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Preface

For ages, the development of humanity is interconnected with an ability to
share experience and knowledge. Already ancient nations found ways to
represent, record and keep pieces of information in various forms (e.g., clay
tablets, papyrus scrolls) and built libraries collecting them for future genera-
tions. For example, it is believed that the Great Library of Alexandria stored
between 40.000 and 400.000 scrolls. Even though many of the scrolls were
burnt during Caesar’s Civil War, the accident did not stop efforts to write
new scrolls, build new libraries and further improve recording approaches still
limiting a faster knowledge expansion. The invention of mechanical printing
in the mid-15th century credited to Johannes Gutenberg was a huge step
forward for sharing knowledge with masses. It opened the doors for much
more efficient reproduction and distribution of documents to many regions
across the world. Libraries started to be populated with a large number of
books which amplified challenges with their organization and manual index-
ing. Step by step, new inventions appeared to record also audio and other
types of analog signals. Within few centuries, people mastered recording
devices and piled up a huge amount of various documents and records. For
manual management a new problem was on the horizon – how to search
and access information in the pile? Librarians created and maintained huge
catalogs, but it was expensive and unwieldy manual work.

The situation dramatically changed in the 20th century with the inven-
tion of modern computers and a shift to digital representations enabling al-
gorithmic processing. For example, full-text search models [11] significantly
improved accessibility of digitalized text documents. Furthermore, the great-
est revolution in information amenability and availability was still to come
– the invention of Internet and World Wide Web in the second half of the
20th century. Since the 21st century started, we have witnessed an incredi-
ble technological tsunami that significantly formed todays society. And the
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tsunami is not weakening, it seems that it is getting even stronger. Today,
the amount of information easily available to ordinary people is practically
unlimited. The only condition is a pocket/wearable device with an Inter-
net connection, which is no longer restricted just to a narrow community of
people. Nowadays, almost everyone has an option to have a great library in
his pocket, which boosts education, inventions, work productivity and enter-
tainment as never before. So after just several thousands of years, people
really mastered their ability to share experience and knowledge to an incred-
ible extent. However, the new opportunities also opened a new huge pack of
important complex challenges ranging from ethical, credibility and security
issues to large-scale data management and information retrieval problems.

The proposed thesis aims at information retrieval [11], which is still a
highly demanded research area with many open theoretical and practical
challenges depending on types of data and tasks. The thesis focuses on
similarity search in unstructured (e.g., multimedia or visual content [58])
data, which is attractive for many researchers and represents a very dynamic
field. Many state-of-the-art trends from ten years ago [51] are getting obsolete
due to new inventions. An exemplary shift is the extraordinary raise of deep
machine learning approaches [64] that started to solve many problems that
were considered very difficult for hand-crafted algorithmic processing. It
seems that a lot of traditional approaches are now abandoned and enter a
“winter” period. Nevertheless, also currently very popular models based on
artificial neural networks remember several “winters”. Only time will reveal,
whether issues related to interpretability of accurate black-box deep models
[39] will be sufficiently resolved for critical applications (e.g., diagnostic or
control) or we could expect another shift towards traditional analytical and
rule-based approaches.

My research has been carried out at the Faculty of Mathematics and
Physics of the Charles University in Prague in years 2011–2019, mainly within
the Siret Research Group (SRG)1 led by Prof. RNDr. Tomáš Skopal, Ph.D.
After an introductory chapter providing a motivation and short overview of
popular content-based retrieval approaches, selected results are organized in
two parts. Both parts start with commentaries summarizing the problematic
and briefly surveying related works. The first part focuses on contributions
in the area of efficient retrieval using models based on feature signatures.
The second part summarizes contributions in the area of interactive video

1http://siret.ms.mff.cuni.cz
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retrieval and evaluation. The thesis includes seven chapters formed by se-
lected co-authored papers [101, 109, 165, 77, 102, 106, 108] from peer reviewed
respected journals or conferences. The papers detail approaches related to
efficient retrieval using models based on feature signatures and interactive
video retrieval.

Prague, April 2019

Jakub Lokoč
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Chapter 1

Thesis objectives

Content-based retrieval frameworks are developed to aid users with various
types of information needs. In our work, we focus on large annotation-free
datasets of complex unstructured objects (e.g., multimedia or 3D objects),
where developed content-based retrieval models enable convenient fast access
to particular objects based on an interaction with users. A typical considered
interactive search scenario consists of iterative query formulation and various
forms of result set visualization/inspection. This thesis presents a list of our
contributions to the area of content-based interactive retrieval. In order to
support responsiveness of interactive search systems, we have focused on
efficient processing of similarity search queries for models enabling flexible
object-specific representation of contents. In the video retrieval domain, we
have designed interactive search systems for effective known-item and ad-
hoc search tasks and participated in the organization of an interactive video
retrieval competition fostering research in this area.

In years 2011 - 2016, the author of the thesis focused on traditional hand-
crafted approaches that model contents of multimedia data using descriptors
representing distributions of selected features and where the similarity be-
tween two multimedia objects is modeled as a distance function on the dis-
tributions. Given a designed or trained global feature space partitioning, the
feature distributions of each object are usually aggregated into histograms
with predefined fixed bins [161]. If the searched objects do not fit the par-
titioning (e.g., in dynamic databases), the retrieval effectiveness may drop.
In such cases, the retrieval system should provide additional search options
for users interactively operating the system. Models based on feature sig-
natures [18] represent a flexible alternative to models based on histograms.
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A feature signature is an object specific representation tailored for the mod-
eled object. However, the flexibility of the representation comes at the cost of
more complex and expensive similarity evaluation, compared to models based
on histograms. Considering interactive search scenarios, slow query response
times would represent an uncomfortable obstacle for retrieval systems em-
ploying feature signatures. Therefore, the main objective of the first part of
this work is to investigate and design novel efficient approaches for models
based on feature signatures. Most of the proposed indexing approaches were
designed as more general methods that can be applied with other similarity
models satisfying certain properties (e.g., metric axioms).

The second part summarizes contributions from years 2014-2019 focusing
on interactive video retrieval. According to the results of the Video Browser
Showdown [102] and TRECVID [9], there are classes of video retrieval tasks
focusing on recall where interactive means of retrieval is necessary. In or-
der to solve the tasks, the users have to combine frequent query reformula-
tion, results visualization and browsing approaches. The objectives comprise
both the development of methods and tools for successful interactive video
retrieval and also efforts for fostering the research in the area of interac-
tive video retrieval and evaluation (especially co-organization of the Video
Browser Showdown). During the last six years, we have proposed several
prototypes of interactive video retrieval tools. Whereas the first successful
versions of the prototypes relied mostly on color-based search and repre-
sentations based on position-color feature signatures, our recent objectives
incorporated video analysis, feature extraction, and multi-modal temporal fu-
sion strategies. The investigated approaches were confronted at international
evaluation campaigns1 and the results of the competitions were summarized
and published in several comprehensive journal reports.

We conclude the thesis and outline directions of our future research in
Chapter 12.

1Prototypes of our tool won the Video Browser Showdown competition
(www.videobrowsershowdown.org) in years 2014, 2015 and 2018.

2



Chapter 2

Introduction

2.1 Motivation

The volume, complexity and diversity of digital data collected by devices
measuring various physical effects (e.g., sound, light, temperature, scent,
pressure) increase every year with new advancements of sensing and record-
ing technologies. The devices can work practically non-stop creating huge
repositories of data (Big data phenomenon) collected with a specified record-
ing precision, providing a detailed record for observed events. For example,
the lifelogging wearable devices [69] allow for digital recording of GPS lo-
cations, biometrics or multimedia snapshot sequences from our daily lives.
The availability of such technologies in connection with available immense
data storage resources still continue to drive the exponential data growth.
Whereas the overall global volume of digital universe was estimated in 2012
to grow to 40 zettabytes1 by 2020 [60], in 2018, Reinsel et al. [142] already
reported about the so-called Global Datasphere estimated to grow to 175
zettabytes by 2025.

A significant portion of the datasphere take multimedia data that can
be simply recorded and easily stored/uploaded online by billions of active
devices owned by ordinary users or installed in cars, streets, IoT, et cetera.
Furthermore, various industrial, agricultural, physical, biological, medical or
smart city projects start to implement multimedia data into their standard
processes, analytics and workflows. Therefore, the thesis mostly discusses
multimedia data (images, videos), even though many presented models can

1One zettabyte equals 270 bytes.
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be applied also for different types of recorded data established or emerging
in various domains (e.g., network security [89]).

Multimedia data are usually recorded and stored as multidimensional
arrays of discretized measured/captured intensities, optionally accompanied
with other attributes (e.g., creation time, GPS location). In addition, various
metadata (e.g., author, license or keywords) could be available too. All these
data can be stored in a single container file with a standardized format. Once
a collection of multimedia files reaches a critical limit for manual sequential
search, retrieval systems are necessary to fulfill user needs. A relatively
easy task is to provide data access for needs concerning available attributes
like creation time/location or other structured metadata (so called attribute-
based or structured retrieval). For example, ”find photos from Prague in June
2018” or ”find all Czech movies”. Since each of such available attributes has
a known specification comprising name, semantic and data type/domain, a
data schema can be prepared for a structured query language enabling exact
query formulation. However, once the user searches for a content somewhere
inside the ”raw” multidimensional array of numbers (so called content-based
or unstructured retrieval), the retrieval task becomes more difficult.

The classical formats of the collected multimedia data were designed for
the mainstream usage – easy recording/playing, considering a limited stor-
age capacity (e.g., JPEG compressed matrix of RGB pixels). However, the
”raw” data comprising potentially a lot of useful but hidden information (in
a large haystack) represents a challenge for multimedia retrieval systems.
The users are not searching for a given (sub)matrix of numbers, they mostly
ask for semantic information easily recognizable by the human perception
system. However, for machines this information is hard to identify from a
grid of numbers, which is often denoted as the semantic gap problem. It
took several decades of research to identify promising directions to bridge
the gap. After all, the results of biological evolution of the mammal brain
were important inspiration for the current successful trend for bridging the
gap – machine learning employing specially designed models of artificial neu-
ral networks [64]. In addition to searching by provided semantic concepts,
several other types of representations are usually extracted from the raw data
to aid users with various information needs.

Before we proceed with the description of models and popular approaches
in the following sections, we close the motivation section with three important
objectives of multimedia retrieval systems:
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• Effectiveness of a retrieval system is a capability to meet and fulfill user
information needs, which is probably the most crucial property of the
system. However, assessing the effectiveness of information retrieval
systems is a difficult problem on its own as information needs are often
subjective and thus unwieldy evaluations with users are necessary. In
order to foster research and optimize comparative evaluation processes
for new models, repeatable automatized laboratory-based methodolo-
gies were established (e.g., Cranfield paradigm).

• Efficiency, representing the speed of query evaluation, is gaining in
importance with the increasing size of the collections where sequential
query processing can be too time consuming for a given model. In
cases when it is impossible to design a sufficiently efficient solution,
the systems often switch to approximate retrieval that can trade the
effectiveness for efficiency. However, such trade-off is possible only if
the effectiveness is not the most crucial part of the system.

• Beside the classical trade-off between effectiveness and efficiency of re-
trieval models, systems can provide also intuitive and responsive inter-
active interfaces in order to let (ordinary) users to conveniently query
and browse a multimedia database. For many types of retrieval tasks,
integration of users into the search process and design of suitable inter-
active interfaces improves search performance (e.g., as demonstrated
for video retrieval [102]).

2.2 Elementary formal background

Throughout the presented work, classical mathematical models provide an
essential abstraction for the description of data representations, relevance
scoring and efficient retrieval processes. Even though a multimedia file is
already a digitized approximation of a real world signal for computers, the
file can be still treated just as a desired instance of a real world object sat-
isfying user needs. Given a maximal size m (in bytes) of a multimedia file
in a given format, the universe U of all considered distinct multimedia files
is finite (|U| ≤ 28m). In practice, only a subset S ⊂ U forms a database
which is the subject of data management and retrieval. It is important to
note that multimedia retrieval becomes a challenge from a certain size of
S, while searching a collection of a few photos or searching a shot in one
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known film can be satisfactorily solved by sequential browsing. However,
for large databases it is necessary to prioritize some elements of S before
others, based on a specification of search intents in a provided query inter-
face. In our work, we have focused on similarity/dissimilarity based relevance
score models inducing a ranking on a database S with respect to a query.
The following text summarizes just basic elementary concepts from the per-
spective of investigated methods. For a comprehensive overview of various
information retrieval approaches, we refer the reader to related books (e.g.,
[193, 151, 11]).

2.2.1 Database ordering

In large multimedia databases, querying represents an essential approach
to investigate database subsets which contain searched objects with a high
probability. To obtain such subsets, retrieval engines usually rely on relevance
score models that can be used to rank database objects with respect to a user
query. As a simple example, searching for previously watched videos in a web
browser history could be accomplished with a scoring model based on a one-
dimensional time domain attribute, provided that the time attribute is logged
for visited pages and users can partially estimate the time of watching the
videos. However, more advanced relevance score models are necessary for
information needs targeting the contents of the searched item (e.g., semantic
or visual features).

Usually, relevance score models do not use directly the original multimedia
files, but operate on representations designed for a particular task. The
representations are created by a descriptor extraction function fe : U → U
that captures a distribution of suitable features present in a database object,
and maps the object to a representation universe U. The particular dataset
is then represented as a set S ⊂ U, where each element from S is called
object descriptor. In order to search the dataset, users provide queries from
a universe UQ considered for a given retrieval scenario over U. A general
relevance score model can be defined for a data representation universe U
and query object representation universe UQ as a function σ : UQ × U→ R.

There are two different concepts to be considered when designing a rele-
vance score model – similarity and dissimilarity based scoring. For the sim-
ilarity based concept, the higher score models more similar/relevant items
with respect to a query. The dissimilarity based concept is motivated by a
geometric intuition, where closer objects are more similar. Hence, the lower
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score models more relevant items.
When designing an effective relevance score model, an essential goal is to

find a function that corresponds to user judgments. However, this is a very
difficult task as the relevance assessment is subjective, comprises cognitive
processes, depends on the type of retrieval needs, domain knowledge, and
context. For example, in the medical domain there might be topics with a
strong disagreement among judges [126]. Relevance score models frequently
incorporate the notion of similarity, which is used by individuals to categorize
and classify stimuli. In order to deal with similarity perception/assessment
and design proper mathematical models, psychological studies are necessary
[180, 152]. On the other hand, relevance score functions can be success-
fully approximated in practice by simplified models for specific multimedia
retrieval processes involving user interaction. In other words, the absence
of perfect relevance score models can be bridged by the ability of users to
interactively inspect a candidate set and identify relevant items. In addi-
tion, retrieval systems supporting more relevance score models provide users
an additional interaction option to switch between models based on their
observed performance.

Despite subjectivity of relevance score assessment, the effectiveness of a
relevance score model is often evaluated automatically in a laboratory set-
ting using so-called ground-truth datasets (e.g., [129, 140, 52]) representing
specific retrieval tasks. Given a ground-truth dataset, the effectiveness of
a relevance score model can be evaluated by various performance indica-
tors assessing ranked result sets. Two popular concepts for the indicators
are precision defined as |Relevant ∩ Result|/|Result| and recall defined as
|Relevant ∩ Result|/|Relevant|, where Result ⊂ S denotes the result of a
query (e.g., top k ranked items) and Relevant ⊂ S represents the set of rele-
vant database objects with respect to the query. For example, precision-recall
curve is used to present the dependence of precision on recall, considering a
retrieval model with a threshold controlling the number of relevant objects
in the result set. Both indicators can be combined into a single score (e.g.,
F1-score or average precision). For immense databases with a lot of relevant
results and users satisfied with a fraction of them, precision at k represents
another popular measure. The indicators of effectiveness are often used to
compare different models on a particular ground-truth dataset. The evalua-
tion of interactive search systems is discussed in Part II.

This thesis considers relevance score models that rely on a rigorous defini-
tion of query and descriptor universes, and employ a similarity/dissimilarity
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based relevance score model. Please note that a special case UQ = U is
often assumed as well as additional restrictions on selected relevance score
functions. Based on considered restrictions on the particular representation
universe U, two formal frameworks are frequently utilized for multimedia
retrieval – vector and distance spaces.

2.2.2 Vector spaces

A multi-dimensional vector of n numerical attributes v ∈ Rn is probably the
most popular descriptor type in the area of information retrieval. For exam-
ple, documents are usually transformed to vectors using word embeddings,
while images/videos are preprocessed with extraction models to feature vec-
tors. In addition, other mathematical entities can be considered for the
description of content-based features. A matrix-based descriptor x ∈ Rn×m

can be used to represent a feature map of an image, or an object can be
modeled by a feature representation function F : Rn → R [18]. For such
representations, it is often desired to handle various data processing, organi-
zation and retrieval operations with standard linear algebra methods. The
concept of vector spaces over a field represents a popular formal framework
for mathematical entities with provided addition and scalar multiplication
operations satisfying a set of axioms. The following definitions of a vector
space and norm, considering the field of real numbers R, are taken from a
linear algebra textbook for informatics [78]:

Definition 1 (Vector space) A vector space over the field of real numbers
R is a set U consisting of elements called vectors, with a vector addition
operation + : U×U→ U and multiplication of a vector by scalar ∗ : R×U→
U. The operations satisfy ∀a, b ∈ R, u, v ∈ U: (U,+) is an Abelian group
with the neutral element o, a ∗ (b ∗ u) = (ab) ∗ u (associativity), 1 ∗ u = u,
(a+ b) ∗ u = a ∗ u+ b ∗ u and a ∗ (u+ v) = a ∗ u+ a ∗ v (distributivity).

Considering vector spaces for multimedia modeling and retrieval is moti-
vated by sound formal rules for various desired operations, for example:

• Unlike general distance spaces remembered in the next section, vector
spaces enable construction of new vectors “out of” the dataset S ⊂ U.
For example, it is possible to define a centroid vector ci ∈ U for all n
dataset vectors oi ∈ S as ci = 1

n
∗ (o1 + · · ·+ on), modify the database

8



by subtracting the centroid vector from all database objects, or update
a query vector based on relevance feedback [143].

• Given a finite basis, it is possible to introduce the vector space di-
mensionality n and isomorphism U → Rn. Hence, data processing
and management approaches can operate directly in the coordinate
space Rn and employ its standard concepts. For example, hyperplanes∑n

i=1 aixi = b that can be used to organize database objects to buckets.

• Considering two vector spaces over a field R with a finite basis, it is
possible to define linear mappings between them. The mappings can
be described by matrix operations over the corresponding coordinate
spaces. For example, a mapping to a suitable subspace can be used
to conveniently reduce the number of dimensions of a designed rep-
resentation (e.g., for the reduction of the representation size or data
visualization).

For many retrieval applications, it is necessary to define a non-negative
quantity for each vector, so-called norm. The quantity corresponds to the
length of the vector, where the zero vector should correspond to zero length,
while the length of all the other vectors should be strictly positive. The norm
is defined as:

Definition 2 (Norm) Let U be a vector space over the field of real numbers
R with operations +, ∗. A norm is a mapping ‖.‖ : U → R satisfying ∀c ∈
R,∀u, v ∈ U the triangle inequality ‖u+ v‖ ≤ ‖u‖ + ‖v‖, ‖c ∗ v‖ = |c| ∗ ‖v‖
and ‖v‖ ≥ 0, where ‖v‖ = 0 only for zero vector.

Considering that each image is modeled as a feature vector v ∈ Rn, the
Euclidean norm ‖.‖2 can be used to compute a dissimilarity based relevance
score with respect to a query q as ‖q − v‖2 = (

∑3
i=1(qi − vi)

2)1/2. The
relevance score computed for all database objects then induces a ranking on
S that could be used to focus on database images with similar features.

Another popular approach to model a similarity based relevance score
between two vectors from Rn is the cosine similarity [197, 11], employing
also the dot product. The similarity is defined for q, v ∈ Rn as scosine(q, v) =∑n

i=1(qi ·vi)/(‖q‖2 ·‖v‖2). The cosine similarity of two vectors ranges from -1
to 1, assigning the highest score 1 to vectors pointing in the same direction
and the lowest score -1 to vectors pointing in the opposite direction. Please
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note that the similarity of two vectors can be easily turned to a distance by
1− scosine(q, v) [162].

2.2.3 Distance and metric spaces

The concept of distance spaces represents a universal abstraction suitable
for modeling multimedia representations as arbitrary digital records. There
are generally no restrictions on the representation universe U, no addition
and scalar multiplication of the elements, nor their axiomatization. As a
consequence, notions like the origin or coordinate system cannot be gener-
ally assumed. The concept is centered around the similarity of two objects
modeled as a distance function δ : U × U → R+

0 , where similar elements
have a small distance and vice versa. A comprehensive survey summarizing
a dictionary of various distances was presented by Deza and Deza [53]. The
book is also the source for the two following definitions.

Definition 3 (Distance space) A distance space (U, δ) is a set U equipped
with a distance δ : U × U → R satisfying ∀x, y ∈ U: δ(x, y) ≥ 0 (non-
negativity), δ(x, y) = δ(y, x) (symmetry) and δ(x, x) = 0.

For example, a video retrieval task could be defined to search for shots
with a similar frame sequence as in a provided query shot. Assuming vari-
able long sequences where each element of the sequences is represented as
a multi-dimensional point in Rn, similarity of two sequences could be mod-
eled by the Dynamic Time Warping distance [31]. Generally, many distance
measures have been proposed for various types of tasks and spaces U, each
distance satisfying various properties. For multimedia retrieval, a popular
choice are metric distances that enable also efficient retrieval using metric
access methods [193].

Definition 4 (Metric space) A metric space (U, δ) is a set U equipped
with a distance δ : U × U → R satisfying ∀x, y, z ∈ U: δ(x, y) ≥ 0 (non-
negativity), δ(x, y) = δ(y, x) (symmetry), δ(x, y) = 0 if and only if x = y
(separation) and δ(x, y) ≤ δ(x, z) + δ(z, y) (triangle inequality).

Modeling data as objects of a metric space provides freedom for the choice
of representation universe U and at the same time provides clues for database
experts designing indexing methods [193]. However, there has been also crit-
icism towards metric axioms. For example, Tversky [180] analyzed features
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of similarity in a psychological review and demonstrated that similarity judg-
ments do not have to be symmetric or transitive. In order to benefit from
both unrestricted modeling of distance spaces and metric indexing struc-
tures, Skopal [162] presented a unified framework for metric and non-metric
distance spaces.

We end the subsection with definitions [193] of two frequently used types
of queries for distance based similarity search. In addition to the query
object, both types of queries consider also a constraint limiting the number
of returned objects from the database.

Definition 5 (Range and kNN queries) Given dataset S ⊂ U, a dis-
tance function δ, a query object q ∈ U and rq ∈ R+

0 , k ∈ N, the range
query R(q, rq) = {o ∈ S; δ(q, o) ≤ rq} and the k nearest neighbor query
kNN(q) = {X ⊂ S; |X| = k ∧ ∀x ∈ X, y ∈ S− X : δ(q, x) ≤ δ(q, y)}.

Whereas the range query requires a domain knowledge to set up the
query radius appropriately, the k-NN query enables a convenient selection of
the k most relevant objects for the price of more complex query processing
algorithms. Examples of both types of queries are presented in Figure 2.1.

r 

range query 

2-NN query 

Figure 2.1: 2-NN and range queries using the Euclidean distance in R2.

2.3 Basic multimedia search approaches

In this section, we remember two popular types of multimedia search ap-
proaches.
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2.3.1 Metadata-based search

A popular intuitive option to search a large collection is by making use of
keywords describing semantic concepts in multimedia objects or matching re-
lated metadata2. Given sufficiently annotated objects, multimedia retrieval
can be handled by classical text-based retrieval models (e.g., boolean or vec-
tor space models [11]) supported by highly efficient inverted indexes [197].
However, the multimedia data are usually insufficiently annotated or not
annotated at all (except basic metadata). Hence, an effective assignment of
keywords is an important challenge to provide keyword search. After a discus-
sion of traditional methods to collect annotations, several deep learning based
techniques enabling automatic content-based annotation are highlighted.

The most straightforward way to assign keywords is to employ users (or
domain experts in cases a deep domain knowledge is required) and let the
users to annotate the data. However, such approach is not always feasible.
Especially for immense collections and non-trivial annotation tasks a large
crowd of experienced annotators is necessary. On the other hand, for simple
annotation tasks (e.g., marking objects on photographs) there are already
well-established web portals considering crowd-sourcing as a powerful way to
annotate data (e.g., the Amazon Mechanical Turk [144]). It has been also
shown, that the power of the crowd can help experts to be more effective and
efficient [55]. Furthermore, there are emerging specialized social networks
that can connect a large number of experts, allowing them to annotate and
discuss data related to their domain/expertise [173]. As a side effect, a lot of
metadata can be extracted from such social networks, enabling various forms
of retrieval in the underlying multimedia data.

The World Wide Web is also effectively mined for automatic annotations
of multimedia data appearing on web pages. Google3, Bing4, Yahoo5 and
other titans of the Internet searching have demonstrated that associating
specific keywords from the surrounding text with the multimedia data can be
used for effective and efficient retrieval (without analyzing the content of the
data). As the most popular search portals have millions of users, the portals

2A special type of metadata are also structured attributes (e.g., date, author, GPS)
associated to multimedia data, which can be used to search data by traditional database
models (e.g., relational model).

3www.google.com
4www.bing.com
5www.yahoo.com
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can also analyze the behavior of the crowds during searching and use all the
collected information to improve the rankings of the results. Although this
approach seems to be promising for popular topics where many users share
the same search intents, effective automatic annotation of multimedia data
represents an intensively investigated topic [44].

Modern web-based technologies fostered initiatives for the collection of
large annotated collections, especially image datasets [45, 52, 177]. As a
prominent example, a large-scale hierarchical image database ImageNet [52]
was introduced collecting a large number of example images for WordNet
[121] synsets (synonym sets). In connection with highly parallel hardware
and new machine learning approaches [64], significant breakthroughs towards
automatic content-based annotation were achieved. Especially new deep
convolutional and recurrent neural network models significantly improved
keyword-based accessibility of annotation-free multimedia data. The Ima-
geNet Large Scale Visual Recognition Challenge [149] (ILSVRC) was at the
center of rapid development of deep convolutional neural network architec-
tures for image classification or object detection. In 2012, Krizhevsky et al.
[90] proposed a deep network architecture called AlexNet that not only won
the image classification task, but the victory was so significant that it com-
pletely changed the course of computer vision research6. The AlexNet archi-
tecture considered rectified linear units, dropout regularization and combined
convolutional, max pooling, normalization and fully connected layers. In the
following years, various deep architectures were developed and gradually en-
hanced by many research teams. Within just three years, deeper models
implementing new features like inception modules [174] or residual connec-
tions [74] brought the ILSVRC classification performance to the human level.
The convolutional architecture was adopted also for object detection, result-
ing in fast networks predicting directly both concepts and corresponding
bounding boxes (e.g., YOLO [141] or SSD [98] models). Please note that the
bounding box detection significantly enriches the annotation, as users can
issue textual queries with spatial localization. Image captioning represents
another investigated direction of automatic annotation [188, 79], focusing
on complex textual image descriptions comprising present objects and their
relations. In video annotation, a fundamental and difficult task is action clas-
sification [63] as videos exhibit a higher variability than still images, while the

6During the last seven years, the paper received more than thirty eight thousand cita-
tions at google scholar.
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available training sets of video actions are small. All the presented content-
based methods can be used to improve findability of searched concepts using
convenient query specification with keywords. However, the effectiveness of
the annotation models is not yet sufficient for all types of data and tasks
(especially in general video domain [9, 102]) and also the users might face
problems to express their search needs by a suitable textual query.

2.3.2 Content-based search

Many retrieval systems complement keyword search with the query-by-example
paradigm, where users provide a query object (e.g., image or shot) to enter
their search intents. The systems transform the content of the query object
into a suitable form for employed representation universe U. Subsequently,
the transformed representation is employed in the similarity search retrieval
process. There are several sources, where users can take a query object rep-
resenting their search intents. In the systems combining keyword-based and
query by example retrieval, the query object can be obtained using previous
keyword-based search. The query object can be also painted as a sketch, or
uploaded by a user from his/her camera. In some retrieval scenarios, the
query object does not have to necessarily represent a clear search intents of
a user. For example, in multimedia exploration [24] users can just browse
and investigate an unknown data collection. In such scenarios, the query
object can represent just a mediator (or link) to quickly browse to another
view of the data. In specific retrieval tasks, the query can be formulated di-
rectly using descriptor features. Especially descriptors that are designed as
sets of features with clear semantics for users can be used to formulate query
sketches. For example, users may specify simple color regions in a sketch
canvas to search for video frames (or a sequence of frames) represented by
position-color feature signatures [103, 35, 34].

During last decades, a vast number of content representation approaches
have been proposed [51, 196]. A good representation has to comprise features
for effective similarity modeling and should facilitate efficient evaluation. Re-
cent survey by Zhou et al. [196] categorizes content-based image represen-
tation issues to feature extraction, visual codebook learning, spatial context
embedding, feature quantization and feature aggregation. Feature extraction
methods map the original object to a set of characteristic features, where the
mapping function can be either hand-crafted or learned. Visual codebook
learning aims at detection of a representative set of visual words for the
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extracted features. A popular learning approach is unsupervised clustering
(e.g., k-means or its variants [5]). The codebook is used to transform a set of
extracted features to a fixed-length vector [161]. Spatial context embedding
approaches try to enhance codebooks with contextual information, while fea-
ture quantization methods deal with efficient assignment of visual words to
features. Finally, feature aggregation focuses on ways to accumulate assigned
features and produce the final representation. Popular approaches for effec-
tive retrieval with codebooks comprise re-ranking using spatial information
[140], Hamming embedding [84], compressed Fisher vectors [139] or vectors
of locally aggregated descriptors [86].

With the achievements of deep convolutional neural networks in classifi-
cation tasks [90], new descriptor extraction approaches were revealed as well.
Donahue et al. [54] have demonstrated that activation features from a se-
lected layer of a trained deep convolutional neural network can be employed
for novel generic tasks. A vector of extracted activations from a selected (re-
trained) network has become a popular representation for generic similarity
search. Features from deep convolutional neural networks proved to be also
effective for particular object retrieval [178].

Retrieval effectiveness can be further enhanced with additional strate-
gies. Multi-modal fusion [8, 38] usually provides performance gains as dif-
ferent types of features provide additional view of data (including semantic
concepts). The features are usually combined using early or late fusion strate-
gies. Another approach to improve effectiveness is query expansion that has
been introduced for image retrieval by Chum et al. [46]. Given an automat-
ically refined result of an initial query (e.g., by spatial verification [140]), an
expanded query is re-issued to boost recall. Retrieval effectiveness can be
also improved by relevance feedback approaches [143, 116, 57], incorporating
implicitly/explicitly formulated feedback from users. A classical approach is
the Rocchio algorithm [143] developed for the vector space model. The algo-
rithm employs provided sets of relevant and non-relevant objects/vectors to
update the query vector. Based on balancing weights, the query is navigated
away from non-relevant objects towards relevant objects. Another example
of a relevance feedback model is a statistical Bayesian framework [57] for class
search, where in each iteration users provide feedback by selecting one image
from an appropriately selected display. The feedback is used to update the
estimated probability that a database image belongs to the searched class.
Recently, it has been demonstrated by the Blackthorn approach [192] that
a relevance feedback method can be incorporated also in interactive multi-
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modal learning frameworks considering huge datasets (up to one hundred
million images).

2.4 Indexing data structures for similarity search

Given a large multimedia database, indexing data structures aim at efficient
data organization and query processing. A suitable indexing strategy de-
pends on several factors like the considered representation universe, type
of query, or available hardware. In the following, only a brief overview of
selected successful ideas for efficient distance-based similarity search is pre-
sented, considering range or k-NN queries defined in Section 2.2.3. For a
broader summary of various indexing approaches and types of queries, we re-
fer the reader to comprehensive surveys and monographs (e.g., [36, 42, 193,
151]).

For range and k-NN queries, users ask only for a set of the most similar
database objects with respect to a given query object, distance measure and
query constraint. The constraint represents an important clue to process the
queries more efficiently. For example, the range query has a distance thresh-
old parameter that can be employed in filtering rules safely discarding groups
of objects outside the “query ball”. Generally, the filtering rules depend on a
particular data organization and indexing method. Please note that it is nec-
essary to distinguish non-relevant objects with respect to information needs
and non-relevant objects with respect to the currently issued type of query
(e.g., database objects outside the “query ball”).

The form of the representation universe U significantly affects the de-
sign options for data indexing structures. Usually, the multimedia objects
are modeled as descriptors from a multi-dimensional space U = Rn or more
general distance space (U, δ). For the multi-dimensional spaces, indexing
methods can employ tools of vector spaces to organize data and design filter-
ing rules for efficient query processing. Popular indexes for low-dimensional
data organization comprise a regular grid partitioning, k-d trees [30] rely-
ing on binary disjoint partitioning by splitting hyperplanes, or disk oriented
balanced R-trees [70] organizing data to a hierarchy of (potentially overlap-
ping) minimum bounding rectangles/boxes. However, for high-dimensional
spaces the so-called curse of dimensionality problem [36] prevents from the
design of efficient filtering rules and so approximate search strategies are of-
ten employed. For example, locality-sensitive hashing approaches [50, 137]
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or locality preserving mappings to one dimensional domain (e.g., based on
Z-curve [191]) have been proposed to efficiently find a good approximation
of searched nearest neighbors. To scale-up search engines to billions of de-
scriptors, distributed approaches were proposed to handle huge volumes of
data and speed up query processing (e.g., for Map-Reduce frameworks [122]).
Large volumes of high-dimensional data can be managed also with a memory
index employing short binary codes (e.g., based on product quantization [85])
enabling estimation of the original distances for filtering of non-relevant ob-
jects. Another way to face a high number of dimensions is to consider feature
selection or dimension reduction approaches [71]. For example, the principal
component analysis [138] represents a popular dimension reduction approach
trying to minimize information loss by a linear mapping of centered data to a
new coordinate system determined by eigendecomposition of the correspond-
ing data covariance matrix. The organization of high-dimensional data with
respect to a considered distance function is another option to face the curse
of dimensionality, where the so-called intrinsic dimensionality becomes an
indexability indicator of the distance space [42].

General distance based indexing approaches consider the set of properties
of a distance function δ and often treat the universe U as a black-box. The
motivation for relying just on the properties is to develop universal indexing
approaches for a provided arbitrary data representation and distance func-
tion satisfying the properties. Metric space indexing (see Section 3.3.2) is
an exemplary approach, where metric axioms are employed to define sound
filtering rules for groups/partitions of objects. Please note that for costly
distance measures, avoiding evaluations of δ(q, oi) between the query object
q ∈ U and database objects oi ∈ S speeds up the search. The key axiom is
the triangle inequality enabling an efficient estimation of the lower bound of
the distances between a query and database objects. Popular metric index-
ing/access methods comprise memory based pivot tables (e.g. LAESA [120]),
disk based dynamic structures (e.g., M-tree [47], PM-tree [166]), structures
designed for effective approximate search [2, 41] or distributed structures
(e.g., M-index [131]). Beside the triangle inequality, there are classes of dis-
tances satisfying additional properties enabling efficient retrieval. For exam-
ple, ptolemaic distances enable estimation of the lower bound based on two
reference points as discussed in Section 3.3.3. Another example is a subclass
of metric spaces satisfying the four-point property, enabling to embed each
four objects into the three dimensional Euclidean space (i.e., all six distances
are preserved between the embedded objects). As investigated by Connor et
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al. [49], the property can be used to derive additional geometric guarantees
for more efficient filtering.

For some specific distances and additional conditions, there were pro-
posed highly efficient retrieval mechanisms and structures. For example,
the cosine distance between a query object and the whole dataset can be
evaluated efficiently using inverted files, if the query vector is very sparse.
Only for the query non-zero dimensions, corresponding lists of database ob-
jects are visited and processed. Another example considers Hamming space
representations. With the introduction of hardware support for counting
bits (popcnt instruction), the Hamming distance can be evaluated with a
few CPU instructions. Hence, efficient similarity search can be achieved by
training a descriptor extraction model designed to provide binary hash codes
for data objects (e.g., as demonstrated for images [96]). Binary codes (so-
called sketches) can be obtained also for objects represented in a general
metric space (U, δ) using appropriately selected pairs of reference objects.
Mı́č et al. [119] have demonstrated in a set of experiments that the codes
are effective for secondary filtering of non-relevant candidate objects.
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Part I

Models based on feature
signatures
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Chapter 3

Commentary for Part I

3.1 Motivation

The first part of this thesis focuses on traditional unsupervised content-based
retrieval models, where object descriptors are based on a hand-crafted feature
space F (usually Rn) designed for a particular retrieval task. For example, a
feature space for images can be modeled as an n-dimensional Euclidean space
where dimensions can correspond to location, color information in pixels or
more complex features based on statistics from the neighborhood of pixels
(e.g., texture [175], SIFT [114], or SURF [16]). The author of the thesis has
joined also two projects, where the feature space was defined for different
domains of objects. The first project focused on malware detection in en-
crypted communication considering the HTTPS protocol [89]. Each message
was represented as a real vector in a feature space based on a limited set
of attributes usually logged by web proxies (e.g., bytes sent, bytes received,
duration, and inter-arrival time). The second project focused on scalable
3D shape retrieval using robust local features [160]. The feature space was
based on so-called heat kernel signatures. The heat kernel signature for a
point x on a compact Riemannian manifold is a function over the time do-
main HKS(x, t) = kt(x, x), where kt(x, x) is a special restricted case of the
family of heat kernels {kt(x, ·)}t>0 [172]. Sampling the time for a fixed pe-
riod, kt(x, x) can be used to obtain a vector representation that is robust
with respect to manifold perturbations.

During last decades, there have been designed and even standardized
many types of similarity models based on various features present in database
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objects (e.g., the MPEG-7 standard [40, 125]). The models usually consider
a descriptor modeling the distribution of selected features and a similar-
ity/dissimilarity measure evaluating the relevance score for two descriptors.
In order to aggregate the features, various methods can be employed. For
example, a feature space partitioning (e.g., a regular grid) or a probabilis-
tic model (e.g., a Gaussian mixture model) can be utilized. In this part,
we consider just traditional extraction approaches based on an unsupervised
partitioning of the feature space. For more advanced techniques like feature
selection [71] or feature learning [87], we refer readers to the corresponding
literature.

With a higher dimensionality of a feature space, the number of required
bins for a regular grid based partitioning of the feature space can be too
high. Therefore, adaptive binning is considered to assign extracted features
F o ⊂ F of an object o to a limited number of so-called representatives ri ∈ F.
A shared set of representatives X ⊂ F is usually detected in a preprocessing
step by a clustering method (e.g., k-means). Given a set of shared repre-
sentatives, extracted features of a modeled object can be aggregated into a
fixed-length adaptive histogram h ∈ R|X|≥0 = U, where each histogram bin ag-
gregates features aligned to the corresponding shared representative [147].
Adaptive histograms enable efficient similarity evaluation, because corre-
sponding histogram bins have the same semantics and thus cheap bin-to-bin
distance measures can be considered. Furthermore, if the query histogram
is sparse, highly efficient retrieval can be achieved using inverted files [197]
and bin-to-bin distance measures.

Minkowski metrics Lp(x, y) = (
∑d

i=1 |xi − yi|p)
1
p represent a frequently

used class of cheap bin-to-bin distances for d-dimensional vectors x, y, given
p ∈ R, p ≥ 1. The Minkowski metrics can perform well as long as features
from similar multimedia objects are aggregated to the same histogram bins.
However, if the features are aggregated among several neighboring cells of
the shared feature space partitioning, it may turn out that two similar ob-
jects can have dissimilar adaptive histograms considering just bin-to-bin dis-
tances. In such situations, a soft assignment coding [97] can be considered,
aggregating a feature f ∈ F o in multiple partitions. Another option is to
employ the quadratic form distance QFDA(x, y) =

√
(x− y)A(x− y)T [72].

The distance uses a d× d positive-definite correlation matrix A that can be
employed to straighten the ambiguity of the descriptor extraction process
on homogeneous domains. If the quadratic form distance is utilized just to
model fixed correlations between the histogram bins (i.e., matrix A is fixed),
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the costly retrieval model employing quadratic form distance can be trans-
formed to an equivalent but much cheaper retrieval model employing the
euclidean distance [163]. The quadratic form distance can be also used to
model user preferences changing over time [83], however, such a dynamic
model can be efficiently indexed just using methods that can partition the
descriptor space independently of a distance measure. Another approach to
model similarity between two normalized feature histograms with correlated
bins is the Earth Mover’s Distance [148] that interprets the similarity as a
transportation problem.

As an alternative to adaptive histograms considering a given set of shared
representatives, models based on so-called feature signatures have been inves-
tigated [147, 18] as a more flexible approach to represent contents of objects.
A feature signature models a multimedia object o using a finite set of object-
specific representatives roi ∈ F with weights woi ∈ R+ corresponding to the
mass of extracted features assigned to roi .

The difference between shared and object-specific representatives gets re-
markable in high-dimensional feature spaces. In Figure 3.1, there are depicted
three ways to represent an image using 7-dimensional position-color-texture
feature space – a feature signature (Figure 3.1a), compared to histograms
based on 10000 and 1000 shared representatives (Figure 3.1bc). Whereas
feature signatures employing object-specific representatives can flexibly ag-
gregate the contents of the original image, the expressiveness of histograms
can suffer from the usage of shared representatives, especially for unique im-
ages in the database. In Figure 3.1b, the expressiveness of the histogram is

Figure 3.1: An image represented using position-color-texture feature space
and a) feature signature, compared to adaptive histograms based on b) 10000
and c) 1000 shared representatives (only representatives with a non-zero
weight are displayed).
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improved at the cost of the high number of shared representatives, while in
Figure 3.1c, the original image contents is just roughly approximated using
the small number of shared representatives not corresponding to the modeled
image.

Both approaches have pros and cons. So which descriptor is a better
choice? Generally, the prior knowledge of the database matters. If a learned
set of shared representatives is sufficient to create discriminative descriptors
for all database objects, then adaptive histograms are the preferred efficient
choice. If the dataset is dynamically changing over time, then the feature
signatures can be used to flexibly represent the contents of the objects.

3.2 Feature signatures

Feature signatures [147, 18] enable to flexibly represent the contents of mod-
eled objects using object specific representatives. Formally, the feature signa-
ture of a multimedia object o can be defined as a finite set of tuples 〈roi , woi 〉,
where woi ∈ R+ represents the importance of the representative roi in object
o. For a more general unifying concept of feature representations modeled as
functions F→ R we refer readers to [18].

Definition 6 (Feature Signature) Given a feature space F, the feature
signature So of a multimedia object o is defined as a finite set of tuples
{〈roi , woi 〉}ni=1 from F × R+, consisting of representatives roi ∈ F and their
weights woi ∈ R+.

Feature signatures for a given feature space can be obtained using various
extraction techniques. For example, a position-color feature signature for an
image can be created using an image resize operation. In such case, each
representative with a constant weight corresponds to one pixel of the small
image thumbnail, where the resolution of the thumbnail has to be fixed in
advance (see Figure 3.2c). Another approach to extract a feature signature
is an adaptive k-means clustering of features of sampled/selected pixels from
the image, where found centroids are used as representatives roi . In Figure
3.2ab, the extracted position-color-texture features F o ⊂ R7 from the pix-
els are assigned to representatives roi ∈ R7 depicted as colored circles and
weight woi ∈ R+

0 (proportional to the circle radius) corresponds to |Soi ∩ F o|,
where Soi is a feature space partition determined by roi . Although the adap-
tive k-means clustering can flexibly aggregate the content of the image, the
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Figure 3.2: Examples of feature signature extraction techniques of an image –
a, b) two position-color-texture feature signatures obtained by two variants
of adaptive k-means clustering of the same set of sampled points and c)
position-color feature signature obtained by image resize operation.

clustering is costly operation and thus an efficient parallel implementation of
feature signature extraction is necessary for huge multimedia collections. Our
technique enabling extraction of thousands of position-color-texture feature
signatures per second was proposed in [91].

In order to define a similarity model based on feature signatures, adaptive
similarity/distance measures capable to compare two feature signatures with
different sets of representatives can be employed. The adaptive measures
employ a ground distance for the representatives of two compared feature
signatures [25]. During last decades, there have been proposed several adap-
tive distance measures like Hausdorff Distance [82], Earth Mover’s Distance
[148], Perceptually Modified Hausdorff Distance [135], Signature Quadratic
Form Distance [28], or recently introduced Signature Matching Distance [19],
and there have been also evaluated several studies comparing the distances
[25, 23, 19]. The distances employ all pairwise ground distances between
representatives of two features signatures, which leads to at least quadratic
time complexity of the similarity evaluation.

In our work, we have mainly focused on distance spaces based on the
Signature Quadratic Form Distance, because the distance spaces are effective
and provide properties for efficient indexing. The Signature Quadratic Form
Distance is defined [28] as follows:
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Definition 7 (Signature Quadratic Form Distance) Given two feature
signatures So = {〈roi , woi 〉}ni=1 and Sp = {〈rpi , w

p
i 〉}mi=1 and a similarity func-

tion fs : F × F → R over a feature space F, the signature quadratic form
distance SQFDfs between So and Sp is defined as:

SQFDfs(S
o, Sp) =

√
(wo | −wp) · Afs · (wo | −wp)T ,

where Afs ∈ R(n+m)×(n+m) is the similarity matrix arising from applying
the similarity function fs to the corresponding feature representatives, i.e.,
aij = fs(ri, rj). Furthermore, wo = (wo1, . . . , w

o
n) and wp = (wp1, . . . , w

p
m)

form weight vectors, and (wo | −wp) = (wo1, . . . , w
o
n,−w

p
1, . . . ,−wpm) denotes

the concatenation of weight vectors wo and −wp.

As an example of the similarity function fs, the Gaussian similarity func-
tion fgauss(ri, rj) = e−αL

2
2(ri,rj) or more efficient Heuristic similarity function

fheuristic(ri, rj) = 1/(α+L2(ri, rj)) were suggested [28]. The α parameter can
be used to fine-tune the precision, and L2 denotes the Euclidean distance.

The Signature Quadratic Form Distance has not only proved to be an
effective distance measure in various domains (e.g., for 3D object retrieval
[160]), but also a distance suitable for efficient retrieval. Although the dis-
tance has quadratic time complexity, the distance can be used for efficient
distance-based indexing. Under certain conditions [18], the distance satis-
fies metric/ptolemaic postulates necessary for efficient metric/ptolemaic in-
dexing [77]. Furthermore, the α parameter of the distance affects not only
effectiveness, but also the intrinsic dimensionality property1 of the corre-
sponding distance space [21]. Last but not least, we have also demonstrated
that Signature Quadratic Form Distance represents a suitable task for GPU
devices [92].

In the following section, we overview approaches for large-scale multi-
media retrieval using models based on feature signatures and present our
contributions.

1The intrinsic dimensionality is a crucial property for efficiency of the metric/ptolemaic
indexing, for more details see Section 3.3.
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3.3 Efficient retrieval using adaptive distance

measures

Given a retrieval model (U, δ) based on feature signatures and a similarity
search task defined by a query object q ∈ U and a query constraint φ, there
can be utilized several orthogonal approaches to process such task more effi-
ciently than just simple sequential search using the original expensive model.
The approaches differ in assumptions about the similarity model and the
database, whether the model is static or dynamic (i.e., descriptors and the
distance can be changed), and whether the database is static or dynamic.
Also the number of query objects affects the choice of the optimal solution.
Despite their differences, most of the techniques share one principle for ef-
ficient filtering of non-relevant objects – lower-bounding principle, where a
lower-bound distance LB(δ(q, o)) ≤ δ(q, o) between a query object q ∈ U and
a database object o ∈ U is expected to be much cheaper than the original
distance δ(q, o). Using the lower-bound distance, the query can be processed
using a filter and refine approach, where the original distance is evaluated
only on a fraction of the database. The lower-bound distance can be approx-
imated, determined for a specific domains rigorously or determined using
general properties of the distance measure (e.g., metric/ptolemaic proper-
ties).

3.3.1 Distance-specific approaches

During the last decade, there have been presented many attempts to find
rigorously efficient lower-bound distances for various adaptive distance mea-
sures. However, many of the methods are usually restricted to feature his-
tograms or the lower-bound is not too tight.

For example, a simple lower-bound for the Earth Mover’s Distance is
the Rubner filter [148] that evaluates the ground distance between centers of
mass of two compared feature signatures So, Sq. The Rubner filter holds only
if the sum of weights is the same for both feature signatures. In [6, 7, 190],
the authors have presented novel dimensionality reduction techniques for the
Earth Mover’s Distance for filter-and-refine architectures enabling efficient
exact search. The techniques are restricted just to feature histograms. In
[158], the authors presented an algorithm approximating the Earth Mover’s
Distance in linear time. The algorithm considers the sum of absolute values
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of weighted wavelet transform coefficients computed for the difference of two
histograms. Recently, a new lower-bound called Independent Minimization
for Signatures [184, 183] has been presented for more efficient retrieval using
the Earth Mover’s Distance.

There have been also attempts to find cheap distances approximating the
Signature Quadratic Form Distance. In [29], the authors have demonstrated
that if similarity function fL2(ri, rj) = −L2

2(ri, rj)/2 is utilized, then the
Signature Quadratic Form Distance becomes L2-Signature Quadratic Form
Distance computable in linear time, but providing worse effectiveness. In
[27], the authors proposed a simple feature signature reduction technique
considering removal of tuples with small weights and defined a signature
quadratic form filter distance for approximate filter and refine retrieval. The
filter distance computes the signature quadratic form distance using reduced
feature signatures. However, according to our experiments the filter distances
do not provide too tight approximations of the lower-bounds. One of the
reasons is that removing a lot of tuples with small weights may significantly
deteriorate the original feature signatures. On the other hand, the idea of
feature signature reduction is a general approach that enables retrieval using
an arbitrary adaptive distance measure.

Therefore, we have investigated advanced feature signature reduction
techniques that can significantly improve the efficiency of the retrieval2 (see
Chapter 4). In [101], we have presented scalable feature signatures, a class
of feature signature reduction techniques based on agglomerative hierarchi-
cal clustering [66], [56]. We have experimentally demonstrated that feature
signatures can be significantly reduced at the cost of just a small loss of qual-
ity. In Figure 3.3, we may observe an example of a feature signature for the
image of a sunrise and corresponding reduced feature signatures. Whereas
the original feature signature flexibly approximates the contents of the orig-
inal image, the reduced feature signatures at least preserve the general color
layout of the image. Furthermore, the reduced feature signatures can be
compared with an arbitrary adaptive distance measure, in other words, this
approach is not restricted just to metric/ptolemaic distances discussed in
the following sections. In [99], we have proposed a journal extension with a
more comprehensive evaluation of various popular agglomerative reduction
techniques implemented in the framework of scalable feature signatures.

2The time complexity of adaptive distance measures depends quadratically on the size
of the feature signature vocabulary, i.e., the number of tuples.
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Figure 3.3: An example of a feature signature reduction, starting from left
– original image, original feature signature, and reduced feature signatures
comprising 32 and 16 tuples.

3.3.2 Metric indexing

The metric space approach [42, 193, 151] can be used to efficiently process
similarity queries employing models based on feature signatures and metric
adaptive distance measures. In order to process the queries efficiently, the
metric space approach utilizes lower-bounding techniques that employ pre-
computed distances between database objects and a set of reference points
pi ∈ P ⊂ U, so-called pivots. The metric space approach assumes that
the utilized distance function satisfies reflexivity, non-negativity, symme-
try and triangle inequality axioms. Especially the triangle inequality axiom
(∀x, y, z ∈ U : δ(x, y) ≤ δ(x, z) + δ(y, z)) is necessary for the correctness of
the lower-bounding based on precomputed distances. More precisely, given
a query object q ∈ U, a database object o ∈ U and a pivot p ∈ U, the lower-
bound distance between o and q can be directly derived from the triangle
inequality using precomputed distances as LB4(δ(q, o)) = |δ(o, p)− δ(q, p)|,
where δ(q, p) is evaluated just once before query processing and δ(o, p) is the
precomputed distance stored in a metric index (see Figure 3.4).

Furthermore, the metric space approach provides also partitioning mech-
anisms enabling grouping of similar objects into partitions so the whole
groups of objects can be filtered during query processing. For example,
given p ∈ U, r ∈ R+

0 , Ball(p, r) = {o|o ∈ U ∧ δ(p, o) ≤ r} represents
a popular Ball-region set used for metric space partitioning and organiza-
tion of database S ⊂ U. During the last three decades, a lot of index-
ing techniques have been designed for metric spaces, so-called metric access
methods [42, 193, 151]. The techniques differ in the way they partition
database objects, store precomputed distances and process similarity queries
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Figure 3.4: Pivot-based lower-bounding using triangle inequality.

[120, 47, 166, 181, 41, 164, 124, 4]. Furthermore, there still appear new ap-
proaches that can be used to enhance many of the well-established metric
access methods.

For example, we have presented Cut-regions [113, 109] that represent
compact metric regions suitable for more efficient indexing and retrieval (see
Chapter 5). The idea of Cut-regions was initially introduced in the PM-
Tree [166] for more efficient query processing in a hierarchy of Ball-regions
constructed as the M-Tree [47]. In our work, we have separated the Cut-
regions from the PM-Tree and defined an additional general set of operations
suitable for index construction. We have also demonstrated that Cut-regions
can improve the performance of other metric access methods relying on Ball-
regions.

However, not only the metric axioms but also the distribution of the dis-
tances between database objects plays a significant role in the efficiency of the
metric space indexing. In [42], the authors have proposed the intrinsic dimen-
sionality measure that indicates whether the data can be efficiently indexed
using a given distance space. The lower values of intrinsic dimensionality
indicate that the data form clusters in the distance space and thus metric
indexes based on metric space partitioning can be utilized [130, 131, 113].
On the other hand, high values of intrinsic dimensionality indicate no clus-
ters, which means only the sequential processing using just simple query-to-
object lower-bounding can be utilized to filter at least some costly distance
computations [120]. The problem of high intrinsic dimensionality can be
also addressed by approximate search strategies that can provide interesting
precision-speedup trade-offs [136, 162, 2, 132]. For example, the Signature
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Quadratic Form Distance trained for maximal effectiveness often suffers from
high intrinsic dimensionality. Nevertheless, we have experimentally demon-
strated [104] that using approximate k-NN search strategies designed for
M-Index [130, 131], the retrieval effectiveness can be still competitive even if
just a fraction of the database is visited.

Although metric indexes can significantly speed up query processing, the
methods still assume that the number of query objects is high enough to
compensate the indexing costs. Furthermore, the techniques assume that
indexed data are not changed too often, so once data are indexed, they are
often queried. These assumptions are not always satisfied, considering for
example multimedia streams, where just a few queries can be issued for data
stored in a search window. In such cases, the cost of updating the index
could overcome the benefits of the indexing, while a sequential scan using a
multi-query processing strategy [37] could be more efficient. If the queries
are issued independently and no delays for query collection are allowed, the
D-Cache structure [165] can be used to efficiently process a few number of
independently issued similarity queries (see Chapter 6).

The structure of the D-Cache is simple – it is just a simple block of mem-
ory where distances evaluated during previous queries are hashed and stored.
As in other cache types (disk, processor), the space for cached distances is
limited and thus the new distances can replace the original ones. In order
to filter non-relevant objects, each actually processed query object qi con-
siders several previously issued query objects qj, j < i as pivots, and thus
using δ(qi, qj) and δ(ok, qj) potentially stored in D-Cache, the lower-bound
LB4(δ(ok, qi)) = |δ(qi, qj)−δ(ok, qj)| ≤ δ(ok, qi) can be evaluated and used for
filtering. If δ(ok, qj) was not stored in the D-Cache or was already replaced,
distance δ(ok, qi) has to be evaluated. Although the lower-bounding is the
same as the one used by metric access methods, the D-cache does not have to
create an index structure in advance, thus it can be used instantly and start-
ing from the second query object the metric filtering can be employed. The
D-Cache can be employed also for dynamically changing similarity models,
for example, if the alpha parameter of the Signature Quadratic Form Distance
is changed to improve efficiency of the filtering. We have also demonstrated
that standard metric access methods can be enhanced by D-Cache for more
efficient indexing and retrieval [165].
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3.3.3 Ptolemaic indexing

The metric space approach is not the only way to efficiently index adaptive
distance measures. Recently, Hetland et al. [77] proved that based on specific
assumptions [18] the Signature Quadratic Form Distance is a ptolemaic met-
ric (see Chapter 7), which means it satisfies metric properties and also the
ptolemaic inequality stating that for any quadrilateral, the pairwise products
of opposing sides sum to more than the product of the diagonals. Formally,
for any four points x, y, u, v ∈ U, the following inequality holds:

δ(x, v) · δ(y, u) ≤ δ(x, y) · δ(u, v) + δ(x, u) · δ(y, v) (3.1)

As for the triangle inequality, the ptolemaic inequality can be used for
distance-based indexing to construct a pivot-based lower bound. Given a
query q, object o, and pivots p and s, the Ptolemaic bound can be evaluated
as:

δC(q, o, p, s) =
|δ(q, p) · δ(o, s)− δ(q, s) · δ(o, p)|

δ(p, s)
, (3.2)

where for δ(p, s) = 0, the bound is defined to be zero δC(q, o, p, s) = 0.
For a set of pivots P, an optimal Ptolemaic bound [76, 105] considers all pairs
of distinct pivots from P:

δ(q, o) ≥ LBptol(δ(q, o)) = max
p,s∈P

δC(q, o, p, s) (3.3)

However, the optimal Ptolemaic bound has the quadratic time complexity
(based on |P|) and so its estimation can be too costly with respect to a
lower-bounded cheap distance. Therefore, only a specific set of pairs can be
considered by a pair selection heuristic. Given a ptolemaic metric, another
question is whether to use lower-bounding based on triangle inequality or
ptolemaic inequality. In other words, whether the ptolemaic lower bounding
can improve the triangle lower bounding, and vice versa.

In Figure 3.5, we have visualized points in 2D euclidean space, that can
be filtered just by LB4 (blue points), LBptol (green points), by both lower
bounding techniques (gray points) and points that cannot be filtered by any
of the two techniques (white points). We may observe that both filtering
techniques can contribute to the filtering, where the filtering power of each
technique depends on the query radius and also on the constellation of pivots
and the query object. The filtering power of cheap triangle lower bounding
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Figure 3.5: Triangle versus ptolemaic filtering in 2D euclidean space using
two pivots p, s and range query (q, rq), where the blue points can be filtered
just using LB4, green points can be filtered just using LBptol, gray points
can be filtered by both techniques, while white points cannot be filtered by
neither of the two techniques.

could be increased by higher number of pivots. On the other hand, the
ptolemaic lower bounding can improve the filtering power of a given pivot
set. Both techniques can be also combined, where first the cheap triangle
lower bound is evaluated and used for filtering. If the triangle lower bound
is not sufficient, more expensive ptolemaic lower bound is employed for a
given object. As for triangle lower-bounding, the ptolemaic lower bound can
be evaluated also for whole regions and thus, given a ptolemaic metric, the
filtering rules of many metric access methods can be simply extended [77].

3.3.4 Parallel computing

Although domain specific approaches, feature signature reduction techniques,
and distance based indexing methods can significantly improve the efficiency
of multimedia retrieval using feature signatures and adaptive distance mea-
sures, the techniques alone cannot make the model applicable for immense
databases comprising billions of multimedia objects. In such cases, ap-
proaches like distributed computing and/or massively parallel computing
have to be employed as well [15, 62, 118, 194]. For distributed computing,
there have been already developed several approaches that can be directly
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applied for models based on feature signatures and metric adaptive distance
measures. For example, in [131] the authors propose a distributed metric in-
dex (M-Index) that can organize the database into a large number of nodes
according to a metric distance. The index is suitable both for exact and
approximate search, where especially the approximate search strategies can
prune a significant part of the searched database. Furthermore, each node
can utilize a centralized index structure and/or massively parallel computing
to improve the efficiency of the distributed index. Inspired by the M-index,
we have proposed an distributed approximate similarity join approach for
Hadoop that enables efficient evaluation of k-NN graphs [186].

The parallel computing (e.g., GPU architectures [134, 133]) represents an-
other promising approach for evaluation of costly adaptive distance measures
that constitute a serious bottleneck of a multimedia retrieval system based
on feature signatures. In recent days, novel many-core devices with specific
hardware architectures are designed for various computing tasks. Hence, one
of the goals of the research in this area is to find suitable computation tasks
for existing many-core devices and to adapt the existing algorithms to bet-
ter utilize properties of the devices. The typical example are GPU cards
that provide thousands of cores. However, their hardware architecture and
programming model significantly differ from traditional CPUs. Especially
different memory organization and thread execution in GPU cards require
different algorithms. The CPU and GPU approaches can be also efficiently
combined in hybrid systems that better utilize available hardware.

Considering GPU architectures in the time of conducting our research
[94], we have focused on parallel processing of adaptive distances and com-
pared the efficiency of the retrieval when using two parallel environments with
different architectures and also prices. More precisely, we have compared
a cheap desktop PC comprising two GPU cards with CUDA architecture
and an expensive high-end NUMA server. As parallel computing tasks, we
have investigated the efficiency of the retrieval when using parallel comput-
ing for batches of distance computations, or even parallel processing using
a simple metric index structure [94]. More specifically, we have designed
two algorithms considering utilization balance between CPU and many-core
GPUs for efficient similarity search with the Signature Quadratic Form Dis-
tance. We have shown how to process multiple distance computations and
other parts of the search procedure (e.g., lower-bound estimation) in paral-
lel, achieving maximal performance of the combined CPU/GPU system. We
have experimentally demonstrated that using GPU cards for models based
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on feature signatures represents an order of magnitude faster and cheaper
solution than a high-end many core NUMA server, despite the memory or-
ganization and thread execution specifics of the GPU architectures. Similar
results have been achieved also for position-color-texture feature signature
extraction process, where we have reached the throughput of approximately
8000 extracted feature signatures per second [93] (given images pre-cached
in RAM).
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Part II

Interactive video retrieval
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Chapter 8

Commentary for Part II

8.1 Motivation

Every day, users search for videos to get informed, educated, entertained,
or to inspect specific video collections (e.g., a personal archive or medical
repository). The particular information need is usually in the mind of the
user and might be a subject of evolution/change during the search process.
Given an information need, users enter queries to modern video retrieval
systems by means of a user interface (e.g., a textbox input) and browse a
ranked result set. The effectiveness of the retrieval depends on many factors.
On the systems site, effective video retrieval approaches have to be incorpo-
rated, including video analysis, automatic annotation, feature extraction and
relevance scoring models. Another factor is that users have to be able to for-
mulate an expressive query describing the target scenes or to use the system
interface/models effectively to solve a given task. For example, if users want
to find a video with a funny cat on youtube using keyword search, the first
page of the result set would be probably sufficient for most users. However, if
the user would like to search for one particular video with the funny cat (e.g.,
observed long time ago), the searched video would be probably hard to find
due to too many candidates matching a simple keyword query or potential
problems with automatic annotation for more detailed query specification.
Generally, with the rise of deep learning models it becomes easier to find
instances of a more general class of scenes on the first page (i.e., precision at
K). However, finding all of the instances of the class or finding one particular
scene is still a challenge in many types of video retrieval tasks in general
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video domains. For narrow domains with a lot of available training data,
the options to design effective retrieval models are better, but the querying
might require domain knowledge.

Two types of video retrieval tasks are considered throughout this part of
the thesis – known-item and ad-hoc search. Both types of tasks assume that
the task description does not change. Known-item search tasks represent
situations, where users search for one particular scene in a given video col-
lection. Either the users saw the scene before or they have a specific textual
description of the scene. Ad-hoc search tasks represent situations, where
users search a collection for all scenes corresponding to a given short textual
description. Even though the description of searched scenes does not change
for a given ad-hoc search task, the opinion of which scene is relevant may
change based on voting (or calibration) among live judges. For example,
there was a task to find people queuing at the Video Browser Showdown
2019. After a first few submissions, the judges had to decided whether one
person in a queue can be already considered as people queuing. As presented
in TRECVID [9] or the Video Browser Showdown [102] reports, both types
of tasks still represent a challenge for current retrieval models. Especially in
cases, when an ideal query object is not available.

The difficulty of the tasks can be illustrated by the following image
retrieval simulation using 499 randomly selected ImageNet classes. Each
class consists of 100 randomly selected images represented as neuron ac-
tivations from the last pooling layer of the NasNet Mobile network [198].
Hence, the dataset S has 49900 images represented as vectors v ∈ Rn. Let
pi = {ki, qi}, ki, qi ∈ Rn be a pair of a sampled known-item ki and a query
qi of the same class as ki. The pair simulates that a user tries to employ qi
to find ki. For each sampled pair pi and considering the cosine similarity,
the query qi induces ranking on S − {qi} which determines the rank of the
searched item ki and also the rank of the first/last item of the query ob-
ject class. Considering 20 sampled pairs for each class, Figure 8.1 shows the
empirical cumulative percentage of found items up to a given rank.

Whereas the first found image of the query class has a low rank for most
queries, searching for one particular item or all items of the query class is
more difficult even for images. For example, to find 80% of simulated known-
items with a given query, users would need to (effectively) browse results up
to rank about 6500. Hence, interactive search is still considered to boost the
effectiveness of video retrieval systems. Instead of sequential browsing of one
large result set, the search process comprise iterative query reformulation,
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Figure 8.1: Simulations of three types of retrieval tasks.

results visualization and exploration/browsing phases. Given more control
over the search process, users can provide valuable high-level decisions based
on inspection of the results of automatized subtasks. The corresponding
more complex interfaces should consider special design efforts to minimize a
usability gap (e.g., the eight golden rules [159]).

Figure 8.2 presents an example of known-item search interactions in our
interactive video retrieval tool VIRET [107] during a visual known-item
search task. The x-axis represents the actual task time (first 4 minutes),
while y-axis shows the current position of the top ranked frame from the
searched video (gray color) and shot (red color). As there were applied
presentation filters for the maximal number of displayed top-ranked frames
from a video/shot, the orange line shows the position of the top ranked frame
from the searched shot without the filters. Below the x-axis, currently used
queries are presented. The red color represents keyword-search, the blue
color represents querying by an example image (E denotes that the image
was taken from an external image search engine). The model used for sorting
is highlighted on the x-axis. The heat map below queries shows a browsing
activity (e.g., video or temporal context inspection). We may observe that
the user employed multiple modalities and query images. Once a frame from
the searched scene appeared on the first page, the user started also with
browsing and then selected the correct frame/shot.

In the following, popular approaches incorporated by state-of-the-art in-
teractive video retrieval systems are presented in connection with perfor-
mance evaluation challenges.
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Figure 8.2: User interactions and the actual position of the top ranked frame
from the searched video/scene in a visual known-item search task. The or-
ange color is used to show the position without presentation filters.

8.2 Methods for interactive video retrieval

Effective and user friendly approaches to interactively solve difficult video
retrieval tasks are still the subject of intensive research. Various interactive
video retrieval frameworks (e.g., vitrivr [145], VIREO [128], VISIONE [1], di-
veXplore [157], VERGE [3], VIBRO [14], or our system VIRET [107, 108]) are
designed and confronted at international evaluation campaigns. Please note
that interactive video retrieval systems participating at the Video Browser
Showdown competition are summarized in Chapters 9 and 10. Based on our
experience with task-oriented evaluations at the Video Browser Showdown
[102], this section briefly summarizes a list of general approaches identified
for a successful known-item and ad-hoc search interactive video retrieval sys-
tem. We also highlight methods used by our VIRET system (summarized in
Chapter 11) and several additional contributions. For a broader overview of
various interactive retrieval ideas, paradigms and trends, we refer the readers
to the following surveys [176, 156].

8.2.1 Video analysis and preprocessing

Video is represented as a temporally ordered sequence of frames. In addi-
tion, videos from professional productions are often organized to a hierarchy
of scenes and shots, where the contents of the frames in one temporal unit
is usually highly similar both visually and semantically. Since information
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about scenes and shots is not available in raw video data, an automatic detec-
tion of the temporal units represents a traditional step of video analysis. The
knowledge of the video structure is beneficial for video presentation, brows-
ing, filtering and retrieval. In an comprehensive survey on content-based
video retrieval, Hu et al. [80] considers three problems of video structure
analysis – shot boundary detection, key frame extraction and scene segmen-
tation. The methods for shot boundary detection try to identify various
types of transitions, relying either on threshold based approaches or statis-
tical learning models. Key frame extraction methods try to reduce redun-
dant consecutive frames and select the set of salient representative frames
for each shot. The quality of selected frames has to be assessed by users,
which makes the key frame selection a difficult problem. Popular approaches
employ heuristics based on comparison between frames, clustering or even
simple uniform segmentation. Please note that representative frame selec-
tion is an important step as the result sets are mostly presented in the form
of a collection of images/frames. Scene segmentation approaches [80] rely
either on the analysis of frames, audio-visual fusion or similar background
assumption.

In order to simplify the development of interactive video retrieval systems
for the Video Browser Showdown participants, the currently employed V3C
dataset [146] (shared with TRECVID) is already provided with a precom-
puted temporal segmentation of videos. For the considered video fragments
(e.g., segments or selected frames), the teams can focus on descriptor ex-
traction functions to prepare suitable representations for video retrieval and
browsing models. Currently, our system employs an own temporal segmen-
tation approach focusing on shot transition detection using an own 3D deep
convolutional neural network. Since the retrieval models operate on the set
of selected frames, a frame selection method is used considering clustering of
consecutive uniformly sampled frames in detected shots. The shots can be
used also for approximate presentation filtering of results (e.g., show just the
top ranked frame from a shot), assuming that selected frames from a shot
are sufficiently visually similar and users can recognize the searched shot.

8.2.2 Search initialization with a query

Human computing in connection with a well-designed sequential browsing
interface [81] proved to be surprisingly effective approach up to one hundred
hours of video in textual known-item search tasks [48]. However, systems
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employing only sequential browsing are generally exhaustive for users and
not scalable. For large datasets, an initialization of the search with a query
is an important step to get a smaller candidate set of top ranked results for
further inspection and refinement. Users can inspect the results to find the
searched scene on first few pages, find a suitable query object, or exploit a
returned frame as a link to a region in a precomputed exploration/navigation
structure (e.g., ImageMap [12] or another suitable browsing model [75]). The
following query initialization approaches are frequently supported.

Keyword search represents a popular and intuitive form of search ini-
tialization for users. Given automatically detected annotations for videos,
(interactive) video retrieval systems can integrate various keyword search
approaches [150, 11]. The participating video retrieval systems at the Video
Browser Showdown often rely on automatic annotation of frames or scenes
using deep learning approaches that can extract concepts, captions, texts
and speech with the state-of-the-art precision. For example, the recent ver-
sion of the vitrivr system [145] relies on various deep learning models for
semantic segmentation [43], extraction of spatio-temporal features [179] for
action classification, or captioning of selected frames [188]. The tool suc-
cessfully incorporated also annotations from OCR/ASR models. A popular
option used by many VBS teams are also (retrained) deep networks for image
classification. In the current version of our VIRET system, we consider a re-
trained NasNet large network [198] with an own set of 1243 classes/labels. In
the preprocessing phase, for each selected frame the output (softmax) vector
x ∈ R1243

≥0 is extracted by the network. Users can query the selected frames
only with the supported 1243 labels and additional 765 hypernyms prompted
by the input control. Since users might face problems with expressing their
needs (e.g., small vocabulary), advanced prompting is integrated to our sys-
tem linking the entered words also with keyword descriptions. Generally,
users do not have to rely just on the supported set of labels. For example,
the VERGE system [3] employs a module that translates the original textual
query to a set of supported visual concepts, considering in some cases also
query expansion with semantically similar concepts.

Sketch based retrieval is useful in scenarios, where users remember vi-
sual appearance of the searched scene. Sketching is supported by most of
the mentioned interactive video retrieval systems, as it enables to express
memorized colors, edges or motion. However, for humans the ability to re-
produce previously observed features is limited (e.g., due to a limited visual
working memory capacity [115]) and so the retrieval models have to consider
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incomplete and potentially noisy sketches. For example, it is necessary to
assume that a color sketch only approximates the real colors in the searched
shot as users face problems with memorizing a rich palette of colors and
the reproduced colors tend to be biased [10]. Furthermore, if the retrieval
system operates only on selected frames, it does not have to be guaranteed
that the frame containing the memorized color distribution is selected from
the shot. Hence, the sketch drawing component can support interactive edit-
ing operations for frequent sketch modifications. For example, our system
uses editable color query regions with ALL/ANY specification [112]. An-
other strategy for interactive color sketching was presented by the VIREO
system [127] that uses grid-based color sketching with informative visualiza-
tions. Given a selected color and a set of already placed colors, remaining
empty places in the grid show a density estimate of the corresponding color
combination in the dataset. With the improvements in object detection and
semantic segmentation, systems start to incorporate also semantic sketches.
The semantic concepts are entered either as positioned boxes relying on an
object detector (e.g., as used by the VISIONE system [1]) or as free form
shapes relying on semantic segmentation (e.g., as supported by the vitrivr
system [145]).

An ideal example image represents a strong clue to find a searched scene.
However, finding such example might be a challenge on its own. Users can
try an external image search engine with effective keyword search, or the
image can be discovered and selected from the current results set. Selection
of the query example has to be convenient (e.g., drag and drop from the
external engine, as implemented by our system [107]) and the history of query
examples should be accessible. In order to model the contents of a selected
frame, representations based on neuron activations of deep convolutional
neural networks [174, 74, 65, 198] are often employed. For example, our
system models the similarity of two images using the cosine similarity of the
corresponding neuron activation vectors obtained from the retrained NasNet
mobile network [198].

Videos provide different useful modalities for retrieval purposes. In order
to improve retrieval effectiveness, the modalities are used in fusion schemes
[168]. Various fusion strategies were investigated by interactive video re-
trieval systems. For example, the VERGE system [123] employed a hybrid
approach combining non-linear and graph-based late fusion [61], given top K
relevant shots returned by a dominant feature. In the most recent version
of our system [107, 108], we considered a temporal fusion for a sequence of
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queries of one modality, each targeting a different frame in the searched se-
quence. For a multi-modal query, a simple late fusion strategy is utilized.
The intersection of top ranked results of each employed modality is evalu-
ated and the overall result is sorted by a selected modality. The number
of considered top ranked results for a query modality can be interactively
controlled by users (except semantic sketches serving as filters). Implicitly,
the thresholds are set to larger values, which decreases the chance to filter
out the searched frame by the fusion for the price of larger candidate result
sets.

8.2.3 Visualization and browsing

For human visual system, data visualization represents a powerful tool to
present and communicate information. One of the tasks where human vision
abilities might help is inspection of candidate sets. Therefore, data visualiza-
tion approaches complement querying to speed up the time to solve a video
retrieval task. Video interaction systems [156] consider visualization of result
sets, interactive navigation in advanced exploration structures [75] and video
browsing approaches for fast video inspection (augmented navigation bars,
video summaries and ergonomic controls) on various types of devices.

The very basic visualization component adopted by many systems is an
image grid presenting representative video frames (e.g., top ranked items).
The grid has no overlaps and fills the whole designated area. Since human
perception is limited, about 20-50 images per page [12] are usually presented
on a display. Since the searched item might reside much deeper in the current
ranked candidate set, additional visualization/browsing strategies have to be
considered. For example, a popular use case implemented by popular web
search engines and also by many interactive video retrieval tools is that users
scroll down a list of results revealing additional items. Another strategy is
to show many small thumbnails at once and use a method organizing simi-
lar images close to each other on a display (e.g., Self-Organizing Maps [88],
t-SNE [185] or Self-Sorting Maps [169]). These approaches enable users to
quickly overview a larger portion of the result set, look for the searched item
or identify promising query examples. The sorted maps can be also easily or-
ganized into hierarchies. As demonstrated by the Vibro system, hierarchical
image maps [13] and graph-based browsing [14] in a grid can be effectively
employed in known-item search scenarios. Typical browsing scenarios in a
static image map are inspired by classical map services. Users can navigate
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in a hierarchy (zoom in/out) and inspect image regions on the same level
with panning. In order to preserve image relations and support dynamically
changing datasets, a hierarchical similarity graph approach was proposed
with a method projecting requested subgraphs to a 2D grid [14]. Given the
projection mechanism, the same navigation interface can be designed as for
the static image map variant. Browsing in sorted image maps was success-
fully implemented also by the diveXplore system [157], integrating advanced
cooperation functionality for multiple users operating different instances of
the tool. For a broader survey of content-based browsing approaches in image
collections, we refer to Heesch [75].

Once users find a good query example (e.g., a searched TV studio), the
temporal context becomes important for fast visual inspection of promising
candidates. Hence, instead of a single top matching frame, stripes depicting
also a temporal context are beneficial for the users. Switching from the grid
of images to a list of stripes corresponds to a shift from the exploration to
exploitation phase of the search. The temporal context can be also presented
interactively for a selected displayed frame, “playing” a sequence of preceding
or following frames on mouse wheel over the frame. Examples of interfaces
that were used in our interactive video retrieval tool at the Lifelog Search
Challenge are presented in [112]. Please note that a simple grid was often
employed for the “exploration” phase, where users entered a query and a
larger number of frames was presented for inspection. However, showing
more top ranked items at once leads also to situations where users overlook
a searched frame (see Chapter 11). Specific visualization techniques can
be designed also for continuously evolving videos. For example, we have
investigated a hierarchical visualization method for selected frames from an
endoscopic video [111] to aid with after-inspection of endoscopic surgeries.

Alternatively to 2D visualization methods, various 3D interfaces have
been considered in multimedia retrieval [153, 154]. Please note that ap-
proaches for 3D layouts can rely on additional visualization and browsing
options (e.g., perspective or camera movements). In our work [117], we have
examined efficient 3D visualization approaches based on the particle physics
model and a precomputed graph with edges corresponding to similarities
between database objects. We have demonstrated that the model can be
configured to efficiently produce various types of layouts.
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8.2.4 Relevance feedback

In order to narrow the gap between search needs and effectiveness of retrieval
models for a given task, a relevance feedback approach can be incorporated
into the search loop. The feedback can be provided explicitly (binary or
multivalued relevance), where users pick positive and/or negative examples
that are used to adapt the retrieval system for the next iteration [143, 192].
Implicit feedback is more convenient for users, as the system tries to collect
and analyze user behavior automatically. Let us note that interactive video
retrieval interfaces provide a rich set of elements that can be tracked for
implicit feedback. A relevance feedback has been considered in a Bayesian
framework for image class search based on a mental picture [57]. In the
framework, the user observes in each iteration an appropriately selected dis-
play of images and picks the most relevant image with respect to the searched
concept. An update model is then used to estimate posterior probabilities
based on the feedback. The model has been extended to support multi-
ple selected images [17], scalable retrieval with HEAT approach [170] and
to consider exploration/exploitation phases [171]. Inspired by the Bayesian
framework, an interactive video retrieval system for mental visual browsing
[73] was presented at the Video Browser Showdown 2016.

8.3 Interactive video retrieval evaluation

Assessing the performance of an interactive video retrieval system is a diffi-
cult task as both the effectiveness of retrieval models and usability of in-
terfaces have to be tested. Since every user is different, evaluations of
a large number of information retrieval tasks with many users is neces-
sary which makes the testing unwieldy and time demanding [189]. The
evaluations for particular retrieval models are often simplified and autom-
atized with respect to a benchmark collection with predefined tasks and
expected results. This ensures experiment repeatability and enables auto-
matic evaluations of precision and recall based measures. The automation
provides clues to select suitable models for a given type of data and opti-
mize involved model parameters. For example, in our recent work [100] we
have investigated options for an automatic performance analysis of a sim-
ple color sketching retrieval model (used in precedent versions of our video
retrieval tool [103, 35]). For randomly selected “known” images o ∈ S rep-
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resented as position-color feature signatures FSo = {〈roi , woi 〉}ni=1, known-
item search simulations were considered using automatically generated color
sketch queries FSq = {〈ε(roi ), woi 〉 : 〈roi , woi 〉 ∈ Π(FSo)}. Several functions Π
projecting the signature to a subset of tuples Π(FSo) ⊂ FSo were investi-
gated, while ε : F → F represents a simplified user error model considering
Gaussian white noise. The simulation framework can be used as a starting
analytical tool for investigation of potentially effective search strategies and
preliminary insights of the performance of employed ranking models. How-
ever, even more complex interactive search simulations [195] and evaluations
based on benchmark collections do not cover all possible open world search
scenarios and so provide only a tentative estimate of the general performance.
Hence evaluations with real users should be performed as well.

Ideally, the evaluations with real users should incorporate both qualitative
and quantitative usability studies. Qualitative usability studies investigate
whether users face problems with certain system/interface features and com-
ponents. The users are asked to use the analyzed system for a short period
of time, while a usability evaluation method is performed. For example, in
the think-aloud protocol [95] users are encouraged to communicate aloud
their thoughts during a set of tasks with a tested system. Besides a valu-
able feedback, the protocol provides also an insight into cognitive processes
of each user when learning to use the system. Another popular evaluation
method is based on appropriate post-task and post-test usability question-
naires. Post-task questionnaires focus on user experience with particular
tasks (e.g., was the tested system helpful to solve the task?), while post-
test questionnaires collect information about the overall impression from the
tested system. Quantitative analysis can be connected with task-based test-
ing to measures the effectiveness of solving a certain set of tasks (e.g., by
means of the success rate and time to solve a task). The analysis can be
further supported with interaction logging and eye/mouse tracking, which
provides an additional valuable data source for interface and usability analy-
sis. Both qualitative and quantitative evaluations have to be performed with
many users and trials, in order to support the overall results with significance
tests. Whereas all the presented evaluations are manageable for a single sys-
tem or its components, comparative evaluations of many different interactive
video retrieval systems pose a difficult challenge for a single research team.
In order to provide a task-based comparative evaluation platform and foster
research in the (interactive) video retrieval area, evaluation campaigns are
organized for different types of tasks and data sources. The organizers of
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the campaigns define video retrieval tasks, settings, datasets, ground truth,
evaluation metrics and scoring.

Video retrieval evaluation campaigns started to appear since 2000 as a
by-product of traditional text-based retrieval campaigns. One of the most
famous campaigns is TRECVID [9], which was organized since 2001 as a Text
Retrieval Conference (TREC) track and since 2003 it has become an inde-
pendent event. TRECVID focuses on realistic tasks and automatic content-
based video analysis for retrieval and event detection. The primary focus is
fully automatic search based on a provided query, however, some settings en-
able user interactions (e.g., manually change the query, or reformulate query
based on top few results). The systems evaluate the query and return top
1000 items to TRECVID organizers, who focus both on precision and recall
levels. In order to foster interactive search, additional campaigns have been
started. VideOlympics [167] were organized at CIVR in years 2007-2009,
where research teams could present their systems and solve tasks directly
in front of the audience. Inspired by this exciting event, the Video Browser
Showdown campaign started in 2012. The Video Browser Showdown [102]
focuses on task-based comparative evaluation of interactive video retrieval
systems, given the same set of known-item and ad-hoc search tasks, set-
tings and conditions. All the participating teams try to solve the tasks in a
concurrent way, given the same time limit and in front of the audience. Re-
cently, a similar Lifelog Search Challenge campaign was established to foster
interactive search in related lifelog data [68, 67].

8.4 Video Browser Showdown participation

The author of this thesis is involved in the Video Browser Showdown (VBS)
evaluation campaign both as a co-organizer and regular participant with a
video retrieval tool developed by his team. Already the first participation
was successful in 2014, where the presented tool called the Signature Based
Video Browser [103, 35] achieved the first position. The tool focused on
visual known-item search using simple interactive color sketches and under-
laying ranking models, which was a successful strategy also the next year
at the Video Browser Showdown in 2015 (with an enhanced version [34]).
With the growing video collection and new textual tasks, the new version of
the tool [32, 33] incorporated also edge based sketches, query by an example
image and keyword search using ILSVRC classes extended by hypernyms.
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After being twice at the third place (at the Video Browser Showdown in
2016 and 2017), a significantly revisited version of the tool called VIRET
[112] achieved again the first place at the Video Browser Showdown 2018.
The VIRET tool used its own set of supported concepts, own color sketching
model, deep features from GoogleNet, and supported multi-modal search.
Please note that the VIRET tool version employed at VBS 2018 was used
also at the Lifelog Search Challenge 2018 [67], where the tool achieved the
third place even without considering Lifelog specific modalities (e.g., loca-
tion, date, heart rate). At the Video Browser Showdown 2019, the VIRET
tool considered a retrained NasNet deep neural network [198], a new neural
network architecture for shot boundary detection TransNet, temporal queries
and updated result presentation panels [107]. A more detailed description
of the most recent version of our system is presented in Chapter 11. Our
system achieved the overall second position after the winning vitrivr system
[145]. It was an interesting comparison of two frameworks, both able to solve
18 out of 23 known-item search tasks in the currently used V3C dataset with
1000 hours of video [146]. Whereas our system relied only on visual informa-
tion and general concepts, the vitrivr system demonstrated that automatic
speech recognition and optical character recognition are very effective for the
current visual known-item search settings at VBS.

Regarding the Video Browser Showdown organization, we have contributed
to new task presentation settings, scoring formulas, interaction logging and
led two extensive Video Browser Showdown evaluation reports included in
this thesis. Similar as for TRECVID, the Video Browser Showdown focuses
on simulations of realistic tasks which bring several challenges. For example,
is it better to simulate visual KIS tasks by presenting the “known scene”
only once or playing it in the loop? The first case is more realistic, however,
users may forget the “implanted” searched scene. This topic is discussed in
more detail in Chapter 9. The scoring represents another challenge as the
teams try to maximize their overall score to win the competition. We have
revisited scoring formulas for all types of tasks, incorporating time and the
number of correct/incorrect submissions.

In order to provide more advanced comparative reports and insights for
used tool features, we defined a simple interaction logging format for cur-
rently used interactive video retrieval tools and integrated collected inter-
action logs to the submission process. The proposed methodology has led
to the first successful attempt to collect interaction logs from eight of nine
teams at the Video Browser Showdown 2018. Although the teams did not
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implement the logging in the full extent, the logs (at least partially) con-
nected successful submissions with used tool features. This information was
available for the majority of the participating systems for the first time in the
Video Browser Showdown history. The logs also showed expected elemen-
tary search patterns and raised logging challenges for the next installments
of the Video Browser Showdown. A survey paper revisiting and summarizing
the Video Browser Showdown in years 2015-2017 is included as Chapter 9,
while a detailed analysis of the Video Browser Showdown 2018 is presented
in Chapter 10.
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Jaroslav Moravec
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Chapter 12

Conclusions and discussion

During years 2011-2016, we have focused on efficient content-based similarity
search using models based on feature signatures. The feature signatures en-
able unsupervised flexible representation of multimedia objects. However, the
efficiency of the retrieval using feature signatures represents a challenge for
large multimedia collections. Therefore, we have investigated parallel feature
extraction techniques to speed up multimedia indexing phase and several ap-
proaches for efficient retrieval. More specifically, we have demonstrated that
metric/ptolemaic access methods can be employed for efficient retrieval us-
ing metric/ptolemaic adaptive distance measures, feature signatures can be
scaled for effective approximate search, and also that the distances represent
a suitable task for parallel processing. Furthermore, many of the presented
techniques have been designed as general approaches not restricted just to
feature signatures and adaptive distance measures. Generally, any similarity
model with expensive distance measure satisfying metric/ptolemaic proper-
ties could benefit from many of our new techniques.

In years 2014-2019, we have focused also on interactive video retrieval.
In the early installments of the Video Browser Showdown, we have demon-
strated that position-color feature signatures representing video frames can
be considered for the design of interactive color sketch interfaces and effec-
tive ranking models for visual known-item search in small video datasets
(winning the Video Browser Showdown in 2014 and 2015). The original
Signature-based video browser was incrementally extended by keyword and
semantic search models for increasing size of the utilized dataset. In 2018,
the major revision of the tool (named VIRET) won the Video Browser Show-
down again, providing access to 600 hours of video using multi-modal fusion
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of selected models for keyword search, color sketching and query by example
image. In 2019, the VIRET tool was extended by temporal queries, new
temporal segmentation using a new deep neural network architecture and
considered a retrained state-of-the-art NasNet architecture [198] for auto-
matic annotation of selected frames. The VIRET team (including novices)
solved 18 out of 23 known-item search tasks (in 1000 hours of video!) at the
Video Browser Showdown 2019 and achieved the overall second place.

In 2016, the author of the thesis has joined the Video Browser Showdown
organization committee and worked on the revision of task presentation set-
tings, scoring functions, proposed interaction logging methodology, and led
two extensive Video Browser Showdown summary papers. The first paper
surveyed, revisited and summarized the Video Browser Showdown evaluation
settings and results for years 2015-2017. The results of ad-hoc search tasks
were also compared with TRECVID. The second paper proposed a detailed
analysis of the Video Browser Showdown 2018, including a first successful
attempt to collect interaction logs from participating teams. Based on our
experience with video evaluation campaigns, we have also presented a half-
day tutorial at ACM MM 2018 [155]. The tutorial motivated for interactive
video retrieval in the age of deep learning, summarized observed success-
ful approaches and tools, detailed problems related to the organization of
selected video retrieval evaluation campaigns, and discussed the observed
results from recently organized events.

At the end of the thesis, we provide a short discussion on the future
of models based on features signatures and challenges of interactive video
retrieval.

12.1 Where are you heading models based on

feature signatures?

Object specific representations in connection with adaptive distance mea-
sures constitute a strong handcrafted formal framework [147, 18], yet simple
enough to prove many properties analytically. In recent years, the frame-
work has demonstrated its effectiveness in several benchmarks across various
domains [110, 19, 20, 59, 182, 22, 160]. However, newly developed repre-
sentation models are continuously pushing the effectiveness towards better
and better results. It is highly remarkable, how developments in the machine
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learning area consistently outperform many traditional approaches in various
classification or retrieval tasks. Nevertheless, as long as machine learning ap-
proaches requiring just a few training examples (e.g., one shot learning [187])
do not reach superior performance, we believe that retrieval systems can still
consider flexible frameworks for unsupervised similarity search in domains
without large collections of annotated training data. Especially in connec-
tion with interactive retrieval scenarios, where users switch between retrieval
models based on the currently observed model performance for a given query
object and task.

Regarding the efficiency of the retrieval with models based on feature sig-
natures, Beecks et al. [26] recently proposed so-called gradient-based signa-
tures relying on a generative model with a finite set of parameters θ to aggre-
gate the representatives of a feature signature. The authors proposed a like-
lihood function L(θ|FS) of the generative model parameters θ with respect
to a feature signature FS. Given the log-likelihood function log(L(θ|FS)),
the gradient-based signature corresponds to the change of the function pa-
rameters θ to better fit FS. Considering the same generative model for
all feature signatures in the database, classical cheap bin-to-bin measures
can be employed. Based on the employed set of image retrieval benchmark
datasets, the authors presented that the effectiveness of the gradient-based
signatures can outperform models based on feature signatures and adaptive
distance measures. On the other hand, in the endoscopic domain Beecks et
al. [20] presented that models based on feature signatures are more effec-
tive than gradient-based signatures for the task of linking images to video
segments. Hence, it seems that the effectiveness of the models depends on
the particular data distribution and task type. As the gradient-based model
focuses on highly efficient retrieval, a comparative study involving proposed
metric/ptolemaic indexing approaches could provide a deeper insight of ef-
fectiveness/efficiency trade-off for both models. Generally, a comprehensive
comparative evaluation in various domains including also popular bag of
features models represents an interesting task for future investigation. Es-
pecially for scenarios, where issued queries do not fit trained codebooks or
employed generative models.
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12.2 Interactive video retrieval challenges

Information retrieval tasks focusing on high recall in general video data rep-
resent still a difficult challenge for video retrieval systems. In order to find a
searched scene (or set of scenes) based on memories, users need search clues
that satisfy three properties – the clues have to be discriminative, repro-
ducible and automatically detectable for the searched scene. For example,
the vitrivr system [145] has demonstrated for visual known-item search tasks
at the Video Browser Showdown 2019 that a suitable search clue can be
speech or text present in the scene (considering the V3C collection [146]).
For a heard sequence of several words or observed unique text label, the em-
ployed ASR/OCR models already provided sufficiently effective automatic
annotation. Nevertheless, in web-scale databases these clues do not have
to be unique. Furthermore, after some time users may remember only con-
cepts or general visual clues, or the searched scene does not have to contain
speech/label clues. In these cases, at least one of the three properties does
not have to be satisfied and so the performance of the employed ranking
models could be lower.

We believe that machine learning approaches and large-scale data anno-
tation initiatives will continue to improve effectiveness of automatic video an-
notation models. With more precisely detected objects/concepts (even small
items), relations between objects and temporal actions, keyword search ef-
fectiveness will be significantly enhanced. Given a more accurate region pro-
posal for arbitrary objects, the systems could rely also on similarity search
in promising image subregions. However, it is questionable whether it is fea-
sible to provide sufficient training data for all possible “open world” search
tasks. In addition, provided that users are able to remember only a limited
number of objects or details in the scene, it will be probably always neces-
sary to assume incomplete queries. Furthermore, the provided queries can be
noisy as users may mistakenly remember some concepts/features (e.g., wrong
color hue or its position). Hence, methods for effective and efficient inspec-
tion of larger candidate sets are necessary. For example, advanced result set
exploration approaches or adaptive models incorporating explicit/implicit
relevance feedback represent a promising direction to improve effectiveness
of known-item and ad-hoc search processes. Another problem arises in tex-
tual tasks where users often face problems with good imagination of the
scene. Clinging to a misleading idea of the scene may result in highly ineffi-
cient search. Therefore, visualizations providing diversification of potentially
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searched candidates have to be employed to help to resolve such discrepancies
sooner in the retrieval process.

Given a fixed dataset, approaches to automatically analyze and set up pa-
rameters of complex interactive retrieval systems could further aid with the
development of the systems. We believe that analytical frameworks could
provide promising configuration candidates for evaluations with real users.
Automatic configuration approaches for interactive systems require artificial
users for query specification and browsing. With suitable artificial users, sim-
ulation frameworks could be designed to obtain useful insights and estimated
limits of considered models. Ideally, the simulation framework could propose
a minimal set of recommended retrieval models for a given dataset and render
a prototype application with corresponding standard user interfaces.

Regarding the Video Browser Showdown, it is necessary to keep focus on
realistic simulations of tasks and revisit methodology for interactive ad-hoc
search evaluations. Especially a suitable form of calibration of the search
intents among judges and participants represents an open challenge. For
known-item search evaluation, we plan to collect a limited prefix of each
computed ranked result set from participating tools during search sessions.
As the searched scene is known, the effectiveness of employed relevance score
models could be compared. In future installments of the Video Browser
Showdown, we also plan to start cooperations with experts from the human-
computer interaction community and incorporate usability evaluations. For
example, we would like to design and incorporate questionnaires for novice
users to address usability issues of the compared interactive video retrieval
tools.
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[41] E. Chávez, K. Figueroa, and G. Navarro. Effective proximity retrieval
by ordering permutations. IEEE Trans. Pattern Anal. Mach. Intell.,
30(9):1647–1658, Sept. 2008.
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[103] J. Lokoč, A. Blažek, and T. Skopal. Signature-based video browser.
In C. Gurrin, F. Hopfgartner, W. Hurst, H. Johansen, H. Lee, and
N. O’Connor, editors, MultiMedia Modeling, volume 8326 of Lecture
Notes in Computer Science, pages 415–418. Springer International Pub-
lishing, 2014.
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distance by metric access methods. In Proceedings of the 14th Interna-
tional Conference on Extending Database Technology, EDBT/ICDT
’11, pages 249–258, New York, NY, USA, 2011. ACM.
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