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Mazurová, Ph.D., for the professional guidance and for the continuous support
during the work on this thesis. I also wish to thank Doc. RNDr. Jan Hurt, CSc.
for insightful suggestions and help with Mathematica software. I am particularly
grateful for the assistance given by my brother E. Valter with medicine-related
topics.

ii



Title: Modelling mortality by causes of death

Author: Bc. Boris Valter

Department: Department of Probability and Mathematical Statistics
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Introduction
Mortality rates’ modelling has always been essential in various aspects of life and
in actuarial science in particular. Distinguishing between causes of death within
a model, is definitely an improvement over a model which attributes death to a
single cause. Competing risks framework was developed to provide an additional
insight into this topic.

The aim of this thesis is to provide an overview of methods used in cause-of-
death mortality analysis and to demonstrate the application on real data. The
basic statistical measures of the death risk are survival probability, death proba-
bility, and life expectancy.

In Chapter 1, we first introduce the traditional approach based on the force of
mortality and the estimation method which uses the data about current popula-
tion as an input. Another approach based on copula functions is briefly reviewed
later in this chapter. The latter method allows to incorporate the complex de-
pendence structures into the model.

The main focus of Chapter 2 is the multinomial logistic model which also
provides a framework for analysing cause-specific mortality. We also discuss the
application of shocks in the multinomial logistic model.

In Chapter 3 we shall focus on the practical application of multinomial logistic
regression. We will work with the data from Czech Statistical Office to construct
cause-specific life tables in order to use them as an input for the regression model.
Next, we shall assess the model and present the outputs. In addition, several sce-
narios and their impacts on life expectancy will be discussed. These scenarios are
meant to demonstrate the model’s response to some catastrophic (under Solvency
II) or just adverse events that might take place.

In Chapter 4 we apply copula functions in order to evaluate net survival func-
tions. Later in this chapter, we consider cause-elimination scenario and compare
the results when using copula functions with the outputs based on the model
from Chapter 3.
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1. Continuous model
In this chapter we shall focus on the concept of competing risks in mortality
analysis. We will present the traditional approach introduced in Chiang [1968]
along with the estimation method based on the data about current population.
Later in this chapter we shall discuss the life expectancy and the application of
copula functions.

1.1 Competing risks in mortality analysis
In this section we present the competing risks framework based on Chiang [1968].
Let us assume a group of lives where every individual may die from one of n
competing risks (causes of death). Let (X1, . . . , Xn)⊤ be a vector of potential
lifetimes, where Xi denotes a lifetime of an individual provided that he would die
from cause i = 1, . . . , n. The actual lifetime Y of an individual is then given by

Y = min (X1, . . . , Xn).

The absolutely continuous joint distribution function of n-dimensional random
vector of potential lifetimes X = (X1, . . . , Xn)⊤ is

FX(x) = FX(x1, . . . , xn).

The distribution function of the potential lifetime of an individual if death occurs
from i-th cause is the (continuous) marginal distribution function of X:

FXi
(x) = P(Xi ≤ x).

The force of mortality of i-th risk is

µ(x; i) = d FXi
(x)/dx

1 − FXi
(x) .

We further assume the independence of competing risks, i.e. competing risks of
death are independent of one another in the sense that the force of mortality of
each risk remains unchanged after one or more risks are eliminated or adjusted
in a certain way. It is also possible to incorporate more complex dependence
structures. The approach using copula functions will be briefly described in
section 1.4.

It is essential to present three general types of probabilities of death with
respect to a specific risk i in the age interval (xj, xj+1):

• The crude probability ... the probability of death from a specific cause in
the presence of all other competing risks (Qij);

• The net probability ... the probability of death if a specific risk is the only
one risk in effect in the population (qij) or in absence of all other competing
risks (qi,j);

• The partial crude probability ... the probability of death from a specific
cause i when another risk or risks are eliminated from the population.
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Probabilities of death and survival in the interval (xj, xj+1) of an individual
at age xj are denoted as qj and pj, respectively, with qj + pj = 1.

In the presence of n causes of death, i = 1, . . . , n, for each risk i there is
a corresponding force of mortality µ(x; i) (cause-specific), such that µ(x; i) dx
is the probability that an individual alive at age x will die from cause i in the
infinitesimal time interval (x, x+dx) for i = 1, . . . , n. The total force of mortality
µ(x) is such that µ(x) dx is equal to the probability that an individual alive at age
x will die in (x, x + dx). Under the assumption of independence between causes
of death, the total force of mortality can be written as a sum of cause-specific
forces of mortality:

µ(x) =
n∑︂

i=1
µ(x; i).

Probabilities of death and survival in the interval (xj, xj+1) of an individual at
age xj can be expressed by means of the total force of mortality:

qj = 1 − exp

⎧⎪⎨⎪⎩−
xj+1∫︂
xj

µ(x) dx

⎫⎪⎬⎪⎭ ,

pj = exp

⎧⎪⎨⎪⎩−
xj+1∫︂
xj

µ(x) dx

⎫⎪⎬⎪⎭ .

Another assumption is required for the theory of competing risks, namely the
proportionality assumption. Under this assumption, in the interval (xj, xj+1),
the following ratio

µ(x; i)
µ(x) = cij (1.1)

is independent of x, but at the same time depends on the age interval and cause
of death Ri.

If Ri is the only risk in effect in the population, the net probability of death
is equal to

qij = 1 − exp

⎧⎪⎨⎪⎩−
xj+1∫︂
xj

µ(x; i) dx

⎫⎪⎬⎪⎭ .

The crude probability of death discussed earlier, for xj ≤ x ≤ xj+1, is given by

Qij =
xj+1∫︂
xj

exp

⎧⎪⎨⎪⎩−
x∫︂

xj

µ(s) ds

⎫⎪⎬⎪⎭µ(x; i) dx. (1.2)

Using the assumption (1.1), the expression (1.2) can be rewritten as

Qij = µ(x; i)
µ(x)

xj+1∫︂
xj

exp

⎧⎪⎨⎪⎩−
x∫︂

xj

µ(s) ds

⎫⎪⎬⎪⎭µ(x) dx

= µ(x; i)
µ(x)

⎡⎢⎣1 − exp

⎧⎪⎨⎪⎩−
xj+1∫︂
xj

µ(x) dx

⎫⎪⎬⎪⎭
⎤⎥⎦ = µ(x; i)

µ(x) qj.

And thus
µ(x; i)
µ(x) = Qij

qj

. (1.3)
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1.2 Current population mortality analysis
In this section we shall focus on the current population mortality analysis in-
troduced in Chiang [1968]. This method is used to estimate the probabilities
described earlier in this chapter.

For the age interval(xj, xj+1), let nj = xj+1 − xj be the length of the interval,
Ec

j the midyear population state (also referred to as central exposure), Dj the
total number of deaths , aj is the average fraction of the age interval that each
of the individuals survive before dying and Ej the unobserved population state
at xj (initial exposure). The age specific mortality rate is

mj = Dj

Ec
j

. (1.4)

The estimator of the probability of death in the interval is given by

ˆ︁qj = Dj

Ej

, (1.5)

where the initial exposure Ej can be estimated from

ˆ︁Ej = (Ec
j + (1 − aj)njDj)/nj.

Thus, (1.5) transforms into

ˆ︁qj = njmj

1 + (1 − aj)njmj

. (1.6)

The corresponding survival probability is therefore

ˆ︁pj = 1 − ajnjmj

1 + (1 − aj)njmj

. (1.7)

Switching over to the cause-specific probabilities, we use the fact that the total
number of deaths is equal to the sum of cause-specific numbers of deaths:

Dj =
n∑︂

i=1
Dij.

The cause-specific mortality rate is then given by

mij = Dij

Ec
j

.

Similarly, the crude probability of death is estimated from

ˆ︁Qij = Dij

Ej

, (1.8)

which can be also expressed as

ˆ︁Qij = njmij

1 + (1 − aj)njmj

. (1.9)
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Solving the equations (1.6) and (1.9) with respect to death rates mj and mij, we
get

mj =
ˆ︁qjˆ︁qjajnj + (1 − ˆ︁qj)nj

,

mij =
ˆ︁Qijˆ︁qjajnj + (1 − ˆ︁qj)nj

,

which implies that
mij

mj

=
ˆ︁Qijˆ︁qj

.

Thus, the expression above is an analogy of the formula 1.3.
The expression 1.8 can be also obtained as maximum likelihood estimator of

Qij, if we assume that for a given calendar year t, cause-specific number of deaths
Dij follows a binomial distribution Bi(Ej, Qij) with probability mass function

P(Dij = dij) =
(︄

Ej

dij

)︄
Q

dij

ij (1 − Qij)Ej−dij ,

where Ej is the measure of initial exposure. The likelihood function is given by

L(Q | d) =
n∏︂

i=1

(︄
Ej

dij

)︄
Q

dij

ij (1 − Qij)Ej−dij .

The log-likelihood function is then of the form

ℓ(Q | d) =
n∑︂

i=1

[︄
ln
(︄

Ej

dij

)︄
+ dij ln(Qij) + (Ej − dij)ln(1 − Qij)

]︄
.

The maximum likelihood estimate of Q can be obtained from

Q̂ij ≡ arg max
Qij

ℓ(Q | d).

Taking the derivative of log-likelihood with respect to Qij and setting it to zero
we get

∂ℓ(Q | d)
∂Qij

= 0 = dij

Qij

− Ej − dij

1 − Qij

,

which leads to
Q̂ij = dij

Ej

.

The above expression then corresponds to (1.8). It is essential to note that the
likelihood function is concave and hence log-likelihood is indeed maximized at
Q̂ij. Therefore, it is reasonable to consider the estimator given by (1.8). It can
be also shown that MLE estimate of Qij is unbiased:

E Q̂ij = EDij

Ej

= Ej Qij

Ej

= Qij.
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Consistency then follows from Chebyshev’s inequality:

P(|Q̂ij − Qij| ≥ ε) ≤
var Q̂ij

ε2

= var Dij

E2
j ε2

= Qij(1 − Qij)
Ej ε2 −−−−→

Ej→∞
0.

1.3 Life expectancy
Another important statistical measure that we will focus on is life expectancy.
In this section we shall use the actuarial notation and introduce the necessary
theory based on Gerber [1997]. We denote by Tx the remaining lifetime at age x.
Tx is a continuous random variable and expresses the exact future lifetime. The
distribution function of Tx is

Fx(t) = P(T ≤ t), t ≥ 0.

We assume that Fx is continuous and has a probability density function fx(t) =
F ′

x(t). The probability that an individual aged x will die within t years is denoted
by tqx and the respective probability of survival by tpx. The following relations
then hold:

tqx = Fx(t)
tpx = 1 − tqx.

The complete expectation of life is given by

e0
x = ETx =

∞∫︂
0

t · fx(t) dt

PP= [−t · (1 − Fx(t))]∞0 +
∞∫︂

0

[1 − Fx(t)] dt

=
∞∫︂

0

[1 − Fx(t)] dt

=
∞∫︂

0
tpx dt.

The curtate remaining lifetime is defined by Kx = ⌊Tx⌋ and expresses the number
of future years completed prior to death or, in other words, the greatest integer
of Tx. Its probability mass function is

P(Kx = k) = P(k ≤ Tx < k + 1)
= P(k < Tx ≤ k + 1) [by continuity of Tx]
= kpx · qx+k.
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Another alternative expression can be obtained in order to derive the expectation
of Kx:

P(Kx = k) = P(k < Tx ≤ k + 1)
= P(Tx > k) − P(Tx > k + 1)
= kpx − k+1px.

The curtate expectation of life can be then computed as

ex = EKx =
∞∑︂

k=0
k · P(Kx = k)

=
∞∑︂

k=0
k · kpx −

∞∑︂
k=0

k · k+1px

=
∞∑︂

k=1
k · kpx −

∞∑︂
k=1

(k − 1) · kpx,

which finally reduces to

ex =
∞∑︂

k=1
P(Kx ≥ k) =

∞∑︂
k=1

kpx.

Obviously, by definition of Kx, it holds

Kx ≤ Tx ≤ Kx + 1

and hence also
ex ≤ e0

x ≤ ex + 1.

Even though there is no explicit relationship between the complete and curtate
expectation of life, the reasonable approximation can be achieved. Under the
assumption of linearity of uqx, i.e. uqx = uqx for u ∈ [0, 1):

k+upx = kpx · upx+k = (1 − kqx)(1 − uqx+k)
= 1 − u · qx+k − kqx + kqx · u · qx+k

= kpx − u · qx+k(1 − kqx)
= kpx − u · (1 − px+k) · kpx

= (1 − u)kpx + u · px+k · kpx

= (1 − u)kpx + u · k+1px, u ∈ [0, 1).

The complete expectation of life can be then approximated by using the relation
above:

e0
x =

∞∫︂
0

tpx dt =
∞∑︂

k=0

k+1∫︂
k

tpx dt

=
∞∑︂

k=0

1∫︂
0

k+upx du

=
∞∑︂

k=0

⎛⎝
kpx

1∫︂
0

(1 − u) du + k+1px

1∫︂
0

u du

⎞⎠ ,
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which can be further simplified to obtain

e0
x = 1

2

∞∑︂
k=0

kpx + 1
2

∞∑︂
k=0

k+1px

= 1
2

(︄
1 +

∞∑︂
k=1

kpx

)︄
+ 1

2

∞∑︂
k=1

kpx

= 1
2 +

∞∑︂
k=1

kpx = ex + 1
2 .

1.4 Competing risks and copula functions
As pointed out earlier in this chapter, competing risks do not necessarily act in-
dependently. In order to capture the dependence structure, one may use copula
functions. In this section, we shall focus on several basic properties of copula func-
tions, measures of association, Archimedean copulas and provide a brief overview
of the method which will be applied in Chapter 4.

1.4.1 Basic properties
The following basic properties, definitions and theorems are based on McNeil
et al. [2005].

Definition (copula). A d-dimensional copula is a distribution function of a
d-dimensional vector, for which all univariate distributions are uniform on [0, 1].

Equivalently, copula C is a mapping of the form C : [0, 1]d → [0, 1], satisfying the
following conditions:

• C(u1, . . . , ud) is increasing in each component ui.

• C(1, . . . , 1, ui, 1, . . . , 1) = ui for all i = 1, . . . , d, ui ∈ [0, 1].

• For all
(︂
u

(1)
1 , . . . , u

(1)
d

)︂
,
(︂
u

(2)
1 , . . . , u

(2)
d

)︂
in [0, 1]d such that u

(1)
i ≤ u

(2)
i for all

i = 1, . . . , d, it holds
2∑︂

i1=1
· · ·

2∑︂
id

(−1)i1+···+idC
(︂
u

(i1)
1 , . . . , u

(id)
d

)︂
≥ 0.

The following theorem is fundamental in copula theory.

Theorem (Sklar’s theorem). Let F be a joint d.f. with marginal distribution
functions F1, . . . Fd. Then there exists a copula C : [0, 1]d → [0, 1] such that for
all x1, . . . xd ∈ [−∞, +∞],

F (x1, . . . xd) = C(F1(x1), . . . , Fd(xd)). (1.10)

If the marginal distributions are continuous, then C is unique. Otherwise, C is
uniquely determined in Ran(F1)×· · ·×Ran(Fd), where Ran(Fi) denotes the range
of Fi.
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Conversely, if C is a copula and F1, . . . , Fd are univariate distribution func-
tions, then the function F defined in (1.10) is a joint distribution function with
marginals F1, . . . , Fd.

The following theorem sets the bounds for any copula function.

Theorem (The Fréchet-Hoeffding Bounds). For every copula C(u1, . . . , ud)
we have the bounds

max
{︄

1 − d +
d∑︂

i=1
ui, 0

}︄
≤ C(u) ≤ min{u1, . . . , ud}.

The Fréchet upper bound is called the comonotonicity copula and the lower bound
in the bivariate case (d = 2) is often referred to as countermonotonicity copula.

1.4.2 Archimedean copulas
In this section we shall provide a brief introduction to Archimedean copulas based
on McNeil et al. [2005] and describe Ali-Mikhail-Haq (AMH) copula based on
Pranesh [2010].

Definition (Pseudo-inverse). Suppose that ϕ : [0, 1] → [0, ∞] is continuous
and strictly decreasing with ϕ(1) = 0 and ϕ ≤ ∞. A pseudo-inverse of ϕ with
domain [0, ∞] is defined by

ϕ[−1](t) =
{︄

ϕ−1(t), 0 ≤ t ≤ ϕ(0)
0, ϕ(0) ≤ t ≤ ∞.

Theorem (Bivariate Archimedean copula). Let ϕ : [0, 1] → [0, ∞] be con-
tinuous and strictly decreasing with ϕ(1) = 0 and pseudo-inverse ϕ[−1](t). Then

C(u1, u2) = ϕ[−1](ϕ(u1) + ϕ(u2)) (1.11)
is a copula if and only if ϕ is convex.

Copulas which are constructed according to 1.11 are called Archimedean cop-
ulas and the function ϕ from the previous theorem is called Archimedean copula
generator.

Clayton copula is an Archimedean copula defined by

CCL(u1, u2) = (u−θ
1 + u−θ

2 − 1)−1/θ, 0 < θ < ∞.

For θ → 0+ and θ → ∞ we obtain the independence and the comonotonicity
copulas, respectively. The Fréchet lower bound cannot be reached in the case
of the Clayton copula and, therefore, only positive dependence can be modelled
with this copula. Clayton copula generator is given by

ϕ(x) = 1
θ

(x−θ − 1).

Ali-Mikhail-Haq copula is another example of an Archimedean copula de-
fined by

CAMH(u1, u2) = u1u2

1 − θ(1 − u1)(1 − u2)
, θ ∈ [−1, 1].
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AMH copula allows for modelling both positive and negative dependence. AMH
copula generator is given by

ϕ(x) = 1
x

ln[1 − θ(1 − x)].

1.4.3 Rank correlations
For the purposes of this section we consider a bivariate random vector with contin-
uous and strictly increasing marginals and copula C. We shall focus on the most
commonly used rank correlation measures, namely Kendall’s tau and Spearman’s
rho. The definitions are based on McNeil et al. [2005].

Definition (Kendall’s tau) For random variables X1 and X2 Kendall’s tau
is defined as

τ(X1, X2) = E
[︂
sign

(︂
X1 − X1˜

)︂ (︂
X2 − X2˜

)︂]︂
,

where
(︂
X1˜ , X2˜

)︂⊤
is an independent copy of (X1, X2)⊤

Given n independent observations (x1, y1), . . . , (xn, yn) of the random vector (X, Y ),
Kendall’s tau can be expressed as follows:

ˆ︁τ = 2
n(n − 1)

∑︂
i<j

sgn(xi − xj)sgn(yi − yj),

The following relationship holds between the Kendall’s tau and the generator of
and Archimedean copula (Pranesh [2010]):

τ = 1 + 4
1∫︂

0

ϕ(x)
ϕ′(x) dx. (1.12)

Using the formula 1.12, one can derive the relations between the Kendall’s tau
and parameters of Archimedean copulas:

• For the Clayton copula τ = θ
θ+2 ,

• For the AMH copula τ = 3θ−2
3θ

− 2(1−θ)2ln(1−θ)
3θ2 .

However, the last relationship holds for τ ∈
[︂

5−8 ln2
3 , 1

3

]︂
≈ [−0.1817, 0.3333] and

thus AMH copula allows to model only a weak dependence in terms of Kendall’s
tau.

Definition (Spearman’s rho) For random variables X1 and X2 with distri-
bution functions F1 and F2, Spearman’s rho is defined as

ρS(X1, X2) = ρ (F1(X1), F2(X2)) ,

where ρ denotes Pearson (linear) correlation coefficient.
The relationship between the Spearman’s rho and parameters of Archimedean

copulas is often relatively complicated (e.g. for Clayton or AMH copulas).
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1.4.4 Methodology
In this section we shall provide a brief overview of the method based on Kaishev
et al. [2007]. We recall that competing risks framework operates with a vector of
potential lifetimes X = (X1, . . . , Xn)⊤ assigned to an individual with respect to
causes of death i = 1, . . . , n. In practise, however, we observe only actual lifetime,
which is equal to min (X1, . . . , Xn). The joint distribution function of X is given
by

F (x1, . . . , xn) = P(X1 ≤ x1, . . . , Xn ≤ xn)

and the joint survival function is

S(x1, . . . , xn) = P(X1 > x1, . . . , Xn > xn).

The crude survival function is a cause-specific survival function in the pres-
ence of all other competing risks in the population:

S(i)(x) = P(min (X1, . . . Xn) > x, min (X1, . . . Xn) = Xi)

and it obviously holds that

S(x, . . . , x) = S(1)(x) + · · · + S(n)(x).

The net survival function is a survival function in the presence of only one
risk in effect:

S
′(i)(x) = P(Xi > x).

Under the assumption of independence, the joint survival function can be ex-
pressed as

S(x1, . . . , xn) = S
′(1)(x1) × · · · × S

′(n)(xn).

Nevertheless, random variables X1, . . . Xn will be considered stochastically de-
pendent and non-defective in the sense that P(Xi < ∞) = 1.

By Sklar’s theorem, there exists a unique n-dimensional copula C such that

F (x1, . . . xn) = C(FX1(x1), . . . , FXn(xn))

and the joint survival function of Xi is uniquely determined by

S(x1, . . . xn) = C̄(S ′(1)(x1), . . . , S
′(n)(xn)), (1.13)

where C̄ is the survival copula with respect to copula C. In the bivariate case
the following relationship holds

C̄(u1, u2) = u1 + u2 − 1 + C(1 − u1, 1 − u2).

Therefore, the dependence structure can be incorporated by choosing a suitable
copula function and estimating its parameters.

Given the copula function C̄(u1, . . . , un) and the net survival functions
S

′(i)(xi), i = 1, . . . , n, the joint survival function 1.13 can be evaluated. The
following lemma formulated in Carriere [1994], provides an important represen-
tation of the crude survival function.
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Lemma. If S(x1, . . . , xn) is differentiable with respect to xi > 0 for all i =
1, . . . , n, then

S(i)(x) =
∞∫︂

x

−Si(r, . . . , r) dr,

where
Si(r, . . . , r) = ∂

∂xi

S(x1, . . . , xn)|xk=r, ∀k.

Using the above lemma and applying the chain rule for 1.13, the following
theorem is obtained in Carriere [1994].

Theorem. If C̄(u1, . . . , un) is differentiable with respect to ui ∈ (0, 1) and
S

′(i)(xi) is differentiable with respect to xi > 0 for all i = 1, . . . , n, then

d

dx
S(1)(x) = C̄1(S

′(1)(x), . . . , S
′(n)(x)) × d

dx
S

′(1)(x)
d

dx
S(2)(x) = C̄2(S

′(1)(x), . . . , S
′(n)(x)) × d

dx
S

′(2)(x) (1.14)
...

d

dx
S(n)(x) = C̄n(S ′(1)(x), . . . , S

′(n)(x)) × d

dx
S

′(n)(x),

where
C̄i(u1, . . . , un) = ∂

∂ui

C̄(u1, . . . , un).

The system of non-linear differential equations given by 1.14 can be then
solved numerically with respect to the net survival functions S

′(i)(x), given the
selected copula C̄(u1, . . . , un) and the estimates of S(i)(x) in a functional form,
e.g. splines or regression curve. The estimates of S(i)(x) can be then substituted
into 1.14 to evaluate left-hand sides of the system. Therefore, the joint survival
function, as well as the overall survival function S(x, . . . , x), can be evaluated by
substituting the net survival functions into 1.13.

In order to show the partial and the complete cause elimination effect, it is
essential to add an age subscript for the net and crude survival functions. We
further assume that survival functions will be taken over integral years x ≡ k =
1, 2, . . . , 110. The net survival functions at birth can be then expressed as

S
′(i)
0 (k) = S

′(i)
0 (1) × S

′(i)
1 (1) × · · · × S

′(i)
k−1(1),

which can be rewritten using actuarial symbols (omitting index i) as

S
′(i)
0 (k) = p′

0 × p′
1 × · · · × p′

k−1 = (1 − q′
0) × (1 − q′

1) × · · · × (1 − q′
k−1).

Thus, the partial cause elimination, or, generally speaking, modification, impact
can be captured by setting q′′

l = ρl ·q′
l, l = 0, 1, 2, . . . , k −1, where values of ρl ≥ 0

greater than one correspond to increased probabilities of death. The modified
net survival function is then given by

S
′′(i)
0 (k) = (1 − q′′

0) × (1 − q′′
1) × · · · × (1 − q′′

k−1).
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The overall survival function is then of the form

S(k, . . . , k) = C̄(S
′(1)
0 (k), . . . , S

′(i−1)
0 (k), S

′′(i)
0 (k), S

′(i+1)
0 (k), . . . , S

′(n)
0 (k)).

The complete elimination of the i-th cause of death (ρl = 0) corresponds to the
following expression for the overall survival function:

S(k, . . . , k) = C̄(S
′(1)
0 (k), . . . , S

′(i−1)
0 (k), 1, S

′(i+1)
0 (k), . . . , S

′(n)
0 (k)).
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2. Multinomial regression
In this chapter we are going to introduce the multinomial logistic model based on
Alai et al. [2015]. The model extends logistic regression framework to multiclass
problems and allows to predict the probabilities of more than two possible out-
comes of the dependent variable for a given set of covariates, which can be either
numerical or categorical ones.

In order to formulate the problem of cause-of-death mortality in terms of
multinomial logistic regression (MLR), we shall use the following notation:

• Di(x, t) ... cause-specific deaths at age x and at time t;

• L(x, t) ... underlying survivors.

The data for n causes of death can be then represented by

Y (x, t) = (D1(x, t), D2(x, t), . . . , Dn(x, t), L(x, t))⊤.

We assume that Y (x, t) follows a multinomial distribution with probability mass
function for a given x and t

P(D1 = d1, . . . , Dn = dn, L = l) = E!
d1! · · · dn! · l!q

d1
1 · · · qdn

n pl,

where
n∑︂

i=1
qi(x, t) + p(x, t) = 1 (2.1)

and qi(x, t) denotes cause-specific probabilities of death, p(x, t) stands for prob-
ability of survival and

E(x, t) = l(x, t) +
n∑︂

i=1
di(x, t),

where di(x, t) are observed cause-specific numbers of deaths and l(x, t) are respec-
tive numbers of survivors. Setting probability of survival as a reference category,
the problem can be then formulated in terms of the multinomial logistic regression
as follows:

lnqi(x, t)
p(x, t) = X(x, t)βi, i = 1, . . . , n (2.2)

where X(x, t) is the corresponding row of the model matrix and βi is cause-
specific vector of regression coefficients. The expression above is often referred to
as linear predictor, i.e. the covariates are linearly related to the log-odds of the
response, and we shall call it, for simplicity, logit(mortality). To obtain predicted
probabilities we exponentiate and rewrite (2.2) in terms of the sequence of binary
models:

q1(x, t) = p(x, t)eX(x,t)β1

q2(x, t) = p(x, t)eX(x,t)β2

...
qn(x, t) = p(x, t)eX(x,t)βn .
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Using 2.1 we derive:

p(x, t) = 1 −
n∑︂

i=1
qi(x, t)

p(x, t) = 1 − p(x, t)
n∑︂

i=1
eX(x,t)βi

p(x, t) = 1
1 +∑︁n

i=1 eX(x,t)βi
. (2.3)

The expression for cause-specific probability of death can be then obtained from
2.2:

qi(x, t) = eX(x,t)βi

1 +∑︁n
i=1 eX(x,t)βi

, i = 1, . . . , n (2.4)

It is also essential to show the cause-elimination (or alteration) impact. This
adjustment on the underlying probabilities of death and survival will have a major
impact on the life expectancy.

Let us introduce a shock factor ρi,x ≥ 0 which is applied to cause i and
age interval x, where shock values greater than one correspond to an increase
in mortality rates. Setting a shock factor to zero then corresponds to cause-
elimination. Thus, the underlying probabilities of death and survival (2.3 and
2.4) are adjusted as follows:

qi(x, t) = ρi,x · eX(x,t)βi

1 +∑︁n
k=i ρi,x · eX(x,t)βi

(2.5)

p(x, t) = 1
1 +∑︁n

i=1 ρi,x · eX(x,t)βi
. (2.6)

It can also be assumed that a shock factor is the same for all age intervals,
therefore, we can rewrite (2.5) and (2.6) as

qi(x, t) = ρi · eX(x,t)βi

1 +∑︁n
k=i ρi · eX(x,t)βi

(2.7)

p(x, t) = 1
1 +∑︁n

i=1 ρi · eX(x,t)βi
. (2.8)

From a practical point of view, the direct application of the multinomial
regression framework poses a serious problem in terms of computational efficiency.
In order to address this problem in practical part, our approach will be to calculate
the log-odds of cause-specific probabilities of death from the data, rather than
estimating the latter using MLE.

In fact, if it had been the case, the direct application of MLR would have
required some serious computational power of the underlying software as well as
the hardware. Moreover, even the structure of the inputs would have been quite
different and lacking compactness.
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3. Application of MLR

3.1 Data
We obtained the data for Czech Republic from Czech Statistical Office for years
2003 to 2017 (2171 observations). The data contain cause-specific numbers of
deaths along with central exposures by five years age intervals. There is however
an exception for age groups from 0 to 1, from 1 to 4 and the final age group 95+
is open-ended. In Table 3.1 we provide a detailed overview of various causes of
death according to the International Classification of Diseases (ICD) which are
present in the data as well as categorization (third column) used in the regression
model.

Table 3.1: Classification of Diseases according to ICD (1993).

ICD Name CZ Category
I Některé infekčńı a parazitárńı nemoci (A00-

B99)
Other

II Novotvary (C00-D48) Neoplasms
III Nemoci krve, krvetvorných orgán̊u a některé

poruchy týkaj́ıćı se mechanismu imunity
(D50-D89)

Other

IV Nemoci endokrinńı, výživya přeměny látek
(E00-E90)

Other

V Poruchy duševńı a poruchy chováńı (F00-
F99)

Other

VI Nemoci nervové soustavy (G00-G99) Nervous system
VII Nemoci oka a očńıch adnex (H00-H59) Other
VIII Nemoci ucha a bradavkového výběžku (H60-

H95)
Other

IX Nemoci oběhové soustavy (I00-I99) Circulatory system
X Nemoci dýchaćı soustavy (J00-J99) Respiratory system
XI Nemoci trávićı soustavy (K00-K93) Digestive system
XII Nemoci k̊uže a podkožńıho vaziva (L00-L99) Other
XIII Nemoci svalové a kosterńı soustavy a po-

jivové tkáně (M00-M99)
Other

XIV Nemoci močové a pohlavńı soustavy (N00-
N99)

Other

XV Těhotenstv́ı, porod a šestineděĺı (O00-O99) Other
XVI Některé stavy vzniklé v perinatálńım obdob́ı

(P00-P96)
Other

XVII Vrozené vady, deformace a chromosomálńı
abnormality (Q00-Q99)

Other

XVIII Př́ıznaky, znaky a abnormálńı klinické a lab-
oratorńı nálezy nezařazené jinde (R00-R99)

Other

XX Vněǰśı př́ıčiny poraněńı a otrav (V01-Y98) External causes
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We note that most of the causes of death were classified into category Other,
since numbers of deaths by every particular cause are relatively small compared
to the other groups. Nevertheless, aggregated numbers of deaths in category
Other actually form a significant proportion of the data. The numerical notation
in Table 3.2 will be used for causes of death categories. Circulatory system will
be selected as a reference category for the purposes of the regression model.

Table 3.2: Coding of causes of death.

Category Code
Circulatory system 0
Digestive system 1
External causes 2
Neoplasms 3
Nervous system 4
Other 5
Respiratory system 6

Age groups, as we mentioned earlier, are for the most part represented with 5
year intervals. Age group from 0 to 1 will enter the regression model as a reference
category. In Table 3.3 we can see the corresponding coding for age groups.

Table 3.3: Coding of age groups.

Age groups Code
0 to 1 0
1 to 4 1
5 to 9 2
10 to 14 3
15 to 19 4
20 to 24 5
25 to 29 6
30 to 34 7
35 to 39 8
40 to 44 9
45 to 49 10
50 to 54 11
55 to 59 12
60 to 64 13
65 to 69 14
70 to 74 15
75 to 79 16
80 to 84 17
85 to 89 18
90 to 94 19
95+ 20
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Figure 3.1: Histograms of the numbers of deaths.

Figure 3.1 presents histograms of the numbers of deaths for 15 years. Judging
by the values on y-axis, we can conclude that circulatory system failure and
neoplasms appear to be the most lethal and represent roughly 75% of the total
number of deaths. While circulatory system failures tend to be more frequent in
the last age cohorts, neoplasms mostly affect the population at retirement age.
In general, deaths’ distribution for circulatory, nervous, respiratory systems and
other causes seems to be of the same form in terms of the negative skewness.
Digestive system failures and deaths from external causes, for the most part,
occur in middle age.

3.2 Regression model
We note that considering the nature of the data it makes sense to take into
account the interaction between covariates age and time. The regression model
can be then schematically written as follows:

logit(mortality) = cause + t + age + t ∗ age, (3.1)

19



which can be rewritten more formally for k-th observation as

logit(mortalityk) =β0 +
6∑︂

j=1
βj · 1[cause = j] + β7 · t

+
27∑︂

h=8
βh · 1[age = h − 7] +

47∑︂
m=28

βm · t · 1[age = m − 27]

for k = 1, . . . , 2171. We recall that the expression logit(mortality) refers to 2.2,
i.e. the logarithm of the cause-specific probability of death over the probability of
survival, and t = 1, . . . , 15 is a numerical time covariate. While fitting the model,
we realized that many regression coefficients were insignificant, which leads to a
conclusion that the initial model is overparameterized. Our aim now is to check
whether the initial model can be reduced to a more simple one by conducting
F-test on a submodel (see e.g. Fox [2016]). We shall consider removing the
interaction term from the initial model and test whether the initial model given by
3.1 is significantly better than the smaller one (null hypothesis) or not (alternative
hypothesis). Test statistic is given by

F =
SS0

e −SSe

r−r0
SSe

n−r

,

where SS0
e and SSe denote the residual sums of squares corresponding to the

smaller and to the initial model respectively, r − r0 is the difference between the
ranks of the corresponding model matrices and n − r is equal to residual degrees
of freedom of the initial model. Under the null hypothesis the test statistic F has
F distribution with r − r0 and n − r degrees of freedom, hence we reject the null
hypothesis on a significance level α, if F ≥ Fr−r0,n−r(1 − α), i.e. for large values
of the test statistic. Given the realized value f0 of the test statistic, p-value is
equal to

p = 1 − CDFF ,r−r0,n−r(f0).

In our case F = 0.5466 and p = 0.9475, hence we do not reject the null hypothesis
on a significance level of α = 0.5 and, for further analysis, we shall stick with the
smaller model without the interaction term. In other words, taking into account
age-period interactions seems to be excessive at least in the case of the Czech
Republic from 2003 to 2017.

We have also tried out several transformations of the time covariate in order
to capture the behaviour of the response and figured out that the logarithmic
transformation is probably the most appropriate in our case. Henceforth, our
study will be based on the model

logit(mortality) = cause + log(t) + age,

where logit mortality rates will be calculated according to 1.9 and the correspond-
ing estimate for the probability of survival. In Table 3.4 we show the output from
R software which includes the estimates of the regression coefficients, standard
errors, values of test statistic and p-values of individual t-tests. We can see that
the majority of regression coefficients are statistically significant, i.e. most of the
individual t-tests lead to rejecting the null hypothesis that the given coefficient
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Table 3.4: Characteristics of the regression coefficients.

Estimate Std. Error t-value p-value
(Intercept) -8.1445 0.1088 -74.84 0.0000
Digestive system -1.4798 0.0709 -20.86 0.0000
External causes -0.3450 0.0699 -4.94 0.0000
Neoplasms -0.0351 0.0700 -0.50 0.6157
Nervous system -1.7560 0.0699 -25.12 0.0000
Other -0.6160 0.0699 -8.81 0.0000
Respiratory system -1.2851 0.0699 -18.38 0.0000
log(t) -0.1268 0.0246 -5.16 0.0000
1 to 4 -0.2669 0.1229 -2.17 0.0300
5 to 9 -0.5816 0.1239 -4.69 0.0000
10 to 14 -0.4435 0.1243 -3.57 0.0004
15 to 19 0.1241 0.1223 1.01 0.3104
20 to 24 0.4835 0.1212 3.99 0.0001
25 to 29 0.7410 0.1212 6.12 0.0000
30 to 34 1.1149 0.1212 9.20 0.0000
35 to 39 1.6046 0.1212 13.24 0.0000
40 to 44 2.1307 0.1212 17.59 0.0000
45 to 49 2.6564 0.1212 21.93 0.0000
50 to 54 3.1380 0.1212 25.90 0.0000
55 to 59 3.5712 0.1212 29.48 0.0000
60 to 64 3.9499 0.1212 32.60 0.0000
65 to 69 4.3366 0.1212 35.79 0.0000
70 to 74 4.7867 0.1212 39.51 0.0000
75 to 79 5.3735 0.1212 44.35 0.0000
80 to 84 6.1217 0.1212 50.53 0.0000
85 to 89 7.1227 0.1212 58.79 0.0000
90 to 94 9.0250 0.1212 74.49 0.0000
95+ 9.1250 0.1212 75.32 0.0000

can be set to zero. In Table 3.5 we provide values of R2 which appear to be quite
high for our model.

We shall now discuss whether the assumptions of a normal linear model are
satisfied. In order to do that, we shall investigate the diagnostic plots from
Figure 3.2. In the first graph, we do not expect to see any clear trend. The
LOWESS curve should be roughly y = 0. It means that the expected value of
residuals is close to zero. However, we can see a slight quadratic trend, as well
as few distant points. Nevertheless, the LOWESS curve is very close to zero and
thus we consider the assumption of the conditional expectation of the residuals
being equal to zero, i.e. E(ϵi|Xi = x) = 0, to be satisfied.

The second graph is normal QQ-plot, which compares quantiles of standard-
ised residuals with theoretical ones. If green points form the line y = x, the
residuals are normally distributed, i.e. ϵi|Xi = x ∼ N (0, σ2), and the assumption
is met. It is obviously not the case as tails’ behaviour of standardized residuals’
distribution is different.

Lastly we shall discuss the homoscedasticity (third graph), i.e. var(ϵi|Xi =
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Table 3.5: Coefficients of determination.

Multiple R2 Adjusted R2

0.9246 0.9237

x) = σ2 for some constant σ2. In the perfect case, we again do not expect to see
any patterns and the LOWESS curve to be close to y = 1. Here we can actually
observe the same patterns as in the first graph and this time the quadratic trend
seems to be even more apparent. Though, taking into account the scale on the
y-axis, we conclude that the deviation from the curve y = 1 is rather minor,
therefore we consider the homoscedasticity assumption to be satisfied.
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Figure 3.2: Diagnostic plots.

3.3 Outputs
In Figure 3.3 we compare the observed and fitted logit mortality rates across all
age-groups in 2017. The red line corresponds to y = x. In general, we can say
that fitted logit mortality rates are close the observed ones except for the external
causes, which, however, represent only 5% of the deaths.
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Figure 3.3: Observed vs fitted logit mortality rates in 2017.

Life expectancy will be calculated according to the methodology of Czech
Statistical office. Given the probabilities of death in calendar year t in the interval
(xi, xi+1), we have

l(xi+1, t) = l(xi, t)(1 − q(xi, t)).
Number of deaths in the interval is given by

d(xi, t) = l(xi+1, t) − l(xi, t).

Number of person-years lived in the interval is

L(xi, t) = l(xi, t) − (1 − ai)d(xi, t).

Number of person-years lived beyond the start of interval is

T (xi, t) =
∑︂

i

L(xi, t).

Life expectancy at age xi is then given by

e(xi, t) = T (xi, t)
L(xi, t) .
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Table 3.6 presents the observed and fitted life expectancy at birth and at the
retirement age of 65. In both cases it is clear that the model does not provide
quite an accurate fit, which might be explained by the lack of history available for
the study. Last 15 years taken into account seem to be insufficient to fully capture
the impact of time on the mortality rates. Nevertheless, the model still reflects
the fact that life expectancy tends to increase over time, which makes sense
generally and for the Czech Republic in particular. Moreover, it was empirically
confirmed (based on the data) that the shorter is the history, the lower is the
impact (significance) of time on the logit mortality rates.

Table 3.6: Life expectancy.

At birth At retirement

Year Observed Fitted Year Observed Fitted

2017 78.81 79.91 2017 17.88 19.02
2016 78.83 79.88 2016 17.92 19.00
2015 78.44 79.85 2015 17.57 18.98
2014 78.61 79.81 2014 17.79 18.96
2013 78.06 79.77 2013 17.40 18.94
2012 77.88 79.73 2012 17.35 18.91
2011 77.69 79.68 2011 17.29 18.88
2010 77.45 79.63 2010 17.13 18.85
2009 77.18 79.57 2009 16.94 18.82
2008 77.09 79.50 2008 16.99 18.77
2007 76.82 79.42 2007 16.81 18.73
2006 76.62 79.32 2006 16.66 18.67
2005 76.07 79.19 2005 16.25 18.59
2004 75.85 79.00 2004 16.11 18.48
2003 75.31 78.69 2003 15.73 18.29

In Figure 3.4 we show the fitted mortality rates at age 40 with five-year outlook
based on the considered regression model. It is clear that mortality rates tend
to slowly diminish over time which might be explained by the overall progress in
medicine along with improved quality of life.
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Figure 3.4: Fitted mortality rates with five-year outlook.

3.4 Stress scenarios
In this section we shall first demonstrate the impact of several scenarios on life
expectancy by simulating life underwriting shocks assumed under the Solvency
II regulatory regime. We shall focus on the following sub-modules: Mortality
risk, Longevity risk and Life CAT risk. Our aim is to specify shock factors for
each scenario based on the standard formula approach. We note that our main
objective in this section is not to calculate (or estimate) the SCR (solvency capital
requirement), however, the approach will most likely correspond, or will be at
least similar to how these shocks are implemented in practise. Some assumptions
will be made in order to address the problem of using age intervals. Scenario
descriptions and the underlying assumptions will be fully based on EIOPA [2014],
Technical Specification for the Preparatory Phase (Part I) published by European
Insurance and Occupational Pensions Authority (EIOPA).

Later in this section we shall also consider several scenarios which might take
place worldwide and in the Czech Republic in particular under some theoreti-
cal adverse circumstances. Here we emphasize that the latter scenarios will be
considered due to their realism and complexity with no prior knowledge about
the shock factors. Calibration methods are not the focus of this work. In the
following scenarios we shall assume the independence of competing risks.
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3.4.1 Life mortality risk
According to paragraph SCR.7.9 of Technical Specifications, Mortality risk is the
risk of loss, or of adverse change in the value of insurance liabilities, resulting from
changes in the level, trend, or volatility of mortality rates, where an increase in
the mortality rate leads to an increase in the value of insurance liabilities.

The scenario definition, in general, is provided in paragraph SCR.7.11 and
assumes that the SCR should be equal to the loss in basic own funds (BOF) of
insurance and reinsurance undertakings that would result from an instantaneous1

permanent increase in the mortality rates used for the calculation of technical
provisions (BEL2+RM3).

In the calculation part of this sub-module it is assumed that mortality shock
will result in instantaneous and permanent increase of mortality rates by 15%.
Taking into account the methodology introduced earlier in this section, the un-
derlying probabilities of death and survival should be adjusted as follows:

qi(x, t) = 1.15 · eX(x,t)βi

1 +∑︁n
i=1 1.15 · eX(x,t)βi

p(x, t) = 1
1 +∑︁n

i=1 1.15 · eX(x,t)βi
.

In the above expressions we used the shock factor ρi,x = 1.15, which is assumed
to be applied uniformly for all age intervals and for all causes of death.

3.4.2 Life longevity risk
As outlined in paragraph SCR.7.20, Longevity risk is associated with the risk
of loss, or of adverse change in the value of insurance liabilities, resulting from
changes in the level, trend, or volatility of mortality rates, where a decrease in
the mortality rate leads to an increase in the value of insurance liabilities.

The SCR should be then equal to the loss in BOF of insurance and reinsurance
undertakings that would result from an instantaneous permanent decrease in
the mortality rates used for the calculation of technical provisions (paragraph
SCR.7.21).

Longevity scenario is applied by considering an instantaneous and permanent
decrease of mortality rates by 20%. As a result of this change, probabilities of
death and survival transform into

qi(x, t) = 0.8 · eX(x,t)βi

1 +∑︁n
i=1 0.8 · eX(x,t)βi

p(x, t) = 1
1 +∑︁n

i=1 0.8 · eX(x,t)βi
.

The shock factor is then equal to ρi,x = 0.8 for all age groups and for all causes
of death.

1Applied at the projection start date of insurer’s liabilities
2Best estimate of liabilities
3Risk margin
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3.4.3 Life CAT risk
Paragraph SCR.7.75 states that Catastrophe risk stems from extreme or irregular
events whose effects are not sufficiently captured in the other life underwriting risk
sub-modules. Examples could be a pandemic event or a nuclear explosion.

Life CAT risk is assumed to result in an instantaneous increase in mortality
rates by 0.15 percentage points in the following 12 months. Here we recall that
in our data age is a categorical variable, hence it is not possible to fully reflect
the shock duration for any of the age groups except for the first category from
0 to 1. For the purposes of this study, we shall assume that Life CAT scenario
affects exactly one age interval regardless of its length. That being said, in a
hypothetical liabilities projection model, given an individual at age x and in age
group [x, x + 5], cause-specific mortality rates will be adjusted for this particular
interval, for the next age group a model will read (generate) central scenario
mortality rates.

Technical specification provides two examples of possible CAT scenarios, and
in this work we are going to simulate both of them separately. Apparently, it does
not quite make sense to neither assume both pandemic and nuclear explosion to
happen at the same time nor to treat this situation as one CAT event, at least not
from Solvency II perspective as it would be highly improbable. Hypothetically
speaking, an insurance company could calculate the SCR by taking the one,
which leads to a greater loss in BOF, i.e. the most adverse one. Nevertheless,
such approach seems to be somewhat beyond the scope of the standard formula.

We assume that pandemic scenario will result in a large number of claims
due to circulatory system failure, e.g. caused by Ebola hemorrhagic fever. There-
fore, such event leads to an increase in mortality rates on a single cause of death.
We further assume that nuclear explosion scenario will lead to mass external
causes claims by the devastating impact of the initial blast along with neoplasms
(cancer) claims by radioactive contamination. In both scenarios the shock factor
is calculated as

ρi,x = qi(x, t) + 0.0015
qi(x, t) .

From the above expression it is also clear that the shock factor is greater for
younger age groups. Thus, Life CAT exposure of an insurance company, whose
portfolio consists of younger clients, is higher.

3.4.4 Global climate change
Nowadays global climate change, in particular global warming, is a topic widely
discussed. Shifted weather patterns, changes in the global sea level, overall tem-
perature increase and other potentially dangerous environmental changes may
sooner or later lead to various adverse events. For the purposes of this work, we
shall focus on the global scenario that is assumed to be of a permanent duration
and which will result in an increase of the number of disease vectors4.

Firstly, we consider an increase in the population of insect vectors of human
pathogens, namely the genus Anopheles of mosquito. Many species of this genus
are widely known for transmitting human malaria which causes circulatory system

4An organism who carries and transmits a pathogen into another organism
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failure. Malaria is widely spread in the tropical and subtropical regions, however,
due to adverse climate change, the disease is assumed to spread to northern areas
as well.

Secondly, an increase of vectors who carry the fungus Histoplasma capsulatum
is considered. This fungus transmitted by bats, is known for causing histoplas-
mosis characterized by interstitial pneumonia which affects respiratory system.

The global scenario is then assumed to result in a permanent increase in mor-
tality rates on circulatory and respiratory systems by 60% and 75%, respectively.
As a result of this change, the following adjustments of probabilities will be con-
sidered for all age groups:

qi(x, t) = 1.6 · eX(x,t)βi

1 +∑︁n
i=1 1.6 · eX(x,t)βi

qi(x, t) = 1.75 · eX(x,t)βi

1 +∑︁n
i=1 1.75 · eX(x,t)βi

p(x, t) = 1
1 +∑︁n

i=1 1.6 · eX(x,t)βi
p(x, t) = 1

1 +∑︁n
i=1 1.75 · eX(x,t)βi

.

3.4.5 Drug resistance
In recent years drug resistance has become a major concern in medicine. In partic-
ular, a misuse and overuse of antibiotics is nowadays considered as an increasing
problem not only in human but also in veterinary medicine. As pointed out in
Adámková [2015], the antibiotic therapy has to be carefully assessed and should
be based on the knowledge of local epidemiology.

We consider an appearance of multi-drug resistant strain of bacteria that
will result in increased mortality rates on several causes of death. In order to
illustrate the adverse impact of the considered scenario, we assume the following
changes: increase of mortality rates on respiratory system and other causes by
80%, circulatory and nervous systems by 50%, digestive system by 40%. We note
that due to the nature of this scenario, neoplasms and external causes are out of
scope.

In the worst case, the drug resistance scenario might be considered of a perma-
nent duration, nevertheless, it is essential to take into account that the medical
society will most likely implement certain strategies to deal with the problem.
Thus, similarly to Life CAT scenario, we shall consider the duration equal to 30
years, i.e. roughly 7 age intervals.

3.4.6 Impacts on the life expectancy
The impact of stress scenarios will be illustrated by means of the life expectancy
at age 40 in 2017, since the population is the most dense at this age. Also,
it is probably safe to assume that the latter is at least close the average age
in a hypothetical portfolio of an insurance company. The outputs from stress
scenarios will be compared with the observed life expectancy. Henceforth, the
scenario, when no shock factors are considered, will be referred to as central
scenario.

In Table 3.7 we show the impacts of Solvency II scenarios on the life ex-
pectancy. Mortality risk appears to have the most adverse impact on the life
expectancy, on the other hand, impacts of these scenarios (△BOF) really depend
on the structure of the underlying portfolio.
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Table 3.7: Shocked vs central life expectancies (SII scenarios).

Central Mortality risk Longevity risk CAT pandemic CAT explosion
40.74 39.70 42.31 40.69 40.63

Table 3.8 presents the impacts of global climate change and drug resistance
scenarios. It appears that drug resistance case is more adverse, hence the exposure
to multiple risks might be potentially more dangerous, even though the limited
duration was considered.

Table 3.8: Shocked vs central life expectancies (Other scenarios).

Central Climate change Drug resistance
40.74 39.31 38.98
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4. Application of copula
functions
In this chapter we are going to focus on building the dependence model between
two competing risks using copula functions. In previous chapter we used the data
from Czech Statistical Office which contained various causes of death. For the
purposes of this chapter we shall take the data from the year 2017 and consider
regrouping all causes of deaths into two categories: circulatory system failures
and other causes.

4.1 Evaluating crude survival functions
As we mentioned earlier in Chapter 1, the system of differential equations 1.14
requires crude survival functions to be in a functional form. To begin with,
we shall use the approach presented in Kaishev et al. [2007] to calculate crude
survival functions from the data.

Let l0 = D(c) + D(o), where D(c) denotes the total number of deaths from
circulatory system failures for all age intervals and D(o) is the complementing
number of deaths from all other causes. Probability that a newborn will die from
a circulatory system failure is equal to

∞q(c) = D(c)

l0
.

The respective probability for other causes is equal to

∞q(o) = D(o)

l0
.

Crude survival functions are then evaluated as follows
S(c)(k) = ∞q(c) −

∑︂
x<k

D(c)
x / l0

S(o)(k) = ∞q(o) −
∑︂
x<k

D(o)
x / l0,

for k = 1, . . . , 110. In the data described in Chapter 3 we had 21 age intervals in
total with 95+ being the last one. In order to calculate crude survival functions
for higher ages, we used the data (columns Dx) from males and females life tables
from the year 2017 (ČSÚ [2017]) which contain deaths from all causes. Numbers
of deaths (e.g. for other causes) for age intervals 95-99, 100-104 and 105-109 are
calculated as follows:

D
(o)
95-99 = D

(o)
95+ × D95-99

D95-99 + D100-104 + D105-109

D
(o)
100-104 = D

(o)
95+ × D100-104

D95-99 + D100-104 + D105-109

D
(o)
105-109 = D

(o)
95+ × D105-109

D95-99 + D100-104 + D105-109
,

where D95-99, D100-104 and D105-109 are taken from the mentioned life tables. We
assume that by the age of 110 there is no one alive in the population.
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Kernel Regression
Now when crude survival functions are calculated from the data, we need to
find an appropriate way to represent them in a functional form. The smoothing
technique we shall focus on is the kernel regression covered e.g. in Campbell et al.
[1997].

Suppose that we are interested in modelling the relation between two random
variables Yt and Xt which satisfy

Yt = m(Xt) + ϵt, t = 1, . . . , T,

where m(·) is a nonlinear unknown function and ϵt are i.i.d random variables with
zero mean. We are looking for an estimator of m(x) in a form

ˆ︂m(x) = 1
T

T∑︂
t=1

ωt,T (x)Yt, (4.1)

where ωt,T (x) plays the role of a weighting function. The kernel regression frame-
work considers the construction of ωt,T (x) from a symmetric probability density
function K : R → R which is called a kernel:

K(x) ≥ 0,
∫︂
R

K(x) dx = 1.

By rescaling the kernel for some h > 0 (so-called bandwidth), we get

Kh(x) = 1
h

K
(︃

x

h

)︃
,

∫︂
R

Kh(x) dx = 1.

The weighting function ωt,T (x) can be then defined as

ωt,T (x) = Kh(x − Xt)
1
T

∑︁T
t=1 Kh(x − Xt)

. (4.2)

Substituting 4.2 into 4.1 leads to the Nadaraya-Watson estimator of m(x):

ˆ︂m(x) = 1
T

T∑︂
t=1

ωt,T (x)Yt =
∑︁T

t=1 Kh(x − Xt)Yt∑︁T
t=1 Kh(x − Xt)

.

We shall use the Gaussian kernel to obtain the estimators for crude survival
functions:

Kh(x) = 1
h

√
2π

exp
{︄

− x2

2h2

}︄
.

The choice of the bandwidth h is essential in the kernel regression, however, from
the practical point of view it is reasonable to assess the optimality of h graphically,
which we did in Wolfram Mathematica software.

One of the data-driven techniques to select an optimal bandwidth is the cross-
validation method. Let

ˆ︂mh,j(Xj) = 1
T

∑︂
t ̸=j

ωt,T (Xj)Yt,
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which is the so-called leave-one-out kernel estimator based on the observations
(X1, Y1), . . . , (Xj−1, Yj−1), . . . , (Xj+1, Yj+1), . . . , (XT , YT ). The cross-validation func-
tion is given by

CV(h) = 1
T

T∑︂
t=1

(Yt −ˆ︂mh,t(Xt))2w(Xt),

where w(Xt) is a non-negative weight function used to reduce the variability
of CV(h). Finally, the optimal bandwidth is such h that minimizes the cross-
validation function, i.e. ˆ︁hCV := arg min

h>0
CV(h).

In Figure 4.1 we show interpolated crude survival functions for circulatory
system failures (Scrude1) and other causes (Scrude2).
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Figure 4.1: Interpolated crude survival functions.

4.2 Outputs
In Chapter 1 we have already pointed out that potential lifetimes of an individual
are unobservable in practise, however, it is reasonable to assume some degree of
association between them in order to incorporate the dependence structure using
copulas.

Let X1 be a potential lifetime of an individual if he would die from circulatory
system failure and X2 be the corresponding lifetime if the death would occur due
to other causes. We shall solve the system of differential equations 1.14 assuming
τ(X1, X2) = 0.33 (weak positive correlation) and τ(X1, X2) = 0.9 (strong positive
correlation) for the Clayton copula and τ(X1, X2) = −0.1817 (weak negative
correlation) for the AMH copula.

In Figure 4.2 we show net survival functions for the two mentioned values of
Kendall’s tau in the case of Clayton copula and in Figure 4.3 we provide the results
in the case of AMH copula for which we consider negative dependence. While the
results for Clayton copula seem to be generally in line with the assumption that
almost no one is alive by the age of 110, the outputs for AMH copula suggest that
there is still a considerable proportion of the population alive even at higher ages.
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In fact, comparing all three plots, it seems to be the case that survival curves
tend to be ”higher” for lower correlations no matter which copula function was
used. Due to technical issues, we were not able to apply more flexible Gaussian
or t-copulas and thus we focused on Archimedean copulas.
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(a) Net survival functions for τ(X1, X2) = 0.33.
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(b) Net survival functions for τ(X1, X2) = 0.9.

Figure 4.2: Net survival functions in the case of Clayton copula.
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Figure 4.3: Net survival functions in the case of AMH copula.
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In Figure 4.4 we also show the joint probability density functions of X1 and
X2 in the case of Clayton copula and in Figure 4.5 we show the corresponding
joint density in the case of AMH copula.

(a) Joint desity for τ(X1, X2) = 0.33. (b) Joint desity for τ(X1, X2) = 0.9.

Figure 4.4: Joint densities in the case of Clayton copula.

Figure 4.5: Joint density in the case of AMH copula.

Finally, we shall demonstrate the impact of eliminating circulatory system
failures by means of the life expectancy at birth and at retirement age of 65. We
note that this scenario is rather unrealistic, since it is highly improbable that
in the near future such a frequent cause of death will be completely dealt with.
The same scenario will be applied using the outputs from the regression model in
Chapter 3. We recall that stress scenarios from Chapter 3 were calculated under
the independence assumption of competing risks.

In Table 4.1 we compare life expectancies calculated for the central scenario
(i.e. the observed one), MLR, Clayton and AMH copulas. Life expectancies for
central scenario correspond to the ones presented earlier in Table 3.6. It appears
that when assuming high correlation between causes of death, the life expectancy
at birth as well as at retirement age even decreased, which probably does not
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make much sense. We rather get more intuitive results for lower correlations and
in the case of independence.

Table 4.1: Comparison of life expectancies.

Central MLR Clayton copula AMH copula
- - τ = 0.9 τ = 0.33 τ = −0.1817

at birth 78.81 82.14 77.89 80.92 84.87
at retirement 17.88 20.39 14.67 17.55 21.48
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Conclusion
The aim of this work was to present different approaches to cause-of-death mor-
tality analysis and to demonstrate the application of the selected method on real
data.

In Chapter 1 we introduced the continuous model based on the force of mor-
tality and presented the estimation method with respect to current population
data. We also provided a brief overview of the method based on copula functions,
which models the dependence between causes of death.

In Chapter 2 we presented the multinomial logistic regression formulated for
cause-of-death mortality problem. We further discussed the construction of life
tables given the central exposure to risk and age-cause-specific numbers of deaths.

In Chapter 3 we focused on the application of multinomial logistic regression
on data from Czech Statistical Office and used the available 15 years history in our
study. We first identified the appropriate regression model and discussed whether
the assumptions of normal linear model were satisfied. Next we presented the
outputs from the model including fitted life expectancies and predicted mortality
rates. Later in this chapter, we considered several stress scenarios in order to
demonstrate the impacts of shocked mortality rates on life expectancy. We first
focused on the life underwriting shocks, namely mortality risk, longevity risk
and Life CAT risk, assumed under Solvency II regulatory framework. Secondly,
we considered two hypothetical stress scenarios, namely global climate change
and drug resistance, which also simulate the adverse evolution of mortality rates.
The latter scenarios might be useful for the purposes of so-called Own Risk and
Solvency Assessment (ORSA) process within the second pillar of Solvency II when
insurance companies are required to assess their own risk profile.

In Chapter 4 we focused on the application of copula functions in order to
incorporate the dependence structure between the competing risks. We evalu-
ated crude survival functions and solved the system of differential equations for
unknown net survival functions. Lastly, we considered cause-elimination scenario
for circulatory system failures and compared the outputs with calculations based
on the multinomial logistic regression model from Chapter 3. We also confirmed
that assuming high correlation between the two studied causes of death leads to
slightly contradictory results.

36



Bibliography
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