally, from that in Section 2.2.

The major definitions are of course those of Banach function norm and the
corresponding Banach function space.

Definition 2.13. Let ∥·∥ : M(R, µ) → [0,∞] be a mapping satisfying ∥|f |∥ = ∥f∥
for all f ∈ M . We say that ∥·∥ is a Banach function norm if its restriction to
M+ satisfies the following axioms:

(P1) it is a norm, in the sense that it satisfies the following three conditions:

(a) it is positively homogeneous, i.e. ∀a ∈ C ∀f ∈ M+ : ∥af∥ = |a|∥f∥,
(b) it satisfies ∥f∥ = 0 ⇔ f = 0 µ-a.e.,
(c) it is subadditive, i.e. ∀f, g ∈ M+ : ∥f + g∥ ≤ ∥f∥ + ∥g∥,

(P2) it has the lattice property, i.e. if some f, g ∈ M+ satisfy f ≤ g µ-a.e., then
also ∥f∥ ≤ ∥g∥,
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(P3) it has the Fatou property, i.e. if some fn, f ∈ M+ satisfy fn ↑ f µ-a.e., then
also ∥fn∥ ↑ ∥f∥,

(P4) ∥χE∥ < ∞ for all E ⊆ R satisfying µ(E) < ∞,

(P5) for every E ⊆ R satisfying µ(E) < ∞ there exists some finite constant CE,
dependent only on E, such that the inequality

∫︁
E f dµ ≤ CE∥f∥ is true for

all f ∈ M+.

Definition 2.14. Let ∥·∥X be a Banach function norm. We then define the
corresponding Banach function space X as the set

X = {f ∈ M ; ∥f∥X < ∞} .

It is easy to see that a Banach function norm, when restricted to the space it
defines, is indeed a norm in the sense of Definition 2.7 and therefore Banach func-
tion spaces, when equipped with their defining norm, are normed linear spaces.
Detailed study of these spaces can be found in [2]. Let us just list here their most
important properties, proofs of which can be found in [2, Chapter 1, Section 1]

Theorem 2.15. Let ∥·∥X be a Banach function norm and let X be the corre-
sponding Banach function space. Then X is a Banach space.

Theorem 2.16. Let ∥·∥X and ∥·∥Y be Banach function norms and let X and Y
be the corresponding Banach function spaces. If Y ⊆ X then also Y ↪→ X.

The last result concerning Banach function spaces we want to list at this point
concerns the properties of the intersection of two Banach function spaces. The
proof is an easy exercise.

Proposition 2.17. Let X and Y be two Banach function spaces. Then X ∩ Y
is also a Banach function space.

Just as with general norms, the triangle inequality is sometimes too strong
a condition to require. We therefore introduce the notions of Banach function
quasinorms and of the corresponding quasi-Banach function spaces.

Definition 2.18. Let ∥·∥ : M(R, µ) → [0,∞] be a mapping satisfying ∥|f |∥ = ∥f∥
for all f ∈ M . We say that ∥·∥ is a Banach function quasinorm if its restriction
to M+ satisfies the axioms (P2), (P3), (P4), (P5) of Banach function norms
together with a weaker version of axiom (P1), namely

(Q1) it is a quasinorm, in the sense that it satisfies the following three conditions:

(a) it is positively homogeneous, i.e. ∀a ∈ C ∀f ∈ M+ : ∥af∥ = |a|∥f∥,
(b) it satisfies ∥f∥ = 0 ⇔ f = 0 µ-a.e.,
(c) there is a constant C > 0, called the modulus of concavity of ∥·∥, such

that it is subadditive up to this constant, i.e.

∀f, g ∈ M+ : ∥f + g∥ ≤ C(∥f∥ + ∥g∥).
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Definition 2.19. Let ∥·∥X be a Banach function quasinorm. We then define the
corresponding quasi-Banach function space X as the set

X = {f ∈ M ; ∥f∥X < ∞} .

Again, it is easy to see that a Banach function quasinorm restricted to the
space it defines is a quasinorm in the sense of Definition 2.8. Analogues of the
properties of Banach function spaces that are stated in Theorem 2.15 and Theo-
rem 2.16 are proved in Chapter 3, namely in Theorem 3.6 and Theorem 3.7.

Finally, let us now define one last property that a Banach function quasinorm
can have that we will take a special interest in. Note that the class od Banach
function quasinorms contains that of Banach function norms so it is not necessary
to provide separate definitions.

Definition 2.20. Let ∥·∥X be a Banach function quasinorm. We say that ∥·∥X

is rearrangement invariant, abbreviated r.i., if ∥f∥X = ∥g∥X whenever f, g ∈ M
are equimeasurable (in the sense of Definition 2.3).

Furthermore, if the above condition holds, the corresponding space X will be
called rearrangement invariant too.

An important property of r.i. Banach function spaces over ([0,∞), λ) is that
the dilation operator is bounded on those spaces, as stated in the following the-
orem. For proof see [2, Chapter 3, Proposition 5.11].

Theorem 2.21. Let X be an r.i. Banach function space over ([0,∞), λ) and
consider the dilation operator Dt defined on M([0,∞), λ) by

Dtf(s) = f(ts).

Then Dt : X → X is a bounded operator.

2.4 Associate space
An important concept in the theory of Banach function spaces and their gener-
alisations is that of an associate space. The detailed study of associate spaces of
Banach function spaces can be found in [2, Chapter 1, Sections 2, 3 and 4].

We will approach the issue in a slightly more general way. The very defini-
tion of an associate space requires no assumptions on the functional defining the
original space.

Definition 2.22. Let ∥·∥X : M → [0,∞] be some non-negative functional and
put

X = {f ∈ M ; ∥f∥X < ∞}.
Then the functional ∥·∥X′ defined for f ∈ M by

∥f∥X′ = sup
g∈X

1
∥g∥X

∫︂
R

|fg| dµ, (2.1)

where we interpret 0
0 = 0 and a

0 = ∞ for any a > 0, will be called the associate
functional of ∥·∥X while the set

X ′ = {f ∈ M ; ∥f∥X′ < ∞}

will be called the associate space of X.
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As suggested by the notation, we will be interested mainly in the case when
∥·∥X is at least a quasinorm, but we wanted to indicate that such assumption is
not necessary for the definition. In fact, it is not even required for the following
result, which is the Hölder inequality for associate spaces.

Theorem 2.23. Let ∥·∥X : M → [0,∞] be some non-negative functional and
denote by ∥·∥X′ its associate functional. Then it holds for all f ∈ M that∫︂

R
|fg| dµ ≤ ∥g∥X∥f∥X′

provided that we interpret 0 · ∞ = −∞ · ∞ = ∞.

The last result we will present in this generality is the following proposition
concerning embeddings. Although the proof is an easy modification of that in [2,
Chapter 2, Proposition 2.10] we provide it to show that it truly does not require
any assumptions on the original functional.

Proposition 2.24. Let ∥·∥X : M → [0,∞] and ∥·∥Y : M → [0,∞] be two non-
negative functionals satisfying that there is a constant C > 0 such that it holds
for all f ∈ M that

∥f∥X ≤ C∥f∥Y .

Then the associate functionals ∥·∥X′ and ∥·∥Y ′ satisfy, with the same constant C,

∥f∥Y ′ ≤ C∥f∥X′

for all f ∈ M .

Proof. Our assumptions guarantee that Y ⊆ X and therefore

∥f∥Y ′ = sup
g∈Y

1
∥g∥Y

∫︂
R

|fg| dµ ≤

≤ sup
g∈Y

C

∥g∥X

∫︂
R

|fg| dµ ≤

≤ sup
g∈X

C

∥g∥X

∫︂
R

|fg| dµ = C∥f∥X′ .

Let us now turn our attention to the case when ∥·∥X is a Banach function
quasinorm. Note that in this case the supremum in (2.1) can be taken only over
the unit sphere in X.

The following result, due to Gogatishvili and Soudský in [8], shows that this
is more than enough to ensure that the associate functional is a Banach function
norm.

Theorem 2.25. Let ∥·∥X : M → [0,∞] be a functional that satisfies the axioms
(P4) and (P5) from the definition of Banach function spaces and which also sat-
isfies for all f ∈ M that ∥f∥X = ∥|f |∥X . Then the functional ∥·∥X′ is a Banach
function norm. In addition, ∥·∥X is equivalent to a Banach function norm if and
only if there is some constant C > 0 such that it holds for all f ∈ M that

C−1∥f∥X′′ ≤ ∥f∥X ≤ C∥f∥X′′ , (2.2)

where ∥·∥X′′ denotes the associate functional of ∥·∥X′.
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Additionally, if ∥·∥X is a Banach function norm then (2.2) holds with constant
one. This is a classical result of Lorenz and Luxemburg, proof of which can be
found for example in [2, Chapter 1, Theorem 2.7].

Theorem 2.26. Let ∥·∥X be a Banach function norm, then ∥·∥X = ∥·∥X′′ where
∥·∥X′′ is the associate functional of ∥·∥X′.

To conclude this section, we observe that, provided the underlying measure
space is resonant, the associate functional of an r.i. Banach function quasinorm
can be expressed in the terms of non-increasing rearrangement. The proof is the
same as in [2, Chapter 2, Proposition 4.2].

Proposition 2.27. Let ∥·∥X be an r.i. Banach function quasinorm over a reso-
nant measure space. Then its associate functional ∥·∥X′ satisfies

∥f∥X′ = sup
∥g∥X≤1

∫︂ ∞

0
f ∗g∗ dλ.

An obvious consequence of Proposition 2.27 is that an associate space of an
r.i. quasi-Banach function space (over a resonant measure space) is also rear-
rangement invariant.
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3 Quasi-Banach function spaces
The aim of this chapter is to show analogues of Theorem 2.15 and Theorem 2.16
for quasi-Banach function spaces. In order to do so we also obtain an analogue
of the Riesz–Fisher theorem which is interesting on its own.

The core observation of this section is the following Nekvinda’s trick due to
Nekvinda in [13]. Although it is in fact quite simple to prove, it is extremely
useful as it provides the critical insight needed in order to generalise the standard
proofs from the theory of normed spaces.

Lemma 3.1 (Nekvinda’s trick). Let X be a quasinormed space equipped with the
quasinorm ∥·∥X and denote by C its modulus of concavity. Let xn be a sequence
of points in X. Then ⃦⃦⃦⃦

⃦
N∑︂

n=0
xn

⃦⃦⃦⃦
⃦

X

≤
N∑︂

n=0
Cn+1∥xn∥X

for every N ∈ N.

Proof. The estimate follows by fixing an N ∈ N and using the triangle inequality,
up to a multiplicative constant, of ∥·∥X (N + 1) times to obtain⃦⃦⃦⃦

⃦
N∑︂

n=0
xn

⃦⃦⃦⃦
⃦

X

≤ C∥x0∥X + C

⃦⃦⃦⃦
⃦

N∑︂
n=1

xn

⃦⃦⃦⃦
⃦

X

≤ · · · ≤
N∑︂

n=0
Cn+1∥xn∥X .

Firstly, we use this trick to prove a generalised version of the classical Riesz–
Fisher theorem. This result is known in slightly less general setting, see for
example [12], but, as far as we know, it has not been proven in full generality.

Let us first define a generalised version of the classical Riesz–Fisher property.

Definition 3.2. Let X be a quasinormed space equipped with the quasinorm ∥·∥X

and let C ∈ [1,∞). We say that X has the Riesz–Fisher property with constant
C if for every sequence xn of points in X that satisfies

∞∑︂
n=0

Cn+1∥xn∥X < ∞

there is a point x ∈ X such that

lim
N→∞

N∑︂
n=0

xn = x

in the quasinormed topology of X.

It is obvious that if C = 1 then this property coincides with the classical
Riesz–Fisher property and also that the greater the constant C the weaker the
required condition is. However, this property with any constant is still stronger
than the completeness of the space. On the other hand, the completeness of the
space is equivalent to having the Ries–Fisher property with constant equal to the
modulus of concavity.

12



Theorem 3.3. Let X be a quasinormed space equipped with the quasinorm ∥·∥X

and denote by C its modulus of concavity. Then

1. if X is complete then it has the Riesz–Fisher property with constant C,

2. if X has Riesz–Fisher property with an arbitrary constant C ′ ∈ [1,∞) then
X is complete.

Proof. Suppose that X is complete and that xn is a sequence of points in X that
satisfies ∞∑︂

n=0
Cn+1∥xn∥X < ∞.

Then, thanks to Lemma 3.1, it holds for arbitrary natural numbers N ≤ M that⃦⃦⃦⃦
⃦

N∑︂
n=0

xn −
M∑︂

n=0
xn

⃦⃦⃦⃦
⃦

X

≤
M∑︂

n=N

Cn−N+1∥xn∥X ≤
∞∑︂

n=N

Cn+1∥xn∥X ,

which tends to 0 asN → ∞. Hence, the sequence∑︁N
n=0 xn is Cauchy and therefore

by our assumption convergent.
Suppose now that the space X has the Riesz–Fisher property with constant

C ′ and fix some Cauchy sequence xn. Proceed to find a non-decreasing and
unbounded sequence of natural numbers kn such that it holds for all natural
numbers i, j ≥ kn that

∥xi − xj∥X ≤ (2C ′)−n−2.

Now, let us consider sequence yn of points in X defined by

y0 = xk0 ,

yn = xkn − xkn−1 for n ≥ 1.

Then the sequence yn satisfies
∞∑︂

n=0
C ′n+1∥yn∥X ≤ C ′∥xk0∥+

∞∑︂
n=1

C ′n+1∥xkn −xkn−1∥X ≤ C ′∥xk0∥+
∞∑︂

n=1
2−n−1 < ∞,

which means that, by our assumption on X, there is some limit y ∈ X of the
sequence ∑︁N

n=0 yn. Since
N∑︂

n=0
yn = xk0 +

N∑︂
n=1

xkn − xkn−1 = xkN

we have shown that the sequence xn has a convergent subsequence with limit y.
Because xn is Cauchy, the standard argument yields that y is also the limit of
xn.

Note that this means that, for a given quasinormed linear space, the Riesz–
Fisher property with constant greater than the modulus of concavity is equivalent
to that with constant equal to it.

We now turn our attention to quasi-Banach function spaces as defined in
Section 2.3 and show that they have the same basic properties as their normed
counterparts. For the proofs of the classical versions of these results see [2, Chap-
ter 1, Section 1].

The first result relates quasi-Banach function spaces with the set of simple
functions and M0.

13



Theorem 3.4. Let ∥·∥X be a Banach function quasinorm and let X be the cor-
responding quasi-Banach function space. Then X is a linear space satisfying

S ⊆ X ↪→ M0

where S denotes the set of all simple functions (supported on a set of finite mea-
sure) and M0 is equipped with the topology of convergence in measure on the sets
of finite measure.

The proof is omitted since it does not differ at all from the classical version,
i.e. [2, Chapter 1, Theorem 1.4]. This is also the case of the following lemma,
the classical version of which can be found in [2, Chapter 1, Lemma 1.5], hence
we omit the proof again.

Lemma 3.5. Let ∥·∥X be a Banach function quasinorm and let X be the corre-
sponding quasi-Banach function space. Consider a sequence fn of functions in X
and f ∈ X. Then the following two assertions hold.

1. If 0 ≤ fn ↑ f µ-a.e., then either f /∈ X and ∥fn∥X ↑ ∞ or f ∈ X and
∥fn∥X ↑ ∥f∥X .

2. If fn → f µ-a.e. and lim infn→∞∥fn∥X < ∞, then f ∈ X and

∥f∥X ≤ lim inf
n→∞

∥fn∥X .

The following result, when combined with Theorem 3.3, establishes the com-
pleteness of quasi-Banach function spaces.

Theorem 3.6. Let ∥·∥X be a Banach function quasinorm and let X be the cor-
responding quasi-Banach function space. Denote by C the modulus of concavity
of ∥·∥X . Then X has the Riesz-Fisher property with constant C.

Proof. Fix some sequence fn in X such that
∞∑︂

n=0
Cn+1∥fn∥X < ∞. (3.1)

Denote by t and tN the following pointwise sums:

t =
∞∑︂

n=0
|fn|,

tN =
N∑︂

n=0
|fn|.

Then tN ↑ t and since it holds by Lemma 3.1 that

∥tN∥X ≤
N∑︂

n=0
Cn+1∥fn∥X ≤

∞∑︂
n=0

Cn+1∥fn∥X < ∞,

we get by part 1 of Lemma 3.5 that t ∈ X. Thanks to Theorem 3.4 the series∑︁∞
n=0|fn| converges almost everywhere and therefore the series ∑︁∞

n=0 fn does too.
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Denote now by f ans sN the following pointwise sums:

f =
∞∑︂

n=0
fn,

sN =
N∑︂

n=0
fn.

Then sN → f µ-a.e., hence, for any M , we get that sN − sM → f − sM µ-a.e. as
N → ∞. Furthermore, using Lemma 3.1 again, we get that

lim inf
N→∞

∥sN − sM∥X ≤ lim inf
N→∞

N∑︂
n=M+1

Cn+1∥fn∥X ≤
∞∑︂

n=M+1
Cn+1∥fn∥X ,

which tends to 0 as M → ∞ thanks to (3.1). Therefore, by part 2 of Lemma 3.5,
f − sM ∈ X (which implies that also f ∈ X) and also ∥f − sM∥X → 0 as
M → ∞.

We conclude this chapter by proving an important result that tells us that an
embedding between two quasi-Banach function spaces is always continuous.

Theorem 3.7. Let ∥·∥X and ∥·∥Y be Banach function quasinorms and let X
and Y be the corresponding quasi-Banach function spaces. If Y ⊆ X then also
Y ↪→ X.

Proof. Denote by C the modulus of concavity of both ∥·∥X and ∥·∥Y .
Suppose that Y ⊆ X but the embedding is not continuous. Then there is a

sequence fn of functions in Y such that

∥fn∥Y ≤ 1,
∥fn∥X ≥ n(2C)n+1.

We may, without loss of generality, assume that these functions are non-negative.
Then, by Lemma 3.1,

∞∑︂
n=0

Cn+1∥(2C)−n−1fn∥Y ≤
∞∑︂

n=0
2−n−1 < ∞,

and therefore ∑︁∞
n=0(2C)−n−1fn ∈ Y as follows from Theorem 3.6. Note that it

follows from Theorem 3.4 that ∑︁N
n=0(2C)−n−1fn converges to ∑︁∞

n=0(2C)−n−1fn µ-
a.e. as N → ∞. But this means that, by our assumption that fn are non-negative,
it holds for every k ∈ N that

∞∑︂
n=0

(2C)−n−1fn ≥
k∑︂

n=0
(2C)−n−1fn ≥ (2C)−k−1fk µ-a.e.,

from which we obtain by the means of the property (P2) of ∥·∥X that⃦⃦⃦⃦
⃦

∞∑︂
n=0

(2C)−n−1fn

⃦⃦⃦⃦
⃦

X

≥ ∥(2C)−k−1fk∥X ≥ k

for all k ∈ N, which shows that ∑︁∞
n=0(2C)−n−1fn /∈ X.
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4 Wiener amalgam spaces
In this chapter we investigate the classical Wiener amalgams and show that
they preserve neither the properties of Banach function spaces nor the prop-
erty of being rearrangement invariant. We restrict ourselves to the case when
(R, µ) = ([0,∞), λ) because this allows us to use a definition of Wiener amalgams
which can be handled without technical difficulties. Note that this restriction also
ensures that our underlying measure space is resonant. Furthermore, for the sake
of simplicity, we restrict ourselves to the case when the global component is the
classical Lebesgue norm. Even in such a restricted case, it is easy to find pairs of
spaces that generate a Wiener amalgam that is neither rearrangement invariant
nor a Banach function space.

Let us begin by presenting our definition of Wiener amalgams.

Definition 4.1. Let ∥·∥A be a norm defined on M and let ∥·∥lp, where p ∈ [1,∞],
be the classical Lebesgue norm defined on M(N,m). We then define the Wiener
norm ∥·∥W (A,lp), for f ∈ M , by

∥f∥W (A,lp) =
(︄ ∞∑︂

n=0
∥fχ[n,n+1)∥p

A

)︄1/p

for p ∈ [1,∞),

∥f∥W (A,lp) = sup
n∈N

∥fχ[n,n+1)∥A for p = ∞,

and the corresponding Wiener amalgam space (or just Wiener amalgam) by

W (A, lp) = {f ∈ M ; ∥f∥W (A,lp)) < ∞}.

The following Proposition shows mainly what properties does the Wiener
amalgam norm inherit in the case when ∥·∥A is a Banach function norm.

Proposition 4.2. Let ∥·∥A be a norm defined on M , let p ∈ [1,∞] and let
∥·∥lp be the classical Lebesgue norm defined on M(N,m). Then the Wiener norm
∥·∥W (A,lp) is indeed a norm.

Moreover, if ∥·∥A is a Banach function norm then the Wiener norm ∥·∥W (A,lp)
also satisfies the axioms (P2) and (P3) of Banach function norms together with
weaker versions of axioms (P4) and (P5), namely

(P4’) it holds for every bounded E ⊆ [0,∞) that ∥χE∥W (A,lp) < ∞,

(P5’) it holds for every bounded E ⊆ [0,∞) that there is a constant CE < ∞
satisfying ∫︂

E
|f | dλ ≤ CE∥f∥W (A,lp)

for every f ∈ M .

Proof. Only the properties (P4’) and (P5’) in the second assertion require a proof.
We will cover only the case p ∈ [1,∞) since the remaining case is easier.

Fix bounded E ⊆ [0,∞). Then there is n0 ∈ N such that E∩ [n, n+1) = ∅ for
every n ≥ n0. Thus the assertion (P4’) follows from the properties (P2) and (P4)
of ∥·∥A, since they imply that all the summands in the definition of ∥·∥W (A,lp) are
finite and only finitely many of them are greater zero.
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Similarly, the property (P5’) follows from the property (P5) of ∥·∥A, since it
allows us to estimate∫︂

E
|f | dλ =

∞∑︂
n=0

∫︂
E

|f |χ[n,n+1) dλ ≤
n0∑︂

n=0
CE∥fχ[n,n+1)∥A ≤

≤ C0CE

(︄
n0∑︂

n=0
∥fχ[n,n+1)∥p

A

)︄ 1
p

≤ C∥f∥W (A,lp),

where CE is the constant from the property (P5) of ∥·∥A for the set E and C0 is
the constant from the equivalence of ∥·∥l1 and ∥·∥lp norms on Rn0 .

The restrictions in (P4’) and (P5’) are necessary, even in the simplest cases,
as shown in the following remark.

Remark 4.3.

1. Let 1 ≤ p < q ≤ ∞. Then the norm ∥·∥W (Lq ,lp) does not satisfy (P4).

2. Let 1 ≤ q < p ≤ ∞. Then the norm ∥·∥W (Lq ,lp) does not satisfy (P5).

Consequently, the norm ∥·∥W (Lq ,lp) is a Banach function norm if and only if
1 ≤ p = q ≤ ∞, in which case it coincides with the classical Lebesgue norm.

Proof. We will show part 1 for q < ∞ since the remaining case is easier. Fix
arbitrary a ∈ (1, q

p
) and define

E =
⋃︂

n∈N

[︃
n, n+ 1

na

]︃
.

Then, by our assumptions on a,

λ(E) =
∞∑︂

n=0
n−a < ∞

but
∥χE∥p

W (Lq ,lp) =
∞∑︂

n=0
n−a p

q = ∞.

As for part 2, we will again show it only for p < ∞ since the remaining case
is easier. Fix arbitrary a ∈ ( q

p
, 1), b ∈ (1, q−a

q−1) (if q = 1 then any b ∈ (1,∞) will
suffice) and define

E =
⋃︂

n∈N

[︃
n, n+ 1

nb

]︃
,

f =
∞∑︂

n=0
n

b−a
q χ[n,n+n−b].

Then, by our assumptions on a and b,

λ(E) =
∞∑︂

n=0
n−b < ∞,

∥f∥p
W (Lq ,lp) =

∞∑︂
n=0

(︃∫︂ n+1

n
|f |q dλ

)︃ p
q

=
∞∑︂

n=0
n−a p

q < ∞
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but ∫︂
E

|f | dλ =
∞∑︂

n=0
n

b−a
q

−b = ∞.

The remaining part is an easy exercise.

Let us now turn our attention to the property of being rearrangement invari-
ant. We examine the case p = ∞ which provides the easiest way to construct
counterexamples. Let us first observe that, in this case, the Wiener amalgam
norm is, in a way, dominated by ∥·∥A.

Remark 4.4. Let ∥·∥A be an r.i. Banach function norm. Then it holds for all
f ∈ M that

∥f∥W (A,l∞) ≤ ∥f ∗χ[0,1]∥A.

Proof. The result follows from a simple calculation, using only the Theorem 2.26
and Proposition 2.27, which reads

sup
n∈N

∥fχ[n,n+1)∥A = sup
n∈N

sup
∥g∥A′ ≤1

∫︂ ∞

0
(fχ[n,n+1))∗g∗ dλ ≤

≤ sup
n∈N

sup
∥g∥A′ ≤1

∫︂ ∞

0
f ∗χ[0,1]g

∗ dλ = sup
n∈N

∥f ∗χ[0,1]∥A =

= ∥f ∗χ[0,1]∥A.

The following observation provides a characterisation of the Wiener amalgam
norm of f ∗.

Remark 4.5. Let ∥·∥A be an r.i. Banach function norm. Then it holds for all
f ∈ M that

∥f ∗∥W (A,l∞) = ∥f ∗χ[0,1]∥A.

Proof. The inequality ∥f ∗∥W (A,l∞) ≥ ∥f ∗χ[0,1]∥A is trivial and the inequality
∥f ∗∥W (A,l∞) ≤ ∥f ∗χ[0,1]∥A follows from Remark 4.4.

We are now in position to show that, given a simple and non-restrictive as-
sumption on ∥·∥A, the Wiener amalgam norm ∥·∥W (A,l∞) cannot be equivalent to
any rearrangement invariant one.

Proposition 4.6. Let ∥·∥A be an r.i. Banach function norm such that

lim
t→0+

∥χ[0,t]∥A = 0,

then the norm ∥·∥W (A,l∞) is not equivalent to any rearrangement invariant norm.

Proof. Thanks to Remark 4.5, it suffices to find a sequence of functions gk ∈ M
such that ∥g∗

kχ[0,1]∥A = C > 0 while

lim
k→∞

sup
n∈N

∥gkχ[n,n+1)∥A = 0.

Define gk for k ∈ N by

gk =
k∑︂

i=0
χ[i,i+ 1

k+1 ),
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then g∗
k = χ[0,1] and thus ∥g∗

kχ[0,1]∥A = ∥χ[0,1]∥A > 0 while, by our assumption,

lim
k→∞

sup
n∈N

∥gkχ[n,n+1)∥A = lim
k→∞

∥χ[0, 1
k+1 ]∥A = 0.

It follows from Remark 4.3 and Proposition 4.6 that W (Lq, l∞) with q ∈ [1,∞)
is an example of a Wiener amalgam generated by two r.i. Banach function spaces
which is neither rearrangement invariant nor a Banach function space. This result
is further extended in Corollary 6.4.
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5 Wiener–Luxemburg amalgam spaces
In this chapter we introduce the Wiener–Luxemburg amalgam spaces and show
that, at the cost of not being necessarily normable, they retain other properties
of Banach function spaces as well as rearrangement invariance. We will also
show some properties of said spaces, mainly concerning their embeddings, their
associate spaces and their relation to the sum and the intersection of their defining
spaces.

Throughout this chapter we restrict ourselves to the case when (R, µ) =
([0,∞), λ). This allows us to make the proofs more elegant and less technical
as well as ensures that the underlying measure space is resonant. Note that this
comes at no loss of generality, since any r.i. Banach function space over an ar-
bitrary resonant measure space can be represented by some r.i. Banach function
space over ([0,∞), λ), as follows from the classical Luxemburg representation
theorem. For details and the proof of this theorem we refer the reader to [2,
Chapter 2, Theorem 4.10]

5.1 Wiener–Luxemburg quasinorms
Definition 5.1. Let ∥·∥A and ∥·∥B be r.i. Banach function norms. We then
define the Wiener–Luxemburg quasinorm ∥·∥W L(A,B), for f ∈ M , by

∥f∥W L(A,B) = ∥f ∗χ[0,1]∥A + ∥f ∗χ(1,∞)∥B (5.1)

and the corresponding Wiener–Luxemburg amalgam space WL(A,B) as

WL(A,B) = {f ∈ M ; ∥f∥W L(A,B) < ∞}.

Furthermore, we will call the first summand in (5.1) the local component
of ∥·∥W L(A,B) while the second summand will be called the global component of
∥·∥W L(A,B).

For the sake of brevity we will sometimes write just Wiener–Luxemburg amal-
gams instead of Wiener–Luxemburg amalgam spaces.

Let us at first note that this concept somehow generalises the concept of the
r.i. Banach function spaces in the sense that every r.i. Banach function space is,
up to equivalence of the defining functionals, a Wiener–Luxemburg amalgam of
itself.

Remark 5.2. Let ∥·∥A be an r.i. Banach function norm. Then

∥f∥A ≤ ∥f∥W L(A,A) ≤ 2∥f∥A

for every f ∈ M .
Consequently, it makes s good sense to talk about local and global components

of arbitrary r.i. Banach function norms.

Consider now only the local component of some r.i. Banach function norm.
The following proposition shows that it behaves nicely and also provides an exam-
ple of Wiener–Luxemburg amalgam space that is an r.i. Banach function space.
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Proposition 5.3. Let ∥·∥A be an r.i. Banach function norm. Then the functional

f ↦→ ∥f ∗χ[0,1]∥A

is also an r.i. Banach function norm.
Furthermore, there is a constant C > 0 such that it holds for all f ∈ M that

∥f ∗χ[0,1]∥A ≤ ∥f∥W L(A,L∞) ≤ C∥f ∗χ[0,1]∥A, (5.2)

and thus the space WL(A,L∞) is an r.i. Banach function space.

Proof. That the functional in question satisfies the axioms (P2), (P3) and (P4)
as well as parts (a) and (b) of the axiom (P1) is an easy consequence of the
respective properties of ∥·∥A and the properties of non-increasing rearrangement.
Furthermore, the rearrangement invariance is obvious.

As for (P5), fix some set E ⊆ [0,∞) of finite measure. We may, without loss
of generality, assume that λ(E) > 1, because otherwise the proof is similar but
simpler. Then, by Hardy–Littlewood inequality (Theorem 2.4), it holds for every
f ∈ M that∫︂

E
f dλ ≤

∫︂ λ(E)

0
f ∗ dλ =

∫︂ 1

0
f ∗ dλ+

∫︂ λ(E)

1
f ∗ dλ ≤

≤
∫︂ 1

0
f ∗ dλ+ (λ(E) − 1)f ∗(1) ≤ λ(E)

∫︂ 1

0
f ∗ dλ ≤ λ(E)C[0,1]∥f ∗χ[0,1]∥A,

where C[0,1] is the constant from the property (P5) of ∥·∥A for the set [0, 1].
For the triangle inequality (part (c) of axiom (P1)) we employ the associate

definition of ∥·∥A (Proposition 2.27) and the fact that [0,∞) is resonant to get
for an arbitrary pair of functions f, g ∈ M that

∥(f + g)∗χ[0,1]∥A = sup
∥h∥A′ ≤1

∫︂ ∞

0
(f + g)∗χ[0,1]h

∗ dλ =

= sup
∥h∥A′ ≤1

sup
h̃

∗=h∗χ[0,1]

∫︂ ∞

0
(f + g)h̃ dλ ≤

≤ sup
∥h∥A′ ≤1

sup
h̃

∗=h∗χ[0,1]

∫︂ ∞

0
fh̃ dλ+ sup

∥h∥A′ ≤1
sup

h̃
∗=h∗χ[0,1]

∫︂ ∞

0
gh̃ dλ =

= sup
∥h∥A′ ≤1

∫︂ ∞

0
f ∗χ[0,1]h

∗ dλ+ sup
∥h∥A′ ≤1

∫︂ ∞

0
g∗χ[0,1]h

∗ dλ =

= ∥f ∗χ[0,1]∥A + ∥g∗χ[0,1]∥A.

Thus we have shown that the functional in question is an r.i. Banach function
norm. It remains to show (5.2).

The first inequality in (5.2) is trivial. For the second estimate, it suffices to
notice that

∥f ∗χ(1,∞)∥L∞ = f ∗(1) ≤ C[0,1]∥f ∗∥A,

where C[0,1] is the constant from the property (P5) of ∥·∥A for the set [0, 1].

While the local component is an r.i. Banach function norm, the global compo-
nent is much less well behaved. Indeed, it is fairly easy to see that it cannot have
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the properties (P1) and (P5) (in (P1) only part (a) can possibly hold). Thus it
makes no sense to consider it separately.

The following Theorem shows that although Wiener–Luxemburg quasinorm
needs not to be a norm, it satisfies all the remaining axioms of r.i. Banach function
norms.

Theorem 5.4. The Wiener–Luxemburg quasinorms, as defined in Definition 5.1,
are rearrangement invariant Banach function quasinorms. Consequently, the
corresponding Wiener–Luxemburg amalgam spaces are rearrangement invariant
quasi-Banach function spaces.

Proof. The properties (P2), (P3) and (P4) as well as those from parts (a) and (b)
of the axiom (Q1) are an easy consequence of the respective properties of ∥·∥A

and ∥·∥B and the properties of non-increasing rearrangement. Furthermore, the
rearrangement invariance is obvious.

To show (P5), fix some set E ⊆ [0,∞) of finite measure. We may, without
loss of generality, assume that λ(E) > 1, since otherwise the proof is similar but
simpler. Then, by Hardy–Littlewood inequality (Theorem 2.4), it holds for every
f ∈ M+ that∫︂

E
f dλ ≤

∫︂ λ(E)

0
f ∗ dλ =

∫︂ 1

0
f ∗ dλ+

∫︂ λ(E)

1
f ∗ dλ ≤

≤ C[0,1]∥f ∗χ[0,1]∥A + C(1,λ(E))∥f ∗χ(1,∞)∥B,

where C[0,1] is the constant from the property (P5) of ∥·∥A for the set [0, 1] and
C(1,λ(E)) is the constant from the same property of ∥·∥B for the set (1, λ(E)).

Finally, for the triangle inequality up to a multiplicative constant (part (c) of
the axiom (Q1)), consider the dilation operator D 1

2
, defined as in Theorem 2.21,

and use at first only the appropriate properties of non-increasing rearrangement
and those of ∥·∥A and ∥·∥B to calculate

∥f + g∥W L(A,B) = ∥(f + g)∗χ[0,1]∥A + ∥(f + g)∗χ(1,∞)∥B ≤
≤ ∥(D 1

2
f ∗+D 1

2
g∗)χ[0,1]∥A+

+ ∥(D 1
2
f ∗ +D 1

2
g∗)χ(1,∞)∥B ≤

≤ ∥D 1
2
f ∗χ[0,1]∥A + ∥D 1

2
g∗χ[0,1]∥A+

+ ∥D 1
2
f ∗χ(1,∞)∥B + ∥D 1

2
g∗χ(1,∞)∥B,

which shows that it is sufficient to prove that there is some C ∈ (0,∞) such that

∥D 1
2
f ∗χ[0,1]∥A + ∥D 1

2
f ∗χ(1,∞)∥B ≤ C∥f∥W L(A,B)

for all f ∈ M+. Actually, it suffices to show

∥D 1
2
f ∗χ(1,∞)∥B ≤ C∥f∥W L(A,B), (5.3)

because D 1
2

is bounded on A (by Theorem 2.21) and thus

∥D 1
2
f ∗χ[0,1]∥A = ∥D 1

2
(f ∗χ[0, 1

2 ])∥A ≤ ∥D 1
2
∥∥f ∗χ[0, 1

2 ]∥A ≤ ∥D 1
2
∥∥f ∗χ[0,1]∥A.
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To show (5.3), fix some f ∈ M+ and calculate

∥D 1
2
f ∗χ(1,∞)∥B = ∥D 1

2
(f ∗χ( 1

2 ,∞))∥B ≤ ∥D 1
2
∥∥f ∗χ( 1

2 ,∞)∥B ≤
≤ ∥D 1

2
∥(∥f ∗χ(1,∞)∥B + ∥f ∗χ( 1

2 ,1)∥B) ≤
≤ ∥D 1

2
∥(∥f ∗χ(1,∞)∥B + f ∗(1

2)∥χ( 1
2 ,1)∥B) ≤

≤ ∥D 1
2
∥(∥f ∗χ(1,∞)∥B + 2∥χ( 1

2 ,1)∥B

∫︂ 1
2

0
f ∗ dλ) ≤

≤ ∥D 1
2
∥(∥f ∗χ(1,∞)∥B + 2∥χ( 1

2 ,1)∥BC[0, 1
2 ]∥f ∗χ[0,1]∥A) ≤

≤ ∥D 1
2
∥ max{1, 2∥χ( 1

2 ,1)∥BC[0, 1
2 ]}∥f∥W L(A,B),

where C[0, 1
2 ] is the constant from property (P5) of ∥·∥A for the set [0, 1

2 ].

5.2 Associate spaces of Wiener–Luxemburg amalgams
Let us now turn our attention to the associate spaces of Wiener–Luxemburg
amalgams. As can be seen in the following theorems, when one consider the
Wiener–Luxemburg amalgam of two arbitrary spaces A and B and the Wiener–
Luxemburg amalgam of their respective associate spaces A′ and B’, one obtains
easily an analogue of the Hölder inequality for associate spaces (Theorem 2.23),
namely that it holds for arbitrary f, g ∈ M that∫︂ ∞

0
|fg| dλ ≤ ∥f∥W L(A,B)∥g∥W L(A′,B′),

but the question whether this estimate is a sharp one is more difficult and requires
an additional assumption on the original spaces. We will therefore treat those
two question separately and formulate those results in the terms of embeddings
between WL(A′, B′) and (WL(A,B))′.

Let us first show the easier embedding which holds for any A and B.

Theorem 5.5. Let ∥·∥A and ∥·∥B be r.i. Banach function norms and let ∥·∥A′ and
∥·∥B′ be their respective associate norms. Then the associate norm ∥·∥(W L(A,B))′

of ∥·∥W L(A,B) satisfies

∥f∥(W L(A,B))′ ≤ ∥f∥W L(A′,B′)

for every f ∈ M .
Consequently, the corresponding associate space satisfies

WL(A′, B′) ↪→ (WL(A,B))′.

Proof. Fix some f ∈ M and arbitrary g ∈ M satisfying ∥g∥W L(A,B) ≤ 1. Then
it follows from the Hölder inequality for associate spaces (Theorem 2.23) and
Proposition 2.27 that∫︂ ∞

0
f ∗g∗ dλ =

∫︂ ∞

0
f ∗χ[0,1]g

∗ dλ+
∫︂ ∞

0
f ∗χ(1,∞)g

∗ dλ ≤

≤ ∥f ∗χ[0,1]∥A′∥g∗χ[0,1]∥A + ∥f ∗χ(1,∞)∥B′∥g∗χ(1,∞)∥B ≤
≤ max{∥f ∗χ[0,1]∥A′ , ∥f ∗χ(1,∞)∥B′} · ∥g∥W L(A,B) ≤ ∥f∥W L(A′,B′).

The result now follows by taking the supremum over the unit ball in WL(A,B).
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For the inverse embedding an additional assumption is needed.

Theorem 5.6. Let ∥·∥A and ∥·∥B be r.i. Banach function norms and let ∥·∥A′ and
∥·∥B′ be their respective associate norms. Suppose that B ↪→ WL(A,B). Then
there is a constant C > 0 such that the associate norm ∥·∥(W L(A,B))′ of ∥·∥W L(A,B)
satisfies

∥f∥W L(A′,B′) ≤ C∥f∥(W L(A,B))′

for every f ∈ M .
Consequently, the corresponding associate space satisfies

(WL(A,B))′ ↪→ WL(A′, B′).

An equivalent condition for B ↪→ WL(A,B) is provided in part 1 of Theo-
rem 5.9.

Proof. Fix some f ∈ M and ε > 0. Assume at first that ∥f∥W L(A′,B′) < ∞. Then
∥f ∗χ[0,1]∥A′ and ∥f ∗χ(1,∞)∥B′ are also finite and we can find g0

f in the unit ball of
A and g1

f in the unit ball of B such that∫︂ ∞

0
f ∗χ[0,1]g

0
f dλ ≥ ∥f ∗χ[0,1]∥A′ − ε, (5.4)∫︂ ∞

0
f ∗χ(1,∞)g

1
f dλ ≥ ∥f ∗χ(1,∞)∥B′ − ε. (5.5)

Note that we may assume that g0
f is zero on (1,∞) and that g1

f is zero on
[0, 1], because neither the expressions (5.4) and (5.5) nor the conditions on the
size of g0

f and g1
f get violated by taking the appropriate restrictions.

Set gf = g0
f + g1

f . Then, by Hardy–Littlewood inequality (Theorem 2.4) and
Proposition 2.27, we get that

∥f∥(W L(A,B))′∥gf∥W L(A,B) ≥
∫︂ ∞

0
f ∗g∗

f dλ ≥
∫︂ ∞

0
f ∗(g0

f + g1
f ) dλ =

=
∫︂ ∞

0
f ∗χ[0,1]g

0
f dλ+

∫︂ ∞

0
f ∗χ(1,∞)g

1
f dλ ≥

≥ ∥f∥W L(A′,B′) − 2ε.

Thus, to obtain the desired estimate, one only has to find some upper bound for
∥gf∥W L(A,B), independent of f and ε and then take supremum over all ε > 0.

Because ∥·∥W L(A,B) is a quasinorm (see Theorem 5.4), we immediately get
that there is some constant C0 > 0 such that

∥gf∥W L(A,B) ≤ C0(∥g0
f∥W L(A,B) + ∥g1

f∥W L(A,B)).

The estimate for the first term of the right-hand side is easy, because g0
f , and

consequently (g0
f )∗, is zero on (1,∞) and thus

∥g0
f∥W L(A,B) = ∥(g0

f )∗χ[0,1]∥A + ∥(g0
f )∗χ(1,∞)∥B = ∥(g0

f )∗∥A ≤ 1.

The estimate for the second term of the right-hand side follows thanks to the
assumption that B ↪→ WL(A,B), since we may use it to get

∥g1
f∥W L(A,B) ≤ C1∥g1

f∥B ≤ C1,
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where C1 is the constant of the embedding B ↪→ WL(A,B). Thus we have shown
that the desired estimate holds (with constant C = C0(1 + C1)) for functions
f ∈ M satisfying ∥f∥W L(A′,B′) < ∞.

The case ∥f∥W L(A′,B′) = ∞ is very similar. One proceeds as above, with the
only difference being that one puts K as the right-hand side of (5.4) or (5.5), as
appropriate, and subsequently takes supremum over all K ∈ N.

We conclude this section by presenting two corollaries to the preceding theo-
rems. Their proofs are of course trivial, but we believe the results to be interesting
enough to be worth stating nonetheless.

Corollary 5.7. Let ∥·∥A and ∥·∥B be r.i. Banach function norms and let ∥·∥A′

and ∥·∥B′ be their respective associate norms. Suppose that B ↪→ WL(A,B).
Then

(WL(A,B))′ = WL(A′, B′)
up to equivalence of quasinorms. Consequently, WL(A′, B′) is an r.i. Banach
function space.

Corollary 5.8. Let ∥·∥A and ∥·∥B be r.i. Banach function norms and let ∥·∥A′

and ∥·∥B′ be their respective associate norms. Suppose that B ↪→ WL(A,B) and
that ∥·∥W L(A,B) is equivalent to an r.i. Banach function norm. Then

WL(A,B) = (WL(A′, B′))′

up to equivalence of quasinorms.

5.3 Embeddings
In this section we examine the embeddings of Wiener–Luxemburg amalgams.
First we characterise the embeddings between two Wiener–Luxemburg amalgams,
then between a Wiener–Luxemburg amalgam of two spaces and the sum or in-
tersection of these spaces and finally we examine the case when either the local
or the global component is either L1 or L∞.

The first theorem provides the characterisation of embeddings between two
Wiener–Luxemburg amalgams.

Theorem 5.9. Let ∥·∥A, ∥·∥B and ∥·∥C be r.i. Banach function norms. Then the
following assertions are true:

1. The embedding WL(A,C) ↪→ WL(B,C) is true if and only if the local
component of ∥·∥A is stronger that that of ∥·∥B, in the sense that for every
f ∈ M the implication

∥f ∗χ[0,1]∥A < ∞ ⇒ ∥f ∗χ[0,1]∥B < ∞

holds.

2. The embedding WL(A,B) ↪→ WL(A,C) is true if and only if the global
component of ∥·∥B is stronger that that of ∥·∥C, in the sense that for every
f ∈ M such that f ∗(1) < ∞ the implication

∥f ∗χ(1,∞)∥B < ∞ ⇒ ∥f ∗χ(1,∞)∥C < ∞

holds.
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Proof. The sufficiency follows in both cases directly from Theorem 3.7 and Def-
inition 5.1, only in the second case one has to realise that all f ∈ WL(A,B)
satisfy f ∗(1) < ∞.

The necessity in the case 1 can be shown as follows. Fix some f0 ∈ M
such that ∥f ∗

0χ[0,1]∥A < ∞ but ∥f ∗
0χ[0,1]∥B = ∞. Then f = f ∗

0χ[0,1] belongs to
WL(A,C), since

∥f ∗χ[0,1]∥A = ∥f ∗
0χ[0,1]∥A < ∞,

∥f ∗χ(1,∞)∥C = ∥0∥C = 0,

but not to WL(B,C), since

∥f ∗χ[0,1]∥B = ∥f ∗
0χ[0,1]∥B = ∞.

As for the case 2, fix some f0 ∈ M such that f ∗(1) < ∞ and ∥f ∗
0χ(1,∞)∥B < ∞

while ∥f ∗
0χ(1,∞)∥C = ∞. Then f = f ∗

0 (1)χ[0,1] + f ∗
0χ(1,∞) belongs to WL(A,B),

since

∥f ∗χ[0,1]∥A = ∥f ∗
0 (1)χ[0,1]∥A = f ∗

0 (1)∥χ[0,1]∥A < ∞,

∥f ∗χ(1,∞)∥B = ∥f ∗
0χ(1,∞)∥B < ∞,

but not to WL(A,C), since

∥f ∗χ(1,∞)∥C = ∥f ∗
0χ(1,∞)∥C = ∞.

To provide an example we turn to the classical Lebesgue spaces. It is well
known that Lebesgue spaces over [0,∞) are not ordered, but it is easy to show
that their local and global component are, as is formalised in the following remark.

Remark 5.10. Let p, q ∈ [1,∞] Then it holds that

1. the local component of ∥·∥Lp is stronger than that of ∥·∥Lq if and only if
p ≥ q,

2. the global component of ∥·∥Lp is stronger than that of ∥·∥Lq if and only if
p ≤ q.

We now put WL(A,B) in relation with the sum and intersection of A and B.
We first show that WL(A,B) is always sandwiched between them.

Theorem 5.11. Let ∥·∥A and ∥·∥B be r.i. Banach function norms. Then

A ∩B ↪→ WL(A,B) ↪→ A+B.

Proof. Fix some f ∈ M . Then

∥f∥W L(A,B) = ∥f ∗χ[0,1]∥A + ∥f ∗χ(1,∞)∥B ≤ ∥f∥A + ∥f∥B ≤ 2∥f∥A∩B

which establishes the first embedding.
As for the second embedding, note that we may consider f to be non-negative,

since it is an easy exercise to show that, provided that ∥·∥A and ∥·∥B are Banach
function norms, it holds that ∥f∥A+B = ∥ |f | ∥A+B for every f ∈ M .
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Consider now functions g and h defined by

g = max{f − f ∗(1), 0},
h = min{f, f ∗(1)}.

Then f = g + h and thus

∥f∥A+B ≤ ∥g∥A + ∥h∥B = ∥g∗∥A + ∥h∗∥B

thanks to rearrangement invariance of both ∥·∥A and ∥·∥B. Furthermore, thanks
to f beeing non-negative, it is an exercise to verify that

g∗ = (f ∗ − f ∗(1))χ[0,1],

h∗ = f ∗(1)χ[0,1] + f ∗χ(1,∞),

and therefore

∥f∥A+B ≤ ∥f ∗χ[0,1]∥A + ∥f ∗(1)χ[0,1]∥B + ∥f ∗χ(1,∞)∥B≤

≤ ∥f∥W L(A,B) + ∥χ[0,1]∥B

∫︂ 1

0
f ∗ dλ ≤

≤ (1 + C[0,1]∥χ[0,1]∥B)∥f∥W L(A,B),

where C[0,1] is the constant from the property (P5) of ∥·∥A for the set [0, 1]. This
establishes the second embedding.

Moreover, as stated in the following result, in the case when we have proper
relations between the respective components of A and B we can describe their
sum and intersection in terms of Wiener–Luxemburg amalgams, at least in the
set theoretical sense.

Corollary 5.12. Let ∥·∥A and ∥·∥B be r.i. Banach function norms. Suppose that
the local component of ∥·∥A is stronger than of ∥·∥B while the global component
of ∥·∥B is stronger than that of ∥·∥A. Then

A ∩B = WL(A,B)

up to equivalence of quasinorms while

A+B = WL(B,A)

as a set.

Proof. Thanks to Proposition 2.17, Theorem 3.7 and Theorem 5.11 it suffices to
prove that WL(A,B) ⊆ A ∩B and A+B ⊆ WL(B,A). But this is provided by
Theorem 5.9, which, thanks to our assumptions, yield

WL(A,B) ↪→ A,

WL(A,B) ↪→ B,

A ↪→ WL(B,A),
B ↪→ WL(B,A),

which, when combined with the fact that WL(B,A) is a linear set, is sufficient
for the inclusions.
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The reason for the second equality holding only in the set theoretical sense is
of course the fact that A+ B is not necessarily a Banach function space. In the
case when A + B is a Banach function space we obtain from Theorem 3.7 the
equivalence of quasinorms and consequently also a normability of the appropriate
Wiener–Luxemburg amalgam.

Corollary 5.13. Let ∥·∥A and ∥·∥B be r.i. Banach function norms. Suppose that
the local component of ∥·∥B is stronger than of ∥·∥A while the global component of
∥·∥A is stronger than that of ∥·∥B. Suppose also that A+B is a Banach function
space. Then the Wiener–Luxemburg amalgam space WL(A,B) is an r.i. Banach
function space.

Proof. Our assumptions together with Theorem 3.7 and Corollary 5.12 imply
that A + B = WL(A,B) up to equivalence of norms, which is sufficient since we
assume that A+B is a Banach function space.

In the next theorem, we show that the classical Lebesgue space L1 has the
weakest local component, as well as the strongest global component, among all
r.i. Banach function spaces, while L∞ has, in the same context, the strongest
local component as well as the weakest global component.

Theorem 5.14. Let ∥·∥A and ∥·∥B be r.i. Banach function norms. Then

1. WL(L∞, B) ↪→ WL(A,B),

2. WL(A,L1) ↪→ WL(A,B),

3. WL(A,B) ↪→ WL(L1, B),

4. WL(A,B) ↪→ WL(A,L∞).

Proof. Fix f ∈ M . The first embedding follows from the estimate

∥f ∗χ[0,1]∥A ≤ ∥f ∗χ[0,1]∥L∞∥χ[0,1]∥A

and part 1 of Theorem 5.9.
The third embedding also uses part 1 of Theorem 5.9 but this time paired

with the estimate

∥f ∗χ[0,1]∥L1 =
∫︂ 1

0
f ∗χ[0,1] dλ ≤ C[0,1]∥f ∗χ[0,1]∥A,

where C[0,1] is the constant from property (P5) of ∥·∥A.
The fourth embedding is a trivial consequence of Proposition 5.3, specifically

of (5.2).
The second embedding is most involved. First step is to show that

WL(L∞, L1) ↪→ C (5.6)

for any r.i. Banach function space C. Fix such a space and denote by C ′ its
associate space. Then we know from part 4, which has already been proven, that
C ′ ↪→ WL(C ′, L∞). Thus it follows from the Theorem 5.5 and Proposition 2.24
that

WL(C,L1) ↪→ (WL(C ′, L∞))′ ↪→ C ′′ = C.
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To obtain (5.6), it remains only to combine this with part 1, which has also
already been proved.

Consider now function f ∈ M such that f ∗(1) < ∞ which also satisfies
∥f ∗χ(1,∞)∥L1 < ∞. Since it holds for any t ∈ (0,∞) that

(f ∗χ(1,∞))∗(t) = (f ∗χ(1,∞))(t+ 1),

it is obvious that f ∗χ(1,∞) belongs to WL(L∞, L1) and consequently, by (5.6)
applied to the space B, to B. This shows that the global component of ∥·∥L1 is
stronger than that of ∥·∥B and therefore the desired embedding follows from the
part 2 of Theorem 5.9.

As a corollary, we obtain the following well-known classical result, for which
we thus provide an alternative proof.

Corollary 5.15. Let A be an r.i. Banach function space. Then

L1 ∩ L∞ ↪→ A ↪→ L1 + L∞.

Proof. This corollary is a direct consequence of Remark 5.10, Corollary 5.12,
Theorem 5.14, Theorem 3.7 and the fact that L1 +L∞ is an r.i. Banach function
space.

Another application of Theorem 5.14 is that it provides a framework for a sep-
arate examination of the local and global components of an r.i. Banach function
norms. This is employed in the proof of the following proposition.

Proposition 5.16. Let ∥·∥A and ∥·∥B be r.i. Banach function norms and denote
by ∥·∥A′ and ∥·∥B′ the respective associate norms. Suppose that the local compo-
nent of ∥·∥A is stronger than that of ∥·∥B. Then the local component of ∥·∥B′ is
stronger than that of ∥·∥A′.

Similarly, if the global component of ∥·∥A is stronger than that of ∥·∥B, then
the global component of ∥·∥B′ is stronger than that of ∥·∥A′

Proof. By our assumption and part 1 of Theorem 5.9 we get that

WL(A,L∞) ↪→ WL(B,L∞).

Consequently, it follows from part 1 of Theorem 5.14, Corollary 5.7 and Proposi-
tion 2.24 that

WL(B′, L1) = (WL(B,L∞))′ ↪→ (WL(A,L∞))′ = WL(A′, L1),

that is, the local component of ∥·∥B′ is stronger than that of ∥·∥A′ .
The second claim can be proved in similar manner, only using WL(L1, A) and

WL(L1, B) instead of WL(A,L∞) and WL(B,L∞).

As a direct consequence of Proposition 5.16 and Corollary 5.7 we obtain the
following result concerning normability.

Corollary 5.17. Let ∥·∥A and ∥·∥B be r.i. Banach function norms and suppose
that the local component of ∥·∥A is stronger than that of ∥·∥B. Then WL(A,B)
is an r.i. Banach function space.
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5.4 Normability of Wiener–Luxemburg amalgams
In the following result we collect, for the reader’s convenience, all the results
concerning normability.

Theorem 5.18. The Wiener–Luxemburg amalgam space WL(A,B) is an r.i. Ba-
nach function space provided at least one of the following conditions holds:

1. B = L∞.

2. The local component of ∥·∥A is stronger than that of ∥·∥B.

3. The local component of ∥·∥B is stronger than that of ∥·∥A while the global
component of ∥·∥A is stronger than that of ∥·∥B and A + B is a Banach
function space.
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6 Examples of applications
In this chapter we apply the general theory developed in Chapter 5 to some
concrete examples spaces to show how it can easily provide some interesting
results.

6.1 Wiener–Luxemburg amalgams of Lebesgue spaces
We first turn our attention to the most natural and well known r.i. Banach func-
tion spaces, namely the Lebesgue spaces. In this context we will also compare
Wiener–Luxemburg amalgams with the more classical Wiener ones.

Let us first recall Remark 5.10 which, thanks to Theorem 5.9, provides a char-
acterisation of the embeddings among Wiener–Luxemburg amalgams of Lebesgue
spaces. This leads to the following result.

Theorem 6.1. Let 1 ≤ p ≤ q ≤ ∞. Then

1.
WL(Lq, Lp) = Lp ∩ Lq

up to equivalence of norms,

2.
WL(Lp, Lq) = Lp + Lq

up to equivalence of norms.

Consequently, the Wiener–Luxemburg amalgam space of any two Lebesgue spaces
is an r.i. Banach function space.

Proof. The first assertion as well as the set theoretical part of the second assertion
follows immediately from Corollary 5.12 and Remark 5.10, while the equivalence
of norms in the second assertion follows from Theorem 3.7 and the classical result
that Lp + Lq is always a Banach function space.

Note that the fact that Lp +Lq is always a Banach function space follows from
the fact that either at least one of Lp′ , Lq′ , where p′ = p

p−1 if p < ∞ and p′ = 1
otherwise, has an absolutely continuous norm or Lp + Lq = L1 (see [2, Chapter
3, Exercise 5] ), and thus our proof does not depend on any deep results.

Important consequence of Theorem 6.1 (and also of Remark 5.10 and Theo-
rem 5.9) is the following classical interpolation theorem.

Theorem 6.2. Let 1 ≤ p ≤ s ≤ q ≤ ∞. Then

Lp ∩ Lq ↪→ Ls ↪→ Lp + Lq.

Those results are of course well known, Theorem 6.2 can be proved using
classical Hölder inequality while Theorem 6.1 follows from the Holmstedt formula
(see [10]), but we believe that our proofs provide more insight.

Let us now return to the Wiener amalgams as studied in Chapter 4. We
already know that W (Lq, lp) is in many cases not rearrangement invariant and
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almost never a Banach function space. A natural approach to fixing this issue is
to consider, instead of ∥·∥W (Lq ,lp), a functional

f ↦→ ∥f ∗∥W (Lq ,lp).

As the next theorem shows, this approach leads to the Wiener–Luxemburg amal-
gam norm.

Theorem 6.3. Let p, q ∈ [1,∞]. Then there is a constant C > 0 such that

C−1∥f ∗∥W (Lq ,lp) ≤ ∥f∥W L(Lq ,Lp) ≤ C∥f ∗∥W (Lq ,lp),

for every f ∈ M .

This result follows from Theorem 3.7 once one shows that the functional

f ↦→ ∥f ∗∥W (Lq ,lp)

is a Banach function quasinorm and that the set{︂
f ∈ M ; ∥f ∗∥W (Lq ,lp) < ∞

}︂
coincides with WL(Lq, Lp), both of which is easy to do. The details are left as
an exercise to the reader.

Thanks to Proposition 4.6 we also get the following result.

Corollary 6.4. Let p, q ∈ [1,∞]. Then the Wiener amalgam norm ∥·∥W (Lq ,lp) is
equivalent to a rearrangement invariant norm if and only if p = q in which case
it is equivalent to the classical Lebesgue norm ∥·∥p.

6.2 Wiener–Luxemburg amalgams of Orlicz spaces
The second class of spaces we present here as an example of possible application
of our theory is the class of Orlicz spaces. The general theory of these spaces has
been covered in depth for example in [15, Chapter 4], which will be our reference
for this section.

Let us first provide a (very) brief introduction of said spaces. For details and
further information we refer the reader to [15, Chapter 4, Sections 4.1-4.6]. Note
that we still assume that (R, µ) = ([0,∞), λ).

The first step is to define a Young function.

Definition 6.5. We say, that function Φ : [0,∞) → [0,∞) is a Young function
if there exists a function ϕ : [0,∞) → [0,∞) such that

Φ(t) =
∫︂ t

0
ϕ dλ

for all t ∈ [0,∞) and the function ϕ satisfies the following conditions:

1. ϕ(0) = 0,

2. ϕ(s) > 0 for s > 0,

3. ϕ is right-continuous on [0,∞),
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4. ϕ is non-decreasing on [0,∞),

5. lims→∞ ϕ(s) = ∞.

The next necessary definition is that of a complementary function.

Definition 6.6. Let Φ be a Young function generated by ϕ, that is

Φ(t) =
∫︂ t

0
ϕ dλ.

Define a function ψ for t ∈ [0,∞) by

ψ(t) = sup
ϕ(s)≤t

s.

Then the function Ψ : [0,∞) → [0,∞), defined for any t ∈ [0,∞) by

Ψ(t) =
∫︂ t

0
φ dλ,

will be called the complementary function to Φ.

Thus equipped we can now define the Orlicz norm corresponding to a Young
function Φ.

Definition 6.7. Let Φ be a Young function and Ψ its complementary function.
We then define the Orlicz norm ∥·∥Φ for f ∈ M0 by

∥f∥Φ = sup
g

∫︂ ∞

0
|fg| dλ,

where the supremum is taken over all g ∈ M0 such that∫︂ ∞

0
Ψ(|f |) dλ ≤ 1.

Furthermore, we define the corresponding Orlicz space LΦ as the set

LΦ = {f ∈ M0; ∥f∥Φ < ∞}.

The Orlicz spaces, as defined above, are rearrangement invariant Banach func-
tion spaces (see [2, Chapter 4, Theorem 8.9]).

Having provided the basic definitions, we may now apply our general theory
on these spaces. We first prove the following theorem concerning embeddings.

Theorem 6.8. Let Φ1 and Φ2 be two Young functions and let ∥·∥Φ1 and ∥·∥Φ2 be
the corresponding Orlicz norms. Then

1. if there are some constants c, T ∈ (0,∞) such that

Φ2(t) ≤ Φ1(ct)

for all t ∈ [T,∞) then the local component of ∥·∥Φ1 is stronger than that of
∥·∥Φ2,
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2. if there are some constants c, T ∈ (0,∞) such that

Φ2(t) ≤ Φ1(ct)

for all t ∈ [0, T ] then the global component of ∥·∥Φ1 is stronger than that of
∥·∥Φ2.

The proof is quite straightforward and the general idea is the same as in the
proof of characterisation of the embeddings between two Orlicz spaces, see for
example [15, Theorem 4.17.1].

Proof. Suppose that the first condition hold and that ∥f ∗χ[0,1]∥Φ1 < ∞. Then
there exist some γ ∈ (0,∞) such that∫︂ ∞

0
Φ1(γf ∗χ[0,1]) dλ < ∞.

This is a characterisation of Orlicz spaces which can be found for example in [15,
Lemma 4.7.2]. Denote now

I =
{︄
t ∈ [0,∞); f ∗χ[0,1] <

c

γ
T

}︄
.

Then we immediately get that

Φ2

(︃
γ

c
f ∗χ[0,1]

)︃
≤ Φ1

(︂
γf ∗χ[0,1]

)︂
for all t ∈ [0,∞) \ I. Hence∫︂ ∞

0
Φ2

(︃
γ

c
f ∗χ[0,1]

)︃
dλ =

∫︂
I

Φ2

(︃
γ

c
f ∗χ[0,1]

)︃
dλ+

∫︂
[0,∞)\I

Φ2

(︃
γ

c
f ∗χ[0,1]

)︃
dλ ≤

≤ λ(I ∩ [0, 1])Φ2(T ) +
∫︂

[0,∞)\I
Φ1
(︂
γf ∗χ[0,1]

)︂
dλ ≤

≤ Φ2(T ) +
∫︂ ∞

0
Φ1(γf ∗χ[0,1]) dλ < ∞.

This shows that ∥f ∗χ[0,1]∥Φ2 < ∞ (see [15, Remark 4.7.1]).
Suppose now that the second condition holds and that we have some f such

that both f ∗(1) < ∞ and ∥f ∗χ(1,∞)∥Φ1 < ∞. Then again there is some γ ∈ (0,∞)
such that ∫︂ ∞

0
Φ1(γf ∗χ(1,∞)) dλ < ∞.

Note, that this means that λ({t ∈ [0,∞); f ∗χ(1,∞) > a}) < ∞ for any a ∈ (0,∞)
(because Φ1 is increasing, see [15, Lemma 4.2.2]). Denote now

I =
{︄
t ∈ [0,∞); f ∗χ(1,∞) >

c

γ
T

}︄
.

Then λ(I) < ∞ by the observation above and of course

Φ2

(︃
γ

c
f ∗χ(1,∞)

)︃
≤ Φ1

(︂
γf ∗χ(1,∞)

)︂
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for all t ∈ [0,∞) \ I. We thus obtain∫︂ ∞

0
Φ2

(︃
γ

c
f ∗χ(1,∞)

)︃
dλ =

∫︂
I

Φ2

(︃
γ

c
f ∗χ(1,∞)

)︃
dλ+

∫︂
[0,∞)\I

Φ2

(︃
γ

c
f ∗χ(1,∞)

)︃
dλ ≤

≤ λ(I)Φ2

(︃
γ

c
f ∗(1)

)︃
+
∫︂

[0,∞)\I
Φ1
(︂
γf ∗χ(1,∞)

)︂
dλ ≤

≤ λ(I)Φ2

(︃
γ

c
f ∗(1)

)︃
+
∫︂ ∞

0
Φ1(γf ∗χ(1,∞)) dλ < ∞.

Hence it holds that ∥f ∗χ(1,∞)∥Φ2 < ∞.

This results allows us to obtain the following analogue to Theorem 6.2.

Theorem 6.9. Let Φ1, Φ2 and Φ3 be three Young functions and let LΦ1, LΦ2 and
LΦ3 be the corresponding Orlicz spaces. Then

1. if there are some constants c1, c2, T1, T2 ∈ (0,∞) such that

Φ3(t) ≤ Φ1(c1t)

for all t ∈ [T1,∞) and
Φ3(t) ≤ Φ2(c2t)

for all t ∈ [0, T2] then
LΦ1 ∩ LΦ2 ↪→ LΦ3 ,

2. if there are some constants c1, c2, T1, T2 ∈ (0,∞) such that

Φ1(t) ≤ Φ3(c1t)

for all t ∈ [T1,∞) and
Φ2(t) ≤ Φ3(c2t)

for all t ∈ [0, T2] then
LΦ3 ↪→ LΦ1 + LΦ2 .

Proof. Part 1 holds because

LΦ1 ∩ LΦ2 ↪→ WL(LΦ1 , LΦ2) ↪→ WL(LΦ3 , LΦ3) = LΦ3 ,

where the first embedding follows from Theorem 5.11 and the second embedding
is provided, under our assumptions, by Theorem 5.9 and Theorem 6.8.

Similarly, part 2 is true because

LΦ3 = WL(LΦ3 , LΦ3) ↪→ WL(LΦ1 , LΦ2) ↪→ LΦ1 + LΦ2

which follows from the same theorems.
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