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doctoral student into a researcher with an independent program, he was very supportive
and taught me lot of things. My thanks also go to my other co-authors, students and
colleagues with whom I discussed research questions, academic life, and other related
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Chapter 1

Introduction

Modern software systems often execute multiple threads concurrently in order to achieve
better overall performance, increase responsiveness of the whole system to user actions, and
to utilize multicore CPUs together with graphical processing units (GPUs) that are now
widely available. Although concurrency has these benefits, the design and implementation
of systems that involve multiple threads of execution and process asynchronous events
is known to be a very complicated task mainly for the reasons given below. Developers
usually find it difficult to reason about the behavior of concurrent systems and possible
mutual interactions of threads. Concurrency errors, such as race conditions and deadlocks,
are often caused by subtle interactions between threads and they appear rarely during
the program execution — just in few of all the possible thread schedules. Specifically, the
concurrency errors are hard to discover, reproduce, and fix properly. It is nevertheless
imperative to reduce the number of such errors (and the related source code bugs) that
are not fixed before deployment, since their cost may be very high especially in critical
systems, including, for example, software components of transportation machinery and
healthcare devices. A very high level of safety and reliability is required for such software
components. Like manual inspection of source code and reasoning about program behavior,
classic testing is not really applicable for this purpose, because it has limited coverage
and thread scheduling is hard to control during execution of tests. Techniques and tools
supporting automated verification and debugging of multithreaded programs are therefore
needed in order to help developers create more reliable software.

A positive story is that lot of work has been done in this field over the last twenty years,
and some great advances were achieved. While quite a large fraction of published results
still has a mostly theoretical nature, many techniques and tools produced by researchers
have been applied to realistic software systems and evaluated on them. Software companies
even start to use methods of program verification in order to find concurrency bugs in the
source code of their products — this refers both to organizations that develop safety-critical
software (e.g., Airbus and NASA) and to major vendors of off-the-shelf software such as
Microsoft and Google. Notable tools include Java Pathfinder1 and CHESS2. We provide a
brief overview of the current state-of-the-art in the next chapter.

1https://github.com/javapathfinder/jpf-core/
2https://www.microsoft.com/en-us/research/project/chess-find-and-reproduce-heisenbugs-in-

concurrent-programs/
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However, despite the recent progress, usage of verification tools by software developers
in their day-to-day practice is still limited because the respective techniques do not scale
to large systems. The primary cause is that, for any non-trivial system, the number of
possible thread schedules that have to be analyzed is really huge. Verification of such
systems might run for days (weeks or months), if it finishes at all. While some techniques
can be successfully applied to large systems, then they have other important limitations

— for example, they report many false warnings or miss some errors due to imprecise
approximation of program behavior. The approximation is a consequence of abstraction
performed in order to achieve better scalability. In the case of verification tools that use
abstraction, developers often have to manually inspect each warning and decide whether
the corresponding error can truly occur during program execution in a given setting
(and therefore is worth fixing) or it does not. Overall, the main challenges in automated
verification and search for concurrency errors in multithreaded systems include: scalability,
performance, soundness, and precision.

The goal of our research is to address some of the challenges and limitations described
above. In particular, we focus on the construction of automated methods that improve
scalability of verification and performance of error detection, and help developers to fix the
corresponding bugs in the program code. The primary target domain for methods that we
develop consists of software written in mainstream object-oriented programming languages.
We have implemented all our methods within already existing third-party verification
frameworks (e.g., Java Pathfinder) that directly process the actual code (source or binary)

— that means without explicit prior transformation of the concrete program code into a
high-level abstract model of some kind. Systematic analysis of abstract models is useful
especially in the design phase of a software system, but in our research we focus mainly
on checking the implementation in some programming language (such as Java) against
low-level properties such as correct thread synchronization (including, e.g., the absence of
race conditions and deadlocks).

Outline of the habilitation thesis. We begin with the general motivation and context
above in this chapter, and then we introduce basic terminology and provide necessary
background on the main approaches to program verification in Chapter 2. The main body
of this thesis consists of 9 publications in the proceedings of peer-reviewed international
conferences and international journals (Chapter 4-12), together with a brief summary of
each publication and an overview that connects together results and contribution described
in the individual publications (Chapter 3). Each of the chapters 4-12 starts with a full
reference to the respective publication that follows in its original preprint form. We
conclude and present a brief outlook on the future research directions in Chapter 13.
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Chapter 2

Background: Automated Verification
of Multithreaded Software

In the context of software systems that involve multiple concurrent threads, the goal of
both verification and search for bugs is to analyze the observable behavior of a given
system under different thread schedules that may occur at runtime. There exist two
principal directions: (1) analysis of high-level abstract models of the system behavior and
(2) checking the implementation that has the form of actual code written in some concrete
programming language. Classic algorithms of model checking [10] are used in the first case.
An abstract model is a mathematical structure that captures the possible behavior of a
given system. For example, a popular approach is to encode the system behavior using the
structure known as Labeled Transition System, where nodes and transitions are annotated
by atomic propositions, and to express the desired property as a temporal logic formula.
More details can be found in literature [10]. We focus on the second direction in this
chapter, since it is much more related to the contribution that we present in the thesis.

Techniques and tools for verification of systems implemented in mainstream programming
languages, such as Java and C++, are typically based on the following approaches:
systematic traversal of program state space and execution traces [42, 53], constraint
solving [34], static data-flow and pointer analysis [19, 43, 44], dynamic analysis [6, 21],
and concurrency testing [38, 55, 58]. Each of the approaches has certain benefits and
limitations. Systematic traversal of state space is exhaustive and precise, but also very
time consuming and it has limited scalability. On the other hand, static analysis scales
much better due to approximation that, however, is the cause of imprecision and spurious
warnings. Dynamic techniques, as well as concurrency testing, very precisely analyze
just selected few thread schedules, and therefore have a small coverage. A user always
has to consider the trade-off between performance, precision, scalability and coverage.
Nevertheless, while only a single basic approach has been used traditionally in most of
the published techniques, there were also some attempts to combine multiple approaches
in specific ways [7, 9] in order to take advantage of their complementary strengths and
compensate for their respective limitations. We provide more details about each of the
main approaches in this chapter. Please note that when using terms like state, execution
trace, and thread, we refer to entities at the level of the subject program (its source code
and state space), unless explicitly specified otherwise.
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2.1 Systematic Traversal of Program State Space

A state space of a multithreaded program is encoded as a directed graph where nodes
represent states and edges represent transitions in the form of finite sequences of executed
statements. Each path in the graph then corresponds to an execution trace, respectively to
a particular thread schedule (interleaving of threads). The basic principle of this approach
is to create non-deterministic thread scheduling choices at certain program states, and
systematically explore all the options at each choice to cover the behavior of a given
program under every possible thread schedule. Systematic traversal can be performed in
an explicit manner [42, 53] or using symbolic methods [12, 54]. In the first case, the state
space traversal procedure represents each relevant program state explicitly and inspects all
the execution traces one-by-one. Various techniques built on explicit state space traversal
are used especially (1) for systematic testing of multithreaded programs [3] and (2) to
detect concurrency errors very fast with the help of optimizations and heuristics that we
discuss below. On the other hand, symbolic methods use logic formulas to represent sets
of program states, execution traces, and the transition relation. Actual verification is then
performed, for example, by constraint solving and satisfiability checking. More details
about verification techniques based on constraint solving are provided below.

We already indicated that systematic traversal does not scale well to complex software
systems with many concurrent threads because of the very large number of possible thread
schedules that have to be fully explored. The main cause is the high number of non-
deterministic thread scheduling choices that are created in the program state space during
the traversal. In practice, the prevailing approaches used to cope with this challenge are the
following three: partial order reduction (POR) [25], bounded search, and directed search
with heuristics. All of them are complementary and therefore can be easily combined in
order to achieve better performance and scalability.

Partial order reduction exploits the fact that only some actions (statements) represent
communication between threads, for example by reading or modifying the global shared
state. We call them interfering actions. The set of interfering actions includes, for example,
accesses to fields of shared heap objects and thread synchronization. Following upon
this, the key idea behind POR is that just all the interleavings of interfering actions
(by different threads) have to be explored during the state space traversal in order to
cover all observable behaviors of a given system. A common implementation strategy
is to create thread scheduling choices only at interfering actions, such that (i) the first
option corresponds to the scenario where the current thread continues further by executing
the respective interfering action and (ii) other options represent the cases where another
runnable thread will execute instead. In this way, all possible sequences of concurrent
actions from different threads are covered, even though much less thread choices are made
in the state space. The main challenge is to determine precisely (i) which statements may
be interfering and (ii) which are provably thread-local. Algorithms of POR differ in how
they address this challenge. For example, there is POR strategy based on a static escape
analysis [18] that is run in advance, dynamic concrete POR that is performed on-the-fly
during the state space traversal [1, 22], and symbolic methods of POR [56]. Dynamic POR
is more precise than static POR and symbolic POR, as it recognizes each dynamic heap
object, but its performance may be relatively poor for systems with large state space and
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long transitions. We provide more details about the benefits and limitations of dynamic
POR in Chapter 3 and then in Chapter 5 and 8. Each of the POR strategies mentioned
above is, in general, naturally suitable for a different flavor of a state space traversal
procedure, along the lines of exhaustive versus symbolic.

Nevertheless, even when state space traversal is used together with POR, it is not practically
feasible to explore all thread schedules for large software systems. A popular way of avoiding
this problem is to give up on complete verification and focus on the search for errors. The
respective techniques aim to find as many concurrency errors as possible in a limited time,
using some variant of bounded (incomplete) search, randomization, or directed search with
heuristics. For example, the CHESS toolset [42] implements bounding of the number of
thread preemptions [41] on each state space path and also preemption sealing [2]. The key
idea of preemption bounding is to prune every path suffix where the bound is exceeded,
while preemption sealing disables thread scheduling choices in specific parts of the program
(e.g., within library methods or previously verified fragments). Heuristics navigate the
search towards error states, for example by (i) changing the order in which states and
transitions are explored or (ii) skipping parts of the state space that likely do not contain
errors, thus helping to detect errors much faster. One useful heuristic function maximizes
thread preemption on each trace [28], while another heuristic gives preference to transitions
that may interfere with some of the previous transitions on the current trace [57]. Usage of
randomized search [13, 17] also helps to achieve significant performance improvements of
concurrency error detection. Many techniques from this category exploit the observation
that errors can often be found quickly in a particular small part of the state space [48].

Bounded model checking [5] explores all state space paths up to a certain depth that
corresponds, for example, to the user-defined bound on the number of loop unrollings.
It belongs to the group of techniques based on constraint solving, because the program
behavior and the property are together encoded into a logic formula (a set of constraints)
whose satisfiability is then checked by an automated SAT or SMT solver. Recently, bounded
model checking has been successfully applied also to multithreaded software [14, 35].

Symbolic execution [33], too, represents a special case of systematic traversal of program
state space that involves constraint solving. While techniques based on symbolic execution
have been designed mostly for single-threaded programs and used for automated generation
of tests, there exist some recently published extensions towards concurrency [4, 20].

2.2 Static Data-Flow and Pointer Analysis

Many verification and bug finding techniques involve static analysis that computes over-
approximate information about concurrency-related behavior of a given program, such as
reachability of heap objects from multiple threads and sets of locks held at specific code
locations [19]. The information can be directly used to recognize possible concurrency
bugs or to prove the absence of specific errors. For example, if we consider a pair of
accesses to the same field of a shared heap object, such that each of the accesses is
performed by a different thread and within the scope of a different lock, then analysis
reports a data race condition. However, the consequence of analysis imprecision (caused
by over-approximation) is that spurious warnings may be reported, because it is often
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not possible to statically decide whether some error can really occur during the program
execution. Several analyses are typically chained together in order to get more precise
results and, in particular, to eliminate some of the spurious warning. The basic component
is, in most cases, the aliasing analysis that determines whether two variables may point to
the same heap object. For example, the static detection of races proposed in [43] combines
aliasing analysis with thread-escape and lock analyses. Escape analysis [49, 50] identifies
heap objects that are shared between threads, i.e. globally reachable. May-happen-in-
parallel (MHP) [40, 46] is another example of static analysis that is often used in practice,
also as one component of verification tools. The MHP analysis determines whether a
given pair of actions, each from a different thread, may be executed concurrently when
considering thread synchronization that is in place.

2.3 Dynamic Analysis

The key characteristic of dynamic analysis is that, contrary to static analysis, it computes
very precise information but only for a small number of execution traces. It considers
just traces (i.e., thread schedules) that were actually executed at runtime. Dynamic
analysis techniques compute and use some representation of happens-before ordering [36]
to identify possible conflicts among threads. For example, if a pair of dynamically recorded
accesses to the same field of a heap object cannot actually happen concurrently, i.e. if
one of the accesses must happen before the other due to thread synchronization, then the
pair does not form a race condition. FastTrack [21] and DoubleChecker [6] are two very
efficient and precise approaches based on the happens-before ordering. An advantage of
dynamic analysis is the ability to find real errors, but it also has important limitations:
(1) it cannot prove the absence of errors because of its low coverage, and (2) it usually
has a significant overhead caused by the need to record many events during the program
execution. In particular, the second limitation applies also to dynamic techniques of POR,
as we indicated above.

Specific combinations of dynamic analysis with static techniques of program analysis and
verification have been proposed in recent years (see, e.g., [26] and [45]). Information
computed by static analyses in advance is used to control the dynamic analysis (for
example, to choose which concrete execution traces should be inspected further), while the
results of dynamic analysis refine the precision of static over-approximation. The whole
process is repeated until the given program is fully verified or a real error is found.

Even though dynamic analysis checks only a small number of execution traces, additional
concurrency errors may be discovered based on its results using so-called predictive
analysis [32, 54]. The key idea is to take one of the fully analyzed traces and change
the ordering of instructions while preserving the happens-before ordering. In this way,
additional feasible execution traces can be generated without actually running the program,
and they are subsequently inspected for possible errors. Tools implement the predictive
analysis by constraint solving over symbolic representation of execution traces [8, 24].
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2.4 Concurrency Testing

While classic testing is not applicable for detecting concurrency errors, as we discussed in
the previous chapter, some advanced testing techniques for multithreaded programs have
been developed [38, 55, 58]. They are motivated by practical infeasibility of exhaustive
state space traversal for large software systems due to the huge number of possible thread
interleavings. Most techniques of concurrency testing are based on a specific combination
of state space traversal with dynamic analysis. Since only a relatively small subset of
possible thread interleavings can be analyzed in a limited time, concurrency testing
frameworks carefully select the interleavings to be inspected — a common approach is
to pick interleavings that were not yet analyzed in order to increase coverage [55, 58].
A particular interleaving is enforced during the program execution through a custom
scheduler that orchestrates all threads according to the desired plan.

2.5 Modular Verification

From the practical perspective, a highly important aspect of verification techniques is the
level of modularity. This aspect is common to all the approaches that we described above.
Specifically, verification algorithms can be designed either as modular or as whole-program
(inter-procedural). Modularity is typically used in one of the following two ways: (1) at
the granularity of procedures or (2) at the level of individual threads. In the first case,
a modular algorithm checks one procedure at a time, using some kind of summaries for
other procedures called within it. Similarly, thread-modular verification [23] checks the
behavior of one thread at a time, using abstractions of possibly interfering actions of other
concurrent threads [30, 52], such as writes to shared variables and heap objects. Lot of
work has been done both on theoretical foundations [15, 16] and practical frameworks [39].
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Chapter 3

Overview: Contribution and
Included Publications

This chapter provides an overview of our contribution in the fields of automated verification
of multithreaded programs and efficient detection of concurrency errors, and summarizes
the included publications. All these publications present the results of research projects on
which I participated in the role of a principal investigator, but nevertheless the research
has always been conducted as a team effort — together with my supervisors, colleagues,
and students. In our research, we have built upon many of the concepts and techniques
described in Chapter 2 — specifically, we designed new algorithms that improve and
extend state-of-the-art in terms of precision, performance, and scalability.

We divided the publications into two groups. The common topic of the first group are
algorithms that improve precision and performance of partial order reduction (Chapters 4-8).
The second group contains publications about techniques that enable faster search for
concurrency errors through heuristics and randomization (Chapters 9-12). Here follows
the complete list of publications included in the habilitation thesis:

[Chapter 4] Pavel Paŕızek and Ondřej Lhoták. Identifying Future Field Accesses in
Exhaustive State Space Traversal. Proceedings of the 26th IEEE/ACM International
Conference on Automated Software Engineering (ASE 2011), pp. 93–102, IEEE CS.

[Chapter 5] Pavel Paŕızek and Ondřej Lhoták. Model Checking of Concurrent Pro-
grams with Static Analysis of Field Accesses. Science of Computer Programming,
volume 98, part 4, pp. 735–763, Elsevier, 2015.

[Chapter 6] Pavel Paŕızek. Hybrid Analysis for Partial Order Reduction of Pro-
grams with Arrays. Proceedings of the 17th International Conference on Verification,
Model Checking, and Abstract Interpretation (VMCAI 2016), LNCS, volume 9583, pp.
291-310, Springer.

[Chapter 7] Pavel Paŕızek and Pavel Janč́ık. Approximating Happens-Before Order:
Interplay between Static Analysis and State Space Traversal. Proceedings of
the 21st International Symposium on Model Checking of Software (SPIN 2014), pp.
1–10, ACM.
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[Chapter 8] Pavel Paŕızek. Hybrid Partial Order Reduction with Under-Approxi-
mate Dynamic Points-to and Determinacy Information. Proceedings of the 16th
International Conference on Formal Methods in Computer-Aided Design (FMCAD 2016),
pp. 141–148, IEEE.

[Chapter 9] Pavel Paŕızek and Ondřej Lhoták. Randomized Backtracking in State
Space Traversal. Proceedings of the 18th International Workshop on Model Checking
of Software (SPIN 2011), LNCS, volume 6823, pp. 75–89, Springer.

[Chapter 10] Pavel Paŕızek and Ondřej Lhoták. Fast Detection of Concurrency
Errors by State Space Traversal with Randomization and Early Backtracking.
International Journal on Software Tools for Technology Transfer, accepted, published online,
Springer, 2018, https://link.springer.com/article/10.1007/s10009-018-0484-7.

[Chapter 11] Pavel Paŕızek and Tomáš Kalibera. Efficient Detection of Errors in
Java Components Using Random Environment and Restarts. Proceedings of the
16th International Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS 2010), LNCS, volume 6015, pp. 451–465, Springer.

[Chapter 12] Pavel Paŕızek. Fast Error Detection with Hybrid Analyses of Future
Accesses. Proceedings of the 31st ACM Symposium on Applied Computing (SAC 2016),
pp. 1251–1254, ACM.

The next two sections reflect the aforementioned groups of publications in the list.

3.1 Improving Partial Order Reduction

We begin this section by describing limitations of the prevailing approaches to partial
order reduction (POR), which motivated our work.

The variants of POR used in tools such as Java Pathfinder [18] determine whether a given
action is possibly interfering based on the current state and execution history. The state
space traversal procedure with POR does not see what pairs of interfering actions may
occur in the rest of program execution. Consequently, in order to guarantee soundness, the
respective POR techniques have to perform overly conservative decisions, thus achieving
only limited precision and suboptimal performance. A popular strategy is to create a
thread scheduling choice at each instruction that accesses a heap object reachable from
multiple threads (e.g., writing to some field or acquiring the object’s monitor), assuming
that some other concurrent thread might perform an interfering action upon the same
object later during its execution after the current dynamic state. Some of thread choices
made using this strategy are redundant, because they are not really needed to cover all
interleavings of the interfering actions.

Fully dynamic approaches to POR (see, e.g., [22]) are very precise, since they recognize
memory locations truly accessed by multiple threads during the program execution. On
the other hand, a limitation of dynamic POR is that it performs redundant computation —
it has to (i) explore each trace up to the end state, because choices are created retroactively,
and (ii) check every pair of globally visible actions to detect interference. This all may
have a negative impact on the performance of state space traversal especially in the case
of programs with large state spaces and long execution traces.
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Our goal was to design more precise POR algorithms and use them within state space
traversal to avoid many of the redundant thread scheduling choices, achieving much better
performance and scalability of verification in this way. Elimination of redundant thread
choices from the program state space also helps to reduce the number of thread interleavings
that a given verification tool will systematically explore, while preserving soundness and
coverage of all possible distinct thread interleavings over interfering actions. For this
purpose, we combined static analysis together with dynamic analysis and knowledge of
program state during the traversal into a hybrid analysis, which is the basic component
of our hybrid POR. Such hybrid analysis exploits the strengths of all its parts and
mitigates their respective limitations. When given an instruction to be executed next and
the current state, a hybrid analysis identifies — soundly and with a good precision — all
possibly interfering actions that other threads may perform on any execution trace starting
in the given state. In other words, our hybrid analysis can detect possibly interfering pairs
of actions by inspecting possible future behavior of program threads. Analysis results
are used on-the-fly during the state space traversal to avoid creation of many redundant
thread choices, and therefore to avoid redundant exploration of some thread interleavings.
For example, assume that the next instruction of the current thread accesses some field
of a heap object. If the hybrid analysis provably determines that no other thread may
access the same field in the rest of the program execution starting in the current state, the
respective thread choice before the field access instruction would be actually redundant
and can be safely omitted.

We have gradually designed three variants of the hybrid analysis, where each of them
processes actions of a different kind — accesses to fields of heap objects, accesses to
individual array elements, or thread synchronization — and therefore enables POR to
eliminate a different subset of redundant thread choices. All variants follow the same
principles that are described here. The hybrid analysis has two phases: static and dynamic.

The static phase is performed in advance before the state space traversal and computes
only partial results. For each program point p (a code location), it collects the set of
actions of a corresponding kind that may occur between the point p and return from
the method that ccontains p (including nested calls). In this way, the static analysis can
provide data for any possible fragment of the execution of any method.

The dynamic phase is performed on-the-fly during the state space traversal, and uses
information taken from a dynamic program state, including the current dynamic call stack
of each thread and runtime values of program variables. When the POR technique queries
the hybrid analysis in a particular state during the systematic traversal, the analysis
processes all runnable threads except the current one, and for each thread computes the
full results that cover its behavior from the current program counter up to the end state.
Specifically, given the thread T , the analysis takes partial results of the static phase for the
program counter in each call stack frame of T , and then merges all these data together.

Full results of the hybrid analysis are very precise, because of the usage of dynamic call
stacks that represent precise contexts, but they are always specific to the current dynamic
program state. In addition, some other elements of the dynamic program state are used to
further improve the precision of statically computed information. We provide more details
below in the following paragraphs and in the respective included publications.
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Chronologically, the first variant of the hybrid analysis collects accesses to fields of heap
objects that individual threads may perform during the rest of the program execution
from the current state. Results of this analysis variant are therefore used to detect pairs
of interfering field accesses — that means accesses to the same field on the same object
that are performed concurrently by different threads. In publications that are included as
Chapters 4-5, we introduce and formally define the basic principles of the whole hybrid
analysis, including usage of its results by POR during the state space traversal. We also
evaluated several pointer analyses for the purpose of distinguishing between heap objects,
discussing their benefits and drawbacks.

A special case is formed by fields that we call immutable. Such fields are updated only
during the enclosing object’s initialization by a thread that allocated the object, and never
written afterwards. We assumed that the initialization phase ends when the object escapes
to the heap and thus becomes shared. No thread scheduling choice has to be created
when an immutable field is accessed, because only read actions may possibly happen
concurrently, once the field is reachable from multiple threads. We define the concept
of immutable fields more precisely in Chapter 4, and then in Chapter 5 we present a
complementary static analysis that detects immutable fields automatically. The analysis
extends known approaches to (1) computing method summaries that capture side effects
and (2) escape analysis.

Our second variant of the hybrid analysis focuses on accesses to individual array elements,
which represent another kind of possibly shared memory locations besides object fields.
Some tools in their default configuration disable thread choices at statements that read
or write array elements in order to avoid explosion of the state space. However, they
can miss some concurrency errors as we show on a small example program in Chapter 6.
We designed the hybrid analysis for array elements with two goals in mind: (1) optimize
the existing popular approaches to POR in the context of programs that use arrays and,
consequently, (2) allow tools to make choices at selected accesses to array elements while
avoiding state explosion at the same time. The analysis considers also possible concrete
values of element indexes, using the combination of a symbolic bytecode interpreter with
information retrieved from dynamic program states. A concrete value of a program variable
can be safely and soundly used to augment the precision of analysis results only when
the variable is certainly not updated in the rest of the program execution — the hybrid
analysis can determine that too by inspecting allocations of new heap objects, explicit
assignments, and method calls. In addition, our analysis supports arbitrary expressions as
indexes and multi-dimensional arrays. Chapter 6 provides more details especially about
the analysis that determines possible concrete values of array element indexes and whether
they could be updated.

The hybrid analyses of future accesses to object fields and individual array elements proved
to be quite useful, but their limitation precision-wise is that the collected information
always covers the whole lifetime of a given thread. Both analyses do not consider thread
synchronization events that may prevent some thread interleavings from occurring at
runtime. For example, a pair of field accesses is not interfering when just a single
interleaving of the accesses is possible because of thread synchronization. We addressed
this limitation with the third variant of the hybrid analysis, which computes approximation
of the may-happen-before ordering between accesses to data (object fields, array elements)
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and synchronization events (lock acquire, lock release, wait, notify, thread join). Usage
of the happens-before ordering helps to identify those pairs of actions that cannot be
interleaved arbitrarily. The publication included as Chapter 7 shows examples of the
happens-before patterns that our analysis supports, together with a precise description
of all components of the hybrid analysis that we designed to recognize these patterns in
program control flow. Each of the analysis components gathers information about specific
kind of thread synchronization events.

Building upon the hybrid analysis, we also designed a hybrid POR algorithm that addresses
the limitations of dynamic POR that we discuss above. It combines dynamic POR with our
hybrid analyses of future accesses to object fields and array elements. While the standalone
dynamic POR identifies possibly interfering actions just retroactively, i.e. by inspecting the
current execution trace up to the current state and using the precise knowledge of dynamic
heap objects, hybrid POR augments the whole process by hybrid analyses whose results
provide lookahead into the rest of program execution. The key feature of the hybrid POR
algorithm is usage of under-approximate dynamic points-to and determinacy information,
which is very coarse at the start and gradually refined during a run of the state space
traversal procedure. A given variable is determinate at a particular code location, if it has
the same value every time program execution reaches the code location [51]. Knowledge
of the dynamic points-to sets for local variables improves precision of the hybrid field
access analysis. The verification procedure based on state space traversal with hybrid
POR soundly covers all interleavings of interfering actions, but termination of the iterative
refinement process is not guaranteed, and the whole procedure is optimized towards fast
detection of concurrency errors. We present formal definition of the hybrid POR algorithm,
together with additional technical details, in Chapter 8.

We evaluated the hybrid analyses and the hybrid POR experimentally on multithreaded
Java programs from various benchmark suites and public repositories. All the benchmark
programs involve high degree of concurrency. Results show that usage of the hybrid analyses
significantly improves the precision, performance, and scalability of POR techniques. These
benefits are clearly apparent especially in the case of benchmarks that have larger state
spaces, for which many redundant thread choices were eliminated during the systematic
traversal. Both data and thorough discussions of results, including the cost of hybrid
analyses in terms of the running time, are provided in the respective individual publications
(Chapters 4-8). Overall, the work done in this line of research shows that knowledge
of dynamic program states can be used to improve precision of various static analyses
on-the-fly during the state space traversal at a reasonable cost. Usage of the hybrid
analyses in POR allows it to create much less thread choices and in this way enables
successful application of program verification to more complex multithreaded programs.

3.2 Fast Search for Concurrency Errors

Our primary goal in this research project was to investigate new ways of using randomization
and heuristics in the state space traversal for the purpose of fast detection of concurrency
errors — improving upon concepts and specific approaches that were published by other
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people. We developed three complementary techniques that are described in the following
paragraphs. All of them target explicit depth-first traversal of a program state space.

The main idea of the first technique, which we call randomized early backtracking,
is that the search procedure is allowed to backtrack early from states that still have
unexplored outgoing transitions. Some parts of the state space are pruned in this way,
resulting in an incomplete traversal that may reach error states faster but without any
coverage guarantees. Random number choice and values of three parameters are used to
control the decisions whether to backtrack or continue forward. One parameter specifies
the minimal search depth (threshold) at which early backtracking is allowed, the second
parameter defines the range of values produced by the random number generator that
trigger early backtracking, and the last parameter determines the length of backward jumps.
Actual values of all three parameters are computed on the basis of a user configuration.
We presented the basic idea of randomized backtracking and preliminary experiments in
the publication included as Chapter 9. Later we extended the whole approach in a journal
publication (Chapter 10). More specifically, we augmented the core procedure and the set
of supported templates for expressing parameter values such that they also dynamically
reflect the current state space path and the current state, we designed and validated an
automated ranking procedure with the goal to identify configurations that yield overall
consistently good performance with small variation, and we also presented results of a
broad experimental evaluation. Our experiments show that state space traversal with
specific configurations of randomized early backtracking achieves better error-detection
performance than many state-of-the-art approaches on many benchmark programs.

Besides the actual state space traversal, randomization is often used also in generated
test drivers for open programs. Verification tools like Java Pathfinder cannot be directly
applied to open programs, e.g. isolated components and libraries, and therefore some kind
of a test driver (environment) has to be created. Note that terms abstract environment
and test driver are used interchangeably in this context. A test driver performs various
sequences and concurrent interleavings of method calls with various combinations of
parameter values in order to exercise different control-flow paths in the given program and
trigger as many errors in the code as possible. Consequently, a verification tool takes as
input a full executable program that is composed of the open program and its environment.
Our approach is based on automated generation of test drivers that run multiple threads
and execute a random sequence of method calls in each thread. Another challenge that we
addressed in this work are the long running times of verification and bug detection tools,
even if a test driver executes only few threads and short sequences of method calls. Some
randomized test drivers (environments) may not trigger any error, in which case the whole
program state space is traversed without any benefit, or the traversal simply runs for too
long when a particular environment is used. The key idea of our solution is to avoid the
long running times by frequently restarting the whole error detection process according to
a specific strategy. If the running time of a verification tool exceeds a predefined small
limit, the process is stopped, a new environment that involves random choice is generated,
and the verification is started again. Our evaluation showed that, with the help of restarts,
at least some concurrency errors are found in a reasonable time. This approach was greatly
inspired by the usage of restarts in SAT solvers [27, 31] and other long-running software
processes. Further details are presented in Chapter 11.

16



We also designed two heuristics that are based on the hybrid analysis of possible accesses to
shared objects. The first heuristic changes the order in which transitions outgoing from a
state are explored. It prioritizes threads that may execute actions possibly interfering with
some past accesses. The second heuristic prunes in each state all those outgoing transitions
that are not associated with threads that may, according to the hybrid analysis, perform
some interfering actions in the future. In both cases, results of the hybrid analysis are
used to control the process of state space traversal and search for concurrency errors. Our
experiments indicated great improvements of the error detection speed over the baseline
for some configurations and benchmarks. Chapter 12 provides detailed explanation of the
proposed heuristics and complete results of experiments together with their discussion.

3.3 Tools and Experiments

Very important aspects of our research work that I want to emphasize here are tool
building and solid experimental evaluation. Tools are needed (1) to evaluate and validate
the proposed methods, (2) to highlight the benefits and limitations of each method with
respect to performance and precision, and (3) to enable experiments on realistic software
systems that point to interesting open research problems (challenges). We implemented
most of the techniques described above in this chapter using Java Pathfinder, which is a
highly extensible platform for verification and analysis of multithreaded Java programs,
and the WALA libraries for static analysis of Java programs, and released everything in
the form of open source software. Although we evaluate our techniques typically on Java
programs, we strive to design them in a general way, so that they can be applied also to
multithreaded programs written in other languages (e.g., C++ and C#).

17



18



Chapter 4

Identifying Future Field Accesses in
Exhaustive State Space Traversal
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Chapter 13

Conclusion and Future Work

New techniques presented in the publications that we included in this habilitation thesis
have two main benefits: (1) improved performance and scalability of automated verification
of multithreaded programs through more precise partial order reduction, and (2) faster
discovery of concurrency errors by state space traversal augmented with randomization
and heuristics. Using tools that implement our techniques, developers could apply checks
to larger software systems and perform them more often, all in order to create software
that contains less bugs and with less effort. However, many open problems and challenges
still must be addressed to make automated verification and debugging of large industrial
multithreaded software systems really practical. From the perspective of theory, almost
every interesting verification and program analysis question is undecidable. Therefore,
much like the whole community, we strive to develop algorithms and tools that perform
reasonably well in as many cases as possible and provide useful answers. In the rest of
this chapter, we briefly introduce our research plans in this area for the next several years,
including work that is already in progress.

Incremental techniques. The prevailing verification methodology is to analyze the
program or its state space each time completely from the start, ignoring the results of
previous runs of a verification tool. An alternative methodology is based on the usage of
incremental techniques, some of which (i) exploit differences between consecutive versions
of a given software system and (ii) perform checks that focus on recent source code
modifications. It is motivated by the need to avoid the high cost of program verification
and enable its application to large systems in practice. The process works in the following
way. Full verification is performed only for the initial version of a given system (e.g., the
first release). Then, for each subsequent version, analysis focuses just on program behaviors
that are influenced by source code changes made since the previous run of a verification
tool. Unaffected fragments of the program code and its state space do not have to be
re-analyzed. Results of every run are saved in order to enable their reuse during analysis
of the next version, thus making it less time consuming. Since two consecutive versions of
a software system are typically quite similar, i.e. the differences are usually small, usage
of incremental techniques can significantly reduce the overall cost of verification during
the whole process of software development.
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Many algorithms and other results, either directly on the topic of incremental verification
or closely related, were published recently, but mostly just for sequential systems (e.g., [11,
37, 47]). We plan to work on incremental techniques designated specifically for verification
and analysis of multithreaded programs. The focus of the research community have
started moving towards this particular area quite recently [29]. Related challenges include,
for example, (1) very fast detection of concurrency errors in large systems, (2) fully
automated analysis of incomplete programs where some components and threads are not
yet implemented, and (3) efficient representation of intermediate results and fragments
of the state space for subsequent verification of a more complete program. Therefore, in
order to fulfill the overall goal we have to do also the following:

• design compact representations of program behavior and partial verification results,

• propose incremental methods for capturing the effects of source code changes on
program behavior (e.g., interference among threads),

• develop efficient algorithms for incremental refinement of previous verification results
(based on recent source code edits),

• find and use suitable compact over-approximations of the missing pieces of subject
incomplete programs.

We would also like to explore the possibility of incremental algorithms of partial order
reduction that will on-the-fly reflect program code edits. Another direction is to create fast
incremental techniques for detecting concurrency errors through adaptation of selected
approaches that check the whole program at once (using either static or dynamic analysis)

— many of such approaches have been published by other researchers.

Debugging and code repair. Besides scalability and performance of verification,
another hard problem is fixing the detected concurrency bugs properly. More specifically,
once a verification tool reports an error together with a rather complex trace, then
developers have to perform these steps: (1) locate the root cause of the observed error,
(2) modify the program source code in order to repair it and eliminate the bug, and
(3) check that the applied fix has actually been correct and did not introduce any new bugs
to the program code. One of my long-term research plans is to work on the development
of automated methods for easier debugging of concurrent programs. Like in the case
of verification, we are especially interested in automated incremental techniques for
debugging. A specific goal is to automatize common debugging actions that developers
perform manually (1) in order to identify root causes of concurrency errors and (2) to
create valid repairs of program code that eliminate the respective bugs.

Our overall grand vision is fast continuous detection and repair of errors in multithreaded
programs, such that tools would be able to guide developers by providing timely reports
about the results of verification and suggestions of possible bug fixes, and to do that
on-the-fly while developers are editing program source code. The solution will involve
analysis of changes to the program code made by the developer, which should be performed
continuously at the time of editing, and immediate search for concurrency errors.
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Automatically generating abstractions. A widely used approach for improving scal-
ability of program verification is abstraction combined with iterative refinement. We have
already started working on a procedure that, for a given complex software system in Java,
automatically generates its abstraction that is more amenable to verification. The whole
procedure consists of three phases: (1) dynamic analysis that records information about
native methods and library methods that perform I/O, (2) static analysis that identifies
possible side-effects of library methods and creates their summaries, and (3) program code
transformations. Generated abstract programs can be also used as benchmarks in future
experimental studies.

Remark. We also see possible applications of our techniques and tools in teaching. For
example, students of introductory courses on programming and concurrency might apply
our tools to get immediate feedback when they make some change of the program code.
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