
BACHELOR THESIS

Ivona Oboňová

Firmware for CzechLight optical
measurement and calibration device

Department of Software Engineering

Supervisor of the bachelor thesis: RNDr. Miroslav Kratochvíl

Study programme: Computer Science

Study branch: Programming and Software Systems

Prague 2020

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of
this work as a school work pursuant to Section 60 subsection 1 of the Copyright
Act.

In Prague, date 6.1.2020 signature of the author

i

ii

I would like to thank my supervisors Miroslav Kratochvíl and Jan Kundrát, for
their expertise, fast replies and their patience. I would also like to thank Jakub
Vondráček, for his support and for proofreading this text.

iii

iv

Title: Firmware for CzechLight optical measurement and calibration device

Author: Ivona Oboňová

Department: Department of Software Engineering

Supervisor: RNDr. Miroslav Kratochvíl, Department of Software Engineering

Abstract: The goal of this thesis is to implement firmware for the Optical Mea-
surement and Calibration Device, which was designed and constructed in CES-
NET. The purpose of the device is to simplify the calibration of various fibre-
optical networking devices, used in CESNET infrastructure. The thesis includes
an overview of the internal structure and communication interfaces within the
device, which is than used for designing and implementing the firmware. The
results are demonstrated on realistic hardware, by running the measurement on
an existing optical component. The produced firmware will serve as a basis for
the development of more advanced devices in CESNET.

Keywords: firmware low-level device drivers fibre optic communications net-
working

v

vi

Contents

Introduction 3

1 OMCD firmware structure and interfaces 7

1.1 Serial communication interface 9
1.1.1 Serial port on Unix systems 10

1.2 Network Configuration Protocol 13
1.2.1 YANG . 13

2 Implementation of the OMCD firmware 17

2.1 Implemented drivers . 17
2.1.1 Property Interface and Serial Communication 19
2.1.2 Driver Interface . 20
2.1.3 Integrable Tunable Laser ITLA 20
2.1.4 Coaxial Fiber Optic Switch SERCALO 26
2.1.5 Optical Spectrum Analyzer AXSUN 27

2.2 YANG interface . 31
2.3 High-level OMCD driver . 31
2.4 Testing and demo versions . 33

3 Results 35

3.1 Self-calibration . 35
3.2 Use case: Measuring ROADM 37

Conclusion 41

List of Figures 47

List of Tables 49

1

2

Introduction

In optical fiber communication, the carrier of information through the optical
system is optical signal. This optical signal is a light beam emitted from a trans-
mitter and modulated with specific intensity. As the signal travels through the
optical system, its energy dissipates along the way. This phenomenon is called
attenuation.

Attenuation determines the loss of strength of signal within optical compo-
nents. Attenuation is mainly caused by phenomena like scattering, absorption
and leakage [Fib]. It is measured by comparing the input and output optical
power. To measure the attenuation of some component, a light source or a trans-
mitter (with a built-in light source) and power meter are needed. To measure at-
tenuation of a component, there are two steps which must be followed. First the
amount of power which is emitted must be determined. This can be known from
the emitter (if the power is configurable), or obtained by connecting the light
source directly to a power meter. Second, the component being tested is con-
nected between the transmitter and the power monitor, and the power is mea-
sured again (see Fig. 1 for illustration). The attenuation is measured as the differ-
ence between these two values [Hec02]. Expectably, the second value should be
lower than the first value and thus the difference should be positive, since atten-
uation is a loss of power. (Otherwise, we would be dealing with amplification.)

Generally, this process is called calibration. Calibration is the comparison of
measured values obtained by a device under some tests. This is typically done
to determine an error or verify the accuracy of the tested device [Aut]. The
calibration process may continue with a corrective adjustment if the difference
is large enough to cause concern. This is done for precision measurements in
optical systems.

Goals Czech Education and Scientific NETwork (CESNET) designed and con-
structed Optical Measurement and Calibration Device (OMCD), with the purpose
of simplifying the calibration of optical components and other optical devices.
The OMCD consists of transmitter, Optical Spectrum Analyzer (OSA) and two

3

optical switches. The transmitter and OSA are required, as the calibration is
done with these devices. The two switches are optional, but were included to
obtain measurements from more than one port and to avoid the need for fre-
quently reconnecting the tested components. The device contains the Beagle-
bone single-board computer1 that run a Linux operating system, to which the
user may connect to control the device.

The aim of this thesis is to create a working firmware for the OMCD. This
firmware should manage the communication between inner devices (transmitter,
OSA and switches) and implement self-configuration based on the YANG data
model [MB10] to achieve high-level configuration and control of the device over
Network communication protocol (NETCONF) [RE+11]. The firmware allows to
use the device for the described self-calibration and measurement processes.

Contents of the thesis The Chapter 1 describes the OMCD firmware struc-
ture and interfaces. It describes serial-port-based communication in Unix sys-
tems that is needed for work with the transmitter and OSA, the NETCONF pro-
tocol, and the usage of the YANG data model for sending data over NETCONF.
Chapter 2 describes the implementation of the firmware, including the precise
description of communication with devices within OMCD, use data and com-
munication packet formats, mapping of this data to the YANG data modeling
language, connection of this functionality within the whole system. Chapter 3
demonstrates the functionality of the resulting firmware. In particular, it shows
how the firmware is used to run device self-calibration and then the calibration
of a Reconfigurable Optical Add-Drop Multiplexer (ROADM) device [Kun+19]
that was provided by CESNET.

1See https://beagleboard.org/bone.

5

https://beagleboard.org/bone

6

Chapter 1

OMCD firmware structure and

interfaces

Asmentioned in the Introduction, the OMCD consists of these devices: transmit-
ter, OSA and switches. It is necessary to have two switches, one for the trans-
mitter and one for the OSA. As shown in Fig. 1.1, the transmitter emits a signal
to Switch 1 and the OSA measure the signal from Switch 2. The tested optical
component or optical device is connected between these switches. Then these
switches must be set to the correct ports to which the tested optical component
or optical device is connected to provide the correct path for signal transmission.

After the implementation of inner functionality of the device, device man-
agement was needed. The NETCONF is used for device management. In Fig. 1.2,
a user connects as a NETCONF Client to edit the configuration data or retrieve
the current configuration. NETCONF Client provides a session with the server
and sends requests from the user to the server. NETCONF Server executes all
transactions, runs the device and reports device statistics and operational data.
YANG modules define the schema of the configuration data, state data and RPC
calls for the NETCONF Server. The Application represents the network device
[Bah+16].

The first goal of the firmware for the OMCD was to provide the serial com-
munication between all inner devices of OMCD as all devices of OMCD provide
the RS-232 communication [Wikc] to make the calibration possible. The sec-
ond goal of the firmware was to provide device management over NETCONF by
implementing the YANG data model.

This chapter is divided into two sections: The first section is about the serial
communication and how to obtain serial communication through serial port in
Unix systems to create the inner functionality of the device. The second sec-
tion is about NETCONF and YANG data modelling language, which are used to
configure and control the device.

7

Listing 1 The termios structure defined in POSIX terminal interface.

struct termios {

tcflag_t c_iflag; /* input specific flags */

tcflag_t c_oflag; /* output specific flags */

tcflag_t c_cflag; /* control flags */

tcflag_t c_lflag; /* local flags */

cc_t c_cc[NCCS]; /* special characters */

};

Configuring the serial port

Computers and devices that provide asynchronous serial ports contain an Uni-
versal Asynchronous Transmitter-Receiver (UART). UART is a hardware device
that provides low-level details of communication (e.g. the transmission speeds,
data format) and conversion between USB, RS-232 or even parallel interface
[NP16].

To start the communication with a device through the serial port, setting
these low-level details on the side of the computer is necessary. In Unix systems,
this can be done by POSIX terminal interface (dubbed termios), which is the Unix
API for serial input and output [Ter]. The serial control structure and POSIX
control functions are defined in termios.h header file from C POSIX library
[Wika].

The structure termios in Listing 1, is defined in the termios.h and contains
mostly flags. Importantly, the c_cflag describes basic communication parame-
ters: baud rate, the length of data packet, parity bit, stop bit, etc. [Str] Some con-
stants for the c_cflag are shown in Table 1.2. The functions which get and set
the attributes for serial communication are tcgetattr(3) and tcsetattr(3).
The tcgetattr(3) function fills the pre-allocated termios structure with cur-
rent serial port configuration. After the new configuration is initialized by setting
flags in termios structure, the tcsetattr(3) sets the new configuration [Tcg].

Accessing the serial port

As said earlier, the serial port is represented by a file in the /dev directory. To
provide communication with the device through the serial port, we use the stan-
dard Unix system calls on this file:

· open(2) [Ope], for opening the communication with serial device

· close(2) [Clo] for terminating the communication

11

Constant Description

Bit mask for baud rate B9600 9600 baud

B57600 57 600 baud

B115200 115 200 baud

Bit mask for data bits CS7 7 data bits

CS8 8 data bits

Other PARENB Enable parity bit

PARODD Use odd parity instead of even

CSTOPB 2 stop bits (default 1)

CREAD Enable receiver

CLOCAL Local line

Table 1.2: Defined constants for the c_cflag (Table by [Str].)

· write(2) and read(2) [IBMa; IBMb] to write to and read from the serial
device

· fcntl(2) for manipulating several relevant settings of the file descriptor.

The serial port is typically opened with following flags:

· O_RDWR, to get bi-directional communication.

· O_NOCTTY, to not let the serial port become the controlling terminal of the
process. If O_NOCTTY is not used, any input (e.g. mouse, keyboard abort
signal) might affect (abort) the process.

· O_NDELAY, to set the file descriptor to no-delay mode. If O_NDELAY is not
used, the process might be put to sleep e.g. because of a DCD signal1

By default, the write(2) function may block if the serial port is not ready
to accept data, and the read(2) function may block if there are no available
characters. We may alter this behavior by setting two flags using the function
fcntl(2):

· O_NDELAY, which causes the write(2) and read(2) return 0 in case of
blocking.

· O_NONBLOCK, which causes write(2) and read(2) to not block the pro-
cess and write or read what is possible, or sets the error code to EAGAIN
and return -1.

1The DCD signal is used to indicate that a computer or device on the other end of a serial
cable is connected to another remote.

12

The YANG data models are structured into modules and submodules. The
data of modules can be imported into other modules. YANG models are struc-
tured as a tree. Each node in the tree has a name and has a value or a set of
child nodes. YANG represents the operations and data in XML [Wikd] format
and relies on XML Path Language (XPath) [Wike] notation to specify inter-node
references and dependencies.

The following text introduces important constructs and statements used in
YANG that are used to build the YANG model for our OMCD.

module

Statement module represents the root of a tree and defines the name of the mod-
ule and groups the operations and data. (See Line 1 in Listing 2.)

type and typedef

YANG has a set of built-in types (statement type) like boolean, string, int8, uint8,
int16, uint16 etc. These types are called łbased typesž. The statement typedef
defines new types. These types are called łderived typesž. To define a new type,
the identifier as an argument followed by a block of substatements is required.

The type substatement in typedef is mandatory. The type defines the base
type from which this type is derived. The type has optional substatements,
for example range, which defines the range of values. In some cases, some
substatements are required, for example fraction-digits is mandatory if the
decimal64 type is present. The fraction-digits rounds the type to a defined
number of decimal places.

Other substatements for typedef are optional, for example units. The
units substatement takes an argument, which is the definition of the units
associated with the type. (See Line 4 in Listing 2.)

leaf

The leaf defines a leaf node in the tree schema. To define a leaf node, the iden-
tifier as an argument followed by a block of substatements is required. A leaf

instance contains data. It has exactly one value of a particular type and has no
child nodes.

The type substatement is mandatory and takes a name of a based or derived
type as an argument. Leaf can have optional substatements like mandatory.
This substatement takes argument true or false. If mandatory substatement
is not present, the default value is false. If mandatory is set to true, the leaf must
exist. (See Line 14 in Listing 2.)

14

container

The container defines the inner data in the tree schema. To define a container,
the identifier as an argument followed by a block of substatements is required.
A container does not have any value, it contains child nodes which have data
values.

There are two types of containers. The first type of container does not have
any meaning on its own. It only exists to contain the child nodes, to organize a
structure in the tree. This is the default type. The second type of container has
some significance. The existence of this container in the data tree is important for
configuration of data. These containers are explicitly created and deleted. This
second type of container is called łpresence containerž and it is established by
substatement presence in the container. (See Line 11 in Listing 2.)

rpc

The rpc statement defines the RPC operation for NETCONF. To define rpc, the
identifier as an argument followed by a block of substatements is required. This
argument is the name of the RPC and is used as the name of the element directly
under the <rpc> element.

The main substatements of rpc are input and output, these substatements
are optional. Logically, the input defines input parameters for the RPC operation
and output defines output parameters for the RPC operation. These substate-
mens do not take any arguments and define nodes under the nodes of RPC. (See
Line 24 in Listing 2.)

15

Listing 2 Example of YANG data model.

1 module access -validator {

2 namespace "http :// bachelorthesis.example.com/access ";

3

4 typedef age {

5 type uint32 {

6 range "0..150";

7 }

8 units "years";

9 }

10

11 container register -person {

12 presence "Register person with name and age";

13

14 leaf person -name {

15 type string;

16 mandatory true;

17 }

18 leaf person -age {

19 type age;

20 mandatory true;

21 }

22 }

23

24 rpc access {

25 input {

26 leaf your -age {

27 type age;

28 mandatory true;

29 }

30 }

31 output {

32 leaf allowed {

33 type boolean;

34 mandatory true;

35 }

36 }

37 }

38 }

16

Chapter 2

Implementation of the OMCD

firmware

This chapter describes the implementation of OMCD firmware. The main func-
tionality provided is the communication between its components, which are:
transmitter, switches and OSA as already mentioned in the introduction. For ev-
ery component a driver1 was written. Then a driver for communication between
all devices was created. After the inner functionality of OMCD was written, the
control interface of the device was implemented by creating a YANG data model
interface to make it available for higher-level configuration over NETCONF pro-
tocol.

The implementation of drivers was based on an abstract interface provided by
the internal software of CESNET. The code is structured in directories as shown
in Table 2.1.

2.1 Implemented drivers

In this section, we will discuss the implementation of drivers which can be found
in src/drivers/ directory for devices which will comprise the OMCD. We cre-
ated three drivers for three devices:

· Transmitter: Integrable Tunable Laser

· Switch: Coaxial Fiber Optic 1xN Switch

· Power monitor: Optical Spectrum Analyzer

1Software driver which provides a programming interface to control a specific lower level
interface. [Dri]

17

Component Driver file

ITLA driver src/drivers/itla/Itla.h

(see Section 2.1.3) src/drivers/itla/Itla.cpp

src/drivers/itla/Packet.h

src/drivers/itla/Packet.cpp

src/drivers/itla/Property.h

src/drivers/itla/Property.cpp

SERCALO driver src/drivers/sercalo/MemsSwitch.h

(Section 2.1.4) src/drivers/sercalo/MemsSwitch.cpp

src/drivers/sercalo/Property.h

src/drivers/sercalo/Property.cpp

AXSUN driver src/drivers/axsun/Ocm.h

(Section 2.1.5) src/drivers/axsun/Ocm.cpp

src/drivers/axsun/Packet.h

src/drivers/axsun/Packet.cpp

src/drivers/axsun/Property.h

src/drivers/axsun/Property.cpp

YANG model (Section 2.2) yang/czechlight-calibration-device.yang

High-level interface src/appliance/CalibrationBox.h

(Section 2.3) src/appliance/CalibrationBox.cpp

Unit tests tests/itla-properties.cpp

(Section 2.4) tests/sercalo-mems-switch.h

tests/axsun-packet-parsing.cpp

tests/axsun-ocm.cpp

tests/calibration-box.cpp

Demonstrations src/demo/itla-demo.cpp

(Section 2.4) src/demo/sercalo-demo.cpp

src/demo/axsun-demo.cpp

Table 2.1: Directory layout of the implementation source code.

18

Listing 3 The abstract interface for generic properties where read method re-
turns just a single PropertyValue.

struct AbstractProperty {

virtual ~AbstractProperty () {}

virtual PropertyValue read(io:: StreamPtr& conn) = 0;

virtual void write(io:: StreamPtr& conn ,

const PropertyValue& value) = 0;

};

As mentioned in the introduction, two switches were used. However, the ex-
act same model was used for both of these switches, so the implemented driver
works for both of them without any modifications.

2.1.1 Property Interface and Serial Communication

The devices have many properties to offer, eg. the tunable laser (transmitter) can
transmit signal with defined frequency, power etc. To reach these properties and
change the setting, like setting the frequency and power, we need to put these
commands into logical units.

The main meaning of abstract classes in Listings 3 and 4 is that they provide
an interface for serial transactions. The implemented properties inherit from one
of these abstract classes and implement their own communication. Each property
is forced to communicate with the device with its own configuration by its own
methods. The advantage of this approach is that different types of properties
unify the interface and references can be stored into one collection.

Methods read and write in Listing 3 get an input parameter io::StreamPtr,
which is an object that provides the interface of serial communication. Then the
class io::Tty implements the serial communication. These classes are provided
by internal software of CESNET. The write method has another input parameter
PropertyValue, which is the value that will be written to the device through the
serial port.

In Listing 4 the read transaction is different. From some devices, a lot of data
is obtained during a single read transaction and our goal is to keep all these data
in a clear manner. That is the purpose of the PropertyTree input parameter: it
holds all obtained data. For clarity, a prefix string is used, which is inserted at
the beginning of string names of the data kept in the container.

19

Listing 4 The abstract interface for generic properties where readmodifies Prop-
ertyTree to return more data.

struct AbstractProperty {

virtual ~AbstractProperty () {}

virtual void read(io:: StreamPtr& conn ,

const std:: string& prefix ,

PropertyTree& tree) = 0;

virtual void write(io:: StreamPtr& conn ,

const PropertyValue& value) = 0;

};

2.1.2 Driver Interface

Every driver class inherits from the class Driver, which is the driver interface
provided by CESNET. Every driver is initialized with io::StreamPtr, which is
as we said the serial communication interface and io::Tty is the key of serial
communication. The instance of io::Tty is an input parameter in constructors
of drivers. Every driver initializes from the constructor properties which the
device offers, checks the communication by reading noop register or id specifics
from the device and provides this specifics to a logger cla::Log. We used spdlog
[Mel] which is a logging framework. The mandatory methods to implement are:

· std::vector<std::string> propertyNames(); to return the list
of properties which device offers. This properties are collected into
std::map<std::string, std::unique_ptr<AbstractProperty> >.

· std::vector<std::string> propertyNames(); to provide the read
transaction on property.

· std::vector<std::string> propertyNames(); to provide the write
transaction on property.

2.1.3 Integrable Tunable Laser ITLA

The first implemented device was a transmitter. The specific model (Pure Pho-
tonics ITLA PPCL200) the Integrable Tunable Laser made by the Pure Photonics
company was used. The Pure Photonics ITLA is a Continuous Wave Tunable
Laser with integrated electronics [Phoa].

ITLA has many registers that provide many properties. For example, setting
optical power, getting factory information about the device, setting frequency

20

with a lot of parameters like: laser channel, grid spacing, first channel frequency
and fine tune frequency. The product is compliant to the OIF (Optical Internet-
working Forum) MSA (Multi-Source Agreement). OIF-ITLA-MSA-1.2 is publicly
available [Phob]. We will describe the communication interface with the device,
which communication protocol is used, how bytes are supposed to be packed
into a packet and how we implemented the commands to adjust properties of
the device.

For brevity, when talking about a packet which is transmitted from the host
to the module we will use łRequest packetž instead and when talking about a
packet which is transmitted from the module to the host we will use łResponse
packetž.

Communication protocol

The communication with the product is through a standard RS-232 interface. To
facilitate communication from the host to the module, the Request packet must
be configured as in Table 2.2. This packet consists of four bytes. The third and
fourth bytes are reserved for data, which the host is trying to send to the module.
The second byte carries the number of the register, from which the host wants
to obtain information, or to which the host wants to set data. The first byte is
more complicated and carries more information. The first byte consists of the
following bits:

· Bit 24: This bit indicates, whether the request is a read or write transmis-
sion.

· Bits 25ś26: These bits are not used and should be set to 0.

· Bit 27: LstRsp bit for communication errors. Setting this bit to 1 makes the
module ignore the rest of the packet. Then the last response is returned.

· Bits 28ś31: Checksum.

After successful transmission from the host to the module, a response packet
from the module should be received by the host. The response packet from the
module should look as shown in Table 2.3. This packet also consists of four
bytes. The third and fourth bytes are reserved for data. The second byte carries
the number of the register from which the host wants to obtain information or
to which the host wants to set data. Again, the first byte is more complicated
and carries more information. The first byte consists of the following bits:

· Bits 24ś25: Status error. The meanings of status errors can be found in
Table 2.4.

21

31 30 29 28 27 26 25 24

Read/Write 0 LstRsp Checksum

23 22 21 20 19 18 17 16

Register number

15 14 13 12 11 10 9 8

Data 15:8

7 6 5 4 3 2 1 0

Data 7:0

Table 2.2: Structure of the request packet for ITLA.

31 30 29 28 27 26 25 24

Status error 1 Consistency Checksum

23 22 21 20 19 18 17 16

Register number

15 14 13 12 11 10 9 8

Data 15:8

7 6 5 4 3 2 1 0

Data 7:0

Table 2.3: Structure of the response packet from ITLA.

· Bit 26: This bit is not used and should be set to 1.

· Bit 27: This bit indicates whether the received packet was damaged, i.e. it
is set to 1 if the Request packet (from host) had incorrect checksum.

· Bits 28ś31: Checksum.

In case of a read transaction, the register number is sent back from the module to
the host as an acknowledgement. In case of a write transaction, both the register
number and data are sent.

The checksum BIP-4 (Bits interleaved parity four bits wide) is calculated by
using XOR on all bytes and then using XOR on the high and low half of the
resulting byte. Listing 5 shows the algorithm.

Communication packet

It is convenient to create an interface for creating and parsing packets appropri-
ately. That is why we created structures RequestPacket and ResponsePacket.

RequestPacket is a structure, whose constructor takes number of register,
data and ReadWriteRequest value as input parameters. ReadWriteRequest is

22

Register Flag name Status

0x00 OK Normal return status. Indicates that every-

thing worked as expected.

0x01 XE Execution error. Indicates an execution error of

the last command.

0x02 AEA Automatic extended addresing. Indicates that

the response is longer than the regular length of

data in the packet. If the response is long enough

to trigger the AEA flag, then the 2nd and 3rd bytes

contain the number, which indicates how many

times the AEA register has to be read. If the AEA

register is readmore times than indicated in the 2nd

and 3rd bytes, the next response throws an execu-

tion error.

0x03 CP Command not complete, pending. Indicates

that the command will take longer than expected.

The host can read from the nop register (0x00) and

see from the response packet, if the command is still

being executed. When it’s done, the OK flag is re-

turned.

Table 2.4: ITLA: Packet status table.

an enum with only two possible values: 0 and 1. These values indicate whether
the transaction is a read (0) or write (1) request. The RequestPacket constructor
creates a packet according to its configuration, which is then stored in string
rawPacket.

ResponsePacket is a structure whose constructor takes string rawPacket,
which is the whole packet received from the module. The ResponsePacket con-
structor parses the packet, checks the checksum, checks a few bits and if every-
thing is correct, it then stores packet status and data into its variables.

Implemented Device Properties

ITLA provides many properties and we didn’t need most of them, so we imple-
mented only the vital ones. Many properties have similar characteristics and
that is why we decided to group them into three main classes. Each class in-
herits from the abstract class and each class implements its own read and write
communication.

· AEAProperty is a class that provides mainly the ability to read long strings
from AEA register. As we have shown, transferred data are only 16-bits

23

Listing 5 Calculating the checksum.

uint8_t calcBIP4(uint8_t firstByte , uint8_t secondByte ,

uint8_t thirdByte , uint8_t fourthByte)

{

uint8_t bip8 = (firstByte & 0x0F)

^ secondByte

^ thirdByte

^ fourthByte;

uint8_t bip4 = ((bip8 & 0xF0) >> 4)

^ (bip8 & 0x0F);

return bip4;

}

Listing 6 The Request packet structure.

struct RequestPacket {

RequestPacket(const uint8_t reg ,

const int16_t data ,

const ReadWriteRequest rw);

std:: string rawPacket;

};

long, so if we want to read a large amount of data from the device, we
need to read it through the AEA register.

· OneRegisterProperty is a class that provides basic communication with
one register.

· TwoRegisterProperty is a class that provides basic communication with
two registers.

Every property object created through these main classes contains its own one
or two registers, and every property object provides its own communication by
the communication protocol.

However, our focus was to implement basic operations regarding frequency
and optical power and also operations for enabling and disabling the optical out-
put and soft and hard resetting the device. We created another three property
classes:

· FrequencyProperty for setting or getting the frequency.

24

Listing 7 The Response packet structure.

struct ResponsePacket {

ResponsePacket(const std:: string& rawPacket);

uint8_t status;

uint16_t data;

};

· PowerProperty for setting or getting the optical power.

· OnOffProperty for enabling/disabling the optical output or resetting the
device.

These properties were not necessary, it is possible to communicate with the de-
vice just through the first three classes, but we wanted to operate the frequency
and optical power while simultaneously bound-checking the hardware capabili-
ties.

Through FrequencyProperty we can obtain and set the frequency by ad-
justing parameters in the following equation from the Integrable Tunable Laser
Assembly Multi Source Agreement [For15]:

Freq =(LaserChannel− 1) ∗ GridSpacing

+ FirstChannelFrequency

+ FineTune.

To get the frequency, we have read the fine tune frequency and laser channel
and provide the equation with grid spacing and first channel frequency. When
setting the frequency, we have to check that the frequency we want to set is
not above or below the hardware limit. Then we provide the calculation with
laser channel and fine tune frequency which correspond to the new frequency
together with grid spacing and first channel frequency and set the laser channel
and fine tune frequency to the right registers.

PowerProperty is used to set or read the optical power. The process of set-
ting the optical power includes checking, whether the new optical power is not
above or below the hardware limit before the write transaction is sent. Read
transactions behave the same as during regular communication.

OnOffProperty implements communication with just one register to enable
enabling/disabling optical output and soft/hard resetting the device. This register
offers all these commands by setting the right bit into the right position of this
8-bit register.

25

2.1.4 Coaxial Fiber Optic Switch SERCALO

Coaxial fiber optic switch made by the Sercalo company is a MEMS switch where
mirror redirects light from a common fiber to one of N ports [Ltd17]. Sercalo’s
switch provides properties, like id of the product, resetting the device, reading
the temperature of the device etc. But the most important property is the port
property.

Communication protocol

The switch can communicate over UART or I2C. We chose the communication
over UART, thus only the UART packets will be described.

If the host wants to send a packet to the module, it must have the following
configuration:

CMD <parameter1 > <...> [optional_parameter1] [...] EOL

where

· CMD is the command, it is a sequence of chars

· <> are mandantory parametes

· [] are optional parameters

· EOL is end of line. The device recognizes these forms of end of line: CR
2, LF 3, or the combination CR+LF. Device always replies with a message
with the CR+LF end.

After successful transmission from the host to the module, a reply from the mod-
ule should be received by the host. The reply is a command-dependent acknowl-
edgment or an error message. The error message starts with a sequence of chars
ERR, followed by a space and additional data.

In this case the communication is pretty simple, that is why we did not need
to create any packet structure. We created the method:

std:: string talkToHw(io:: StreamPtr& conn ,

const std:: string& command ,

const std:: string& request);

which creates the proper packet, sends it to the device and checks the response
packet.

2Carriage return: \r
3Line feed: \n,

26

Implemented Device Properties

In this implementation, we chose to implement every property in a seperate class.
The reason is that every property of the device is unique, unlike with ITLA,
where some properties had the same communication structure with the same
data types. We created the following properties:

· IdProperty, which gives us information about productModel, serial num-
ber or firmware version. This property works with the command ID.

· ResetProperty, which resets the device. This property works with the
command RST.

· PortProperty, which sets or returns the optical switch network. It is also
possible to disable the common port. Then the common port is not routed
to any port and the optical path is open. This property works with com-
mand POS and SET.

· TemperatureProperty, which gets the temperature of the microcon-
troller. This property works with the command TMP.

· OpticalBandProperty, which sets or returns the default optical band or
the optical band in use. The default optical band is the optical band that
is automatically set after reset or power-on. This property works with the
command DBAND for the default optical band and BAND for the optical
band in use.

2.1.5 Optical Spectrum Analyzer AXSUN

Optical Spectrum Analyzer made by the AXSUN company is a device which per-
forms an optical power and frequency measurement and calculates the optical
signal [Tec13].

Communication protocol

The communication with the product is through a standard RS-232 interface. To
facilitate communication from the host to the module, the Request packet must
be configured as in Table 2.5. After successful transmission from the host to the
module, a response packet from the module should be received by the host. The
response packet from the module should look like in Table 2.6. The length of the
packet can vary because of the data. Both response and request packets consist
of three main parts: Header, Payload and Footer. The Header also consists of
several parts:

27

31:24 23:16 15:8 7:0

Header

Message Identifier
Message Length
Unused
Unused

Data
Data
Data Checksum

Checksum
Unused
Message Checksum

Table 2.5: Structure of the request packet for AXSUN.

31:24 23:16 15:8 7:0

Header

Message Identifier
Message Length
Device Status
Device Temperature

Data
Data
Data Checksum

Checksum
Error Code
Message Checksum

Table 2.6: Structure of the request packet from AXSUN.

· Message Identifier

· Message Length

· Unused in request packet, Device Status in response packet

· Unused in request packet, Device Temperature in response packet

Payload are data which are sent. If the host wants to read from the device and
does not want to send any data, it must send one unsigned 32-bit integer with
value 0. The Footer also consists of several parts:

· Data checksum

· Unused in request packet, Error Code in response packet

· Message checksum

In this case, there are two types of checksum. The Data checksum is calculated
from the payload of the packet. The Message checksum is calculated from the

28

Listing 8 The calculated checksum for AXSUN.

uint32_t checksum(const std:: string& data)

{

uint32_t sum = 0;

auto it = data.cbegin ();

while (it != data.cend ())

sum +=

cla::utils:: parseBigEndianBuffer <uint8_t >(it);

return ~sum;

}

Listing 9 The Request packet structure for AXSUN.

struct RequestPacket {

RequestPacket(uint32_t messageIdentifier ,

const std::vector <uint32_t >& payload);

std:: string rawPacket;

};

whole packet excluding the Message checksum. Checksum is calculated by cu-
mulative sum of all bytes and after the last byte is summed, the data should be
converted into one’s complement. This algorithm can be seen in Listing 8.

Communication packet

It is convenient to create an interface for creating and parsing packets appropri-
ately. That is why we created structures RequestPacket and ResponsePacket.

RequestPacket is a structure, whose constructor takes the input message-
Identifier as an unsigned 32-bit integer and payload as a reference to a vector
of unsigned 32-bit values. The data are sent in vector form, so parsing the data
into a vector is required. The RequestPacket constructor creates a packet ac-
cording to its configuration, which is then stored in string rawPacket.

To store the data in a clear way, the response packet needs a more demand-
ing structure. We created structure Header, which stores four variables, which
are sent or received in the header part of the packet. Also we created structure
Footer, which stores three variables, which are sent or received in the footer
part of the packet. Finally, structure ResponsePacket was created. This struc-
ture stores the Header and Footer structures. Data are stored in the payload

29

Listing 10 The Response packet structure for AXSUN.

struct Header {

uint32_t messageIndetifier;

uint32_t messageLength;

uint32_t deviceStatus;

uint32_t deviceTemperature;

};

struct Footer {

uint32_t dataChecksum;

uint32_t errorCode;

uint32_t messageChecksum;

};

struct ResponsePacket {

ResponsePacket(const std:: string& rawPacket);

Header header;

std:: string payload;

Footer footer;

};

string. The constructor of ResponsePacket parses the packet into variables ac-
cording to the configuration above.

Implemented Device Properties

We implemented three properties:

· SampleScan, which provides information about themeasured signal. With
a specific subcommand, the device makes a specific optical measurement
and reports the data back.

· DiagnosticData, which provides information about the device, like
Firmware version, PC Board ID, Optical Module ID and Kernel stored
in the flash memory. Also provides information like raw cooler voltage,
current-on-board temperature, optical module bench temperature etc.

· WarmReset, which executes a warm reset on the device. After warm reset,
the device shall transmit a diagnostic packet, but that is not necessary for
us.

30

Property SampleScan provides many subcommands, but we implemented only
three of them:

· Subcommand Peaks will request the device to make an optical measure-
ment and report back the Peak channels only.

· Subcommand PeaksPowerFrequency will request the device to make an
optical measurement and report back the peaks of channels and all cali-
brated powers followed by all calibrated frequencies. The device will re-
port back both the number of peaks and number of calibrated power.

· Subcommand HighResolutionPeak will request the device to make an
optical measurement and report back the peaks of channels and provides
more information about the frequency.

2.2 YANG interface

Firstly, defining the data boundaries for NETCONFwas necessary. The following
boundaries were the best in terms of range and hardware capabilities. We cre-
ated three derived types: port-number, frequency-mhz and power-dBm. The
port-number is derived from the base type uint8 and the range of values is 1ś
36. The frequency-mhz is derived from the base type uint32 and the range of
values is 191500000ś196250000 MHz. The power-dBm is derived from the base
type decimal64 and the range of values is -100.00..10.00 dBm.

We wanted the final OMCD to perform two operations: transmit signal to a
specific port and measure signal from a specific port. For the transmission, we
created a YANG container signal-source. This container is a presence con-
tainer, thatmeans that if the container exists, the device is enabled. The container
has three leaves, one for each type created: one for port, one for frequency and
one for power to transmit signal with specified frequency and power to a speci-
fied port. These leaves are mandatory, so the values must be set.

For the measurement we used statement rpc measure. The measure consists
of input and output substatements. Both input and output have leaves inside.
The input leaf contains a port value. To measure, we need to specify from which
port we want to measure. The output leaf contains the power value. The output
of the measurement process is only the power of the signal.

2.3 High-level OMCD driver

After we implemented YANG data model, we needed to provide API for con-
figuration operation signal-source and rpc operation measure to manage the

31

Listing 11 The abstract interface for generic properties where read method re-
turns just a single PropertyValue.

void Box:: writeMultiProperties(const PropertyTree& values);

PropertyTree Box::rpc(const std:: string& name ,

const PropertyTree& input);

ITLA, two SERCALO switches and AXSUN. The interface consists of two meth-
ods show in 11.

Box::writeMultiProperties in Listing 11 is called when the container
signal-source is created to configure the OMCD to transmit the signal with
specific frequency and power to a specific port. The method gets an input param-
eter PropertyTree& input, which is a container that collects data for device
configuration. It parses the element expressions as an XPath in a for loop (the
YANG data modelling language expresses tree schema with XPath notation). It
checks the name of the container and the names of the leaves, and if everything
is correct, it saves the data to its private variables. If the values of data are of
type DeletedProperty, they represent that the container was deleted and we
are disabling the device; the method consequently disables the ITLA and switch
of ITLA. Otherwise, we are configuring the device with the data, i.e. setting the
ITLA to emit the signal, and setting the ITLA switch to the port, to which the sig-
nal will be transmitted. The emitted signal is automatically adjusted according
to the calibration data stored in the device.

Box::rpc in Listing 11 is called when the RPC operation measure is called to
measure from a specific port. The method gets an input parameter std::string
name which is the full XPath to RPC operation defined in YANG data model, and
PropertyTree& input that contains the input data for the device. It expects
that PropertyTree& input contains only one entry: "port", number. The
method checks this and then sets the switch of AXSUN to a given port (if the
port number is correct) and sets AXSUN to measure the signal from that port.
If AXSUN does not return any peak, that means it measured no signal and the
method returns the minimal defined power, which is -100dBm. If AXSUN re-
turned one peak, then the method returns this peak plus the calibration data, to
obtain the original optical power. If AXSUN measures more than one peak, it
throws an error, as that is not supposed to happen.

All implemented functionality is finally registered in Sysrepo [Vas], which
manages the communication with the user and forwarding of the NETCONF
request.

32

2.4 Testing and demo versions

During the implementation of drivers, we ensured the correctness by writing
unit tests for ITLA, SERCALO, AXSUN and CalibrationBox. The unit tests use
MOCK objects mainly for simulating the serial port communication. We used
Doctest [doctestand] as a C++ unit test framework and trompeloeil [Fah] for
MOCK objects in C++. We created demo versions for devices and used them to
prove that the driver works as expected on the hardware.

33

34

Chapter 3

Results

After we implemented the firmware, we have conducted two simple experiments
to verify the functionality. First, we have cross-compiled the software for ARM
platform and loaded it into the Beaglebone board in the OMCD. In the first ex-
periment, we used OMCD for self-calibration, i.e. for measurement of the actual
optical output power of the ITLA and subsequent measurement of the attenua-
tion of the rest of the internal components. In the second experiment we used
the self-calibrated OMCD to measure the actual production hardware, in this
case the ROADM multiplexer used and provided by CESNET.

In this chapter we use the results of the experiments as a demonstration of
the functionality of the implemented firmware.

3.1 Self-calibration

The self-calibration is conducted as follows: Before we connect the fibres into
TX1 and RX2 ports, the fibres must be clean. If grime is present, the fibres must
be cleaned, because this also may also cause losses in the transmitted signal.
After cleaning the fibres, we need to assure that both devices (OMCD, power
meter) are set to equal wavelength range. The typical optical band is C-band,
which is around 1530 to 1565 nm. Then we can connect them and measure the
attenuation as described in the introduction (see Fig. 1). We configure the emitted
signal and turn on the optical output of ITLA. The configuration is done by using
the netconf-cli tool [Kub] in a similar way as in Listing 12. Then we can measure
the attenuation and calibrate the system. We firstmeasure the ports on the switch
connected to ITLA by a power meter as shown in Fig. 3.2. The results are written
into /cfg/calibration/switch-itla.txt file. Second, we measure the ports

1Transmitted
2Received

35

Figure 3.1: OMCD device with the final firmware installed. In the top left part the
AXSUN device can be seen, ITLA is located in the middle under the GIGABYTE
heatsink, and to the right of ITLA there is the Beaglebone single-board computer.
The two SERCALO switches are located right of Beaglebone.

Listing 12 The communication with firmware using the NETCONF Client con-
sole.

netconf -cli

Welcome to netconf -cli

/> set czechlight -calibration -device:

czechlight -calibration -device:measure

czechlight -calibration -device:signal -source/

frequency port power

/> set czechlight -calibration -device:signal -source/frequency 193000000

/> set czechlight -calibration -device:signal -source/power -10

/> set czechlight -calibration -device:signal -source/port 1

/> commit

36

on the switch connected to AXSUN using AXSUN. The results are written into
/cfg/calibration/switch-axsun.txt file. These result (shown in Table 3.1)
are used to improve the precision of the calibration process.

3.2 Use case: Measuring ROADM

After the OMCD wa calibrated, we were able to measure other devices to test
their attenuation. For the experiment we used the Reconfigurable Optical Add-
Drop Multiplexer (ROADM) [Kun+19] that is routinaly used within CESNET.We
connected the 6 ports of ROADM to OMCD; the connection schema is shown in
Table 3.2.

The final measurement setup is shown in Fig. 3.3. 3 We transmitted the signal
at -10dBm optical power. As we can see frommeasuring the add path in Table 3.3,
we obtained amplification on port E1, attenuation on port E3 and E2 and E4
were measured dark. That means we not only found out that the system has
attenuation and amplification, but also has ports, which do not work correctly.
This might have been caused by broken connectors. From the measurements of
the drop path in Table 3.4 we can see significant amplification.

3In ROADM, the ładdž inserts one or more new wavelength channels to an existing WDM
(Wavelength-Division Multiplexing) signal. The łdropž extracts one or more channels, passing
these signals to another network path. We measured both add and drop paths.

37

Figure 3.2: OMCD device during the process of self-calibration. The power meter
on the right is used as a reference for the self-calibration of ITLA.

Port Switch on ITLA Switch on AXSUN

1 0.45 0.30

2 0.87 0.40

3 0.75 0.80

4 0.36 0.40

5 0.60 0.40

6 1.00 0.60

Table 3.1: Results of measuring the attenuation on ports of ITLA and AXSUN.
(Only the first 6 ports were measured.)

38

Figure 3.3: Measuring ROADM with OMCD. The device stacked on top is the
ROADM, OMCD is below.

ROADM port Calibration box port

E1 1

E2 2

E3 3

E4 4

1 5

2 6

Table 3.2: Connected ports of ROADM to OMCD.

39

Measured port

Measured

signal added

from port 1

Measured

signal added

from port 2

E1 (1) -8.90 -8.20

E2 (2) -100.00 -100.00

E3 (3) -14.20 -13.40

E4 (4) -100.00 -100.00

Table 3.3: Measurements of the ports E1śE4 on ROADM (on OMCD ports 1ś
4) obtained by sending the signal to port 1 (in OMCD port 5) and to port 2 (in
OMCD port 6).

Measured dropped port

Measured

signal sent

from port E1

Measured

signal sent

from port E2

1 -1.5 -1.6

2 -2.3 -2.1

Table 3.4: Measurements of the ports 1 and 2 on ROADM (on OMCD ports 5
and 6) obtained by sending the signal to port E1 (in OMCD 1) and to port E1 (in
OMCD port 2).

40

Conclusion

In this thesis, we have described the implementation and testing of the OMCD
firmware.

In Chapter 1, we described the asynchronous serial communication required
for the communication with OMCD device components, and the UART serial
ports on Unix systems. We detailed the NETCONF protocol as used as a main
communication format with the OMCD firmware, and the YANG data modeling
language, which is used to generically describe devices and their properties.

In Chapter 2, we have described the implementation of the firmware. The im-
plementation included drivers for transmitter (ITLA), switches (SERCALOs) and
Optical Spectrum Analyzer (AXSUN). Further, the chapter focuses on the precise
YANG data model interface for the device, higher-level configuration interface
over NETCONF, integration of the individual components into a firmware pack-
age, demonstration versions, and testing.

In Chapter 3 we demonstrated the practical use of the device: using the newly
constructed firmware, we measured the attenuation of the inner device systems,
and used the calibrated device to measure the attenuation of a ROADM multi-
plexer.

As the main result of this thesis, CESNET has obtained a customized in-house
solution for measuring the optical network components, which serves as a vi-
able alternative of commercial products. It is expected than the device and the
firmware will become a base for creating more complicated and specialized mea-
surement devices.

41

42

Bibliography

[Aut] International Society of Automation. Calibration principles. url:
https : / / www . isa . org / pdfs / calibration - principles -

chapter1/.

[Axe99] Jan Louise Axelson. Serial Port Complete: Programming and Circuits

for RS-232 and RS-485 Links and Networks with Disk. Lakeview Re-
search, 1999. isbn: 0965081923.

[Bah+16] Arshdeep Bahga et al. łSoftware Defined Things in Manufacturing
Networksž. In: Journal of Software Engineering and Applications 09
(Jan. 2016), pp. 425ś438. doi: 10.4236/jsea.2016.99028.

[Clo] close(2). Linux Manual Pages. url: https://linux.die.net/man/
2/close.

[Dri] Driver (software). url: https : / / en . wikipedia . org / wiki /
Driver_(software).

[Fah] Björn Fahller. trompeloeil. url: https://github.com/rollbear/
trompeloeil.

[Fib] łOptical Fibersž. In: Fiber-Optic Communication Systems. John Wiley
and Sons, Ltd, 2011. Chap. 2, pp. 24ś78. isbn: 9780470918524.

[For15] Optical Internetworking Forum. Integrable Tunable Laser Assembly

Multi Source Agreement. 2015.

[Hec02] Jeff. Hecht. Understanding fiber optics. Upper Saddle River, NJ:
Prentice Hall, 2002. isbn: 0130278289 9780130278289 013122803X
9780131228030.

[IBMa] IBM. read(2). IBM Manual Pages. url: https://www.ibm.com/
support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.

v2r1.bpxbd00/rtrea.htm#rtrea.

[IBMb] IBM. write(2). IBM Manual Pages. url: https://www.ibm.com/
support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.

v2r1.bpxbd00/rtwri.htm.

43

https://www.isa.org/pdfs/calibration-principles-chapter1/
https://www.isa.org/pdfs/calibration-principles-chapter1/
https://doi.org/10.4236/jsea.2016.99028
https://linux.die.net/man/2/close
https://linux.die.net/man/2/close
https://en.wikipedia.org/wiki/Driver_(software)
https://en.wikipedia.org/wiki/Driver_(software)
https://github.com/rollbear/trompeloeil
https://github.com/rollbear/trompeloeil
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.bpxbd00/rtrea.htm#rtrea
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.bpxbd00/rtrea.htm#rtrea
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.bpxbd00/rtrea.htm#rtrea
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.bpxbd00/rtwri.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.bpxbd00/rtwri.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.bpxbd00/rtwri.htm

[Kub] Václav Kubernát. łTool for configuration and monitoringž. url:
https://dspace.cvut.cz/bitstream/handle/10467/83195/

F8 - BP - 2019 - Kubernat - Vaclav - thesis . pdf ? sequence= -

1&isAllowed=y.

[Kun+19] J. Kundrát et al. łOpening up ROADMs: Let Us Build a Disaggregated
OpenOptical Line Systemž. In: Journal of Lightwave Technology 37.16
(2019), pp. 4041ś4051. issn: 1558-2213. doi: 10.1109/JLT.2019.
2906620.

[Ltd17] Sercalo Microtechnology Ltd. SC Coaxial Fiber Optic 1xN Switch with

Interface. 2017.

[MB10] Ed. M. Bjorklund. YANG - A Data Modeling Language for the Network

Configuration Protocol (NETCONF). RFC 6020. RFC Editor, Oct. 2010.
url: https://tools.ietf.org/html/rfc6020.

[MB16] Ed. M. Bjorklund. The YANG 1.1 Data Modeling Language. RFC 7950.
RFC Editor, Aug. 2016. url: https://tools.ietf.org/html/
rfc7950.

[Mel] Gabi Melman. spdlog. url: https://github.com/gabime/spdlog.

[NP16] U. Nanda and S. K. Pattnaik. łUniversal Asynchronous Receiver and
Transmitter (UART)ž. In: 2016 3rd International Conference on Ad-

vanced Computing and Communication Systems (ICACCS). Vol. 01.
2016, pp. 1ś5. doi: 10.1109/ICACCS.2016.7586376.

[Ope] open(2). Linux Manual Pages. url: https://linux.die.net/man/
2/open.

[Phoa] Pure Photonics. Low Noise Tunable Laser.

[Phob] Pure Photonics. Operating guide for Pure Photonics ITLA PPCL200.

[RE06] Ed. R. Enns. NETCONF Configuration Protocol. RFC 4741. RFC Editor,
Dec. 2006. url: https://tools.ietf.org/html/rfc4741.

[RE+11] Ed. R. Enns et al. Network Configuration Protocol (NETCONF). RFC
6241. RFC Editor, June 2011. url: https://tools.ietf.org/
html/rfc6241.

[Str] John Paul Strupp. What Are Serial Communications? url: https:
//www.cmrr.umn.edu/~strupp/serial.html#2_1.

[Tcg] tcgetattr(3). Linux Manual Pages. url: https://linux.die.net/
man/3/tcgetattr.

[Tec13] AXSUN Technologies. AXSUN Host Interface Communications Speci-

fication. 2013.

44

https://dspace.cvut.cz/bitstream/handle/10467/83195/F8-BP-2019-Kubernat-Vaclav-thesis.pdf?sequence=-1&isAllowed=y
https://dspace.cvut.cz/bitstream/handle/10467/83195/F8-BP-2019-Kubernat-Vaclav-thesis.pdf?sequence=-1&isAllowed=y
https://dspace.cvut.cz/bitstream/handle/10467/83195/F8-BP-2019-Kubernat-Vaclav-thesis.pdf?sequence=-1&isAllowed=y
https://doi.org/10.1109/JLT.2019.2906620
https://doi.org/10.1109/JLT.2019.2906620
https://tools.ietf.org/html/rfc6020
https://tools.ietf.org/html/rfc7950
https://tools.ietf.org/html/rfc7950
https://github.com/gabime/spdlog
https://doi.org/10.1109/ICACCS.2016.7586376
https://linux.die.net/man/2/open
https://linux.die.net/man/2/open
https://tools.ietf.org/html/rfc4741
https://tools.ietf.org/html/rfc6241
https://tools.ietf.org/html/rfc6241
https://www.cmrr.umn.edu/~strupp/serial.html#2_1
https://www.cmrr.umn.edu/~strupp/serial.html#2_1
https://linux.die.net/man/3/tcgetattr
https://linux.die.net/man/3/tcgetattr

[Ter] Serial programming ś termios. url: https://en.wikibooks.org/
wiki/Serial_Programming/termios.

[Vas] Michal Vasko. Sysrepo. url: https : / / github . com / sysrepo /
sysrepo/.

[Wika] Wikipedia. C POSIX Library. url: https://en.wikipedia.org/
wiki/C_POSIX_library.

[Wikb] Wikipedia. Remote Procedure Call. url: https://en.wikipedia.
org/wiki/Remote_procedure_call.

[Wikc] Wikipedia. RS-232. url: https://en.wikipedia.org/wiki/RS-
232.

[Wikd] Wikipedia. XML. url: https://en.wikipedia.org/wiki/XML.

[Wike] Wikipedia.XPath. url: https://en.wikipedia.org/wiki/XPath.

45

https://en.wikibooks.org/wiki/Serial_Programming/termios
https://en.wikibooks.org/wiki/Serial_Programming/termios
https://github.com/sysrepo/sysrepo/
https://github.com/sysrepo/sysrepo/
https://en.wikipedia.org/wiki/C_POSIX_library
https://en.wikipedia.org/wiki/C_POSIX_library
https://en.wikipedia.org/wiki/Remote_procedure_call
https://en.wikipedia.org/wiki/Remote_procedure_call
https://en.wikipedia.org/wiki/RS-232
https://en.wikipedia.org/wiki/RS-232
https://en.wikipedia.org/wiki/XML
https://en.wikipedia.org/wiki/XPath

46

List of Figures

1 The calibration process on cable. (Image by Hecht [Hec02]) . . . 4

1.1 The structure of Optical Measurement and Calibration Device.
The green path from the Transmitter through Switch 1 to Tested
device indicates the emitted signal. The red path from the Tested
device through Switch 2 to the OSA indicates the measured signal. 8

1.2 The schema of device management with NETCONF and YANG. 8
1.3 Parallel vs. serial communication. 9
1.4 Synchronous vs. asynchronous serial communication. (Image

by [Axe99]) . 10
1.5 NETCONF layers. (Image by [RE+11]) 13

3.1 OMCD device with the final firmware installed. In the top left
part the AXSUN device can be seen, ITLA is located in the mid-
dle under the GIGABYTE heatsink, and to the right of ITLA there
is the Beaglebone single-board computer. The two SERCALO
switches are located right of Beaglebone. 36

3.2 OMCD device during the process of self-calibration. The power
meter on the right is used as a reference for the self-calibration
of ITLA. 38

3.3 Measuring ROADM with OMCD. The device stacked on top is
the ROADM, OMCD is below. 39

47

48

List of Tables

1.1 Serial port files on Unix systems. (Table by Strupp [Str].) 10
1.2 Defined constants for the c_cflag (Table by [Str].) 12

2.1 Directory layout of the implementation source code. 18
2.2 Structure of the request packet for ITLA. 22
2.3 Structure of the response packet from ITLA. 22
2.4 ITLA: Packet status table. 23
2.5 Structure of the request packet for AXSUN. 28
2.6 Structure of the request packet from AXSUN. 28

3.1 Results of measuring the attenuation on ports of ITLA and AX-
SUN. (Only the first 6 ports were measured.) 38

3.2 Connected ports of ROADM to OMCD. 39
3.3 Measurements of the ports E1śE4 on ROADM (on OMCD ports

1ś4) obtained by sending the signal to port 1 (in OMCD port 5)
and to port 2 (in OMCD port 6). 40

3.4 Measurements of the ports 1 and 2 on ROADM (on OMCD ports
5 and 6) obtained by sending the signal to port E1 (in OMCD 1)
and to port E1 (in OMCD port 2). 40

49

50

	Introduction
	OMCD firmware structure and interfaces
	Serial communication interface
	Serial port on Unix systems

	Network Configuration Protocol
	YANG

	Implementation of the OMCD firmware
	Implemented drivers
	Property Interface and Serial Communication
	Driver Interface
	Integrable Tunable Laser ITLA
	Coaxial Fiber Optic Switch SERCALO
	Optical Spectrum Analyzer AXSUN

	YANG interface
	High-level OMCD driver
	Testing and demo versions

	Results
	Self-calibration
	Use case: Measuring ROADM

	Conclusion
	List of Figures
	List of Tables

