
MASTER THESIS

Filip Hauptfleisch

Interactive Example-based Stylization
of Architectural Models

Department of Software and Computer Science Education

Supervisor of the master thesis: prof. Ing. Daniel Sýkora, Ph.D.
Study programme: Computer Science

Study branch: Computer Graphics and Game
Development

Prague 2020

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

Dedicated to Jaroslav Křivánek, who was a supervisor of this thesis for most of
the time. Without him and his passion for computer graphics, this project would
never arise.

I am also grateful to everyone who was part of this project, most notably prof.
Ing. Daniel Sýkora, Ph.D. for his valuable advice, Ondřej Texler for his help and
everybody at Chaos Czech a.s.

I would also like to thank my friends and family for supporting me.

ii

Title: Interactive Example-based Stylization of Architectural Models

Author: Filip Hauptfleisch

Department: Department of Software and Computer Science Education

Supervisor: prof. Ing. Daniel Sýkora, Ph.D., Department of Computer Graphics
and Interaction, Faculty of Electrical Engineering, Czech Technical University in
Prague

Abstract: One of the ways in which architects communicate their designs is
through hand-made architectural sketches. Often it would be beneficial to have a
sketch drawn from several angles, but producing many sketches is time-consuming
for the architect. Another interesting visualization tool could be an interactive
smooth rotation around a stylized scene, which would be impossible to do by
hand.

Style transfer is an area from non-photorealistic rendering. It tries to solve the
problem of transferring a style from an image to another one. This work intro-
duces the current state of style transfer and compares several methods of trans-
ferring an architectural sketch style from one view of a 3D scene to another view
of the same scene. The StyLit algorithm is then expanded to run the style trans-
fer for multiple viewpoints at the same time while maintaining spatially coherent
results. Finally, a method to run an interactive smooth movement around the
stylized scene is introduced.

Keywords: style transfer, architectural design, 3D models, animation,

iii

Contents

Introduction 3

1 Current methods of style transfer 5
1.1 Arbitrary style transfer . 5

1.1.1 Patch-based methods . 6
1.1.2 Neural-based methods . 6

1.2 Guided style transfer . 7
1.2.1 Patch-based methods . 7
1.2.2 Neural-based methods . 10

2 StyLit algorithm 12
2.1 Underlying texture synthesis algorithm 12
2.2 Synthesis data . 15

2.2.1 3D scenes . 15
2.2.2 Guide channels . 15

2.3 Synthesis algorithm . 16
2.3.1 Search . 16
2.3.2 Voting . 17
2.3.3 Full algorithm . 18

2.4 StyLit in architecture . 18
2.4.1 Changes in the StyLit algorithm 18
2.4.2 Limitations . 23

3 Style transfer on multiple views 26
3.1 Data acquisition . 26
3.2 Enforcing spatial coherence . 26

3.2.1 Frame shifting in animations 27
3.2.2 Intermediate shifting . 28

3.3 Real-time interpolation . 29
3.3.1 Interpolation of images . 29
3.3.2 Interpolation of NNF . 31
3.3.3 Conclusion . 33

4 Implementation 36
4.1 Stylization algorithm . 36

4.1.1 Used libraries and technologies 36
4.1.2 Implementation details . 37

4.2 Real-time viewer . 38
4.2.1 Used libraries and technologies 38
4.2.2 Implementation details . 38
4.2.3 Performance . 39

5 Results 40
5.1 Chapel . 40
5.2 Modern house . 47
5.3 Traditional house . 52

1

Conclusion 57

Bibliography 59

List of Figures 62

A Electronic attachments 63
A.1 Stylization algorithm . 63
A.2 Viewer . 63

A.2.1 Project . 63
A.2.2 Build . 63
A.2.3 Video . 63

2

Introduction
Non-photorealistic rendering (NPR) is a well-established area of research in the
field of computer graphics. In NPR the goal is generating stylized imagery in
a wide variety of styles such as cartoon animation, mimicking different artistic
media, cell shading, technical illustrations or architectural sketches. One of the
specific subareas of NPR is style transfer, which focuses on transferring style from
one image to another scene. In this thesis, we will focus on style transfer in the
specific setting of architectural sketches.

The style of architectural sketches is quite unique. Although the styles can dif-
fer a lot, there are some unifying features present in the majority of the sketches.
These features which make them different from other artistic styles include em-
phasis on straight lines, emphasis on perspective and attention to detail in im-
portant areas while omitting details in other areas. All these features cause that
some of the style transfer techniques fail on these sketches.

Architects often sketch a building according to a 3D scene they have already
modeled as a mean of visualization of their design. But producing sketches is a
tedious and time-consuming activity. That makes producing sketches from many
views unfeasible. There is also an unexplored area of real-time style transfer in
architecture. It might be interesting for the presentation of architectural projects
to have a scene stylized in a certain way that allows interactive movement.

We aim to introduce techniques that would allow transferring a style from a
sketch from one view of a 3D scene to different views of the same scene. We also
aim to generate these stylized results in a spatially coherent way. Then we want
to enable interactive interpolation between these stylized views.

Goals
First, we aim to discuss current approaches to style transfer and find how they
work in our settings of architectural sketches. We will focus on the most promi-
nent approaches. We aim to choose the algorithm that we deem as the most viable
for transferring style from an architectural sketch of one view to other views of
the same 3D scene. This algorithm needs to be able to transfer the highly struc-
tured architectural sketches. It should also allow us to use the different data we
can get from a 3D scene.

Next, we want to expand this algorithm to produce results on multiple view-
points in a spatially coherent way. This means that we want to be able to produce
results of high quality, which we want not to flicker when moving between two of
the stylized viewpoints.

Lastly, we want to come up with techniques that would allow an interactive
movement between the stylized viewpoints while maintaining a high quality of
the stylization. This poses several constraints, as this technique needs to be fast
enough to run in real-time, while producing results of high visual quality.

Outline
In the first chapter, we will introduce some of the current methods in the area of
style transfer of images and videos. We will describe some of the most important

3

algorithms and discuss their strengths and weaknesses. In the second chapter,
we will introduce the StyLit algorithm in detail, since we chose it as the base
for the work in this thesis. We will also introduce a few small changes to the
StyLit algorithm which aim to improve the results for architectural sketches. In
the third chapter, we present a way to run the modified StyLit algorithm on a
grid in space in a spatially coherent way and we introduce ways to interactively
compute the stylized result in between the points of the grid. The fourth chapter
provides details on the implementation and the fifth chapter shows results of all
the implemented algorithms.

4

1. Current methods of style
transfer
Style transfer is a research area in non-photorealistic rendering (NPR). In style
transfer problem, there is a style image A′ and a content image B. The goal is to
produce an image B′ that has the content of B but the style of A′. The problem
of style transfer could be generalized as a guided texture synthesis problem, where
the produced texture should be similar to the style image A′, but it should be
guided by B. The field of style transfer can be useful in various areas.

One of these areas is movie production. A lot of work is put into animated
movies and TV shows and style transfer techniques could help animators. In
some cases, the animation is drawn over a crude 3D animation so the underlying
3D geometry can serve as the content, while some drawn keyframes can serve
as the style. This case is addressed by Bénard et al. [2013]. Another technique
used in the movie industry is rotoscope animation. The technique of rotoscoping
means shooting live-action scenes that are then painted over frame by frame. This
technique can help in achieving interesting results, in which realistic paintings mix
with unreal things, but this technique is also very time-intensive. One example
of this technique is Undone (Raphael Bob-Waksberg [2019]), a series by Amazon
Prime Video. In the case of rotoscoping animation, an algorithm that could
transfer a style from a few keyframes to a video sequence could help to make this
technique less time-consuming. One of the algorithms addressing the problem
of transferring a style from several keyframes to a whole video sequence was
introduced by Jamrǐska et al. [2019].

Another popular application of style transfer is the use as an image filter. It
tries to answer the question: “What would my photo look like if it was painted by
a famous artist?” There are several websites and applications dedicated to this,
such as Deepart.io1 or Deep Art effects2. These websites allow the user to upload
their photo (content image B) and their style image (A′) from which the website
computes a stylized result of the photo (B′). With the arrival of such applications
on mobile devices (one of such applications is Prisma3), this field is gaining even
more exposure. Another related use is in interactive filters for mobile devices,
which are popular on social media. These filters can change the output from the
camera in real-time to look as if stylized in a certain artistic style.

In this chapter, we will look at current algorithms used for style transfer.

1.1 Arbitrary style transfer
The methods that address arbitrary style transfer aim to transfer a style from an
arbitrary style image A′ to an arbitrary content image B. These images are not
required to have any shared characteristics. Usually, B is a photograph and A′ is
an artwork.

1https://deepart.io (Accessed December 21, 2019)
2https://www.deeparteffects.com (Accessed December 21, 2019)
3https://play.google.com/store/apps/details?id=com.neuralprisma&hl=en (Accessed De-

cember 21, 2019)

5

1.1.1 Patch-based methods
Patch-based methods are based on working directly with the pixel values of the
images. For each pixel in the synthesized image, these algorithms use a patch
around the pixel to decide what value the synthesized pixel should have. These
local patches are used to transfer the texture of the style, while color is transferred
globally.

One of these methods is the one introduced by Frigo et al. [2016]. It transfers
the texture in form of luminance, while color and contrast is transferred globally.
It adaptively splits the content image into a quadtree. The splitting is based on
variance on the pixels in the current patch and on the distance of the current
patch to the closest patch in the style image. For each of the patches in the
quadtree, correspondence to a patch from style image is found. As the last step,
the global color and contrast are transferred. The issue with this approach is that
it establishes correspondence among patches based on the distance of the values
of the pixels in A′ and B directly. But a small error between a patch from the
content image and a patch from the style image does not mean that the patch is
a good fit (a dark patch in the content image might be better represented by a
bright style patch).

Temporal coherence

The approach from the previous section can be extended to transfer arbitrary
style from a style image to a video sequence, as shown in another paper by Frigo
et al. [2019]. The stylization of a video sequence is not as straightforward as
stylizing all the individual frames. That is because temporal coherence plays an
important role in the stylization of video sequence. In this generalization, the
authors propose first propagating coherence across keyframes taken at uniform
time intervals and then propagating these stylized keyframes to frames between
them.

1.1.2 Neural-based methods
Recently, style transfer using neural networks started gaining more attention.
This is a relatively new field, which started with the paper by Gatys et al. [2016].
The use of neural networks for style transfer is difficult because there are no
datasets for straightforward training of style transfer. While we have access to
large databases of artwork, we do not have the underlying content images for
them. That is why these neural methods use already existing neural networks
trained for different purposes. These methods then perform the synthesis using
features from different layers of the neural networks.

Imag Style Transfer This paper by Gatys et al. [2016] introduced the idea of
using neural networks for artistic style transfer. Because of the lack of datasets
mentioned before, they took a different approach. They came up with the idea
of using a network trained for image recognition (a deep convolutional neural
network by Simonyan and Zisserman [2014]) for style transfer. The algorithm
is based on the idea of separating the semantics of an image (the content) from
the textural data (the style). If the algorithm could separate these two parts, it

6

could perform the style transfer by combining the texture of the style image and
the semantics of the content image. It does so by the assumption that in the
higher levels of the image recognition neural network, the features represent the
content of the image well, so these features are used. Style is extracted as texture
capturing feature space introduced in another paper by Gatys et al. [2015]. The
resulting image is synthesized by minimizing the distance to the content statistics
of the content image and the style statistics of the style image.

The approach can generate impressive results on some styles but fails on the
highly structured architectural sketches styles. Results from this algorithm on
selected architectural problems can be seen on Figure 1.1 a.1) – a.3). These
results were generated using the Deepart.io website 4, which provides results
based on an improved implementation of the algorithm in the paper. It can be
seen that this algorithm is not suitable for our purpose since it fails to preserve
the look of the original style in all the cases we tried.

Style Transfer by Relaxed Optimal Transport and Self-Similarity One
of the many follow up papers trying to improve the results of the original Gatys
et al. [2016] paper is Style Transfer by Relaxed Optimal Transport and Self-
Similarity by Kolkin et al. [2019]. This paper uses the same reasoning, but the
error terms differ. They use a content loss based on self-similarity. We present
results of this paper from a web demo of the algorithm by the authors 5 in Figure
1.1 2.a) – 2.c). The results of this algorithm also generally do not resemble the
original style in the architectural sketches we tried.

Temporal coherence

The neural methods from the previous section are not suitable for the stylization
of video, because they are not temporally stable. That means that there may be
a lot of changes even in two subsequent frames that are almost the same. That
produces unwanted flickering when a video sequence is stylized. This problem was
addressed by Gupta et al. [2017] and Ruder et al. [2018], where models enforcing
temporal coherence were introduced.

1.2 Guided style transfer
Another group of style transfer algorithms is the category of guided style transfer.
For these algorithms, the assumption is that the style image and content images
are semantically close to each other. These algorithms also usually use additional
guiding information, which help to perform the style transfer in a semantically
meaningful way.

1.2.1 Patch-based methods
Patch-based methods work on the local scale of pixels. Some of the algorithms
transfer only the texture locally and the color globally, but some transfer the
textural information together with the color information in a local way. Most

4https://deepart.io (Accessed December 21, 2019)
5http://style.ttic.edu (Accessed December 28, 2019)

7

Deepart.io STROTTS
Deep image
analogiescontent style

a.1) b.1) c.1)

a.2)

a.3)

b.2)

b.3)

c.1)

c.1)

Figure 1.1: Neural algorithms Results
results of several neural style transfer algorithms on identity (content is from the same
view as the view the style was painted from).

Figure 1.2: Image analogies
The image analogies problem, with B′ being the synthesized image.

of these algorithms are based on texture synthesis algorithms since style transfer
can be understood as guided texture synthesis, where a texture with the original
style is synthesized according to the content image.

Image Analogies This paper by Hertzmann et al. [2001] does not address only
style transfer, the authors introduced more general problem:

Definition 1. Given a pair of images A and A′ (the unfiltered and filtered source
images, respectively), along with some additional unfiltered target image B, syn-
thesize a new filtered target image B′ such that

A : A′ :: B : B′.

In other words for images A, A′ and B, the problem is to find an image B′

that is in the same relation to B as A′ is to A (see Figure 1.2).
The algorithm works on multiple scales, from coarsest to finest with results

from each level upscaled and used as a base for the next level. For each pixel in

8

the currently synthesized image, the algorithm finds the best pixel from the style
image, while preferring pixels preserving the coherence of the texture.

In the specific case of style transfer, A would be source content image, A′

would be source style image, B would be target content image and B′ would be
the wanted target style image. The content images A and B are not necessarily
just RGB images, they can contain multiple channels (more than the typical three
or four channels) of information.

With this definition of the problem, we require additional information for the
style A′ in the form of the content image A. Because of this, it may be difficult
to use currently available artwork, since we would need to generate this content
image for it. In the paper, a blurred version of the style image is used as the
content image A and photograph as the content image B, but this does not work
for all styles.

StyLit This algorithm by Fǐser et al. [2016] is a current state-of-the-art tech-
nique in patch-based guided style transfer. The algorithm is based on the Texture
Optimization for Example-based Synthesis algorithm by Kwatra et al. [2005], but
it is formulated specifically for style transfer on 3D scenes. We describe this al-
gorithm in detail in Chapter 2.

StyleBlit This algorithm by Sýkora et al. [2019] is capable of producing images
of comparable quality to the StyLit algorithm but in real-time. The algorithm
works by searching large coherent chunks in the style exemplar which are then
copied to the synthesized texture.

But this approach is not suitable for architectural sketches. That is because
it has problems in large areas which have fairly constant guides. This is a limita-
tion that makes this approach inappropriate for artistic sketches since models of
buildings often contain large flat areas that are fairly uniform. In all these areas,
this algorithm fails.

Temporal coherence

Example-based synthesis of stylized facial animations This paper by
Fǐser et al. [2017] presents a method specialized in style transfer of videos with
faces in them. In this paper, the authors do not aim to produce a sequence with
full coherency, instead, inspired by Fǐser et al. [2014], they want overall coherency
but with some flickering that would resemble hand-drawn animation.

Stylizing Animation By Example In this paper by Bénard et al. [2013],
the authors extend the Image analogies (Hertzmann et al. [2001]) algorithm for
animations. This paper addresses a problem similar to ours. They expect a 3D
underlying geometry of an animation and they want to make a stylization in a
temporally coherent way. They expand the original Image analogies algorithm by
changing the error term to improve the results, including an error term enforcing
temporal coherency.

The algorithm works on multiple scales same as the original Image analogies
algorithm. On each level, the whole sequence is stylized twice, once sequentially

9

b)a) c)

Figure 1.3: Deep image analogies result on different view
a) original style b) content c) Deep image analogies result

in a forward manner and then sequentially in a backward manner with coher-
ence enforced in the respective direction by shifting resulting frames according to
motion fields.

Stylizing Video by Example This paper by Jamrǐska et al. [2019] describes
a method for style transfer for videos. In this paper, the authors do not require
a 3D scene underlying the frames. That means that this method does not have
access to motion fields. Instead, they use an approximation based on SIFT Flow
by Liu et al. [2010]. For the stylization itself, they use the StyLit algorithm with
several generated guides. The sequence is stylized sequentially and the result
of each frame is shifted to the next frame using the approximated motion field.
These shifted results are then used as coherence guides.

1.2.2 Neural-based methods
There are also neural-based methods that expect the style image A′ and the
content image B to be semantically close.

Visual Attribute Transfer Through Deep Image Analogy One of these
methods is described in the paper by Liao et al. [2017]. This method aims to
solve similar problem to the image analogies problem introduced in Definition 1.
But instead of producing B′ for given A, A′ and B, this method expects A and
B′ as input and produces A′ and B. The method expects that A and B′ have a
semantically similar structure and the algorithm tries to find a correspondence
between A and B′ through A′ and B. The results of this method are in Figure
1.1. It can be seen that this method has significantly better results than any of
the other tested neural approaches, but it still suffers from several issues. It does
not honor artistic choices that are not based on the underlying picture, e.g. the
shadow in Figure 1.1 c.1), which is forced by the image analogy, although the
artist chose not to draw the shadow, or the line on the horizon in Figure 1.1 c.2).
It also does not transfer texture well, as in the watercolor style shadow. But
because it shows better results on the identity, we also provide a result of this
algorithm on different view in Figure 1.3. In this figure, it can be seen that even
this approach fails on different views. The overall structure breaks down in this
case.

10

Image-to-Image Translation with Conditional Adversarial Networks
Another method was presented by Isola et al. [2017]. This is not a model pro-
posed for style transfer, but rather for a general image-to-image translation, such
as a black and white photo to colored, an aerial photo to a map, etc. This method
is based on training conditional generative adversarial networks. For use on style
transfer, the network would have to be trained on a certain artistic style. But
this method is not suitable for our use, because it requires a dataset of pairs to
train. A method by Zhu et al. [2017] removes the need for paired datasets.

Temporal coherence

In video to video synthesis by Wang et al. [2018] and the follow-up work (Wang
et al. [2019]), a new model for producing a video sequence out of input source
and content sequence is introduced. Temporal coherence is implicitly included in
the model.

11

2. StyLit algorithm
In this chapter, we will describe the StyLit algorithm by Fǐser et al. [2016] in
detail and introduce a few small changes to it. It is a patch-based style transfer
algorithm with very promising results. This algorithm without any changes is
already capable of producing results of impressive quality on many different styles
(see Figure 2.1 and Figure 2.2), but it still has some problems in certain scenarios.
Based on these results and our requirements we chose to use the StyLit algorithm,
as it is the current state-of-the-art patch-based style transfer algorithm.

2.1 Underlying texture synthesis algorithm
The StyLit algorithm is based on an example-based texture synthesis algorithm
by Kwatra et al. [2005]. In this section, we will introduce this underlying texture
synthesis algorithm.

It is an algorithm for example-based texture synthesis, so for the given texture
sample, the algorithm aims to generate a new sample with the same visual quality
as the original, but usually of a bigger size.

The algorithm expects Markov random field (MRF) property on the textures,
so it expects locality and stationarity. Locality means that a pixel color is de-
pendent only on the colors of pixels in its neighborhood. Stationarity means that
the pixel color is independent of the location of the pixel in the picture. This
allows the introduction of an energy function on the synthesized texture and then
minimization of this energy in an Expectation-maximization (EM) like algorithm.

Algorithm

The algorithm defines a similarity measure between the synthesized image and the
original image. This similarity measure is based on local neighborhood similarities
combined into a global measure, which is then minimized.

The algorithm expects a source texture A′ and produces a target texture B′.
For each pixel p, we will denote the neighborhood around p by Np. A vectorised
version of B′ will be denoted by B′ and it will contain pixels from B′ in a vector.
For pixel p we will denote by xp a vector of all the values from Np. The closest
neighborhood from A′ to a neighborhood Np ∈ B′ (using Euclidean measure) in

Figure 2.1: StyLit result
Results of the StyLit algorithm, with the sphere scene in A, source exemplar in A′,
target scene in B and stylized result in B′. Style exemplar and the guides are from the
original StyLit paper.

12

a) b)

c) d)

e) f)

Figure 2.2: StyLit result on architecture
a) original view b) new view c) original style d) synthesised image e) original style
detail f) synthesised image detail

13

Figure 2.3: E-step
For simplicity there are only two neighborhoods in the target image B′. These two
patches have their closest patches from A′ in the same color and the correspondences
are illustrated by arrows. In this case, z is part of these two neighborhoods, so the value
of pixel z in B′ will be an average from q1 and q2, since they are on the corresponding
positions of the blue, respectively green patches.

a vectorized form is denoted by cp. The global energy of the target B′ is defined
in the paper as

E =
∑︂

p∈B′
∥xp − cp∥2. (2.1)

The algorithm then iteratively minimizes this energy. It does so in a manner
similar to the EM algorithm. It runs in two steps, where the E step minimizes
the energy with respect to B′ and the M step minimizes the energy with respect
to the set {cp} = {cp : p ∈ B′}.

E-step To minimize the energy with respect to B′ with fixed {cp}, the deriva-
tive of 2.1 with respect to B′ must be placed equal to zero. Solving the resulting
set of equations leads to

B′[i] = 1
|{p : B′[i] ∈ Np}|

∑︂
p:B′[i]∈Np

cp[j],

where j is index of the pixel B′[i] in the neighborhood xp. For pixel i that
means the value minimizing the energy is average of values of the pixels at the
same position as B′[i] from all the patches cp for which i is part of p. See Figure
2.3.

M-step In the M step, the energy is minimized with respect to {cp} with B′

fixed. For each pixel p and its neighborhood Np in the image B′, the algorithm
finds closest neighborhood from A′ which is saved as cp.

14

The authors of the paper suggest running this algorithm on multiple scales.
From coarse to fine level with the upscaled results used as a base for the next
level.

This algorithm can be modified to perform controlled synthesis, by modifying
the error function to account for the guide channels (A and B in the terminology of
Image analogies). The base error metric is the difference between neighborhoods
in the style images, so if we add the difference between the neighborhoods in the
content images, we get a style transfer algorithm.

2.2 Synthesis data
The StyLit algorithm is designed to transfer style from one 3D scene (source
scene) to another one (target scene). The algorithm transfers style from one
scene to another by using data from path tracing renderers. In this section, we
will look at the data this algorithm uses.

2.2.1 3D scenes
In the paper, the authors propose a source scene that could capture enough
information to be generalizable to other arbitrary scenes. The idea behind this
is that this source scene could then be painted and the style of the artist could
be transferred to arbitrary other scenes.

This idea is similar to the approach used in the Lit sphere by Sloan et al.
[2001], where a sphere is used to capture information about artistic style. In
the StyLit paper, a sphere is also used, but it is placed on a ground plane. The
addition of the plane allows capturing additional information about shadow an
object casts, which can be stylized in a different way. This allows transfer to
target scenes where objects are placed on the ground. For this basic scene see A
in Figure 2.1.

2.2.2 Guide channels
In order to perform the style transfer, StyLit algorithm uses guide channels to
run the synthesis of the stylized texture. Even though the algorithm uses data
from 3D scenes, the style transfer itself runs on 2D images. Guide channels,
in this case, are images rendered from the underlying 3D scenes. These guide
channels control the style transfer, so the basic requirement for them is that if
guide channels in an area of the source image are similar to the guide channels in
an area of the target image, the stylization in these areas should also be similar.

Thanks to the availability of the underlying 3D scenes, the algorithm can use
all the data that a 3D path tracing renderer can provide. The guide channels
should contain data that can help guide the synthesis well, so the best choice
would be to extract the information that artists emphasize.

In the paper, the authors suggest using several light path expressions (LPEs)
channels. These LPEs can be used to get multiple different light interaction
patterns separated, such as direct, indirect or reflected light. In the paper, the
authors provide a detailed analysis of the channels they used, but the style transfer
algorithm itself can be used with any guides.

15

In the language of the image analogies problem from Definition 1, all the guide
channels represent the image A, the original style is A′, target guide channels are
B and the stylized result is B′.

2.3 Synthesis algorithm
Since the algorithm is based on the texture synthesis algorithm by Kwatra et al.
[2005] as introduced in Section 2.1, it also minimizes the following energy:

E =
∑︂
p∈B

∥xp − cp∥2, (2.2)

where B is the target image consisting of the guide channels and style, xp is a
vectorized neighborhood around p and cp is a source vectorized neighborhood,
that is closest to xp. A vectorized neighborhood is a vector of the data in all the
pixels from the neighborhood in a scanline order. In these vectorized neighbor-
hoods, there are values from all the channels, that is, all the guide channels and
the style.

As explained in Section 2.1, this can be achieved by running an iterative
algorithm similar to an EM algorithm.

But using just the texture synthesis algorithm expanded by guides produces a
lot of blurring. This blurring is caused by smooth patches from the original style
image being overused in the synthesized image. These smooth patches then cause
blurring of the result. The reason why these smooth patches are preferred in this
situation was described by Newson et al. [2014]. To overcome this issue StyLit
uses a different approach in the E-step of the algorithm inspired by reversed NNF
retrieval. This technique was also used in LazyFluids by Jamrǐska et al. [2015]
for this purpose.

2.3.1 Search
This part of the algorithm establishes a correspondence between patches in the
target image and patches in the source image. For each patch in the target image,
exactly one corresponding patch in the source image is found. The metric used
to get the error between two patches is (as defined by Jamrǐska et al. [2019])

E(A′, B′
i, GS, GT , p, q) = ||A′(p) − B′

i(p)||2 +
∑︂
g∈G

λg||GS
g (p) − GT

g (q)||2, (2.3)

where A′ is a source style, B′
i is current stylized result from i-th iteration, GS are

source guides, GT are target guides. With the patch error written like this, the
minimized energy from Equation 2.2 can be written equivalently

E(A′, B′
i, GS, GT) =

∑︂
q∈QT

E(A′, B′
i, GS, GT , pq, q), (2.4)

where QT is a set of all neighborhoods in target image, pq is a patch from source
image currently corresponding to q.

But as explained before, target-source search, which finds the closest patch in
the source image for each patch in the target image, produces blurry results, so

16

first reversed search iteration second reversed search iteration

Figure 2.4: Search iteration
Two iterations of the reversed search. Green arrows represent accepted patches, red
arrows rejected patches. In the second iteration, the checkered areas are already fixed
from the first iteration.

the approach of StyLit is reversed – it searches for the best patch in the target
image for each patch in the source image (we will call this the source-target
search).

If the errors of all these correspondences are sorted from lowest and plotted
in a graph, the authors of the paper claim that the graph resembles a hyperbolic
function.

A hyperbolic function f(X) = (a−bx)−1 is fitted to the data and a knee point
xk in this hyperbola is found as a point where f ′(xk) = 1. All correspondences
with errors that are above f(xk) are probably wrong assignments. An error
budget T is then set as sum of all the errors with indices lower than xk. With
this error budget they propose maximizing the number of fixed source-target
patches |A∗|, while satisfying∑︂

p∈A∗
min
q∈B

E(A′, B′
i, GS, GT , p, q) < T. (2.5)

After one iteration of this source-target search, not all patches in the target
image have fixed correspondences. In the next iterations for each patch in the
source image, we find the closest patch from the target image again, but the search
ignores patches in the target image that have already fixed correspondence from
previous iterations (see Figure 2.4).

The iterations can be run until all patches in the target image have a fixed cor-
respondence, or until a certain percentage of these patches have correspondences
and then a target to source search can be performed to find correspondences for
the rest of the unmatched patches. After this step, all patches in the target image
have fixed corresponding patches from the source image.

2.3.2 Voting
This is the E-step of the EM-like algorithm. It minimizes the energy 2.4 with
respect to B′ with {pq} fixed. That is the same as in the Texture synthesis
algorithm by Kwatra et al. [2005] as explained in Section 2.1. As in the texture
synthesis algorithm, an average is used to minimize the energy. For each pixel
B′(i) in the target image, all the patches that contain the pixel B′(i). Then, for
each of these patches, the corresponding patch from the source image is taken
and a position corresponding to the position of B′(i) in the target patch is taken

17

into account for the resulting average

B′(i) = 1
|P |

∑︂
Np∈P

cp(j),

where P is a set of all the patches containing the pixel B′(i), j is the position of
B′(i) in Np. For a patch Np, cp is the corresponding patch as established in the
M-step.

2.3.3 Full algorithm
Apart from the search phase, the StyLit algorithm works as the Kwatra algorithm
(Kwatra et al. [2005]), so in order for the stylized image to contain even the
larger-scale features from the source style, the algorithm is performed on multiple
scales. A Gaussian pyramid of both the source and target images is made and
the algorithm first runs on the lowest resolution. The style in the target image
is then upscaled and used as a starting style in the upscaled level. In the first
search-vote iteration of the lowest resolution level, there is no base style to use
so a random noise or white image is used. Since on the lower resolution levels
the neighborhood size stays the same, it encompasses a larger area of the original
image. Thanks to that, it manages to preserve even larger features from the
original style.

2.4 StyLit in architecture
In architectural sketches, it is generally not possible to use the approach with
the sphere representing the style. That has several reasons. First, in normal
architectural sketches, there are many materials that are conveyed differently
by the sketch (such as glass, concrete, vegetation, etc.), so to use a scene as a
base for the style, we would need several copies, one for each material. Second
problem is that for architecture it is very difficult to convey the geometry. Typical
architecture scene has a wide variety of geometric shapes, often mixing round and
sharp geometry, which makes the sphere as base geometry type useless, since it
cannot convey features such as sharp edges and flat surfaces well. But since the
ultimate goal of this thesis is different (we aim to transfer style just from one view
of a scene to a different view of the same scene), we do not aim to find a universal
style holder scene for architectural sketches. Instead, we just use the original view
that we have sketched as a source image, similarly to having a stylized keyframe
in video stylization techniques such as Jamrǐska et al. [2019].

2.4.1 Changes in the StyLit algorithm
In this part, we propose a few changes to the StyLit algorithm described in the
previous section that can improve the results on the style transfer in architectural
sketches.

Guide selection

The first question we need to address is the selection of guide channels for the
style transfer. We use mostly similar channels like the ones in the original paper.

18

a) b) c)

d) e) f)

Figure 2.5: Guide channels used for the style transfer
a) beauty render b) direct lightning c)wireframe render d)indirect lightning e) shadows
f) reflected light

We use beauty render, direct illumination, indirect illumination, reflected light,
shadows and wireframe render (see Figure 2.5). The only notable change is
the wireframe render, which was also used by Bénard et al. [2013]. Because
architecture depends heavily on straight lines, in order to preserve them, we need
some guide to enforce the lines to be where they should be. The wireframe render
helps with that since usually straight lines in the sketch are along important lines
in the model, which usually have a lot of edges around.

The problem with that render is that it is heavily dependent on the artist
who models the scene and thus in some scenes, it may confuse the synthesis
algorithm. But we found better results with this wireframe render than with
any other approach to preserve straight lines we tried (such as edge detection in
different channels). Usually, the wireframe render also conveys the importance of
certain areas. If an area is important for the architect, there is more detail in the
model, thus making more lines in the wireframe render. In the sketch, emphasis
will probably be put on the same areas which were already modeled in detail.
The impact of the wireframe guide can be seen in Figure 2.6. It can be seen that
the wireframe guide can help enforce continuous lines in appropriate directions.

Error limitation

The StyLit algorithm works well for many styles, but we still found a few prob-
lems in the specific field of architectural sketches. One problem that the StyLit
algorithm produces is a lot of noise in large areas of one color. This problem
is quite noticeable in architectural sketches since it is not unusual to have large
uniform areas (usually white), especially in the background. The cause of this
issue in the original algorithm is in the source-target direction of search. A patch
from the source image that is mostly one color may well have its closest patch in
the target image in a uniform area (see Figure 2.7).

19

a) b)

Figure 2.6: Impact of wireframe guide
a) detail of result with wireframe guide b) detail of result without wireframe render

This problem arises from the fact that in the StyLit algorithm error limitation
(defined in Equation 2.5) a patch is rejected only if its error does not fit in the
error budget. But this takes into account only the absolute value of the errors,
and while a patch with a certain error may not introduce any visible artifacts
in certain areas (areas with a lot of variance), in other areas a patch with the
same error may cause visible artifacts (one-colored areas). An example of how
this error may be introduced is in Figure 2.7 in the source-target search. There is
just a small error in a uniform patch. Because the error is small, the patch gets
fixed and an error is introduced.

One modification we propose to address this problem is as follows. Instead of
just looking at the global error budget as in Equation 2.5, we want to also look
locally at the current patch. In each search-vote iteration, we perform one target-
source direction search in the end to find correspondences for unfixed patches.
Because this search is independent of the source-target searches in the same
iteration, we may perform this search at the beginning of the iteration instead.
From this search, we get the lowest possible error Eb(p) that can be found for
each patch (see Figure 2.5). Then we may use this information from the search
in the process of fixing correspondences among patches.

The idea is that if the source-target search finds a match that has an error
that gets accepted under the error budget condition, but that is much higher than
the best error Eb(p), the match is probably a mismatch even though it would get
accepted. So for each patch p in the target image, we save the error Eb(p) from the
target-source search. For patches that fit under the error budget T , we perform
another condition check. This condition ensures that E(p) < αEb(p) where E(p)
is the error from source-target search, and α is a constant (we usually took α = 5).
This condition ensures that if we know that there is a much better patch to be
found, we may want to avoid fixing the current correspondence. So the patch
remains unfixed and is considered again in following iterations.

The downside is that this approach may increase the number of source-target
searches needed to fill a given percentage of patches and in this way slow down
the synthesis. But in reality, the number of rejected patches this way is quite
low. As can be seen in Figure 2.8, this approach reduces the amount of noise in

20

target-source search

source-target search
Figure 2.7: Per patch error
Target-source search finds the patch with lowest possible error Eb, then if source-target
search returns a mismatch with low error, the result from target-source search may
help to avoid fixing it.

the white background quite considerably and in some areas helps to improve the
overall quality.

Voting function

Another area where an improvement of quality can be achieved is the voting part
of the algorithm. Since the sketches are often done by pencil or ink, they contain
a lot of sharp lines. Because of that, the average function in voting may not be
the best fit. That is because the average tends to blur the results.

Some of the blurring comes from the following scenario. A correspondence is
established between a patch from the target image p and patch from the source
image q. These two patches may be a close match in most of the patch area, but
on a few pixels of the patches, the difference may be high (see Figure 2.9). This
does not necessarily mean that the patch is misplaced since there may not be any
better match and in most of the area it fits very well. But the pixels that differ
a lot will cause blurring in the voting function.

So ideally, we would want to take just the pixels that are a good match into
consideration. But taking just a part of the patch to vote is not possible since
there could be a place in the target image which has no good correspondence in
the source image. This would cause all the pixels in this area to have high error
and thus ending ignored and we would get pixels in the target image with no
data.

With this in mind, we still wanted to exclude the pixels that were probably
wrong. But instead of excluding them from the patches themselves, we exclude
some pixels in the voting function. In the voting function for each pixel, we have
a list of pixel values V to be averaged. What we did was computing average

21

a) b)

d)c)

Figure 2.8: Per patch error limitation
a) result without per patch error b) result with per patch error c) result without per
patch error detail d) result with per patch error detail

fixed correspondence

q p

Figure 2.9: Similar patches causing blurring
With a patch q from the source image and p from the target image, there may be error
low enough for the correspondence to get fixed, but the two pixels in the top right will
cause blurring.

22

a) b)

c) d)

Figure 2.10: Changed voting function
a) result with simple average b) result with average with omitted pixels, c) simple
average detail d) average with omitted pixels detail

av = 1
|V |

∑︁
v∈V v from all the pixels as before. Then we found a given number t

of pixels that are farthest from the average av. These pixels are then excluded
and an average without these pixels is computed as a result for given pixel av =

1
|V \T |

∑︁
v∈V \T v. We usually used t from 3 to 5. If there are just a few (less than

t) outliers that are wrongly assigned pixels, this method excludes these outliers
and the resulting value will not be so blurred. If on the other hand, all the
values are relevant and are close to each other, this method will not change the
resulting pixel value much. This is similar to the more robust solution used by
Wexler et al. [2004], where they use Mean-Shift by Comaniciu and Meer [2002]
in a similar EM-like algorithm. This gives improved and sharper results as seen
in Figure 2.10.

2.4.2 Limitations
The style transfer from one view to another cannot work on arbitrary new views.
That is because, for each patch, the algorithm needs to find a similar patch in the
source view that makes sense in the context. If we look at the model from the
side that is opposite to the original view, the model may be completely different
and parts that were not visible from the original view may show up (see Figure
2.11). The limits where the algorithm stops working are different for each scene,
but generally, it is when places that were not visible in the original view start
to show up which are different in a significant way (as lighting conditions, color,
texture, etc.). This is something that cannot be overcome with the algorithm and

23

needs to be taken into consideration when choosing the view to be stylized. An
example of a view where the style transfer completely fails can be seen in 2.11
d). The view in this example is from the opposite side of the chapel, where the
lighting conditions are different, so the stylization fails.

We found out that usually, the algorithm works well for rotations from −20◦

to 20◦ on both axes. Outside of this, it starts to break down.

24

a) b)

c) d)

e) f)

Figure 2.11: Stylization from opposite side
a) original view b) view from opposite side c) original style d) failed stylization on the
view from the opposite side e) original style detail f) stylization from the opposite side
detail

25

3. Style transfer on multiple
views
In this chapter, we will take the algorithm from the previous chapter and expand
it. We want to modify it to transfer the style from the original view to multiple
new views in a coherent way. We will make an evenly spaced grid of these new
views that will be placed on a sphere around the scene (Figure 3.1). This will
allow us to rotate around the scene.

Next, we will look at real-time movement between the stylized viewpoints
from the modified algorithm. We will introduce two ways of achieving this. One
is simple shifting and interpolating of images, the second one is a more complex
shifting of NNFs and a limited stylization. All this needs to run fast enough on
a GPU to achieve real-time experience.

3.1 Data acquisition
Generating data for one different view is done simply by any 3D renderer capable
of providing the channels we want to use as guides. We used Autodesk 3ds Max
with Corona renderer to generate all the guide channels mentioned before.

For a 1D case of the stylized space, the generation of the data is still easy.
Since the 1D case can be understood as an animation, most 3D software should
be able to generate the data needed. For more dimensions, it starts to get more
difficult since we need not only the guides but also motion fields for each pair of
neighbor points in the grid.

For each point in the grid, we rendered all the guides, but we also need a
motion field for each neighbor of the point. In order to get them, we make
another render for each pair of neighbors in the grid. This gets impractical for
grids with many points. For grids with thousands of points, the rendering itself
takes days even for lower resolutions. Memory starts to be another problem
since the motion fields need to be stored in floating-point image format, thus the
memory demands get very high.

Because of this, we need to try to make the interpolation work for as sparse
grid as possible to make the data generation feasible.

3.2 Enforcing spatial coherence
As a first step, we want to be able to generate a coherent stylized result from
a grid of viewpoints (Figure 3.1) for which we have generated all the necessary
guide channels. By coherence, we mean that if we move from one point of the
grid to another that is close enough, there should not be any abrupt changes
in the stylized result. The stylization should move with the model, while still
retaining a 2D painting look. The reason for this is that our goal is providing
smooth movement between the stylized viewpoints. If these stylized results were
incoherent, the sudden changes would disrupt the movement.

26

Figure 3.1: Camera grid
Visualization of the grid of views on which the algorithm performs the style transfer.

3.2.1 Frame shifting in animations
The most straightforward way to incorporate coherence in the algorithm is a way
used in the stylization of videos such as Jamrǐska et al. [2019]. In videos, there
is a temporal coherence to be enforced. The idea is that frames are sequentially
stylized and a result of one frame is shifted to the position of the next frame. In
our case, since we have motion fields from the underlying geometry, that means
just shifting all the pixels of the stylized image according to the motion field.

The shifted images can be used as coherence guides, so a new term is added
to the patch error from Equation 2.3, so it becomes

Ec(A′, B′
i, GS, GT , p, q) =||A′(p) − B′

i(p)||2

+
∑︂
g∈G

λg||GS
g (p) − GT

g (q)||2

+
∑︂

c∈Gc

λc||A′(p) − GT
c (q)||2,

(3.1)

where Gc is a set of shifted images (in the case of animation just one element
set). By taking the difference between the shifted image and the style image at
p, coherence is promoted.

With more dimensions (as in the Figure 3.1, we can just expand the set of
coherence guides G, but a new question arises as to in what order should the
viewpoints be stylized. The same issue arises for the approach used by Bénard
et al. [2013], where at each level a forward and backward sweep is done.

The minimized energy from equation 2.4 is defined just for one frame, so in the
case of stylization of multiple viewpoints at once the minimized energy becomes

EM =
∑︂
T ∈F

E(A′, B′
i, GS, GT) =

∑︂
T ∈F

∑︂
q∈QT

Ec(A′, B′
i, GS, GT , pq, q) (3.2)

where F is the set of all the view points. Our goal in the stylization on the grid
is minimizing the sum of the errors of the individual frames. That means that a

27

Figure 3.2: Shifting scheme
One frame shifted to four neighboring viewpoints on the grid. Black pixels are masked
pixels.

stylization of individual frames independently is not going to work in this case,
because the errors of the individual frames are dependent on the results of the
neighbor frames.

3.2.2 Intermediate shifting
Because of the problems with ordering described in the previous section, we
propose a different way of propagating coherence. Instead of computing the
frames sequentially in a given order, we will stylize all the frames at the same
time in parallel.

To do that, we modify the StyLit algorithm a little bit. After each search-
vote iteration, we get an intermediate result. We run one search-vote iteration for
every frame, then shift these intermediate results to all neighboring viewpoints
on the grid (see Figure 3.2) and use them as guides. With this approach, we are
minimizing the error EM from Equation 3.2.

This approach also brings computational advantage as in each search-vote
iteration computation of the frames is independent and thus it can be parallelized
easily.

Results can be seen in Figure 3.3. In the figure, in a.1) - a.3) there are results
without coherence and in b.1) - b.3) there are results with coherence. Some
more significant changes between the neighboring frames of the result without
coherence are visible in red rectangles. Even though overall the changes do not
seem very prominent on still images, these changes are distracting in a smooth

28

movement.

3.3 Real-time interpolation
The algorithm described in the previous chapter has a series of images as output,
which are stylized views on a grid around the scene. With these data, we want
to achieve a continuous experience, in which we could move around the model
in the space defined by the grid. Computing the stylization as described before
in a grid that would be fine enough to provide this experience is not feasible.
Because of that we need to implement an algorithm that would provide stylized
results for viewpoints that are not on the grid. The algorithm needs to provide
a smooth transition from one point of the grid to another while preserving the
stylized result.

3.3.1 Interpolation of images
The first option is simply taking the resulting stylized images and then interpo-
lating between them.

Blending Simple linear blending does not match our requirements since the
grid is quite coarse in most examples, so linear blending causes visible blurring
and makes for an unpleasant experience.

Shifting With the underlying geometry, we can shift the results from the views
of the grid to the current position. We shift the close grid points gi,j, gi+1,j, gi,j+1
and gi+1,j+1, which are around the current position, to the current view v as shown
in Figure 3.4. We also consider masking of the shifted pixels – shifted pixel needs
to have a similar color in original mask at the position from which it was shifted
and in current mask at the position to which it was shifted. These masks are
produced as color renders without any light applied from the viewpoints of grid
points and from current viewpoint. Pixels that are not masked in the shifted
image from the closest grid point (on the Figure g(i+1,j) is the closest) are shifted
from this closest grid point. Masked pixels are shifted from the other grid points.
If all pixels are masked, the closest grid point is used.

If masking was not taken into account, a lot of pixels would be shifted ac-
cording to different objects than the ones they belong to. But even when only
unmasked pixels are shifted, some artifacts are still visible – since the style exem-
plar is never drawn exactly over the geometry (parts of outlines are drawn over
geometry that corresponds to background). These artifacts can be seen in Figure
3.5 a).

We can also blend all these four shifted images, which alleviates the problem
with the artifacts and makes them less noticeable, but at the same time blurs the
results.

Conclusion

The problem with this approach of image interpolation is that the grid of points
to interpolate needs to be quite fine to produce acceptable results. When the grid

29

a.1) b.1)

a.2) b.2)

a.3) b.3)

Figure 3.3: Coherence comparison
a.1) - a.3) are three results generated without coherence (changes visible in red rectan-
gles) b.1) - b.3) are three results generated with coherence.

30

Figure 3.4: Real-time shifting
Schema of shfiting of points on grid (g(i,j),g(i+1,j), g(i,j+1), g(i+1,j+1)) to the current
view v.

becomes sparse, the interpolation overall starts to look more like a 3D model with
a sketch texture. Artifacts also become more prominent. While this approach
provides good results in a fine grid, because of the problems mentioned in Section
3.1 with grids consisting of many points, the approach is not suitable. It is also
inefficient – we need to compute a fine grid, which means computing a lot of
stylizations in points that are close by and thus similar.

3.3.2 Interpolation of NNF
A different approach can be taken to the interpolation phase. Instead of inter-
polating the resulting stylized images, we can take the results of the stylization
in the form of a nearest neighbor field and shift that. The nearest neighbor field
holds the coordinates of the closest patch from the source image for each patch
in the target image.

Shifting

The shifting itself is the same as when shifting just the images. Instead of pixel
colors, we shift coordinates from the nearest neighbor field (NNF). For each pixel
that is a patch center in the current image, we look where this pixel was in
the view from a grid point with the use of a motion field. Then, we copy the
coordinates from this position from the grid point to the current pixel. Again,
we use masking to prevent shifting neighborhoods between different areas.

The use of NNF when shifting allows us to use a sparse grid. That is because
when shifting NNF, one shifted patch can repair errors in its proximity, thus
making this approach more robust against error. And because we have access to
the NNF, we can modify it and improve the results.

In every point, we shift the four grid points in between which the current
position is (as can be seen in Figure 3.4). This gives us more data to work with.

Producing the NNF

First, we need to construct a NNF for the current view. We can use shifted NNFs
from the grid points between which we are (in 2D we have 4 of those shifted

31

a) b)

c) d)

Figure 3.5: Interpolation modes
a) Image shifting b) NNF shifting c) Image shifting detail d) NNF shifting detail

NNFs). From these NNFs, we need to produce a new NNF that would represent
the current view the best.

We take the coordinates from the closest grid point on which the current
position is unmasked. So the new NNF is made as

NNFc(p) = NNFg(p − V g(p)), (3.3)

where g is the closest grid point in which the shifted pixel is not masked (in the
case when all the grid points are masked, the closest one is used) and V g is the
motion field from g to the current position.

After producing the NNF, we run voting that is done by the simple average
as in the original StyLit (see Chapter 2), which is fast enough to run in real-time.
This voting produces current style image candidate (see Figure 3.6 a)).

Limited search iteration

After the voting, we get a stylized image that is already of good quality. But
this can still be improved. Since we already have several shifted NNFs from
the previous step, we can use them further. The patches in the shifted NNFs
were good matches in their respective viewpoints so we can expect that their
correspondence according to the guide channels is still good even after the shift.
That holds if the distance of the viewpoints is not too excessive since the guide
does not change much with movement. The only thing that changed is the style.
Now, the current style from the previous iteration is influenced by the masking
and by the choice of NNFs correspondences, thus making it blurry at certain
places. Also, artifacts on places where the style exemplar was not exactly over

32

a) b)

c) d)

Figure 3.6: Limited iteration comparison
a) result without limited iteration b) result with limited iteration c) detail of result
without limited iteration d) detail of result with limited iteration

the original image (as explained in image shifting) are visible (see Figure 3.6 a),
c)). To address this problem, we run one refining iteration to improve the results.

This iteration is done as follows. For each patch in the target image, we look
at all the correspondences from all the non-masked shifted NNFs. We compute
error, but this time only on the style image, since we do not even have the guide
channels and since at this stage we want to focus on improving the final style
appearance. We then choose the best patch from those shifted NNFs. This does
not involve much computation and can be easily run in real-time on GPU.

After this, we get a new, changed NNF, so another voting iteration must take
place to get the final stylized image. The improvement caused by this limited
iteration can be seen in Figure 3.6.

3.3.3 Conclusion
This approach still suffers from some problems. One of the prominent problems
with this approach is the lack of interpolation. Because of this, there is a sudden
change when the closest grid point changes, but thanks to the coherent generation
from Section 3.2, the change is not too big. The importance of the coherent
generation of the underlying data can be seen in Figure 3.7. There are also
some artifacts that are caused from the shifting that remain unmasked, similarly

33

a.1) b.1)

a.2) b.2)

a.3) b.3)

Figure 3.7: Coherence importance in interpolation
Images 1 and 2 are from almost the same view, but with changed closest point on the
grid. In a) are results with coherence while b) without coherence. In 3) red pixels are
pixels with a big difference between 1 and 2.

34

to the problem with image shifting. Also the outlines get partly masked and
thus disappear on some places. Because of the limited stylization iteration, this
problem is also less prevalent than in the image shifting. The quality of this
interpolated result is just slightly worse than the result stylized with the StyLit
algorithm from Chapter 2, see Figure 3.8.

Overall this approach outperforms the image shifting in almost all regards
(comparison of these two approaches can be seen in Figure 3.5). The only down-
side is that it is slower to compute (for details, see the section about implemen-
tation, 4.2). But otherwise, it requires less precomputed data points, the results
are of better quality and it produces fewer artifacts.

a) b)

c) d)

Figure 3.8: Comparison - interpolation and stylization
Comparison of results from the same view from the full stylization algorithm in a) and
interpolated result in b).

35

4. Implementation
As part of this thesis, we implemented two independent applications. One is the
style transfer algorithm based on StyLit (Fǐser et al. [2016]) described in Chapter
2 with the expansion to spatially coherent style transfer as described in Section
3.2. The second application is the real-time viewer with limited stylization from
Section 3.3. In this chapter, we will provide details on the implementation of
those two applications.

4.1 Stylization algorithm
In this section, we will have a look at the implementation details of the stylization
part of the thesis. This part was written in C++ and it has no user interface.
The implementation is part of Electronic attachment A.1. It must be run with a
configuration file that sets all the parameters of the style transfer.

4.1.1 Used libraries and technologies
In this part, we will introduce the libraries and technologies used in our imple-
mentation of the style transfer algorithm.

JetBrains CLion

An integrated development environment we used for the development of the C++
implementation.

CMake

A management tool for the build process offering multiplatform support.

CImg

A lightweight header-only library we used for basic image manipulation, including
loading and saving images, rescaling and rotating.

OpenMP

A library used for parallelization. We use it for significant speedup, especially in
the spatially coherent stylization, where all the frames can be run independently
in parallel.

LibPNG

A library for manipulation with png files. Our implementation expects the guide
channels and the style exemplar as a png file and saves the results in png files.

36

OpenEXR

A library for loading and saving exr files. This is a format for floating-point
images. We need manipulating with floating-point format for motion vector fields
for shifting described in Section 3.3.2.

4.1.2 Implementation details
We implemented the StyLit algorithm (Fǐser et al. [2016]) with one slight change
from the algorithm described in the paper and in Chapter 2. In the search phase
(Section 2.4), we do not fit a hyperbolic function to get the error budget, instead,
we compute the error budget as a percentile of the sum of all the errors. We
did this for convenience and more control over the error budget. The percentile
parameter can be chosen in a configuration file and we usually used 0.9. We also
implemented all the changes proposed in Section 2.4.1 and the means to compute
the style transfer in a spatially coherent way as described in Section 3.2.

Search phase

In the search phase of the algorithm (Section 2.3.1), we need to find the closest
patch from B for each patch from A. This search happens several times during
each search-vote iteration, which itself happens multiple times during the synthe-
sis. Because of this, we need an algorithm that can establish the correspondences
quickly, so a brute force search is too slow to use.

We decided to implement the PatchMatch algorithm by Barnes et al. [2009],
which is the algorithm that was used in the original StyLit paper. This algorithm
is used for approximate patch correspondence retrieval and is fast enough for our
purposes. Even though the algorithm is only approximate, the results it provides
are very good and usually close to the truth.

Input and output

The application takes guides of all frames as specified in Section 2.4.1. The
algorithm expects all the guide channels to be in a png file format and the motion
fields to be in and exr file format. More details can be found in Electronic
attachment A.1.

The output is a series of png files. For each frame, the application saves the
stylized result. It also saves the resulting NNF in a binary file, if NNF saving
is enabled in the configuration. The application also needs to save the progress
if we are performing the spatially coherent style transfer, so after each search-
vote iteration, an intermediate result for each image is saved. These intermediate
results can also be used to continue the stylization in case it needed to be stopped.

Performance

The style transfer using this algorithm is quite slow, which is caused mainly
by the search phase. In this phase, the patch match algorithm (Barnes et al.
[2009]) makes a lot of comparisons of patches from source and target images.
This comparison consists of a lot of operations since it is computing error across
all the guide channels and across all the pixels in the neighborhood.

37

We ran the algorithm on a six-core CPU Intel i7-8750H. For a single frame
stylization without parallelization, the algorithm stylized a 600x500 image with
six search vote iterations and six patch match iterations in 312 seconds on average,
and when multiple images were run and stylization was parallelized on all the 6
cores, average time per frame was 61 seconds.

4.2 Real-time viewer
In this section, we will look at the implementation of the real-time viewer de-
scribed in Chapter 3.3. We implemented both the image shifting and NNF shift-
ing approaches. This part was written using C♯ and Cg. It is independent of the
stylization application and if supplied data in a compatible form, it could run
with data from any stylization algorithm.

4.2.1 Used libraries and technologies
In this part, we will introduce the technologies used for our implementation of
the real-time viewer.

Unity

Unity is a 3D game engine. It is well known and has a comprehensive docu-
mentation1. Even though it offers a lot more functionality than we needed, we
chose to use it for several reasons. The first is for its popularity. Because of its
popularity, a lot of community support is present, even for things that users do
not need often (in our case the generation and use of motion fields for example).
Another reason is the simplicity of use. We needed to manipulate 3D geometry
and camera settings and Unity offers everything we needed out of the box and
well documented.

4.2.2 Implementation details
Because of the specific nature of our application, we did not need all of the things
Unity can provide. We did not use any of the physics systems and we also disabled
shadows and set the quality of light rendering to the lowest settings.

Input data

The application can load Unity AssetBundles2. In the case of a bundle for image
shifting, it has to contain images with the results of the stylization. In the case of
NNF shifting, it needs to contain the binary files with coordinates of the matched
patches as floats.

Currently, the viewer is limited to one camera configuration. That is because
transferring a camera from a 3D rendering software to Unity is not a straightfor-
ward process. The cameras cannot be just transferred one to one easily, so we
resorted to the solution of fixed camera configuration. That means that to use

1https://docs.unity3d.com/Manual/index.html (Accessed December 21, 2019)
2https://docs.unity3d.com/Manual/AssetBundlesIntro.html (Accessed December 21, 2019)

38

the viewer, all the data supplied need to be generated using a camera with the
same settings as we used and in a fixed resolution of 600x500 px.

Motion fields

Unity can generate motion vector fields automatically from cameras. These mo-
tion vector fields capture pixel position change from the last frame for that current
camera. Because we need a motion field for four grid points, we must have a cam-
era for each of them that moved from the grid point to the current position in
the current frame. Because of this, we need eight cameras in total that are al-
ternating between the grid points and current position. We also found out that
rendering the motion field in lower resolution provides acceptable results.

Masking

For masking of the shifted NNFs, we use the same cameras as for the motion
fields. Each of the cameras renders a motion field in the first two components
of the four-component result. We then store the masking information to the
remaining two components. The masking information comes from a simple color
of a mesh that has no lightning applied.

Shader implementation

We implemented the whole algorithm in shaders. The shaders are supplied the
grid point NNFs or images that are around the current position, and the current
position. The shaders compute all the interpolation.

The NNFs are transferred to the shader as compute buffers that contain float
coordinates of the nearest neighbors.

For the implementation of the NNF voting and limited stylization step (Sec-
tion 3.3.2), we used a shader with multiple passes. The shader uses four passes in
total, where in the first pass the first NNF is produced from the shifted NNFs and
in the second pass a voting from the produced NNF is performed. In the third
pass, the limited stylization takes place and in the fourth pass, another voting is
performed.

4.2.3 Performance
We want to be able to run the viewer in real-time. Our goal is also to allow the
viewer to be run even on lower-end devices. We tried to run the viewer on a
low-end specification without dedicated GPU3, on which the NNF shifting ran
with about 30 FPS and the image shifting 60 FPS. The image shifting is much
faster as expected since it does not perform additional limited stylization step as
the NNF shifting does (Section 3.3.2). If the system we would like to run the
viewer on had even lower specification than the lowest configuration, we could
disable the limited stylization step in NNF shifting.

3intel i3-7100U + no dedicated GPU

39

5. Results
In this chapter, we will present and discuss the results of the implemented algo-
rithms. The algorithm is hard to evaluate, because the quality of stylization is a
highly subjective matter and there is no universal metric to measure the quality.
However, faults such as blurring and artifacts are obvious.

Another problem with showing the results here is that the algorithm is im-
plemented to provide smooth interpolation, which cannot be conveyed by still
pictures. Because of that we also provide video of the results which can be found
on the webpage http://hauptfleisch.cz/ArchStyle/video.html (the video is
also included in Electronic attachment A.2.3). And we also provide the real-time
viewer with all the bundles in Electronic attachment A.2.

The models we used to generate the results in this chapter are shown in Figure
5.1. We used three vastly different models that should represent different types
of architectural models. The first one is a model of a chapel1 with a lot of details
and with a lot of complex geometry. This model is mostly rounded without many
flat surfaces. The second model is a modern building2 with a minimum of details
and a lot of flat surfaces. The third one is a model of a more traditional house3

that has some details and a lot of flat surfaces at the same time.
We experimented with multiple style exemplars for each of these models.

5.1 Chapel
The chapel model is a highly detailed model with a lot of curved surfaces. The
only bigger flat surface that is interesting for the style transfer is the shadow on
the ground. For this model, we have three style exemplars from artists and
one computer-generated style (generated using FotoSketcher4). We used the

1https://www.turbosquid.com/3d-models/3d-orthodox-chapel-model/998158 (Accessed De-
cember 26, 2019)

2https://www.turbosquid.com/FullPreview/Index.cfm/ID/1204626 (Accessed December 26,
2016)

3https://www.turbosquid.com/FullPreview/Index.cfm/ID/795483 (Accessed December 26,
2019)

4https://fotosketcher.com (Accessed January 2, 2019)

a) b) c)

Figure 5.1: The models used for producing the results in this chapter
a) Orthodox chapel model from Turbosquid by Brut1ch b) modern house model from
Turbosquid by MartinDiavolo c) traditional house model from Turbosquid by 3D COR

40

http://hauptfleisch.cz/ArchStyle/video.html

a)

c)

b)

d)

Figure 5.2: Styles for the chapel mode
a) Shade style by Jan Pokorný, b) Watercolor style by Štěpánka Sýkorová, c) Hatch
style by Jan Pokorný, d) Paint style generated by FotoSketcher

computer-generated style in order to have one style that is the same for all the
models. The styles used for the chapel model are in Figure 5.2.

This model also posed some problems when used in the real-time viewer. Since
the highly detailed geometry has over two million vertices, it is not suitable for
real-time use. To run the real-time viewer on this geometry, we had to simplify
it first.

Two parts of the scene cause problems to the style transfer algorithm. These
parts are the cross on top of the chapel and the cross in the shadow of the chapel.
That is caused by the cross being visually such a prominent feature that the artists
tend to exaggerate it (see a), b) and c) in Figure 5.2). This causes that it is very
detailed in the artistic drawings, but without a lot of underlying geometry. This
causes problems when shifting the results of one frame to another (from Section
3.2). That is because the geometry there is so thin that not much gets shifted.
Because of this the coherence term then enforces error. Because of this, after the
style transfer, the cross sometimes disappears partly or completely, or its overall
shape is changed. See Figure 5.3 for these cross deformations.

41

A similar issue comes with the shadow of the cross. It is such a thin line
that it is very hard for the algorithm to transfer it correctly in the guides. It is
also not different from the rest of the shadow. This problem with the shadow of
the cross can be seen mostly in c) from Figure 5.2, since the author put a lot of
emphasis in the cross shadow.

Stylization results

In this part, we will discuss the results of the style transfer algorithm described
in Chapter 2 with the space coherence expansion from Section 3.2.

All the results were generated on data taken from a uniform grid from a sphere
around the model. Two neighboring points on the grid are 5◦ apart.

Results of the stylization on the chapel model can be seen in Figure 5.4 from
multiple views without details and in Figures 5.5, 5.6, 5.7 and 5.8 in b) and d)
for more detailed results.

In these results, there are a few interesting things to note. The view a) is the
same view from which the artists drew their style exemplars. That means that
this view should be fairly easy for the algorithm to replicate. This also means
that here we have one view for which we have a ground truth to which we can
compare the result. Most problems in this view can be seen in the hatch style,
that is, in the image 2.a). The algorithm could not transfer the style on the
shadow very well. The shadow of the cross is completely missing for the reasons
mentioned before. But the algorithm is also struggling to keep the hatching lines
straight in the shadow. That is because the guides in the area of the shadow are
almost uniform. Thus, the algorithm struggles to decide which patch should go
exactly where. This problem is less prominent in areas where the style is less
sharp (the shadow of the chapel in the other styles) because in these parts small
errors are not visible.

The viewpoint b) is a viewpoint from (10◦, 10◦). In this view, there are already
some areas that were not visible from the original point of view. These areas are
mostly parts of the roof from above and some smaller parts of the wall on the
left side of the chapel. Some areas get a little blurry, but the overall results are
still satisfactory.

The view c) view is from (−20◦, −20◦) where the style transfer is already
starting to fail. The only result that does not exhibit severe problems is 4.c),
although the structure of the strokes is lost as well. In 1.c) and 2.c), there is a
lot of discontinuous lines or lines that do not retain their straightness. In 3.c),

Figure 5.3: Problems of the algorithm with the cross

42

the colors are getting mixed up.

Interpolation results

In this part, we will look at some results of the interpolation algorithm. Since
still images cannot convey the interpolation results very well, we offer a video
of the results on-line at http://hauptfleisch.cz/ArchStyle/video.html and
in Electronic attachment A.2.3. We attach the viewer application in Electronic
attachment A.2 together with all the data that we presented in this chapter.

Here, we will show several interpolation results to illustrate its quality and to
show its problems. The results are in Figures 5.5, 5.6, 5.7 and 5.8 for the different
styles. There is always a stylized result in a) (with detail in c)) and a shifted
result in b) (with detail in d)).

In these figures, it can be seen that the the interpolated results are generally
of slightly lower quality than the results from the stylization. But the difference
is not very big. Some problems that can be seen are the artifacts from shifting
as mentioned in Section 3.3.2. These artifacts can be seen in all the styles as
splotches on the white background (see for example Figure 5.6 d) on the right
side).

The most visible problem is that the edges of the drawings get washed out.
That is because of the masked shifting. It is connected to the problem with
artifacts, because the artist usually does not draw only in the places where the
object is, but the outlines are partly outside of the object. These outlines are
then masked and get washed out (this can be seen for example in Figure 5.5 d)
on the outline in the center of the image, but it is visible on every style).

43

http://hauptfleisch.cz/ArchStyle/video.html

a) b) c)

1)

2)

3)

5)

1.a) 1.b) 1.c)

2.c)2.b)2.a)

3.a) 3.b)

5.a) 5.b)

3.c)

5.c)

Figure 5.4: Results of the stylization algorithm from multiple views
Results on the modern house model on multiple views: a) the original view b) view
from (10◦, 10◦) c) view from (−20◦, −20◦).

44

a) b)

c) d)

Figure 5.5: Results on the chapel model – hatch style
a) result of the stylization on grid point, b) result of shifted NNF from the a) result,
c) detail of the stylization on grid point, d) detail of the interpolation result

a) b)

a) b)

c) d)

Figure 5.6: Results on the chapel model – shade style
a) result of the stylization on grid point, b) result of shifted NNF from the a) result,
c) detail of the stylization on grid point, d) detail of the interpolation result

45

c) d)

a) b)

Figure 5.7: Results on the chapel model – watercolor style
a) result of the stylization on grid point, b) result of shifted NNF from the a) result,
c) detail of the stylization on grid point, d) detail of the interpolation result

a) b)

c) d)

Figure 5.8: Results on the chapel model – paint style
a) result of the stylization on grid point, b) result of shifted NNF from the a) result,
c) detail of the stylization on grid point, d) detail of the interpolation result

46

a) b)

d)c)

Figure 5.9: Styles of modern house model
a) Illustration style by youssrayd on Fiverr b) Sketch 1 style by nimshan12 on Fiverr
c) Sketch 2 style by Barbora Kociánová d) Paint style generated by FotoSketcher

5.2 Modern house
This model is much simpler than the chapel. It is also much closer to what an
architect might have when producing a sketched visualization. That is because of
two reasons. First, the model is much closer to what is being designed nowadays.
Second, the phase in which the architect does a visualization using a hand-drawn
sketch is usually when the design is not yet finalized. Instead, it is done with
just a crude and simple model of the building without a lot of details. This
corresponds to this model. The styles for this model are shown in Figure 5.9.
There are multiple interesting things to note about the styles. In a), the artist
chose to ignore the shadow on the ground. In b), the most important part of
the style is the outlines. In c), there is a lot of texture which should be retained.
Finally, d) is the same computer-generated style as before. The results for this
model and the styles can be seen in Figures 5.16, 5.20, 5.18, 5.19 and 5.17.

Stylization results

The stylization itself works well for all the styles of this model. The space where
the style transfer works well is similar to the one of the chapel. One slightly
problematic style is the paint style (Figure 5.9 d)). In this style, a lot of details
in the texture are lost (see Figure 5.11). That is because there is a lot of detail

47

nufito

a) b) c)

1)

2)

3)

5)

1.a) 1.b) 1.c)

2.c)2.b)2.a)

3.a) 3.b)

5.a) 5.b)

3.c)

5.c)

Figure 5.10: Results on the modern house model
Results on the modern house model on multiple views: a) the original view b) view
from (10◦, 10◦) c) view from (20◦, −20◦) .

48

in strokes that go beyond the original part to which they belong (for example the
dark strokes of the window go over parts of the wall). This gives the original style
a somewhat messy but sharp look. This look is lost a little in the stylized result
since these strokes going over different parts of the model are not preserved. The
reason why this is not so significant on the same style on the chapel model is that
the chapel does not contain a lot of flat surfaces, thus the guiding is much less
uniform. Because the chapel does not have uniform guides, the patches have a
clearer placement, so even the strokes that are over different parts of the models
than the ones they belong to may get placed correctly. With the more uniform
guides, these patches do not have a clear placement and thus may not get used.

One thing to note in the sketch style (Figure 5.9 b)) in the Figure 5.12 is
the left camera-facing wall. There are artifacts of darker areas intervening with
white areas. The cause of this is in the original style exemplar. The two walls
facing camera in the new view have almost the same values in the guide channels,
they are in shadow and have the same color. But the artist chose to stylize them
differently. One of them in dark shade, one in white color. The algorithm then
has problems deciding patches from which of the two walls to use and produces
these artifacts.

Interpolation results

With this model, problems with the removal of outlines mentioned in the chapel
model section are even more visible. That is because on the modern house model
there are a lot of straight outlines that bear a lot of information. This is most
visible in Figure 5.14, where in b) and in the detail d), the outline in the back of
the roof almost completely disappears. In other results of the interpolation, the
results are a little more blurry than the original (as can be seen in Figures 5.12,
5.11 in b), d)), but otherwise of comparable quality.

49

a) b)

c) d)

Figure 5.11: Result on the modern house – paint
a) result of the stylization on grid point, b) result of shifted NNF from the a) result,
c) detail of the stylization on grid point, d) detail of the interpolation result

a) b)

c) d)

Figure 5.12: Result on the modern house – sketch
a) result of the stylization on grid point, b) result of shifted NNF from the a) result,
c) detail of the stylization on grid point, d) detail of the interpolation result

50

a) b)

c) d)

Figure 5.13: Result on the modern house – sketch 2
a) result of the stylization on grid point, b) result of shifted NNF from the a) result,
c) detail of the stylization on grid point, d) detail of the interpolation result

a) b)

c) d)

Figure 5.14: Result on the modern house – illustration
a) result of the stylization on grid point, b) result of shifted NNF from the a) result,
c) detail of the stylization on grid point, d) detail of the interpolation result

51

a) b)

c) d)

Figure 5.15: Styles of the normal house model
a) Illustration style by youssrayd on Fiverr b) Sketch 1 style by nimshan12 on Fiverr
c) Sketch 2 style by Barbora Kociánová d) Paint style generated by FotoSketcher

5.3 Traditional house
The traditional house model is simpler than the chapel model, but with more
details than the modern house model. It is also something that may be present
in nowadays architecture. The styles for this model are in Figure 5.15.

Stylization results

Results of the stylization on the traditional house model can be seen in Figures
5.16, 5.17, 5.18, 5.19 and 5.20.

In Figure 5.20, one issue can be seen in areas that are newly visible in the
view. In this model, such areas are for example under the roof. In the upper
part of the window under the roof in Figure 5.20 c), the stylization visibly fails,
because the algorithm cannot decide what patches to copy there. Another issue
visible in Figure 5.20 is that lines that should be straight are slightly curvy, which
can be seen in the line under the window.

Interpolation results

In the results, interpolation performs well again with the achieved quality com-
parable to the stylization itself. But a few issues are still visible.

52

One issue can be noted in Figure 5.18. After shifting of the NNF, if an area
becomes much larger than the original area, it becomes blurry. That can be seen
in the shadow in d), which becomes blurred and starts to lose the texture of the
shadow in c).

Another slight issue is present in Figure 5.20. Some straight lines may become
slightly curved or disconnected after the shifting. This can be seen in the image
d) on the line of the dormer, or on the line on the roof of the dormer.

53

a) b) c)

1)

2)

3)

5)

1.a) 1.b) 1.c)

2.c)2.b)2.a)

3.a) 3.b)

5.a) 5.b)

3.c)

5.c)

Figure 5.16: Results on the normal house model
Results on the modern house model on multiple views: a) the original view b) view
from (−10◦, 10◦) c) view from (20◦, 20◦).

54

a) b)

c) d)

Figure 5.17: Normal house – paint result
a) result of the stylization on grid point, b) result of shifted NNF from the a) result,
c) detail of the stylization on grid point, d) detail of the interpolation result

a) b)

c) d)

Figure 5.18: Normal house – sketch result
a) result of the stylization on grid point, b) result of shifted NNF from the a) result,
c) detail of the stylization on grid point, d) detail of the interpolation result

55

a) b)

c) d)

Figure 5.19: Normal house – sketch 2 result
a) result of the stylization on grid point, b) result of shifted NNF from the a) result,
c) detail of the stylization on grid point, d) detail of the interpolation result

a) b)

c) d)

Figure 5.20: Normal house – illustration result
a) result of the stylization on grid point, b) result of shifted NNF from the a) result,
c) detail of the stylization on grid point, d) detail of the interpolation result

56

Conclusion
In this thesis, we explored the problem of style transfer from one view to multiple
different views and then provided a way to smoothly interpolate between those
stylized viewpoints.

First, we explored the possibility of using certain algorithms to our problem
of style transfer in the area of architectural sketches. We decided to use the
StyLit algorithm (Fǐser et al. [2016]) as a base for the thesis because of its results
for style transfer on 3D scenes. We then introduced a few minor changes to the
algorithm to improve its results on architectural sketches. We also introduced a
modification to the algorithm that enabled a spatially coherent style transfer to
multiple viewpoints in a parallel way. With these stylized results, we introduced
an algorithm to smoothly move between them, while preserving a high quality of
the stylized result.

We also believe that the approach described in this thesis could have real-
world use. The use-case would be as follows. An architect would like to provide
a more interesting visualization than just a sketch to a client. But the architect
cannot expect the client to have a powerful computer to run the stylization and
for the client to wait until the stylization finishes. Thus, the architect runs the
stylization and then sends the results to the client. The client can then run the
real-time viewer on their machine.

Limitations
The main limitation is the inherent limitation of the underlying StyLit algorithm.
It cannot work on views that differ too much from the original view. This limits
the position of the views the stylization works on.

Another problem we were not able to solve is the problem of the inaccurate
style exemplars. Artists usually use strokes that go slightly over areas the strokes
do not belong to and with the use of masking in the real-time viewer this causes
removed outlines.

Future work
Since the field of style transfer in a spatially coherent way is an open problem
that is not very widely explored, there is a lot of different ways to expand this
work.

One of the areas we feel would deserve more attention are rotations in the
style transfer. The angle of lines carries important information, especially in our
case of architectural sketches, where hatching is a quite popular style. The angle
of hatches is not arbitrary and has a purpose, but our current implementation
uses only the original angle. There are many unexplored ways of addressing this
problem, especially taking into account that we are working over a 3D scene,
where data like principal curvature directions can be extracted.

Another area that could certainly be improved is the quality of the real-time
viewer. Currently, the viewer runs in the same resolution as is the output of

57

the synthesis. We believe this could be improved even with the lower resolution
synthesis. The available NNF could be leveraged to produce higher resolution
results.

The third possible way is a straightforward expansion of the methods we in-
troduced. For the spatially coherent stylization and for the real-time viewer, we
were working just in two-dimensional space (rotations). This could be expanded
to include many interesting problems. One could just expand the space by in-
cluding also zoom into the rotations. Other expansions in this could area could
include smooth changes in geometry. That would allow stylized animation that
could be viewed from several angles.

58

Bibliography
Connelly Barnes, Eli Shechtman, Adam Finkelstein, and Dan B Goldman. Patch-

match: A randomized correspondence algorithm for structural image editing.
In ACM Transactions on Graphics (ToG), volume 28, page 24. ACM, 2009.

Pierre Bénard, Forrester Cole, Michael Kass, Igor Mordatch, James Hegarty,
Martin Sebastian Senn, Kurt Fleischer, Davide Pesare, and Katherine Breeden.
Stylizing animation by example. ACM Trans. Graph., 32(4):119:1–119:12, July
2013. ISSN 0730-0301. doi: 10.1145/2461912.2461929. URL http://doi.acm.
org/10.1145/2461912.2461929.

Dorin Comaniciu and Peter Meer. Mean shift: A robust approach toward feature
space analysis. IEEE Transactions on Pattern Analysis & Machine Intelligence,
(5):603–619, 2002.

Jakub Fǐser, Michal Lukáč, Ondřej Jamrǐska, Martin Čad́ık, Yotam Gingold,
Paul Asente, and Daniel Sỳkora. Color me noisy: Example-based rendering of
hand-colored animations with temporal noise control. In Computer Graphics
Forum, volume 33, pages 1–10. Wiley Online Library, 2014.

Jakub Fǐser, Ondřej Jamrǐska, Michal Lukáč, Eli Shechtman, Paul Asente, Jing-
wan Lu, and Daniel Sỳkora. Stylit: illumination-guided example-based styl-
ization of 3d renderings. ACM Transactions on Graphics (TOG), 35(4):92,
2016.

Jakub Fǐser, Ondřej Jamrǐska, David Simons, Eli Shechtman, Jingwan Lu, Paul
Asente, Michal Lukáč, and Daniel Sýkora. Example-based synthesis of stylized
facial animations. ACM Transactions on Graphics, 36(4), 2017.

Oriel Frigo, Neus Sabater, Julie Delon, and Pierre Hellier. Split and match:
Example-based adaptive patch sampling for unsupervised style transfer. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 553–561, 2016.

Oriel Frigo, Neus Sabater, Julie Delon, and Pierre Hellier. Video style transfer
by consistent adaptive patch sampling. The Visual Computer, 35(3):429–443,
2019.

Leon Gatys, Alexander S Ecker, and Matthias Bethge. Texture synthesis using
convolutional neural networks. In Advances in neural information processing
systems, pages 262–270, 2015.

Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Image style transfer
using convolutional neural networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 2414–2423, 2016.

Agrim Gupta, Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Characterizing
and improving stability in neural style transfer. In Proceedings of the IEEE
International Conference on Computer Vision, pages 4067–4076, 2017.

59

http://doi.acm.org/10.1145/2461912.2461929
http://doi.acm.org/10.1145/2461912.2461929

Aaron Hertzmann, Charles E Jacobs, Nuria Oliver, Brian Curless, and David H
Salesin. Image analogies. In Proceedings of the 28th annual conference on
Computer graphics and interactive techniques, pages 327–340. ACM, 2001.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image
translation with conditional adversarial networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 1125–1134, 2017.

Ondřej Jamrǐska, Jakub Fǐser, Paul Asente, Jingwan Lu, Eli Shechtman, and
Daniel Sýkora. LazyFluids: Appearance transfer for fluid animations. ACM
Transactions on Graphics, 34(4), 2015.

Ondřej Jamrǐska, Šárka Sochorová, Ondřej Texler, Michal Lukáč, Jakub Fǐser,
Jingwan Lu, Eli Shechtman, and Daniel Sýkora. Stylizing video by example.
ACM Transactions on Graphics, 38(4), 2019.

Nicholas Kolkin, Jason Salavon, and Gregory Shakhnarovich. Style transfer by
relaxed optimal transport and self-similarity. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages 10051–10060, 2019.

Vivek Kwatra, Irfan Essa, Aaron Bobick, and Nipun Kwatra. Texture opti-
mization for example-based synthesis. ACM Trans. Graph., 24(3):795–802,
July 2005. ISSN 0730-0301. doi: 10.1145/1073204.1073263. URL http:
//doi.acm.org/10.1145/1073204.1073263.

Jing Liao, Yuan Yao, Lu Yuan, Gang Hua, and Sing Bing Kang. Visual attribute
transfer through deep image analogy. arXiv preprint arXiv:1705.01088, 2017.

Ce Liu, Jenny Yuen, and Antonio Torralba. Sift flow: Dense correspondence
across scenes and its applications. IEEE transactions on pattern analysis and
machine intelligence, 33(5):978–994, 2010.

Alasdair Newson, Andrés Almansa, Matthieu Fradet, Yann Gousseau, and
Patrick Pérez. Video inpainting of complex scenes. SIAM Journal on Imaging
Sciences, 7(4):1993–2019, 2014.

Hisko Hulsing Raphael Bob-Waksberg, Kate Purdy. Undone. Amazon Video,
2019. URL https://www.amazon.com/Undone-Season-1/dp/B07SVHR2KH.

Manuel Ruder, Alexey Dosovitskiy, and Thomas Brox. Artistic style transfer for
videos and spherical images. International Journal of Computer Vision, 126
(11):1199–1219, 2018.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition, 2014.

Peter-Pike J. Sloan, William Martin, Amy Gooch, and Bruce Gooch. The lit
sphere: A model for capturing npr shading from art. In Proceedings of Graphics
Interface 2001, GI ’01, pages 143–150, Toronto, Ont., Canada, Canada, 2001.
Canadian Information Processing Society. ISBN 0-9688808-0-0. URL http:
//dl.acm.org/citation.cfm?id=780986.781004.

60

http://doi.acm.org/10.1145/1073204.1073263
http://doi.acm.org/10.1145/1073204.1073263
https://www.amazon.com/Undone-Season-1/dp/B07SVHR2KH
http://dl.acm.org/citation.cfm?id=780986.781004
http://dl.acm.org/citation.cfm?id=780986.781004

Daniel Sýkora, Ondřej Jamrǐska, Ondřej Texler, Jakub Fǐser, Michal Lukáč, Jing-
wan Lu, and Eli Shechtman. StyleBlit: Fast example-based stylization with
local guidance. Computer Graphics Forum, 38(2):83–91, 2019.

Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Guilin Liu, Andrew Tao, Jan
Kautz, and Bryan Catanzaro. Video-to-video synthesis. arXiv preprint
arXiv:1808.06601, 2018.

Ting-Chun Wang, Ming-Yu Liu, Andrew Tao, Guilin Liu, Jan Kautz, and
Bryan Catanzaro. Few-shot video-to-video synthesis. arXiv preprint
arXiv:1910.12713, 2019.

Yonatan Wexler, Eli Shechtman, and Michal Irani. Space-time video completion.
In Proceedings of the 2004 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, 2004. CVPR 2004., volume 1, pages I–I. IEEE,
2004.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-
to-image translation using cycle-consistent adversarial networks. In Proceedings
of the IEEE international conference on computer vision, pages 2223–2232,
2017.

61

List of Figures

1.1 Neural algorithms results . 8
1.2 Image analogies . 8
1.3 Deep image analogies result on different view 10

2.1 StyLit result . 12
2.2 StyLit result on architecture . 13
2.3 E-step . 14
2.4 Search iteration . 17
2.5 Guide channels used for the style transfer 19
2.6 Impact of wireframe guide . 20
2.7 Per patch error . 21
2.8 Per patch error limitation . 22
2.9 Similar patches causing blurring 22
2.10 Changed voting function . 23
2.11 Stylization from opposite side . 25

3.1 Camera grid . 27
3.2 Shifting scheme . 28
3.3 Coherence comparison . 30
3.4 Real-time shifting . 31
3.5 Interpolation modes . 32
3.6 Limited iteration comparison . 33
3.7 Coherence importance in interpolation 34
3.8 Comparison - interpolation and stylization 35

5.1 The models used for producing the results in this chapter 40
5.2 Styles for the chapel model . 41
5.3 Problems of the algorithm with the cross 42
5.4 Results of the stylization algorithm from multiple views 44
5.5 Results on the chapel model – hatch style 45
5.6 Results on the chapel model – shade style 45
5.7 Results on the chapel model – watercolor style 46
5.8 Results on the chapel model – paint style 46
5.9 Styles of modern house model . 47
5.10 Results on the modern house model 48
5.11 Result on the modern house – paint 50
5.12 Result on the modern house – sketch 50
5.13 Result on the modern house – sketch 2 51
5.14 Result on the modern house – illustration 51
5.15 Styles of the normal house model 52
5.16 Results on the normal house model 54
5.17 Normal house – paint result . 55
5.18 Normal house – sketch result . 55
5.19 Normal house – sketch 2 result . 56
5.20 Normal house – illustration result 56

62

A. Electronic attachments

A.1 Stylization algorithm
The source project of the stylization described in Chapter 2 is provided. The
implementation is tested on Linux only. Instructions to run the program and
requirements can be found in ReadMe.txt in the project folder. Specifications of
the configuration files are in ConfigInstructions.txt in the project folder.

A.2 Viewer

A.2.1 Project
The source project files are included. In this project, there is only one assetBundle
for each interpolation mode. The other assetbundles can be copied from the build
from ArchStyleViewer Data/StreamingAssets/AssetBundles.

The most important scripts for the NNF interpolation (3.3.2) are:

• Assets/shaders/ShiftNNFAndVoteExpandedMasking.shader, which performs
the interpolation itself

• Assets/scripts/NNFVotingScript.cs, which feeds data to the shader

A description of the expected AssetBundle structure is provided in Asset-
BundleStructure.txt.

A.2.2 Build
The provided build is for Windows only. Instructions to running the application
are provided in readme.pdf.

A.2.3 Video
We provide a video showing the results of the interpolation.

63

	Introduction
	Current methods of style transfer
	Arbitrary style transfer
	Patch-based methods
	Neural-based methods

	Guided style transfer
	Patch-based methods
	Neural-based methods

	StyLit algorithm
	Underlying texture synthesis algorithm
	Synthesis data
	3D scenes
	Guide channels

	Synthesis algorithm
	Search
	Voting
	Full algorithm

	StyLit in architecture
	Changes in the StyLit algorithm
	Limitations

	Style transfer on multiple views
	Data acquisition
	Enforcing spatial coherence
	Frame shifting in animations
	Intermediate shifting

	Real-time interpolation
	Interpolation of images
	Interpolation of NNF
	Conclusion

	Implementation
	Stylization algorithm
	Used libraries and technologies
	Implementation details

	Real-time viewer
	Used libraries and technologies
	Implementation details
	Performance

	Results
	Chapel
	Modern house
	Traditional house

	Conclusion
	Bibliography
	List of Figures
	Electronic attachments
	Stylization algorithm
	Viewer
	Project
	Build
	Video

