
MASTER THESIS

Ondřej Lakomý

Planning of railway network for Open
Transport Tycoon Deluxe

Department of Software and Computer Science Education

Supervisor of the master thesis: Mgr. Jakub Gemrot, Ph.D.
Study programme: Computer Science

Study branch: Computer Graphics and Game Development

Prague 2020

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In Prague, 5th January 2020 signature of the author

i

I want to express my gratitude to Mgr. Jakub Gemrot, Ph.D. for his valuable
advices throughout the work. I also wish to thank Prof. RNDr. Roman Barták,
Ph.D., for his ideas that helped me a lot.

ii

Title: Planning of railway network for Open Transport Tycoon Deluxe

Author: Ondřej Lakomý

Department: Department of Software and Computer Science Education

Supervisor: Mgr. Jakub Gemrot, Ph.D., Department of Software and Computer
Science Education

Abstract: In a business simulation game Open Transport Tycoon Deluxe, players
can play the game alone or can compete against other players or against artifi-
cial intelligence. There is plenty of artificial intelligences that can be downloaded
and used in the game. Usually the AI is simple and does not build complex
transfer routes. Inspired by OpenTTDCoop, a community organisation which
specializes on building complex railway networks, new artificial intelligence has
been developed to fill the gap in the available artificial intelligence list - Trains-
ferAI. TrainsferAI is capable of planning, building and expanding its own railway
network. It follows a set of rules based on the OpenTTDCoop rules for players.
TrainsferAI builds network consisting of stations, routes and crossroads using A*
searching algorithm in a couple of variations. The network should be complex and
on a human-like level.

Keywords: Transport Tycoon, Open Transport Tycoon Deluxe, OpenTTD,
OTTD, AI, artificial intelligence, trains, network, railway, A*, AStar

iii

Contents

1 Introduction 3
1.1 Railway networks . 4
1.2 Thesis Structure . 4

1.2.1 Scope of the thesis . 5
1.2.2 Out of scope of the thesis 5

2 OpenTTD 6
2.1 Game goals . 6
2.2 Vehicles . 7

2.2.1 Breakdowns and servicing 7
2.2.2 Types of vehicles . 7

2.3 Industries and cargoes . 9
2.3.1 Industrial cargoes . 9
2.3.2 Non-industrial cargoes . 10

2.4 Technology . 10
2.4.1 NoAI API . 11
2.4.2 Scripting - Squirrel . 11

2.5 History in AI in OpenTTD . 12

3 TrainsferAI 13
3.1 Existing AIs . 13

3.1.1 trAIns . 13
3.1.2 ChooChoo . 13
3.1.3 AdmiralAI . 13

3.2 Inspiration . 14
3.3 Bounded rationality . 14
3.4 Railway network structure . 15

3.4.1 Turn length . 17
3.4.2 Crossroad types . 17

3.5 Data representation . 19
3.5.1 Industry model . 19
3.5.2 Rail model . 20
3.5.3 Building restrictions manager 20

3.6 Life cycle . 21
3.6.1 Money making phase . 22
3.6.2 Network planning phase 22
3.6.3 Network building phase . 22
3.6.4 Connecting phase . 22

3.7 Algorithms . 23
3.7.1 A* . 23
3.7.2 A* heuristic function . 28
3.7.3 Finding a station . 30
3.7.4 Finding SLHs . 31
3.7.5 Finding MLHs . 32
3.7.6 Connecting the network 35

1

3.7.7 Optimization of crossroad connection number 37
3.7.8 Finding BBHs . 40
3.7.9 Finding in and out points of the crossroad 40
3.7.10 Creating a crossroad . 42
3.7.11 Trains . 43

3.8 Preferred game settings . 44

4 Validation 45
4.1 Performance validation . 45
4.2 Success rate validation . 45
4.3 Bank account and company value validation 47
4.4 Aesthetic . 47
4.5 Results . 48

5 Future work 52
5.1 Network extendibility . 52
5.2 Train management . 52
5.3 Network management . 52
5.4 Multiplayer . 53
5.5 Covering more environment . 53

6 Conclusion 54

Bibliography 55

List of Figures 56

List of Tables 58

List of Abbreviations 60

A Instalation guide 61

2

1. Introduction
There are a lot of games these days. One of the basic category is strategy games.
They are popular among players because of various aspect - a lot of room for
creativity, players are also required to think outside of the box sometimes to
reach their goals. Playing strategy games is in general quite complex task. Using
artificial intelligence (AI) in such games is therefore quite challenging. It needs to
cover large variety of game mechanics and usually there are many ways of reaching
the goal, there is as well plenty of room for developer of such AI and there are
huge differences between good and bad AI agent.

AI is capable of playing strategy games really well (as showed for example
when AI called AlphaStar beat two professional players - MaNa and TLO - in
game Starcraft 2) (Coldewey, D. [2019]). But those strengths are often more of
an efficiency of the algorithms and ability to process huge amount of data in a
very short amount of time. The challenge for AI starts when it is not required to
be efficient, but to do something else - for example be creative.

The goal of the thesis is to figure out if an AI agent can behave in a creative
and human-like way. If we let the AI to face a problem which requires a certain
level of creativity, will the AI be capable of solving such a problem? If we let the
AI agent face the problem, can the AI behave human-like? Can it build things
that player would build? Can we determine if the result is created by human or
by AI? Can the AI agent even reach that state?

We will test this on genre of games which is called business simulation games.
There are a lot of them since the genre started to pop up, but one particularly
important for the history of this genre of games will be used. Its name is Transport
Tycoon. It was second game belonging to a group of games called ”Tycoon games”
(which does include for example Zoo tycoon, Roller coaster tycoon and many
more). The player was put in the game as a general manager of a transport
company. The main goal was to earn money by transporting various cargoes
between industries or passengers and mail between cities. Player was given four
types of transport which he could use to transport cargo - road vehicles, aircraft,
ships and trains, where each category has its advantages and disadvantages. What
really kept players in the game, was building trains. It was the most creative,
rewarding and pleasing part of the game. To run trains, player was required
to build two stations and railway connection from first station to the second.
Only if the stations were connected, the train could then transfer the cargo. If
players figured out that they can join those rail connections and make some more
complex rail networks, the true fun and challenge did not let the player stop
playing. Building railway networks required players not only to know what to
connect. It required the player to behave creatively in the game. He needed to
figure out how to efficiently join connections and how to ensure the all trains
can get to their target stations. So we let the AI agent to build some human-
like looking train networks, which are non-trivial - trains from more then one
station will travel on the same parts of the network. While building network and
fulfilling the human-like aspect, the AI agent still needs to earn money in order
not to bankrupt.

3

1.1 Railway networks
Building a railway network may seem not to be a difficult task. In order to
explain its complexity, lets start from the beginning. To build a connection from
one station to another station. player will just build some rails leading from the
first station to the second station.

The next step in building of network is to connect another station to the exist-
ing connection, so the new station will reuse some rails from the first connection
(so some money are saved during the construction). However, trains cannot pass
through each other - they need to wait for the trains in front of them to go through
the rails one by one. This process is controlled by rail signals. Because of this,
the basic solution to build a connection is to in fact build two rails - one leading
to the station and second going the other way. Then trains going to the station
can all take one rail and the trains going back can take the other one.

Important term in network building is capacity of the connection. Each train
has its length. If the connection is 100 tiles long and each train has length of 4, we
can fit maximum of 25 trains to the connection at any time. We can see that this
2-rails system works quite well if there are not many trains using the roads. But
if you want to reach for example a couple of hundreds of trains in the network,
the connections will soon not be enough for that traffic.

If we want to increase the capacity of the connection, we can add more rails
going in each direction. With each rail added, we need to expand all crossroads
or joins in the network for each rail - we want the train to get from each rail to
whatever point in the network, so the train can choose any rail. While building
more rails on a connection is quite straight-forward, building the crossroads is the
real challenge. Trains need not to slow down, otherwise they will get stuck and
the network will get jammed. Further different rails are not allowed to cross each
other on the same height, otherwise train from one rail would need to wait for
the train from the second rail to pass before he could use it, causing jams. We
then need to connect each rail with one rail in each direction of the crossroad. If
we have 3 directions coming to the crossroad and each has 4 rails going in and 4
rails going out of the crossroad, we need to make 24 connections on quite a small
space. For better idea a quite big crossroad is shown on image 1.1.

The construction process of such crossroad is not simple. It often includes
many iterations of improving the crossroad and removing its bottlenecks. Other
important factor is that while player is building it, he can easily move things
around if necessary because player sees the crossroad as a complete object. AI
see this same problem as a pathfinding problem and for an AI agent it is very
hard to ”look around” to modify different rails. Because of these limitations this
thesis will not attempt to build such big crossroads and instead of it it will focus
to build simpler versions of the network with limited amount of rails as it still
looks human-like and the more complex variants does not add more ”human-like”
property to the final network.

1.2 Thesis Structure
On first pages of the thesis, the game Transport Tycoon game will be introduced.
Next step will reveal the technology used within the game and the API provided

4

Figure 1.1: Example of crossroad built by community.

by the game to develop the AI. The main part of the thesis will then describe the
TrainsferAI, which is AI for Transport Tycoon developed for this thesis. It will
show the specification of the AI and its life cycle in the game. It will describe
internal data representation and list of algorithms used. After that a validation
of the resulting AI will be showed. By the end of the thesis, future work will be
presented, introducing some areas of the AI which could be added or improved in
the future.

1.2.1 Scope of the thesis
The main goal of the thesis is to develop an AI agent called TrainsferAI, capable
of building human-like railway network structure in the game Transport Tycoon.
It will earn money and use it connect other facilities to the network. The AI will
use existing network as much as possible, avoiding building different tracks if the
connections is already built.

1.2.2 Out of scope of the thesis
The created AI is not considered to be the same type of AI as others - while
other existing AIs are often developed with a goal of providing viable opponent
to players, this is not a target state for TrainsferAI. It is not a goal to develop
an AI which can be played on various world and game settings - there are plenty
of AIs with these properties. TrainsferAI is best played as the only company on
the map and its sense is in demonstrating its building abilities rather then its
competitiveness.

5

2. OpenTTD
Transport Tycoon was originally released for computers in 1994 by Chris Sawyer.
Next version of the game was released year later, called Transport Tycoon Deluxe.
It included new landscaping, weather, new map types and vehicles. There were
not many computer games and the technology for developing them was very young
- the game was written in X86 Assembly language ([Sawyer, C., 2013]).

Transport Tycoon is very old game and author stopped working on it shortly
after its release. Players liked the game that much that in March 2004, an open-
source version of this game was released and called Open Transport Tycoon Deluxe
(OpenTTD). It copied the original game and was developed by OpenTTD Team.
Its purpose was to replicate the game and enhance it so players can do particular
tasks more easily and more user-friendly. OpenTTD Team is keeping the game
up-to-date with updates, adding more functionalities, fixing bugs and adding more
detailed graphics. In addition to it, the game community is adding new graphics,
styles, vehicles and a lot more to the game 1. This content is free to download
through the game manager. All those features make the game really customizable.
OpenTTD has everything original Transport Tycoon could offer and many more,
so these days OpenTTD took the place of the original game ([OpenTTD Team,
2019]).

The principle of the game is quite simple - the player is given a transport
company and a loan. He is then free to use those money to build vehicles and
transport various different cargoes. If the player is not managing his bank balance
well, his company may bankrupt and the game ends. On the other hand, if player
is able to profit, he can build more transport routes, buy new vehicles and expand
his company.

The game offers 4 environments for the player to choose from. The first one is
temperate environment. This provides map set which is actually very similar to
temperate zone. The second one is snowy mountain environment, which provides
map set inspired by mountain landscape. The third one is desert environment.
The last one is inspired by children - trees are replaced by big lollypops and you
can transport cotton candy for example. This environment is probably the least
liked by the players.

2.1 Game goals
OpenTTD game starts at game year 1950. Player then has one set goal of the
game - reach game year 2050 without bankrupting his company. For first feel
playing, it may not be very clear how to keep the company in green numbers.
But after a few attempts, average player will figure out how to earn money and
reaching year 2050 is not that difficult. Since for more experienced players this
game goal is not that big of a challenge, they started to think up their own goals
among the game.

One of the common ones is to earn as much money as possible. One widely
used variant of this goal is to earn money as quickly as possible. Player is then

1Community-made content can be downloaded to the game by in-game online content man-
ager

6

forced to figure out the most efficient way of earning money at the beginning of
the game and he needs to maximize the cost/income ratio. Similar game goal is to
build as many vehicles as possible. Some players do look for other things in games
then efficiency. Those players can then opt for building the world to look realistic
or aesthetically pleasing. The outcomes of such games differ between each players
and that makes the game even more interesting and replayable.

2.2 Vehicles
Vehicles are substantial part of the game. They are used to transport passengers,
mail or industrial cargoes from its production point to its accepting point (usually
some industries or cities). They are the only way player can earn money in the
game. There are four categories of vehicles in the game: road vehicles, aircraft,
ships and trains. Each vehicle has some properties - maintenance cost, capacity,
reliability, service life, maximal speed and horse power. Those properties influence
the choice of the vehicles. As the game progresses further, new types of vehicles
are available to the player (usually the later the vehicle is available, the better it
is).

2.2.1 Breakdowns and servicing
Breakdown of vehicle is a game mechanic which influences how the vehicle op-
erates. If a vehicle breaks down, it is stopped for a couple of game days. This
mechanic is different with aircraft - it does not have a breakdown, but instead an
accident occasionally appears and the plane is destroyed completely. The higher
reliability of the vehicle, the lower chance that vehicle will break down. Another
closely connected game mechanic is servicing. Each vehicle has a servicing interval
and after the interval expires, it goes to the closest depot for service. The more
days the vehicle has not been serviced, the higher chance of breakdown. The last
property that can increase chance of breakdown is service time. It is an amount
of years the vehicle can operate without increased breakdown chance. After that
amount of years, player should sell the vehicle and buy a new one, or the old
vehicle will break more often. Breakdowns and servicing can be turned on and off
in the game settings.

2.2.2 Types of vehicles
Road vehicles require road to travel on them and bus/truck stations to load/un-
load cargo. Each vehicle is very cheap and slow. They have limited capacity
so usually do not make much profit. Road vehicles fit best to transport cargo
from outskirts to main routes. They are often used only as a secondary way of
transport.

Aircraft is supreme transport for passengers. Due to its high speed and quite
high transport capacity its very convenient to use aircraft while transporting pas-
sengers among cities. Its disadvantage is low capacity while transporting industrial
cargo. The only infrastructure it requires is at least two airports, no connections
have to be built.

7

Figure 2.1: Four types of vehicles - airplane, train, road vehicles (bus and truck)
and ship

Ships are the slowest and only fit to transfer cargo from the sea to the coastal
parts of the map. They have large capacity for industrial cargo. Ships hardly
find any real usage in OpenTTD and if they are built, mostly it is for aesthetic
or to serve oil rigs. New feature in OpenTTD is river canals which can be built
by player and can be used to travelling by boats in the midland. That increase
possibilities of using ships but still they are the least used kind of transport.

Trains are versatile type of vehicles which fits short routes as much as long
ones. Trains consist of an engine (possibly more than one) and wagons. In the
basic version of the game, there are four types of rails available: Railroad, elec-
trified railroad, monorail and maglev. Each type has its own engines and wagons
and trains built for one type cannot travel on different kind of rails. It is very
interesting kind of transportation with very in-depth set of mechanics. Player
is required to build station for loading and station for unloading the cargo. In
addition he needs to connect those stations with rails. It also probably provides
the highest level of creativity for the player. The more wagons the train has, the
heavier it is. Loaded wagons are even more heavy. The lower ratio ”horse power
/ weight of the train” is, the slower train accelerates. In order to run more trains
on the same rails, building signals is required. Signals split rail into segments. If
train encounters a signal, it checks if the next segment is clear of trains (no train
or its part is located on that segment). If segment is clear, the train continues
past the signal, in other case train stops and waits until the signal turns greed,
meaning the next segment is free. Segments are displayed on image 2.2

Later OpenTTD introduced a track reservation system for trains with new
pathfinding system Path Based Signaling (PBS). It allows more trains to enter
the same segment under certain circumstances. When train comes to the PBS

8

Figure 2.2: Segments of rails divided by signals.

signal, it will try to search path to next signal. If the train successfully reserves a
path to next signal (there are no obstacles like other trains), it will reserve that
path and while it is going on that path, no other train can reserve any part of the
reserved track. This means that as long as new train can still find its way and
reserve path to next signal, it can enter rail segment even if there are other trains
on it and there will be no collision. This greatly enhances possibilities to build
some crossroads or stations (The openttdcoop [2013]).

2.3 Industries and cargoes
Industry is basic unit that produces or accepts particular type of cargo. Industries
are placed on the map with restriction that only one industry of each type can
be assigned to one city (by default). Cargo is a basic unit that is produced in
industries (that is called industrial cargo) or in cities (non-industrial cargo).

2.3.1 Industrial cargoes
Industry and its cargoes are divided into three categories - primary, secondary
and tertiary. Primary industry accepts nothing and produces one or more type of
cargo. This cargo is then transferred to secondary industry. Secondary industry
accept cargo from primary and either produce nothing or produce different type
of cargo when the primary cargo is delivered. The last type of industry is tertiary
industry, which accepts secondary cargo and produces nothing.

The amount of money the company receives when the cargo is delivered de-
pends on a couple of factors. The bigger distance between source industry/city
to target industry/city, the higher reward. On the other hand, the longer it takes
for the cargo to be delivered on that distance, the lower reward. In addition,
each cargo has its transfer reward rate. That means that each cargo will earn

9

different amount of money if delivered to the same distance in the same time - it
depends of its ”rarity”. Usually primary industry has lower transfer reward rate,
secondary has average and tertiary has the highest. But the drop in the rate
when the cargo travels more days is not that big by the primary industry then the
tertiary. To sum the rules - primary cargo has the lowest reward when delivered
very quickly and if delivered late, has still quite the same reward. Tertiary cargo
earns the highest income when delivered really quickly, but looses a big part of
the reward when delivered slowly. Secondary cargo is somewhere between primary
and tertiary while considering income.

Last important thing is that distance traveled is measured in tiles between
the industries, it is not considering the actual path that the cargo had traveled.
That means if player will build more efficient route, he will earn more money and
artificially extending the path does not earn more. Types of industrial cargoes
differs depending on the map style (environment) the game is taking place on.

Each single piece of industry has its default production amount. Each game
month the production has a chance to increase or decrease for some percents. If
the company is serving the industry and transferring the cargo away, the chance
to increase the production is higher then chance to decrease. It works the other
way around as well. When production reach minimal amount, there is a chance
that the production will get closed and disappear from the map. To balance this,
sometimes new industries are built randomly throughout the game.

Some environments have unique mechanics, for example in desert map, the
most valuable resource is wood. Player earns far more money by transporting it
to any other cargo, but at a cost that sawmills producing wood chop down nearby
wood in the world so you need to manually replace the trees in order for sawmills
to produce wood.

2.3.2 Non-industrial cargoes
Non-industrial cargoes are the same on all four environments - passengers and
mail. Both of the cargoes are produced by structures in cities and they are de-
livered to another cities (or to different parts of the same city). Rules regarding
money rewards for the non-industrial cargoes work the same as for the industrial
ones. The bigger the city, the more passengers and mail it can produce and the
more city building are around the station, the more the production is (but each
town has limits depending on its size).

2.4 Technology
As the original game Transport Tycoon was written in Assembly language, with
the development of OpenTTD authors have chosen a different technology - C lan-
guage. The whole game has been reverse engineered into the C language (openttd
wiki contributors [2018]). Up to release 0.7.0 (excluded) AI could only be writ-
ten directly in the C code of the game. Since 0.7.0 release, an API called NoAI
API has been added to the game and AI scripts could have been written in lan-
guage Squirrel, which started the boom of community-made AIs (openttd wiki
contributors [2015]).

10

2.4.1 NoAI API
NoAI API is a long list of classes and functions callable from the scripting lan-
guage. It gives access to various game data and methods to read information from
the game. Finally it provides methods to interact with the world and to change
its state. Methods are divided into different categories and the whole API is well
understandable and easy to use. The main advantage of the API however is to
split compilation of the game from the compilation of the AI scripts. Before the
API had been added to the game, the whole source code needed to be compiled
in order to see the changes.

Important classes of the API are AIAirport, AIRail, AIRoad and AIMarine
which contains all functions connected to that kind of transport. Other important
classes are AIIndustry and AITile. They provide information about industries and
the tiles on the map. That corresponds with the perception of the human player
and allow AI to gather information about the environment.

To showcase usage of the API, lets consider a case that we have X and Y
coordinate of a tile and we want to get the index of the tile in the world. We
would then write:

1 AIMap. GetTileIndex (X, Y)

and we would receive a number which is index of that tile. 2

A useful feature provided by the NoAI API is AIList class. It provides a data
structure for requesting different types of lists from the game. If AI needs to re-
quest all industry on the map, it simply creates an instance of AIIndustryList and
it contains all industries (their IDs). It has function Begin() which gets the first
item of the list, function Next() which moves the active pointer to next element
and gets it, and method IsEnd() which returns true if the active pointer is at
the end of the list. But what is really useful is function Valuate(func). The func
parameter is a function which is supplied to the Valuate function. Valuate() will
then temporarily replace all the values with result of the supplied function, while
providing the original ID of the item as first parameter to the supplied function.
It looks like the Valuate function would call func(item) and then put the result to
the original list. Valuate() can even take more parameters and they are automati-
cally provided to the func(). After Valuate() finishes, one can use one of couple of
methods for filtering values, for example KeepValue(), KeepAboveValue(), Keep-
BelowValue() and others to filter out the result. Values which were kept in the
list are then converted back to IDs.

2.4.2 Scripting - Squirrel
OpenTTD uses scripting language Squirrel to script AI to the game. ”Squirrel
is a high level imperative, object-oriented programming language, designed to be
a light-weight scripting language that fits in the size, memory bandwidth, and
real-time requirements of applications like video games.” (Demichelis, A. [2016]).
Syntax is similar to C++ language and its internal functionality is similar to Java
(it has its own virtual machine). Scripting in squirrel is quite easy, especially
as the language is dynamically typed. The programming in Squirrel is based on

2Full NoAI API documentation can be found on link: https://noai.openttd.org/api/

11

https://noai.openttd.org/api/

using simple data types like integer and float and extending this model with arrays
and tables. Even classes in Squirrel are represented as tables. Variables are all
declared with a keyword local. 3

2.5 History in AI in OpenTTD
AI has been part of the original Transport Tycoon game. The original AI was
very simple - it was trying to build aircraft, trains or road vehicles, but with very
low success rate. Very often AI company just bankrupted before the player could
even notice it. If a player wanted to block building process of the AI agent, it was
enough to build one rail where the AI was building and it got stuck for a long
time not knowing what to do. The original AI was simply no challenge.

Later when the NoAI was released, new AIs started to pop up. With the API
and Squirrel scripting, the scripts could be compiled on their own. That opened
the AI scripting to community and anyone with basic programming knowledge
could contribute. It was way easier to develop and script an AI agent to the game
so the level of AI started to rise. Through the years, many new AIs have been
developed and player can download them through the content manager. Some
are specialized for one kind of transportation, others try to be versatile. There
is definitely enough possibilities. One common feature of all AIs is that none is
too complex - all are just trying to build connection one by one, not any kind
of networks or just tiny ones. Exception is one particular AI called ChooChoo,
which builds some crossings and reuse same paths for more trains.

3Squirrel documentation can be found on link: http://squirrel-lang.org/squirreldoc/

12

http://squirrel-lang.org/squirreldoc/

3. TrainsferAI
The newly implemented AI will be called TrainsferAI. At the beginning existing
AIs will be examined to get an idea what they are capable of. After that the
inspiration for the new AI will be introduced and differences between that and
existing AIs will be presented. Finally the new AI will be described in details.

3.1 Existing AIs
There is plenty of existing AIs so far downloadable and usable within OpenTTD.
It would be useless to implement another of these if it would not differ from all
others. To see what aspects can be done differently, we need to check the best of
the existing AIs and test what can they do and where are their limits.

3.1.1 trAIns
The main focus of trAIns AI is to bring AI which builds and manages rail networks.
It prefers to build rather longer routes and sometimes if a part of the rail can be
shared, it will build a junction and share the rail. trAIns use double railway parts
for its network so it means for almost all tiles of the rail both directions are next
to each other. For a planning algorithms trAIns use standard A* algorithm. It
operates not with the single rail track pieces, but with pairs of the rail instead.
Occasionally it builds bridges if an obstacle needs to be traversed. The trAIns
AI builds so called RoRo stations (Roll-on-Roll-of), where trains enter the station
from one side and leave on the other side (Rios, L. and Chaimowicz, L. [2009]).

3.1.2 ChooChoo
ChooChoo is another train-specialized AI. It transports mainly passengers and
mail. It uses four way crossings and extends the network in all four directions to
nearby towns. When the town is not in the line with the network, new crossing
is built and the town is connected through it. If the network segment cannot be
extended further, then it picks a random location on the map and begins a new
network segment. The crossings are rather inefficient because the AI does not
use bridges nor tunnels. That means that one of the trains needs to wait if both
of them need to cross the crossroad at the same time. Other than that the AI
creates nice networks Michiel [2009].

3.1.3 AdmiralAI
AdmiralAI is slightly different as it does not specialize in trains. Instead one can
select which kinds of transport does it use. If it is set to trains only, it creates a
lot of tracks which connects to each other sometimes. The network is not really
optimized and it is rather randomly connected, but quite aesthetically looking. It
builds a lot of trains and creates decent revenue from them. Difference between
AdmiralAI and ChooChoo is that network does not look like a grid, but looks
more natural with the Admiral.

13

3.2 Inspiration
All three selected AIs could build trains pretty well. The company could quite
reliably grow without bankrupting, they were able to increase train amount over
the course of game. To see what can be done better and how can those AIs be
extended and improved, we can get inspired by group of players of this game called
OpenTTDCoop. It groups a lot of players which are experienced with the game
and they arrange public servers for community to cooperate with them. They use
trains only and they try to build up effective rail network with loads of trains on
it. They sometimes build creatively, sometimes more efficiently, but the outcomes
are incredible. An example of what this group is capable of building is shown on
image 3.1. The main difference between already existing AIs and the building done
by OpenTTDCoop is one crucial element of the gameplay - planning. Existing
AIs will not plan the network in the bigger scale, they will decide to add new train
line and only in scope of this new line the AI will plan where to connect it. On
the other hand, at the beginning of the game OpenTTDCoop players will plan
their network in advance and then realize its parts separately, but the network in
the end is compact. It is the planning which brings human-like features to the
network design.

Planning of the network comes in different layers. First layer of planning is
to choosing what trains will be used in the game (train length and engine type).
The second, probably the most important planning step, is to plan where the
crossroads will be placed on the map. Many factors need to be considered for the
best outcome - for example position of the crossroads, distribution of the train
traffic among the train lines or terrain difficulties. The last step is to plan where
the connections between the crossroads will be placed and which crossroads will
be connected to which. After the network is roughly planned, crossroads and
connections start to be built and stations are being connected to the network as
well.

In TrainsferAI a lot of algorithms and their variations were used for planning
of the network. Each of them will be introduced in further sections.

3.3 Bounded rationality
Bounded rationality is a term commonly used in economics. It is an opposite of
perfect rationality - if an agent behaves under perfectly rationality, he is rational,
only self-interested and choosing optimal choices. While agent is behaving under
bounded rationality, reflects the real human beings. The cognitive capacities of
humans cannot be fully rational because of some limits - lack of information,
limited time for making a decision or limits of human brain for example. The
result is that the agent will pick a decision which satisfies his needs with the
available information, he does not look for the optimal one. This helps to save
time and processing capacities. The difference between bounded rationality and
irrationality is that the agent is still trying to maximize its profit and be as rational
as possible in given situation (tutor2u [2018]).

TrainsferAI and all actions made by it are limited by bounded rationality. The
main reason is that the game itself provides the AI only a part of the assigned
processor time. That causes the AI to be quite limited in processing power. As

14

Figure 3.1: High-end crossroad by the OpenTTDCoop players created on
their public server game nr. 332. Games can be found on http://
www.openttdcoop.org/files/publicserver archive/

searching specially consumes a lot of processing power, all pathfinding runs several
times slower that in a stand-alone program. OpenTTD does not allow any third
party program to interact with the AI, so implementing the pathfinding process
externally is out of the table. Second limiting factor is terrain in OpenTTD. The
height of each corner is dependant of heights of adjacent corners. One cannot
just modify the terrain to its needs (it is possible but not guaranteed to success).
Modifying the terrain is a complex tasks that is quite easy for a human player. He
sees the map as a compact thing and he can easily see that modifying the terrain
somewhere else allows him to modify the part he wanted originally. But for an
AI agent this is hard to implement and it is out of the scope of this thesis.

Because of those limitations, railroads will not reach levels of complexity that
could be seen in OpenTTDCoop. They build the networks for tens of hours, per-
fecting every single tile of the network to perfection. The main goal of TrainsferAI
is not to implement huge networks, but to demonstrate that AI can even do such
a task.

3.4 Railway network structure
Railway network is a rail structure which allow efficient train traffic. Good railway
network has as little redundant rail connections as possible and allow trains to go
quickly. It should not contain paths which are far longer then the distance between
two points the path is connecting, neither trains traveling through it should be
forced to wait too long. Constructing network is not a simple task as many
factors are affecting the outcome. TrainsferAI’s network building is inspired by
the OpenTTDCoop networks. They proved that their concept of network building

15

http://www.openttdcoop.org/files/publicserver_archive/
http://www.openttdcoop.org/files/publicserver_archive/

Figure 3.2: Crossroad scheme. Yellow parts are the entrance parts, red parts
are entrance points and the blue part is the inner crossroad made from inner
connections.

can handle huge amount of traffic if done precisely.
The basic structure of the network uses two elements - crossroads and connec-

tions. Crossroad is a basic node of the network which can be connected to other
crossroads or can have free connection to the around world which some side-lines
can connect to. Crossroad has entrances, which are points when the crossroad
itself ends and the rails start to form a connection and from there are connected
to another point of the network. Each crossroad has number starting from 1 and
incremented for each crossroad. Internally the crossroad is made by connections,
which connects the crossroad entrances from inside the crossroad - shown on fig-
ure 3.2. Crossroads can be three way or four way ones. Three way crossroads
have three entrances and four way ones have four. A big part of all crossroads
are three way because when they are expanded, it is easier to fit all connections
in them onto the given space. Connections are rail routes connecting entrances
of crossroads with another crossroads. Those connections are called main lines.
They usually contain the highest traffic and they are built according to it. De-
pending on the number of trains, some can reach even 6 rails in one direction
(12 total). Another type of connections are side-lines, which usually runs from
primary industry station to the free entrance of a crossroad, effectively connecting
the industry to the network.

Networks have a set of rules which builders follow. Those rules make the whole
process easier and help to keep the traffic as fluent as possible. The basic rule is
that a new industry is connected to the network only via crossroads. Connections
between crossroads can never connect industries. They are designed in a way that
there should be no slowdowns. Side-lines which connect the industries with the
crossroad merge if close to each other to create bigger side-lines. Then the result
big side-line is connected to the free crossroad entrance.

16

Distance between turns km/h
0 (90◦turn) 61

1 (2x45◦turn) 88
2 111
3 132
4 151
5 168
6 1835
7 196
8 207
9 216
10 223
11 228

12+ 231
Source: https://wiki.openttd.org/Game mechanics

Table 3.1: Table of distances between the two turns and its maximal speed limit.

3.4.1 Turn length
Turn length is an important feature when designing all rails if the efficiency and
fluency is the goal. If train lies on more then one turn to the same side, that train
will receive maximum speed limit. If it travels faster, its speed will be reduced
to the limit value. If the train goes slower, its speed remains unchanged, but the
train can never accelerate to higher speed then the limit, while still located on
two turns at the same time. The closer the turns are to each other, the lower the
speed limit is. The exact number are shown in table 3.1. The table works for the
basic type of rail, with monorail the speed limit is multiplied by 1.5, for maglev
the multiplier is 2.

3.4.2 Crossroad types
There are total of three types of crossroad in the network - Sideline hub (SLH),
Mainline hub (MLH) and Backbone hub (BBH). The terminology is taken from
the OpenTTDCoop. Each crossroad has different purpose in the network and all
types are important. 1

SLH is the basic crossroad which connects primary industries to the network.
It consists of one entrance used for connecting primary industries and two or more
entrances which connect the crossroad with other crossroads. Number of SLHs in
the network depends on player choice and on distribution of the primary industry.

MLH is the second crossroad type. It is similar to SLH but instead of one
connection leading to primary industries, it has one connection leading to one
secondary/tertiary industry. The number of MLHs in the network then corre-
sponds with the number of secondary/primary industries which are being used
among the network.

1More information about crossroad types and its features can be found at http://
blog.openttdcoop.org/2010/07/10/advanced-building-revue-06-hubs/

17

https://wiki.openttd.org/Game_mechanics
http://blog.openttdcoop.org/2010/07/10/advanced-building-revue-06-hubs/
http://blog.openttdcoop.org/2010/07/10/advanced-building-revue-06-hubs/

Figure 3.3: Train on the left is located only on one turn to the left, it will not
slow down. Train on the right is located on both turns to the left therefore it will
slow down.

18

BBH is the last type of crossroad. It connect more then two main lines to-
gether. It is usually built in a strategic places between other crossroads to ensure
that there is a short connection between them. It is possible to create a network
with no BBH if the player insists of it, or the network can be full of them. It all
depends on design of the network and distribution of the crossroads. Good layout
usually has not much of them, but having couple does no harm.

3.5 Data representation
Majority of the data required for the run of the AI agent is gathered directly
from the game data through the API. This method is quick, ensures that the
data received is up-to-date in the time of the request and does not require any
saving/loading of the data manually in the AI, so it is cheap. In this category
belongs several kinds of tasks - requesting information about certain tiles of the
map, size of the map, requesting information about industry (for example industry
location from its ID), checking if tile can be built on or getting information about
terrain, those requests are all directed to the API.

The only information which the AI needs to store manually are information
about its previous decisions/calculations. Because TrainsferAI plans the network,
it needs to store the network model. It also stores some additional information
about industry which needs to be stored for further planning.

3.5.1 Industry model
Industry model is a class storing information about industry. Industry has two
flags which can be assigned to them by AI - blacklisted and used. Those flags
are internal values for the TrainsferAI, they are not used anywhere in the game.
Blacklisted industry is industry which failed to be included to the network. The
reason may be that there was no valid path found from the industry to its target
destination, that it is already served by another company, that there is no sec-
ondary industry on the map that accepts its cargo or maybe it is in the middle of
the city and there is no room for station to be built. If industry is blacklisted, the
AI will no more try to build station around it, transfer its cargo or connect it to
the network. Used flag is set to industries which have already been served by the
TrainsferAI (in a money making or regular route). The industry model contains
two tables - blacklistedIndustries and usedIndustries, each for its respective flag.
When an industry is about to be blacklisted/used, to the corresponding table a
boolean value of ”true” is inserted with key being the industry id industryId:

1 function IndustryModel :: BlacklistIndustry (industryId) {
2 blacklistedIndustries [industryId] <- true;
3 }

If AI checks whether the given industry is blacklisted/used, it simply checks if
the table contains any value with the given key (industryId):

1 function IndustryModel :: IsIndustryBlacklisted (industryId) {

19

2 return blacklistedIndustries .rawin(industryId);
3 }

3.5.2 Rail model
Rail model stores information about trains and rails. First information is the
engine chosen for the game. For the maximum flow in the network, it is ideal
when trains travel all with the same speed - no train has to slow down because it
is faster then the train in front of it. When first creating train, engine is selected
from all available engines by its maximum speed (the fastest is chosen). Then
the engine id is stored in the rail model. Money making routes are stored in the
rail model as well. Each time there new money making route is constructed, it
is stored in this array. It has also a table called railRegistrations, which stores
information about on which tile there is a rail and what crossroad it leads to.
The most important variable in rail model is array crossroads, which stores all
crossroads currently created on the map.

Crossroad class has properties type, which is enum { SLH, MLH, BBH, VIR-
TUAL }, number, which is number of the crossroad, index, which is index of
tile where the center of the crossroad is located, assignedIndustries, which is ar-
ray storing IDs of all industries assigned to that crossroad, networkConnections,
which is array of connections of the crossroad to other crossroads/to industry
(class NetworkConnection), and boolean isBuilt, which is self-explanatory.

NetworkConnection is a class storing information about one particular con-
nection. It has properties source, which is number of crossroad from which the
connection starts, target, which is number of crossroad to which the connection
leads, and then structures for storing inner and outer entrance points for entrance
at the source crossroad and target crossroad. The structures are inConnections-
From, which is storing points going from the connection to the source crossroad,
outConnectionsFrom, which is storing points going from the source crossroad to
the connection, inConnectionsTo, which is storing points going from the connec-
tion to the target crossroad and outConnectionsTo, which is storing points going
from the target crossroad to the connection. Those four are storing the inner
connection points, on image 3.2 those are the red zones. Connection also needs
to store the outer points, which are located in the yellow zones and are the two
points furthest from the crossroad center. Those points are stored in variables
inOuterConnectionFrom (point going from the connection to source crossroad),
outOuterConnectionFrom (point going from the source crossroad to the connec-
tion), inOuterConnectionTo (point going from the connection to the target cross-
road) and outOuterConnectionTo (point going from the target crossroad to the
connection).

3.5.3 Building restrictions manager
Special feature of the TrainsferAI are building restrictions. It is a mechanic that
allow the AI to reserve some tiles for building particular thing in the future and
no other construction is allowed to happen on those tiles.

Building restrictions use string tags and principle of restricting is that some
building tags can be active at given time and if the tile is restricted to no tags

20

Figure 3.4: Restricted area around the planned crossroad center. All tiles inside
the red rectangle are restricted and only crossroad 1 can be built on them.

or to subset of tags which are currently active (in other words, if at least all tags
the tile is restricted to are active at that time), the tile is available for building.
Otherwise the tile is treated as non-buildable.

If the AI wants to restrict a tile, it needs to supply an array of tags with it.
Then the tile is restricted with that supplied tags. The BuildingRestrictionMan-
ager has a variable buildingTags, which is array of currently active building tags.
This array can be modified throughout the run of the AI depending on what is
being built.

When for example crossroad 1 is being planned, all tiles around that crossroad
center are restricted with tags ”C1”. The tag ”C1” is active only if crossroad
1 is being built. If anything else would want to build on any of those tiles, the
restriction tag ”C1” is never active so those tiles will never be used for building -
this situation is displayed on image 3.4.

This feature is very convenient for plan-based building because it ensures ear-
lier planned construction will have room to be built and the AI does not need to
look for another spot if it accidentally built something on that tiles.

Before each pathfinding, This feature is used in the planner - if a crossroad is
planned at a particular location, range around that tile is restricted.

3.6 Life cycle
Each AI contains a Start() function which is the main function of the AI. If the
Start() function ends or the execution of the script is interrupted (for example
because of an error), the AI will stop. That means that the already existing
vehicles of the company will continue to run, but the AI will no longer be running,

21

so no new vehicles/infrastructure will be built.
At the beginning of the life cycle of TrainsferAI, data model instances are

created and stored as global for later access (more about data models in 3.5).
Then the TrainsferAI moves to its first phase - money making phase. After that
network planning phase starts, followed by network building phase. The final
phase of the AI is industry connecting phase in which the AI remains until the
end of the game. All of the tasks proposed in each phase will be further examined
and explained in section 3.7.

3.6.1 Money making phase
Purpose of the money making phase is to provide the company starting budget
to build the network and make some normal trains. Money making route is route
straight from the selected primary industry to the selected secondary industry. It
has its own rail tracks and straight connection between the stations. Number of
money making routes can be set in the AI settings. When the right amount of
routes is built, the AI moves to the network planning phase.

3.6.2 Network planning phase
Network planning phase is second phase of the AI life cycle. In this phase, nothing
is being built, everything AI does is plan. That makes room for the money making
routes to earn some money and prepare for the building phase. First step in the
network planning is finding locations for future SLHs. When those points are
found, then the AI will find MLH spots on the map. The last step of planning the
network is connecting the crossroads. When the connections between crossroads
are set, AI moves to the building phase.

3.6.3 Network building phase
In this phase the AI takes the network model and builds it. It starts with cross-
roads. For each crossroad entrance points are found. When the entrance points are
set, the crossroad is getting built. After building the inner connections between
the entrances, the entrances themselves are constructed. When all crossroads are
built, connections between each crossroad is build. When the whole network is
finished and only connections to industries are left not built, network building
phase is finished and AI moves to the final phase.

3.6.4 Connecting phase
In final phase of the AI the agent picks one primary industry and secondary
industry where the cargo needs to be delivered. It builds connection to SLH
entrance and make station for loading and unloading. When the infrastructure is
complete, it builds some trains and start running them. This sequence repeats as
long as there are free entrances to the SLHs for industry connecting.

22

3.7 Algorithms
There was a lot of algorithms used in TrainsferAI to solve particular sub-tasks of
the problem. We will look at each algorithm in details.

3.7.1 A*
A* (AStar) algorithm is widely used path-finding algorithm as it is very efficient
and fast. It is an extension of Dijkstra’s algorithm - it introduces a heuristic
function into the search. It is calculated as

f(n) = g(n) + h(n),

where:

• f(n) is total estimated cost of path through node n

• g(n) is real cost to reach node n

• h(n) is estimated cost from node n to goal (Brilliang.org [2016])

A* is a standard pathfinding algorithm in OpenTTD and there is even a library
containing the algorithm for free use in AI development. For purpose of this thesis
the library A* was not enough. The main problem were the turns - if a node would
be expanded and the turn to left would not be possible because it would be to
close to previous turn to the left, the node would not be expanded. But after that
we could enter the node from different side and the turn would be fine - in that
case we could expand the node. But with normal A* the node would already be
open so it would not be possible to open it again. It was necessary to modify the
algorithm to achieve this functionality.

The main problem encountered in the thesis is called multi-agent pathfinding.
It is basically a problem of finding multiple paths in a common space which
does not cross each other. The basic version of this problem operates in three
dimensions - x, y and time dimension, where x and y being the standard 2D
dimensions. In the case of the thesis, it only needs to operate in 2D (x and y). In
the original problem the paths are actually a real-time positions of the agents, so
the conflict of two standing on the same tile can only happen in one timestamp.
If an agent steps on tile where another agent has been in the past, it does not
matter and this situation is not a conflict. That is not the case here - the path is
considered whole - from start point to the end point. The path cannot go through
a tile where another path has been in the past because there will be rails of that
path. So the time dimension is discarded from this problem.

A basic solver for this problem is a path-searching algorithm which is ran
multiple times in a row. This is very time-consuming to find optimal solution
because the search space is enormous and scales exponentially by the number of
agents. If we satisfy with sub-optimal solution however, this problem is solvable
in reasonable time as each search only needs to find a path, not the optimal one.

Alternative approach to problem of finding multiple paths in common space is
called Conflict-based search. It defines a conflict as two agents being at the same
place at the same time. It operates at two levels - at the higher level the solver
searches in a tree of conflicts between two agents. At the low level, it takes one

23

agent and performs a search, but it gives the search a constraint that the search
cannot go through the node of the conflict at the time of the conflict. That can
raise new conflict which are then resolved in the same way Sharon, G., Stern, R.,
Felner, A., & Sturtevant, N. [2012]. To adapt this algorithm to the problem in
the thesis, we need to discard the time dimension from the search. That increases
the number of conflicts a lot because the ”locations” of the agents are not a single
tile, but the whole path. The conflict-based search is optimized for as low number
of conflicts as possible, not fitting for an open-space path finding problems, but
more likely for corridors and narrow spaces. The time complexity of the algorithm
increases for each encountered problem.

For the purpose of the A*, priority queue has been implemented to store open
nodes by the priority. The basic data structure Node contain tileIndex, which is
index of the tile the node is located on, edge, which is the side of the tile which the
node is on (numbered 0 to 3 and starting top-right 0 and ending bottom-right 3
anti-clockwise), parentNode, which is reference to the parent node, cost, which is
total cost of the path up to the node, length, which is length of the node (diagonal
has 0,5, straight has 1 - it is used for distance between signals), lastTurnLeft,
which is distance to last turn to the left and lastTurnRight analogically.

The first step of the A* is preparation. The A* needs to find path coming from
a concrete direction so the turns are built correctly. For this, we find a set of tiles
called ”area near goal”. It is a list of tiles which are close to the goal and which
allow the path to come from the right direction, as shown on image 3.5. The goal
tile there is the rail and the path has to come from the top-right direction. The
blue shows correct area where there is possible to find the connection. The red
area is forbidden as from there path cannot be found to the goal tile from the
specified direction. Variable areaNearGoal stores this area (the blue part) and
each time node close to the goal is opened, it is checked if it belongs among the
allowed tiles. If not (that means it is on the wrong side), the tile will not be
expanded. Pseudocode is showed in algorithm 3.1.

The main cycle of the algorithm (3.2) then checks if maxSteps not reached, in
that case it returns no path. it pops the top node from the queue and opens all
its neighbours. For each of them, it checks if the neighbour is goal - it has found
the path in that case, otherwise it checks if the neighbour is available. If true, it
calculates its priority and pushes it to the queue (3.3). After all neighbours have
been checked, it puts the node to closed nodes.

1 goalTile = to. tileIndex ;
2 goalEdge = to.edge;
3 fromTile = from;
4

5 // set area near goal
6 areaNearGoal = GetGoalNearbyArea ();
7

8 queue.Push (0, from);
9 lastNode = null;

10

11 local step = 0;

Algorithm 3.1: A* preparation

24

Figure 3.5: The area around goal - the blue part is the correct area and the red
area is the forbidden one

1 function AStar :: FindPath (from , to) {
2 PrepareAstar ();
3

4 while (! queue. IsEmpty ()) {
5 if(maxSteps > 0 && step >= maxSteps) return null;
6

7 prio = queue. GetMin ();
8 current = queue.Pop ();
9

10 // add all neighbours to the queue and put the current
node to closed

11 neighbours = GetNeighbours (current);
12 for(i = 0; i < neighbours .len (); i++) {
13 currentNeighbour = neighbours [i];
14 CheckNeighbour (currentNeighbour);
15 }
16

17 //if the goal has been found
18 if (lastNode) {
19 break;
20 }
21

22 // put node to closed
23 if(isDetailed) {
24 closed [current . GetDetailedIdentifier ()] = current ;
25 } else {
26 closed [current . GetIdentifier ()] = current ;
27 }
28

29 step ++;
30 }
31

32 // reconstruct the path

25

33

34 return ReconstructPath ();
35 }

Algorithm 3.2: A*

1 // check goal reached
2 isGoal = isToGetClose ? IsNearGoal (currentNeighbour) :

IsGoal (currentNeighbour);
3

4 if (isGoal) {
5 lastNode = currentNeighbour ;
6 break;
7 }
8

9 //if neighbour is not an available tile for building , skip
it

10 if (! IsAvailable (current , currentNeighbour)) {
11 continue ;
12 }
13

14 priority = GetPriority (current , currentNeighbour);
15

16 queue.Push(priority , currentNeighbour);
17

18 if(isDetailed) {
19 open[currentNeighbour . GetDetailedIdentifier ()] =

currentNeighbour ;
20 } else {
21 open[currentNeighbour . GetIdentifier ()] = currentNeighbour ;
22 }

Algorithm 3.3: A* CheckNeighbour function

If the path has been found, it needs to be reconstructed. The algorithm stores
parent node for each node. For reconstruction, it will simply take the last node
and reconstruct the path by traversing through the parent nodes until there is no
parent node (and we found the starting node). The path will be reversed before
building (so it looks better that the path is building from the beginning to the
end, not the other way around (3.4).

1 //if no last node , path has not been found
2 if(lastNode == null) return null;
3

4 // push the last tile
5 path = [];
6 n = lastNode ;
7

8 while(n != null) {
9 path.push(n);

10 n = n. parentNode ;

26

Figure 3.6: The upper rails were the first path. If that rail would go straight, the
lower rails would fail to build as there is a house in the way. The pathfinder was
able to avoid it.

11 }
12

13 paths = [];
14 paths.push(path);
15

16 return paths;

Algorithm 3.4: A* ReconstructPath function

A* has a possibility to find a double way. That means that for each node it
will check node to the left of it and checks if that node is available as well as shown
on image 3.6. That ensures that along the found path can be built another path,
effectively making two paths instead of one. For that reason, at the end of the
algorithm the resulting path is returned as array (in case of double way search,
it returns two paths in the array, otherwise only one). The double way search is
not shown in the code.

Open and closed lists are implemented as tables. If a node is put into the
table, it checks if A* is set to detailed mode or not. If not in detailed mode, the
identifier of the node which is put into closed/open list will be just his index and
edge. If the detailed mode is on, the identifier will contain information about how
far back there was turn to left and turn to right. The node can then be opened
more times if the distance to last turn to left or turn to right differs from the
previous instances of the same node. That is convenient when finding path with
correct turns on smaller area so there are less tiles that can be expanded, but the
algorithm needs to find a path there anyway. The best example of the difference
between detailed and not detailed modes is finding connection between crossroads
and finding connection inside the crossroad. While the first case usually looks like
a long lane leading to another crossroad and the algorithm usually does not try
to open one node more times, in second case the algorithm will repeatedly open
some nodes until potentially correct turn will appear and path will be found.

The distance from the last turn to left and turn to right can be big numbers.
We do not need to store the full number because if we hit the number at which the
path can be turned to the right, we do not need to count more. We can then limit

27

the number to the length of the trains. That will lower the possible combinations
of one node that can be opened significantly.

Due to space searches being time-consuming and AI having only limited pro-
cessor time, some A* performance improvements needed to be done in order for
the A* to speed up. First of all, The detailed mode was enabled only while build-
ing crossroads. The connection usually find other way and go forward almost all
the time so the reopening of the node would not benefit them. The other problem
that occurred when the A* was finding connection in detailed mode was that if it
reached a dead end, it would usually never get from that point.

3.7.2 A* heuristic function
Heuristic function is very important for a successful A* searching. Heuristic func-
tion in TrainsferAI is enhanced with additional factors (algorithm 3.5). If the
search is not detailed (for example connections), it has higher heuristic multiplier
of 3. That means the remaining estimated cost is multiplied by 3 - the estimated
cost has far higher value then the already travelled cost. That means A* behaves
more ”hungry”, expanding more likely nodes which are very closer to the goal
even if they have higher cost themselves. This helps to get from the dead ends
faster. When the A* is detailed (finding crossroads), it has a multiplier of 1.2.
This enables to pass obstacle and get to a point from more different angles more
easily as nodes which are further from the goal but has low cost are more likely to
be expanded. This leads to a fact that this way A* can find bridging over another
part of the crossroads much easier.

1 function AStar :: GetPriority (nodeFrom , nodeTo) {
2 cost = nodeTo .cost;
3 prevCost = nodeFrom .cost;
4 diffCost = cost - prevCost ;
5

6 distance = GetEuclideanDistance (goalTile , nodeTo .
tileIndex);

7

8 // estimated cost to the goal node
9 if(isDetailed) {

10 multiplier = detailedHeuristicMultiplier ;
11 } else {
12 multiplier = heuristicMultiplier ;
13 }
14

15 estimated = (DistanceManhattan (nodeTo .tileIndex ,
goalTile)*1.8 + DistanceMax (nodeTo .tileIndex , goalTile)
*0.2) / 2;

16

17 // penalty for beeing a bridge
18 bridgePenalty = nodeTo .type == NodeType . BRIDGE ?

BRIDGE_PENALTY : 0;
19

20 // penalty for requiring a terraforming

28

21 terraformingPenalty = IsTileSloppedCorrectly (nodeFrom ,
nodeTo) ? 0 : TERRAFORMING_PENALTY ;

22

23 closeToGoalMultiplier = 1;
24 if(isDetailed && distance < CLOSE_TO_GOAL) {
25 closeToGoalMultiplier = 0.6;
26 }
27

28 accessSideMultiplier = GetAccessSideMultiplier (nodeTo .
tileIndex , goalTile , goalEdge)

29

30 return (prevCost + bridgePenalty + terraformingPenalty)
+ (estimated + diffCost) * multiplier *
closeToGoalMultiplier * accessSideMultiplier ;

31 }

Algorithm 3.5: Heuristic function

In the heuristic function there are many of parts which evaluate certain fea-
tures. All parts has their own reason to get counted into the final heuristic.

Estimated cost takes two parts - manhattan distance and max distance. Man-
hattan distance is the sum of difference of the X and Y coordinates of two points.
This only has produced weird looking connections that would go diagonally to
some point and then go straight which did not look right. So the max distance
has been added. Max distance is simply the greater from difference of the X and
Y coordinates of the points. That caused to expand points which reduces both
distances by 1 to be at first. That would get rid of the diagonal part of the rail
and would make it more squared and fluent (not so many sharp turns). The coef-
ficients were set that the max distance only has small influence compared to the
manhattan distance, which works the best. The whole extimated cost needs to be
roughly equal to the distance, so we need to divide the result by 2 (because the
sum of the both distances are roughly 2*distance as well).

Bridge penalty gives a slight penalty to nodes which create a bridge. The
penalty given is almost zero becuase the only real effect this factor gave to the
search was longer searching time.

Terraforming penalty is a slight penalty given to nodes which required to
modify the terrain in order to be built.

CloseToGoalMultiplier is a very important one. When the path gets closer
to the goal, those closer nodes have priority over the further by multiplying its
multiplier by 0.6. That way its easier for the search to get finished when getting
closer to the goal, but it preserves its ability to get from dead ends (which is
granted by the higher multiplier for the estimated part of the path).

AccessSideMultiplier is another way how to get to the goal faster. It penalizes
nodes which are on the opposite side compared to the goal direction. Those nodes
would need to go around the goal tile in order to come from the right direction.
The further the node is from the goal tile while on the wrong side, the bigger
is the multiplier. Its max value is size of the map / 50, so for map 512*512 the
multiplier can get to value of 10.

The final heuristic value is calculated as cost of the node + penalties + (esti-
mated cost + cost difference) * all multipliers.

29

3.7.3 Finding a station
When a rail station needs to be found, function FindSimpleStationWithConnec-
tion() is called (3.6). Prior to this, a pathfinding is ran and points close to the
potential stations are found. Those points need to be connected to the station
for a successful construction. First step is to get directions between the industry
where the station will be built and the entry points of the connection. Then a
direction of the station is picked to the station faces the connection points. Then
up to four times the algorithm will try to find a station with that given direction.
If it does not find viable station in a direction, it changes the direction and tries
again. For each direction it will iterate over all points in an area around the
industry (variable i corresponding to x coord and variable j corresponding to y
coord). If the tile is not close to industry (that means the station will not be in
the industry range and will not be provided by cargo or will not accept it), current
tile is discarded. Then method TryToFindStation() is called which checks if the
station can be built starting from the specified tile. It checks for correct terrain
and if there are no obstacles for the station itself and for the station entrance as
well. If there is a free room for the station, it then checks if a connection from the
possible station entrance can be connected to the given points from the connec-
tion. If all station, its entrance and connection can be built, then pair of (station,
entrance) is returned. Because of the bounded rationality, function can return
null - in that case the industry is blacklisted as there is no room for a station to
serve it and another industry is found.

1 function StationFinder :: FindSimpleStationWithConnection (
tileIndexFrom , tileIndexTo , cargo , loading , entryPoint ,
exitPoint) {

2

3 //at first , try all stations with directions leading
towards the target points

4 directions = MapHelper . GetDirections (tileIndexFrom ,
entryPoint . tileIndex);

5 directionFrom = GetDirectionFrom (tileIndexFrom , entryPoint
. tileIndex);

6 directionTo = GetDirectionTo (tileIndexFrom , entryPoint .
tileIndex);

7

8 x = AIMap. GetTileX (tileIndexFrom);
9 y = AIMap. GetTileY (tileIndexFrom);

10 moveToOtherDirection = false;
11 direction = directionFrom ;
12

13 for(dir = 0; dir < 4; dir ++) {
14 for(i = x- MIN_DIFF ; i < x+ MAX_DIFF ; i++) {
15 for(j = y- MIN_DIFF ; j < y+ MAX_DIFF ; j++) {
16 // continue only if the tile accepts / produces the

required cargo
17 if(! CheckTileIsCloseToIndustry (GetTileIndex (i, j),

cargo)) continue ;
18

30

19 // try to build station
20 station = TryToFindStation (i, j, direction ,

tileIndexFrom);
21 if(station != null) {
22 // now we want to find the path to the given points

, if success , return the station , if not , continue
23 pf = PathFinder ();
24 paths = pf. FindPath (entryPoint , station .

entryPoints [0], true /* double path */, 200 /* max steps */);
25 return [station , paths];
26 }
27

28 if(paths != null && paths.len () == 2) {
29 // lets return paths and the station
30 return [station , paths];
31 } else {
32 moveToOtherDirection = true;
33 }
34

35 // else we continue ;
36 }
37

38 if(moveToOtherDirection) {
39 break;
40 }
41 }
42

43 if(moveToOtherDirection) {
44 break;
45 }
46 }
47

48 local newDir = (direction + 1) % 4;
49 direction = newDir ;
50 }
51

52 return null;
53 }

Algorithm 3.6: Finding a station

3.7.4 Finding SLHs
First step of the planning of the network is to find spots for SLHs. At the be-
ginning, list of available primary industries is gathered from the game. Available
industry is an industry which is not served by any other transportation services.
For the SLH spot searching, a k-means algorithm is used. The algorithm objec-
tive is to ”group similar data points together and discover underlying patterns.
To achieve this objective, k-mean looks for a fixed number (k) of clusters in the
dataset.” (Dr. Garbade, Michael J. [2018])

31

The dataset in this case is the list of available industries and the purpose of
the algorithm is to divide the industries to clusters and then find the centers of
each cluster. That set of center points would then create center points for the
SLHs. Because the SLH distribution is not required to be precisely in center
of the clusters, 3 iterations of the k-means algorithm are enough to get a rough
distribution of the points.

One more step is done after the k-means is finished. A square around the
center is made and another eight of same squares are created around the original
square. Then, for each crossroad center point, for each square from the 9, a
buildable score is calculated. The buildable score is number of tiles in the square
which are buildable (has no obstacle on them) and at the same time are not a
water tile. Then all 9 buildable scores are compared and center of the square with
the highest buildable score is selected as center of the SLH. This helps to preserve
building place for the crossroad around its center and prefers the ”clearest” area.

3.7.5 Finding MLHs
Second step after SLH spots are found is to find MLHs. The AI iterates over all
cargo types of the game. For each cargo type it gets a list of industries that accept
the cargo. For each industry function GetNewMLH() is called which tries to find
MLH spot for the industry accepting the selected cargo type (3.7). The function
at first checks if the industry is not too close to any existing crossroads to prevent
the network to be collapsed and too dense on some spots. If this condition is
satisfied, it will try to find suitable spot for MLH around the selected industry -
function FindCrossroadNearIndustry() (3.8) is called. If this function returns a
crossroad, it is returned. Otherwise it continues to check other industries.

1 function CrossroadPlanner :: GetNewMLH (crossroads ,
availableIndustries) {

2 newCrossroad = null;
3

4 // until we found crossroad or all industries has been
searched through

5 chosen = availableIndustries .Begin ();
6 while (! newCrossroad && ! availableIndustries .IsEnd ()) {
7 location = AIIndustry . GetLocation (chosen);
8 isTooClose = false;
9

10 // check all crossroads if the industry is not too
close to one

11 for(i = 0; i < crossroads .len (); i++) {
12 if(EuclideanDistance (chosen , crossroads [i]. index

) < INDUSTRY_TOO_CLOSE_TO_CROSSROAD) {
13 isTooClose = true;
14 }
15 }
16

17 if(isTooClose) {
18 chosen = availableIndustries .Next ();

32

19 continue ;
20 }
21

22 // try to get a crossroad near this industry
23 possibleCrossroad = FindCrossroadNearIndustry (

crossroads , chosen);
24

25 if(possibleCrossroad != null) {
26 newCrossroad = possibleCrossroad ;
27 break;
28 }
29

30 chosen = availableIndustries .Next ();
31 }
32

33 return newCrossroad ;
34 }

Algorithm 3.7: Finding a MLH spot

Function FindCrossroadNearIndustry() tries to find MLH around a given in-
dustry. At first it creates a virtual square around the industry. Then it excludes
all points which are too close to the industry itself from the square. Then two
random numbers xRand and yRand are drawn and other two numbers controlling
if the xRand and yRand numbers will be negative or positive. Then the xRand
and yRand numbers are added to the industry location coordinates and a poten-
tial tile for crossroad is found. The point is then checked if it is not too close
to any existing crossroads. If it is, the point is discarded. If that condition is
satisfied, buildable score of the area around the point is calculated. If it is higher
then the threshold, the point is automatically selected as new crossroad center
and new crossroad is returned. If not, its score is remembered and next point is
being drawn. After each 50 unsuccessful tries, the multiplier is increased by 0.4.
This ensures that if the industry is failing to be built in a spot, the radius of the
crossroad center is getting bigger, offering more possible spots for the crossroad
to be successfully built. But for most cases, the crossroad is built somewhere near
the original point.

1 function CrossroadPlanner :: FindCrossroadNearIndustry (
crossroads , industry) {

2 multiplier = 1, bestBuildableScore = -1, bestIndex = -1;
3

4 for(i = 0; i < ATTEMPTS_TO_FIND_CROSSROAD_NEAR_INDUSTRY ;
i++) {

5 if(i % 50 == 0) {
6 multiplier += 0.4;
7 }
8

9 xRand = AIBase . RandRange ((MAX_DISTANCE_OF_CROSSROAD
* multiplier) - INDUSTRY_TOO_CLOSE_TO_CROSSROAD) +
INDUSTRY_TOO_CLOSE_TO_CROSSROAD ;

10 yRand = AIBase . RandRange ((MAX_DISTANCE_OF_CROSSROAD

33

* multiplier) - INDUSTRY_TOO_CLOSE_TO_CROSSROAD) +
INDUSTRY_TOO_CLOSE_TO_CROSSROAD ;

11 isXNegative = AIBase . RandRange (2);
12 isYNegative = AIBase . RandRange (2);
13

14 if (isXNegative == 0) { xRand = -xRand; }
15 if (isYNegative == 0) { yRand = -yRand; }
16

17 //x and y coord of the potentional crossroad tile
18 x = AIMap. GetTileX (AIIndustry . GetLocation (industry))

+ xRand;
19 y = AIMap. GetTileY (AIIndustry . GetLocation (industry))

+ yRand;
20

21 // protecting the overflow and underflow from the map
22 if (x < 0 || y < 0 || x >= AIMap. GetMapSizeX () || y

>= AIMap. GetMapSizeY ()) {
23 continue ;
24 }
25

26 isTooClose = false;
27 for(j = 0; j < crossroads .len (); j++) {
28 crossroad = crossroads [j];
29 if(abs(x - crossroad .GetX ()) <

CROSSROADS_TOO_CLOSE &&
30 abs(y - crossroad .GetY ()) <

CROSSROADS_TOO_CLOSE) {
31 isTooClose = true;
32 }
33 }
34 if(isTooClose) {
35 continue ;
36 }
37

38 buildableScore = GetCrossroadBuildableScore (
crossroads , x, y);

39 if(buildableScore > bestBuildableScore) {
40 bestBuildableScore = buildableScore ;
41 bestIndex = AIMap. GetTileIndex (x, y);
42 }
43

44 // check if a good MLH was not already found , if it
was , return it right now

45 if(bestBuildableScore >= MIN_BUILDABLE_SCORE) {
46 return Crossroad (CrossroadType .MLH , crossroads .

len (), bestIndex , [industry]);
47 }
48 }
49

50 if(bestIndex == -1) {
51 return null;

34

52 }
53

54 return Crossroad (CrossroadType .MLH , crossroads .len (),
bestIndex , [industry]);

55 }

Algorithm 3.8: Finding a MLH near selected industry

3.7.6 Connecting the network
After SLH and MLH locations are found, the last piece to finish main part of
the network is to connect crossroads together. Function ConnectNetwork() does
that task. It iterates only through all MLH crossroads (because SLH crossroads
does not require any other crossroad to be connected to them to unload cargo,
SLH crossroads contain only loading stations). All other steps apply to each
MLH. The algorithm calls method GetConnectionPoints() which will iterate over
all crossroads and check which crossroads need to be connected to this MLH.
Then it calculates distances from the MLH to each of the crossroads about to
be connected. If the algorithm has found crossroads and its distances, for each
one of them it calls FindAndConnect() method. This method will find path in
the partially-connected network. It can create new one, but the already existing
parts of the network have its cost multiplied by 0.4 so it prefers to reuse existing
connections if possible. A* is used as a search algorithm for the path lookup.
After this step, there is a valid path between each crossroad which needed to be
connected and current MLH (path is created as a virtual connection, nothing is
planned on the map or built yet. The only information the connection contains
so far is ”Crossroad number 1 will be connected to crossroad number 3” and
so on.) It can happen that a crossroad will have more then 3 connections. In
that case the crossroad building would be too complicated. We need to limit the
number of connections each crossroad has. Method UniteConnections() takes care
of that (detailed in 3.10). After that all crossroads are in valid state - they are
connected to all crossroads they need to be and they have at least 2 and maximum
of 3 connections (SLHs and MLHs have one connection less as it is reserved for
connecting of the industry).

Finally the algorithm will once more iterate over all crossroads, selecting only
SLHs and MLHs this time. For each, it will generate a random point on the map
and then creates a virtual crossroad there. Virtual crossroad is not an existing
crossroad and its only purpose is to create entrance pointing to it. The direction
is random and industries connected to that crossroad use the entrance created
with this virtual crossroad.

After all crossroads are iterated over, the array with crossroads is returned.

1

2 function ConnectionPlanner :: ConnectNetwork (crossroads) {
3 // create list of all cargos which is not primary cargo (

does not come out from SLHs)
4 secondaryCargoList = ConnectionPlanner .

GetSecondaryCargos (crossroads);
5

35

6 for (i = 0; i < crossroads .len (); i++) {
7 //we want to connect the points to the MLH so we

consider only MLHs here
8 if(crossroads [i]. type != CrossroadType .MLH) {

continue ; }
9 currentMLH = crossroads [i];

10

11 // only crossroads which we want to connect to the
current MLH

12 connectionPoints = GetConnectionPoints (crossroads ,
secondaryCargoList , currentMLH);

13

14 // distances of crossroads
15 distances = EuclideanDistances (connectionPoints ,

currentMLH);
16

17 // for each crossroad , connect to the most convenient
crossroad

18 for (i = 0; i < distances .len (); i++) {
19 FindAndConnect (crossroads , distances [i]);
20 }
21

22 crossroadCount = crossroads .len ();
23 // now we need to unite connections at nodes which

has more than allowed connections
24 for(i = 0; i < crossroadCount ; i++) {
25 if(crossroads [i]. networkConnections .len () >

GetCrossroadMaxConnections (crossroads [i]. type)) {
26 // more connections , unite them , creating a

new BBH
27 crossroads = UniteConnections (crossroads ,

crossroads [i]);
28 }
29 }
30 }
31

32 //at this point we connect SLHs and MLHs to virtual
crossroad

33 for(local i = 0; i < crossroads .len (); i++) {
34 if(crossroads [i]. type != CrossroadType .SLH &&

crossroads [i]. type != CrossroadType .MLH) continue ;
35

36 local targetX = AIBase . RandRange (AIMap. GetMapSizeX ()
);

37 local targetY = AIBase . RandRange (AIMap. GetMapSizeY ()
);

38

39 virtual = Crossroad (CrossroadType .VIRTUAL , -1, AIMap
. GetTileIndex (targetX , targetY));

40 crossroads .push(virtual);
41

36

Figure 3.7: Total angles (left) and Local angles (right)

42 crossroads [i]. Connect (virtual);
43 }
44

45 return crossroads ;
46 }

Algorithm 3.9: Connecting the crossroads in the network

3.7.7 Optimization of crossroad connection number
Each crossroad can have up to 3 connections, in order for the network to be
not cluttered together. If in the connecting of crossroads any of the crossroad
did have more then 3, the UniteConnections() function has been called (3.10).
Its purpose was to instead of some of the connections, create a new BBH and
reconnect part of the connections so that all crossroads have maximum of 3. At
the beginning x and y coordinate of selected crossroad is stored. The total angles
are calculated by the GetTotalAngles() method (3.11) and right after that local
angles are calculated as well (3.12). Total angle is an angle measured between
pure east direction and the direction of the given point. On the other hand,
Local angles are measured from the angle of the previous point to the angle of
the current point as shown in image 3.7. Then the local angles get sorted and the
lowest local angle is selected (connections which has the lowest local angle between
themselves. Those connections get united and one connection is created instead of
those two. New BBH is created - details about this method in 3.7.8. Crossroads
sharing the two original connections are disconnected, new BBH is inserted to the
network and the source MLH and two target crossroads are all connected to the
new BBH. This algorithm can repeat more times until the correct conditions are
met. Finally AngleSortFunction is function which sorts angles by their value in
an ascending order.

1 function ConnectionPlanner :: UniteConnections (crossroads ,
selectedCrossroad) {

2 // now we need to order the connections by the total
angle they have to the 0 angle (means a " connections "
straight east

37

3 // then we calculate the angle between each two neighbour
connections

4 // finally we process them
5

6 //x and y of the selected crossroad
7 x = selectedCrossroad .GetX ();
8 y = selectedCrossroad .GetY ();
9

10 totalAngles = GetTotalAngles (selectedCrossroad);
11

12 //we have the array of angles , sort it
13 totalAngles .sort(AngleSortFunction);
14

15 localAngles = GetLocalAngles (totalAngles);
16

17 // now we have the array of local angles , sort it again
18 localAngles .sort(AngleSortFunction);
19

20 // now we have localAngles sorted
21 crossroad1 = localAngles [0]. crossroad1 ;
22 crossroad2 = localAngles [0]. crossroad2 ;
23

24 // TODO find a good spot for the new BBH
25 newBBHLocation = FindBBHSpot (crossroads , crossroad1 ,

crossroad2 , selectedCrossroad);
26 if(newBBHLocation == null) {
27 return crossroads ;
28 }
29

30 // make new BBH
31 newBBH = Crossroad (CrossroadType .BBH , crossroads .len (),

newBBHLocation , []);
32 crossroads .push(newBBH);
33

34 // reconnect crossroads
35 newBBH . Connect (selectedCrossroad);
36 selectedCrossroad . Connect (newBBH);
37 newBBH . Connect (crossroad1);
38 newBBH . Connect (crossroad2);
39 crossroad1 . Connect (newBBH);
40 crossroad2 . Connect (newBBH);
41

42 selectedCrossroad . RemoveConnection (crossroad1);
43 selectedCrossroad . RemoveConnection (crossroad2);
44 crossroad1 . RemoveConnection (selectedCrossroad);
45 crossroad2 . RemoveConnection (selectedCrossroad);
46

47 return crossroads ;
48 }

Algorithm 3.10: Uniting the connections and creating new BBH

38

1

2 function ConnectionPlanner :: GetTotalAngles (selectedCrossroad
) {

3 totalAngles = [];
4

5 for(i = 0; i < selectedCrossroad . networkConnections .len
(); i++) {

6 // use atan2 for angle
7 //we need to get the [0 ,0] point which is the

selected crossroad and then diff of the other crossroads
from the selected .

8 // those two values are then used to the atan2
9

10 secondCrossroad = selectedCrossroad .
networkConnections [i]. target ;

11

12 //x and y of the second crossroad
13 x2 = secondCrossroad .GetX ();
14 y2 = secondCrossroad .GetY ();
15

16 // this is the actual atan2 argument point
17 xDiff = x2 - x;
18 yDiff = y2 - y;
19

20 // angle in radians
21 angle = atan2(xDiff , yDiff);
22

23 // angle in degrees , need to be normalized to [0,
360) degrees

24 tmpDegrees = angle / PI * 180;
25

26 // normalized degrees
27 degrees = tmpDegrees > 0 ? 360 - tmpDegrees : -

tmpDegrees ;
28

29 // add angle to the array
30 totalAngles [i] = CrossroadTotalAngle (degrees ,

secondCrossroad);
31 }
32

33 return totalAngles ;
34 }

Algorithm 3.11: Method for calculating total angles

1

2 function ConnectionPlanner :: GetLocalAngles (totalAngles) {
3 localAngles = [];
4 for(i = 1; i < totalAngles .len (); i++) {

39

5 localAngles .push(CrossroadAngle (totalAngles [i]. angle
- totalAngles [i -1]. angle , totalAngles [i]. crossroad ,
totalAngles [i -1]. crossroad));

6 }
7

8 // push the angle between last and first crossroad as
well

9 localAngles .push(CrossroadAngle (totalAngles [0]. angle +
360 - totalAngles [totalAngles .len () -1]. angle , totalAngles
[0]. crossroad , totalAngles [totalAngles .len () -1]. crossroad
));

10 }

Algorithm 3.12: Method for calculating local angles.

3.7.8 Finding BBHs
The algorithm for finding spot for new BBH is quite similar to finding MLH spot
(3.7). The only real difference between the two algorithms is the selection of the
initial center point. In case of BBH finding, we have three points related to the
BBH center finding - center of the original MLH and centers of two crossroads
where the two united connections lead to. The initial center point x is calculated
as sum of the x coordinate of the previous three points, same goes for y coordinate.
Then the initial center point of the crossroad is [x,y].

3.7.9 Finding in and out points of the crossroad
Finding entrance points of a crossroad is a problem which is influenced the most by
the bounded rationality. There are plenty of problems that can occur while finding
entrance points. Because of that, if any of these problems occur, the points are
simply discarded and new points are being generated. Sometimes it happens that
crossroad is stuck in a place that there is not possible to fit entrances anywhere.
For that case, on each iteration except the first even the crossroad center itself can
be slightly moved against the original position (still cannot be too close to another
crossroad). Approach of those two modifications has very high chance of success
and because of the bounded rationality problems, we cannot simply iterate over
all combinations and find the best one because that would be too expensive for
the processor time.

The function GetInAndOutPoints() (3.13) finds angles of the connections at
the beginning. Then it tries to move the crossroad center a bit. Then it repeatedly
tries to find entrance points until it is successful. In first step it takes the local
angles of the connections and randomize them. After that they get corrected
so they are not close together. Finally points are retrieved from the angles via
the GetRecalculatedPoints() method. It simply calculates point based on the
crossroad center, radius and angle provided by the method for each angle there
is. As we have only one point per connection so far (first point out), then each
point is expanded and first point in is added to each entrance. If not successful,
points are discarded and new iteration begins. After that those two points for
each connection are expanded further if 3-way crossroad (it requires two in and

40

two out points per connection as one point will lead to the second connection
and the other one to the third connection). Sometimes it happens that points are
located in the corner of the square around the crossroad center. Those points are
discarded as well.

Last thing that is checked is if the entrance is clear. Few rows of tiles in front of
the entrance tiles and behind the entrance tiles are tested if they are buildable. If
all are buildable, then the entrance points are found and the cycle ends. Because
of a lot of randomization and moving of the points, it is possible that entrances
assigned to each connection are in a sub-optimal combination - they are leading
other way then to the target point. Those connection then look weird when built if
the connection needs to for example run around the whole crossroad because it was
built on the other way then it needed. When the points are found, the algorithm
will reassign the points to the connections. That means that all combinations
of assignment of each points are checked and difference between angles of the
entrance and the connection target is calculated. For further improvement of the
result, the differences are squared. That ensures that if a difference in angles of
one entrance is very big, it is seen as less viable solution then if all three entrances
has the difference low.

After the reassignment the points are set to the crossroad and it is returned
from the method.

1 function ConnectionPlanner :: GetInAndOutPoints (crossroad) {
2 angles = GetAngles (crossroad);
3

4 for(i = 0; i < MOVE_CROSSROAD_CENTER_TRIES ; i++) {
5 if(i > 0) {
6 newCrossroad = ConnectionPlanner .

MoveCrossroadCenter (crossroad);
7 crossroad = newCrossroad ;
8 }
9

10 for (local j = 0; j < MAX_ENTRANCE_POINT_TRIES ; j++)
{

11 entranceNotClear = false;
12

13 // find random angles close to original angles
14 localAngles2 = FindRandomAngles (angles);
15

16 // correct the angles so they are not close to
each other (not lower then threshold)

17 localAngles3 = CorrectAngles (localAngles2);
18

19 // get points from angles
20 points = GetRecalculatedPoints (crossroad ,

localAngles3);
21

22 newPoints , invalid = GetAllBasicPoints (points);
23

24 if (invalid) { continue ; }
25

41

26 entranceClear = true;
27 expandedPoints = ExpandInAndOutPoints (crossroad ,

newPoints);
28 points = expandedPoints ;
29

30 if (! CheckNotInCorners (newPoints)) {
31 continue ;
32 }
33

34 for (k = 0; k < points .len (); k++) {
35 if (! CheckEntranceFree (points [k], crossroad)

) {
36 entranceClear = false;
37 break;
38 }
39 }
40

41 if (entranceClear) {
42 // now reassign the entrances to different

targets as they could have been move and not be assigned
optimally

43

44 reassignedPoints = ReassignInAndOutPoints (
crossroad , expandedPoints);

45 points = reassignedPoints ;
46

47 // set the points
48 SetPoints (crossroad , points);
49 }
50 }
51 }
52

53 return crossroad ;
54 }

Algorithm 3.13: Method for finding in and out points of the crossroad

3.7.10 Creating a crossroad
A problem of building a crossroad has been solved by serial runs of A* algorithm
to find each paths. If the crossroad had two entrances, only two A* instances
were run, from point AIn to point BOut and from point BIn to point AOut. If
crossroad had three entrances however, there were total of 6 A* instances as shown
on image 3.8. Point AIn1 connects to COut1, AIn2 to BOut2, Bin1 to AOut1,
BIn2 to COut2, CIn1 to BOut1 and CIn2 to AOut2. At first the AIn1, BIn1 and
CIn1 are connected so the inner connections has less problems being built. After
that the outer connections are built as well. While finding paths in the crossroad,
if something fails, the paths are cancelled and the search will start again, but
with different entrances. Algorithm for finding entrances 3.13 contains element of
randomness so finding new entrances avoid the unsuccessful solution to be tried

42

Figure 3.8: Crossroad entrance points

again. When in building phase, building of the crossroad can fail as well due to
terrain or environment changing. In that case, all rails built on the crossroad so
far are deleted and new entrances are found, new paths are found and built.

If the building of crossroad is successful, entrance points will be built. Before
that terrain under the entrance is leveled so it has the same height. After that,
entrance tiles are built (yellow section on image 3.2). When planning entrances,
the algorithm checks those entrance tiles for being buildable, so there are no
problems with building them.

3.7.11 Trains
The last algorithm of the TrainsferAI is algorithm for building trains on a route.
There are two depot spots by the station. Each station will get one depot built
on one of those spots. When building trains, a number of trains is determined.
At first distance and production industry is retrieved. Wagon count is calculated
as

wagon count = train length * 2 - 1

because two wagons fit on each tile and -1 is for engine. Then wagon capacity is
retrieved and with that value a train capacity is calculated as

train capacity = wagon count * wagon capacity

. Number of days one train will travel to the unloading station and back is
calculated as

days traveling = distance * 2 / (speed *
FIELD PER DAY PER KMH)

FIELD PER DAY PER KMH is a constant calculated manually which means
how many tiles a train will travel in one day if it would have a speed of 1 km/h.
Then cargo produced while train is gone is calculated as

43

cargo produced while train is gone = (days traveling / 30) * cargo
produced in one month

As this calculation does not need exact number, days in month are approximated
to 30. Finally train count is calculated as

trains = cargo produced while train is gone / train capacity

That means that the amount of days a train is gone is the loop of the cargo.
Approximately after that amount of days the first train will arrive again to the
station. During this time some cargo has been produced. This amount of cargo
then needs to be divided by the capacity of the train to figure out how many trains
is enough to cover the cargo until the first train will come back to the station. Note
that if the train count is lower then 2, it is set to 2. For the industry to increase
production, certain percentage of the cargo each month has to be transferred away.
If there would be only one train, some months the cargo would not be transferred
because the train would be away, thus the industry would probably not increase
its production.For regular routes the minimum train is set to 7 and the train count
is doubled so it covers the industry production increase in the future.

3.8 Preferred game settings
The game should have some settings set up for the TrainsferAI to be functioning
properly. All of those settings correspond to what members of OpenTTDCoop
have set up in most of their games as well. The first is Vehicles - Physics - Train
acceleration model: Realistic. It ensures that the acceleration model is set up
correctly for the network - single turns do not slow, double turns slow. The next
one is Disasters/Accidents - Vehicle breakdowns: None. This prevents the vehicles
to breakdown, slowing all the traffic in the network.

TrainsferAI is optimized for running in the desert environment (third one in
the game menu). For correct results the AI should be ran in that environment.

If the settings are not set up correctly, the AI will still work. But the efficiency
of the network will be much lower because one breakdown will stop all trains
behind the broken one, leading to massive jams if more trains are in the network.

44

4. Validation
Validation of the AI has three main parts - performance validation, success rate
validation and aesthetic validation. All three parts will be examined in details,
providing evaluation of the whole AI agent.

The evaluation was done on 512x512 maps in the first round, on 1024x1024
maps in the second round. 5 moneymaking routes was used at the beginning to
earn money. on 512x512 maps, only 3 SLHs were build as the map was not quite
big enough to have more. On the 1024x1024 map, 10 SLHs were set to be built.

4.1 Performance validation
The game does not provide much processor time to the AI agents. Due to this, a
performance issues were expected at the beginning. Space search is usually quite
time-consuming and the state space is not very small. The minimal turn length
condition greatly increases the search complexity as well. During the development
of AI, many performance improvements have been made to decrease the time
needed to plan and build as described in 3.7.2. The end result was that the AI
would earn approximately the same amount of money as the maximum loan set
to the highest possible value per year. That is a lot more then average player can
earn during first game year of the game. During the run of the AI the agent was
able to spend all money he had to build the network and the construction was
often even waiting for that money. Therefore the performance did not influence
the run of the AI.

4.2 Success rate validation
Second validated aspect of the AI was success rate. Because of the bounded
reality, some problems can occur meaning the network will sometimes partially
fail to build. Therefore, tests have been done to evaluate the success rate of the
whole network. 50 games were run at 512x512 maps, 50 were run at 1024x1024
maps. On the resulting graph we can see that 1024x1024 maps have higher success
rate. The reason behind this is probably the connection success rate which is
much higher on bigger map. The crossroads are placed more spread out and
the connection between them is easier to find without problems. The crossroad
building success rate is similar on both types of the map.

Most of the problems which occurred during the testing were missing pieces
of rails caused by being unable to correctly modify the terrain. That causes
part of the network to not work correctly. Some fails were caused by industry
being destroyed before the AI would build the connection there. Reacting on the
world events was left for future work as it is quite complex mechanic which has
a lot of different aspect to be covered. Those kinds of fails were included to the
”Connection building failed” category.

45

Figure 4.1: Success rate results for 512x512 maps (50 games)

Figure 4.2: Success rate results for 1024x1024 maps (50 games)

46

Figure 4.3: Company value of TrainsferAI on 1024x1024 map

4.3 Bank account and company value validation
During the run of TrainsferAI bank account was usually around 0 euro. This
is due to the AI building slightly faster then the money income from the mon-
eymakers. In fact keeping bank account as low as possible is good because the
more money is spent on building new infrastructure and new routes, the earlier
will the routes earn more money. The important feature of the company is Com-
pany value. Company value is the value of bank account + sum of all things the
company has built so far. So it approximates the economical growth of the com-
pany. TrainsferAI reached good results when increasing company value. During 7
game years, the company value was usually around 5 mil euro, while the starting
maximal load was 1 mil euro. The company value fluctuated around 5 mil euro,
sometimes it was lower - it depends on the time spent on building the network
which differed quite a lot. Graph showcasing the company value progress over the
7 years is displayed on image 4.3.

4.4 Aesthetic
Evaluating aesthetic features was done through comparing the network structure
similarities with the OpenTTDCoop networks from public servers. The number of
rails, number of stations and trains were neglected in the comparison as it is out
of the scope of the thesis to create such a huge networks. Instead the layouts and
the resulting scheme on the map was compared. The structure looks quite similar

47

Figure 4.4: Crossroad going around industry

even though there are some differences - the entrances are not on the correct places
every time so the connection sometimes has to go around part of the crossroad.
The networks built by TrainsferAI are more squared, while the OpenTTDCoop
networks usually go better along the terrain, using its features better.

4.5 Results
Results can be best seen as a series of pictures. At first a few pictures of interesting
crossroad designs will be shown 4.4, 4.5, 4.6, 4.7, followed by images of the network
layouts shown on the in-game minimap 4.8, 4.9.

48

Figure 4.5: Crossroad going even around a city

Figure 4.6: Another crossroad

49

Figure 4.7: Bigger crossroad area

Figure 4.8: Result scheme from game 14 on 512x512 map

50

Figure 4.9: Result scheme from game 31 on 1024x1024 map

51

5. Future work
The human-like construction in games is a big topic and many of the things were
out of the scope of the thesis. Many of the features would greatly enhance its
impact. Elements of the AI that could be extended are many, but the most im-
portant ones are network extendibility, train management, network management
and multiplayer.

5.1 Network extendibility
So far the basic scale of the network has been implemented. Each connection
has one rail to one direction and one rail to the other direction. Each crossroad
has one rail leading to each other side of the crossroad. Network scaled like this
can run couple of tenths, maybe even hundred of trains depending on the map
size. The network could be extended to support more trails in each direction for
connections and more rails to each other entrance of crossroads. It would require
far more time for the paths to be built and some additional modification of the
code. Networks of OpenTTDCoop group sometimes has even 5 or more rails in
one direction. That is way out of the possibilities of the OpenTTD AI as it is right
now because the time it would spent planning the network and building would be
huge. A possible solution would be to modify source code of the OpenTTD itself
so it would support connecting of third party program to the game and enable AI
to connect to it. Then the planning could be done externally and the performance
would be much better.

Another thing that could be extended is connecting more stations to one cross-
road (specially for SLH). That would need a lot of extra work because the AI would
need to somehow solve where to connect additional stations. If this feature would
be implemented, it would greatly increase the amount of trains that the AI would
build on a map. This feature is dependable on the previous point because so far
the network would not be capable of running so many trains anyway.

5.2 Train management
Another interesting thing to be extended is train management system. So far the
only thing the AI is doing about trains is that it calculates the estimated number
of trains required to run a route. But the industry production is changing and
the AI could react to that. It would sell some trains if the industry would greatly
decrease its production or it could buy more trains if the production would go up.
This feature is again dependant on the network extendibility, because too many
trains would flood the network and cause it to collapse.

5.3 Network management
Very important thing which could be added to the AI is network management.
Calculating if the network is big enough for the amount of trains that are running
on it is very important if the amount of trains start to go above hundred. Network

52

management is greatly connected to previous two points because the management
would determine when to extend parts of the network, but it would probably not
be needed if the amount of trains would stay low.

5.4 Multiplayer
One feature which is not supported by the TrainsferAI is multiplayer. And not
only playing versus a player opponent, but another AI as well. So far the AI agent
plans parts of the network and builds them afterwards. But there is a time delay
between those steps and if something has built over the tiles where the network is
planned to be, the AI is going to have a hard time. It would require basically to
add validation after each step the AI is doing. It would validate if the step could
have been done and if not, it would execute steps to deal with the new situation.
This is not contained in the scope of the thesis nor the original purpose of the
AI, but it could be handy to implement it because that way the AI could attend
some AI matches and competitions.

5.5 Covering more environment
As for now, TrainsferAI runs correctly in the desert environment. For a future
work it would be handy to cover all other environments. The industry rules are
slightly different there so it would need some work.

53

6. Conclusion
In this thesis, we tried to implement an AI agent which would be run in business
simulation game Open Transport Tycoon Deluxe. It should be able to run a com-
pany, earn money and mainly build railway network with a human-like features.
It was inspired by OpenTTDCoop group, which builds huge train networks in the
game.

An AI agent has been implemented. At the beginning it builds some money
making routes to earn money for the network construction. Then it plans the
network based on real-time data from the game. When the network is planned,
the agent will gradually build it. When the network is completed, it starts to
find industries and starts to connect them to the network. When a connection is
created, it builds some trains and run them on the network.

The evaluation was done in few steps, evaluating different aspects of the AI. At
first, performance was evaluated. Next important factor of evaluation was success
rate. Then money management was evaluated and finally the aesthetic part of
the building.

54

Bibliography
Brilliang.org. A* Search, 2016. URL https://brilliant.org/wiki/a-star-

search/. Accessed 15 December 2019.

Coldewey, D. StarCraft II-playing AI AlphaStar takes out pros undefeated,
2019. URL https://techcrunch.com/2019/01/24/starcraft-ii-playing-
ai-alphastar-takes-out-pros-undefeated/. Accessed 11 December 2019.

Demichelis, A. Squirrel - The Programming Language, 2016. URL http://
squirrel-lang.org/. Accessed 15 December 2019.

Dr. Garbade, Michael J. Understanding K-means Clustering in Machine
Learning, 2018. URL https://towardsdatascience.com/understanding-k-
means-clustering-in-machine-learning-6a6e67336aa1. Accessed 2 Januar
2020.

Michiel. ChooChoo, a train network AI - Transport Tycoon Forums, 2009. URL
https://www.tt-forums.net/viewtopic.php?t=44225. Accessed 18 December
2019.

OpenTTD Team. OpenTTD — About, 2019. URL https://www.openttd.org/
about.html. Accessed 11 December 2019.

openttd wiki contributors. AI:Main Page - OpenTTD, 2015. URL https://
wiki.openttd.org/AI:Main Page. Accessed 15 December 2019.

openttd wiki contributors. OpenTTD - OpenTTD, 2018. URL https://
wiki.openttd.org/OpenTTD. Accessed 13 December 2019.

Rios, L. and Chaimowicz, L. trains: An artificial inteligence for openttd. 2010
Brazilian Symposium on Games and Digital Entertainment, 0:52–63, 01 2009.
doi: 10.1109/SBGAMES.2009.15.

Sawyer, C. Transport Tycoon, 2013. URL http://www.transporttycoon.com/
history. Accessed 11 December 2019.

Sharon, G., Stern, R., Felner, A., & Sturtevant, N. Conflict-Based Search For
Optimal Multi-Agent Path Finding, 2012. URL https://www.aaai.org/ocs/
index.php/AAAI/AAAI12/paper/viewFile/5062/5239. Accessed 18 November
2019.

The openttdcoop. PBS - #openttdcoop wiki, 2013. URL https://
wiki.openttdcoop.org/PBS. Accessed 12 December 2019.

tutor2u. Bounded rationality — Topics — Economics — tutor2u, 2018. URL
https://www.tutor2u.net/economics/topics/bounded-rationality. Ac-
cessed 28 December 2019.

55

https://brilliant.org/wiki/a-star-search/
https://brilliant.org/wiki/a-star-search/
https://techcrunch.com/2019/01/24/starcraft-ii-playing-ai-alphastar-takes-out-pros-undefeated/
https://techcrunch.com/2019/01/24/starcraft-ii-playing-ai-alphastar-takes-out-pros-undefeated/
http://squirrel-lang.org/
http://squirrel-lang.org/
https://towardsdatascience.com/understanding-k-means-clustering-in-machine-learning-6a6e67336aa1
https://towardsdatascience.com/understanding-k-means-clustering-in-machine-learning-6a6e67336aa1
https://www.tt-forums.net/viewtopic.php?t=44225
https://www.openttd.org/about.html
https://www.openttd.org/about.html
https://wiki.openttd.org/AI:Main_Page
https://wiki.openttd.org/AI:Main_Page
https://wiki.openttd.org/OpenTTD
https://wiki.openttd.org/OpenTTD
http://www.transporttycoon.com/history
http://www.transporttycoon.com/history
https://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/viewFile/5062/5239
https://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/viewFile/5062/5239
https://wiki.openttdcoop.org/PBS
https://wiki.openttdcoop.org/PBS
https://www.tutor2u.net/economics/topics/bounded-rationality

List of Figures

1.1 Example of crossroad built by community. 5

2.1 Four types of vehicles - airplane, train, road vehicles (bus and truck)
and ship . 8

2.2 Segments of rails divided by signals. 9

3.1 High-end crossroad by the OpenTTDCoop players created on their
public server game nr. 332. Games can be found on http://
www.openttdcoop.org/files/publicserver archive/ 15

3.2 Crossroad scheme. Yellow parts are the entrance parts, red parts
are entrance points and the blue part is the inner crossroad made
from inner connections. 16

3.3 Train on the left is located only on one turn to the left, it will not
slow down. Train on the right is located on both turns to the left
therefore it will slow down. 18

3.4 Restricted area around the planned crossroad center. All tiles inside
the red rectangle are restricted and only crossroad 1 can be built
on them. 21

3.5 The area around goal - the blue part is the correct area and the red
area is the forbidden one . 25

3.6 The upper rails were the first path. If that rail would go straight,
the lower rails would fail to build as there is a house in the way.
The pathfinder was able to avoid it. 27

3.7 Total angles (left) and Local angles (right) 37

3.8 Crossroad entrance points . 43

4.1 Success rate results for 512x512 maps (50 games) 46

4.2 Success rate results for 1024x1024 maps (50 games) 46

4.3 Company value of TrainsferAI on 1024x1024 map 47

4.4 Crossroad going around industry 48

4.5 Crossroad going even around a city 49

4.6 Another crossroad . 49

56

http://www.openttdcoop.org/files/publicserver_archive/
http://www.openttdcoop.org/files/publicserver_archive/

4.7 Bigger crossroad area . 50

4.8 Result scheme from game 14 on 512x512 map 50

4.9 Result scheme from game 31 on 1024x1024 map 51

A.1 Main menu of the game . 61

A.2 Pop-up dialog for selecting the AI opponents 62

57

List of Tables

3.1 Table of distances between the two turns and its maximal speed
limit. 17

58

List of algorithms

3.1 A* preparation . 24

3.2 A* . 25

3.3 A* CheckNeighbour function . 26

3.4 A* ReconstructPath function . 26

3.5 Heuristic function . 28

3.6 Finding a station . 30

3.7 Finding a MLH spot . 32

3.8 Finding a MLH near selected industry 33

3.9 Connecting the crossroads in the network 35

3.10 Uniting the connections and creating new BBH 37

3.11 Method for calculating total angles 39

3.12 Method for calculating local angles. 39

3.13 Method for finding in and out points of the crossroad 41

59

List of Abbreviations

CPU - Central processing unity

CSV - Comma-separated values

DOTS - Data oriented tech stack

ECS - Entity component system

GPU - Graphics processing unit

IL - Intermediate language

IR - Intermediate representation

RAM - Random access memory

SIMD - Single instruction multiple data

UI - User interface

SLH - Sideline hub

MLH - Mainline hub

BBH - Backbone hub

AI - Artificial intelligence

60

A. Instalation guide

For installation of the package of this thesis one needs to install the game itself
at first. Game downloads are available at webpage https://www.openttd.org/
downloads/openttd-releases/testing.html. After installing the game, the
game creates a data folder (default location is at ”C:/Users/user name/Docume-
nts/OpenTTD” - for later references the ”default location” would mean this
folder). To install the AI package, we need to copy the .zip file to the folder
”default location”/content download/ai. We can extract the folder or leave it in
the .zip file. We then close the game if it has been open, and start it again. To
bring the new AI to new game, in the main game menu, we click the ”AI/Game
Scripts Settings” (A.1). Then a pop-up window show up with settings of the AI for
the game (A.2). We set the maximum number of opponents to a number greater
equals 1 and we set the first opponent to TrainsferAI - we do that by clicking the
second row (below ”Human player”) and click ”Select AI” in the left bottom of
the window. Then we select the TrainsferAI as the AI. After the TrainsferAI has
been selected, we close the dialog window. Then in the main menu, we select the
desert environment (the third one) and start the game by clicking ”New game” in
the main menu.

Figure A.1: Main menu of the game

61

https://www.openttd.org/downloads/openttd-releases/testing.html
https://www.openttd.org/downloads/openttd-releases/testing.html

Figure A.2: Pop-up dialog for selecting the AI opponents

62

	Introduction
	Railway networks
	Thesis Structure
	Scope of the thesis
	Out of scope of the thesis

	OpenTTD
	Game goals
	Vehicles
	Breakdowns and servicing
	Types of vehicles

	Industries and cargoes
	Industrial cargoes
	Non-industrial cargoes

	Technology
	NoAI API
	Scripting - Squirrel

	History in AI in OpenTTD

	TrainsferAI
	Existing AIs
	trAIns
	ChooChoo
	AdmiralAI

	Inspiration
	Bounded rationality
	Railway network structure
	Turn length
	Crossroad types

	Data representation
	Industry model
	Rail model
	Building restrictions manager

	Life cycle
	Money making phase
	Network planning phase
	Network building phase
	Connecting phase

	Algorithms
	A*
	A* heuristic function
	Finding a station
	Finding SLHs
	Finding MLHs
	Connecting the network
	Optimization of crossroad connection number
	Finding BBHs
	Finding in and out points of the crossroad
	Creating a crossroad
	Trains

	Preferred game settings

	Validation
	Performance validation
	Success rate validation
	Bank account and company value validation
	Aesthetic
	Results

	Future work
	Network extendibility
	Train management
	Network management
	Multiplayer
	Covering more environment

	Conclusion
	Bibliography
	List of Figures
	List of Tables
	List of Abbreviations
	Instalation guide

