
MASTER THESIS

Felipe Vianna

Expert Classification and Retrieval

Institute of Formal and Applied Linguistics

Supervisor of the master thesis: doc. RNDr. Pavel Pecina, Ph.D.

Study programme: Computer Science

Study branch: Artificial Intelligence

Prague 2020

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .

Author’s signature

i

I would like to thank Pavel Pecina, for his encouragement and valuable consul-
tations, making all this work possible. I am also grateful for all professors and
colleagues at MFF I had the honor to meet during two intense years, for their
immense contribution to my learning preceding this thesis. Finally, I would like
to thank my family, especially my brother and best friend Leandro, for their
unconditional love and support.

ii

Title: Expert Classification and Retrieval

Author: Felipe Vianna

Institute: Institute of Formal and Applied Linguistics

Supervisor: doc. RNDr. Pavel Pecina, Ph.D., UFAL

Abstract: Searching for experts is a common demand, especially within organi-
zations. A general task called expertise retrieval relates people to topics and,
therefore, can be used for expert finding and/or profiling experts. Currently,
most approaches used to solve this task are based on traditional document re-
trieval methods and do not consider prior profiling information available. In this
thesis, it is proposed to map people to topics by training a multi-class classifier
using available profile data. The inputs (documents associated to candidates by
authorship or other relations) and target data (profile information) were prepared
by unsupervised document classification methods and were used to train a neural
network. The effects of feature ordering and a convolutional layer are also eval-
uated. The experiments show that profiling the experts is not only suitable for
a recommender system, but also an effective way for expert finding, achieving a
performance comparable to state of the art in benchmark tasks such as TREC
Enterprise.

Keywords: expert profiling, expertise retrieval, document classification, neural
networks

iii

Contents

1 Introduction 4
1.1 Problem Description . 5
1.2 Evaluation . 7

1.2.1 Expert Profiling Evaluation 7
1.2.2 Expert Finding Evaluation 8

2 Releated Work 9
2.1 Previous Work in Expertise Search 9

2.1.1 Generative Probabilistic Models 10
2.1.2 Discriminative Probabilistic Models 13

2.2 NLP and Machine Learning . 13
2.2.1 TF-IDF . 13
2.2.2 BM25 . 15
2.2.3 Word Embeddings . 15
2.2.4 Sentence Encoders . 18
2.2.5 Embedding Similarity . 21
2.2.6 String Similarity . 21
2.2.7 Deep Learning . 21

3 Methodology 30
3.1 Objective . 30
3.2 Data Collection . 30

3.2.1 Internal Publications . 30
3.2.2 Previous Work Assignments 31
3.2.3 ”Topics I Know” in Profiles 31
3.2.4 Taxonomy . 32

3.3 Expert Classification Tool . 32
3.3.1 Classification of Documents 33
3.3.2 Expert Classification . 38

4 Expert Classifier Implementation 41
4.1 Baseline model . 41
4.2 Document Classification . 42
4.3 Internal Publications Classification 43

1

4.4 Previous Work Assignments Classification 54
4.5 Classification of ”Topics I Know” in Profiles 63
4.6 Expert Candidate Representation 68
4.7 Topics I Know as Target Data . 69
4.8 Data Preprocessing . 70
4.9 Multi Label Classifier . 74

5 Experiments 79
5.1 Experiment Setup . 79

5.1.1 Baseline . 79
5.1.2 Base Neural Network . 80
5.1.3 Model A . 80
5.1.4 Model B . 81
5.1.5 Model C . 81
5.1.6 Model D . 82
5.1.7 Model E . 82
5.1.8 Model F . 83

5.2 Experiment Results . 83
5.2.1 Expert Profiling . 83
5.2.2 Expert Finding . 84

6 Conclusion 86

Bibliography 87

List of Figures 90

List of Tables 94

List of Abbreviations 96

2

Preface
The major contribution of this work is its exploration of many NLP and Machine
Learning concepts, gathering them together to solve an expertise retrieval task
in a corporate data. Three major steps are followed: document classification,
data preprocessing with feature ordering, and the multi label classifier. The
effects of a convolutional layer is evaluated as well as the effect of ordering input
features when they are composed by topics that carry relation to each other. In
addition, different experimental setups are used for Document Classification, a
prior step to the Expert Classification, being the latest also tested for several
different parameters.

The structure of this work is as follows.
Chapter 1 contextualizes and describes the problem being solved. Also, the

evaluation metrics to verify the performance on the task is explained.
In Chapter 2 previous solutions for the expertise retrieval task are explored, as

well as general NLP and Machine Learning concepts relevant for understanding
the proposed methodology.

Chapters 3 and 4 expose theoretical and practical details of the proposed
method to classify experts with regards to topic queries.

Chapter 5 presents the results of experimental setups and, finally, Chapter 6
concludes the thesis with final remarks.

3

1. Introduction
”I don’t need to know everything. I just need to know where to find it
when I need it.” - Unknown

Traditionally, Information Retrieval systems had been used to find the content
needed. However, in many situations, it is desired to retrieve a knowledgeable
person regarding a topic. In many cases, the information is not freely accessible,
or requires a deep background to be interpreted. That would turn the quote
above into ”I don’t need to know everything. I just need to find who knows it”.

Manning et al. [2008] defines Information Retrieval as ”finding material (usu-
ally documents) of an unstructured nature (usually text) that satisfies an infor-
mation need from within large collections (usually stored on computers)”. This
definition also applies if the searched material consists in experts instead of doc-
uments.

Demands for experts had existed since beginning of civilization, and as many
new fields of expertise arise and people become more specialized, finding the right
person for a specific task is even harder. Despite being an old issue, the research
on how to find experts effectively is relatively new. Early researches in the 60’s
show that sharing the knowledge of experts in an organization leads to material
gains (Davenport and Prusak [1998]).

Some well known circumstances when experts search is needed in modern
days are, for example, recruiters searching for people whose profiles match a job
description; an organization looking for an employee to be assigned to specific
tasks; search for proper expert, with required competences, to review papers
submitted for a conference (Charlin and Zemel [2013]).

Formalizing expertise is hard due to the tacit knowledge it is related to. Peo-
ple acquire knowledge through years of working experience rather than only for-
mally studying, and all their know-how is not explicitly registered in documents.
However, the only way to search for an expert in organizations is through the
”explicit knowledge” presented in documents. Thus, we will notice that the chal-
lenges faced in document retrieval are also part of the ones we need to overcome
in expert retrieval.

In document retrieval, each document is a retrievable unit to be ranked dur-
ing a search. Yet, in expertise retrieval, the candidates are represented as a
composition of multiple documents they are associated to, e.g. by authorship,

4

mentions or citations. Moreover, different document sources might be weighted
differently while building the candidate’s representation, as technical manuals
and email threads, for example, might indicate different levels of expertise in the
underlying topic they refer.

Expertise Retrieval is the general area interested in creating a mapping be-
tween people and expertise topics. It covers two search interests: finding the
expert on topic ’X’, and find the topics in which a person is an expert (Balog
et al. [2012]). The later is called expert profiling or expert classification. Both
Expert finding and Expert profiling are directly related, as both aim to estimate
associations between topics and people.

In this work, the links between topics and people are constructed from the
perspective of expert profiling and it is ultimately treated as a machine learning
classification task.

1.1 Problem Description

Expertise Retrieval is often reduced to the scope of specific organization and
is usually part of an enterprise search system (Balog et al. [2012]). Most of the
large organizations have internal systems and databases to store their proprietary
knowledge. In the case of companies that provide specialized services to clients, it
is also important to keep track of employees’ profiles. This work is performed in
such environment, in the context of an organization that manages their internal
knowledge not only as documents, but also mapping its employees capabilities.

The aim of this work is to obtain the associations between experts and topics,
as in example Table 1.1, based on a collection of documents belonging to an
private organization. The values can be seem as the probability of person e being
an expert in a topic query q. Specifically, the table is built from Expert Profiling
perspective and serves as input to a Recommender System.

topic1 topic2 topic3 topic4 . . .
person1 0 0 0.3 0.9 . . .
person2 0.7 0 0.3 0 . . .
person3 1 0 0 0.5 . . .
person4 0 0.8 0.1 0.2 . . .

...

Table 1.1: Association between people and topics.

5

According to Prem Melville and Vikas Sindhwani, from IBM Watson Research
Center:

”The goal of a Recommender System is to generate meaningful recom-
mendations to a collection of users for items or products that might
interest them.”

Here, the items of interest are topics. Not only for the users themselves,
but also for the retrieval system using this data to build the expert candidates
representation, which is out of the scope of this work.

Feeding a recommender system with the results obtained by expert profiling
provides a way to collect valuable data for evaluation. The user feedback (ac-
cept or reject recommendation) and current profile topics (when available) can
be taken as true information, despite self assessment of expertise being still sub-
jective. Figure 1.1 demonstrates the task and the focus of this work.

Figure 1.1: Architecture for expertise profiling and finding proposed. The focus
of this work lies on the components inside the dashed box.

The assignment of topics known by an individual into his/her profile adds
another source of data for further retrieval - expert finding. Tags assigned to
specific field, e.g. ’skills’ in someone’s profile are approved or curated by the
individuals themselves, becoming trusted data for a retrieval system. Being that
said, the focus of this work is to build associations between topics and people
from input data, enriching profiles information and enabling their usage in further
expert finding tasks.

Language modeling techniques from Information Retrieval had been used to
compute the probability of a person being an expert given a query P (e|q) (Balog

6

et al. [2006]). However, in this work the task is solved as a multi label classifi-
cation problem, computing the probabilities based on pre processed documents
and current data available in people’s profiles. The proposed classifier is a neural
network with a convolutional layer and will be presented in details in Chapter 3.

1.2 Evaluation

The task consists in assigning scores associating each user (or expert candidate)
to each topic generating a table resembling Table 1.1. Therefore, expert profiling
and expert finding can be evaluated from the resulting table. For profiling, the
top highest scored topics per person are retrieved. For expert finding, the highest
scored people per topic are retrieved.

In Information Retrieval, metrics such as Precision and Average Precision
(AP) are widely used. Following, the evaluation details based on these metrics
are presented.

1.2.1 Expert Profiling Evaluation

The proposed system is built from expert profiling perspective and the top 5
topics per user are taken to feed the recommender system. Two metrics are used
to evaluate profiling: AP over topics, and AP5 over users.

Equations 1.1 and 1.2 shows how AP is obtained. First computing the Preci-
sion for each topic query:

P (q) = Rq

Nq

(1.1)

where P (q) is the precision for all recommendations of topic q. Rq is the number
of relevant recommendations of topic q, and Nq is the number of recommendations
for topic q. A relevant recommendation is considered the one accepted by the
user when recommended, or if the system recommends something that is already
present in his/her profile.

AP, then, is computed as the average precision over all topic queries evaluated,
according to Equation 1.2

AP = 1
|Q|

×
∑
qϵQ

P (q) (1.2)

where |Q| is the number of topic queries, and ∑
qϵQ P (q) is the sum of all topics

7

individual precision.
AP described above measures how well the system performs across the topic

queries covered. However, it is AP5 that measures how the system perform across
the users. AP5 can be computed as:

AP5 = 1
|U |

×
∑
uϵU

Ru

5 (1.3)

where |U | is the number of users in the evaluation set U , Ru is the number of
relevant recommendations for user u.

The above metrics are computed in the following sets of users:

• S1: All users that processed the recommendations, including those present
in the training set. Size: 6525 users.

• S2: Only users present in training that processed recommendations. Size:
2362 users

• S3: Only users not present in training and that processed the recommen-
dations (S1 − S2). Size: 4163 users

• S4: 100 users not present in training set and that had at least 5 topics
already filled in their profiles.

1.2.2 Expert Finding Evaluation

Expert profiling and expert finding are sides of the same coin, and both can
be done ranking the scores obtained by user-topic associations. Although the
methodology discussed in this work assign the scores from profiling perspective,
expert finding is also evaluated through AP10 and AP100. Equation 1.4 shows how
the values are calculated:

APk = 1
|U |

×
∑
qϵQ

Rkq

k
(1.4)

where |U | is the number of users in the evaluation set U , Rkq is the number of
relevant users among top k users retrieved for topic query q. A relevant user for
the topic is considered as the one who has the topic assigned to his/her profile.

AP10 is computed for all user sets S1, S2, S3 and S4 described above. AP100

is not computed for S4 as it has only 100 users, therefore all of them would be
retrieved for any topic and the scores computed would become irrelevant.

8

2. Releated Work
In this chapter, popular methods for expert profiling and expert finding are in-
troduced. Also, relevant concepts for the approach proposed in Chapter 3 are
reviewed.

2.1 Previous Work in Expertise Search

Finding experts, before automated methods, relied on building a database to store
the information regarding knowledge and skills of a person. These databases were
manually structured and updated, resulting in high maintenance costs. Early
automated approaches emerged, mainly focused on expert finding in specific do-
mains, building candidate representations from homogeneous document sources.
Finally, due to the limitations of these systems, the interest of industry and
academia raised in this area making the systems evolve to perform the task over
heterogeneous sources of data, as those found in document collections within
corporate databases (Balog et al. [2006]).

One main source of studies and information regarding expertise retrieval is
the outcome of work made for the Text REtrieval Conference (TREC) on their
Enterprise test collections from 2005 to 2008. Some benchmark models and cur-
rent state of the art methods were obtained during this effort. More details about
the tasks, data and results can be found in Bailey et al. [2007], the overview of
2007 work.

Expertise retrieval systems aim to establish a relationship between experts
and topics, through the collection of documents available. People are not directly
retrievable, so they need to be represented based on the documents. Two main
approaches can be used for that: Profile-based and document-based methods (Ba-
log et al. [2012]). The first one starts from creating a textual representation of
each person based on the documents they are associated to. These representa-
tions are built prior to any query, so they are query-independent. Once a query
is performed over the collection of pseudo-documents that represent the people,
they can be ranked using standard document retrieval techniques. The second
approach happens the other way around. First ranking documents according to
the query, and then ranking the experts based on the relevance score of the docu-
ments retrieved. As the representation of the experts changes according to topic

9

queries, this approach is query-dependent.
Both methods above mentioned need to associate documents to people at

some point. A document content can provide evidence of expertise for its author.
However, when a document has multiple authors it becomes hard to define which
section of the document represents the expertise of each of the authors. More-
over, some people might be mentioned in a document content, and the proximity
between the mention and the topic could be an indication of expertise.

Now, some of the methods to model associations between the query topic and
expert candidates are described . These methods were applied in related work
and were proposed in Balog et al. [2012] and Balog et al. [2006].

2.1.1 Generative Probabilistic Models

In this family of models, the target is to compute P (e|q), the likelihood of person
e is an expert in topic query q, and then rank them by the highest probabilities.
This likelihood can be computed directly in Candidate Generation Models as
shown later, or by applying Bayes’s Theorem, in Topic Generation Models:

P (e|q) = P (q|e)P (e)
P (q) (2.1)

where P (e) is the probability of a candidate and P (q) the probability of a query.
P (q) is constant for each query, therefore the probability of a candidate being an
expert is given by P (q|e) weighted by prior probability P (e). Both ways above
mentioned are based on language modeling techniques, in which the basic idea is
to compute the probability of observing a query in given document:

P (q|d) =
∏
tϵq

P (t|d)n(t,q) (2.2)

where n(q, t) is the number of times term t is present in query q, and P (t)., the
document language model, is the probability term t is in document d.

Candidate Generation Models:

The candidate generation models estimate the P (e|q) from a document-centric
approach, computing:

P (e|q) =
∑

d

P (e, d|q) =
∑

d

P (e|d, q)P (d|q) (2.3)

10

where P (d|q) denotes the probability document d is relevant to query q. To apply
Equation 2.2, P (d|q) can be rearranged applying Bayes’s rule:

P (d|q) = P (q|d)P (d)
P (q) (2.4)

where P (q) is the probability of a query and P (d) the probability of a document.
The co-occurrence model P (e|d, q) represents how much associated expert e is
to document d given query q. The actual computation of the co-occurrence
model assumes e and q are conditionally independent given document d, so that
P (e|d, q) = P (e|d).

Topic Generation Models:

In this method, again, the target is to estimate P (e|q), but since the queries
consist of topics composed by few terms, a more accurate estimation is obtained
applying Bayes’ Rule as in Equation 2.1. Note P (e), the candidate prior, is a
term in this equation. It is usually assumed to be uniform, however non-uniform
priors can lead to improvements (Fang and Zhai [2007]). For now, let us assume
P (e) to be uniform and it should not affect the ranking. The most important
term to be estimated is P (q|e), the probability query-topic q is generated by
expert candidate e. In Balog et al. [2006] there are two different propositions to
calculate this probability:

Candidate Model: In this model, an expert candidate language model is built
from the collection of documents each person is associated to, i.e, an in-
dividual is represented as a composition of documents prior to any query.
Then, P (q|e) is estimated from this representation. Each candidate e is
represented by candidate model θe, so that P (t|θe) is the probability of a
term t given candidate model θe. Thus, the likelihood a candidate would
produce a query can be predicted by:

P (q|θe) =
∏
tϵq

P (t|θe)n(t,q) (2.5)

If term tϵq is not in candidate model, P (q|θe) goes to zero. To address this
issue, standard smoothing is employed as:

P (t|θe) = (1 − λ)P (t|e) + λP (t) (2.6)

11

where P (t|e) is the probability of term t given candidate e, P (t) the prob-
ability of term t in whole collection of documents, and λ is the smoothing
parameter in the interval [0, 1]. Now, the terms are associated to candidates
through the documents. Thus, P (t|e) can be approximated by:

P (t|e) =
∑

d

P (t|d, e)P (d|e) (2.7)

P (d|e) is weight factor as it represents the strength of association between
document and candidate. P (t|d, e) can be approximated by P (t|d) assuming
terms and candidates are conditionally independent given a document.

Combining the three equations above,:

P (q|θe) =
∏
tϵq

{(1 − λ)(
∑

d

P (t|d)P (d|e)) + λP (t)}n(t,q) (2.8)

Document Model: Here, first the documents that best describe the topic query
are retrieved. Then considers candidates associated to these documents as
possible experts.

P (q|e) =
∑

d

P (q|d, e)P (d|e) (2.9)

where P (d|e) works as a weight to indicate how well document d describe
candidate e and P (q|d, e) measures how document d is good indication
candidate e is an expert in q. The probability of query given document and
candidate is:

P (q|d, e) =
∏
tϵq

P (t|d, e)n(t,q) (2.10)

Assuming the candidates are independent given a document, P (t|d, e) =
P (t|θd). The resulting equation combining the previous is:

P (q|e) =
∑

d

{
∏
tϵq

P (t|d)n(t,q)}P (d|e) (2.11)

Document models have an advantage for being built on top of standard doc-
ument index already available for document search. The major work become
to implement candidate-document associations, whereas in candidate models a
complete new index is required (Balog et al. [2006]).

12

2.1.2 Discriminative Probabilistic Models

Another set of models for information retrieval applications is the discriminative
models. While Generative models rely on assumptions such as the independence
of term distributions, discriminative models learn from the data itself. Also,
document-candidate association in generative models are heavily based in heuris-
tics, while in discriminative models more features could be incorporated, when
available. Following, two of these models explored in Balog et al. [2012] are briefly
presented.

Learning to Rank:

This method constructs a ranking model automatically, using training data. The
documents are represented by feature vectors on the input side, and the output
is composed by the relevance of each document. In expert search, previous work
treated the problem as a binary classification - a person either is an expert or not -
and trained a multi-layer perceptrons and logistic regression as a classifier. When
the features are well designed, it is shown to outperform generative language
models.

Learning Models for Ranking Aggregates:

Based on ensemble methods in supervised machine learning, the idea is to combine
many weak learners to produce a strong model. Each weak learner is composed by
document weighting models (tf-idf, BM25), ranking cutoffs and voting techniques.
The strong ranking model is learned by weighting the combination of the weak
models obtained before.

2.2 NLP and Machine Learning

This section explores some common NLP and machine learning algorithms that
might be combined in the development of this work. Most of them are widely
used in other NLP or retrieval tasks, and can also be combined for expertise
classification and retrieval.

2.2.1 TF-IDF

Term Frequency-Inverse of Document Frequency is a popular statistical method
to measure the importance of a word to a document in a collection. The scores

13

given by tf-idf compose the vector representation of the documents and are widely
used search engines to score the relevance of a document to a user query (Ramos
[2003]).

To capture the importance of a word within a document it is assumed that
high term frequency indicates the term is important, as the document refers to
it often. However, from a document collection perspective, if a term is present
in many documents, the term might not be so informative. It is wanted to set
higher weights for rare terms. Therefore, the document frequency is inverted, and
it is trivial to see that in Equation 2.13 common words like ”the”, ”is” and other
stop words, would automatically be assigned lower IDF weights.

The tf-idf is obtained by multiplying the Term Frequency by the Inverse of
Document Frequency. A term with high tf-idf weight is considered to be highly
discriminatory, meaning in a retrieval scenario, this document would be very
likely relevant to a query containing this term.

Term Frequency:

The simplest way to compute term frequency is to count the number of times a
term appears within a document tf(t, d) = ft,d (Ramos [2003]). However, some
other variants might be used. One option is to scale tf by length of the documents,
so that long ones don’t produce too high tf scores:

tf(t, d) = ft,d∑
t′ϵd ft′,d

(2.12)

Another common option is to have zero for ft,d = 0 and 1 + log(ft,d) otherwise.

Document Frequency:

The df(t, D) is computed by taking the number of documents in which term t is
present throughout the whole collection D. The inverse of document frequency is,
then, given by N

df(t,D) , where N is the total number of documents in the collection.
As collections can have large amounts of documents, the idf is logarithmically
scaled as

idf = log
N

df(t, D) (2.13)

The keyword extraction could be done by simply taking the terms with higher
tf-idf scores. Some usual additional steps, though, are performed, such as remov-
ing stop words in advance and also generating n-grams tokens, so that expressions

14

can be extracted as well. The final score is computed combining Equations 2.12
and 2.13:

TFIDF (t, d) = tf(t, d)log
N

df(t, D) (2.14)

2.2.2 BM25

BM25 is a Bag of Words retrieval function that assigns scores to documents given
a query. It computes the score based on TF and IDF weighting. The base formula
to compute a document score given a query is shown in Equation 2.15:

score(d, q) =
∑
tϵq

log
N

df(t, D) × (k1 + 1)tftd

k1(1 − b + b(Ld

Lavg
)) + tftd

(2.15)

where log N
df(t,D) is the idf, tftd is frequency of term t in document d, Ld is the

document length, Lavg is the average document length in full collection D. k1

is a positive tuning parameter to scale the term frequency. Note that k1 = 0
makes the score depend only on idf. b is another tuning parameter in interval
[0, 1] which determines the scaling by document length. b = 1 makes fully scaling
by document length whereas b = 0 results in no length normalization.

Long documents are penalized by BM25, clearly observed on Equation 2.15, as
the denominator of the second term increases proportionally to document length.
In BM25+, an improved version of BM25, the contribution of a term occurrence
is lower bounded by a parameter δ. Its score is computed in Equation 2.16.

score(d, q) =
∑
tϵq

log
N + 1

df(t, D) × ((k1 + 1)tftd

k1((1 − b) + b(Ld

Lavg
) + tftd)

+ δ) (2.16)

Lv and Zhai [2011] suggest that δ = 1 is effective across collections.

2.2.3 Word Embeddings

In most machine learning models and Natural Language Processing tasks, it is
needed to represent the strings as vectors. For some features with small vocab-
ulary, it can be simply handled using one-hot encoding. When the vocabulary
increases, this approach turns to be unfeasible as the vector representation needs
the same dimension as the vocabulary size. Also, one-hot encoding assumes
each word is independent, not capturing any semantic similarity between them.

15

Research has been made towards representing words as vectors with reasonable
dimension size (much smaller than vocabulary size) and also embedding the se-
mantics in these representations.

Context-free embeddings - Word2vec

Mikolov et al. [2013a] presents two methods for generating word embeddings from
large corpus (billions of words) having a vocabulary in the order of millions of
words. Both approaches shown are context-free since each word is represented by
a single vector, regardless the multiple meanings it might have due to context.

The two methods are CBOW - Continuous Bag of Words - and Continuous
Skip-gram, both based on Neural Network Language Model.

Continuous Bag of Words: in CBOW the basic idea is to train a neural net-
work, with single hidden layer, to predict a target word given the inputs
are its surrounding words (this surrounding is defined by parameter window
size). Despite making use of a supervised method, the model is unsuper-
vised, based only on the corpus. The embedding of each word is obtained
from the weights connecting the hidden neurons to each of the words in the
target vector. The figure 2.1 illustrates the architecture proposed.

Continuous Skip-gram: Skip-gram has an architecture very similar to CBOW,
but the target is to predict the surrounding words given a word. Figure 2.2
shows an example for training word embeddings with vocabulary of size
10000 and embedding with 300 dimension, which means a hidden layer size
of 300 neurons. Each time a word is seeing on the corpus, the input vector
for it is a one-hot vector of size of vocabulary with a ’1’ on the position
representing the word. The only weights to be used from the hidden layer
will be the ones connected to the ’1’ in this vector, as the other weights
would be multiplied by 0. The target vector is again a vocabulary-size one-
hot representation with 1’s in the positions of words in the context (window)
of the input word. Therefore, a classifier is trained to predict words that
are in the context of each word. After many iterations, the weight vector
connecting the hidden layer to each of the words in the input vector is taken
as the word embedding.

16

Figure 2.1: CBOW vs Skip-gram architectures. Mikolov et al. [2013a]

Figure 2.2: Skip-gram neural network. http://mccormickml.com/2016/04/19/word2vec-
tutorial-the-skip-gram-model

Contextualized Word Embeddings

Very frequently, words can have multiple meanings, depending on their context.
Word embeddings obtained by word2vec methods described previously despite
capturing latent syntactic and semantic similarities, do not handle the polysemous
context-dependent nature of words.

One of the methods to obtain such contextual embeddings is through the
implementation of character level language models. In Akbik et al. [2018] they
implemented a framework called ”Flair”, consisting of a Neural character-level
language model using Recurrent Neural Networks to learn how to predict the

17

Figure 2.3: Contextual embeddings implemented in Flair: Forward LM embed
context before the word while backward LM embed the context after the word.
The two are concatenated together to represent the word in the specific context.
(Akbik et al. [2018])

next character given sequence of characters. They show that selecting appropriate
hidden states from the language model leads to word-level embeddings that are
highly effective in downstream tasks.

The architecture in Flair is based on Recurrent Neural Network (Bi-LSTM to
capture the context from forward and backward directions), and allows to pre-
train in large unlabeled corpora. Modeling words and sentences as sequence of
characters also helps handling better even misspelled words (Akbik et al. [2018]).
To capture the context, the Bi-LSTM produces a forward and a backward lan-
guage model. The embedding of a word is extracted from the output hidden state
after the last character of a word (on forward LM) and before the first character
(on backward LM). Figure 2.3 illustrates the method. An interesting observa-
tion is that it is possible to obtain the embeddings for n-grams, for example
”George Washington” by simply taking the forward LM embedding of the word
”Washington” and the backward LM embedding of the word ”George”. It is also
trivial to observe that in a sentence such as ”George Washington visited the city
of Washington”, it would be expected to obtain an embedding for Washington
representing a person’s name and another that would represent a city name.

2.2.4 Sentence Encoders

Deep Learning tasks require large data sets and, when it comes to NLP, they
are still limited compared to image data sets. Annotated data is expensive to
obtain and scarce. Many models, thus, perform transfer learning through the use

18

Figure 2.4: Sentence encoder proposed by Facebook for Infersent. Each LSTM
cell provides its output state, and the max pooling is taken over all output states
to form the sentence embedding. Conneau et al. [2017]

of word embeddings trained in large data sets. Recent studies show that sentence
level embeddings improves results in transfer tasks (Conneau et al. [2017]), and
therefore pre training sentence embeddings in publicly available annotated data
might be worthy the effort.

Facebook Infersent

In Conneau et al. [2017] they show that an encoder composed by Bi-LSTM initial-
ized with pre-trained word embeddings, e.g word2vec, further trained in Natural
Language Inference downstream task, results in a sentence embedding that per-
forms better in transfer tasks. The encoder is showed in Figure 2.6 and the NLI
training architecture is illustrated in 2.6. After the whole training in Stanford
NLI task, they provide the model to get the encoding ”u” in Figure 2.6 given a
input sentence.

Alternatively, Hierarchical Convolution Network can be used to encode the
sentence. This last approach, illustrated in Figure 2.5, concatenates the different
levels of abstraction from the input sentence and output a fixed size representa-
tion.

19

Figure 2.5: Sentence encoder proposed by Facebook for Infersent. Each convolu-
tional layer provides a different abstraction representation of the input sentence.
Conneau et al. [2017]

Figure 2.6: Sentence encoder trained over Stanford NLI data. Vectors u and v are
obtained from encoder in . A bigger representation of both vectors is given by the
concatenation of u, v, absolute element-wise difference, —u-v— and element-wise
product u * v. Conneau et al. [2017]

20

2.2.5 Embedding Similarity

The main objective of embedding words, n-grams or sentences, regardless of con-
textual or context-free methods, is to obtain a vector with predefined dimension
that encodes the semantics of such piece of text. To compare if two words are
similar, for example, their embedding vectors generated by same encoder can be
taken and compared with regard to some similarity metric. The most common
metric for this case is cosine similarity, which computes the cosine of the angle θ

between two vectors u, v as in Equation 2.17:

similarity(u, v) = cos(θ) = u · v

∥u∥∥v∥
(2.17)

2.2.6 String Similarity

Many times in text processing the difference between strings should be computed,
for example in spell checking. Damerau-Levenshtein Distance is an improved ver-
sion of Levenshtein-Distance (Setiadi [2013]) that computes the distance between
two strings based on four operations: insertion, deletion, substitution and trans-
position, being the last the improvement proposed by Frederick Damerau. Below,
some examples of distances between pairs of strings computed by DL distance:

• rock ↔ sock: 1 (substitution (r,s))

• rock ↔ rocky: 1 (insertion (y))

• rock ↔ sick: 2 (substitution (r,s) and (o,i))

• rock ↔ clock: 2 (insertion (c) and substitution (r,l))

• rock ↔ rcok: 1 (transposition (o,c))

This method, differently than embedding similarity, is agnostic to any meaning
of the words and it is only based on positions of characters in the words being
compared.

2.2.7 Deep Learning

In Machine Learning, the effort lies in creating computer programs that are able to
improve its performance in some task automatically, through experience (Mitchell
[1997]). The task can be in multiple domains and the experience comes from the

21

data. A variety of paradigms and algorithms compose this multi-disciplinary field
of studies, being Deep Learning one of them.

In some learning tasks, it is difficult for the computer to understand the raw
input data, e.g the meaning of the pixel values in an image recognition task.
Therefore, mapping from pixels to object classification in a single function is very
complicated (Goodfellow et al. [2016]). Deep Learning addresses this issue by
having multiple layers applying mathematical functions that create new repre-
sentation of the input. Each layer extracts features and build a representation
simpler to be understood by the next layer. In the image recognition example,
one can think as the first layers extracting the edges of an image, followed by
corners and contours, and lately object parts. From the representation of object
parts, a classification layer is able to learn how to map the inputs to the labels.

As the model parameters grow with depth, Deep Learning models usually
require larger datasets for the learning process. With the increase of hardware
capabilities, Deep Learning models became more feasible and its performance is
the State of the Art specially in NLP and Computer Vision tasks. Adding layers
to Multi-layered Perceptron (MLP) is the first intuition expecting a model to learn
from very low level features, but in practice does not perform well. Therefore,
some modern approaches were developed, such as Convolutional Neural Networs,
and Recurrent Neural Networks.

Convolutional Neural Networks- CNN

Three important characteristics serve as motivation for the development and use
of Convolutional Neural Networks (CNN): sparse interactions, parameter sharing,
and equivariant representations (Goodfellow et al. [2016]). First, let us investigate
the convolution operation. Largely used in signal processing for Linear Time
Invariant (LTI) systems, this operation shows that a signal can be represented
by the weighted sum of impulses shifted in time (Haykin and Van Veen [1999]).

x[t] =
∞∑

k=−∞
x[k]δ[t − k] (2.18)

being x[t] a discrete signal, x[k] the value of the signal in instant k and δ[t−k]
the impulse in instant t. The convolution operation above can be also represented
by the asterisk symbol as (x ∗ δ)(t). Switching from signal processing in engi-
neering to Machine Learning nomenclatures, let us refer to x as Input and δ

as the Kernel. In ML applications, such as image processing, the Inputs can

22

be multiple dimensional arrays, and therefore the Kernel should also be multi
dimensional. In the case of a 2-dimension input, e.g pictures, the convolution
operation would be like:

x[i, j] = (I ∗ K)(i, j) =
∑
m

∑
n

I(m, n)K(i − m, j − n) (2.19)

being a commutative operation, it can be rewritten in a form more suitable
for machine learning implementation:

x[i, j] = (I ∗ K)(i, j) =
∑
m

∑
n

I(i − m, j − n)K(m, j) (2.20)

Note that when the index in the input increases, the index in the Kernel
decreases. This is necessary to keep the commutative property. However, this
property is not important in neural networks (Goodfellow et al. [2016]) and there-
fore implemented without flipping the Kernel as:

x[i, j] = (I ∗ K)(i, j) =
∑
m

∑
n

I(i + m, j + n)K(m, j) (2.21)

Figure 2.8 shows an example of convolution where the kernel traverses the
input only through valid position, i.e. within the input. Imagine the kernel
’sliding’ over the input, and the output takes the summation of the element-
wise multiplication between Kernel and the Input values it ’touches’. Note that
traversing through only valid positions the output has smaller dimension. If Ii,j,
Km,n, output Oi−(m−1),j−(n−1).

Traditional MLP have a matrix of parameters describing interaction from
each input unit to each output unit, i.e connections between the layers. In CNN,
the interaction sparsity happens as the Kernel has a size smaller than the input.
Therefore, each input unit is connected to at most the total number of parameters
in Kernel.

Not only the Kernel promotes sparse interactions due to its size being smaller
than input size, the same Kernel values are used all over the input. Instead
of learning a full set of parameters connecting a input unit to all output units
as in MLP, in CNN layers the weights in the Kernel are applied in multiple
input signals, so the kernel parameters are shared by virtually all the inputs
(with exception to the boundaries). However, although the direct connections
are sparse, the deeper the CNN, the more input signals would reach each output
unit.

23

Figure 2.7: 2-D convolution without Kernel Flipping. Goodfellow et al. [2016]

The equivariant representation idea, indicates that for some changes in the
input, the output changes similarly, e.g, if an object in a input image is shifted
somewhere else, the output of the convolution operation would be the same as
applying the convolution and later the shift (Goodfellow et al. [2016]). This
is very useful as for identifying patterns that might be appearing in different
locations in an image, or events in a time series.

A typical convolutional layer performs the convolution operation, which can
consist in multiple kernels at the same time in parallel. Then applies the non-
linear activation function, usually ReLU, sigmoid or tanh, in a stage known as
”Detector Layer”, and lately, a pooling operation (Goodfellow et al. [2016]).

Pooling

A pooling operation summarizes the convolution output. This is obtained by re-
placing the values in a certain location by the statistical representation of nearby
outputs (Goodfellow et al. [2016]). Two examples of pooling operations are max
pooling and average pooling. The pooling operation has also some kind of ”rect-
angular window” that traverses the values outputted after activation function.
The operation, then, reports the maximum output seen in the window (for max
pooling) or the average of the outputs seen in the window (for average pooling).

24

Figure 2.8: When multiple CNN layers are stacked, the receptive field in last
layers receive signal (indirectly) from wide range of units from input. (Goodfellow
et al. [2016])

Figure 2.9: Taking an output layer after convolution and activation function
applied, the average pooling and max pooling operations are displayed for pool
size 2x2 and stride 2. (Source: https://medium.com/@Aj.Cheng/convolutional-
neural-network-d9f69e473feb)

Regardless of the pooling method mentioned above, this operations results in
a vector representation ’invariant’ to small translations on input. Given the input
is shifted in one direction, the output of pooling would have smaller changes. The
larger the pooling window, the highest the invariance aspect.

The relative invariance to translations is a very important feature of CNNs. In
many cases, it is more important if a feature is present than its exact location. In
a sentence, for example, words can change the order and still keep same meaning.
This is one of the motivations when using convolutions for sentence encoders as
in 2.5. In images, the exact location of an eye is not determinant to classify if
the picture contains a face.

25

Figure 2.10: On the top, pooling output for pool size = 3, stride = 1 on first row,
based on values of activation function in second row. On the bottom, the input
is shifted to the right, changing the values of activations in all positions, but still
on pooling output just half of values changes. (Goodfellow et al. [2016])

Recurrent Neural Networks - RNN

Recurrent Neural Networks are a type of neural networks specialized in processing
sequence of values (Goodfellow et al. [2016]). Convolutional networks are able to
scale up to large inputs in a grid representation. Similarly, Recurrent networks
can process sequences of variable lengths, being these sequences much longer than
any other type of network would be able to handle.

One key point to make recurrent networks feasible is parameter sharing across
different parts of the model, so that the trained model can be used for sequences
of different lengths and generalize across them. An example enabled by this
structure is the identification of pieces of information in sequences of different
lengths, or different ordering:

Michael Jordan was the best basketball player of Chicago Bulls.

The best basketball player of Chicago bulls was Michael Jordan.

Supposing both sentences above would be processed in a Multi Layer Percep-
tron handling fixed sequence lengths (using padding in case of short sentences,
for example), each word would have an independent set of parameters according
to its position in the sentence. Therefore, ”Michael Jordan” in the first sentence
would be multiplied by the same weights as the words ”The best” in second sen-
tence. Consequently, the network would need to update all the parameters to

26

learn all language rules in all possible positions in a sentence. The RNN, instead,
share the same weights across several time steps.

When describing the convolutional operations, it was mentioned that CNNs
also have parameter sharing. However, the output of CNN is a function of small
neighboring members of the input, whereas in RNN the output is a function of
the previous outputs and the new input, computed using the shared parameters:

h(t) = f(h(t−1), x(t); θ) (2.22)

h(t) is the current state, h(t−1) is the previous state, x(t) is the current input,and
θ is the set of parameters shared throughout the computations. This recursive
implementation allows for much deeper network. For a defined sequence length,
the ”unfolded” recurrent representation can be obtained, as in figure 2.11.

Figure 2.11: RNN cell unfolded as a graphical representation of Equation 2.22.
(Goodfellow et al. [2016])

This kind of neural networks can be used to train how to predict the future
state based on the past states, taking h(t) as a representation of the whole se-
quence. One example would be to train a language model to predict the next
word given a sequence of words. The state h(t) is a lossy representation of the full
sequence (Goodfellow et al. [2016]) but some mechanisms can be implemented to
selectively keep some aspects of the past sequence. Gated RNNs, such as LSTM
and GRU, are specialized architecture to control which information is allowed to
pass through the states.

LSTM - Long Short-Term Memory

Long term dependencies are problematic in Recurrent Neural Networks. Gradi-
ents propagated over many stages during the training either vanish or explode.
LSTM cells introduce self-loops to allow the gradient to flow for long duration
(Goodfellow et al. [2016]). This architecture also innovates by implementing a cell
state ct that accumulates state information (Shi et al. [2015]). Self-parameterized
gates control how new information is accumulated to the cell and how the previ-

27

ous are forgotten. The structure is shown in Figure 2.12, and the computations
happening within a LSTM cell are presented in Equation 2.23.

Figure 2.12: LSTM cell and all its gates. Source:
http://colah.github.io/posts/2015-08-Understanding-LSTMs

ft = σ(Wxfxt + Whfht−1 + bf)

it = σ(Wxixt + Whiht−1 + bi)

ct = ft ◦ ct−1 + it ◦ tanh(Wxcxt + Whcht−1 + bc)

ot = σ(Wxoxt + Whoht−1 + bo)

ht = ot ◦ tanh(ct)

(2.23)

Where ◦ denotes element-wise multiplication. ft stands for the forget gate. This
gate is responsible to decide which information on the cell state should go through
the next cell state. It looks at ht−1 and xt, multiplies by the weights and applies
sigmoid function. The output of sigmoid is a number in the interval [0,1] that
multiplies ct−1. If 0, all previous information is forgotten’; if 1, all information
passes through the next cell state. it is the input gate. Here the LSTM cell
decides the new information to be added to the cell state. Similarly to forget
gate, a sigmoid is applied after the linear transformation of new input and pre-
vious hidden state, to decide how much of the new input should be added. The
candidate values to be added is given by tanh(Wxcxt + Whcht−1 + bc). At this
point, ct updates are known, consisting in what to forget from previous cell state,
and what to add to new cell state, resulting in the ct value described in Equation

28

2.23. ot is the output gate and, similarly to all other gates, outputs a number on
interval [0,1] that defines how much of the updated cell state ct goes through as
the cell output ht. The cell state ct is also transformed to the interval [-1,1] by
the application of tanh non linearity before the multiplication by ot.

The LSTM enabled many tasks to be successful. Some examples are speech
recognition, handwriting generation, machine translation, and image caption
(Goodfellow et al. [2016]).

29

3. Methodology
In this chapter the datasets and the components of the expert classification tool
developed to feed the recommender system are described.

3.1 Objective

In people’s profile data, most of the fields, including the one about a person
expertise, are filled as free text and are also optional, resulting in incomplete
profiles. However, its content is validated by users themselves and the data
presented there should be reliable.

Combined with other document collections, the profile data can be used for
expert finding, and its completeness might increase the performance of such re-
trieval task. The target of the proposed system is to train a classifier that es-
timates the probability a user is an expert in a given topic. The input samples
for the classifier are built from the document collection, and the available profile
data is used to construct the target values. The predictions of this classifier shall
feed a Topic Recommendation System that sends suggestions of topics someone
might know about. The recommendations are expected to be validated by the
users, and the ones accepted are automatically added to their profiles. Therefore,
the users’ feedback (accept or reject topic) can be used to evaluate the system
and, additionally, more data is collected to retrain the model iteratively.

3.2 Data Collection

The data used in this work has been provided by a private company and is
confidential. The main data sources are, thus, described in terms of their char-
acteristics, but content will remain undisclosed.

3.2.1 Internal Publications

The Internal Publications is a collection of documents that covers a diverse num-
ber of topics. It comprises in reports of outcomes resulting from multidisciplinary
studies worldwide. Experts publish their work on intranet, resulting in a knowl-
edge repository, composed mainly by PowerPoint and PDF files. By the time of
this study, the collection had 36486 documents and the following fields:

30

• ID: Unique identifier of the document: 36486 documents.

• Authors: Each document might have one or more authors. The total num-
ber of authors is 28272, identified by distinct user IDs.

• Title: The title of the document

• Abstract: Each document contains a short description with average 90
words, explaining the content of the document

• Primary Content: This field holds the parsed bodies from PowerPoint or
PDF files. Contains average 5840 words.

• Authored Date: Date of publication of the document.

3.2.2 Previous Work Assignments

Another source of information is the data related to previous work assignments.
Each project executed by group of experts has a list of related topics and list
of workers in the team assigned for the task. This collection contains data for
37621 projects, and 26509 unique employees participating in them. The fields of
interest in this data are:

• Project ID: Unique identifier of the document: 37621 in total.

• Team Person IDs: Each document explicitly identifies the workers assigned
to the project described in the document. There are 26509 unique person
IDs.

• Team Incurred Hours: Number of hours each person dedicated to the
project.

• Team Roles: Role each person played in the project.

• Primary Terms: The expert managers assign topics which the project is
related to. On average, 7 topics are assigned per document.

3.2.3 ”Topics I Know” in Profiles

One important section in people’s profiles is called ”Topics I Know”, and is filled
as free text by the users themselves, listing their skills. Currently, there are
119449 entries in profiles, being 27447 unique ”topics” (they can not be assured

31

to be relevant topics, as it is a free text field) for a total of 38013 active users.
However only 10487 of the active users have at least 1 topic filled in their profiles.
For the purpose of this study, the focus is in a subset of 17753 users that belong
to a specific category of employees. From this subset, 7539 have at least one topic
filled in the section Topics I Know in their profiles.

3.2.4 Taxonomy

The taxonomy is structured as a graph that is supposed to hold the topics covered
by all the projects executed by the organization. It is built by experts and
currently 4600 topics compose it, starting from the most abstract terms and
going deeper to specific detailed topics. The maximum depth of the taxonomy is
10. An example of small section of the taxonomy is shown in Figure 3.1.

Industry

Automotive Pharmaceuticals

Automotive Components Drugs & MedicationAutomotive Retailing

Automotive Electrical Components

Figure 3.1: Example of how the taxonomy graph is structured.

All topics for expert profiling or query topics for expert finding discussed
further on should be taken from this taxonomy.

3.3 Expert Classification Tool

Classifying the users with respect to their expertise consists ultimately in building
a matrix associating the person to the topics assigning a score for each pair person-
topic. Table 1.1 shows an example of such representation. The scores represent
the degrees of association between topics and people, or the probability a person

32

p is an expert in topic t. Now, the proposed steps to get this table completed are
described.

3.3.1 Classification of Documents

Considering the topic queries are fixed in advance by the taxonomy set, it is
proposed to classify the documents as a initial step. They can be associated to the
employees later (by authorship, for example), and the authors can be represented
by a concatenation of their documents representations. Therefore, all documents
are classified assigning labels taken from the taxonomy. Optionally, knowing it
has a graph structure, a subset of these terms can be selected to perform the
classification, for example setting minimum depth in the graph and taking only
terms deeper than it, controlling how granular the topics should be.

Internal Publications:

Internal Publications, described in 3.2.1, compose the biggest set of documents.
Its classification consists of associating each document to Taxonomy terms. Later
on, the frequency of each term assigned to the document is taken as a measure-
ment of how strong a document is associated to the term. To achieve these
representations for all documents, as in table 3.1, the following steps are per-
formed:

topic1 topic2 topic3 topic4 . . .
document1 3 1 0 9 . . .
document2 2 0 1 4 . . .
document3 5 0 0 2 . . .
document4 0 0 2 1 . . .

...

Table 3.1: Association between documents and topics.

Keyword Extraction: The first step for labeling the documents is to extract
the keywords, more specifically n-grams, from the texts. The n-grams can
be generated in two ways: all possible n-grams in some range ([1,3] for
example), or using word collocation (”phrases”) as proposed in Mikolov
et al. [2013b]. After the vocabulary is built as the n-grams, the TF-IDF
score can be calculated for each of them.

33

The TF-IDF score ranks the importance of the words for each document.
A fixed number of keywords per document can be extracted as the most
important words, or an amount proportionally to document length can be
taken. E.g., extracting the top 5% n-grams from a document of 1000 n-
grams would return 50 n-grams. Note that, if the vocabulary is composed by
all possible n-grams, a document with 100 words would ultimately generates
100 unigrams, 99 bigrams, 98 trigrams, and so on. Using word collocation
to build the vocabulary, its size cannot be known in advance. At the end
of this step, for each document there would be a list of keywords (n-grams)
and their respective TF-IDF scores. A minimum score is set as a threshold
for a keyword to be considered.

Word2vec CBOW: Word2vec models were trained in the Internal Publications
using traditional CBOW method. As the semantics of n-grams are not
simply given by the composition of each word individual meanings, the
method to generate phrases proposed in Mikolov et al. [2013b] can also be
applied. This reduces the size of vocabulary and speed up the training,
while still captures important n-grams. It could also be trained in all n-
grams, but it would require much heavier computation.

More details on parameters and implementation will be presented later in
Chapter 4.

Keywords Augmentation: To allow for semantic matches, similar words, e.g.
words/phrases that have high cosine similarity score (measured between
the vectors from embeddings), are added in a list for each of the keywords
extracted. An example to clarify the idea: A document Da containing a
n-gram artificial intelligence would probably have a similar term machine
learning from document Db matching by embeddings similarity because
both terms would appear in similar context. This helps in a sense that
keywords from a document are expanded using words that are not present in
the document itself, but are observed in similar contexts on other documents
within the collection. Summarizing, it is an attempt to add words with
similar meanings, or synonyms related to the set of keywords.

The result of this step is the augmentation of the list of keywords obtained
in Keyword Extraction step.

34

String Matching with Taxonomy Topics: Having the list of Keywords al-
ready augmented, one last step is needed to assign labels to the documents.
For each document keyword, a string match with topics from the Taxonomy
is tried. To add flexibility in this matching, considering some words can have
typos or small differences, e.g. American and British English particulari-
ties, some tolerance is allowed based on Damerau-Levenstein Distance. For
example, the DL-distance between two words can be set to be at most 15%
of string length. Consider that ”analyze” has length 7 and 15% would al-
low for distance=1 in this metric. Therefore it would match with ”analyse”
(DL distance is 1 in this case by substitution operation) and this keyword
match would not be lost.

The output of the steps above is a set of topics per document, with the count
of how many times they had matched with keywords previously extracted, gen-
erating a table similar to example Table 3.1. Multiple matches to the same topic
can happen due to Augmentation step. For example, let us assume ”Milk” has
a word embedding very similar to ”Yogurt”. In case ”Milk” belongs to Taxon-
omy and the document contains both words, it would count one match between
”Milk” keyword and ”Milk” label, and also a match between ”Yogurt” keyword
and ”Milk” label. Regardless, the count gives an idea of how much the document
is related to each topic. It is expected that higher counts on specific topic means
the document is more related to it.

Previous Work Assignments:

Similarly to what is done for the Internal Publications, the Previous Work As-
signments should also be classified by assigning taxonomy terms as labels. The
word2vec model trained on Internal Publications is used to perform the Keywords
Augmentation taking the Primary Terms directly as the keywords, considering
they are already given. Next, the String Matching is done exactly the same
way as mentioned previously for Internal Publications. Let us call this method
”standard”.

Additionally, an alternative way for classifying these documents is proposed.
This collection has human-assigned labels (Primary Terms). Knowing all the
terms in this field are assigned by experts and very likely describe accurately
the document, a direct semantic match seems a suitable option in addition to the
string matching presented previously. To do so, the following steps are performed:

35

Encode All Terms as Vectors: Semantic matching requires a vector represen-
tation to encode meaning of the terms and lately their similarities can be
computed. Word2vec model trained on Internal Publications provides possi-
ble embeddings for the terms. However, the vocabulary obtained is limited
to the words seen in those documents. Therefore, another powerful and
flexible embedding can be utilized.

Flair Embeddings: Flair embeddings (Akbik et al. [2018]) is a character level
language model. Therefore it can encode any sequence of characters. The
model pre-trained on Web, Wikipedia and Subtitles (mix-forward and mix-
backward in Flair Embeddings 1) is taken as a starting point, and transfer
learning is done, continuing the training on proprietary collection. The
assumption on transfer learning for language models is that general En-
glish is already learned from the large corpus, and the model specializes in
vocabulary, jargons and context of the smaller proprietary collection.

After training, all topics (n-grams) can be encoded using the same technique
used for sentence encoding. Flair offers pool or RNN options. In pool
each word is encoded separately, and the topic is represented by the vector
obtained by averaging the vectors that represent each of word composing
the topic name. For RNN, the embedding for each word is used as input
to an RNN layer, and the hidden state vector in output cell is taken as the
sentence embedding.

Topics Filtering: An optional step is to filter out some topics. When the em-
bedding vectors are calculated for all topics, it is expected that the encoder
performs well enough to produce vectors that are close in the vector space
only when they are semantically similar. Therefore, if many topics have
high cosine similarity to each other, very likely it is a result of bad perfor-
mance of the encoder. This issue might happen to terms not seen frequently
in training data, for example, meaning their final vector representation are
closer to random initialization than to the place around the words from
similar context. A possible solution for this issue is to get list of similar
topics for each topic, based on a similarity metric such as cosine distance.
Setting a high similarity threshold and counting how many words are in
each list, the cleaning step consists in removing the topics with long lists.

1https://github.com/flairNLP/flair/blob/master/resources/docs/embeddings/
FLAIR EMBEDDINGS.md

36

 https://github.com/flairNLP/flair/blob/master/resources/docs/embeddings/FLAIR_EMBEDDINGS.md

The assumption is that long lists are results of encoding issues rather than
a topic in taxonomy would really be similar to many others. The list length
to be considered ”long” is defined by a parameter.

Semantic Matching: To start this process, the following content are already
encoded as vectors (embeddings):

• All taxonomy topics.

• The Primary Terms of Work Assignments.

All pairwise combinations of taxonomy topics and Primary Terms can be
evaluated with respect to their embeddings similarities. The metric used is,
again, cosine similarity. A high threshold is set so that all matches above
it are taken A low threshold is defined so that, if no word matches above
high, the best match within the range [low, high] is taken. These thresholds
are in the parameter settings of the model.

Summarizing, two methods described above are used independently to assign
a set of topics to each document:

• Primary Terms as keywords, Augmentation by word2vec trained on In-
ternal Publications followed by String Matching with Damerau-Levenstein
tolerance.

• Flair embeddings: Semantic matching comparing taxonomy topics to Pri-
mary Terms.

Now all the documents are classified/labeled with the taxonomy topics that
have matched in one of the methods selected. Despite all above mentioned ap-
proaches being implemented, their results can be selected independently. Some
comparison of the results of each method will be showed later on chapter 4.

”Topics I Know”:

Similarly to Primary Terms, the topics written in profiles are human curated and
should be contain meaningful words. Therefore, the same previous methods are
performed to classify them with closest labels from taxonomy topics:

String Matching with Taxonomy Topics: Augmentation of each ”Topic I
Know” by word2vec similar words and direct match with DL distance as
tolerance.

37

Ecoding using Flair: Compute the embeddings for each ”Topic I Know” and
Taxonomy Topics using Flair and follow the steps:

• Topics Filtering on the labels set.

• Semantic Matching calculated as cosine similarity between ”Topics I
Know” and filtered taxonomy topics.

Finally, a list of topics per expert is produced, based on the matching of
taxonomy with the skills found in their profiles section ”Topics I Know”. One
assumption is that a topic present in the profile is a true indication that the user
knows it, but the absence of a topic not necessarily represents he/she does not
know about it. Also, uncertainties are added since unsupervised approaches are
used for matching profile topics with taxonomy topics (keyword augmentation
and direct semantic matches). Nevertheless, all matched topics are later assumed
to be relevant when training the classifier.

3.3.2 Expert Classification

In the previous sections the intent was to build the input and target data to
train a classifier in supervised fashion. The aim now is to develop a multi-label
classifier capable of learning how to estimate the probability a person knows about
a topic. Many classifiers can be devised for this task, but neural networks with a
convolutional layer can address one characteristic of the input data: the features
are not fully independent from each other. The input features are topics from
taxonomy, that is already constructed in a hierarchical way so that terms under
same lineage are closer related to each other than to terms in other branches.
Not all classifiers could take advantage of this particularity, thus this choice.

Another step proposed is to order the input features so that related topics are
placed consecutively. More details on ordering implementation is given in Chapter
4. Having the input ordered, a convolutional layer composed by convolution and
max pooling operations is expected to extract the most important feature for the
next layer. In this particular case, differently from image recognition, it is not
expected that the weights on kernel filters learn patterns that can be in different
positions of the input vector (e.g. A wheel in bottom left corner or in bottom
right corner is identified as a wheel). A pattern in a region of the input with
topics related to Data Science definitely have different meaning compared to the
same pattern in a region with topics related to Medical Devices, if these patterns

38

would eventually occur. Therefore, the important feature of the convolution layer
is more related to the max pooling operation, extracting the highest valued topic
for the next layer, although some input patterns can be learned and extracted to
next layers in the network.

Figure 3.2 shows the intuition of what is expected when applying a max
pooling with 1x3 pool size and stride=3 in an artificial example considering values
after the convolution operation. However, this is an extreme best case scenario
example, as the number of related topics in same groups vary and there is no single
pooling window that could fit all cases, making the task much more complex to
be learned by the network.

Figure 3.2: Example of feature extraction in max pooling layer

Its interesting to observe in this example, that someone who knows one of the
related topics would produce similar values for next layer compared to another
user knowing a topic in the same group. The feature extraction is learned during
the training of the neural network, where the weights of the kernel filters are
updated.

Ensemble generally produce more accurate results than individual classifiers,
and theoretical and empirical research demonstrated that a good ensemble is the
one where the errors of individual classifiers lies in different parts of input space
(Maclin and Opitz [2011]). Given the input and target data are generated from
unsupervised approaches, and also the previously mentioned incompleteness of
the target data due to missing data on profiles, it is proposed in this work to use
a bag of neural networks. The assumption is that the classifiers in the ensemble
could learn how to fill the gaps in different profiles learning from randomly sam-

39

pled inputs (bootstrapping). Neural Networks are also unstable due to random
initialization of weights, making the individual classifiers unique and suitable for
ensemble methods.

Summarizing the proposed classifier:

Input Ordering: Organize input features in a sequence that groups related top-
ics.

Target Data: Some topics in target data have too little input samples, meaning
a model can not learn a pattern to classify the user with respect to these
topics. Therefore, there might be needed a reduction to fewer topics. The
implementation of this step is discussed in Chapter 4.

Classifier: Neural Networks with Convolutional Layer to extract features to next
dense layers where the classification is learned, optimizing the F0.5 score.

Ensemble: Build an ensemble of 250 classifiers based on bootstrapping and bag-
ging, training individual neural networks. Take the averaged predictions as
the final prediction of the model.

Predictions: As the models are trained in sampled inputs, each model ends
up seeing different samples during training. Moreover, the target data is
incomplete, meaning a 0 in target data might indicate a missing topic in
Profile. Therefore, the averaged predictions is taken from all data used
for training and validation (users that are authors in Internal Publications,
participated in Previous Work Assignments, and have at least one topic in
their Profiles), assuming the ensemble compensates for the missing topics
in profiles. Also, averaged predictions for test set (users for which there are
input data, but there were no topics in their profiles) is computed for the
recommender system and further evaluation based on users feedback.

40

4. Expert Classifier
Implementation
In this Chapter, the implementation details of the proposed approach in Chapter
3 are discussed. The codes are fully available in GitHub 1.

4.1 Baseline model

The baseline line model is implemented as a document-based method, relying on
the retrieval system BM25+, an improved BM25 version where the score is given
by Equation 2.16. This model was selected for its ease of implementation and
for having results comparable to the ones obtained by generative models (Balog
et al. [2012]) described in Chapter 2. In this baseline the parameter values are
k1 = 1.5, b = 0.75, and δ = 1.

To build a table as Table 1.1, firstly one similar to Table 4.1 for documents is
built. The association between topics and documents (the Internal Publications
in this case) is given by the BM25+ scores for each document, given each topic
query taken from taxonomy.

topic1 topic2 topic3 topic4 . . .
doc1 3 0.1 0 6.2 . . .
doc2 2.7 1 0 0 . . .
doc3 0 0 0 6 . . .
doc4 0 0 0 0 . . .

...

Table 4.1: BM25 scores for each document from Internal Publications, for each
taxonomy topic.

Having this table and the authorship of the documents, the table for the
authors can be constructed, having as topic score:

score(q, a) =
∑

dϵDa

S(q, d)
max(S(q)) × e

−td
T (4.1)

where q is the query topic, a is the author, Da is the collection of documents
author a participated in, S(q, d) is the BM25+ score for document d given topic
query q, max(S(q)) is the maximum score of a document given query q, this term

1https://github.com/felipenv/expertise-retrieval/tree/master/src

41

https://github.com/felipenv/expertise-retrieval/tree/master/src

is responsible for scaling all scores to the [0,1] interval. Scaling makes difference as
in BM25 queries with different lengths usually produces scores in different ranges,
and scaling make the scores comparable for all topics. td is the time in years since
document d was written, and T is the information retention constant. This is
a parameter setting, and can be seen as the amount of years to have knowledge
decaying by the factor of e−1 ≈ 37%.

e
−td

T approximates the forgetting factor, and obsolescence of content. It is
inspired by the psychology studies on knowledge retention (Rubin et al. [1999])
and also by the half life of content (Arbesman [2012]). Therefore, even the docu-
ment being related to some topic, the author might not know it anymore due to
forgetting it, or obsolescence of the topic.

Equation 5.1.1 is defined inspired by Document Model Balog et al. [2012] and
the additional forgetting factor privileges people currently applying knowledge in
some topic. The result with and without this factor is presented in Chapter 5.

4.2 Document Classification

The document classification is performed following the steps described in Chapter
3. Following, some implementation details are discussed.

Keyword Extraction

All Internal Publications Abstract and Primary content where used to train the
TF-IDF model. First, they were cleaned by removing English stop words2. After
some experimentation with different parameters, and manual evaluation of key-
words extracted for some documents, the model used for the downstream tasks
was the one trained with the following parameters:

• minimum document frequency: 5

• maximum document frequency: 0.5 * |D|

• n-gram range: [1,3]

• n-gram method: ’All’

The minimum document frequency of 5 seems to exclude partially the noise
due to parsing from PPT or PDF (e.g. object names, characters representing

2https://gist.github.com/sebleier/554280

42

bullet points, text hidden by figures), but the frequent noisy terms are still kept.
Increasing the value of this parameter would start to ignore rare, but important
words. Using all possible n-grams makes it heavier for the computation. However,
as later on they are filtered by string matching with human curated terms, in
this way we do not miss n-grams that would not be in the vocabulary in a more
strict method like Phrases. The extraction parameters are ratio of total words in
document vocabulary (including all possible n-grams generated) and minimum
TF-IDF score. The parameter values in this case were 0.05 for ratio, and 0.01
for the score. This step was implemented utilizing mainly TfidfVectorizer3 from
scikit-learn.

Word2vec CBOW

In parallel with the Keyword Extraction, the word2vec model is trained on the
exactly same set of documents. Here, n-grams vocabulary is built using ”Phrases”
method, as the computation demanded for word2vec training is much higher than
for TF-IDF. The parameters used were:

• minimum document frequency: 5

• size: 300 dimensions

• window: 10

• n-gram method: ’Phrases’ for bigrams and trigrams.

The implementation is built over Gensim Word2Vec models, and the param-
eters not mentioned here are kept as default values from Gensim package 4.

4.3 Internal Publications Classification

Having the keywords extracted and the word2vec model trained, the document
labeling can be performed. The first step is to expand the keywords by semantic
similarities, computed as cosine distance between word vector pairs. The param-
eter and their default values 5 used for this expansion and their descriptions are
as following:

3https://scikit-learn.org/stable/modules/generated/sklearn.feature extraction
4https://radimrehurek.com/gensim/models/word2vec.html
5Values selected after experimenting with several different settings and manual evaluation

of sampled documents

43

• w2v similarity: 0.75. Minimum cosine similarity to accept a word as similar.

• max similarities: 5. It was empirically verified that when a word has too
many similar words by word vector similarity, the word2vec encoding is
generally not accurate. Most likely due to the lack of input data covering
that word. If a word has the count of similar words higher than this pa-
rameter value, they are all removed assuming their encoding is most likely
inaccurate.

Having the keywords expanded, they can be matched with the topics. The
taxonomy structure, is in fact an Directed Acyclic Graph, as a term might have
multiple paths that leads to it. The higher in the tree, the more generic is the
term. The amount of terms at each level are:

0 1 2 3 4 5 6 7 8 9
n Topics 3 30 325 1489 1911 665 260 65 18 7

Table 4.2: Number of taxonomy topics at each level. Level 0 is the most generic,
level 9 the most specific

Therefore, it might be useful to set a minimum depth on this DAG, or a
maximum height if looked bottom-up, and take terms that are granular enough
for the document classification. The parameters in this step and their default
values are 6:

• Taxonomy Depth: 2. The level on the taxonomy DAG to be minimum
depth or maximum height. When minimum depth, all topics from this
level down are taken. When maximum height, all topics from the leaves till
this level are taken.

• Depth type: minimum depth. Set if it’s minimum depth or maximum
height.

• Damerau Levenstein tolerance: 15%. The number of DL operations allowed
as a percentage of string length.

The effects of the parameters are investigated through plots of the distribution
of amount of keywords per document, before and after the expansion, for both n-
grams methods. Figures 4.1, 4.2 and 4.3 show the results of keyword extraction

6Comparison of multiple values are displayed in graphs throughout this Chapter

44

for some parameters settings. The chart titles indicate the parameter values,
being mindf the minimum document frequency in absolute number, and maxdf

the maximum document frequency as a proportion of number of documents in
the collection.

45

Figure 4.1: Comparison of distribution of keywords extracted using n-gram method ”all”. Bin size = 5. It can be observed that the mindf

parameter affects the distribution, making a reduction of overall number of keywords per document. maxdf controls the impact of very
common words. The higher the maxdf , the higher is overall number of keywords per document. To make the analysis easier, the number
of keywords was clipped at 1000, therefore the last bar represents the number of documents with keywords ≥ 1000

46

Figure 4.2: Comparison of distribution of keywords extracted using n-gram method ”phrases”. Bin size = 5. The effects are same observed
for n-grams ”all”. The phrases method itself produces a massive reduction on number of keywords per document, as expected and observed
by the distribution skewed to the left.. To make the analysis easier, the number of keywords was clipped at 400, therefore the last bar
represents the number of documents with keywords ≥ 400

47

Figure 4.3: Comparison of distribution of keywords extracted using n-gram method ”all”. The observations made looking at the histogram
are clearly confirmed. Increase on mindf skew the distribution, shifting the box to the left (less keywords per document) and making it
narrower. maxdf moves the box to the right (more keywords per document)

48

To continue the analysis of the first steps in document classification, let us
observe the distributions of keywords after the expansion by semantic similarities.
The parameters that control the expansion are max similarities and w2v similar-
ity. It is intuitive that lower numbers for max similarities produce less augmenta-
tion, as all expanded terms could be easily rejected (it can be observed comparing
expanded 0.7 5 all mindf5 maxdf0.5 with expanded 0.7 3 all mindf5 maxdf0.5 in
Figure 4.4). On the other hand, a small w2v similarity allows for more words
to match in the expansion (compare expanded 0.7 5 all mindf5 maxdf0.5 with
expanded 0.75 5 all mindf5 maxdf0.5 in Figure 4.4). Therefore, one parameter
controls the other. If similarity threshold is too low, many words can match on
cosine similarity, and thus max similarities would make all of them be rejected. It
is important to find a threshold where the similar words found are really related,
and only bad encoding would result in a number of matches above it. Table 4.3
shows an overview of main values observed in the charts. For keywords n-grams
= ’all’ each row is followed by the values of its expanded values

Parameters Mean Median std max min
keywords all, mindf5, maxdf0.5 158 121 133 1175 1
expanded w2v sim. 0.70, max sim. 5 205 156 173 1735 0

expanded w2v sim. 0.75 max sim. 5 182 139 152 1479 0
expanded w2v sim. 0.70, max sim. 3 190 145 161 1561 0
expanded w2v sim. 0.75, max sim. 3 176 135 148 1406 0
keywords all, mindf5 maxdf0.8 166 129 135 1174 1

expanded w2v sim. 0.70, max sim. 5 216 166 177 1621 0
expanded w2v sim. 0.75, max sim. 5 191 148 154 1374 0
keywords all, mindf2 maxdf0.5 209 161 169 1638 1

expanded w2v sim. 0.70, max sim. 5 256 196 208 1949 0
expanded w2v sim. 0.75, max sim. 5 233 179 188 1790 0
keywords all, mindf2 maxdf0.8 217 168 171 1487 1

keywords phrases, mindf5, maxdf0.5 46 35 41 755 0
keywords phrases, mindf5, maxdf0.8 46 36 41 755 0
keywords phrases, mindf2, maxdf0.5 59 44 56 1702 1
keywords phrases, mindf2, maxdf0.8 60 45 56 1703 1

Table 4.3: Median and rounded mean and std, maximum and minimum values
for number of keywords per document in Internal Publications, followed by their
expanded sets.

49

Figure 4.4: Comparison of distribution of keywords expanded for keywords extracted on n-gram method ”all”. Bin size=5. The number
of keywords was clipped at 1000, therefore the last bar represents the number of documents with keywords ≥ 1000.

50

Finally, after having the keywords already expanded, the string match between
them and the taxonomy topics is performed. For some different parameters set-
tings the distribution of labels over the documents are displayed. On Table 4.4
one can notice that the parameters for keyword extraction and expansion other
than n-gram method does not affect significantly the number of labels further
assigned, specially for ”phrases” method. For ”all” method, it slightly changes
the distribution.

Parameters Mean Median std max min
w2vSim0.70, DL0.15, depth2, keys: all, mindf2, maxdf0.5 7 5 7 124 0
w2vSim0.70, DL0.15, depth2, keys: all, mindf2, maxdf0.8 7 5 7 105 0
w2vSim0.70, DL0.15, depth2, keys: all, mindf5, maxdf0.5 6 4 6 183 0
w2vSim0.70, DL0.15, depth2, keys: all, mindf5, maxdf0.8 7 5 6 177 0
w2vSim0.75, DL0.15, depth1, keys: all, mindf2, maxdf0.5 6 4 6 114 0
w2vSim0.75, DL0.15, depth1, keys: all, mindf2, maxdf0.8 6 5 6 100 0
w2vSim0.75, DL0.15, depth1, keys: all, mindf5, maxdf0.5 6 4 6 186 0
w2vSim0.75, DL0.15, depth1, keys: all, mindf5, maxdf0.8 6 5 6 160 0
w2vSim0.75, DL0.15, depth2, keys: all, mindf2, maxdf0.5 6 4 6 103 0
w2vSim0.75, DL0.15, depth2, keys: all, mindf2, maxdf0.8 6 4 6 87 0

w2vSim0.75, DL0.15, depth2, keys: all, mindf5, maxdf0.5 5 4 5 162 0
w2vSim0.75, DL0.15, depth2, keys: all, mindf5, maxdf0.8 5 4 6 145 0

w2vSim0.70, DL0.15, depth2, keys: phrases, mindf5, maxdf0.5 2 1 3 48 0
w2vSim0.70, DL0.15, depth2, keys: phrases, mindf5, maxdf0.8 2 1 3 46 0
w2vSim0.70, DL0.15, depth2, keys: phrases, mindf2, maxdf0.5 2 1 3 87 0
w2vSim0.70, DL0.15, depth2, keys: phrases, mindf2, maxdf0.8 2 1 3 85 0
w2vSim0.75, DL0.15, depth1, keys: phrases, mindf2, maxdf0.5 2 1 3 88 0
w2vSim0.75, DL0.15, depth1, keys: phrases, mindf2, maxdf0.8 2 1 3 86 0
w2vSim0.75, DL0.15, depth1, keys: phrases, mindf5, maxdf0.5 2 1 3 50 0
w2vSim0.75, DL0.15, depth1, keys: phrases, mindf5, maxdf0.8 2 1 3 49 0
w2vSim0.75, DL0.15, depth2, keys: phrases, mindf2, maxdf0.5 2 1 2 84 0
w2vSim0.75, DL0.15, depth2, keys: phrases, mindf2, maxdf0.8 2 1 2 82 0
w2vSim0.75, DL0.15, depth2, keys: phrases, mindf5, maxdf0.5 2 1 2 47 0
w2vSim0.75, DL0.15, depth2, keys: phrases, mindf5, maxdf0.8 2 1 2 47 0

Table 4.4: Median and rounded mean and std, maximum and minimum values
for number of taxonomy labels assigned per document in Internal Publications.
In Parameters column, the name indicates parameters: w2v similarity, Damerau
Levenstein tolerance, taxonomy depth, followed by parameters used for keyword
extraction - min document frequency and max document frequency proportion.

For a document level observation, 50 documents are sampled from the whole
collection and plot the number of labels per document, for the same parameters.
Figures 4.5 and 4.6 exhibit these charts. Roughly, with all n-grams, the amount
of tags are twice as high compared to ”phrases”. Considering the tags are resulted
from string matching with human-curated set of terms, it is worthy using ”all”
method.

51

Figure 4.5: Comparison of labels assigned per documents on 50 samples. ”all” n-grams in original keywords.

52

Figure 4.6: Comparison of labels assigned per documents documents on 50 samples. ”phrases” n-grams in original keywords.

53

4.4 Previous Work Assignments Classification

To classify the documents related to Previous Work Assignments (also known
as ”engagements”), the steps are similar as the ones aforementioned, except by
the keyword extraction. Firstly, the Primary Terms are taken as the keywords,
then the expansion with word2vec is performed, followed by the string match.
Besides that, the semantic match between the Primary Terms and Taxonomy
topics is computed, using Flair to embed the terms and the topics. Figures 4.7
and 4.8 show the distribution of keywords on this collection. Note that this is
the distribution of topics taken straight from the raw data.

Figure 4.7: Distribution of keywords on Work Assignments collection. Bin size
= 1. First bin = 3.

Now, let us observe the keywords expansion results for some parameters. This
step takes the Primary Terms as keywords and use the vocabulary and vectors
from word2vec trained in Internal Publications. Basically for each term, it checks
if its embeddings exist in the vocabulary, and if yes, add the most similar words
to the term, expanding the set for future string match. Figure 4.9 shows the
distributions and Table 4.5 summarizes the original Primary Topics and the effects
of expansion using different parameters.

Finally, let us observe the impact of the different parameters tested previously
in the matches with Taxonomy terms. The string matching is done with allowing
for Damerau-Levenstein distance of 0.15% of string length. Each match results
in a final labels assigned to the document. Figures 4.10, 4.11 and 4.12 display
the results for standard method used till this point. Table 4.6 summarizes the

54

Figure 4.8: Distribution of keywords on Work Assignments collection.

Parameters Mean Median std max min
Work Assignments Primary Topics 8 8 2 36 3

expanded w2v sim. 0.80, max sim. 5 8 8 3 39 2
expanded w2v sim. 0.75, max sim. 5 9 9 3 43 2
expanded w2v sim. 0.70, max sim. 5 10 10 4 59 2
expanded w2v sim. 0.65, max sim. 5 14 13 5 65 2

Table 4.5: Median and rounded mean and std, maximum and minimum values
for number of keywords per document in Previous Work Assignments, followed
by their expanded sets.

main values observed in the experiments. Later on, the quantitative analysis for
semantic match with Flair embeddings will be also displayed.

Parameters Mean Median std max min
w2vSim 0.80, DL 0.15, depth1 5 5 2 30 0
w2vSim 0.75, DL 0.15, depth1 5 5 2 32 0
w2vSim 0.70, DL 0.15, depth1 5 5 2 31 0
w2vSim 0.65, DL 0.15, depth1 6 6 2 35 0
w2vSim 0.80, DL 0.15, depth2 3 3 2 26 0

w2vSim 0.75, DL 0.15, depth2 3 3 2 26 0
w2vSim 0.70, DL 0.15, depth2 3 3 2 27 0
w2vSim 0.65, DL 0.15, depth2 4 3 2 30 0

Table 4.6: Median and rounded mean and std, maximum and minimum values
for number of labels assigned per document in Previous Work Assignments for
some parameter values.

55

Figure 4.9: Distribution of keywords expanded on Work Assignments collection.
Bin size = 1. First bin = 2. The reduction on minimum cosine similarity param-
eter allows more words to be aggregated, but they are less similar.

56

Figure 4.10: Comparison of labels assigned per documents on 50 samples. La-
bels assigned to keywords expanded varying w2v similarity and matching with
Damerau-Levenstein tolerance of 15% of string length. Again, it is interesting
to observe, that although a lower cosine similarity on w2v brings more similar
words during the expansion, the maxsimilarities = 5 would remove them. This is
clearly observed as the final number of labels assigned can be higher for some
documents that had keywords expanded with higher cosine similarity value. The
depth parameter changes the size of set of possible matches, therefore depth 1
always gives more labels than depth 2, for same similarity parameters

57

Figure 4.11: Comparison of labels assigned for documents, for the various w2v
similarity parameters used in keyword expansion step. It is clear that for simi-
larity in the range 0.7 to 0.8, the distribution does not change much, given same
taxonomy depth.However, for values lower than 0.7 it can be expected that the
model adds noisy labels.

58

Figure 4.12: Distribution of labels assigned for documents, for the various w2v
similarity parameters used in keyword expansion step.

59

Flair Embeddings

Flair embeddings, as mentioned in Chapter 3, is an optional encoder used to
embed n-grams. Each language model, forward and backward, obtained after the
transfer learning process, has a hidden state of 2048 dimensions. Therefore, the
stacked embeddings used encodes the word in a 4096-dimension vector. For the
embedding of n-grams or sentences, the resulting dimensions are:

• Pool: encode each of the words part of n gram or sentence, and take the
average vector. Thus, the resulting vector has also 4096 dimension.

• RNN: encode each of the words and use the vectors in another recurrent
neural network layer. Then take the hidden state of the last cell as the em-
bedding of the n gram or sentence. The resulting vector dimension depends
on the hidden state size, in this work it was set to 512. LSTM cells are
chosen for the RNN method.

For assigning the labels using Flair embeddings the steps are:

• Embed Primary Terms and Taxonomy Topics.

• Auto filtering of taxonomy topics. This is made by checking how many
taxonomy terms are similar to each other using cosine similarity. Words
with too many similar words are removed, following the same logic as used
on keyword expansion. This intends to avoid that n-grams with inaccurate
encoding match with many others. A parameter maxsimilar defines the
limit of how many words are to be accepted.

• Measure cosine similarity between all Primary Terms and all Tax-
onomy Topics and assign topics with similarity higher than thresh-
old to the document. There are two similarity thresholds: maxsimilarity

defines a high threshold which all terms above it are taken. minsimilarity

defines the minimum similarity for a topic to be considered. If no topic has
higher similarity than maxsimilarity then the best match above minsimilarity

is taken.

Figures 4.13, 4.15 and 4.14 show the effects of parameter choices during the
assignment of topics using the method described above. Note how maxsimilarity

affects the variance of number of topics per document, as all topics matching
higher than this number is added. The minsimilarity acts ”shifting” the median,

60

clearly observed in Figure 4.15. By observing these charts, and a careful inspec-
tion of the quality of topics added for some of the documents, values 0.90 and
0.80 for max and min similarities seemed to be a good compromise between num-
ber of matches and their quality. Table 4.7 summarizes the results using Flair
embeddings approach.

Parameters Mean Median std max min
flair: max sim. 0.95, min sim. 0.85, limit 5, pool 3 3 2 29 0

flair: max sim. 0.95, min sim. 0.80, limit 5, pool 5 5 2 33 0
flair: max sim. 0.90, min sim. 0.85, limit 5, pool 4 4 2 35 0
flair: max sim. 0.90, min sim. 0.80, limit 5, pool 6 6 2 39 0
flair: max sim. 0.90, min sim. 0.80, limit 10, pool 6 6 2 39 0
flair: max sim. 0.90, min sim. 0.75, limit 5, pool 7 7 2 40 0
flair: max sim. 0.90, min sim. 0.70, limit 5, pool 7 7 3 40 0
flair: max sim. 0.90, min sim. 0.65, limit 5, pool 8 8 3 41 0
flair: max sim. 0.90, min sim. 0.60, limit 5, pool 8 8 3 41 0
flair: max sim. 0.90, min sim. 0.75, limit 5, RNN 7 7 3 44 0
flair: max sim. 0.90, min sim. 0.70, limit 5, RNN 8 7 3 43 0
flair: max sim. 0.90, min sim. 0.65, limit 5, RNN 8 8 3 45 0
flair: max sim. 0.90, min sim. 0.60, limit 5, RNN 8 8 3 44 0

Table 4.7: Median and rounded mean and std, maximum and minimum values
for number of labels assigned per document in Previous Work Assignments using
different parameters for Flair method. Suggested settings is highlighted in the
table.

Figure 4.13: Comparison of labels assigned per documents on 50 samples. All
plots used taxonomy topics at minimum depth 2. The chart presents different
values for max and min similarities, RNN and Pool methods, and max similar
words 5 and 10. RNN method produces more matches compared to Pool, but with
more noise. When manually inspected, Pool method showed to be more reliable.
As the method is total unsupervised, the best parameter value are chosen by
expert inspection of sampled results.

61

Figure 4.14: Histogram with distributions of number of labels assigned by seman-
tic matching using flair embeddings, for different parameter settings.

62

Figure 4.15: Distribution of number of labels assigned by semantic matching
using flair embeddings, for different parameter settings.

4.5 Classification of ”Topics I Know” in Profiles

There are 119449 profile topics, being 27447 of them unique. The target is to
match them with Taxonomy Topics and each match become a label for the user.
The methods used here to assign the labels for people profiles are exactly the
same explained in the previous session (Work Assignments Classification). Each
topic in a person’s profile is taken as a ”keyword” and all the other steps remain
the same, for both standard and Flair methods. The following figures show the
overview of the data and the results at each step. For Flair method, all runs had
taxonomy minimum depth = 2.

First, let us observe the original set and some results for expansion step. Note
that users with no topics in their profile were removed. Figures 4.16, and 4.17
shows the results. Table 4.8 summarizes the the most important values.

63

Parameters Mean Median std max min
”Topics I Know” 11 9 10 162 1

expanded w2v sim. 0.80, max sim. 5 12 10 12 174 1
expanded w2v sim. 0.75, max sim. 5 14 11 13 196 1
expanded w2v sim. 0.70, max sim. 5 16 12 15 214 1
expanded w2v sim. 0.65, max sim. 5 17 14 16 236 1

Table 4.8: Median and rounded mean and std, maximum and minimum values
for number of topics per user in ”Topics I Know” profile section, followed by their
expanded sets using some different parameter values.

Figure 4.16: Distribution of original topics in people’s profiles. Bin size = 1.
First bin = 1. Last bin for all profiles with more than 59 topics

64

Figure 4.17: Comparison of distribution of topics from people’s profiles after the
expansion with different parameters. Bin size = 1. First bin = 1. Last bin for
all profiles with more than 59 topics

Now, let us compare quantitatively the differences in labels assigned for the
different parameters, based on standard method. Table 4.9 summarizes the most
important values.

Finally, Figures 4.18, 4.19 and 4.20 show results for different parameter set-
tings using Flair method. Table 4.10 summarizes the main values observed.

65

Parameters Mean Median std max min
w2vSim 0.80, DL 0.15, depth1 3 2 4 61 0
w2vSim 0.75, DL 0.15, depth1 4 3 4 62 0
w2vSim 0.70, DL 0.15, depth1 4 3 4 64 0
w2vSim 0.65, DL 0.15, depth1 4 3 5 70 0
w2vSim 0.80, DL 0.15, depth2 3 2 4 57 0

w2vSim 0.75, DL 0.15, depth2 3 2 4 58 0
w2vSim 0.70, DL 0.15, depth2 3 2 4 60 0
w2vSim 0.65, DL 0.15, depth2 4 3 4 66 0

Table 4.9: Median and rounded mean and std, maximum and minimum values
for number of labels assigned per user, related to their ”Topics I Know” session
in profile, through standard method.

Parameters Mean Median std max min
flair: max sim. 0.95, min sim. 0.85, limit 5, pool 4 3 4 60 0
flair: max sim. 0.95, min sim. 0.85, limit 7, pool 4 3 4 60 0

flair: max sim. 0.90, min sim. 0.80, limit 5, pool 6 5 6 101 0
flair: max sim. 0.90, min sim. 0.75, limit 5, pool 6 5 6 92 0
flair: max sim. 0.90, min sim. 0.70, limit 5, pool 8 7 7 101 0
flair: max sim. 0.90, min sim. 0.65, limit 5, pool 10 8 9 145 0
flair: max sim. 0.90, min sim. 0.60, limit 5, pool 10 8 9 146 0
flair: max sim. 0.90, min sim. 0.75, limit 5, RNN 5 4 5 60 0
flair: max sim. 0.90, min sim. 0.70, limit 5, RNN 9 7 8 107 0
flair: max sim. 0.90, min sim. 0.65, limit 5, RNN 10 8 9 124 0
flair: max sim. 0.90, min sim. 0.60, limit 5, RNN 10 8 9 129 0

Table 4.10: Median and rounded mean and std, maximum and minimum values
for number of labels assigned per user for ”Topics I Know” session in profiles,
using Flair method.

Figure 4.18: Comparison of labels assigned per user on 50 samples. Labels as-
signed to the topics using different values for maxsimilarity and minsimilarity

.

66

Figure 4.19: Distribution of labels assigned for documents, for different values for
maxsimilarity and minsimilarity

67

Figure 4.20: Comparison of labels assigned for documents, for different values for
maxsimilarity and minsimilarity

Based on the quantitative analysis by distributions and manual evaluation of
the quality of topics assigned to sampled users, it was showed to be reasonable to
use labels assigned by standard method having parameters w2v maxsimilarity =
0.75, DLtolerance = 0.15 and maxsimilar = 5. Also, Flair method with parameters
maxsimilarity = 0.90, minsimilarity = 0.80, maxsimilar = 5 and phrase encoder =
Pool.

4.6 Expert Candidate Representation

After the documents are classified, the following step is to build the expert can-
didate representation. This consists in building the table associating each expert
to each topic, giving an association score.

68

Expert Candidate Representation - Internal Publications

For Internal Publications, the table associating each author to each topic is built
assigning the scores following Equation 4.2:

score(topic, c) =
∑
dϵDc

tf(topic, d) × e
−td

T (4.2)

where topic is a taxonomy term, c is an candidate, tf(topic, d) is the frequency
of label topic in document d, Dc is all documents authored by candidate c , td is
the age of the document in years, T is the retention period, so e

−td
T defines the

knowledge decay factor, similarly to baseline model.

Expert Candidate Representation - Previous Work Assignments

Now, for Previous Work Assignments, the table associating each employee to each
topic is built assigning the scores following Equation 4.3:

score(topic, c) =
∑
aϵAc

H(topic, a) × e
−ta

T (4.3)

where topic is a taxonomy term, c is an candidate, H(topic, a) is the duration
in hours of assignment a, multiplied by 1, if topic is a label in assignment a, or
multiplied by 0 otherwise, Ac is the set of all assignments candidate c worked at,
ta is the age of the assignment in years, T is the retention period, so e

−ta
T defines

the knowledge decay factor.

4.7 Topics I Know as Target Data

From Internal Publications and Previous Work Assignments the expert candidate
representations are constructed. Those documents carried the information about
previous experiences of the employees. To learn in supervised fashion how to
classify an expert, given an sample input, a set of true labels is needed. The
Classification of Topics I Know transformed the free filled text into only terms
known by Taxonomy set. Though it was generated unsupervisedly, it is assumed
that they represent the true expertise of a person.

For each user, it is assigned a 1, if he/she has this label assigned by classifica-
tion step, or 0 otherwise. The result is a binary matrix associating users to topics
they know about. Nevertheless, a 0 not necessarily represent a user doesn’t know

69

about the topic, considering the topic was just not filled previously, whereas a 1
is considered to be truly known from this point on.

4.8 Data Preprocessing

Models in supervised machine learning such as Neural Networks require numerical
input vectors. The expert candidate representations, built from all the text col-
lections, provide inputs in such format. Lets call these vectors raw inputs. Now,
the problem of recommending expertise can be solved as a multi-class multi-label
classification task.

Internal Publications and Previous Work Assignments Preprocessing

The raw inputs (resulted from the previous steps using the chosen parameter
values already described) have the shapes:

• Internal Publications: 11824 users, 2868 features (topics).

• Previous Work Assignments: 15740 users, 880 features (topics).

One important step to perform, is the dimensionality reduction. PCA was
not considered for this task, because it results in orthogonal features that do not
contain the original meaning anymore (how strong is the association of a user to
the topic). The method chosen to eliminate some features was drop by correlation.
This method makes great sense particularly considering how the input data was
generated. If two topics on taxonomy would have very similar embeddings, for
example, both would always be added together as labels in a document, resulting
in columns with correlation 1. Following, the steps for this process:

• Normalize to mean=0 and std = 1, column-wise. Here there are two op-
tions: Normalize over all users, or separately by category. The category
indicates the seniority of the employee, and might be desirable to compare
only employees of same category when normalizing.

• Compute Pearson Correlation between all features. Check pairwise corre-
lation and drop one column if the correlation is above threshold. 0.9 was
the value used for the threshold.

70

An important observation is that any threshold with value |v| < 1 results in
instability, when using this method; meaning the column chosen to be dropped
in the pairwise comparison impacts all next pairwise comparisons for remaining
columns. Regardless, it is known that only columns with correlation below the
threshold would remain. This step, with threshold = 0.9 results in:

• 1781 features for Internal Publications.

• 800 features for Previous Work Assignments.

Some features appears in both inputs. It is expected as they represent degrees
of association between users and taxonomy topics. A simple join of the tables
would treat a repeated feature from both inputs as independent, renaming one of
them. However, a user associated to a topic both by publishing documents about
it, or working on assignments related to it, has in fact a stronger association.
Therefore, for the common features, their values are summed during merge of
the inputs. It is possible to apply this approach in both inner or outer joins.
For outer join, a user not present in one of the inputs should be assigned the
minimum value of each feature column. For inner join, as only users present in
both inputs are kept, they can just be merged summing the values from common
columns and keeping the value for unique ones.

The result of this merge, with inner join, is a input, is an input with 11528
users, and 2217 features. Still considerably high number of features, but lately
handled by a convolutional layer in a neural network. Motivated by the usage of
a convolutional layer, one last step is taken: ordering of input.

Input Ordering

Topics are many times not independent features. A field of expertise can actually
be composed of many topics. ”Machine Learning” could be seen as a topic closer
to ”Artificial Intelligence” than to ”Corporate Governance”, for example. The
Taxonomy graph is actually built keeping terms related closer in same lineage.
Figure 4.21 shows an small example of how the taxonomy looks like.

71

A

B C

D EF

G

Figure 4.21: Example of how the taxonomy graph can is structured. For the
ordering, consider each edge with distance 1. Distance from topic F to topic C
would be 3 (F → B → A → C)

To order the input, firstly the taxonomy graph is represented in an adjacency
matrix. Then, the minimum distances between pairs of nodes (topics) are com-
puted applying Floyd-Warshall algorithm - a dynamic-programming formulation
to solve the all-pairs shortest-paths problem on a directed graph (Cormen et al.
[2009]), generating Table 4.11. Having the distances between each topic-pairs,
a fully connected graph is directly obtained from the adjacency matrix given by
the the topic distances.

A B C D E F G
A 0 1 1 2 2 2 3
B 1 0 2 1 3 1 2
C 1 2 0 3 1 3 4
D 2 1 3 0 4 2 1
E 2 3 1 4 0 4 5
F 2 1 3 2 4 0 1
G 3 2 4 1 5 1 0

Table 4.11: Distances between all topics according to topics computed for the
graph in Figure 4.21

Now, to obtain the ordered taxonomy topics, they need to be placed so that
the total distance is minimal:

Totald =
n−1∑
i=1

D(topici, topici+1) (4.4)

This problem can be reduced to the TSP (Traveling Salesman Problem), be-
ing the main difference the fact that there is no need to return to start topic.

72

Therefore, to use traditional algorithms to solve the TSP, it suffices to add a
dummy topic in the adjacency matrix with distance 0 to all other topics and to
itself.

Given the taxonomy has 4600 topics, and TSP is an np-hard problem, approx-
imation algorithms have to be used. 2-OPT (Nearest Neighbors as initial trip,
and 100 2-OPT iterations) and Greedy were tested for this task. The best dis-
tances found were 9216 and 9142 respectively. Greedy is over one hundred times
faster than 2-OPT and also produces better results. Finally, the input features
are ordered according to the result obtained by TSP solver.

”Topics I Know” Preprocessing

Last step on data preparation, is the preprocessing of the Target Data. Although
the original terms in profiles were filled by users themselves, now they are already
replaced by the labels obtained at the classification step. The criteria to assign
the original topics are subjective - each person might have different standards
to feel knowledgeable in some topic - and, also, the classification was made by
unsupervised method, adding more uncertainty regarding the reliability of those
topics. Yet, it is assumed that a topic assigned with a 1 in the raw target data
represents something a user knows about, whereas a 0 possibly means the user
does not, or simply this information was missing in their profile.

Considering the raw Target Data have 2656 different topics, 384 of them hav-
ing just 1 input sample, and 1927 with less than 20, it is definitely needed to
reduce the number of classes (topics) to use for training. The drop by correla-
tion method is applied again in this case, with correlation threshold set to 0.9.
However, instead of dropping a topic, all 1’s from the dropped topic are actually
added to the persisting correlated topic. The maximum value is clipped at 1 to
keep a binary table - in the cases the topic was present in both columns.

After this merge of correlated topics, a maximum number of topics to be cov-
ered is defined through parameter setting. The selection of the parameter value
should consider how many samples would be available for each topic label. For the
following model, it was selected 200 most popular topics, being 51 the minimum
number of samples for the least popular in this set, and 786 the maximum.

73

4.9 Multi Label Classifier

With the input data and the target data, it is possible to build a model to perform
a multi label classification. The output of such model is a table with estimated
probabilities a expert candidate knows about a topic, similarly to Table 2.16,
except that differently than bm25 scores, the estimated probabilities have values
in [0,1] range. The final input is a combination of Internal Publications and
Previous Work Assignments data, and only users that is part of both sets are
considered. Looking into the target data, only users that have at least 1 topic
listed in their profiles are considered. Satisfying both constraints in input and
target, the set for training a model is reduced to 5815 samples.

Bootstrapping and Bagging

Ensemble methods are suitable for unstable models such as neural networks and
nearly always outperform a single model (Maclin and Opitz [2011]). Neural net-
works are naturally unstable due to random weights initialization. In addition,
bootstrapping can be used to split training and validation sets, adding another
source of instability. In this work, the target data was obtained by unsupervised
labeling method, applied over incomplete data (profiles), resulting in noisy labels
for training - it is not known that an absence of a label for a sample represents
missing data or the sample does not belong to the class.

As mentioned before, there are 11528 input samples, but after joining with
target data for users that have at least one topic assigned, the number of samples
that can be used for training goes down to 5815. The remaining samples are used
also for predictions and can be considered a test set, that are evaluated by the
number of accepted topics from the recommender system later on.

Now, for each model in the ensemble, the bootstrapping (sample with rep-
etition) is performed over the trainable samples. The probability of picking a
sample s in a set of n samples is P (s) = 1

n
. The probability of not picking a

sample during bootstrapping process is given by:

1 − P (s) = (1 − 1
n

)n ≈ e−1 = 0.368 (4.5)

Therefore, for each model, around 63% of the samples are used for training.
Some of the samples are repeated, biasing the model towards them. The remain-
ing 37% of the samples are using as validation set. All the samples for which
there was no target at all, are used as a true test set, that obviously can not

74

be evaluated automatically, but from the users feedback. For each model, the
parameters that provide the highest F0.5 score on validation set are saved.

Neural Network - Convolutional Layer

Bootstrapping and bagging are very popular on Decision Trees, but a particular
characteristic of the data set already mentioned motivates the use of Neural Net-
works instead: the input features are not fully independent. An example of the
Neural Network used in practice for this task is described as following:

• Conv 1D, 50 filters, Kernel size: 5, Stride: 1, Padding: valid, Activation:
ReLU, Batch Normalization

• Max Pooling 1D, Pool size: 3, Stride: 3, Dropout: 0.5

• Dense Layer size: 500, Activation: ReLU, Batch Normalization, Dropout:
0,5

• Dense Layer size: 50, Activation: ReLU, Batch Normalization, Dropout:
0,5

• Output Layer: Dense Layer size: 150, Activation: Sigmoid

Training performed in batches of size 20, in 50 epochs. More model hyper-
parameters will be compared further on.

Loss Function - Weighted F0.5 score

In classification tasks two important metrics very often are taken into consider-
ation: Precision and Recall. Accuracy many times is not a meaningful metric,
specially having unbalanced classes, like in this case: for each topic, much more
users do not know about it than users know it, therefore, classifying every user
knowing nothing would lead to high accuracy despite being an useless classifier.

Precision reflects how well the model predicts an expertise of a user:

Precision = TP

TP + FP
(4.6)

being TP True Positives and FP False Positives.
Recall measures how well the model retrieves expertise, regardless of making

some mistakes:

Recall = TP

TP + FN
(4.7)

75

being TP True Positives and FN False Negatives.
It is easy to note that for Recall, predicting all 1’s, make 100% recall. For

precision, predicting just one 1, but correctly, makes 100% precision. These two
metrics have opposite forces, therefore a metric that takes both measurements
into consideration should be used. Traditionally, F1 score can be applied in such
scenario:

F1 = 2 × Precision × Recall

Precision + Recall
(4.8)

This metric forces both Precision and Recall to be as high as possible. A tweak
for that is weighting Precision or Recall to be more important. In case of a
recommender system, Precision is more important in the sense it is needed to
build trust in users. The negative impact of wrong recommendations are stronger
than the impact of no recommendations at all. To privilege Precision, the metric
F0.5 can be used:

F0.5 = 1.25 × precision × recall

0.25 × precision + recall
(4.9)

Neural Networks are basically an optimization process and need a Objective
Function, also called Loss Function in this context. The weights are updated
according to the gradient of the Loss Function, minimizing it. Using F0.5 as a
Loss Function in a minimization problem is directly done by optimizing −F0.5

instead.

Calculation of Precision and Recall during training

Precision and Recall are usually calculated taking the sample classification as
integer: 1 for Positive and 0 for Negative. However, the output of the last layer
of the neural network, with sigmoid activation, is a vector of real number in the
interval [0,1] containing the estimated probabilities for the classes for a given
sample. One can set a threshold and turn all values above it to 1, and all values
below it to 0, but this method does not help the network to learn properly. For
example, if a threshold of 0.5 is used during training, a prediction of 0.51 would
make no error for a positive class, resulting in a gradient that does not push it
closer to 1 during the back propagation. Same applying to negative samples.
Table 4.12 shows an example of how would be the values for TP, FP and FN
given Ypred from target data and Ypred as the rounded predictions, assuming 6
samples (from S1 to S6) for a single class.

76

S1 S2 S3 S4 S5 S6 SUM
Ytrue 1 1 0 1 1 0
Ypred 0 0 1 1 1 0
TP 0 0 0 1 1 0 2
FP 0 0 1 0 0 0 1
FN 1 1 0 0 0 0 2

Table 4.12: TP, FP and FN calculations from vectors of true values and predic-
tions. FP = clip(Ypred − Ytrue, 0, 1). TP = (Ypred − FP), FN = clip(Ytrue −
Ypred, 0, 1). Taking the sum of TP, FP and FN and following the Equations 4.6
and 4.7: Precision = 2/3 and Recall = 2/4.

With simple element wise subtractions and clipping the results to the interval
[0,1], TP, FP and FN can be calculated and consequently, Precision and Recall.
The exact same operations can be performed keeping a real value vector for
predictions, as in Table 4.13

S1 S2 S3 S4 S5 S6 SUM
Ytrue 1 1 0 1 1 0
Ypred 0.2 0.1 0.6 0.7 0.9 0.3
TP 0.2 0.1 0 0.7 0.9 0 1.9
FP 0 0 0.6 0 0 0.3 0.9
FN 0.8 0.9 0 0.3 0.1 0 2.1

Table 4.13: TP, FP and FN calculations from vectors of true values and predic-
tions. FP = clip(Ypred − Ytrue, 0, 1). TP = (Ypred − FP), FN = clip(Ytrue −
Ypred, 0, 1). Taking the sum of TP, FP and FN and following the Equations 4.6
and 4.7: Precision = 1.9/2.8 and Recall = 1.9/4

Table 4.13 shows an example for one single class, in a vector Sx1 (for S sam-
ples). It is trivial to see that the same operations can be performed in a matrix
SxC (S samples and C classes), which is the case for this work: to build multi
class classifier.

Weighted F0.5 score

Having the Precision and Recall calculated for each class, F0.5score can be ob-
tained directly . Thus, for each training batch of size S, F0.5score is computed for
each class, following Equation 4.10. Within the batches, the F0.5score is weighted
according to the number of samples of each class. Table 4.14 illustrates an ex-
ample of a batch. This is done to compensate for classes with few samples in the
training set. The weight should produce a stronger signal in the back propagation
for under represented classes.The weighted negative F0.5score is then fed to the

77

optimizer.

wi = M∑
sϵCi

s + k

M = max
j

(
∑
sϵCj

s)

jϵ[0..n]

(4.10)

being (for each batch) wi the weight for class i, M the maximum sum of positive
samples of the same class, Ci the number of positive samples of class i, k the a
positive constant to smooth the weights. In this experiments, the value chosen is
k = 1.

C1 C2 C3 C4 C5
S1 0 1 0 1 0
S2 0 1 0 1 0
S3 0 1 0 1 0
S4 0 0 1 1 1
S5 0 0 1 1 0

SUM 0 3 2 5 1

Table 4.14: Example of a batch of size S=5, for classes Ci

For classes C2 and C4 in the table, for example, the weights would be given
by:

w2 = 5
3 + 1 = 1.25

w4 = 5
5 + 1 = 0.83

(4.11)

The weights for the classes are proportional to the inverse of the number of
positive samples in the classes, making the effects in the back propagation being
evenly distributed among all classes.

Now, all details about the classifier are already described. Following in Chap-
ter 5 different model hyperparameters are tested and evaluated.

78

5. Experiments
In this Chapter, different setups of the network are tried and their results are
compared. The classified documents used are the ones obtained through the
steps described in Chapter 4, using the recommended parameter values. The
details to obtain the expert candidate representation from classified document
combinations and the model hyperparameters for each experiment are described
in next session.

5.1 Experiment Setup

The evaluation consists in the Averaged Precision (AP) and Averaged Precision
at 5 (AP5) . The metrics are computed considering a set of topic queries Q150

of 150 topics from which the recommendations are taken, and the four sets of
users obtained according to Section 1.2. Q150 is taken from the resulting topics
in target data after ”Topics I Know” Preprocessing.

For each model, the steps for evaluation are:

• Build a table like Table 1.1 having the Q150 topics, for each set of users.

• Take top 5 scored topics per user.

• Evaluate the relevance of the topics selected: If topic already present in
user profile or if recommendation was accepted

• compute AP and AP5 for each set of users

The next subsections present the summary of inputs and model details for
each experiment, specially what might differ from the implementation details
presented in Chapter 4. All neural network models were implemented in Keras1.

5.1.1 Baseline

Two versions of the baseline model are evaluated: Baseline 1 without forgetting
factor (e

−td
T), and Baseline 2 with forgetting factor. The association table is

constructed with scores given by following equations for each model respectively:
1https://keras.io/getting-started/sequential-model-guide/

79

score(q, a) =
∑

dϵDa

S(q, d)
max(S(q))

score(q, a) =
∑

dϵDa

S(q, d)
max(S(q)) × e

−td
T

BM25+ model is trained on Internal Publications only.

5.1.2 Base Neural Network

Inputs

• Internal Publications, Previous Work Assignments and ”Topics I Know”
classified only by standard method

• Expert candidate representation is built without forget factor.

Model

CONVOLUTIONAL LAYERS

model.add(Conv1D(filters=50, kernel_size=5, strides=1, padding="valid", input_shape=inputShape))

model.add(Activation("relu"))

model.add(BatchNormalization(axis=chanDim))

model.add(MaxPooling1D(pool_size=3))

model.add(Dropout(0.50))

FULLY CONECTED LAYERS

model.add(Flatten())

model.add(Dense(500))

model.add(Activation("relu"))

model.add(BatchNormalization())

model.add(Dropout(0.5))

model.add(Dense(50))

model.add(Activation("relu"))

model.add(BatchNormalization())

model.add(Dropout(0.5))

OUTPUT LAYER

model.add(Dense(classes))

model.add(Activation("sigmoid"))

5.1.3 Model A

Inputs

• Internal Publications, Previous Work Assignments and ”Topics I Know”
classified only by standard method.

• Expert candidate representation including forget factor.

80

Model

This model has the the same hyper parameters as the neural network defined in
5.1.2.

5.1.4 Model B

Inputs

• Internal Publications, Previous Work Assignments and ”Topics I Know”
classified only by standard method

• Expert candidate representation including forget factor.

Model

CONVOLUTIONAL LAYERS

model.add(Conv1D(filters=50, kernel_size=10, strides=1, padding="valid", input_shape=inputShape))

model.add(Activation("relu"))

model.add(BatchNormalization(axis=chanDim))

model.add(MaxPooling1D(pool_size=3, strides=2))

model.add(Conv1D(filters=50, kernel_size=5, strides=1, padding="valid", input_shape=inputShape))

model.add(Activation("relu"))

model.add(BatchNormalization(axis=chanDim))

model.add(MaxPooling1D(pool_size=3, strides=2))

FULLY CONECTED LAYERS

model.add(Flatten())

model.add(Dense(1000))

model.add(Activation("relu"))

model.add(BatchNormalization())

model.add(Dropout(0.5))

model.add(Dense(100))

model.add(Activation("relu"))

model.add(BatchNormalization())

model.add(Dropout(0.5))

OUTPUT LAYER

model.add(Dense(classes))

model.add(Activation("sigmoid"))

5.1.5 Model C

Inputs

• Internal Publications classified by standard method.

• Previous Work Assignments and ”Topics I Know” classified by both stan-
dard and Flair methods.

• Expert candidate representation including forget factor.

81

Model

The model has the structure presented in 5.1.4

5.1.6 Model D

Inputs

• Internal Publications, Previous Work Assignments and ”Topics I Know”
classified only by standard method

• Expert candidate representation is built without forget factor.

• Shuffled features of final input to test the effects of unordered inputs.

Model

The same model described in 5.1.2 is used here.

5.1.7 Model E

Inputs

• Internal Publications, Previous Work Assignments and ”Topics I Know”
classified only by standard method

• Expert candidate representation is built without forget factor.

Model

The convolutional layers are removed from this model, keeping only the fully
connected layers as follows:
FULLY CONECTED LAYERS

model.add(Flatten())

model.add(Dense(500))

model.add(Activation("relu"))

model.add(BatchNormalization())

model.add(Dropout(0.5))

model.add(Dense(50))

model.add(Activation("relu"))

model.add(BatchNormalization())

model.add(Dropout(0.5))

OUTPUT LAYER

model.add(Dense(classes))

model.add(Activation("sigmoid"))

82

5.1.8 Model F

Inputs

• Internal Publications classified by standard method.

• Previous Work Assignments and ”Topics I Know” classified by both stan-
dard and Flair methods.

• Expert candidate representation including forget factor.

Model

The model used here is has the same structure described in 5.1.2

5.2 Experiment Results

5.2.1 Expert Profiling

Now the AP and AP5 are calculated for all models described above, for each of
the four different sets of users. The results for AP are shown in Table 5.1. Table
5.2 shows the AP5 results.

Average Precision
Model S1 S2 S3 S4

Baseline 1 0.1257 0.2387 0.0707 0.4016
Baseline 2 0.1246 0.2418 0.0685 0.4176

Base Neural Net 0.4618 0.5684 0.3612 0.7535
Model A 0.4648 0.587 0.2283 0.726
Model B 0.4019 0.5382 0.1934 0.7167
Model C 0.1993 0.2697 0.0054 0.5388
Model D 0.4869 0.5841 0.3505 0.7487
Model E 0.3774 0.5184 0.2383 0.7377
Model F 0.1676 0.2336 0.0079 0.4163

Table 5.1: Average Precision over all 150 topics, computed for each set of users

For expert profiling, Base Neural Net model produced th best results for most
of the sets, including S4 and set S3, which is the most challenging set given its
users are not seeing during training and had no topics filled in their profiles. It is
surprising that models D and E have high performances despite having unordered
inputs and no convolution operations respectively. Generally, the addition of flair
matches in Previous Work Assignments and Topics I Know classification makes

83

Average Precision at 5
Model S1 S2 S3 S4

Baseline 1 0.0679 0.1273 0.034 0.2141
Baseline 2 0.0688 0.1298 0.034 0.2254

Base Neural Net 0.3007 0.5149 0.1791 0.7465
Model A 0.1618 0.3235 0.0515 0.6563
Model B 0.1623 0.3209 0.054 0.6535
Model C 0.1572 0.263 0.0044 0.4886
Model D 0.2543 0.4658 0.1343 0.738
Model E 0.2667 0.4832 0.1439 0.7493
Model F 0.1424 0.2378 0.0047 0.4371

Table 5.2: Average Precision at 5 over users, for each set of users

the performance worse. Topic-wise, the forget factor improves the performance
on training set, but reduces it on unseen data, as seen in models Baseline 2
compared to Baseline 1, and Model A compared to Base Neural Net, for sets
S2 and S3 in table 5.1. For user-centric measurements, the forget factor reduces
drastically the performance on neural network models, but has no big impact for
baseline. Adding second convolutional layer did not improve the results, which
can be seem comparing Model B with Model A in both tables.

5.2.2 Expert Finding

Now the AP10 is calculated for each of the four different sets of users, and AP100

except for S4, for all models described above. The results are shown in Table 5.3
and Table 5.4.

Average Precision at 10
Model S1 S2 S3 S4

Baseline 1 0.0822 0.0905 0.0373 0.0765
Baseline 2 0.0844 0.0902 0.044 0.0744

Base Neural Net 0.5446 0.5835 0.3227 0.2695
Model A 0.5812 0.6266 0.2404 0.2822
Model B 0.6171 0.6507 0.2418 0.2875
Model C 0.4154 0.4187 0.017 0.1753
Model D 0.5776 0.6079 0.3027 0.2699
Model E 0.6116 0.6555 0.3253 0.2836
Model F 0.3384 0.344 0.02 0.1695

Table 5.3: Average Precision at 5 over users, for each set of users

In TREC Enterprise 2007 (Bailey et al. [2007]) the task was also to retrieve

84

Average Precision at 100
Model S1 S2 S3

Baseline 1 0.0697 0.0719 0.0333
Baseline 2 0.0696 0.0717 0.0347

Base Neural Net 0.3744 0.3644 0.1852
Model A 0.3553 0.3606 0.1071
Model B 0.3713 0.3712 0.1148
Model C 0.2676 0.278 0.0042
Model D 0.3757 0.361 0.1655
Model E 0.4139 0.3968 0.1785
Model F 0.2206 0.2336 0.0046

Table 5.4: Average Precision at 5 over users, for each set of users

experts given topic queries. The best results achieved for expert finding task had
Precision at 5 around 0.25 and Precision at 20 of 0.09, having 50 topic queries
used. The same task was studied in TREC Enterprise 2008 - on different data and
now 77 different topics and 3678 expert candidates (Balog et al. [2008]), achieving
the best result of 0.371 Precision at 10. Besides the data being different, these
values serve as some reference to understand the performance observed in the
proposed methodology on this work. Moreover, 150 topics were covered in these
experiments, almost doubling the topic coverage, and the test set S3 had 4163
expert candidates.

The Base Neural Net has a consistent good performance in all evaluations. It
is interesting to observe, that for expert finding the additional convolutional layer
improves the results (Model B vs Model A, and Model C vs Model F). Again, the
forget factor reduces the performance in S3, indicating a possible overfit. The
use of Flair matching when generating the inputs also produces worse results.
Again, Model E has unexpected high performance, specially in training data,
but still worse than Base Neural Net for unseen samples. The Baseline 1 and 2
have similar results and both are comparable to average performances observed
in TREC Enterprise 2007 and 2008.

Overall, despite all the unsupervised methods applied to classify the docu-
ments and preprocess the data for training a classifier, and also the target data
being incomplete, all the variants of the neural network model perform consider-
ably better than the baseline models. The results achieved by the proposed neural
networks in the sets unseen during training (test sets S3 and S4) are comparable
to the state of the art results observed in TREC Enterprise 2008.

85

6. Conclusion
The goal of this work was to propose a solution for expertise retrieval task based
on a neural network classifier. Despite the mapping between people and topics
being made through expert profiling perspective, the results showed that the
method can also perform well in expert finding.

One of the early steps to solve the task is the document classification, con-
sisting in representing the documents in the collection exclusively by topics from
a taxonomy set. The impact of this step was clearly observed in the final results,
especially comparing the models that had inputs generated only through stan-
dard method and the models that had combined input and target data generated
from standard and Flair methods. It was observed that, despite the flexibility
of Flair embeddings, classifying the documents using direct semantic matching
reduces the performance of the system as a whole.

Ordering the input features was expected to promote better results based on
the intuition behind the max pooling operation. However, the results showed it
has minimal impact. The hypothesis is that groups of similar topics have different
lengths and therefore a fixed size kernel can not produce a satisfactory feature
extraction for the next layers. Yet, some future work may confirm it.

Since ordering the inputs did not improve the results significantly, it was ex-
pected the convolutional layer would not impact much the results. The fully
connected layers treat the features as independent and even with a high dimen-
sional input vectors - 2381 dimensions - and 3909 samples, the neural networks
classifier performs well. However, for the models having inputs generated from
combination of standard and flair methods during document classification, the
additional convolutional layer improves the results reasonably.

The impact of the forget factor applied while building the expert candidate
representations was unclear. In expert profiling, it generally reduces the precision.
However, in expert finding the results are improved. For baseline models the
difference is irrelevant.

Finally, it was shown that a supervised method based on neural networks
trained on incomplete target data and high dimension inputs is robust, resulting
in precision considerably higher than the baseline. Moreover, even covering more
topics, the results are comparable to the state of the art obtained in similar
benchmark tasks, like TREC Enterprise.

86

Bibliography
Alan Akbik, Duncan Blythe, and Roland Vollgraf. Contextual string embeddings

for sequence labeling. 08 2018.

Samuel Arbesman. Truth decay: The half-life of facts. New Scientist, 215:36–39,
09 2012. doi: 10.1016/S0262-4079(12)62454-3.

Peter Bailey, Arjen P. de Vries, Nick Craswell, and Ian Soboroff. Overview of the
TREC 2007 enterprise track. In Proceedings of The Sixteenth Text REtrieval
Conference, TREC 2007, Gaithersburg, Maryland, USA, November 5-9, 2007,
2007. URL http://trec.nist.gov/pubs/trec16/papers/ENT.OVERVIEW16.

pdf.

K. Balog, Y. Fang, M. de Rijke, and P. Serdyukov. Expertise retrieval. Foun-
dations and Trends in Information Retrieval, 6:127–256, 2012. doi: 10.1561/
1500000024.

Krisztian Balog, Leif Azzopardi, and Maarten Rijke. Formal models for expert
finding in enterprise corpora. pages 43–50, 01 2006. doi: 10.1145/1148170.
1148181.

Krisztian Balog, Ian Soborof, Paul Thomas, Peter Bailey, Nick Craswell, and
Arjen P. de Vries. Overview of the trec 2008 enterprise track. In Proceedings of
The Seventeenth Text REtrieval Conference, TREC 2008, 2008. URL https:

//trec.nist.gov/pubs/trec17/papers/ENTERPRISE.OVERVIEW.pdf.

L. Charlin and R.S. Zemel. The toronto paper matching system: An automated
paper-reviewer assignment system. Proceedings of the 30 th International Con-
ference on Machine Learning, Atlanta, Georgia, USA, 28, 2013.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Löıc Barrault, and Antoine Bor-
des. Supervised learning of universal sentence representations from natural
language inference data. Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, 2017. doi: 10.18653/v1/d17-1070.
URL http://dx.doi.org/10.18653/v1/d17-1070.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.
ISBN 0262033844.

87

http://trec.nist.gov/pubs/trec16/papers/ENT.OVERVIEW16.pdf
http://trec.nist.gov/pubs/trec16/papers/ENT.OVERVIEW16.pdf
https://trec.nist.gov/pubs/trec17/papers/ENTERPRISE.OVERVIEW.pdf
https://trec.nist.gov/pubs/trec17/papers/ENTERPRISE.OVERVIEW.pdf
http://dx.doi.org/10.18653/v1/d17-1070

Thomas H. Davenport and Laurence. Prusak. Working Knowledge : How Or-
ganizations Manage What They Know. Harvard Business School Press, 1998.
ISBN 9780875846552.

Hui Fang and ChengXiang Zhai. Probabilistic models for expert finding. In
Giambattista Amati, Claudio Carpineto, and Giovanni Romano, editors, Ad-
vances in Information Retrieval, pages 418–430, Berlin, Heidelberg, 2007.
Springer Berlin Heidelberg. ISBN 978-3-540-71496-5.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

S.S. Haykin and B. Van Veen. Signals and systems. Wiley, 1999. ISBN
9780471138204. URL https://books.google.de/books?id=QA9LAQAAIAAJ.

Yuanhua Lv and ChengXiang Zhai. Lower-bounding term frequency normaliza-
tion. In Proceedings of the 20th ACM International Conference on Information
and Knowledge Management, CIKM ’11, pages 7–16, New York, NY, USA,
2011. ACM. ISBN 978-1-4503-0717-8. doi: 10.1145/2063576.2063584. URL
http://doi.acm.org/10.1145/2063576.2063584.

Richard Maclin and David W. Opitz. Popular ensemble methods: An empirical
study. CoRR, abs/1106.0257, 2011. URL http://arxiv.org/abs/1106.0257.

Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduc-
tion to Information Retrieval. Cambridge University Press, USA, 2008. ISBN
0521865719.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation
of word representations in vector space, 2013a.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean.
Distributed representations of words and phrases and their compositionality.
CoRR, abs/1310.4546, 2013b. URL http://arxiv.org/abs/1310.4546.

Thomas M. Mitchell. Machine Learning. McGraw-Hill, Inc., New York, NY,
USA, 1 edition, 1997. ISBN 0070428077, 9780070428072.

Juan Enrique Ramos. Using tf-idf to determine word relevance in document
queries. 2003.

88

http://www.deeplearningbook.org
https://books.google.de/books?id=QA9LAQAAIAAJ
http://doi.acm.org/10.1145/2063576.2063584
http://arxiv.org/abs/1106.0257
http://arxiv.org/abs/1310.4546

David C. Rubin, Sean Hinton, and Amy Wenzel. The precise time course of
retention. Journal of Experimental Psychology, 25, 1999.

Iskandar Setiadi. Damerau-levenshtein algorithm and bayes theorem for spell
checker optimization. 12 2013. doi: 10.13140/2.1.2706.4008.

Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and
Wang-chun Woo. Convolutional LSTM network: A machine learning approach
for precipitation nowcasting. CoRR, abs/1506.04214, 2015. URL http://

arxiv.org/abs/1506.04214.

89

http://arxiv.org/abs/1506.04214
http://arxiv.org/abs/1506.04214

List of Figures

1.1 Architecture for expertise profiling and finding proposed. The fo-
cus of this work lies on the components inside the dashed box. . . 6

2.1 CBOW vs Skip-gram architectures. Mikolov et al. [2013a] 17
2.2 Skip-gram neural network. http://mccormickml.com/2016/04/19/word2vec-

tutorial-the-skip-gram-model . 17
2.3 Contextual embeddings implemented in Flair: Forward LM embed

context before the word while backward LM embed the context
after the word. The two are concatenated together to represent
the word in the specific context. (Akbik et al. [2018]) 18

2.4 Sentence encoder proposed by Facebook for Infersent. Each LSTM
cell provides its output state, and the max pooling is taken over
all output states to form the sentence embedding. Conneau et al.
[2017] . 19

2.5 Sentence encoder proposed by Facebook for Infersent. Each con-
volutional layer provides a different abstraction representation of
the input sentence. Conneau et al. [2017] 20

2.6 Sentence encoder trained over Stanford NLI data. Vectors u and
v are obtained from encoder in . A bigger representation of both
vectors is given by the concatenation of u, v, absolute element-wise
difference, —u-v— and element-wise product u * v. Conneau et al.
[2017] . 20

2.7 2-D convolution without Kernel Flipping. Goodfellow et al. [2016] 24
2.8 When multiple CNN layers are stacked, the receptive field in last

layers receive signal (indirectly) from wide range of units from
input. (Goodfellow et al. [2016]) 25

2.9 Taking an output layer after convolution and activation function
applied, the average pooling and max pooling operations are dis-
played for pool size 2x2 and stride 2. (Source: https://medium.com/@Aj.Cheng/convolutional-
neural-network-d9f69e473feb) . 25

90

2.10 On the top, pooling output for pool size = 3, stride = 1 on first
row, based on values of activation function in second row. On the
bottom, the input is shifted to the right, changing the values of
activations in all positions, but still on pooling output just half of
values changes. (Goodfellow et al. [2016]) 26

2.11 RNN cell unfolded as a graphical representation of Equation 2.22.
(Goodfellow et al. [2016]) . 27

2.12 LSTM cell and all its gates. Source: http://colah.github.io/posts/2015-
08-Understanding-LSTMs . 28

3.1 Example of how the taxonomy graph is structured. 32
3.2 Example of feature extraction in max pooling layer 39

4.1 Comparison of distribution of keywords extracted using n-gram
method ”all”. Bin size = 5. It can be observed that the mindf

parameter affects the distribution, making a reduction of overall
number of keywords per document. maxdf controls the impact of
very common words. The higher the maxdf , the higher is overall
number of keywords per document. To make the analysis easier,
the number of keywords was clipped at 1000, therefore the last bar
represents the number of documents with keywords ≥ 1000 46

4.2 Comparison of distribution of keywords extracted using n-gram
method ”phrases”. Bin size = 5. The effects are same observed
for n-grams ”all”. The phrases method itself produces a massive
reduction on number of keywords per document, as expected and
observed by the distribution skewed to the left.. To make the anal-
ysis easier, the number of keywords was clipped at 400, therefore
the last bar represents the number of documents with keywords ≥
400 . 47

4.3 Comparison of distribution of keywords extracted using n-gram
method ”all”. The observations made looking at the histogram are
clearly confirmed. Increase on mindf skew the distribution, shifting
the box to the left (less keywords per document) and making it
narrower. maxdf moves the box to the right (more keywords per
document) . 48

91

4.4 Comparison of distribution of keywords expanded for keywords
extracted on n-gram method ”all”. Bin size=5. The number of
keywords was clipped at 1000, therefore the last bar represents the
number of documents with keywords ≥ 1000. 50

4.5 Comparison of labels assigned per documents on 50 samples. ”all”
n-grams in original keywords. 52

4.6 Comparison of labels assigned per documents documents on 50
samples. ”phrases” n-grams in original keywords. 53

4.7 Distribution of keywords on Work Assignments collection. Bin size
= 1. First bin = 3. 54

4.8 Distribution of keywords on Work Assignments collection. 55
4.9 Distribution of keywords expanded on Work Assignments collec-

tion. Bin size = 1. First bin = 2. The reduction on minimum
cosine similarity parameter allows more words to be aggregated,
but they are less similar. 56

4.10 Comparison of labels assigned per documents on 50 samples. La-
bels assigned to keywords expanded varying w2v similarity and
matching with Damerau-Levenstein tolerance of 15% of string length.
Again, it is interesting to observe, that although a lower cosine sim-
ilarity on w2v brings more similar words during the expansion, the
maxsimilarities = 5 would remove them. This is clearly observed as
the final number of labels assigned can be higher for some docu-
ments that had keywords expanded with higher cosine similarity
value. The depth parameter changes the size of set of possible
matches, therefore depth 1 always gives more labels than depth 2,
for same similarity parameters . 57

4.11 Comparison of labels assigned for documents, for the various w2v
similarity parameters used in keyword expansion step. It is clear
that for similarity in the range 0.7 to 0.8, the distribution does
not change much, given same taxonomy depth.However, for values
lower than 0.7 it can be expected that the model adds noisy labels. 58

4.12 Distribution of labels assigned for documents, for the various w2v
similarity parameters used in keyword expansion step. 59

92

4.13 Comparison of labels assigned per documents on 50 samples. All
plots used taxonomy topics at minimum depth 2. The chart presents
different values for max and min similarities, RNN and Pool meth-
ods, and max similar words 5 and 10. RNN method produces more
matches compared to Pool, but with more noise. When manually
inspected, Pool method showed to be more reliable. As the method
is total unsupervised, the best parameter value are chosen by ex-
pert inspection of sampled results. 61

4.14 Histogram with distributions of number of labels assigned by se-
mantic matching using flair embeddings, for different parameter
settings. 62

4.15 Distribution of number of labels assigned by semantic matching
using flair embeddings, for different parameter settings. 63

4.16 Distribution of original topics in people’s profiles. Bin size = 1.
First bin = 1. Last bin for all profiles with more than 59 topics . 64

4.17 Comparison of distribution of topics from people’s profiles after
the expansion with different parameters. Bin size = 1. First bin
= 1. Last bin for all profiles with more than 59 topics 65

4.18 Comparison of labels assigned per user on 50 samples. Labels
assigned to the topics using different values for maxsimilarity and
minsimilarity . 66

4.19 Distribution of labels assigned for documents, for different values
for maxsimilarity and minsimilarity 67

4.20 Comparison of labels assigned for documents, for different values
for maxsimilarity and minsimilarity 68

4.21 Example of how the taxonomy graph can is structured. For the
ordering, consider each edge with distance 1. Distance from topic
F to topic C would be 3 (F → B → A → C) 72

93

List of Tables

1.1 Association between people and topics. 5

3.1 Association between documents and topics. 33

4.1 BM25 scores for each document from Internal Publications, for
each taxonomy topic. 41

4.2 Number of taxonomy topics at each level. Level 0 is the most
generic, level 9 the most specific 44

4.3 Median and rounded mean and std, maximum and minimum values
for number of keywords per document in Internal Publications,
followed by their expanded sets. 49

4.4 Median and rounded mean and std, maximum and minimum values
for number of taxonomy labels assigned per document in Internal
Publications. In Parameters column, the name indicates param-
eters: w2v similarity, Damerau Levenstein tolerance, taxonomy
depth, followed by parameters used for keyword extraction - min
document frequency and max document frequency proportion. . . 51

4.5 Median and rounded mean and std, maximum and minimum values
for number of keywords per document in Previous Work Assign-
ments, followed by their expanded sets. 55

4.6 Median and rounded mean and std, maximum and minimum val-
ues for number of labels assigned per document in Previous Work
Assignments for some parameter values. 55

4.7 Median and rounded mean and std, maximum and minimum values
for number of labels assigned per document in Previous Work As-
signments using different parameters for Flair method. Suggested
settings is highlighted in the table. 61

4.8 Median and rounded mean and std, maximum and minimum values
for number of topics per user in ”Topics I Know” profile section,
followed by their expanded sets using some different parameter
values. 64

4.9 Median and rounded mean and std, maximum and minimum values
for number of labels assigned per user, related to their ”Topics I
Know” session in profile, through standard method. 66

94

4.10 Median and rounded mean and std, maximum and minimum values
for number of labels assigned per user for ”Topics I Know” session
in profiles, using Flair method. 66

4.11 Distances between all topics according to topics computed for the
graph in Figure 4.21 . 72

4.12 TP, FP and FN calculations from vectors of true values and pre-
dictions. FP = clip(Ypred − Ytrue, 0, 1). TP = (Ypred − FP),
FN = clip(Ytrue − Ypred, 0, 1). Taking the sum of TP, FP and
FN and following the Equations 4.6 and 4.7: Precision = 2/3 and
Recall = 2/4. 77

4.13 TP, FP and FN calculations from vectors of true values and pre-
dictions. FP = clip(Ypred − Ytrue, 0, 1). TP = (Ypred − FP),
FN = clip(Ytrue − Ypred, 0, 1). Taking the sum of TP, FP and
FN and following the Equations 4.6 and 4.7: Precision = 1.9/2.8
and Recall = 1.9/4 . 77

4.14 Example of a batch of size S=5, for classes Ci 78

5.1 Average Precision over all 150 topics, computed for each set of users 83
5.2 Average Precision at 5 over users, for each set of users 84
5.3 Average Precision at 5 over users, for each set of users 84
5.4 Average Precision at 5 over users, for each set of users 85

95

List of Abbreviations
AP Average Precision

CNN Convolutional Neural Networks

DAG Direct Acyclic Graph

LSTM Long Short-Term Memory

MLP Multi-Layered Perceptron

NLP Natural Language Processing

PCA Principal Component Analysis

RNN Recurrent Neural Networks

TFIDF Term Frequency-Inverse of Document Frequency

TREC Text Retrieval Conference

TSP Travelling Salesman Problem

96

	Introduction
	Problem Description
	Evaluation
	Expert Profiling Evaluation
	Expert Finding Evaluation

	Releated Work
	Previous Work in Expertise Search
	Generative Probabilistic Models
	Discriminative Probabilistic Models

	NLP and Machine Learning
	TF-IDF
	BM25
	Word Embeddings
	Sentence Encoders
	Embedding Similarity
	String Similarity
	Deep Learning

	Methodology
	Objective
	Data Collection
	Internal Publications
	Previous Work Assignments
	"Topics I Know" in Profiles
	Taxonomy

	Expert Classification Tool
	Classification of Documents
	Expert Classification

	Expert Classifier Implementation
	Baseline model
	Document Classification
	Internal Publications Classification
	Previous Work Assignments Classification
	Classification of "Topics I Know" in Profiles
	Expert Candidate Representation
	Topics I Know as Target Data
	Data Preprocessing
	Multi Label Classifier

	Experiments
	Experiment Setup
	Baseline
	Base Neural Network
	Model A
	Model B
	Model C
	Model D
	Model E
	Model F

	Experiment Results
	Expert Profiling
	Expert Finding

	Conclusion
	Bibliography
	List of Figures
	List of Tables
	List of Abbreviations

