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Abstract: The persistent efforts to make valuable annotated corpora in more
diverse, morphologically rich languages has driven research in NLP into consid-
ering more explicit techniques to incorporate morphological information into the
pipeline. Recent efforts have proposed combined strategies to bring together the
transducer paradigm and neural architectures, although ingesting one character
at a time in a context-agnostic setup. In this thesis, we introduce a technique
inspired by the byte pair encoding (BPE) compression algorithm in order to ob-
tain transducing actions that resemble word formations more faithfully. Then, we
propose a neural transducer architecture that operates over these transducing ac-
tions, ingesting one word token at a time and effectively incorporating sentential
context by encoding per-token action representations in a hierarchical fashion.
We investigate the benefit of this word formation representations for the tasks
of lemmatization and context-aware morphological tagging for a typologically
diverse set of languages, including a low-resourced native language from Peru,
Shipibo-Konibo.

For lemmatization, we use exploration-based optimization under a reinforcement
learning framework, and find that our approach benefits greatly languages that
use less commonly studied morphological processes such as templatic processes,
with up to 55.73% error reduction in lemmatization for Arabic. Furthermore, we
find that projecting these word formation representations into a common mul-
tilingual space enables our models to group together action labels signaling the
same phenomena in several languages, e.g. Plurality, irrespective of the language-
specific morphological process that may be involved. For Shipibo-Konibo, we also
introduce the first ever rule-based morphological analyzer for this language and
compare it against our proposed neural architectures for lemmatization.

For morphological tagging, we investigate the effect of different tagging strate-
gies, e.g. bundle vs individual tag prediction, as well as the effect of multilingual
action representations. We find that our taggers are able to obtain up to 20% er-
ror reduction by leveraging multilingual actions with respect to the monolingual
scenario.
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Introduction
According to typological databases, the number of languages in the world ranges
from 7111, as cataloged by Ethnologue [Eberhard et al., 2019], to 8494, as at-
tested by Glottolog [Hammarström et al., 2019]. Yet, current research in NLP is
limited to the languages for which linguistic annotations are available. In the last
few years, impressive efforts have been made to consistently increase the number
of covered languages. Examples of such efforts include the Universal Dependen-
cies project [Nivre et al., 2019] featuring treebanks for 146 languages,1 and the
UniMorph project [Kirov et al., 2018] featuring 111 languages with morphological
annotation. Even though recent lines of research feature unsupervised approaches
to complex tasks such as Machine Translation [Lample et al., 2018a], the largest
coverage reported to date is of 122 languages [Artetxe and Schwenk, 2018].

As the development of language technologies shifts to a more inclusive stance,
the importance of explicitly modeling morphology becomes more evident. Recent
efforts to include signals below the word level include encoding tokens character
by character [Kim et al., 2016] or representing types with subword units [Sennrich
et al., 2016, Kudo, 2018]. The methods to obtain these subword units, although
unsupervised, are designed to capture regularities in surface word forms and do
not model underlying morphological mechanisms a language may be using in
the process to go from lemma to final word form. Even though results suggest
that subword representation is effective for highly productive languages such as
polysynthetic or agglutinating languages, this approach fails to model regular-
ities in non-contiguous spans such as the ones present in templatic languages.
The aforementioned underlying morphological mechanisms are known as word
formation processes, and they will the focus of study in this work.

Word formation processes, oftentimes called morphological processes, are
mechanisms by which a language modifies a lemma to accommodate a specific
syntactic and semantic need in a sentence. In this thesis, we explore the idea of
defining word formation processes as common ground for modeling how languages
combine different processes during word formation. Consider the example in
Table 1. Here we can see how English, Czech, and Arabic –presented in latin
script for convenience– inflect word forms to encode Plurality of the noun book.
We observe that English uses only one word formation process (suffixation), Czech
uses two (substraction and suffixation), and Arabic also uses two (prefixation and
transfixation).

The explicit modeling of word production operations opens the possibility
to capture other morphological processes besides affixation or substraction, e.g.
transfixation. In this thesis we take a step in this direction by posing word forma-
tion processes as ‘actions’ that sequentially edit a word form. In our example in
Table 1, actions encode what process to perform (e.g. suffixate) and the segment
involved (e.g. -s). We propose edit actions that resemble morphological processes
and investigate how they can benefit the tasks of context-aware lemmatization
and morphological tagging.

On one hand, the task of lemmatization consists of mapping an inflected
word form to its lemma, i.e. its dictionary form. In Table 2, for example, the

1Last edition at time of writing is v2.4
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Language Lemma Word Form Processes Involved Processes as actions
English book books suffixation suffixate(s)

Czech kniha knihy subtraction +
suffixation

substract(a) +
suffixate(y)

Arabic kitab alkutub prefixation +
transfixation

prefixate(al) +
transfixate(k t b, u u )

Table 1: Example of how languages combine different word formation processes
during inflection to encode Plurality. Surface segments involved in the processes
are showed in bold.

Inflected word form Lemma Morphosyntactic Description (MSD)
Tim Tim N;SG
sang sing V;PST;IND;FIN
carols carol N;PL

Table 2: Example of context-aware lemmatization and morphological tagging.

form sang is mapped onto sing. On the other hand, the task of morphological
tagging consists of mapping an inflected word form onto its morphosyntactic
description (MSD) label. In the example in Table 2, sang is mapped onto the label
V;PST;IND;FIN to indicate that this word form is a finite verb in past tense and
indicative mood. In this thesis, we tackle the context-aware variant of these tasks,
which means that the input to the system is a complete sentence instead of a single
word form. We evaluate our proposed strategy on the following typologically
diverse set of languages: English, Spanish, German, Turkish, Arabic, Czech, and
Shipibp-Konibo. Shipibo-Konibo is a extremely low-resourced native language
spoken in the Amazonian region of Peru. In order to motivate the development
of language technologies for this endangered language, we also introduce a fairly
complete finite-state-machine morphological analyzer and make it available to the
academic community.

Previous work has posed the tasks of lemmatization and reinflection (mapping
a lemma to its inflected form) as a string transduction problem, traditionally
tackled using weighted finite state transducers [Eisner, 2002, Mohri, 2004]. More
recently, however, neural transducers have been proposed. These architectures
transduce one character at a time by using a set of operations based on edit-
distance actions [Makarov and Clematide, 2018c,a, Schroder et al., 2018].

Follow up work further explored a variety of training strategies besides max-
imum likelihood. Makarov and Clematide [2018c] investigated the effect of
exploration-based refinement of edit-distance operations by minimizing the ex-
pectation of a metric-driven risk, obtaining promising results on low-resource sce-
narios. Later on, Makarov and Clematide [2018b] proposed an imitation learning
procedure that further eliminates the requirement of gold edit-distance alignments
between lemmas and inflected forms. It is worth noting, however, that all these
architectures transduce one character at a time and have no access to sentential
context, viz. they solve context-agnostic tasks. In addition, even though these
architectures were tested in several languages, they were trained on a monolingual
setup and do not leverage the potential benefit of defining a language-agnostic
set of edit-distance actions. Previous work that does focus on multilingual train-
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ing of neural transducers is limited to learning a joint vocabulary of subword
units [Kondratyuk, 2019]. Besides the splendid progress made so far, no previous
work at the time of writing this work has addressed the question of what kind of
morphological phenomena these actions are learning.

In regards to morphological tagging, previous work has explored the following
two strategies: (i) tagging the complete MSD label, also known as ’bundle’ [Kon-
dratyuk, 2019, Ustun et al., 2019], e.g. ‘N;PL’, and (ii) tagging the fine-grained
feature components individually [Bhat et al., 2019], e.g. as ‘N’ and ‘PL’. Later
on, Straka et al. [2019] proposed to combine both tagging strategies by learning
to predict both schemes under a multi-task setup. These systems operate over
subword units instead of edit-distance actions and once again, it is not clear what
kind of morphological phenomena is being individually captured by these units.

In summary, the contributions of this thesis are the following:

• We introduce a technique based on the byte pair encoding (BPE) algo-
rithm that produces edit actions that resemble morphological processes
more faithfully. These actions operate at the word level instead of consum-
ing one character at a time as in previous work [Makarov and Clematide,
2018c, Aharoni and Goldberg, 2016].

• We propose neural architectures that leverage these action representations
and incorporate context from the sentence in a hierarchical manner, for the
tasks of lemmatization and morphological tagging in context.

• We provide a thorough analysis of exploration-based refinement of such
representations under a reinforcement learning framework.

• We investigate the effect of multi-lingual projection of these action repre-
sentations and how they can capture the same morphological phenomena
in different languages, irrespective of the language-specific morphological
processes involved.

• We introduce a fairly complete rule-based morphological analyzer for
Shipibo-Konibo, a low-resourced Peruvian native language.

Research Questions
We aim to shed light on the following research questions.

• What training strategies are more effective for learning edit operations re-
sembling morphological processes?

• What kind of morphological phenomena can be captured by these edit ac-
tions? Can these actions learn to signal these phenomena in a multilingual
setting?

• What morphological tagging strategy, e.g. bundle vs individual component
prediction, is most benefited by morphological process representations?
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Summary of Chapters
Chapter 01. Theoretical Background We begin by laying out the funda-
mental concepts and notation definitions that will be referred to throughout this
thesis. The chapter also introduces the Shipibo-Konibo language, its typology,
and morpho-syntactic profile. Then, the chapter spans a variety of topics, from
morphology and its annotation schemes to optimization techniques in reinforce-
ment learning.

Chapter 02. Literature Review In this chapter we review the most relevant
research work in morphological string transduction and how neural networks are
being used for morphological analysis tasks.

Chapter 03. Rule-based morphological analysis of Shipibo-Konibo In
this chapter we introduce the proposed finite state transducer capable of perform-
ing lemmatization, morpheme segmentation, and tagging for Shipibo-Konibo. We
elaborate on the morphotactics and how each word category was tackled.

Chapter 04. Transducing Pseudo Morphological Processes for Lemma-
tization and Morphological Analysis in Context In this chapter we in-
troduce an unsupervised method to obtain pseudo morphological operations, i.e.
operations that resemble morphological processes and can be ingested by a trans-
ducer. We investigate the effectiveness of our method for the tasks of lemmati-
zation and morphological tagging in context. We further explore multi-lingual
projections and reinforcement learning as ways to transfer knowledge from more
highly resourced languages.

Chapter 05. Experimental Setup In this chapter we layout the details of
our experiments including proposed models, evaluation metrics, and preliminary
results on MRT tuning. In addition, we describe our participating system at the
SIGMORPHON 2019 Shared Task.

Chapter 06. Results and Discussion We evaluate the performance of our
models according to the metrics and perform error analysis experiments in order
to shed light on what our models are learning. In addition, we talk about the
limitations of our approach.

Conclusions and Future Work First, we draw conclusions from the results
presented and articulate on answers to the research questions presented in this
introduction. Second, we comment on attractive future research paths that could
be followed to tackle the main shortcomings of our approach.
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1. Theoretical Background
In this chapter we layout key concepts that will be referred to throughout this
thesis. We start by introducing the Shipibo-Konibo language, its geographical
presence and morpho-syntactic profile. Then, we define what a morphological
process is and what kinds of processes we are going to consider. Later on, we
comment on the most prominent current efforts in harmonization of linguistic
annotations across languages. Afterwards, we elaborate on the original byte-
pair-encoding algorithm and how it is applied to subword unit learning. Finally,
we elaborate on the sub-field of Reinforcement Learning and its advantages over
other learning paradigms, as well as the main optimization approaches used in
our experiments.

1.1 The Shipibo-Konibo language
Linguistic and language technology research on Peruvian native languages have
experienced a revival in the last few years. The academic effort was accompanied
by an ambitious long term initiative driven by the Peruvian government. This
initiative has the objective of systematically documenting as many native lan-
guages as possible for preservation purposes [Acosta et al., 2013]. So far, writing
systems and standardization have been proposed for 19 language families and 47
languages.

Shipibo-Konibo (henceforth SK), also known in the literature as Shipibo or
Shipibo-Conibo, is a low-resourced native language spoken in the Amazonian re-
gion of Peru. SK is a member of the Panoan language family, a well-established
linguistic group of the South American Lowlands, alonside Arawak, Tupian,
Cariban, and others. Currently, circa 28 Panoan languages are spoken in West-
ern Amazonia in the regions between Peru, Bolivia, and Brazil. Figure 1.1 shows
the current distribution of Panoan languages in South America as mapped by
Erikson [1992]. Nowadays, SK is spoken by nearly 30,000 people mainly located
in Peruvian lands.

1.1.1 Morpho-syntactic profile
The morphosyntax of SK in extensively analyzed by Valenzuela [2003]. How-
ever, several phenomena such as discourse coherence marking and ditransitive
constructions still require deeper understanding, as pointed out by Biondi [2012].

In terms of a syntactic profile, SK is a (mainly) post-positional and agglutinat-
ing language with highly synthetic verbal morphology, and a basic but quite flex-
ible agent-object-verb (AOV) word order in transitive constructions and subject-
verb (SV) order in intransitive ones, as summarized by Fleck [2013].

SK usually exhibits a biunique relationship between form and function, and
in most cases morpheme boundaries are easily identifiable. It is common to have
unmarked nominal and adjectival roots, and few instances of stem changes and
suppletion are documented by Valenzuela [2003]. In addition, the verb may carry
one or more deictic-directive, adverb type suffixes, in what can be described as a
polysynthetic tendency.
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Figure 1.1: Current Distribution of Panoan languages in South America, from
Erikson [1992].

In addition, SK presents a rare instance of syntactic ergativity in an otherwise
morphologically ergative but syntactically accusative language.

We proceed to comment about the most salient morpho-syntactic features rel-
evant to the morphotactics argumentation in section 3.2. The examples presented
in this section were taken from Valenzuela [2003].

Expression of Argument Verb arguments are expressed through free lexical
case-marked nominals, with no co-referential pronominal marking on the verb or
auxiliary. That is, verbs and auxiliaries are not marked to agree with 1st, 2nd,
or 3rd person of the subject or agent. Instead, verbs are marked to indicate that
the action was carried out by the same participant of the previous clause or by
another one. We explain this phenomenon in section 3.4.

Omission of required subject and object is normally understood as zero third
person singular form. There are no systematic morpho-syntactic means of distin-
guishing direct from indirect objects, or primary versus secondary objects.

Case Marking Grammatical cases are always marked as suffixes, except for a
couple of exceptions. SK exhibits a fairly rigid ergative-absolutive case-marking
system. The ergative case is always marked, whereas the absolutive case is only
marked on non-emphatic pronouns. All other grammatical cases are marked,
except the vocative case. The vocative case is constructed by shifting the stress
of a noun to the last syllable.

Participant Agreement Certain adverbs, phrases, and clauses are semanti-
cally oriented towards one core participant or controller and receive a marking in

8



accordance with the syntactic function this participant plays, namely subject (S)
of an intransitive verb, agent (A) of a transitive verb, or object (O) of a transitive
construction. This feature can be analyzed as a type of split-ergativity which
might be exclusive to Panoan languages. The following example illustrates this
phenomena for the adjunct bochiki: high up in S, O, and A orientation (ONOM
refers to onomatopeic words).

(1) S orientation
Bochiki-ra e-a oxa-i
up:S-Ev 1-Abs sleep-Inc
“I sleep high up (e.g., in a higher area inside the house).”

(2) O orientation
E-n-ra yami kent́ı bochiki a-ke
1-Erg-Ev metal pot:Abs up:O do.T-Cmpl
“I placed the metal pot high up.” (only the pot is high up)

(3) A orientation
E-n-ra yami kent́ı bochiki-xon
1-Erg-Ev metal pot:Abs up-A
tan tan a-ke.
ONOM ONOM do.T-Cmpl
“I hit the metal pot (being) high up.” (I am high up with the pot)

Clause-Chaining and Switch-Reference System Chained clauses present
only one clause with fully finite verb inflection while the rest of them carry same-
or switch-reference marking. Reference-marked clauses are strictly verb-final,
carry no obvious nominalizing morphology and may precede, follow, or be em-
bedded in their matrix clause.

Same-reference markers encode transitivity status of the matrix verb, co-
referentiality or non co-referentiality of participant, and relative temporal or log-
ical order of the two events. This is because most same-subject markers are
identical to the participant agreement morphemes and hence correlate with the
subject (S) or agent (A) function played by their controller in the matrix clause.
The following example shows three chained clauses. Notice that the matrix verb
is chew, and the subordinated clause’s verbs carry the marker xon to indicate
that the action was performed by the same agent prior to the action described in
the main clause (PSSA: previous event, same subject, A orientation).

[ [ Jawen tapon bi-xon ] kobin-a-xon ]
Pos3 root:Abs get-PSSA boil-do.T-PSSA

naka-kati-kan-ai.
chew-Pst4-Pl-Inc
“After getting its (i.e., a plant’s) root and boiling it, they chewed it.”
Same- or switch- reference marking may also be used to encode different types

of discourse (dis)continuity.

Pronouns and Split-Ergativity The personal pronoun system in SK is com-
posed of 6 basic forms corresponding to the combinations of three person (1,2,3)
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and two number (singular and plural) distinctions. SK does not differentiate gen-
der or inclusive vs exclusive first person plural. There are no honorific pronouns
either.

The ergative-absolutive alignment is used in all types of constructions, ex-
cept for reflexive pronoun constructions. Reflexive pronouns are marked with
the suffix -n when referring to both A and S arguments, but remain unmarked
when referring to an O argument. Hence, reflexive pronouns constructions clearly
present a nominative-accusative alignment.

Clitics All clitics in SK are enclitics, i.e. they always function as suffixes, but
most of them encode clause level features in which case they are attached to the
last element of the phrase or clause they are modifying. SK clitics are categorized
into case markers, less-fixed clitics and second position clitics, as proposed by
Valenzuela [2003].

Case markers are attached to noun phrases preceding mood and evidentiality
markers in its last constituent word.

Second position clitics are attached to the main clause in the sentence, and
they encode evidentiality (+Ev:ra; +Hsy:ronki, ki; e.g. it is said that ...), reported
speech (e.g. he says/said that ...), interrogative focus (+Int:ki,rin; +Em:bi), and
dubitative voice.

Less-fixed clitics mark the specific element they are attached to, instead of the
whole clause. These are endo-clitics, i.e. they can take any position other than
the last morpheme slot in a construction. In this category we can find adverbial,
adjectival, and dubitative suffixes.

1.1.2 Morpho-syntactic description labels
The extensive work of Valenzuela [2003] provides a systematic encoding of
morpho-syntactic information for SK. Similar guidelines were followed to design
the encoding for Quechua Rios [2016], another agglutinative, ergative-absolutive
native language widely spoken in Peru and South America. Throughout the rest
of this thesis, we follow the notation proposed by Valenzuela [2003]. The complete
list of MSD labels and their descriptions can be found in Appendix A.1.

1.2 Morphological Processes
A morphological process is the process by which a word form is transformed into
another form by means of addition, subtraction or replacement of non-necessarily
contiguous (and possibly empty) morphemes into its stem [Matthews, 1991].
These processes refine the encoded meaning and grammatical relations between
the new word form and its context. A process is called inflectional when the gram-
matical category of the word form is not changed and the change in meaning, if
any, results in a predictable, non-idiosyncratic drift. In contrast, a derivational
process produces a greater idiosyncratic change of meaning but not necessarily
changes the grammatical category. However, the line between derivational and
inflectional morphology is sometimes blurry. For example, it results rather am-
biguous to classify morpho-syntactic operations that have no overt realization,
i.e. processes involving zero morphemes.
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Morphological processes are classified into:

• Affixation: Addition of affix (suffix or prefix).

• Circumfixation: Addition of suffix and prefix.

• Infixation: the morpheme, infix, is inserted inside the stem.

• Transfixation: the transfix, a discontinuous affix, is inserted into a stem
root or template.

• Reduplication: the whole stem or part of it is repeated.

• Modification: change in the phonetic substance of the stem. In this cate-
gory we have vowel modification, vowel reversal, tonal and stress modifica-
tion, consonant modification, and suppletion (replacement of one stem with
another).

• Subtraction: Removal of a segment from the stem.

1.3 Harmonization of linguistic annotations
Harmonization consists in mapping language-specific linguistic annotations into a
convention shared by one or more other languages. Given that different languages
might employ different mechanisms to encode the same linguistic phenomenon,
it is inevitable to lose granular information during the harmonization process.

Early harmonization efforts targeted to create a reusable “interlingua” to en-
code Part-of-Speech (POS) and morphological features. Projects such as EA-
GLE1, PAROLE 2, and MULTEXT3 aimed to cover most European languages.
However, conversion between a pair of tagsets required tailored, often unidirec-
tional, mapping between the source and target tagset. In this scenario, Zeman
[2008] proposed a nearly universal tagset, Interset, meant as an intermediate
mapping step for POS and morphology information. Then, a source–Interlingua
mapper could be coupled with any Interlingua–target mapper. Subsequent ef-
forts to define a language-agnostic POS tagset include early work from Petrov
et al. [2012] and later on the Universal Dependencies (UD) project [Nivre et al.,
2015]. In terms of universal morpho-syntactic annotation, a more recent project,
UniMorph [Kirov et al., 2018], provides an alternative to the already compre-
hensive UD tagset (a.k.a. UFEATS). We now elaborate on the key features and
differences of UD and UniMorph conventions.

1.3.1 Universal Dependencies
With planned releases of new treebanks every six months, the Universal De-
pendencies project aims to provide linguistic resources with language-agnostic
annotations for Part-of-Speech, morpho-syntactic features, and syntactic depen-
dency relations. The latest release to the date of writing, v.2.4, features no less

1http://www.ilc.cnr.it/EAGLES96/home.html
2https://www.scss.tcd.ie/SLP/parole.htm
3https://cordis.europa.eu/project/rcn/19596/factsheet/en
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than 146 treebanks for 83 languages, with 16 more treebanks awaiting to pass
final sanity check tests.

UD proposes a coarse universal POS tagset with 17 tags. Additional lexi-
cal and grammatical properties can be encoded using what they call universal
“features”, an extensive tagset designed to account for most morpho-syntactic
phenomena a language may have. Universal features are divided in two main
categories, lexical and inflectional, spanning an impressive 49 subcategories in
total. Furthermore, this set is not static since the UD project is welcoming of
new proposed feature labels along new treebanks in case a certain phenomenon
cannot be encoded with the current tagset.

1.3.2 UniMorph
The UniMorph project [Sylak-Glassman, 2016, Kirov et al., 2018] proposes a
scheme targeted at representing morphological features, specifically those per-
taining inflectional morphology. The scheme defines 23 morphological categories,
defined as “dimensions of meaning”, spanning over 212 features. One such dimen-
sion is dedicated to POS categories. However, the POS tagset covers 8 categories
and is based on the more functionally-motivated conceptual space proposed by
Croft [2000].

1.4 Byte pair encoding and subword unit rep-
resentation

Byte pair encoding (BPE, Gage [1994]) is a compression algorithm initially pro-
posed to operate over a stream of bytes. The algorithm starts by finding the most
frequent pair of adjacent bytes and replaces all instances of the pair by a single
byte not seen in the stream. This process is repeated until no more unseen bytes
are available or no more frequent pairs are found. One advantage of BPE with
respect to other compression algorithms is that it never increases the size of the
stream. This feature makes BPE especially suited for applications with limited
memory such as the representation of a string of characters, e.g. natural language
text.

The encoding or representation of natural language text presents the following
two extreme paradigms: (i) by means of a table of individual characters and (ii)
by means of a table of distinct word forms, a.k.a. the vocabulary. A middle
ground paradigm was proposed by Sennrich et al. [2016] by adapting the BPE
algorithm to obtain a table of distinct contiguous character segments, namely
subword units. The algorithm produces a table with less than or equal entries
than a word form vocabulary would require. Moreover, the algorithm effectively
takes advantage of regularities in inflected word forms such as common prefixes
and suffixes.

The algorithm proposed by Sennrich et al. [2016] operates as follows. Given a
stream of characters, the algorithm will iteratively merge the most frequent ad-
jacent pair of segments (single characters in the beginning) for a pre-determined
number of iterations. It is worth noting that merge operations take word bound-
aries into consideration, i.e. pairs that cross word boundaries are not merged.
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Hence, the algorithm can operate over a dictionary of word types weighted by
their frequency. For example, given the dictionary { ‘studied’, ‘played’},
the first merge operation would be (‘e’,‘d’) ↦→ ‘ed’.

1.5 Reinforcement Learning
Reinforcement Learning (RL) is a paradigm of learning that focuses on the inter-
action with an environment and observing how it reacts to a given set of actions.
The goal is to learn what actions to perform next so that a reward is maximized.
Sutton and Barto [2018] formalize these characteristics in three aspects of the
learning framework, namely sensation, action, and goal.

The entity interacting with the environment is called agent, and it must learn
which actions are most beneficial in the long run, i.e. it has to learn how and
when to explore new actions based on what can be considered a vague concept
of delayed reward in the case benefit cannot be immediately assessed.

Let us compare RL with other learning paradigms. Consider situations in
which the action search space is dense, the sequence of actions to perform is long,
or an environment is too complex to generalize over. It soon becomes unfeasible
to have enough categorized samples that characterize correctly the task at hand.
In contrast to supervised learning, reinforcement learning relies on the exploration
of new ways of achieving better rewards and learning from its own mistakes while
doing so. In addition, RL is not limited or directed by the underlying structure of
the data, unlike unsupervised learning, its only objective is to maximize reward.

In the last few years, RL has been increasingly applied to a wide range of
NLP tasks in conjunction to underlying sequence2sequence (seq2seq) neural ar-
chitectures, from morphological reinflection [Makarov and Clematide, 2018b] to
machine translation [Shen et al., 2015] and summarization [Pasunuru and Bansal,
2018, Narayan et al., 2018].

1.5.1 Advantages of RL over other paradigms
We now elaborate on two known biases involved in training of seq2seq models as
identified in the literature [Ranzato et al., 2015, Wiseman and Rush, 2016].

Exposure bias vs Exploration-exploitation Consider the case of language
modelling. At training time, the model is only exposed to gold token sequences in
order to learn the probability of the next work. However, at test time the model
is expected to generate the next token based on its own previous prediction. This
disparity between training and inference settings is referred to as exposure bias.

In this setting, a model cannot learn from its own mistakes because it is
simply not exposed to them at training time. On the other hand, RL relies on a
exploration-exploitation trade-off, i.e. an agent must learn to decide whether to
explore new, less profitable actions or exploit actions that are known to contribute
highly to the reward.

Loss-evaluation mismatch Another drawback of learning paradigms besides
RL is the mismatch between the metric being optimized and the metric used
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for evaluation. Consider the case of machine translation trained to minimize
the log likelihood of the data but it is evaluated using, for example, BLEU. A
valid counter-argument, however, is that loss functions such as log likelihood and
cross-entropy are differentiable, hence a variety of optimization algorithms can
be applied.

In contrast, reward-driven training allows to optimize a model with respect
to a evaluation metric. A loss function defined on this terms might end up being
not differentiable. For this reason, RL training strategies rely on sampling to
estimate complex optimization objectives.

One such training strategy is Minimum Risk Training (MRT). MRT tackles
the previously mentioned training biases in a direct manner. First, MRT tackles
exposure bias with exploration-exploitation trade-off over the target sequence.
Second, MRT introduces evaluation metrics as part of the loss function and pro-
ceeds to optimizes the model parameters so as to minimize the expected loss on
the training data. Previous work has employed MRT to optimize neural sequence-
to-sequence architectures for the tasks of machine translation [Shen et al., 2015],
and morphological reinflection and lemmatization [Rastogi et al., 2016, Makarov
and Clematide, 2018c] with promising results.

1.5.2 Maximum Likelihood Estimate Optimization
Given a source sequence x = ⟨x1, ..., xn, ..., xN⟩, and a target sequence y =
⟨y1, ..., ym, ..., yM⟩, the aim is to train a model that consumes x and outputs
y. Let us define the probability of sequence y as

P (y|x; θ) = ΠM
m=1P (ym|x, y<m; θ) (1.1)

where θ represents the model parameters and y<m = ⟨y1, ..., ym−1⟩. Then, the
model can be trained by maximizing the likelihood of training data
T = {⟨x(i), y(i)⟩}|T |

i=1, as follows

θ̂MLE = argmax
θ

{L(θ)} (1.2)

where L(θ) = ∑|T |
i=1 logP (y(i)|x(i); θ). This optimization strategy is known as

Maximum Likelihood Estimate (MLE) training, and it is known to suffer from
exposure bias and loss-evaluation mismatch as pointed out by Ranzato et al.
[2015], Wiseman and Rush [2016].

1.5.3 Minimum Risk Training
We now layout the concept of minimum risk and how to optimize it in the context
of sequence to sequence prediction. Given training sample ⟨x(i), y(i)⟩, let ∆(y, y(i))
be the loss function that quantifies the differences between the predicted sequence
y and the gold sequence y(i). This loss function is not parameterized w.r.t. our
model and hence, it is not differentiable. Then, the risk is defined as the expecta-
tion of the loss function w.r.t. the posterior distribution defined by Equation1.1.
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Hence, as introduced by Shen et al. [2015], the risk is defined by the expression

R(θ) =
T∑

i=1
Ey|x(i);θ

[
∆(y, y(i))

]
(1.3)

=
T∑

i=1

∑
y∈Y(x(i))

P (y|x(i); θ)∆(y, y(i)) (1.4)

where Y(x(i)) is the set of all possible target sequences valid for source se-
quence x(i). Then, the objective is to minimize

θ̂MRT = argmin
θ

{R(θ)} (1.5)

Note that since ∆(y, y(i)) does not depend on θ, we do not need to differenti-
ate it when calculating partial derivatives δR(θ)/δθ. However, the search space
Y(x(i)) in Equation 1.3 is oftentimes exponential, hence rendering the calcula-
tion of the expectations intractable. In this scenario, Shen et al. [2015] proposed
to sample Y(x(i)) in order to approximate the posterior distribution P (y|x(i); θ).
Then, the optimization objective is defined as

R(θ) =
T∑

i=1

∑
y∈S(x(i))

Q(y|x(i); θ)∆(y, y(i)) (1.6)

where S(x(i)) ⊂ Y(x(i)) is the subsampled space and Q(y|x(i); θ) is the surro-
gate posterior defined by

Q(y|x(i); θ) = P (y|x(i); θ)α∑
ŷ∈S(x(i)) P (ŷ|x(i); θ)α

(1.7)

with hyper-parameter α controlling the sharpness of posterior Q.
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2. Literature Review
In this chapter we review relevant lines of research related to sequence trans-
duction, focusing on string transduction. We name the transduction between a
lemma and an inflected form (or vice versa) ‘morphological string transduction’.
We then survey how neural approaches have been implemented for morphological
string transduction and tagging for low resource scenarios.

2.1 Neural Transducers
Many NLP tasks can be posited as sequence-to-sequence transduction problems
such as machine translation, summarization, speech recognition, to name a few.
Before the advent of neural networks in the last few years, however, transducing
systems used to resort to segmentation heuristics, hand-crafted features, and
alignment models. In the case of morphological string transduction tasks such as
reinflection or lemmatization, the traditional way to tackle these problems was
with weighted finite state transducers [Mohri, 2004, Eisner, 2002].

Early efforts in sequence transduction using neural networks included the
work by Graves [2012] who modeled all possible alignments between the input
and output sequence for phoneme recognition. The idea of a fully differentiable
alignment module was later rounded up with the introduction of the attention
mechanism by Bahdanau et al. [2014]. Later on, inspired by the HMM word align-
ment model used in statistical machine translation [Vogel et al., 1996], Yu et al.
[2016] proposed a segment-to-segment architecture that learns to generate and
align simultaneously. The alignment module extends the work of Graves [2012]
and is capable of modeling local non-monotone mappings by allowing recurrent
dependencies between monotone mappings. The idea was tested in mappings at
the word level for the task of abstractive summarization, and in mappings at the
character level for the task of morphological inflection.

More recent efforts have proposed combined strategies to bring together the
transducer paradigm and neural architectures in a more explicit way. One line
of research replaces hand-engineered features in the scoring function of a WFST
with path scores obtained with an RNN [Rastogi et al., 2016, Lin et al., 2019]. In
contrast, Schwartz et al. [2018] proposed SoPa, an end-to-end neural transducer
with the same theoretical expressive power of linear-chain WFSAs. SoPa, for
Soft Patterns, draws principles from one-layer CNNs in order to support flexible
lexical matching [Davidov et al., 2010]. The architecture implements the state-
transition function as a transition matrix that processes input one step at a time,
like an RNN. The model is tested in text classification tasks including sentiment
analysis, showing impressive robustness in low resource scenarios.

This connection between RNNs and CNNs with WFSAs is later formalized by
Peng et al. [2018]. They layout theoretical proof that the recurrent hidden state
update of a restricted set of RNNs is equivalent to the forward calculation of an
WFSA. Peng et al. [2018] defined such recurrence updates as rational recurrences.
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2.2 Morphological String Transduction
In this section we survey lines of research related to morphological string trans-
duction tasks, namely inflection generation, paradigm completion, and lemmati-
zation. We start by reviewing past editions of the SIGMORPHON Shared Tasks
[Cotterell et al., 2016, 2017, 2018, McCarthy et al., 2019] and follow up with
independent efforts in the literature.

The number of featured languages in the SIGMORPHON Shared Tasks has
significantly increased from 10 (with one dataset per language) in its first edi-
tion [Cotterell et al., 2016] to 66 (with more than 100 datasets in total) in its
last edition [McCarthy et al., 2019]. The editions of 2017 and 2018 [Cotterell
et al., 2017, 2018] featured three data regimes (low, medium, high) for the task
of type-level (i.e. context agnostic) inflection in order to investigate the gener-
alization capability of the submitted systems under low-resource scenarios. The
2019 edition [McCarthy et al., 2019] introduced a slightly different setup to type-
level inflection, this time with only a low-regime dataset for a target language
but accompanied by a high regime dataset of a support language (not neces-
sarily related but highly resourced). The 2019 edition also featured the task of
lemmatization in context, i.e. with access to sentential information. Although a
low regime was not explicitly stated in the task setup, several datasets indeed
fall into the low-regime categorization, e.g. English PUD has only 800 and 100
sentences for training and testing, respectively.

In general, the organizers draw the conclusion that, not surprisingly, sequence-
to-sequence architectures tended to suffer under low resource scenarios. In order
to tackle the problem of data sparsity, three main strategies can be identified.

The first strategy consists in learning to transduce input characters into a
sequence of edit operations instead of a sequence of characters [Makarov and
Clematide, 2018a, Schroder et al., 2018, Dumitrescu and Boros, 2018, Hauer et al.,
2019]. The defined edit actions operate at the character level and are obtained
from the output of the Levenshtein algorithm, an extended version of the edit-
distance algorithm. However, these systems rely on pre-aligned ⟨lemma,inflection⟩
pairs.

The second proposed strategy was to deliberately bias the network into copy-
ing word forms. On one hand, Zhou and Neubig [2017] proposed to augment
the training data with synthetic data, namely hallucinated data, for the task of
context-agnostic inflection generation. This augmentation method extends the
original set of lemma–word form pairs with pairs of forms with the same lemma,
i.e. pairs of forms in the same paradigm. On the other hand, Madsack and Weiss-
graeber [2019] tackled the problem as a domain adaptation approach. The model
is first trained to copy word forms for several epochs and then ‘fine-tuned’ over
actual inflection pairs during the last epochs.

The last identified strategy is related to the previous one, and consists on
taking on a multi-lingual training strategy. Madsack and Weissgraeber [2019]
combined data from low-resourced languages with data from related, highly re-
sourced languages. Kondratyuk [2019], on the other hand, combined the data
of all available languages and trained the model over a shared vocabulary. Even
though both of them report impressive boosts in performance, it is still not clear
whether any transfer learning is happening between languages or whether having
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more data further biases the model to copy token strings.
In parallel with the efforts on SIGMORPHON shared tasks, one line of re-

search explored more restricted input–output string alignment configurations.
In the context of morphological inflection, Aharoni and Goldberg [2016] further
increased restrictions in the mapping control, allowing only hard monotonic align-
ments instead of soft alignments. The architecture is modeled as a read-only Tur-
ing machine in which the reader’s pointer is represented by an attention module
that points to a single input at each time step. Following the setup proposed by
Yu et al. [2016], the transducer leverages the enriched representation of the input
string to condition decoding one character at a time. However, the transducer re-
lies on externally calculated character-level alignments using the method proposed
by Sudoh et al. [2013]. Building upon this line of work, Makarov and Clematide
[2018c] introduced the exploration of valid action sequences during training in
order to mitigate the dependence on an external aligner. Performance is reported
to be comparable to the state-of-the-art, if not superior, in several benchmarks
for the tasks of inflection generation and lemmatization. This transducer is first
warm-started following the training procedure proposed by Aharoni and Gold-
berg [2016]. Then, the model is optimized by minimizing the expected risk. This
training approach, as mentioned in section 1.5.3 directly optimizes sequence-level
performance metrics, e.g. the Levenshtein distance between the gold lemma and
the final transformed form. In this scenario, Makarov and Clematide [2018b] fol-
lowed an imitation learning approach and proposed an expert policy to obtain a
completely end-to-end training procedure, hence eliminating the need of external
aligners or MLE pre-training. This model further outperforms its counterpart
trained with MRT.

Our approach follows the core idea behind the work of Makarov and Clematide
[2018c] with the crucial difference that the derived edit actions operate at the
word level instead of the character level. In addition, we leverage a multi-lingual
representation space for actions that allows the models to share inductive bias
in high-resourced related languages, dramatically improving performance for the
task of morphological tagging.

2.3 Morphological Tagging under Low Resource
Scenarios

The 2019 edition of the SIGMORPHON shared task [McCarthy et al., 2019]
featured the task of lemmatization and morphological tagging in context, i.e.
given a sequence of word forms the goal is to tag each token with its lemma and
corresponding MSD label.

The main approaches to tagging identified in the submissions consist of either
(i) tagging each token with a whole feature bundle [Kondratyuk, 2019, Ustun
et al., 2019, Shadikhodjaev and Lee, 2019], e.g. N;NOM;Pl, or (ii) predicting
features separately for each token [Bhat et al., 2019, Straka et al., 2019]. As
reported by the organizers, systems that predict complete feature bundles suffer
from data sparsity problems under low-resource scenarios, the issue being more
acute for morphologically rich languages. In order to remedy this issue, Bhat
et al. [2019] proposed a neural conditional random field model that predicts each
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morphological category (the ‘dimensions’ in UniMorph) in a hierarchical manner,
starting with POS. Similarly, Straka et al. [2019] proposed to predict the label of
each morphological category independently for each token, i.e. as many softmax
layers as categories, in addition to predict the complete feature bundle.

Another strategy followed by the participants was to incorporate contextu-
alized embeddings, like ELMo [Peters et al., 2018] and BERT [Devlin et al.,
2019], in the input representation [Kondratyuk, 2019, Ustun et al., 2019, Straka
et al., 2019]. In general, regular (non-contextualized) and contextualized embed-
dings improve tagging accuracy considerably, although end-to-end embeddings
(i.e. trained from scratch) are better suited for lemmatization, as reported by
Ustun et al. [2019]. This strategy follows a line of work that focuses on enriching
the architecture and components of the input. Previous work on this include that
of Heigold et al. [2017], who proposed a whole bundle LSTM-based tagger over
character-based word representations and tested it on 14 languages of varying
morphological richness. They compare RNN-based and CNN-based token repre-
sentations and report that RNN representations are more robust than CNN in
most cases. The best results, however, are achieved by ensembling.

2.4 Language Technologies for Peruvian native
languages

The development of freely available basic language tools has proven to be of
utmost importance for the development of downstream applications for native
languages with low resources. Finite-state morphology systems constitute one
type of such basic tools. Besides downstream applications, they are essential
for the construction of annotated corpora, and consequently, for development of
other tools. Such is the case of Quechua, a native language spoken in South
America, for which the robust system developed by Rios [2010] paved the way
to the proposal of a standard written system for the language [Acosta et al.,
2013] and impulsed work in parsing, machine translation [Rios, 2016], and speech
recognition [Zevallos and Camacho, 2018].

Initial research regarding Shipibo-Konibo has been centered in the develop-
ment of manual annotation tools [Mercado-Gonzales et al., 2018], lexical database
creation [Valencia et al., 2018], Spanish-SK parallel corpora creation and initial
machine translation experiments [Galarreta et al., 2017]. Related to our line of
research, work by Pereira-Noriega et al. [2017] addresses lemmatization but not
morphological categorization. Alva and Oncevay-Marcos [2017] presented initial
experiments on spell-checking using proximity of morphemes and syllable pat-
terns extracted from annotated corpora.

In the work described in this thesis, we take into account the morphotactics
of all word categories and possible morpheme variations attested by Valenzuela
[2003]. We explored and included as many exceptions as found in the limited
annotated corpora to which we got access to. Hence, the tool presented is robust
enough to leverage current efforts in the creation of basic language technologies
for Shipibo-Konibo.
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3. Rule-based morphological
analysis of Shipibo-Konibo
In this chapter, we present a fairly complete rule-based morphological analyzer for
SK. We resort to the robustness of finite state transducers in order to model the
complex morphosyntax of the language and tackle the task of context-agnostic
lemmatization. We take into account the morphotactics of all word categories
and possible morpheme variations attested by Valenzuela [2003]. We explored
and included as many exceptions as found in the limited annotated corpora to
which we got access to. Evaluation over raw corpora shows promising coverage
of grammatical phenomena, limited only by the scarce lexicon. It is worth noting
that the proposed analyzer is also capable of performing morphological tagging
and POS tagging. However, due to the lack of MSD-tagged corpora it is not
possible to evaluate these tasks for SK at this moment and hence, we leave tagging
out of the scope of this chapter.

In order to impulse the development of downstream applications and corpora
annotation, the tool is freely available1 under the GPL license.

3.1 Problem Formulation
Given word form w, finite state transducer F will produce an analysis of the
form:

[POS] lemma[POS.lemma] morpheme[+Tag] ...

where the first label correspond to the POS tag of the original word form w,
the second label is the lemma accompanied by its POS. From the third label on,
transducer F , presents the segmented morphemes and their corresponding MSD
labels.

Consider the example in Table 3.1. As shown, transducer F performs lemmati-
zation, morpheme segmentation, POS categorization, and morphological tagging,
one token at a time and without considering sentential context.

3.2 Morphotactics
In this section we provide a thorough explanation of the production rules for the
main POS categories. Figure 3.1 summarizes the morphotactics of SK for the
most complex Part-of-Speech categories, namely nouns, verbs, and adjectives.
Although SK presents a predominantly suffixed morphology, there exists a closed

1http://hdl.handle.net/11234/1-2857

Token Translation Analysis
Isábora the birds [NOUN] isá[NRoot] bo[+Pl] ra[+Ev]
noyai are flying [VERB] noy[VRoot.I] ai[+Inc]

Table 3.1: Example of analysis produced.
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list of prefixes, almost all being body part derivatives shortened from the original
noun (e.g. ’head’ mapo → ma). These prefixes can be added to nouns, verbs,
and adjectives to provide a locative signal.

Nouns

Nominal roots can occur in a bare form without any additional morphology or
carry the following morphemes.

• Body part prefix (+Pref), to indicate location in the body.

• Plural marker (+Pl:bo), meaning more than one. Dual number distinction
is not made in nouns, but in verbs.

• N-marker and other case markers. The suffix -n can mark the ergative
(+Erg), genitive (+Gen), and interessive (+Intrss, to denote interest), and
instrumental (+Inst) cases. Other marked cases in SK include absolutive
(+Abs:a), dative (+Dat:ki), locative (+Loc:me,ke), allative (+All:n,nko),
ablative (+Abl:a), and chezative (+Chez:iba). The allative case always
follows a locative case marker, both of them presenting several allomorphs.

• Participant agreement marker (+S:x), to indicate the subject of a transitive
verb.

• Distributive marker (+Distr:tibi), produces quantifier phrases, e.g.
day+Distr → every day.

• Adjectival markers , such as diminutive (+Dim:shoko), deprecatory
(+Deprec:isi), legitimate (+Good:kon, +Bad:koma), proprietive
(+Prop:ya) and privative (+Priv:oma,nto).

• Adverbial markers.

• Postpositional markers.

• Second position clitics, exclusively the focus emphasizer (+Foc:kan).

It is worth mentioning that only the first plural morpheme has precedence over
the others suffixes, and clitics are required to be last. Plural, cases, and adverbial
markers can occur multiple times. There is no gender marking in SK. Instead, the
words for woman (ainbo) and man (benbo) are used as noun modifiers. Consider
the example

(4) T́ıta-shoko-bicho-ra oxa-ai
mom:Abs-Dim-Adv-Ev sleep-Inc
‘Mommy sleeps alone.’

The diminutive shoko is denoting affection instead of size. Notice that the
adverbial suffix bicho would have to be constructed as a separate adjunct in
English and it is attached to the noun, not the verb.
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Derived Nominals Verbal roots can be nominalized by adding the suffix -ti
or past participle suffixes a, ai. Zero nominalization is only possible over a closed
set of verbs, e.g. shinan- ‘to think, to remember / mind, thinking’.

On the other hand, adverbial expressions and adjectives may function as nom-
inals and take the corresponding morphology directly without requiring any overt
derivation.

Adjectives and Quantifiers

Adjectival roots can optionally bear the following morphemes.

• Negative (+Neg:ma), to encode the opposite feature of an adjective.

• Diminutive (+Dim:shoko), deprecatory (+Deprec:isi), intensifier
(+Intens:yora).

• Adverbial markers.

• Interrogative clitics (+Int:ki,rin; +Em:bi).

Derived Adjectives Nominal roots can be adjectivized when adding propri-
etive (+Prop:ya) or privative (+Priv:oma,nto) markers, e.g.
bene-ya [husband+Prop] → married (woman).

In regards to verbs, participial tense-marked verbs can function as adjectives.
Transitive verbs and a closed set of intransitive verbs can take an agentive suffix
(+Agtz:mis,yosma,kas) to express one who always does that action.

As with nominalization, adverbs take zero morphology to function as adjec-
tives.

Verbs

Verbal morphology presents by far the most complex morphotactics in SK, allow-
ing up to 3 prefixes and 18 suffixes following a relatively strict order of precedence,
as follows.

• Prefixes related to body parts, providing locative information about the
action.

• Plural marker (+Pl:kan).

• Up to 2 valency-changing suffixes, depending whether we are increasing
or decreasing transitivity, whether the root is transitive or intransitive, or
whether the root is bisyllabic or not.

• Interrogative intensifier (+Intens:shaman), to bring focus on the action in
a question.

• Desiderative marker (+Des:kas), to indicate that the clause is desiderative
(e.g. I want to V).

• Negative marker (+Neg:yama).
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• Deictive-directive markers are identical or similar to motion verbs and en-
code a movement-action sequence, e.g. V-ina → ’go up the river and V’.

• Adverbial suffixes, depending whether the verb is marked as plural or not.
Here in this slot we find the suffix bekon that indicates dual action.

• Habitual marker (+Hab:pao), to encode that the action is done as a habit.

• Tense markers.

• Adjectival (+Dim:shoko; +Deprec:isi; +Intens:yora) and adverbial suffixes.

• Preventive marker (+Prev:na), to express warning, a situation to be pre-
vented.

• Final markers, including participial and reference markers depending
whether the verb is finite or non-finite in the clause. Reference markers
encode agreement with the agent or subject of the clause (S vs A agreement),
whether it is even the same agent and the point in time the action was
carried out.

• All second position clitics.

Verbal roots must always bear either a tense marker or at least one final
marker. All other suffixes are optional. The following example illustrates how
the deictive-directive marker can encode a whole subordinated clause.

(5) Sani betan Tume bewa-kan-inat-pacho-ai
Sani and Tume sing-Pl-go.up.the.river-Adv-Inc
‘Sani and Tume always sing while going up the river.’

Derived Verbs Nominal roots are turned into transitive verbs by adding the
causativizer +Caus:n. The auxiliary marker +Aux:ak can be added to nominal,
adjectival, and adverbial roots to form transitive verbs.

Pronouns

Personal pronouns can bear the following suffixes.

• Ergative (+Erg:n) and absolutive (+Abs:a) case marker. This last one is
only used on singular forms and first person plural.

• Chezative (+Chez:iba), dative (+Dat:ki), and comitative (+Com:be) case
markers.

• Post-positional suffixes.

• Interrogative and evidential clitics.
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The ergative case construction also renders possessive modifiers, with the
exception of the first and third singular form, which have a different form with
no marking. Possessive pronouns are formed by adding the nominalizer +Nmlz:a
to possessive modifiers.

Emphatic pronouns present the marker +S:x when agreeing with the S ar-
gument and no marker when agreeing with the A argument. Special attention
was taken for the third person singular pronoun ja-, which presents a tripartite
distribution: ja-n-bi-x for S, ja-n-bi for A, ja-bi for O.

Interrogative pronouns who, what, where can be marked for ergative, absolu-
tive, genitive, chezative, and comitative cases. The participant agreement suffix
for these pronouns presents a tripartite distribution: +S:x, +O:o, +A:xon for S,
O, A agreement, respectively. The following example illustrates the behavior of
pronoun jawerano: where.

(6) S orientation
Jawerano-a-x-ki mi-a jo-a
where:Abl-S-Int 2-Abs come-Pp2
‘From where did you come?’

(7) O orientation
Jawerano-a-ki mi-n paranta be-a
where:Abl-O-Int 2-Erg banana:Abs bring-Pp2
‘From where did you bring banana?’

(8) A orientation
Jawerano-xon-ki epa-n pi-ai
where-A-Int uncle-Erg eat-Pp1
‘Where is uncle eating?’

Interrogative pronouns how, how much, how many are marked only for par-
ticipant agreement using an ergative-absolutive distribution (+S:x, +A:xon). In
addition, all interrogative pronouns can take interrogative, focus, and emphasis
clitics.

Demonstrative roots can function both as pronouns and determiners. In the
first case, they bear all proper pronoun morphology. In the second case, they can
only bear the Plural nominal marker +Pl:bo.

Adverbs

Adverbs can be suffixed with evidential clitics. However, whenever an adverb
is modifying an adjective, it takes participant agreement morphology (+S:x,ax,i;
+A:xon) in order to agree with the syntactic function of the noun the adjective
is modifying.

Adverbial roots can also function as suffixes and be attached to nouns, verbs,
adjectives, and even other adverbial roots.

Derived Adverbs Adverbs can be derived from demonstrative roots by adding
locative case markers depending of the proximity of the entity being referred
to. Adjectival roots function as adverbs by receiving the +Advz:n morpheme.
Nouns and quantifier roots take the locative case marker +Loc:ki in order to
form adverbs.
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Postpositions

There are only 20 postpositional roots in SK, all of them can take second position
clitics. In the same fashion as adverbial roots, postpositional roots can also
function as suffixes. Adverbial roots can function as postpositions by taking the
locative marker sequence +Loc: ain-ko.

Conjunctions

All conjunction roots take participant agreement markers (+S:x, +A:xon), except
coordinating conjunctions betan (and) and itan (and, or). These markers encode
inter or intra-clausal participant agreement, often used as discourse discontinuity
flags.

Subordinating conjunctions can take the following morphemes.

• Locative, ablative, and similitive (+Siml:ska) case markers.

• Completive aspect markers, also found as participials in verbs at the final
slot.

• Reference agreement mark +P:ke, to encode discourse continuity.

• Second position clitics.

In the following example, we analyze the behavior of the conjunction root ja.

(9) Ja-tian jawen bene ka-a ik-á
that-Temp Pos3 husband:Abs go-Pp2 be-Pp2
iki jato onan-ma-i ...
AUX 3p:Abs know-Caus-SSSI ...
‘By that moment her husband had gone to teach them (i.e. the Shipibo
men) ...’

(10) Jo-xon jis-á-ronki ik-á iki
come-PSSA notice-Pp2-Hsy be-Pp2 AUX
Inka Ainbo wini wini-i.
Inka woman:Abs cry cry-SSSI
‘When (he) returned, he saw the Inka Woman crying and crying.’

(11) Ja-tian jawen bene-n raté-xon
3-Temp Pos3 husband-Erg scare:Mid-PSSA
yokat-a iki: “Jawe-koṕı-ki mi-a wini-ai?”
ask-Pp2 AUX why-Int 2-Abs cry-Inc
“Then her husband got scared and asked (her): ‘Why are you crying?’”

While the first instance of jatian in (9) coincides with the introduction in
subject function of the male Inka and hence with a change of subject, the second
instance in (11) does not. In fact, the subjects in (10) and (11) have the same
referent, but jatian is used to indicate a switch from narrative to direct quote in
the chain. Note that in (11) the subject ‘her husband’ is overtly stated so that
the hearer does not misinterpret jatian as indicating a change in subject.
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4. Transducing Pseudo
Morphological Processes for
Lemmatization and
Morphological Analysis in
Context
In this chapter we define our proposed edit-action set and elaborate on how
they resemble morphological processes. Then, we investigate how this action
set can be used to tackle the tasks of context-aware morphological tagging and
lemmatization for a variety of languages that resort to different combinations of
word formation processes during inflection.

Our experiments follow the setting of the SIGMORPHON 2019 Shared Task
on ‘Cross-linguality and Context in Morphology’ [McCarthy et al., 2019] at which
early experiments were submitted [Cardenas et al., 2019]. We release the code of
our proposed lemmatization and tagging models.1

4.1 Problem Formulation
Let w ∈ V and z ∈ V L be a word type and its corresponding lemma; and let A be
a set of string transformation actions. We define the function T : V × Am ↦→ V L

that receives as input a word form w and a sequence of string transformations
a = ⟨a0, ., ai, .., am⟩. T iteratively applies the transformations one at a time and
returns the resulting string. The objective is to obtain a sequence of actions a
such that a form w gets transformed into its lemma z, i.e. T (w, a) = z.

4.1.1 String transformations at the word level
We encode every string transformation –henceforth, action– ai ∈ A as follows:

⟨operation-position-segment⟩
The additional information encoded, such as position and segment (charac-

ters) involved, allows actions to operate at the word level and act upon a segment
of characters instead of a single character. This is a key difference between A and
the action sets of most previously proposed neural transducers Aharoni and Gold-
berg [2017], Makarov and Clematide [2018c,d] which only encode the operation
to perform and consume one character at a time.

4.1.2 Obtaining gold action sequences
We discuss now how to deterministically populate A. We start off with opera-
tions that act upon one character at a time. We obtain these operations with
the Damerou-Levenshtein (DL) distance algorithm which adds the transposition

1https://github.com/ronaldahmed/morph-bandit
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Component Label Description
operation INS insert

DEL delete
SUBS substitute
TRSP transpose
STOP stop

position A at the beginning (prefix)
A at the end (suffix)
i at position i

segment c c ∈ Σ∗\{∅}

Table 4.1: Description of components encoded in action labels. Σ: alphabet of
set of characters observed in the training data.

Token Action
visto DEL-A -o
vist DEL-A -t
vis SUBS-A -er
ver STOP
visto DEL-A -o DEL-A -t SUBS-A -er STOP

Table 4.2: Example of step-by-step transformation from form visto (Spanish for
‘seen’, past participle) to lemma ver (‘to see’). Bottom row presents the final
token representation as the initial form followed by the action sequence.

operation in addition to the traditional set of the edit-distance algorithm. How-
ever, the set A of the form ⟨operation-position-segment⟩ directly derived by
this algorithm is too large and sparse to be learned effectively, especially because
of the position component.

Hence, we simplify A by merging the k most frequent operations performed
at adjacent positions by using Byte-Pair-Encoding (BPE) [Gage, 1994]. Further-
more, we replace the position component of actions performed at the beginning
of a token with the label A, indicating that it is a prefixing action. Analogously,
we use the label A to indicate it is a suffixing action. Table 4.1 presents a descrip-
tion of the licensed values of each action-label component, including the operation
set considered.

Finally, actions are sorted so that prefix actions are performed first, followed
by inner-word actions (positions i ), and lastly, suffix actions. In addition, pre-
fix and suffix actions are sorted so that T would process the word form from the
outside in. This way of processing ensures that continuous strings, i.e. without
gaps, are obtained as intermediate word forms at every step. Consider the exam-
ple presented in Table 4.2, a sequence of suffix actions. The form visto (Spanish
for ‘seen’, past participle) is transformed into the lemma ver (‘to see’), with all
actions operating at the right border of the current token.

4.2 Lemmatization using action sequences
We posit the task of lemmatization as a language modelling problem over action
sequences. Let w = ⟨w0, . . . , wi, . . . , wn⟩ be a sequence of word tokens, z =
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wi ai
1 ai

2 ai
3

ai
1 ai

2 ai
3 STOP

Figure 4.1: Architecture of Lem, our proposed lemmatization model posited as
a language model over action sequences.

⟨z0, . . . , zi, . . . , zn⟩ the lemma sequence associated with w,
and ai = ⟨ai

0, . . . , ai
j, . . . , ai

m⟩ the action sequence such that T (wi, ai) = zi. We
encode ai using an RNN with an LSTM cell [Hochreiter and Schmidhuber, 1997],
as follows hi

j = LSTM(ei
j, hi

j−1)
where ei

j is the embedding of action ai
j. Then, the probability of action ai

j is
defined as

P (ai
j|ai

<j; Θ) = softmax(g(W ∗ hj + b)) (4.1)

where g(x) is the ReLU activation function, and W and b are network parameters.
As a way to introduce the original word form into the encoded sequence, we insert
wi at the beginning of sequence ai. Hence, the probability of the first action is
determined by h0 = LSTM(wi, hi−1

m ) where hi−1
m is the last state of the encoded

action sequence of the previous word wi−1.
The network is then optimized by minimizing the negative log-likelihood of

the action sequences , as follows,

L(W, θ) = −
∑

⟨w,z⟩∈T

n∑
i=0

P (wi|θ)· (4.2)

m∑
j=1

P (ai
j|ai

<j, θ) (4.3)

where T is the set of all token–lemma sentence pairs in the training set and θ
represents the parameters of the network. Since equation 4.3 can be interpreted
as a maximum likelihood estimate (MLE) objective, we call this model LemMLE.
Figure 4.1 presents an overview of the architecture. Note that ai

m is the special
action label STOP . During decoding, LemMLE receives as input sentence w and
predicts an action sequence âi for each token, from which the predicted lemma
ẑi is reconstructed by running T over âi.

In addition, we define the action search space over which P in Equation 4.1
operates as the union of the action set A and the types vocabulary V , i.e. ai

j ∈
A ∪ V . This gives the model the chance to choose another word form as next
action instead of replacing the string character by character.

4.3 Minimum Risk Training for Lemmatization
We formalize now the idea of introducing metric-based error optimization for
lemmatization. Let ∆(ẑi, zi) be a risk function that quantifies the discrepancy
between the predicted lemma T (wi, âi) = ẑi and gold lemma zi. Then, the model
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is trained by minimizing the expected risk, defined as

R(T , Θ) =
∑

⟨w,z⟩∈T

n∑
i=0

Ea|wi;Θ
[
∆(ẑ, zi)

]
(4.4)

where T is the training set and Θ represents parameters of the network. We use
the risk function proposed by Makarov and Clematide [2018c], defined in terms
of normalized Levenshtein distance (NLD) and accuracy, as follows

∆(ẑ, zi) = NLD(ẑ, zi) − 1{ẑ = zi} (4.5)

As discussed in section 1.5.3, loss function R is intractable and has to be
approximated by subsampling the action search space Am, as proposed by Shen
et al. [2015]. Hence, the expectation of the risk under the posterior distribution
P (a|wi; θ) in Equation 4.4 is approximated by

Ea|wi;Θ ≈
∑

a∈S(wi)
Q(a|wi; Θ, α)∆(ẑ, zi) (4.6)

where S(wi) ⊂ Am is a sampled subset of the search space of possible action
sequences for wi. The distribution Q(a|wi; Θ, α) is defined on the subspace S(wi)
and has the form

Q(a|wi; Θ, α) = P (a|wi; Θ)α∑
a′∈S(wi) P (a′|wi; Θ)α

(4.7)

where α ∈ R is a hyper-parameter that controls the sharpness of the distri-
bution. We name a model Lem trained to minimize risk R(T , Θ) as LemMRT .

4.4 Morphological Tagging
Given the sequence of word tokens w = ⟨w0, . . . , wi, . . . , wn⟩, the task consists
on tagging each token with a morpho-syntactic description (MSD) label F i =
{f i

0, . . . , f i
k, f i

K}, where F i is the concatenation of all individual features fk such
as N or Pl.

Our tagging framework consists of two main components: a hierarchical en-
coder that encodes action sequences into word-level representations, and a MSD
label predictor. We first elaborate on the architecture of the hierarchical encoder
and then propose two MSD tagger components that operate on top of it, namely
a tagger that predicts the MSD bundles F i and a decoder tagger that predicts
each f i

k in sequence.

4.4.1 Hierarchical Action Encoder
The first component of our model is the hierarchical encoder which encodes action
sequences into word representations. Formally, given the action sequence
ai = ⟨ai

0, . . . , ai
j, . . . , ai

m⟩ associated with token wi, we start by encoding ai using
a bidirectional LSTM Graves et al. [2013] as follows,
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fj = LSTMfwd(ai
j, fj−1)

bj = LSTMbwd(ai
j, bj+1)

where LSTMfwd and LSTMbwd are the forward and backward cells, respectively.
Then, token wi is represented by xi = [fm; b0], where fm is the the last forward
state and b0 is the first backward state. Afterwards, word level representations
x0, .., xn are further encoded using another bidirectional LSTM layer in order to
enrich each token representation with context from both sides of the sentence.
This way, we obtain ui = biLSTM(xi, ui−1) (forward and backward output con-
catenated) as word level representations that are passed down to the next com-
ponent of the model. Figure 4.2 presents the architecture of the hierarchical
encoder. Note that the action encoder is initialized with the last hidden state
of the previous encoded action sequence, ci−1. This way, the action encoder is
aware of actions predicted for previous word tokens.

4.4.2 MSD Bundle Tagger
The first sequence tagger proposed is named MBundle and it predicts complete
MSD label bundles instead of fine-grained feature labels. Formally, given word-
level representation ui, the probability of feature label F i is given by

p(F i|x1:i−1, θ) = softmax(g(W ∗ ui + b)) (4.8)

where g(x) is a ReLU activation function, and W and b are network parame-
ters. The network is optimized using cross-entropy loss. Figure 4.3 presents an
overview of the architecture of this model.

4.4.3 Fine-grained MSD Tagger
Our second proposed tagger, named MSeq, relies on an encoder-decoder architec-
ture to predict fine-grained MSD labels in sequence, one at a time. The decoder is
a unidirectional LSTM extended with a global attention mechanism with general
score function [Luong et al., 2015]. Formally, given the decoder side hidden state
hi

k and a encoder side context vector di
k, the attention-enriched decoder hidden

state is defined as ĥi
k = Wd[di

k; hi
k] 2.

Then, the probability of fine-grained MSD label f i
k is defined by

p(f i
k|f i

<k, ui) = softmax(Wsĥi
k + bs) (4.9)

where ui is the token representation provided by the hierarchical action en-
coder, and Ws and bs are network parameters. Figure 4.4 presents an overview
of the architecture of this model.

2We employ plain linear combination instead of a tanh activation (used by Luong et al.
[2015]) since it produced better results in preliminary experiments.
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wi ai
1 ai

2 ai
3

b0 fm

ci−1 ci wi+1, ai+1
1 , ...

wi+2, ai+2
1 , ...

xi
xi+1 xi+2

ui ui+1 ui+2

Figure 4.2: Architecture of the hierarchical action encoder component of our
morphological tagger models.

wi, ai
1, ...

wi+1, ai+1
1 , ...

wi+2, ai+2
1 , ...

xi xi+1 xi+2

ui ui+1 ui+2

F i F i+1 F i+2

Figure 4.3: Architecture of the MBundle morphological tagger.

4.4.4 Tagging over multilingual actions
The action sequences obtained with the method described in section 4.1.2 are
language-dependent. Hence, the variety of actions learned is limited to the word
formation preferences attested for a specific language and how well represented
the inflection paradigms are in the training data. We tackle this limitation by
taking advantage of the arguably universal and language-agnostic notion of word
formation processes and how they can signal morpho-syntactic phenomena. How-
ever, one must remain wary that a specific morpho-syntactic phenomenon might
be signaled by different types of word formation processes across languages. Con-
sider the verb ‘to like’ and the morpheme for verb negation (in italics) in the
following example:

(12) a. English: dis- like
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xi xi+1 xi+2

ui ui+1 ui+2

di
k

Attention layer

⟨s⟩ f i
0 f i

k−1

hi
k

ĥi
k

f̂ i
k

Figure 4.4: Architecture of the MSeq morphological tagger. Encoding of actions
into xi are ommited for simplification.

b. Spanish: dis- gustar

c. Turkish: beğen -me -mek

Even though this morpho-syntactic phenomenon is signaled by prefixation in
English and Spanish, it is signaled by suffixation in Turkish. For this reason, we
sort to an unsupervised approach to language-agnostic representations of actions.

We experiment with unsupervised projection of action embeddings from a va-
riety of languages into a common space using the method proposed by Lample
et al. [2018b]. Thus, a morphological tagger can take advantage of the common
word formation patterns encoded in a language-agnostic space and how they
signal morpho-syntactic phenomena. We name actions embeddings derived this
way multi-Action. Bear in mind, however, that each lemmatizer is language-
specific. Hence, during decoding a tagger will query the language-specific lem-
matizer, obtain a sequence of actions and then use the multilingual embeddings
of these actions as input.
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5. Experimental Setup
In this chapter we investigate the effectiveness of our proposed models for the
tasks of lemmatization and morphological analysis in context. All models were
implemented and trained using PyTorch v1.0.0. 1

5.1 Datasets
We experiment with the official treebank splits for Shared Task II [McCarthy
et al., 2019].2 These treebanks are re-splitted versions of the UD treebanks v.2.3
[Nivre et al., 2018] with feature bundles translated from the UFEAT tagset into
the UniMorph tagset [Kirov et al., 2018] using the mapping strategy proposed
by McCarthy et al. [2018]. We consider the following languages and treebanks:
English (en ewt), Spanish (es ancora), Turkish (tr imst), Czech (cs pdt), German
(de gsd), and Arabic (ar padt). Table 5.1 presents the statistics of training sets
for all languages.

For SK (shk), we use a manually annotated corpus kindly provided by the
Artificial Intelligence Research Lab of the Pontifical Catholic University of Peru
(GIPIAA-PUCP). The annotation includes POS tags and lemmas but not mor-
phological descriptions. The lexicon used for the rule-based lemmatizer is ob-
tained from this corpus and further expanded with 6,750 entries from a digitalized
thesaurus.

Language Num. sents. Num. tokens |V| |A|
en 13,297 204,857 17,342 282
es 14,144 439,925 34,912 479
cs 70,330 1,207,922 113,932 872
tr 4,508 46,417 14,645 675
ar 6,131 225,494 22,478 617
de 27,628 536,828 43,188 720
shk 1478 12,250 2834 349

Table 5.1: Corpus statistics of training splits for all languages considered. Num.
sents: number of sentences; |V|: size of types vocabulary; |A|: size of the action
set.

5.2 Action sequence preprocessing
We lowercase forms and lemmas before running the DL-distance algorithm. Fol-
lowing the BPE training procedure described by Sennrich et al. [2016], we obtain
the list of merged operations from the action sequences derived from the training
data. We limit the number of merges to 50. Then, these merges are applied to
action sequences on the development and test data. Table 5.1 presents the size
of the derived action set per language.

1https://pytorch.org/
2https://github.com/sigmorphon/2019/tree/master/task2
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Domain Number of Words
Tokens Types

Bible - New Testament 210,828 20,504
Elementary School Books 31,127 4,395
Kindergarten Text Material 15,912 2,581
Constitution of Peru 12,319 2,645
Folk tales 10,934 2,737
Total 281,120 28,133

Table 5.2: Domains of raw text corpora used for coverage evaluation of the pro-
posed rule-based lemmatizer.

5.3 Baseline models
We consider the baseline neural model provided by the organizers of the SIG-
MORPHON Shared Task. The architecture, proposed by Malaviya et al. [2019],
performs lemmatization and morphological tagging jointly. The morphological
tagging module of the model employs an LSTM-based tagger [Heigold et al.,
2017], whilst the lemmatizer module employs a sequence-to-sequence architec-
ture with hard attention mechanism [Xu et al., 2015]. We refer to this model as
Base.

For SK, we use our proposed rule-based lemmatizer as a non-neural baseline.

5.4 Evaluation Metrics
We consider the following evaluation metrics.

• Lemmata accuracy: 0|1 accuracy of lemmata, i.e. whether the predicted
string is exactly the same as the gold string.

• Average Levenstein distance of lemmata: Levenstein distance between pre-
dicted and gold lemmata, not normalized by length, averaged over all lem-
mas and sentences in the test set.

• MSD Accuracy: 0|1 accuracy of morpho-syntactic description bundle labels.

• F1 score for MSDs: Micro-averaged over individual, fine-grained feature
labels.

5.5 Rule-based lemmatization of SK
The proposed rule-based analyzer was implemented using the Foma Hulden [2009]
toolkit, following the extensive morphological description provided by Valenzuela
[2003]. In addition to the aforementioned lemmatization metrics, we report the
coverage of our lemmatizer over raw text from different domains. We denote a
token as covered iff the analyzer can produce any analysis for it, irrespective of
its correctness. Table 5.2 presents a breakdown of statistics by domain for this
raw corpora.
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5.6 Lemmatization with MLE objective
The LemMLE model is optimized using Adam [Kingma and Ba, 2017] and regu-
larized using dropout [Srivastava et al., 2014] over 20 epochs. Training is halted
if the loss over the validation set does not decrease after 5 epochs (patience),
i.e. following an early stopping strategy. We tune the hyper-parameters of both
models over the development set of Spanish (es ancora)3 and then we use the
optimal configuration to train on all languages. The hyper-parameters were op-
timized over 30 iterations of random search guided by a Tree-structured Parzen
Estimator (TPE).4 Table 5.3 on page 39 presents summary of the optimal hyper-
parameters found.

During decoding, we use temperature to smooth the probability distribution
of the next action P (aj|a<j; θ). Formally, given a temperature τ , the distribution
in Equation 4.1 on page 29 becomes

P (aj|a<j; θ) = softmax(g(W ∗ hj + b)/τ) (5.1)

In this setup, we perform decoding using a greedy decoder with temperature
of 1. We also experimented with beam search decoding but the improvements
were not significant. Furthermore, we implement heuristics to prune a predicted
sequence of actions. In addition to the heuristic of halting decoding if a PAD or
STOP action is found, we halt if the action is not valid given the current string.
For example, the action DEL- 5 -o cannot be applied to string who for the simple
reason that the string is not long enough and, hence, the action is not valid.

5.7 Lemmatization with MRT
The LemMRT model is optimized using Adadelta [Zeiler, 2012]. Preliminary ex-
periments showed that training converged slower and in some cases diverged when
optimizing with Adam. We use the same hyper-parameter set as LemMLE except
for batch size which we set to 5 and the learning rate to 1e−4. Training is set
up with a warm start by initializing the model with the corresponding LemMLE

model. Following the procedure described by Shen et al. [2015], we sample a fixed
number of actions sequences and discard the repeated ones. Also, we include the
gold action sequence in the final sampled set.

In addition, we analyze the effect of hyper-parameters exclusive to the MRT
setup such as the sharpness smoothing parameter α, subsampled subset size, and
temperature during decoding. The fine-tuning of hyper-parameters in this section
were performed over the Spanish (es ancora) validation set and measured in terms
of lemmata accuracy and Levenshtein distance.

5.7.1 Effect of Q sharpness smoothing (α)
The parameter α controls the sharpness of distribution Q (see Equation 4.7). Fig-
ure 5.1 presents the effect of α when using a sample size of 20 and temperature of

3We wanted to use a language that is morphologically more complex than English as our
reference.

4We use HyperOpt library (http://hyperopt.github.io/hyperopt/)
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Figure 5.1: Effect of sharpness smoothing (α) on LemMRT as measured by lem-
mata accuracy (left) and Levenshtein distance (left) for the Spanish (es ancora)
validation set.

Figure 5.2: Effect of sample size (|S(wi)|) on LemMRT as measured by lemmata
accuracy (left) and Levenshtein distance (left) for the Spanish (es ancora) vali-
dation set.

1 during decoding. We observe that higher values of α tend to destabilize train-
ing and cause metrics values to worsen at later epochs. A value of alpha = 1e−4

is observed to lead to consistently more stable training and better performance.
We also tested alpha = 1e−5 but training time increased notably and perfor-
mance did not improve significantly. Hence, we set alpha = 1e−4 for all following
experiments.

5.7.2 Effect of sample size
As presented in Equation 4.6, the quality of approximation of posterior distri-
bution P (a|wi; θ) by Q depends on the size of the subsampled space S(wi). As
shown in Figure 5.2, performance consistently improves as the sample size in-
creases. This expected behavior comes with a training time trade-off. A sample
size of 50 makes training three times slower w.r.t. size 20, and a sample size of
100 makes it six times slower. Moreover, we observed no significant improvement
for sample sizes greater than 20. Hence, we use a sample size of 20 for following
experiments for efficiency.
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Figure 5.3: Effect of decoding temperature (τ) on LemMRT as measured by lem-
mata accuracy (left) and Levenshtein distance (left) for the Spanish (es ancora)
validation set.

5.7.3 Effect of temperature during decoding
We also investigate how temperature influences diversity during decoding and
how it impacts performance. We observe that probability distribution P in Equa-
tion 4.1 is heavily biased towards producing short sequences. This is highly desir-
able for highly fusional or inflected languages since they usually present one-slot
morphology, e.g. Spanish. In Figure 5.3, we observe that increasing the tempera-
ture hurts performance. This is to be expected as a higher temperature smooths
the spikiness of P and forces the model to pick otherwise less probable actions,
which in turn leads to longer sequences. Hence, we use a temperature of 1 for
following experiments.

5.8 Morphological Tagging models
We initialize action embeddings of the hierarchical action encoder with embed-
dings learned with Lem models and let the tagger fine-tune them during training.
Both taggers, MBundle and MSeq, are optimized using Adam. For MSeq, we
use an LSTM decoder cell of size 100 and a maximum length of decoded feature
sequence of 25. The following embedding-tagger combinations were investigated.

• LemMLE−{MBundle,MSeq}. Taggers are initialized with monolingual
LemMLE embeddings.

• multi-MBundle. Tagger is initialized with multilingual action embed-
dings multi-Action. We project MLE-trained action embeddings with
5 iterations of Procustes refinement. All projections were made into the
Spanish embedding space. Preliminary experiments showed that projected
MLE-trained embeddings led to better tagging performances w.r.t. pro-
jected MRT-trained embeddings.
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Hyper-parameter Lem MBundle
Batch size 128 24
Learning rate 6.90E-05 1.00E-04
Dropout 0.19 0.05
Epochs / patience 20 / 5 100 / 30
Action embedding 140 140
Action-LSTM cell 100 100
Word-LSTM cell - 100
FF layer size 100 100

Table 5.3: Hyper-parameters of models proposed.

5.9 Co-occurrence of actions and morphological
features

We investigate the co-occurrence of action labels with individual morphological
features. Given the word form wi and its associated morphological tag F i =
{f i

0, ..., f i
k, f i

K} and action sequence ai = ⟨a0, ..., aj, ..., am⟩, let us define the joint
probability distribution between individual features and action labels, as

p(f i
k, ai

j) = P (f i
k|x1:i) · P (ai

j|ai
1:j−1) (5.2)

We consider P (F i|x1:i) = P (f i
k|x1:i), ∀f i

k ∈ F i. Note that
P (F i|x1:i) and P (ai

j|ai
1:j−1) are the probabilities obtained by the lemmatizer and

tagger in equations 4.1 and 4.8, respectively.

5.10 The SIGMORPHON Shared Task II
Past editions featured tasks like type-level inflection and context-aware
re-inflection [Cotterell et al., 2016, 2017, 2018], most notably increasing the num-
ber of languages in the analysis from 40 in 2017 to 66 in this last edition.

We focus on Task II ‘Morphological Analysis and Lemmatization in Con-
text’, where early results where submitted. Given a tokenized sentence, we must
predict the lemmas and MSD labels for each word. We participated under the
name CHARLES-MALTA-01. The system submitted corresponds to the lemmatizer-
tagger combination LemMLE-MBundle. All treebanks were trained using the
optimal hyper-parameters listed in Table 5.3 except for Komi Zyrian (kpv ikdp,
kpv lattice) and Sanskrit (sa ufal), for which we observed inestable behaviour
during training. Hence, we train the MBundle tagger over treebanks kpv ikdp,
kpv lattice, and sa ufal with batch size of 40, learning rate of 0.01, dropout of
0.07, action encoder cell of size 10, word encoder cell of size 40, and a gradient
clipping threshold of 0.38.
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6. Results and Discussion
Given the small size of the annotated corpus of SK at hand, we evaluate all
lemmatization models for SK through 10-fold cross-validation.

6.1 Lemmatization
Table 6.1 presents lemmatization performance of the training objectives tested
on our architecture, as measured by lemmata accuracy (LAcc) and Levenshtein
distance (Lev-Dist). We observe mixed results across languages when optimizing
using MRT. Relative error increase in accuracy ranges from a mere 0.11% for
en to 4.9% for de and 5.97% for es. In contrast, we observe a relative error
decrease ranging from non-significant (0.53%) for cs, to 6.12% for tr and up to
an encouraging 55.73% for ar.

We hypothesize that the relative poor performance stems from the input rep-
resentation, i,e. the action sequences. Recall from Section 4.1.1 that an action
label encodes the operation to perform (e.g. delete), where to perform this op-
eration (e.g. at end of the word), and the character segment involved (e.g. -s).
We limit ourselves to predict action labels attested in the training data, namely
the action space A, since the combination of all possible options to encode in
an action label can grow exponentially. Nevertheless, we find that the encoded
position ( i ) and the character segment induce an action space A that is too
fine-grained and sparse, even after the BPE merging of adjacent actions. We now
elaborate on how the size of the action space impacts lemmatization performance.

The results suggest that MRT harms performance when the complete search
space, A∪V , is so large that the subsampled space cannot appropriately represent
the sparse, original search space. Consider the following two cases: (i) cs, with a
search space size of 114804, and (ii) tr, with 47092 (see Table 5.1). In terms of
Levenshtein distance, minimizing risk for cs induces an error increase of 7% w.r.t.
maximization of likelihood. However, MRT does improve over MLE training for
tr with a 11.62% error reduction in terms of Levenshtein distance. We observe
similar trends in other highly inflected languages like es and de for case (i), and
in ar for case (ii).

Moreover, we find that the performance gap, as measured by accuracy score,
can be lessened or even slightly reverted by using more training data. This is the
case of cs for which the training set is the largest in our study (see Table 5.1).
We also observe that MRT is most effective in terms of accuracy for tr and ar,
despite having much less training data than the other languages. This could be
due to their relatively small type vocabulary which makes sampling the complete
search space much more effective.

We further assess the performance of our models in ambiguous cases, i.e. when
a word form may be associated with more than one lemma but only one is correct
given the context. We follow the experiment design proposed by McCarthy et al.
[2019] and distinguish between the following word types categories: ambiguous
(more than one lemma in the training set), unseen, seen unambiguous (only one
lemma), and all. Figure 6.1 presents relative improvement scores of accuracy per
category for all languages analyzed. In general, we observe that MRT heavily

40



Language LemMLE LemMRT

LAcc Lev-Dist LAcc Lev-Dist
en 89.36 0.15 89.28 0.16
es 84.88 0.24 83.58 0.28
cs 86.13 0.26 86.59 0.28
tr 64.75 1.29 68.73 1.14
ar 44.12 1.49 68.71 1.02
de 68.35 0.45 65.00 0.70
shk 23.79 1.73 23.74 1.76

Table 6.1: Lemmatization performance under MLE training (LemMLE) and MRT
(LemMRT ) over test sets. LAcc: lemmata accuracy; Lev-Dist: levenshtein dis-
tance.

harms performance over unseen forms for all languages except tr, for which a
slight improvement is observed. For ar, it is worth noting that even though MRT
leads to a ∼50% error increase for unseen forms, it also leads to an error decrease
of more than 30% in all other categories. Besides ar, tr is also benefited by MRT
on ambiguous cases with an error decrease of ∼13%. We also observe that MRT
leads to an error reduction of 20% in unseen forms of shk.

Figure 6.1: Performance by type of inflected form over the development set of all
languages. In each cell, color indicates relative improvements of LemMRT (middle
row score) over LemMLE (top row score), as well as the respective number of
tokens (bottom row).

6.2 Morphological Tagging
Table 6.2 presents the results on morphological tagging for the lemmatizer-tagger
model combinations investigated. First, we observe that the MSeq tagger under-
performs MBundle in all languages except en and tr. Upon closer inspection,
we noticed that the annotation of MSD labels was not consistent with UniMorph
guidelines Sylak-Glassman [2016] regarding the order of dimensions, e.g. both
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Language LemMLE-MBundle LemMLE-MSeq Multi-MBundle
MAcc M-F1 MAcc M-F1 MAcc M-F1

en 62.80 70.38 67.29 80.55 88.37 90.07
es 72.60 78.76 49.23 67.49 87.31 89.65
cs 63.13 76.45 34.10 64.25 83.93 89.14
tr 25.76 42.14 27.43 45.35 50.84 54.26
ar 51.77 62.52 28.82 56.11 61.28 70.46
de 58.10 72.91 37.56 53.94 68.49 79.78

Table 6.2: Results on morphological analysis of proposed models over the test
set. MACC: MSD accuracy; M-F1: MSD micro-F1 score.

labels N;SG;MASC and MASC;N;SG are present in the en training set. This sce-
nario will definitely prevent a decoder-based tagger like MSeq from learning a
meaningful order of labels effectively. The improvement we observe for en and
tr might be due to the more careful annotation and consistency of MSD labels
w.r.t. other languages.

Second, we observe substantial improvement by finetuning multilingual action
embeddings in all languages, ranging from 6.87% (de) to 19.68% (en) in absolute
F1-score. After en, cs is the most benefited language. This might be due to our
decision of having the es action space as target for embedding projection. The
MBundle cs tagger learns to effectively associate specific actions with particular
features. Operating in the action space of an also highly inflected language like es
in which this kind of association are also learned is more beneficial than operating
in the space of a language that does not (e.g. en).

6.3 SIGMORPHON 2019 submission
Table 6.3 presents performance of our submission according to all metrics for
the top 5 and bottom 5 scored treebanks according to the MSD-F1 scores on
the official test evaluation. Please refer to Appendix A.2 for results on all lan-
guages. In general, our model underperforms the baseline for most treebanks.
In lemmatization, we observe an error increase ranging from 0.27% to 35.14%
in lemma accuracy. However, we improve over the baseline on the following
languages: Tagalog (tl trg), Chinese (zh gsd, zh cfl), Cantonese (yue hk), and
Amharic (am att).

In morphological tagging, we observe an error increase ranging from 0.31% to
7.34% in MSD-F1 score. The exception were Russian (ru gsd) and Finnish (fi tdt)
for which we obtain an error decrease of 34.88% and 46.71% in MSD-accuracy,1
respectively.

6.4 Rule-based lemmatization of SK
In terms of lemmata accuracy, our rule-based lemmatizer obtains an astonishing
44.27% and a levenshtein distance of 1.01. In terms of coverage, we find that our

1We noticed that the official MSD-F1 score of the baseline for these treebanks is reported
as 0.
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Treebank Baseline Lem MLE - MBundle
LAcc Lev-Dist MAcc M-F1 LAcc Lev-Dist MAcc M-F1

UD Catalan-AnCora 98.11 0.03 85.77 95.70 83.47 0.26 81.94 86.79
UD Spanish-GSD 98.42 0.03 81.90 93.95 93.83 0.10 78.44 85.06
UD Spanish-AnCora 98.44 0.03 84.27 95.30 84.68 0.24 79.66 84.72
UD French-GSD 98.04 0.04 84.44 94.81 86.85 0.21 78.59 84.51
UD Hindi-HDTB 98.58 0.02 80.96 94.14 92.92 0.15 69.43 84.38
UD Latin-Perseus 88.72 0.23 53.23 77.50 56.02 1.14 30.96 32.14
UD Lithuanian-HSE 84.76 0.30 43.13 67.41 35.82 1.24 21.39 28.57
UD Cantonese-HK 92.62 0.28 70.15 77.76 98.57 0.01 23.57 25.76
UD Chinese-CFL 90.72 0.13 74.65 79.91 99.53 0 23.29 24.71
UD Yoruba-YTB 95.60 0.05 71.20 81.83 96.12 0.04 20.54 17.5
Mean 94.17 0.13 73.16 87.92 74.94 0.62 50.37 58.81
Median 95.92 0.08 76.40 89.46 78.42 0.44 52.77 62.26

Table 6.3: Performance of system submitted to SIGMORPHON 2019 Shared
Task II against the organizer’s baseline, for the best 5 and worst 5 treebanks.

Domain Coverage (%)
Tokens Types

Bible - New Testament 79.11 49.49
Elementary School Books 76.59 45.12
Kindergarten Text Material 76.90 55.29
Constitution of Peru 70.83 40.57
Folk tales 94.38 85.42
Total 78.93 47.12

Table 6.4: Coverage on corpora from different domains of raw corpora.

rule-based lemmatizer can analyze encouraging 78.93% of all tokens in the raw
corpora at hand. A closer look into the remaining non-recognized types revealed
that in all cases they contain an already covered root or affix but with different
diacritization. This is to be expected since the only diacritization rules existent
for SK were proposed recently by Valenzuela [2003] and the text the annotated
data was based in was written way before the proposal of the diacritization rules.

Table 6.4 shows type and token coverage over raw text not used during de-
velopment. These corpora span several domains such as the bible, educational
material, legal domain, and folk tales. This last domain—same as the domain of
the annotated corpus—has the highest coverage.

As expected, the lowest coverage is obtained over the legal domain, a special-
ized domain with complex grammatical constructions and specialized vocabulary.
For example, legal documents must be precise about semantic roles of the partic-
ipants, information partially encoded through morphology in SK.

In contrast, educational material for kindergarten level presents the second
highest coverage, quite possibly because only basic grammatical constructions
are used at this level of education.

Coverage error analysis: We further analyze the unrecognized words in the
raw corpora. We manually categorize the 100 most frequent unrecognized word
types, as shown in Table 6.5. It can be noted that the most common error is
due to alternative spelling of the final word form, mostly due to the absence—or
presence—of diacritics or due to the presence of an unknown allomorph. Most
of the errors of this kind can be traced back to tokens in the Bible domain. The
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Error type Count
Alternative spelling 43
Proper nouns 20
Common nouns 4
Other OOV 25
Foreign word 8

Table 6.5: Error analysis of the 100 most frequent unanalyzed word types in raw
corpora.

Bible was translated to SK in the 17th century and it has remained almost intact
since then. Hence, some constructions are considered nowadays ungrammatical
(e.g. a verb must always carry either a participant agreement suffix or a tense
suffix) or some suffixes are obsolete (e.g. the n-form +Erg:sen; the infinitive form
+Inf:ati).

Furthermore, the high presence of OOV words other than nouns or proper
nouns is an indicative that the root lexicon upon the analyzer is based is still
limited and far more entries are needed.

6.5 Multilingual action representations
We take a closer look at action representations projected into a common mul-
tilingual space. We analyze the closest neighbours in each language to certain
action. Table 6.6 presents a summary of the actions queried and their neighbours.
Actions are prepended the language they were projected from in square brackets.

First, let us consider actions involving segments known to signal Plurality. In
general, we observe that the multilingual space successfully captures associations
of word forms in Plural number and the actions involved in their lemmatization.
For the action [es] del.A -s, we note that the closest actions in es and cs are those
involved in the lemmatization of verbs and nouns in Plural, whereas en actions
include the apostrophe from the genitive case indicator ’s. We observe similar
trends for action [es] subs.A -s, even though it is also associated with modality
in verbs. We also observe an association with actions involved in lemmatization
of verbs in past participle forms in en. Similarly, actions of the form [cs] *.A -y
are neighbored by non-trivial actions that go beyond adding or deleting a suf-
fix, e.g. diacritic correction in es (‘botones’→‘botón’) and ‘-ves’ inflection in en
(‘lives’→‘life’).

Finally, let us consider the action [es] del.A ı́a involving the segment ‘-́ıa’,
known to signal conditionality in verbs in es. As expected, the action is neigh-
bored by actions involved in verb lemmatization in es and en. However, as-
sociation with the en auxiliary ‘would’ is successfully captured through action
ins. 2 -oul.

6.6 Actions and Morphological Features
We further analyze the associations between individual morphological features
and action labels captured by LemMLE-MBundle. Figure 6.2 shows the dis-
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Query Action Neighbour Actions Example (form,lemmata)
[es] del.A -s numerosos,numeroso

[es] del.A -mo (0.60) paguemos, pagar
[es] subs. 9 -é (0.42) barcelonesas, barcelonés
[en] islands (0.48) islands, island
[en] del.A -’ (0.28) company’s,company
[cs] del. 5 -́ı (0.61) kopćıch, kopec
[cs] př́ıjmy (0.58) Př́ıjmy, př́ıjem

[es] subs.A -s caiga,caerse
[es] ins.A -s (0.86) atrevió,atreverse
[es] instrucciones (0.83) instrucciones,instrucción
[en] del. 4 -i (0.49) monies,money
[en] del.A -t (0.47) kept,keep
[cs] statiśıce (0.82) statiśıce,stotiśıc
[cs] subs. 5 -́ı (0.77) nepřátelé,nepř́ıtel

[cs] del.A -y zážitky,zážitek
[es] autos (0.82) autos,auto
[es] subs. 4 -ú (0.71) comunes,común
[en] aspects (0.78) aspects,aspect
[en] subs. 3 -f (0.75) lives,life
[cs] ins.A -a (0.80) korun,koruna
[cs] subs.A -a (0.76) ubytovny,ubytovna

[cs] ins.A -y Čech,Čechy
[es] subs. 4 -ó (0.87) botones,botón
[es] subs. 5 -á (0.84) alemanes,alemán
[en] waning (0.86) waning,wane
[en] subs. 3 -f (0.80) lives,life
[cs] del. 5 -me (0.95) režimem,režim
[cs] subs.A -um (0.94) masmédíıch,masmédium

[cs] subs.A -y Roztokách,Roztoky
[es] ins. 4 -ec (0.90) ofrecida,ofrececido
[es] del.A -sim (0.75) sencilĺısima,sencillo
[en] replacing (0.90) replacing,replace
[en] subs. 4 -c (0.72) taught,teach
[cs] subs.A -ký (0.96) větš́ı,velký
[cs] trsp.A -ve (0.96) láhve,láhev

[es] del.A -́ıa preguntaŕıa,preguntar
[es] trsp.A -re (0.90) habremos,haber
[es] subs.A -ir (0.86) venga,venir
[en] subs.A -y (0.85) said,say
[en] ins. 2 -oul (0.82) ’d,would
[cs] subs. 7 -ú (0.85) transfuzi,transfúze
[cs] subs. 9 -sk (0.82) francouzšt́ı,francouzský

Table 6.6: Neighbour actions (based on cosine similarity) in the multilingual rep-
resentation space of actions. Language the action was projected from is indicated
in square brackets. Cosine distance from query action is indicated in parenthesis.
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tribution of individual morphological features over action labels, as defined in
Eq.5.2 for cs. Every row represents how likely a fine-grained feature label is to
co-occur with an action performed during lemmatization of a token. On the left,
we have co-occurrence distributions of gold actions and gold feature labels. On
the right, we have co-occurrence distributions of predicted actions and predicted
feature labels. For ease of visualization, we only plot the 50 most frequent action
labels and features in the development set. We can observe the lemmatizer and
tagger succeed in fitting the gold distribution. This is to be expected since the
distribution in Eq.5.2 depends on P (F i|x1:i) and P (aj|a1:j), which are directly
optimized by our models. We provide similar plots for es, en, tr, ar, and de in
Appendix A.3.

This analysis also sheds light on which actions and morphological features the
model learns to associate. For example, action del-A -y is strongly associated
with features PL, N, and MASC, in accordance with the suffix y being a plural
marker. Another notable example is that of the prefix ne which negates a verb.
We observe that action del- A-ne is strongly associated with feature V. We
also observe ubiquitous features such as POS (positive polarity), which shows an
annotation preference unless the bound morpheme of negation is observed (ne).

6.7 Limitations
Fixed gold action sequences Obtaining gold action sequences as a previous,
independent step presents a drawback, as pointed out by Makarov and Clematide
[2018b]. The optimal action sequence obtained for certain word-lemma pair might
not be unique. Hence, if the lemmatizer predicts an alternative valid action
sequence, the loss function would still penalize it during training. Given that we
consider only one optimal sequence per word-lemma pair, our model cannot take
advantage of all the possible valid alternative gold sequences.

Monotonic correspondence assumption Previous work on neural transduc-
ers for morphology tasks Aharoni and Goldberg [2017], Makarov and Clematide
[2018c,b] rely on the fact that an almost monotonic alignment of input and out-
put characters exists. This assumption also includes that both words and lemmas
are presented in the same writing system (same-script condition), if no off-the-
shelf character mapper is used. Our action sequencer relies on the same-script
condition in order to not produce too long sequences and in turn, our lemmatizer
relies on it to learn meaningful sequences.

During submission to the SIGMORPHON Shared Task, however, we identified
a couple of treebanks that violate this condition. In the first one, Arabic-PUD
(ar pud), the lemmas are romanized, i.e. presented in Latin rather than Ara-
bic script. For the second one, Akkadian-PISANDUB (akk pisandub), different
writing systems (ideographic vs. syllabic) are encoded in the forms but are not
preserved in the lemmas. This encoding includes extra symbols such as hyphens
and square brackets as well as capitalization of continuous segments. This kind of
mismatch between word forms and lemmas forces our lemmatizer to learn action
sequences that transform one character at a time, leading to poor performance
given our architecture (16.75% and 14.36% on lemmata accuracy for ar pud and
akk pisandub, respectively).
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Bias towards copying word forms Languages with little to no morphology
such as Chinese or Vietnamese will bias a transducer towards copying the whole
input to the output, as pointed out by Makarov and Clematide [2018c]. Our
proposed lemmatizers exhibit the same kind of bias, obtaining up to 99.53% of
lemmata accuracy for Chinese-CFL and Levenshtein distance of 0.0 in test set and
100% and 0.0 in the development set (see results in Table A.2 of Appendix A.2).
Other languages benefit from this bias also, as can be observed in Figure 6.3.
We note that, in average, the lemmatizer predicts no more than 3 actions before
halting.

Rule-based lemmatization is context-agnostic The proposed rule-based
lemmatizer for SK processes one token at a time without considering context,
restricting it from discarding hypothesis based on fairly rigid constructions, e.g.
future tense with auxiliary verbs, modal verbs, nominal compounds, among oth-
ers.

There exist a group of morphemes that present multiple possible functions in
the same position of the construction template. Hence, they can be mapped to
more than one morphological tag. Consider the case suffix -n in the following
example. The square brackets indicate that even though -n is attached to nonti,
it acts as a phrase suffix that modifies the whole phrase (your canoe).

(13) E-n [ mi-n nonti]-n yomera-i ka-ai
1-Erg 2-Gen canoe-Ins get.fish-SSSS go-Inc
“I am going to fish with your canoe.”

In this case, the analyzer outputs all possible tag combinations, such as
+Erg:ergative, +Inst:intrumental, +Gen:genitive, +Intrss:interessive, and
+All:allative. Other suffixes with this kind of behavior are completive aspect
suffixes and past tense suffixes in verbs. Disambiguation of these morphemes
requires knowledge of the syntactic function of the word in the clause. Such
sentence level disambiguation is out of the scope of the analyzer.
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Figure 6.3: Average number of predicted actions over development set, not in-
cluding the STOP operation, one data point per treebank.
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Conclusions and Future Work

Conclusions
In this thesis, we proposed a lemmatization strategy based on word formation op-
erations derived from extended edit-distance operations that operate at the word
level instead of at the character level. These operations are merged using a BPE-
inspired algorithm in order to encode segment (e.g. prefix, suffix) information in
addition to the action to perform. We find that these operations highly resemble
morphological processes, improving prediction interpretability significantly.

For learning word-level actions, we explore maximum likelihood estimate
(MLE) and minimum risk training (MRT) as parameter optimization strategies.
Our experiments suggest that MRT struggles to further improve over a MLE
baseline when the action space is large, e.g. action spaces of highly inflective lan-
guages. The harm in performance can be mitigated and even reverted if enough
inflections are attested in the training data, as suggested by our results for Czech.

We further analyze what kind of morphological phenomena is captured by our
models. First, we analyze a monolingual scenario by observing the co-occurrence
of predicted edit actions and predicted morphological features. Our results sug-
gest that our models are better at learning morphological phenomena overmarked
through affixation (prefixation and suffixation) and subtraction processes, in com-
parison to phenomena signaled lexically or by templates. Second, we analyze a
multi-lingual learning scenario in which the edit action representations of all lan-
guages are projected into a common space. We query action labels involving
affixation and subtraction processes known to signal specific phenomena in a lan-
guage, e.g. Plurality, and inspect whether action labels that signal the same
phenomena in other languages can be retrieved. We find that the model learns to
group together action labels signaling the same phenomena in several languages,
irrespective of the language-specific morphological process that may be involved.

In regards to the task of morphological tagging, we presented several architec-
tures that effectively incorporate sentential context by encoding operation rep-
resentations hierarchically. Our experiments suggest that predicting MSD labels
as bundles yields better results for all languages except Arabic, in comparison
with predicting a sequence of individual fine-grained feature labels. In addition,
we find that using actions projected into the representation space of a highly
inflective and morphologically expressive language (in our case, Spanish) further
improves tagging performance significantly for all languages.

Lastly, we proposed a rule-based lemmatizer for Shipibo-Konibo, a low re-
sourced Peruvian native language. Despite the limited lexicon available, we ob-
tained encouraging coverage over raw textual corpora and encouraging lemma-
tization results. The tools is also capable of performing morphological tagging
and morpheme segmentation. However, the evaluation of these capabilities were
out of the scope of this thesis. The tool was made available to the academic
community in order to motivate the development of language technologies and
annotated corpora for this endagered language.
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Future Work
A potential future research avenue is to tackle the dependency of our approach
over fixed gold action sequences. One possible path consists on including the
derivation of all possible action sequences as part of the learning pipeline.
Makarov and Clematide [2018b] formulates the problem as an imitation learning
instance and obtains a completely end-to-end training pipeline.

Another attractive potential future path is to tackle the sparsity of the edit
action space, especially action labels with inner position (‘ i ’ symbol). In this
case, the combination of transduction at different levels of granularity, i.e. word
level and character level, seems like an attractive strategy. The model would be
able to learn alternations between word level actions, suitable for easily identi-
fiable operations or complete lexical substitutions, and character level actions,
more suitable for inner-word, one-character operations.
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Paulino-Passos, Angelika Peljak-Lapińska, Siyao Peng, Cenel-Augusto Perez,
Guy Perrier, Daria Petrova, Slav Petrov, Jussi Piitulainen, Tommi A Piri-
nen, Emily Pitler, Barbara Plank, Thierry Poibeau, Martin Popel, Lauma
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58



jgan Seraji, Mo Shen, Atsuko Shimada, Hiroyuki Shirasu, Muh Shohibussirri,
Dmitry Sichinava, Natalia Silveira, Maria Simi, Radu Simionescu, Katalin
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A. Attachments

A.1 Morpho-syntactic description labels for
Shipibo-Konibo

MSD Label Description
1 first person singular
2 second person singular
3 third person singular
1p first person plural
2p second person plural
3p third person plural
A transitive subject function, A-orientation
ABL ablative
ABS absolutive
ADJZ adjectivizer
ADV adverbial-like
ADVZ adverbializer
AGTZ agentivizer
ALL allative
AND1 andative singular intransitive
AND2 andative nonsingular, singular transitive
ASSOC associative
ATT attenuative
AUG augmentative
AUX auxiliary
BEN benefactive
CAUS causative
CHEZ chezative
ClREL relative clause
CMPL completive aspect
COM comitative
CONJ conjunction
CONTRST contrast
COP copula
DAT dative
DD discourse discontinuity
DEPREC deprecatory
DES desiderative
DIM diminutive
DIST distal
DISTR distributive
DS different subject
DUB dubitative
EM emphatic
EP epenthesis
ERG ergative
EV direct evidential
FDS following event, different subject
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FEM feminine
FRUSTR frustrative
FSSS following event, same-subject, S-orientation
FSSA following event, same-subject, A-orientation
FUT future
GEN genitive
HAB habitual
HAB.AGTZ habitual agentivizer
HSY hearsay
HSY2 shorter hearsay
I intransitive (subject orientation)
IMP imperative
INC incompletive aspect
INF infinitive
INFR inferential
INST instrumental
INT interrogative
INTENS intensifier
INTERJ interjection
INTRSS interessive, complement of interest
LEAD leading interrogative
LIG ligature
LIM limitative
LOC locative
MAL malefactive
MASC masculine
MID middle
MNS means
NEG negative
NMLZ nominalizer
NOM nominative
n.SG nonsingular
O object function
OBL oblique
ONOM onomatopoeia
P previous event
PDCA previous event, discourse continuity, A orientation
PDCS previous event, discourse continuity, S orientation
PDSA previous event, different subjects, A orientation
PDSS previous event, different subjects, S orientation
P/J prospective/jussive
PL plural
PO¿S/A previous event, dependent object is coreferential with matrix subject
POS1 possessive first person singular
POS3 possessive third person singular
PP1 incompletive participle
PP2 completive participle
PREF prefix
PREV preventive
PRIV privative
PROG progressive
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PROP proprietive
PSSS previous event, same-subject, S-orientation
PSSA previous event, same-subject, A-orientation
PST1 earlier today past
PST2 yesterday past
PST3 several months/a few years ago past
PST4 several years ago past
REC reciprocal
REM remote past
S intransitive subject function, S orientation
S simultaneous event (when preceding DS)
SDSA simultaneous event, different subjects, A orientation
SDSS simultaneous event, different subjects, S orientation
SIML similitive
SPECL speculative
SSSS simultaneous event, same-subject, S-orientation
SSSA simultaneous event, same-subject, A-orientation
TEMP temporal
TRNZ transitivizer
VNMLZ nominalizad verb
VAL valence-changing
VBLZ verbalizer
VEN1 venitive, singular intransitive
VEN2 venitive nonsingular, singular transitive
VOC vocative

Table A.1: Language-specific MSD labels for Shipibo-Konibo
(Source: Valenzuela [2003], Appendix A).
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A.2 Results of Submission to SIGMORPHON
2019 Shared Task II

Treebank Baseline LemMLE

LAcc Lev-Dist LAcc Lev-Dist
UD Afrikaans-AfriBooms 98.41 0.03 90.37 0.18
UD Akkadian-PISANDUB 66.83 0.87 14.36 4.26
UD Amharic-ATT 98.68 0.02 100.0 0.00
UD Ancient Greek-Perseus 94.44 0.14 69.23 0.96
UD Ancient Greek-PROIEL 96.68 0.08 73.11 0.84
UD Arabic-PADT 94.49 0.16 64.63 1.24
UD Arabic-PUD 85.24 0.41 16.75 5.37
UD Armenian-ArmTDP 95.39 0.08 66.57 0.80
UD Bambara-CRB 87.02 0.27 64.84 0.70
UD Basque-BDT 96.07 0.09 73.81 0.68
UD Belarusian-HSE 89.70 0.17 59.37 0.80
UD Breton-KEB 93.53 0.16 64.98 1.00
UD Bulgarian-BTB 97.37 0.07 81.84 0.52
UD Buryat-BDT 88.56 0.27 58.65 1.09
UD Cantonese-HK 91.61 0.28 98.57 0.01
UD Catalan-AnCora 98.07 0.04 83.47 0.26
UD Chinese-CFL 93.26 0.10 99.53 0.00
UD Chinese-GSD 98.44 0.02 99.16 0.01
UD Coptic-Scriptorium 95.80 0.09 84.71 0.37
UD Croatian-SET 95.32 0.09 78.59 0.40
UD Czech-CAC 97.82 0.05 86.25 0.29
UD Czech-CLTT 98.21 0.04 79.49 0.44
UD Czech-FicTree 97.66 0.04 85.79 0.28
UD Czech-PDT 96.06 0.06 85.72 0.26
UD Czech-PUD 93.58 0.10 49.43 0.96
UD Danish-DDT 96.16 0.06 80.35 0.33
UD Dutch-Alpino 97.35 0.05 87.11 0.23
UD Dutch-LassySmall 96.63 0.06 78.03 0.37
UD English-EWT 97.68 0.12 88.67 0.16
UD English-GUM 97.41 0.05 84.96 0.25
UD English-LinES 98.00 0.04 89.71 0.18
UD English-ParTUT 97.66 0.04 85.61 0.22
UD English-PUD 95.29 0.07 81.56 0.28
UD Estonian-EDT 94.84 0.11 75.48 0.54
UD Faroese-OFT 88.86 0.2 55.72 0.95
UD Finnish-FTB 94.88 0.11 70.63 0.80
UD Finnish-PUD 88.27 0.24 40.71 1.59
UD Finnish-TDT 95.53 0.10 67.16 0.88
UD French-GSD 97.97 0.04 86.85 0.21
UD French-ParTUT 95.69 0.07 89.83 0.20
UD French-Sequoia 97.67 0.05 86.07 0.25
UD French-Spoken 97.98 0.04 87.79 0.25
UD Galician-CTG 98.22 0.04 90.07 0.16
UD Galician-TreeGal 96.18 0.06 83.24 0.29
UD German-GSD 96.26 0.08 68.32 0.45
UD Gothic-PROIEL 96.53 0.07 71.96 0.73
UD Greek-GDT 96.76 0.07 71.25 0.71
UD Hebrew-HTB 96.72 0.06 85.71 0.25
UD Hindi-HDTB 98.6 0.02 92.92 0.15
UD Hungarian-Szeged 95.17 0.10 66.54 0.83
UD Indonesian-GSD 99.37 0.01 93.99 0.10
UD Irish-IDT 91.69 0.18 76.14 0.56
UD Italian-ISDT 97.38 0.05 85.55 0.26
UD Italian-ParTUT 96.84 0.08 84.57 0.31
UD Italian-PoSTWITA 95.6 0.11 78.53 0.42
UD Italian-PUD 95.59 0.08 77.53 0.44
UD Japanese-GSD 97.71 0.04 93.64 0.08
UD Japanese-Modern 94.20 0.07 91.14 0.11
UD Japanese-PUD 95.75 0.07 94.58 0.07
UD Komi Zyrian-IKDP 78.91 0.38 68.75 0.67
UD Komi Zyrian-Lattice 82.97 0.34 63.74 0.89
UD Korean-GSD 92.25 0.18 59.68 0.87
UD Korean-Kaist 94.61 0.09 73.86 0.56
UD Korean-PUD 96.41 0.06 27.62 1.56
UD Kurmanji-MG 92.29 0.39 64.96 0.73
UD Latin-ITTB 98.17 0.04 87.54 0.34
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UD Latin-Perseus 89.54 0.21 56.02 1.14
UD Latin-PROIEL 96.41 0.08 72.89 0.77
UD Latvian-LVTB 95.59 0.07 77.85 0.41
UD Lithuanian-HSE 86.42 0.25 35.82 1.24
UD Marathi-UFAL 75.61 0.86 47.97 1.34
UD Naija-NSC 99.33 0.01 97.24 0.03
UD North Sami-Giella 93.04 0.14 60.55 1.05
UD Norwegian-Bokmaal 98.00 0.03 88.58 0.16
UD Norwegian-Nynorsk 97.85 0.04 87.80 0.18
UD Norwegian-NynorskLIA 96.66 0.08 87.28 0.24
UD Old Church Slavonic-PROIEL 96.38 0.08 72.89 0.8
UD Persian-Seraji 96.08 0.19 84.72 0.59
UD Polish-LFG 95.82 0.08 78.42 0.45
UD Polish-SZ 95.18 0.08 70.88 0.57
UD Portuguese-Bosque 97.08 0.05 79.31 0.33
UD Portuguese-GSD 93.70 0.18 64.25 1.04
UD Romanian-Nonstandard 95.86 0.08 82.34 0.38
UD Romanian-RRT 96.94 0.05 83.48 0.32
UD Russian-GSD 95.67 0.07 75.81 0.47
UD Russian-PUD 91.85 0.18 51.66 0.89
UD Russian-SynTagRus 95.92 0.08 85.40 0.3
UD Russian-Taiga 89.86 0.21 62.01 0.83
UD Sanskrit-UFAL 64.32 0.85 27.64 1.93
UD Serbian-SET 96.72 0.06 75.02 0.47
UD Slovak-SNK 96.14 0.06 77.90 0.42
UD Slovenian-SSJ 96.43 0.06 79.50 0.39
UD Slovenian-SST 94.06 0.12 74.70 0.51
UD Spanish-AnCora 98.54 0.03 84.68 0.24
UD Spanish-GSD 98.42 0.03 93.83 0.10
UD Swedish-LinES 95.85 0.08 82.67 0.32
UD Swedish-PUD 93.12 0.10 65.57 0.62
UD Swedish-Talbanken 97.23 0.05 86.72 0.24
UD Tagalog-TRG 78.38 0.49 78.38 0.73
UD Tamil-TTB 93.86 0.14 52.68 1.49
UD Turkish-IMST 96.41 0.08 64.32 1.29
UD Turkish-PUD 86.02 0.34 47.13 1.75
UD Ukrainian-IU 95.53 0.10 75.85 0.45
UD Upper Sorbian-UFAL 91.69 0.12 57.05 0.88
UD Urdu-UDTB 96.19 0.07 86.51 0.22
UD Vietnamese-VTB 99.79 0.02 92.41 0.11
UD Yoruba-YTB 98.84 0.01 96.12 0.04
Mean 94.17 0.13 74.95 0.62
Median 95.92 0.08 78.42 0.44

Table A.2: Official results over the test set of system CHARLES-MALTA-01
(LemMLE) submitted to Task II - Lemmatization in Context of the SIGMOR-
PHON 2019 Shared Task. LAcc: lemmata accuracy; Lev-Dist: Levenshtein
distance.
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Treebank Baseline MBundle
MAcc M-F1 MAcc M-F1

UD Afrikaans-AfriBooms 84.90 92.87 59.40 60.00
UD Akkadian-PISANDUB 78.22 80.41 38.12 39.19
UD Amharic-ATT 75.43 87.57 34.78 42.42
UD Ancient Greek-Perseus 69.88 88.97 55.27 61.48
UD Ancient Greek-PROIEL 84.55 93.55 61.24 73.10
UD Arabic-PADT 76.78 91.82 62.28 69.81
UD Arabic-PUD 63.07 86.35 27.68 39.46
UD Armenian-ArmTDP 64.38 86.74 36.09 48.83
UD Bambara-CRB 76.99 88.94 52.77 56.43
UD Basque-BDT 67.76 87.54 54.38 63.73
UD Belarusian-HSE 54.22 78.80 26.93 36.44
UD Breton-KEB 76.52 88.34 38.21 44.55
UD Bulgarian-BTB 79.64 93.85 64.89 72.07
UD Buryat-BDT 64.23 80.94 35.38 38.08
UD Cantonese-HK 68.57 76.80 23.57 25.76
UD Catalan-AnCora 85.57 95.73 81.94 86.79
UD Chinese-CFL 76.71 82.05 23.29 24.71
UD Chinese-GSD 75.97 83.79 46.54 42.56
UD Coptic-Scriptorium 87.73 93.56 55.36 63.44
UD Croatian-SET 71.42 90.39 57.7 69.55
UD Czech-CAC 77.26 93.94 67.77 79.82
UD Czech-CLTT 72.6 92.61 24.39 44.82
UD Czech-FicTree 68.34 90.32 59.98 71.12
UD Czech-PDT 76.70 94.23 69.16 80.70
UD Czech-PUD 60.67 85.73 23.21 42.29
UD Danish-DDT 77.22 90.19 59.26 65.61
UD Dutch-Alpino 82.07 91.25 77.44 79.69
UD Dutch-LassySmall 76.78 87.97 61.19 63.90
UD English-EWT 80.17 90.91 76.86 81.79
UD English-GUM 79.57 89.81 58.66 61.62
UD English-LinES 80.30 90.58 64.76 69.93
UD English-ParTUT 80.31 89.46 54.79 59.61
UD English-PUD 77.59 87.7 37.57 44.03
UD Estonian-EDT 74.03 91.52 65.13 75.58
UD Faroese-OFT 65.32 85.73 41.31 57.70
UD Finnish-FTB 72.89 89.08 50.30 61.96
UD Finnish-PUD 70.07 87.77 24.22 40.57
UD Finnish-TDT 74.84 90.66 54.71 67.39
UD French-GSD 84.20 94.63 78.59 84.51
UD French-ParTUT 81.67 92.19 48.03 63.21
UD French-Sequoia 81.50 93.04 61.06 72.35
UD French-Spoken 94.48 94.8 65.94 66.17
UD Galician-CTG 86.65 91.35 77.52 75.41
UD Galician-TreeGal 76.40 89.33 38.66 52.78
UD German-GSD 68.35 88.91 65.81 78.39
UD Gothic-PROIEL 81.00 90.02 47.87 62.90
UD Greek-GDT 77.44 93.45 47.58 65.34
UD Hebrew-HTB 81.15 91.79 65.57 69.71
UD Hindi-HDTB 80.60 93.92 69.43 84.38
UD Hungarian-Szeged 65.9 87.62 33.99 46.81
UD Indonesian-GSD 71.73 86.12 44.67 52.13
UD Irish-IDT 67.66 81.58 29.47 40.44
UD Italian-ISDT 83.72 94.46 77.25 82.69
UD Italian-ParTUT 83.51 93.88 62.01 73.55
UD Italian-PoSTWITA 70.09 87.98 63.7 70.15
UD Italian-PUD 80.78 92.24 51.13 64.24
UD Japanese-GSD 85.47 90.64 81.07 79.27
UD Japanese-Modern 94.94 95.64 62.96 63.61
UD Japanese-PUD 84.33 89.64 57.44 55.59
UD Komi Zyrian-IKDP 35.94 59.52 24.22 32.21
UD Komi Zyrian-Lattice 45.05 74.12 26.92 34.75
UD Korean-GSD 79.73 85.9 63.67 59.84
UD Korean-Kaist 84.3 89.45 66.34 62.26
UD Korean-PUD 76.78 88.15 26.38 42.65
UD Kurmanji-MG 68.10 86.54 31.45 48.17
UD Latin-ITTB 77.68 93.12 65.40 73.71
UD Latin-Perseus 55.06 78.91 30.96 32.14
UD Latin-PROIEL 82.16 91.42 54.59 67.44
UD Latvian-LVTB 70.33 89.55 56.80 65.13
UD Lithuanian-HSE 41.43 67.39 21.39 28.57
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UD Marathi-UFAL 40.11 69.71 30.08 37.13
UD Naija-NSC 66.42 76.73 44.83 38.18
UD North Sami-Giella 66.87 85.45 35.86 46.31
UD Norwegian-Bokmaal 81.27 93.17 79.04 83.01
UD Norwegian-Nynorsk 81.75 92.85 77.13 81.82
UD Norwegian-NynorskLIA 74.20 89.21 40.23 41.25
UD Old Church Slavonic-PROIEL 84.13 91.17 51.44 64.19
UD Persian-Seraji 86.84 93.76 74.13 76.96
UD Polish-LFG 65.72 88.73 57.84 66.24
UD Polish-SZ 63.15 86.24 44.82 54.91
UD Portuguese-Bosque 78.05 92.36 64.79 72.86
UD Portuguese-GSD 83.87 91.73 70.59 68.01
UD Romanian-Nonstandard 74.71 91.7 72.54 79.16
UD Romanian-RRT 81.62 93.88 74.87 80.18
UD Russian-GSD 63.37 87.49 46.87 57.30
UD Russian-PUD 60.68 84.31 23.02 41.97
UD Russian-SynTagRus 73.64 92.73 73.22 78.53
UD Russian-Taiga 52.06 76.77 25.61 32.5
UD Sanskrit-UFAL 29.65 57.8 18.09 44.54
UD Serbian-SET 77.05 91.75 51.43 64.67
UD Slovak-SNK 64.04 88.04 48.35 60.90
UD Slovenian-SSJ 73.82 90.12 51.13 65.00
UD Slovenian-SST 69.57 82.28 30.82 45.63
UD Spanish-AnCora 84.35 95.35 79.66 84.72
UD Spanish-GSD 81.90 93.95 78.44 85.06
UD Swedish-LinES 76.93 89.99 57.43 66.81
UD Swedish-PUD 79.97 90.49 22.15 41.72
UD Swedish-Talbanken 81.37 92.65 63.10 73.05
UD Tagalog-TRG 67.57 87.07 29.73 41.13
UD Tamil-TTB 73.33 89.22 23.10 47.54
UD Turkish-IMST 62.94 86.10 30.82 47.29
UD Turkish-PUD 66.30 87.62 17.27 44.09
UD Ukrainian-IU 63.59 86.81 42.99 52.07
UD Upper Sorbian-UFAL 57.70 81.04 30.63 33.93
UD Urdu-UDTB 69.97 89.46 57.83 77.83
UD Vietnamese-VTB 69.42 78.00 44.8 41.86
UD Yoruba-YTB 73.26 85.47 20.54 17.50
Mean 73.16 87.92 50.37 58.81
Median 76.40 89.46 52.77 62.26

Table A.3: Official results over the test set of system CHARLES-MALTA-01
(MBundle) submitted to Task II - Morphological Analysis in Context of the
SIGMORPHON 2019 Shared Task. MAcc: MSD 0/1 accuracy; M-F1: MSD
F1-score (micro-averaged).
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A.3 Actions and Morphological Features
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