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Abstract: Generation of musical compositions is one of the hardest tasks for
artificial intelligence where most of the current approaches struggle with long
term coherence of the generated compositions. This work aims to demonstrate
how deep learning models for generating music can be externally controlled to
produce compositions with long term coherence, polyphony, and multiple instru-
ments. We work with classical music ranging from compositions for piano through
string quartet and up to symphonic orchestral compositions. To control the gen-
eration process, we take inspiration from the abstract notion of musical form:
normally a high-level description of how similar and dissimilar passages are ar-
ranged throughout a composition, we use it as a recipe for generating a coherent
composition. To this end, we (1) design a sufficiently general music similarity
pseudometric from existing methods, (2) extract musical form from the training
data by applying a clustering algorithm over the similarity values, (3) train three
models that generate similar and locally coherent dissimilar musical fragments,
and (4) design a way how to use the musical forms during the generation process
to orchestrate the inference of the three models to generate whole compositions
from musical fragments. We show what is the performance of the transformer
generative models for generating musical fragments when trained by presenting
one-to-many training examples. Multiple runs of the variant generating model
given a same single input fragment can be used as a palette for variations inspi-
ration to the human composers. To evaluate the results of the generation system,
we experimented with adaptation of the Fréchet inception distance for music,
which suggests that the generator-produced compositions are in some sense close
to compositions by human authors. However, the truly relevant evaluation is
whether the system has been able to produce compositions engaging for human
listeners (or performers). Based on the generated samples, we believe that it has
had some success, but we encourage the readers to judge for themselves.
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Introduction
Composition of a musical piece is one of the highest demonstrations of human
creativity. This poses an interesting problem for artificial intelligence. There has
been a great advance in the field of generating musical compositions thanks to the
use of Deep Learning techniques, e.g. convolutional or recurrent neural networks,
or more advanced models, such as variational autoencoders (VAEs) or generative
adversarial networks (GANs).1 These advances can help with imitating musical
creativity and be used as tools to help composers with their creations either by
inspiring them or by elaborating the musical material. A major shortcoming of
current approaches to both symbolic or raw waveform audio is the long-term co-
herence of the generated pieces, which should generally be composed of recurring
sections with a certain hierarchy.

In this work, we explore a hybrid approach for automated music generation in
a more controlled manner. The term “control” refers to the fact that the neural
network models usually generate music as black boxes and the user has no influ-
ence over various musical properties of the result. In our work, control means not
trying to train the generative model to implicitly capture long term dependencies,
as the current machine learning methods struggle to do so. These dependencies
are taken care of by a different algorithm that uses domain knowledge and per-
forms an analysis to obtain long term relations viewing the whole composition as
assembled from smaller musical fragments.

The approach this work chooses is to explicitly generate repetitions, instru-
mental accompaniments, variations, or transitions between motives. The key fac-
tor in making a well-received composition is creating a good balance between
the forces of surprise and expectation. This means keeping the attention of the
listener by adding new musical material against the satisfaction the listener gains
from listening to a familiar material. The layout of familiar versus unfamiliar can
be used as the most abstract definition of what a musical form is.

To make use of such a form, we have to be able to generate similar, dis-
similar and locally coherent fragments of music given an input fragment. The
local coherency means that the generated musical fragments should fit well to-
gether when concatenated in an order described by the musical form and have
good inter-instrument/track complementarity when the individual voices/tracks
are put together as described by the musical form. We work with unrestricted
polyphony, ranging from compositions for a piano to an entire orchestra.

Getting such a form is another task because it is not explicitly marked in
training compositions. It could be extracted from the data or in an unsupervised
fashion, or labeled by experienced analysts. We chose to extract the forms from
the data by an algorithm. The core problems for the extraction algorithm is that
the resulting form should correspond to perceptual similarity of the fragments and
that the algorithm should be able to find out if two fragments are similar enough
to be considered as variations on the other. Perceptual similarity is a very hard
concept as it depends on both objective and subjective criteria and algorithms

1It is expected that the reader has a base knowledge of concepts in e.g. Goodfellow’s et al.:
Deep learning, 2016 [1] or other book or course, however, most of the core concepts will be
defined in this work
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cannot find similarities that happen on the subconscious level in the minds of
listeners with various experiences and states of mind. However, there are certain
helpful concepts from music theory that are already formalized and are the best
approximation of perceptual similarity.

This processing of the data then allows us to obtain training examples of
a reasonably short length (e.g. measures) that are fit for sequence to sequence
(seq2seq) models that could generate variation, accompaniment and new musi-
cal idea measures (that are nevertheless continuation of the previous measures),
and at the same time to have a straightforward way of combining the generated
fragments together to create the final composition.

Figure 1: A simplified workflow of the whole process of our music generation. The
left side of the diagram describes the steps of the process that prepares and trains
the components of the generation system, the right side describes, in simplified
terms, the process at runtime. The colors in this diagram follow the structure of
this work. Yellow is for Data chapter, 4, orange is for Similarity Model chapter
5, light red is for Form Extraction chapter 6, light purple is for chapter about
the generation models 7, dark purple is for chapter Generation Scheme 8 and the
green color is for the Generation Results chapter 9.

In Figure 1, we can see the overview of the whole generating system. The train-
ing compositions are analyzed by self-similarity analysis and the similar fragments
of the compositions are clustered together to extract a musical form. The clus-
terings provide training pairs for a model that generates variants (fragment pairs
that are assigned to the same cluster), and conversely indications of what training
pairs to avoid for the model that generates non-variants. Then, the form is used
alongside with the two models and a third, accompany generator, model to gen-
erate fragments in a not necessarily “start-to-end” order that are concatenated
together as the extracted form describes.
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We work with a similarity metric for symbolically represented polyphonic mu-
sic mainly based on [2] and [3]. Our analysis looks into intra/inter instrumental
similarities between measures to obtain self-similarity matrix for each composi-
tion.

Finding the fragments similar enough to be considered variants of each other is
done through clustering and adjusting the clustering algorithm hyperparameters
through an automated search for each composition according to our goals, the
overall level of intra-opus homogeneity differs among compositions, but within
each (good) composition there is a certain amount of surprise.

Having the similar fragments clustered, we train models for generation of vari-
ant fragments, non-variant continuation fragments and, accompany fragments.

With the clusters of similar fragments, we can extract a musical form that
describes what fragments should be similar and where should they be placed in
a resulting composition.

How do we know our system works? Evaluation of music generation is a diffi-
cult task which, for the time being, takes place mostly on the qualitative levels.
We cannot expect rigid evaluation as in more objective and longer addressed tasks
(machine translation). This can be supported by the related work which usually
rely on subjective evaluation or questionnaires. To evaluate our generated results,
we look into the methods from image evaluation of generative models [4] and try
to adapt them for music.

The resulting system cannot of course be expected to produce pleasant music
on every try. Rather, we are interested in exploring whether our approach that, as
opposed to other works using machine learning, explicitly uses the musical form
can be a concurrent to the “traditional” machine learning generation approach
or whether it has a chance to produce pleasant music.

This work explains our new hybrid approach and shows that it is able to
produce long coherent multitrack imitations of classical music. The individual
models used in our system have a potential to be also used ad-hoc to provide
inspirational fragments of music in a process of human composition.

The thesis is structured by chapters as follows: We first introduce the basics
of musical terminology, then continue with our goals and system design, look into
the related work and our dataset. Then, we explain the three main blocks of our
approach in the next three chapters, i.e. the similarity comparison model, process
of musical form extraction and deep learning models for generating fragments.
Then, we look at how we generate the whole musical compositions buy using
musical form and the three deep learning models. Finally, we show our result-
ing compositions and an adaptation of a known evaluation technique for image
generation and conclude this work.
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1. Brief Primer on Musical
Terminology
In this chapter, we introduce in more detail the problem and the goals as ap-
proached in this work. We first have to formalize the notion of music and musical
form, and then we can re-state the goals of this work as actionable steps.

Music is a way of organizing various sounds into time that holds some mean-
ing and evokes emotions. Pleasant musical pieces usually follow rules of harmony,
melody and rhythm to some degree. Music is also usually well structured in its
contents, meaning there are repetitions and elaborations of themes put well to-
gether. However, there are also non-descriptive elements such as expectancy vs.
surprise ratio, frustration, tension, or giving a metaphorical meaning or emotion.

We will describe music solely as a temporal arrangement of notes. A note
has 4 main attributes that are pitch, duration, strength and timbre. Pitch is a
frequency given some tuning1, duration is a time span for which the note should be
performed, strength is loudness, and timbre describes spectral characteristics and
additional noise [6], [7]. Pitch and duration are creating the base of a composition,
while strength and timbre are more about the performance of the musical peace
and could be left to the performing musician to interpret them. Following the
definitions in [7], pitch is specified as:

“Pitch is a categorical variable with values from a subset of frequencies
defined by scale and tuning. For western music, the scale of available
pitches consists of semitones, using a tuning system where the next
higher semitone is determined by the previous 1 as si+1 = si · 2f 1

12 .
Pitches are ordered linearly by their ascending frequency and arranged
into a repeating pattern (i.e. C, C♯,D,D♯,...) of 12 notes called semi-
tones. One repetition of this pattern is called an octave. Octaves are
numbered from 1 to 8, in the English-speaking tradition. The number
of octave is usually concatenated to the name of note (e.g. C5). For a
base octave and a note, the same note in any other octave can be de-
rived by stacking multiplication or division of the note’s frequency by
2 (e.g. midi tone 48 (C4) and 60 (C5), are both on step ”C”, because
the C5 pitch frequency is exactly twice the C4 frequency. That also
means they resound a perfect harmony). In MIDI format, the pitches
are numbered by integers in ascending order by their frequency.”

and duration is specified as:

“ Duration is also categorical2 . Duration is measured in beats (units of
musical time). The duration categories are fractions of a beat, mostly
in powers of 2. In musical terminology a 4-beat note is called a whole
note, a 2-beat note is a half note, then quarter, eight etc. The most

1Tuning is a way of determining a frequency of a given pitch given f reference tone and
formula to calculate other pitches [5]

2[7]: Categorical in music theory, although its realization is not: musicians slow down or
speed up the flow of musical time in order to bring out inner structures in the music”
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common grouping of beats into regular units (called bars/measures) is
by 4, hence the name ”whole”. However, durations that do not fit into
this ”powers-of-two” (e.g. 1/3 or 2/5) are not an exception in most
of the compositions.”

Figure 1.1: Types of notes according to their duration[6]. The lowest duration we
consider in our generating models is the 64th.

Term rest is used for silent moment in composition or for a given instrument,
while the other instruments can be playing. It has the same duration specifications
as a normal note, but it has no pitch, no strength and no timbre. We use a term
rest-measure to describe a measure which only contains rests.

Throughout this work, we are going to work with discrete symbolic represen-
tation of music. The approach of formalizing music as a collection of abstract
note objects rather than the sounds they imply is called the symbolic approach
in music generation literature. A disadvantage of the symbolic approach is that
the synthesis of the sound is static, so there are no sound effects and timbre
changes except the definition of the instrument3 to play along with its discretized
loudness. However, we are trying to generate the compositions and not their per-
formance so we avoid the domain of soundwaves representation which can have
lots of noise and is has much higher sampling rates for our models to be able to
cope with longer sequences.

1.1 Time in Music
Time in music is counted through pulsing units called beats.

Meter organizes music in time through regularly recurring pulses called beats
in a musical bar/measure featuring different patterns and accents through the
measures. The beats are not needed to be sounded, but are still expected and
perceived by the listener.

Basic classification of meters are simple and compound meters, and duple,
triple and quadruple metes [8].

The classification of simple and compound captures the relationship between
the counting pulse (a beat) and pulses that are faster than it. It could be said
that they divide the beat, where simple meter divides the beat into two equal
parts, whereas compound meter divides the beat into three equal parts [8].

3Instrument is used throughout the work as a short for musical instrument, where context
should help to disambiguate when instrument is used in different meaning
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The duple, triple, quadruple classification captures the relationship between
the counting pulse and pulses that are slower than it. That is they group the beats
into bars/measures, where duple groups into two, triple into three and quadruple
into four.

The time signature is noted by two numbers at the beginning of a starting
measure, where the top number determines the type of meter (2,3,4 - simple
duple, triple, quadruple, and 6, 9, 12 - compound duple, triple, quadruple), and
the bottom number determines which type of note (their duration) corresponds
to a single beat in simple meters and to a single division of a beat in compound
meters. The beats are usually alternated as stressed and unstressed pulses.

Figure 1.2: Time signature and measures with examples of simple and compound
meters. Individual figures are taken from [9]

Rhythm is the placement of sounds in time and depends on the meter and
tempo4.

Downbeat is the first beat of the measure and is usually stressed as it is a
beginning of the sound representing musical energy going in a forward motion.
Upbeat is the last beat of a measure and prepares the listener for the downbeat
creating a sense of anticipation [10]. We will also use the onbeat in some meters
(e.g. simple quadruple), which is the second strongest accent after the downbeat
in the melody and a second most likely place for a chord change. The onbeats
are usually it the middle of a measure. Other beats that are subdivisions of the
main beats are usually weakest and are sometimes called offbeats.

4Tempo can be considered as a relation of beat and time, practically speaking, it is the speed
of the composition for a given composition or a part of a composition
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1.2 Key
A scale is a set of pitches in ascending or descending order with specification
(mode) in a number of half-steps for each successive pitch from the previous
pitch. Key defines a group of pitches or a scale and its first pitch called tonic.
We will work with two main modes familiar in Western classical music, Major
and Minor. They have 7 tones in intervals +0, +2, +4, +5, +7, +9, +11 for the
Major, +0, +2, +3, +5, +7, +8, +10 for the Minor. Every tone in the key sounds
more or less consonant with the others from scale [7].

A part of music written in a given key uses mostly the set of pitches determined
by it but can violate it from time to time to create moments of surprise.

Musical compositions are typically written in one key though the key can
change throughout the composition e.g. Zd. Fibich. Sonatina. Op. 27..

1.3 Intervals
Intervals are differences in pitch between notes that are counted in semitones (in
this simple explanation, we consider only dyads of two notes sounded together).
These intervals are important because we perceive two or more simultaneously
sounding pitches as of ratios of their frequencies instead of distinct sounds. Some
ratios sound pleasant, harmonic or consonant, where some are dissonant and not
pleasant to our ears. A clearer definition of consonance is more complex and can
be found in [5]. However, the perception of a consonant sound is relative to the
listener and their culture/preferences and can also be framed by preceding notes,
where a dissonant sound may be heard as consonant if it is preceded by many
sounds that are even more dissonant [5].

Interval names are dependent on their scale, however, we will work only with
chromatic intervals (counted in semitones).

In western classical music, consonant intervals are considered (as degrees for a
given scale) 1, 3, 5, 6, 8 and dissonant intervals are considered 2, 4, 7. Throughout
most of the history of polyphonic music, the basic principle in music is organisa-
tion of harmony with appropriate alternation of consonance and dissonance.

Compound intervals are simply intervals that are larger than 12 semitones,
however, they are usually treated as “modulo 12” and considered as on similar
level of consonance as their simple counterparts.

Two intervals are inverse intervals if they have their pitch classes (pitch mod-
ulo 12) the same and the sum of both chromatic intervals is 12.

Intervals can be melodic or harmonic. The interval between the pitches sound-
ing at the same time is called harmonic. If the two pitches are sounded one after
another the interval between them is a melodic.

1.4 Chords
A chord is any combination of three or more pitch classes that sound simultane-
ously. There are many versions of pleasant chords defined by their root note and
a quality(intervals between the three notes), which are defined for 3-notes chords
and 4-notes chords.
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An important concept related to chords is the arpeggio, which is a chord that
is broken into a sequence played in a quick succession in usually ascending or
descending order, or even other permutation (even permutation with repeat) of
(usually consonant) notes belonging to the chord.

1.5 Variation Techniques
Variation is technique where musical pattern is repeated in a slightly altered
manner where we could still recognize it. The changes may involve combinations
of changes in rhythm, melody, harmony or orchestration. Other changes are in-
verting the melody, retrograde (reversing the melody) and the perceptually least
confounding change is chromatic/diatonic transpositions.

Inverting a melody means that the steps in melody that are ascending a
specified interval become descending by the same interval in the inverted melody
and vice versa. Retrogrades are melodies played from the end to the start, either
only pitches or with rhythm as well. Transpositions (or contours) are simple shifts
of the whole melody over some interval could be be either chromatic and diatonic,
where diatonic means that the steps to shift for each note are determined by the
scale.

1.6 Non-mathematical Relationships in Music
Even though certain dimensions of a musical piece can be analyzed by more or
less formal theory, there are some conscious or unconscious mind processes re-
quired from the composer to complete a composition [11]. As written in [11]: “The
consciously articulated rules of even the best-understood musical styles have not
shown themselves to be sufficient to capture satisfactorily the underlying compo-
sitional process.” and “It is generally the case that composers are more interested
in establishing a formal device as a point of departure than as an end in itself.”

To create a sense of tension or emotion to keep the listener engaged, har-
monies, cadences, dynamics or rhythms are alternated with less defined harmonies
or rhythms, more pronounced cadences or different dynamics or even complete
dissonances. One example might be repeating a sequence two times and a half
and then switching the harmonic resolution, where repeating the sequence twice
creates a sense of expectation, twice and a half confirms the expectation and cre-
ates a temptation to stop paying attention, and a sudden breaking of a pattern
creates a deceit of expectations and sustains the listeners interest.[11]. The the-
ory [12] behind why it works is that consonance and dissonance are a function
of centrifugal and centripetal forces in music. These forces are described [12] as:
“In Schoenberg’s context, centrifugal forces are those that require expansion, like
Phiolaus’s unlimiteds, they constitute the potential for development with a mu-
sical idea. Centripetal forces are those that lead to coherence, they hold the idea
together and make us perceive it as a unity.” However, the tension from the theory
can be achieved through the sole use of timing (solo drum), dynamics, timbre,
cadence, or spectral changes of the sounds (electronic music). In a musical mind,
there are certain association networks formed such that given a partial input, the
pattern completion mechanisms consider many possible continuations and a com-
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poser, who understands this predictive mechanism can shift these expectancies
to their own aim [11]. Therefore, we are looking for a computer model, which is
able to tackle this critical aspect.

1.7 Musical Form
Musical form is defining the analytic structure of musical composition and the
syntactic rules relating to it.

There can be more or less defining organizational elements along with their hi-
erarchical organization. These are temporal layouts of melody, harmony or rhythm
that are repeated and varied by some degree of similarity. They could also be be
defining intonation, density of notes, dynamics, choice of instruments, orchestra-
tion or other musical units [13].

Karl Eschman has also written on explanation of what a form is: “There
remain the two different requirements for the production of any form: some dif-
ferentiation of materials, and some relation of these differentiated materials by
repetition.” [14] p.23.

1.7.1 Phrases and Motives
A phrase is a unit of the musical form which has a complete musical sense on its
own, [15] [16]. Phrases are usually not of a predefined length, but they can be
around four measures long. Phrases are consisted of smaller units called motives
and figures. Motif is a short sequence of notes that occurs recurrently and defines
some character or theme to a composition, where figure is fairly similar to motif
but carries less significance to the whole composition and can be endlessly chained
together in the background [16], however, it could be that a composition is created
only from figures e.g. minimal techno music. Both motives and figures are not of
a predefined length.

One of the main requirements of the musical form is to group the same or
similar phrases in music and define their arrangements into time along with some
more or less defined alternations. In order to extract or analyze a form, one has
to have a notion of how the similarity of musical pieces is perceived and at least
partially “formalized” as musical similarity can be subjective.

12



2. System Design
Our main goal is to generate long, multi-instrumental and coherent musical com-
positions. Current models that look at music generation as a monolithic machine
learning problem [17], [18] are unable to maintain coherence for longer than 2000
tokens ( 60 seconds) [19].

The core concept of our approach is to utilize an explicit musical form (see
Sec. 1.7), which is the outline of a long-term structure of a composition on vari-
ous time scales by defining repetitions and similarities of its parts. It follows that
with a help of a musical form and models that are able to generate musical units
that follow the “template“ or recipe for similarity and dissimilarity provided by
the form, we should be able to generate longer coherent sequences. Two further
types of local coherence need to be maintained: temporal, where the “next“ new
part should relate to what was heard previously (possibly by being suitably differ-
ent from it), and harmonic coherence in polyphonic compositions, which should
ensure that the voices which sound together accompany each other well.

However, such an approach presents new problems since the musical form as
defined in music theory is not sufficiently formal for a computational application,
from which follows that form annotations are not present in datasets. We therefore
will have to define and then extract musical form from data ourselves, based on
the concept of similar and dissimilar parts. However, a function that evaluates
the similarity of two polyphonic fragments of music is also not readily available.

Therefore, in order to apply musical form for generating long-term coherent
compositions, the following steps are necessary:

1. Design of a musical similarity pseudometric

2. Calculation of self-similarity matrix for a given composition

3. Clustering of parts of composition that are similar enough to be considered
variants of each other

4. Extraction of musical form from a given composition

5. Training of a model which is able to produce variants of a given motif
measure

6. Training of a model which is able to produce a measure that is continuous
to the previous measure(s1)

7. Training of a model which is able to produce a measure for other voices
played in parallel

8. Design of a generation process that uses the 3 previous models in a mean-
ingful way to produce a desired output

These processes can be seen in Figure 2.1 where the colors indicate the chap-
ters of this work corresponding to the processes that are necessary.

1One can anticipate that the previous measure might as well be a “rest measure” which gives
no real indications of how the track should continue
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Figure 2.1: A simplified workflow of the whole process of our music generation.
The left side of the diagram describes the steps of the process that prepares
and trains the components of the generation system, the right side describes, in
simplified terms, the process at runtime. The colors in this diagram correspond
to the numbers of processes in the previous list. Orange is for (1) and (2), light
red is for (3) and (4), light purple is for (5), (6) and (7), and the dark purple
colour is for process number (8).

2.1 Similarity within Musical Pieces
Musical pieces or sections of compositions can be compared from various dif-
ferent perspectives including name, author, key, instrumentation or by musical
content comparing domains like pitch, rhythm, harmony, texture, meter, tempo,
timbre, dynamics etc. The similarity information can be obtained from raw data
or from symbolically encoded data. We, as throughout this whole thesis, work
with symbolic music.

2.1.1 Features important for similarity
The most important attributes from the musical domain for comparison of musical
pieces are pitch, pitch contours and rhythm [20]. Many of the known frameworks
for musical comparison use just these two attributes, e.g. in [21] or [2]. Another
important factor is the requirement to find similarities regardless of the position
in measure, interactions with other patterns or different lengths of the patterns.

Many comparison systems [2], [22] or [23] take into consideration only mono-
phonic patterns, whereas many compositions have some degree of polyphony
within their tracks. Monophonic music is to be composed of one melody i.e. that
only one note is sounded at a given time. In contrast, polyphonic music can have
more than one note sounded at a given time and there is no perfect technique to
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extract melody from polyphonic music [3], yet, some approaches try approxima-
tion of a monophonic reduction and then use a monophonic comparison systems.
When working with polyphonic music, it means that we need to find similari-
ties of chords, and the chords can even by similar to several consecutive notes
(arpeggio) [3].

2.1.2 Goal
The goal is to have a similarity pseudometric usable for internal analysis of poly-
phonic compositions of different lengths. The desired output is either to have
ordered sequence of triples of: bounding interval for first subpart, bounding inter-
val for a second subpart, and their (dis)similarity value. These would be ordered
from highest to lowest similarity, or a self-similarity matrix of predefined compar-
ison lengths (e.g. 1 measure). In case of multiple simultaneously playing tracks
which could have different instruments, we want to compare the tracks separately
so that any part in any track is analyzed against all the other parts to analyze
cross-instrumental similarities.

2.2 Musical Form Extraction
The extraction of musical form requires finding the perceptually similar and dis-
similar fragments of music, grouping them together and keeping their arrange-
ments in time. One can even keep some context as a part of a form, such as
instrumentation, scale/mode of a key, transpositions, dynamics, motion etc.

Problem with grouping the similar fragments within musical part can be also
highly subjective. Tunes can be similar to one another, by some respect, but not
variants of each other [24]. As Meudic, Benoit [20] p. 2. states: “Another problem
arises from temporal considerations: should a similarity algorithm be independent
of the context? This is hardly the case when considering that our culture, education
and memory influence our perception of similarity. However, one can still wonder
if there exists some universals.” Here, context could also be other notes in the
composition preceding the analyzed part. Other context such as rhythm, scale etc.
are, however, already taken into consideration by the similarity pseudometric.

Apart from similarity subjectivity, another problem lies in the definition of
how the groupings (clusters) from the extraction algorithm should look. In ideal
case, the vision of a form in human composer’s mind is bound to match his/her
compositions musical form according to the composer’s hierarchy in their simi-
larity perception. However, an algorithm that works in reverse, trying to get into
the composer’s mind, needs to be instructed on structural characteristics of the
desired groupings. Such characteristics are different for every composition and
they could be:

The proportion of fragments in a cluster against the number of fragments
in the composition

Inner structure of the clusters, such as meaningful variances of intracluster
similarities.

Differences in cluster sizes and densities of fragments inside clusters
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Number of clusters in total

2.2.1 Our Form Definition
Our base definition of a form is a simplification in which we consider only parts
of a given arbitrary absolute duration, in our case one measure (the absolute
duration is dependent on a meter). For purposes of this introductory chapter,
the most basic version of our form consists of tuples (P, V, T, N) arranged as of
their order in the composition. P stands for primary symbol, which determines
the class of the similarity grouping, V determines the numbering of a variant
within a given grouping primary symbol, T determines chromatic transposition
(no transposition and a same variant implies identity), N stands for track number
in an ordering given by analyzed composition.

2.2.2 Clustering the Fragments
For grouping of the similar patterns, we experimented with various clustering
algorithms. Some of them required to predefine the number of clusters or required
projecting our similarity metric into a linear subspace (though our final used
similarity is not strictly a metric, the triangular inequality is not satisfied and
0 similarity value is not equivalent to the compared sequences to be the same).
We worked with precomputed similarity matrices and determined the number
of clusters through the clustering algorithm parameters to meet our predefined
goals as specified by a criterion. Another concern when grouping the variants
is the question of context. Is the similarity of pieces sounded in a middle of a
composition perceived differently when primed by listening to a same composition
for e.g. 2 minutes?

2.2.3 Goal
The goal of the extraction is not only to get the form, but also to collect training
data for two models. A model which would be able to generate variations trained
on data which are put into a same cluster during extraction. And a model that
generates non-variants trained on data which are not put into a same cluster.
By first extracting the form and then training the models to provide the parts
predefined by it, we can make use of the extraction for another time and just put
the generated parts into a time axis as defined by ordering from the extracted
form. The extracted form should specify what parts of the composition are same,
which are only transposed, and which are similar or dissimilar disregarding the
true value of a similarity between them. We also want to encode more things into
our musical form definition that are used for conditioning our models, such as
instrumentation, meter, track number etc., however, these are not hard to extract
from the training data from the algorithmic point of view. Other attributes for
such conditioning are density, average velocity, degree of polyphony or general
motion in context of the part of the composition and its surroundings.
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2.3 Measure Generator Models
Typical scheme for generating a musical piece with the help of machine learning
algorithms consists of training typically a sequential model and then, during gen-
eration, priming it with a starting sequence from training data and then letting it
feed its predictions back into itself, continually generating the whole new musical
sequence.

As suggested in the introduction, we are going to use our generative models
to provide us with only fragments of the whole composition instead of sequen-
tially generating the composition as a whole. For such approach, we are going to
use sequence-to-sequence models. These models given a sequence generate a new
sequence conditioned by the first.

We will describe how we can encode music in computers and how we can
represent it for our models as there can be many representations available [25].

2.3.1 Representation
We will represent symbolic pieces of musical composition as sequences of events
as in [26], which allows the models to learn expressive timings with granularity of
10 milliseconds and loudness of the notes. While we do not work with expressive
timing, this representation has advantages: e.g. it encodes the music similarly to
how sparse matrices are encoded which allows for higher informational value, and
it “hides” the polyphonic dependencies not easily trainable due to an combina-
torial explosion into a temporal domain. Our events are one-hot encoded vectors
of possible 88 note-ons, 88 note-offs, 64 duration-shifts and 16 velocity (loudness)
bins. If we add SOS, EOS and padding events we have 259 different events. How-
ever, we will also have many context variables which will be needed to add to
this representation e.g. scale, motion, instrument, track number, note density etc.
Which can be done through summation of embeddings or concatenation.

2.3.2 Goal
A well known restriction of sequential models for musical composition is the
length of the sequence e.g. ∼ 500 tokens in [26]. On larger scales, the composition
looses its coherence and avoids repetition of the previous patterns, as seen in
my previous work [7]. Newer model from google magenta [19] is able to generate
consistent pieces through relative attention mechanism with time scale of 60s
( 2000 tokens). To overcome this problem and generate longer pieces, our goal
is to constrict the length of the sequence and generate only small pieces that fit
together and follow a guideline of a predefined musical form (which we extract
from real data, but it can be prescribed arbitrarily).

For such task we need a seed measure, musical form and various sequence
to sequence models, such as a generator of similar variants that elaborate on an
idea of a given musical motif, a generator of next measures that fit together with
the previous measure, or a generator of accompany track for some instrument
and combine them together. Our goal is to train such models and generate multi-
instrumental (variable of number of instruments playing up to 16) polyphonic
compositions that are coherent over much larger time scales than with previous
models in the field.
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3. Related Work
In this chapter we describe works that influenced this thesis. They fall into three
areas: deep learning for music generation, musical similarity, and works on ex-
tracting musical form.

3.1 Music Generation
Other works trying to generate music take on many different approaches and
perspectives using most available representations (e.g. direct waveforms approach
[27] or discrete symbolic representation [28]) and deep learning generative mod-
els (generative recurrent neural networks (RNNs) Eck et. al [29], Boulanger-
Lewandowski [28], generative adversial networks (GANs) [30], variational autoen-
coders (VAEs) [31]).

Works that use discrete symbolic representation usually utilize either piano-
roll (x-axis represents time, y-axis pitch) [28] or event based midi-like represen-
tation [18]. The piano-roll representation has its advantages such as being able to
match a specific duration to a time step in an autoregressive model. This trans-
lates to being able to match rhythmical structure (given a time signature) by
the architecture of a model e.g. skip connections over measures [7]. One poten-
tial disadvantage is the usually lower granularity as most of the related work use
only the sixteenth note as its step [32] [31]. Another disadvantage is the need to
model the joint distribution for the polyphonic output [28] [33]. The event-based
representation [18] untangles the joint probability into a sequence. This sequence
handles more effectively the silent moments and long notes while only encoding
coding the time shifts and not multiple less telling values (mostly zeros).

The problem with most related works is the use of models in a way that is
unable to scale to longer sequences with acceptable coherence of the outputs. The
transformer model from Google Magenta [19] is able to generate consistent pieces
through relative attention mechanism with time scale of 60s ( 2000 tokens).

Other work from Google Magenta, [31] uses the VAE generative model in a
way that enhances its ability to produce longer sequences by using a hierarchical
decoder. There, a “conductor” RNN decodes the latent vector into new embed-
dings for every measure and the corresponding measures are then generated only
given the previous note, state of the note generating RNN and its corresponding
embedding. However, no such mechanism is implemented for the encoder part.

Counterpoint by Convolution [34] and DeepBach [17] use convolutional neural
networks (CNNs) across tracks and across a small time window both into the
history and future of the composition. This model is then iteratively used by
Gibbs sampling to generate missing pieces of the composition. These models are
able to work with multiple tracks. A downside is the need for a fixed number of
tracks due to their architecture while not allowing polyphony within the tracks.
Another downside is that while the local coherence in the resulting compositions
is good, these models do not ensure longer-term coherence.

Dong et al. [30] use a combination of three GANs to generate compositions
with 5 tracks for bass, drums, guitar, strings and piano. It uses objective metrics
for evaluating its results against the real data, such as ratio of empty measures,
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number of used pitch classes per bar, fragmentation ratio, drum pattern (requires
known time signature) and a measure of harmony between a pair of tracks.

From works using raw audio as its data, Dieleman et al. [35] uses discrete
auto encoders such as VQ-VAE model (which learns a codebook, quantises the
queries to members of the learned codebook) and proposes a new model, the
argmax autoencoder which by using softmax encourages the queries to be “close”
to one-hot vectors and quantises them on a simplex to generate longer raw musical
sequences over tens of seconds.

A work that used predefined (by hand) form to generate music by deep learn-
ing was a collaboration1 based on the author’s previous work [7] and a work [36].
The work of Pavĺın [36] is a framework for creation of hierarchical musical forms
that features repetitions and transpositions of the musical material. The musical
material itself is created by randomized but sound rhythm choice specified by
style and randomized pitch choices specified by key. We elaborated on this idea
by adding variations to the musical form and replacing the rigid generation of the
musical material by a LSTM from [7]. The variations of the musical material were
simulated by “restarting” the state of the generating LSTM while having a stored
state for each group of variants. The state was the last hidden LSTM state before
generating first occurrence of one of the variants of a given theme (primary) for
the first time. This approach allows to create more long-term coherent musical
compositions as it uses an external handcrafted musical form to guide its long-
term dependencies. However, such approach is not able to produce a variant given
a musical material i.e., we cannot condition on what the material should look like
beyond restarting the LSTM from the same hidden state. Another disadvantage
is the need to handcraft the musical forms before generation.

3.2 Music Similarity
From works trying to measure how two pieces of music are similar, we are going
to look at the ones that are using discrete symbolic representation as these are
fit for our datasets.

According to Rizo [21], the most significant works for automated comparison
of musical pieces are by Mongeau, Sankoff [2], using an adaptation of a string
matching edit-distance algorithm [37], and from Selfrige-Field et. al [38], which
deeply analyses the methods and representations up to 1998 date, finding that
most commonly used methods are the string edit distance algorithms. However,
to the date of Rizo’s work [21], six trends were found in representation and com-
parison of musical pieces. These are string distance alignment methods, n-gram
algorithms, graph encodings, statistical comparison measures, geometrical frame-
works and tree representations; with each multiple exemplar works cited in [21]
p. 12..

A work by Stech [22] performs an in-depth analysis of melodic lines (mono-
phonic) by detecting tonal contours, inversions, and retrograde inversions com-
bined with matching the rhythmic structure. This work is interesting because
inversion and retrograde (the retrograde was, however mostly used in serialism

1The work was not presented in paper, but its output was presented as a live play on
Microsoft DOTS 2018 conference (video)
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era) along with their combination in melody is one of the most common “more
advanced” variation techniques.

Comparison of symbolic musical sequences is usually split into monophonic
and polyphonic case. The latter is a much more complicated problem because of
possible intercepting lines of melodies which are harder to detect by an algorithm.
One of the options of how to tackle with polyphonic similarity is to try to separate
these melodies by melody extraction algorithm. However, this only account for
melodic similarity and also, rule based extractors struggle to extract the melodies
for symbolic music, where often times the trivial skyline methods have the best
performance [39].

Due to vast options of related studies, we mostly looked into the edit-distance
algorithms and their polyphonic extensions [3], as they are the most commonly
used. As our similarity metric stands on the grounds of the works [2] and [3],
we thoroughly explain them in the Chapter 5 instead of elaborating them in the
Related Work.

3.3 Musical Structure Extraction
Automatic musical structure extraction looks into detection of rhythmic infor-
mation, harmony and melody lines, compositions structure and music similarities
[40]. The composition structure e.g. intro, verse, chorus, instrumental or ending
can be identified by self-similarity analysis and clustering.

To accomplish the structure extraction, the algorithm must be able to work
with similarities within the composition to detect repetition at different time
scales

From works trying to automatically extract the musical structure information,
to our knowledge, most work with raw audio represented pop/rock music. Such
music have distinct structural sections of repeated composition structure compo-
nents (e.g. chorus), usually in a slight permutation of the following manner:

Intro, verse 1, chorus, verse 2, chorus, chorus, outro.
Work from Dannenberg, [41] similarly to our approach (although on raw audio

data), tries to extract a musical form describing the structure of repeated phrases
e.g. AABA song structure, where the letters represent a phrase. A melody based
similarity approach working with chroma vectors and autocorrelation is taken
to identify similar segments, which are then clustered to form patterns to form
an “explanation” of the analyzed music. Dannenberg also tackles problems with
finding the similar phrases, but not having any explicit indication that a phrase
occurs more than once. Another problem is that the similarity metric is not
transitive and that has its implications on the clustering of the phrases.

Work from Maddage [40] uses melody-based similarity regions (similar pitch
contours) to detect verses and content-based similarity (similar vocal content and
similar pitch contours) to detect choruses. The work is evaluated on annotated 50
English-language pop songs of 4/4 time signature, where it reaches an accuracy
of 0.7.

Foote and Cooper [42] segment audio by detecting significant audio changes
through the use of extracted mel-frequency cepstral coefficients (MFCCs) and
constructed self-similarity matrix.

20



The extraction of repetition in music or extraction of the most representative
part of a song (Audio Thumbnailing) was investigated by Barsch [43]. The work
constructs vectors from extracted chroma-based features of segmentations of beat-
synchronous frames. Then, measures similarities between these vectors to find the
the chorus sections as thumbnails of the music.

Nieto [44] uses MIDI as a discrete symbolic representation for Audio thumb-
nailing. An advantage of this approach is a lossless reconstruction of the annotated
music data. It uses 4-dimensional chromagram vectors of (pitch class ∈ {1...12},
energy E, time length L, polyphony N) and extracts the motives using two ex-
isting techniques for visual recognition and raw audio explained in [45].
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4. Data
The data used in this work are downloaded from paid website
www.kunstderfuge.com1.

The reason for this dataset among other options, see work [7] (Chapter Data),
is that no current classical music dataset that we know of has a wide range of
instrumentation and track number ranges available. The data are handpicked to
match the most important authors from late baroque, classicism and romantism
eras. The data format is MIDI. MIDI stands for technical standard, and a data
format that allows instruments, computers and other devices to connect and com-
municate (full specification in [46]), which means we work with discrete symbolic
representation of music only.

Data contains 1537 midifiles which are organized by tree file structure into
instrumentation, authors and mode of their key.

We use a term track to specify a part of a composition played on its own
and played for its full length (given we pad it with rests), given some instrument.
Tracks are played simultaneously creating polyphonic sound if some two notes are
played as the same time. However, there can be polyphony within a track as well.
Two or more tracks in a given composition can have same instrument assigned.

To show our design’s capabilities of working with unspecified number of in-
struments up to 16 maximum and work with arbitrary long data (limitation for
length is mostly computational cost of O(n2) for the analysis of musical form),
we include around 10% of our dataset being symphonic compositions using and
around 20% string quartets. The rest of the dataset (50%) is mostly written for
multiple piano’s, with around 20% being miscellaneous data with instruments
such as harpsichords, horns, choir voices etc.

The 1537 midifiles contain 733622 non-rest measures available for training
from total 1042251 measures. The roughly 300000 rest measures come mostly
from symphonic compositions where many instruments are often silent.

1Even though the musical compositions themselves are in the public domain, their MIDI
versions are contributed to the website by various contributors where they are provided with
appropriate permission in a good faith.

To obtain the dataset, there are multiple ways. To avoid unintentional copyright infringement,
we suggest downloading the dataset from the website, either paid or free over multiple days. We
protect the attached dataset by a strong enough password which is provide to the reviewers.
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Figure 4.1: Histograms of length of compositions by measures on the left side and
number of tracks on the right side

Figure 4.2: Histogram of average number of events in a measure per composition

Further technical information about the dataset is described in Attachment
A.3.

We add that the MIDI files are bad at precisely timing the durations of notes.
This means that to identify identical notes, we make compromise on how large
of a duration difference to tolerate. We tolerate a 32th note difference for every
quarter of a duration of the notes.

4.1 Data Preparation
To make use of the raw data, certain preprocessing was done. The most important
is determination of the mode i.e. “major” and “minor” and “normalization” of
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the dataset to be of a common tonic (C) and similar average pitch (C4). The
normalization to common tonic is the reason why we omit representing the key
and represent only the mode. We can do such normalization, because of the use of
equal temperament tuning system, described in [5] p. 39, in our dataset of western
classical music. It allows the performances to be transposable to different pitch
classes within their mode. While the key in which a composition is written might
hold some additional information over just the mode (e.g. f minor as opposed
to just minor) due to the tradition of certain expressive characteristics being
associated with individual keys, this does not seem like an important factor at
the level of sophistication this work is aiming for.

Information about the mode of a composition is necessary for the pseudometric
(see Chapter 5). However, we also use it as a part of the input for the models to
know which mode they should generate.

Determination of the key is done via the Krumhansl-Schmuckler key-finding
algorithm [47]. However, for some compositions it is hard to decide which key
they are written in. That is because the authors make violations against the
mode, which help keep the listener interested and more importantly, because
many compositions change their key throughout their course, in a process called
modulation. However, we chose to not bother with determining the sections of
keys (at a cost of less accurate pseudometric and generation) and worked with
the one found by the key-finding algorithm. We worked with a parameter tonal
certainty of the open source toolkit music21 [48], empirically chosen to be
0.7. The compositions below this parameter were usually atonal works that we
omitted (the dataset we refer to in this chapter has no “atonal” works due to
preprocessing).

All of the compositions were transposed to be the most aligned to C tonic,
whether major, minor or atonal. Then they were transposed to be the most aligned
with C4, with similar method to 6.5.1 and 6.5.2.3.

The last part is mostly technical dealing with impurities within the less stan-
dardized midi format, described in the attached documentation A.2. That is
correcting the order of note on and note off events and removing “invalid” notes
from the data.
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5. Similarity Model
As indicated in the System Design Chapter 2.1, one of the main requirements
of the presented generation system is to generate variants for a given theme or
motif. The first step towards training such a model is to have proper data for
it. Obtaining such data requires processing the raw dataset composition-wise by
similarity analysis, based on which we can then infer a musical form.

Similar fragments of music are usually variations of some musical material.1
Variation is a technique which repeats a modified version of a musical material
somewhere in the composition, or in a new composition. The modifications might
be in melody, rhythm, tempo, harmony, timbre, orchestration etc. or combinations
of these. However, the modifications are not specifically defined and as stated by
Rizo [21] p. 6, music similarity is an ambiguous term and can be judged based on
“resemblance” of these patterns (melodic, rhythmic) or harmonic coincidence.

As written by Stech [22] p.112.: “Computers can only assist music analysts by
relieving them of the burden of identifying and tabulating objectively defined mu-
sical events; they cannot be used to measure subjectively defined musical relation-
ships.”, computers can hardly find similarities that even humans are not able to
define and that happens on a subconscious levels in the head of an (in)experienced
listener. Therefore, we try to define the best possible objective criteria for a mu-
sical pseudometric of similarity.

Our similarity model is based on techniques of string matching (known as
edit distance [37] [49]) adapted for music [2], with slight changes in parameters
according to our dataset, see 5.1.3. Further work [3] extended the pseudometric
for new operations for polyphonic music. We make slight changes to the poly-
phonic extension making its scope less ambitious (we omit permutations between
sequences and therefore, rework fragmentation and consolidation), see 5.2.2.3,
some operations less strict (allowing more notes to be matched to single pitch
and dividing final weight by a smaller chord), see 5.2.2.2, and solving some issues
not considered in the original paper, see 5.2.1.1.

5.1 Monophonic Case
A musical composition is monophonic when at any given time there are no two
pitches sounding simultaneously; e.g. a melody sung by a single singer without
accompanying harmony. From musical similarity perspective, monophonic music
is less complex for analysis (e.g. we have a well defined melody).

Let a melody be a sequence of notes and compare any two melodies by an
algorithm that outputs dissimilarity (distance) between them. The two compared
sequences can be of differing lengths and their (dis)similarity depends on their
tonal and rhythmic structure [2]. This dissimilarity can be thought of as a dis-
tance (although we will see that it is not a metric) and then it could be used
for further analysis of larger number of melodies. Such analysis could be hierar-
chical clustering to see how classes of melodies can be divided into subclasses or
projection into two dimensional space to visualize variability among melodies [2].

1similar to a degree that is discussed in the Chapter 6
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The pseudometric quantifies the dissimilarity between two musical sequences
A, B by minimal weighted transformations applied to the first sequence to get
the second one. Such transformations are insertion, deletion, replacement, con-
solidation and fragmentation. The sequences consist of notes that have certain
pitch and length, or of rests which only have their length. Trace of such transfor-
mations is a sequence of lines illustrating replacements, identities, fragmentations
and consolidations between the two sequences of notes.

Figure 5.1: Illustration of traces between two monophonic sequences from [2] p.
169 “Figure 5. Trace linking Variation 2 to Variation 3.”

5.1.1 Data Representation
The musical sequences are encoded as ordered series of tuples, each representing
a note in time:

(P, R, L, S, D, O) (5.1)

where P is a pitch

R is an indicator of rest

L is length of the note

S is a scale indicator (more specifically, mode of a key 1.2)

D is degree in the scale according to the key

O is an indicator for a note that is out of the set of pitches defined by the
key

The length of notes is measured not in time but in beats, or rather in sub-beat
units derived from a shortest viable“ note, which we choose to be a 32nd note (so
an 8th note has a length of 4). This makes the representation tempo-invariant. If
R indicates a rest, all other variables except L are ignored.

Ideally, we would like to have the data invariant to key, meaning we forget
the pitch and analyze the notes by their distance from the tonic of their key.
However, not all data have their key easily detectable. We analyze the key by
Krumhansl-Schmuckler key-finding algorithm [47], but for some compositions, it
is hard to decide in which key they are, either because they might be atonal or
there might be switching between the keys throughout the composition and we
are not sure what size of a window to use for sub-analysis down to a measure
levels. We then end up in classifying some compositions in scale “atonal” and
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just remember the distances in semitones from its tonic. Elegant way to get these
distances is by transposing our whole dataset into a common tonic and then work
with their pitches as pitch classes 2 while disregarding their octave, as the octave
does not alter the tonal contour of melody.

5.1.2 Transformations
To quantify the minimal number of transformations to be applied to sequence
A = (a1, a2, ..., an) to obtain a sequence B = (b1, b2, ..., bm), we use typical3 trans-
formations like insertion, deletion or substitution of a note in a specific position
along with two new operations, fragmentation of a note into several shorter notes
and consolidation of several short notes into one longer note.

A generalization of this concept is weighting each transformation [49]. The
weights for each transformation are determined by differences of length of the
note(s) involved and by the differences in their pitches according to rules of con-
sonance.

Insertion with weight w(∅, bj) is insertion of bj into B, deletion with weight
w(ai,∅) is deletion of ai from sequence A. Replacement with weight w(ai, bj) is
substitution of ai by bj, where ai = bj =⇒ w(ai, bj) = 0.

Consolidation with weight w(ai−k+1, ..., ai, bj) is replacement of several notes
ai−k+1, ..., ai by a single one bj, where fragmentation w(ai, bj−k+1, ..., bj) replaces
one note by several. These two transformations are motivated by cases, where we
replace e.g. whole note with four quarter notes (i.e. the same total duration) of
the same pitch which is perceived musically similar, but it would be very costly
with only the three basic transformations (multiple insertions and deletions).

Figure 5.2: The fragmentation of a longer note into shorter notes of similar tonal
contour and the total size similar (or the same) as the first note.)

Therefore, the weights for these two transformations are determined by com-
paring the the pitch classes between each of the replacing notes and the replaced
note and the total length of the replacing notes with the length of the replaced
one.

The dissimilarity between A = (a1, a2, ..., an) and B = (b1, b2, ..., bm) is deter-
mined recurrently through the minimum of sum of all weights among all possible
series of transformations that convert A to B. The dissimilarity dij recurrence

2pitch class is distance from the tonic counted in semitones
3typical in context of edit-distance[37]
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equation is

dij = min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

di−1,j + w(ai,∅) (deletion)
di,j−1 + w(∅, bj) (insertion)
{di−1,j−k + w(ai, bj−k+1, ..., bj), 2 ≤ k ≤ j} (fragmentation)
{di−k,j−1 + w(ai−k+1, ..., ai, bj), 2 ≤ k ≤ i} (consolidation)
di−1,j−1 + w(ai, bj) (replacement)

(5.2)

for 1 ≤ i ≤ n and 1 ≤ j ≤ m, where initial conditions are

di0 = di−1,0 + w(ai,∅), i ≥ 1 (deletion)
d0j = d0,j−1 + w(∅, bj), j ≥ 1 (insertion)
d00 = 0

(5.3)

The final dissimilarity value is then dn,m, and the traces matching the notes
that were part of identity, replacement, fragmentation or consolidation can be
obtained by using pointers from dnm to each dij of the previous recurrence equa-
tion.

The weights are in general defined as:

w(ai, bj) = winterval(ai, bj) + kl · wlength(ai, bj) (5.4)

where winterval(ai, bj) is predefined weight based on the relative interval be-
tween the two notes multiplied by the length of the shorter of the two notes,
wlength(ai, bj) is the difference between the durations of the two notes and kl is a
constant that represents the weight of contribution of duration differences against
contribution of tonal differences. As for the weights for insertion and deletion,
the winterval = 0 because the length of the shorter note, i.e. empty note, is zero.
Weights for fragmentation and consolidation are also similar to the general defi-
nition. For consonance part, there is summation of all the corresponding winterval

between the fragmented (consolidated) note and its several counterparts, and for
length difference part, there is the duration of the fragmented (consolidated) note
against the summed duration of all its counterparts. Rests cannot be fragmented
or be consolidated from notes because it severely disrupts the rhythmical simi-
larity. As we will see in next paragraph, witerval for rests is fairly low regardless
of compared the pitch and the total length of any rhythm can match exactly the
length of rest.

Time complexity of this algorithm remains quadratic on the condition we
change the upper bound of k in fragmentation and consolidation part of equation
5.2 to be bounded by constants determined by length ratios between the involved
notes and the fragmented/consolidated note [2]. The logic behind these constants
is that for fragmentation or consolidation, we can always find constant, after which
the cheaper transformation is to perform numerous insertion/deletion operations
than to extend the scope of the former two operations (e.g. we know the total
length difference weight component between the fragmented note and a certain
number of notes will only be larger if we add more notes into the scope).
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5.1.3 Parameters
In the equation 5.4, there are parameters for determining of winterval and a pa-
rameter kl which is dependent on the dataset and is determined by observations.
Such observations could be alignment of two highly dissonant notes of same length
pushing the value of the parameter down, against fragmentation to a set of notes
whose total duration is very different than the duration of the fragmented note
pulling the parameter up. We used a value slightly larger than by authors [2],
kl = 0.460, as our requirements were for more rhythmically similar fragments.

The parameters defining the interval weights winterval(ai, bj) are designed to
match are consonance of pitches and are determined modulo octave since com-
pound intervals 1.3 are on a similar level of consonance, so we technically work
with only 12 semitones. Different set of weights are used whether the considered
notes are part of the scale of their respective modes, Table 5.1, or at least one of
the notes is out of the scale, Table 5.2. If both notes are rests then the interval
weight is 0. If one of the notes is a rest, interval weight is 0.4, which is higher
than this parameter from the authors of [2] (0.1), because we want to ensure the
rhythmical stability and matching too many notes to silence disrupts that.

As the authors of [2] describe: “We can be really confident only about the
order of weights in terms of decreasing consonance. The precise values we have
calculated are debatable, or could be optimized with respect to some data set.”.
In this thesis, we chose the same values for degree differences as in [2] and slightly
alter the values downwards for differences one or both of the compared notes are
out of the set of pitches determined by scale:

Degree differences
difference 0 1 2 3 4 5 6 rest

weight 0 0.9 0.2 0.5 0.1 0.35 0.8 0.4

Table 5.1: The weights used when both of the compared notes are in their respec-
tive scales and we view them as degrees of it, rest column specifies the weight if
one of the notes is a rest

Out of scale differences
difference 0 1 2 3 4 5 6 7 8 9 10 11 rest

weight 0 2.4 2.1 0.6 0.6 1.2 1.4 0.4 1 1 2.0 2.3 0.4

Table 5.2: The weights used when at least of the compared notes is not in its
respective scale, or the composition scale was not properly detected, rest column
specifies the weight if one of the notes is a rest

However, the final (dis)similarity only a pseudometric. From the cognitive
perspective [50] a similarity measure is not transitive. Adding two consonant
intervals can yield a dissonant interval, therefore, it cannot satisfy the triangular
inequality. Nevertheless, our handling of the results takes that into account.
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5.2 Polyphonic Case
Polyphonic case poses a more difficult problem. Some systems try to reduce
polyphony to monophony and use the appropriate methods on the reduction,
but that comes with the problems of its own for the reduction algorithm and a
loss of information.

We will be working directly with polyphonic data. The final polyphonic algo-
rithm is an extension of the monophonic algorithm described in section 5.1.3 and
is a slightly modified version of the algorithm proposed by Ferraro et al. [3].

Representation options for polyphonic data are much broader as there are
multiple notes playing at the same time. We could also determine what comprises
a melody, what are the accompanying chords forming the harmony etc.

Transformations between chords are harder to determine, as there are more
options for matching the intervals between all the notes involved. For our pur-
poses, chords are unordered sets of notes and the transformations should find the
best possible matching of the two sets of notes. Polyphony in a given time may
even match several consecutive notes regardless of their permutation or repetition
of some of them e.g. broken chords (arpeggio).

Figure 5.3: The two successive measures are similar as the first chord is arpeg-
giated, or broken into several consecutive notes. The most usual arpeggios are
successive uprising or downfalling notes of the chord, but there can also be other
permutations or repetitions

5.2.1 Data Representation
The main difference against monophonic representation in representing the poly-
phonic data is to have a data structure, that allows several notes sounding at the
same time. Representing chords as unordered sets of notes is a well established
representation [51]. Chords are required to be unordered because of arbitrary
order of pitches for note-to-note comparison can estimate perceptually similar
chords as dissimilar [3]. For unordered chords, we have to find the best permuta-
tion of both of the sets of notes involved in a transformation.

We change the representation in monophonic case 5.1 so that P, D and O are
now acting as sets of pitches, sets of their respective degrees and sets of their
respective indicators of being out of a given scale respectively.

5.2.1.1 Passing Notes

The selected representation encounters a representation problem, where there is
unclarity on how to represent a situation when a chord a is transitioning from a
chord (or single note) b constituted by a subset of notes from the chord a, while
the transition does not articulate the mutual notes. The same goes for the other
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direction i.e. a chord transitioning in the same manner into a unarticulated subset
of its own notes.

The straightforward solution of making the unarticulated transitions viable
for our data representation while keeping their information value is to get a use
of fragmentation and consolidation transformations and simply articulate these
transitions.

Figure 5.4: Fragmentation of passing polyphony.

5.2.2 Extended Transformations
We will use all the general transformations defined in the previous monophonic
section, but the transformations will be extended for working with chords. The
extensions will be defined more generally and they will not differentiate between
single notes and chords, while keeping the the functionality for monophonic se-
quences.

Extending the defined monophonic transformations 5.1.3 for chords is not as
straightforward as setting new scoring weights. Even when working in only one
octave and assuming a reasonable maximum size of chords4, there is a combina-
torial explosion [3] p.8.

Instead, we keep the parameters of winterval and try to find the minimal match-
ing between the sets of notes while allowing some of the notes in the chords to
be added or deleted.

5.2.2.1 Insertion and Deletion

Extending operations of insertion and deletion is simply performing the operation
for each note in a chord independently. However, these two operations will be now
used as a part of operations replacement, fragmentation and consolidation.

5.2.2.2 Replacement

Our representation of chords C as unordered sets of notes leaves us with a task
of finding the best permutation of notes in chords involved in a transformation
[52]. In other words, we seek a matching between the two sets of notes while
minimizing the sum of weights in matching.

We also want to allow the notes to be left out of the matching if the weight
of the matched replacement exceed the weight of their insertion or deletion.

4In practice, chords rarely exceed the size of 4
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This problem can be modeled as assignment problem [53] and can be solved
by any version of Kuhn–Munkres algorithm in polynomial time [54].

Weight of replacement between two chords (or single notes) wpoly(C1, C2), with
chord sizes5 k and l ∈ {1, ..., 4} is is calculated using the solution to a minimal
perfect matching on a complete bipartite graph G = (U, V, E), where:

U = {x1, ..., xk, λ1, ..., λl} is a vertex set for the first partition, x1, ..., xk

represent notes in the chord C1 and λ1, ..., λl represent ∅ as empty note for
each of the notes in the second chord C2

V = {y1, ..., yl, ϵ1, ..., ϵk} is a vertex set for the second partition, y1, ..., yl

represent notes in the chord C2 and ϵ1, ..., ϵk represent ∅ as empty note for
each of the notes in the first chord C1

Weights for the complete bipartite graph are set as:

w(xi, yj), for edges of type e = (xi, yj) for i ∈ {1, ..., k} and j ∈
{1, ..., l}
w(xi,∅) or w(∅, yj), for edges of type e = (xi, ϵi) or e = (λj, yj), for
i, i ∈ {1, ..., k} ; j, j ∈ {1, ..., l}
0, for edges of type e = (λj, ϵi) for i ∈ {1, ..., k} and j ∈ {1, ..., l}

In addition to what the authors write in the [3], we do two slight following
changes. To counter the weight disadvantage of larger chords against smaller
chords or single notes, that comes from summation of matched intervals in the
perfect matching we divide the minimal perfect matching by size of the smaller
chord (or note i.e. size of 1).

For replacements involving rests it comes from the the general extended defi-
nition as w(rest) · size(C) multiplied by the length of a shorter note involved in
the replacement.

The second change is that for notes that were added or deleted, i.e. the edge
involving a variable representing ∅ was selected in the perfect matching solution,
we allow the definition of a matching to be violated by a possibility of matching
more notes to one. This aims to solve the cases of uneven sizes of chords, where
e.g. a chord of one note6 can have reasonably small replacement weight against
all the notes in the second chord, but is forced to add or delete the notes in the
second chord. Therefore, for added or deleted notes, we try to find a possible
lower match.

5.2.2.3 Fragmentation and Consolidation

These transformations are defined similarly to monophonic case, but their ex-
tensions play a key role in finding similarities between chords and consecutive
notes/chords i.e. broken chords/arpeggios 5.3. Reasonable sizes of chords and
local boundaries for number of consecutive notes set in the same fashion as in
monophonic case does not increase the asymptotic time complexity.

5Chord size is counted in number of different pitches in a chord, not to confuse with chord
duration

6Technically not a chord, but we can view it as it is by our definition of the transformations
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In [3], these two operations consider even permutations in the order of notes
for sequence to sequence operations (due to their representation). We are less
ambitious and rework these two operations, but keep all the other ideas from the
[3] work, i.e. we keep finding any permutations, repetitions within arpeggios.

In addition to extending fragmentation and consolidation using wpoly(C1, C2)
instead of the monophonic weights, we’ll save the consecutive(fragmented or to
be consolidated) chords into memory using undordered set representation.

The following explanation will be made on fragmentation transformation as
the consolidation can be thought of as an inverse operation. For fragmentation,
we retain all the consecutive notes/chords C2,i, C2,i+1, ...C2,j

7 that are part of the
transformation wpoly(C1, C2,i, C2,i+1, ...C2,j) for later use. To cover the cases of
repeated or permuted notes/chords of differing durations, we represent them as
unordered set of pitches without duration, i.e. the sequence of chords is repre-
sented by a single unordered set P .

The final weight associated with fragmentation is then modified by adding
the weights for deletion of notes in C1, for which the pitch is not found in the
retained set P . Similarly for the consolidation.

Figure 5.5: Fragmentation (consolidation) operation on two polyphonic sequences
favoring arpeggio matches as more similar than the standard (polyphonic ver-
sions of) fragmentation and consolidation. (The second sequence in this Figure is
monophonic for better illustration purpose.)

5.3 Discussion and Future Improvements
Outside of many other approaches discussed in the Related Work 3.2. The ap-
proach using techniques of string matching could be further improved. For in-
stance, in [3], there is a notion of local rearrangements of notes, which is similar

7In a more strict notation that makes the text harder to read: j denotes a position of chord
C2,j in a sequence B = (C2,1, ..., C2,m), i = j − k + 1, 2 ≤ k ≤ j, (i, that lies in the main text)
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to how polyphonic fragmentation and consolidation matches several consecutive
notes regardless of their permutation or repetition in a local scale.

A disadvantage of the system that uses degrees in a musical key is that es-
timating the key is not a straightforward process if the key changes throughout
the composition.

The following improvements were investigated, but without solid experiments
conducted: One idea is to look for techniques which are used for variation of some
themes. One can look for signs of melodic inversion or retrograde in a local scale,
or a harmonic inversion of chords which are all common variation techniques.
Another interesting addition to the string matching approach is multiplying the
note weights by a coefficient corresponding to a relation of beats of both notes
involved, i.e. notes both situated in a downbeat could be slightly more penalized
for their possible dissonance because the listener is usually paying more attention
to these beats.
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6. Musical Form Extraction
In this chapter, we use the pseudometric defined in Chapter 5 for an analysis
of the structure of musical compositions, which will then be utilized for training
the music generation models. In essence, musical form describes which parts of
a composition are similar to each other, and which are dissimilar. This balance
between the surprising and the familiar is a major factor that makes a piece
of music interesting. Our approach to generating music will try to imitate this
principle.

First, we define the desired output, a musical form, then, we explain how the
pseudometric is used to determine similarities for fragments in the compositions,
and last, we look at how we cluster the raw (dis)similarity data into a sequence
of terminals which constitute the musical form and indicate what parts of a
composition are probably variants of each other.

The resulting musical form not only specifies the training fragments of compo-
sitions for the models that generate variants for a given theme and non-variants
for a given theme, but also works as a blueprint for generating new compositions
because it shows how to concatenate generated fragments into a meaningful piece.
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Figure 6.1: Extraction of a musical form provides both the straightforward way
to get the meaningful training data and a the way to properly call the models
when needed along with prescription for concatenating the generated fragments.
In the top-right part of the picture, un-bold letters in italic signify the fragments
that have no realization (either seed or generated in previous time step) yet.

6.1 Definition
Musical form defines the structure of a musical composition by various inter-
connected and overlaying features of musical materials, e.g. the arrangements of
instruments, arrangements of rhythm, melody, harmony, dynamics and most no-
tably, the more abstract requirement of balancing of repetition and variation of
these features [13]. For an analysis, there is a requirement for a formalization.
However, for such complex sets of features and because of each composer’s dif-
ferent imagination, there remains vagueness in the scope of description, and in
the levels of temporal hierarchy. Therefore, we look mainly into the two main
requirements [14] p.23, i.e. some differentiation of musical materials and relation
of these differentiated materials by repetition, along with clearer definitions of
features, such as choice of instruments, dynamics, density of notes, orchestration
and motion.

To describe a musical form, musicians use a simple system of labeling units
of musical material with letters. The first musical material is labeled A. Other
contrasting materials are labeled B, C etc. [55]. If any of the material is re-
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peated in a varied form, the corresponding variation is labeled by a number, e.g.
A1, A2, B2, .... Subdivisions of larger musical material are labeled by lowercase
letters. Slight variations are labeled with single apostrophe marks [55].

Figure 6.2: Illustration of the hierarchical structure in music from [30] at p. 1

6.2 Similarity Analysis
In this section, we explain how we analyze the compositions to get pairwise
(dis)similarity values between the yet unspecified parts of a composition. These
values are later used for clustering of the similar musical material into clusters of
variants of each other. The clusters represent the musical material that comprises
similar parts in the composition (i.e. A1, A2, A3...). Item pairs from the resulting
clusters are then used to train the model to produce a musical fragment similar
to another musical fragment.

6.2.1 Analysis in the Time Domain
We considered two main ways of how to approach the similarity analysis of com-
positions regarding alignments and granularity of its analyzed subsections. The
more robust approach of finding the best alignment (i.e. ordered best similarity
start-to-end bounds for the two subsections [2] ) of similarity between musical
sub-materials, and the more clearly defined approach of finding similarities over
a set of musical fragments of predefined length. The former approach allows iden-
tifying the possibly overlaying boundaries of fragments of differing lengths along
with their (dis)similarity value. The former approach also allows for different
scopes of similarity so it can find the hierarchical structure of the composition.
The latter approach of arbitrarily predefining the sets of fragments to be ana-
lyzed by similarity pseudometric leaves us with problems of not capturing the
true similarity of musical materials that are not aligned with the bounds of the
predefined fragments. As D. Stech [22] states: “The most significant limitation
observed in previous studies had to do with the arbitrary establishment of one
fixed length of musical pattern for an entire analysis. Such a procedure was far
too limited to take into account the many different ways in which melodies could
be aurally interpreted. The complexity of the pattern analysis problem requires

37



that any procedure used for melodic analysis be capable of detecting patterns of
many different lengths, regardless of their interaction with other patterns, or their
location within the measure.”

The pseudometric defined in Chapter 5 can be easily made to find the best
similarity alignments within a whole composition [2] Sec. 9 p. 171. The outputs
are the boundaries of subfragments constituting similar pairs, along with their
(dis)similarity, giving us the first n best alignments. However, apart from a prob-
lem of determing n, the computational costs of this algorithm is n times larger
than the cost of determining the similarities for arbitrarily predefined fragments
and proved to be critical for our implementation.

We work with the limitations of the approach of fixed lengths of fragments,
which disallows us to capture musical motives and phrases that are not aligned
with our choice of fragmentation. By the nature of the pseudometric coming from
string matching techniques, small misalignments do not pose a big problem, as
these translate into a few small weighted additions, deletions or a slightly more
costly replacements.

Furthermore, in author’s experience, the units of musical material are usually
aligned to some number of measures. As our generation models are stochastic
and are to be fed with these fragments, we can expect them to capture the
“most usual” alignments into units of measures. Therefore, our chosen “arbitrary”
defined fragments correspond to the measures in analyzed compositions.
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Figure 6.3: Similarity matrix of the fixed lengths approach for the length of mea-
sures. The figure shows first 32 measures of Beethoven, String Quartet No. 4 in
C minor, opus 18 no. 4, 4. Allegro.

The best alignments approach’s property of implicit hierarchical structuring
of fragments is, to some degree, estimated by the clustering of the similarity
analysis outputs of the fixed lengths of fragments approach. That is, phrases and
figures could correspond1 to measures (our arbitrary fragments length), while
larger materials, such as motifs, are made up of these measures. Their similarity
against other motifs is implicitly estimated by number of same fragments and
variant fragments. All in all, the meaningful material should be directly, or in
consequence of the the previous argument, indirectly recognized.

Nevertheless, the main unresolved problem of the chosen approach lies in the
inability to find similarities between motives of differing overall duration in any
of the structural hierarchy level.

1They are defined by meaning, not by the length. In cases when they are formed by several
measures, we can replace them by an arbitrary unit, that we, in general want to be aligned to
measures (as stated in previous paragraph, unaligned material is left out of the consideration).
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From the viewpoint of utilizing the extracted musical form by the generating
models, our chosen fixed length fragments approach has another disadvantage.
That is, for musical material spanning over several units of measures, the mod-
els that are fed with fixed length fragments cannot properly analyze large scale
motions and other long term dependencies, apart from those imposed by smartly
conditioning the models. Example of this problem could be the possibly differ-
ing results from generating a variation of fragment of several measures against
generating independent variations of its subfragments, the measures, and con-
catenating them together. The long term dependencies are, however, imposed on
the composition by using the extracted form as a prescription in the generation
process.

6.2.1.1 Note on Inter-opus Analysis

An intercomposition analysis, more specifically an analysis of individual frag-
ments between compositions , is another concept worth consideration. Although
it holds little value for the goal of extracting a musical form2, it can provide more
data for the generation models that generate variants given a theme. However,
the quadratic growth of the similarity comparisons deems this task not worth our
effort.

Furthermore, even with intracomposition analysis, variants that are identical
in between compositions are connecting the clusters. Nevertheless, these cannot
merge the clusters in terms of providing pairs with both components exclusive to
their clusters, as the intercomposition analysis would, i.e. these do not widen the
training examples.

On the other hand, while not providing the exclusive examples as pairs of
training data, they can be in the generated fragments as a consequence of train-
ing. For example, we want to generate multiple variants of one theme on trained
variants mode in sequentially as the arrow indicates, and the model generates
fragments resembling: Cluster C1 ←− shared example S; S ←− C2. The underly-
ing problem here is that we have no guarantee about the worst case dissimilarity
while interconnecting themes across compositions. However, apart from omitting
identical fragments from training (not desirable) or designing a more complicated
system, there is no way around this possible disadvantage.

6.2.2 Dealing with Multiple Instruments
In our context, we can have two concepts of polyphony as most compositions are
written for multiple instruments or performers. Our first meaning, is the inherent
polyphony within tracks 3 of the composition. Our second meaning is polyphony
made by playing the tracks at the same time.

We are going to analyze the individual polyphonic tracks by the pseudometric
5. The polyphonic dependencies of our latter concept of polyphony(individual
track instruments playing simultaneously) are omitted in the similarity analysis.
The overall similarity perception of compositions as wholes is estimated by the
individual track fragments similarity groupings in the extracted musical form i.e.

2Possible value is for determining “bounds” for fragments that hold “some” meaning
3Track is meant to be played by one player, or in some context by one hand of a player
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we extract information about the fragments that form the B meaning polyphony.
Indeed, similar melodies may be perceptually dissimilar when accompanied by
different harmony or by silence. We will know that the harmony is different,
however, the overall (dis)similarity remains unknown.

To further help with the estimation of overall similarity and to provide in-
strument dependent variation data, all the individual instruments fragments are
analyzed between themselves, interinstrumentally4. Benefit of interinstrumental
approach is that the tracks for instruments in compositions are usually split by
some meaning and analysing them without distinction potentially loses informa-
tion, just as in the opposite case, when we lose polyphonic dependencies infor-
mation. Therefore, the final extracted form not only identifies arrangements of
similar and dissimilar material, but also the number of tracks in a composition,
the instrumentation and similarities within the same time frame.

6.3 Our Definition of Musical Form
In this section, we define, in a more clear way, the representation of the musical
form for our purposes, i.e. 7.1. We also define the additional information that we
add to the general representation of a form definition.

The musical form, in our case, holds two meanings for which the definition
is adapted. The first is to provide pairs of similar and dissimilar fragments for
submodels of our generation model. The second is to provide a prescription of
how to arrange the outputs of the submodels together to form a composition.

The form defines not only arrangements of similar and dissimilar fragments
in time, but also similarities within the interinstrumental polyphony and also
functions as a “conductor” by telling each voice when to play and when not.

It is a grid of n · k tuples we call terminals, n is the number of measures and
k is the number of tracks. Each measure-long time step of n total time steps is
represented by k such subsequent tuples. The tuples are of form

(P, V, T, I, N) (6.1)

P (for primary represents a musical material that the fragment belongs to.
To represent values of P , we use capital letters A, B, ... Every instance of
such musical material is in some sense similar or even identical. Fragment
pairs with the same value of P, which are not identical, are used as training
examples for the generation model for variants. The special “dummy” pri-
mary marks instances of musical the material, which are not similar enough
to any other fragment, including other “dummy fragments”. Another special
primary, the “ ”, marks empty fragments, which hold only rest(s) and not
notes.

V ∈ N , called variant, in conjunction with P enables us to distinguish if the
instance of a musical material is truly identical, or just similar. For example,
in form PV , fragments A1 and A1 are identical and A1 and A3 are similar.
The degree of similarity between different variants is not defined.

4Meaning we can get variants of fragments that are sounded at the same time, on different
instruments
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T ∈ Z stands for transposition and indicates estimation of chromatic trans-
position (see 1.3) in the number of semitones and direction (positive for
upward transposition, negative for downward) against a fixed pitch. When
subtracted for two individual fragments, this is either literal transposition,
in case the P s and V s are equal for both fragments, or an estimated trans-
position when the V s are not equal.

I is a numeric midi key to a dictionary of predefined instruments or instru-
ment classes, see A.4.

N ∈ {0, ..., m}, m ∈ {0, ..., 15} is the index of a track, given the ordering
of tracks in the data, in which the fragments lies. In the arrangements of
terminals, N is practically an index of the terminal, starting from 0, modulo
m + 1. It could be replaced by the number m accompanying the definition
of form as a sequence of tuples.

As stated previously, the degree of similarity between different variants of a
primary is not defined. Moreover, the degree of dissimilarity between different
primaries in a composition is also not defined. However, later in this chapter,
see 6.4, we’ll see that the degree of (dis)similarity between the fragments (not)
constituting a primary in a composition is directly influenced by the number of
the “yet found” variants in them (as it is a continuous process).

6.4 Detecting Trivial Relations
To obtain the form as defined in the previous section, we first find the most triv-
ial similarities, that can be found without the use of the more computationally
expensive pseudometric. And without presenting these trivial pairs to the gen-
erating models as training data. The use of the pseudo metric on trivial cases
could even provide ambiguous results (e.g. minimal cost of consolidation equals
identity replacement).

The most trivial relations, or transformations, are identities, or identities with
some relative chromatic transposition of the whole fragment. These are important
to be clearly captured by the form, as they play major role in how we perceive
musical pieces 1.6. They are also important, to not be viewed as training pairs of
similar examples for our variant generating models, because such transformations
holds no additional information to the one held by our musical form which takes
part in the generation process.

Another “trivial” transformation would be diatonic transposition. However,
it depends on the key of the composition in a very strict manner (in major and
minor modes, the degrees might be equal, however, one semitone difference is a
dissonant interval). We can only estimate the key [47], so we leave this kind of
transformation on the generating model to be possibly learned as a variation.

Another special but not so trivial transformations are those involving an
empty fragment (rest-measure), to be labeled with primary “ ”. These potentially
provide a meaningful additional (dis)similarity values for the resulting form or for
additional conditioning of the generation models. We chose to omit the potential
information gain of additional for the sake of limiting the scope of this work.
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Nevertheless, the rest-measures are not to be considered variants of anything and
we consider transformations involving them as trivial.

6.5 Transpositions of Nonidentical Fragments
In the straightforward process of determining chromatic transpositions for identi-
cal fragments as described in previous section, there lies a hidden problem regard-
ing the coherence of transpositions throughout the composition. The first step,
i.e. detection of identity transformations, leaves us with groups of terminals in
form, e.g. (A, 0, 0, ...), (A, 0, 7, ...); (B, 0, 0, ...), (B, 0,−19, ...),... For correct uti-
lization of the form, a relation which we call maximum similarity transposition
is necessary to be determined. Informally, it is intended to be a chromatic in-
terval between nonidentical fragments where the two fragments sound the most
resembling. The case of not determining the maximum similarity transpositions
between fragments leaves us with a possibility of generating musical pieces with
seemingly random long-term and intertrack pitch contours. That is because rely-
ing on the main three generating submodels 2.3, leaves them with a more com-
plicated task of keeping melodic and harmonic interfragmental pitch relations
sensible while having a limited input.

Nevertheless, human composers do not need such information because of their
aesthetic sense, their imagination, skills of viewing the composition as a whole.
These allow them to compose their works while nonsequentially and repeatedly
navigating the harmonic and melodic contours of their composition to be consis-
tent at many different time scales.

6.5.1 Definition of Maximum Similarity Transposition
The maximum similarity transposition between two fragments is the chromatic
transposition of the second fragment with the lowest dissimilarity value for all
possible chromatic transpositions of the second fragment. It aims to estimate
the chromatic transposition (i.e. the previously defined identity transposition)
between the first fragment and version of the second fragment that has been
transformed into the first fragment in transposition invariant fashion.

The transformation of the second fragment can be imagined as it is done
in an abstract musical space that has no notion of interfragment transposition.
That is by e.g. choosing a representation5 that keeps the harmonic and melodic
specifications and omits encoding of the pitch to make the fragments transposition
invariant6.

However, our pseudometric is working with tonal information which means we
get the same dissimilarity results for transpositions modulo octave (it is octave
invariant). That is, we can get only results of +0, +1, ..., +11 as transpositions.
To detect the correct octave difference to add to our transpositions, we perform
a duration-weighted mean of pitches in the two involved fragments, where on the
second fragment, we apply the maximum similarity transposition. To find the
final “absolute” maximum similarity transposition we find the correct octave by

5Such a representation encodes only the intervals between the notes that form both the
melody and harmony, much like as specified in authors Bc. thesis [7] p.15 Sec. 3.1.2.

6Modern western music tuning systems are roughly transposition invariant[5]
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searching the octave space (e.g. -36, -24, -12, 0, +12,...) to be added to the found
transposition to minimizes the difference between means. This can result in the
found transposition (modulo octave i.e. chromatic interval) to be changed into
an inverse chromatic interval. It happens in case it is closer in the mentioned
differences in means to subtract an octave e.g. best chromatic interval to add to
the second is +11 (i.e. the second fragment is -11 semitones transposed), but the
note pitches are “closer” to the first fragment if we add the two octaves below
(-24), we get a final absolute transposition of -13 (i.e. the second fragment is 13
semitones transposed).

Nevertheless, for some cases, this method is inconclusive e.g. the simple case
of a dyad of +0 and +12(+0 in the next octave) chromatic intervals (against the
tonic) compared against a note of chromatic tonic interval +6 (against the tonic).

For such cases, we don’t know which one of the two notes in the dyad is
matched. Arbitrarily, the octave of a lower octave is chosen meaning that the
final relative transposition of the second fragment would be -6.

This is, however, a problem of the intention behind maximum similarity trans-
position, not by it itself, the intention against the strict rules in of pleasant music.

This arbitrary choice of a solution for such ambiguity is the first sight of
a developing problem with relative transpositions we describe in the following
subsection, which ends up in avoiding these altogether. The problem itself is
twofold, while in this case, it is the possibility of extracting a form that guides
the fragments (through imposed transpositions) out of the bounds of playable
pitches. To our relief, the techniques described in this section will be utilized,
just in a different manner.

6.5.2 Relative and Absolute Transpositions
In this section, we first describe problems with relative transpositions of determin-
ing the transposition itself, and then the problem with clustering the relatively
transposed variants and utilizing them for training of our models.

6.5.2.1 Relative Transpositions

If we look on the transposition as a metric, the transpositions defined between
identical fragments (without modulo octave), satisfy all the axioms of a met-
ric. That means we can use them by keeping the relative transposition of each
fragment against its first occurrence. However, with variants of a primary, the
maximum similarity transposition (i.e. transposition between non-identical frag-
ments) is defined with the use of our pseudometric, and therefore it does not
satisfy the triangular inequality, see 5.1.3. Moreover, even if it was not based
on the pseudometric, the following case illustrates the problem of triangular in-
equality in music in general, and this case even illustrate the disadvantage of the
fixed-arbitrary-length approach of the analysis:

44



Figure 6.4: Intuitive relative transpositions between three measures, where trans-
positions cannot be treated like a metric. In terms of maximum similarity trans-
position, given this transposition, the two fragments sound the most similar. The
problem is not only the transposition, but also how to cluster these fragments as
the second measure is fairly similar to both of the measures, however the first and
the last are not similar. In this case the problem occurs, because we arbitrarily
fragment the example by the three measure, however, there are four “meaningful”
objects there, where the measure in the middle consists of two objects.

Therefore, determining the correct T part of a terminal in our musical form by
relative transpositions is impossible, without changing T into a quadratic array
(fragment a is similar to b but only for transposition x and to c but only for
transposition y).

Furthermore, in the case illustrated in Figure 6.4, the intuitive transposition of
+7 would not be found using our similarity pseudometric, because while trying all
the possible transpositions for such rhythmically different fragments, all the runs
of the similarity matching algorithm would match the rests together and perform
deletion and insertion operations regardless of the pitches of the notes involved,
resulting in a randomly chosen transposition value e.g. 0 for our implementation.

6.5.2.2 Relative Transpositions in Form and Models

If we look further, on decisions of how to present pairs of fragments to a variant
generating model, there starts to be another problem. Clustering the fragments
into variants of each other based on similarity that comes from the best found
transposition (maximum similarity transposition), leaves us with large possibility
of identifying dissimilar, or for worse part dissonant, pairs under same primary
P in the extracted form.

Indeed the abstract boundary of belonging to a variant cluster for primary P
might be possibly crossed only by one specific maximum similarity transposition
of a fragment against the other. However, this transposition of a given fragment
can be different against each other fragments in a cluster of size 3 or more.

This poses a quadratic array of complicated additional information7, that is
not to be ignored both for the extracted form, and the generating models. Utilizing
this amount of information is not straightforward8. Ignoring this information
could leave us with both folds of the problem with relative transpositions, i.e.
extracting a form that guides the fragments out out bounds of playable pitch,
and generating variants that are possibly not similar at all.

7We would need to represent information for each fragment regarding that the fragment is
similar enough to be considered a variant if it is transposed by x semitones

8E.g. A task for a model to generate a variant on a given fragment, that, if transposed by x
semitones is also a variant of a different given fragment, but if transposed by −x is not variant
of other given fragment etc.
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6.5.2.3 Absolute Transpositions

When we look at finding the absolute transposition of a fragment against some
fixed point, we see that this concept is vague at first sight. Therefore, we find
the maximum similarity transposition of the analyzed fragment against a new
fragment.

The new fragment consists of notes that mirror the rhythmic structure of the
analyzed fragment and these notes have a an arbitrary fixed pitch. Mirroring the
rhythm is done to counter the case illustrated in Figure 6.4 where for the first
and the last measure the transposition is “random” due to insertion and deletion
operations for rhythmically distinct fragments, regardless of the pitches of the
notes involved.

The pitch of the mirrored fragment to calculate the maximum similarity trans-
position is fixed across all the new mirror abstract fragments in the composition.
We chose the fixed pitch as C4 (60) for all the compositions in the dataset. This
gives us a clearly defined way of how to obtain unambiguous T for all terminals
in the musical form, which we aim to extract. However, these are not the cor-
rect non-identical transposition between the fragments, but against the mirrored
fragments.

The T values for identical fragments are now also only estimated by maximum
similarity transpositions against their mirrors. However, relatively between the
identical fragments F1 and F2 the difference between the mirror transposition
estimations, (T1−T2), is the exact chromatic transposition (defined for identities
only).

6.6 Transposition Aware Similarity Analysis
After we have filtered out the uninteresting trivial transformations (the identities
and with rest-measure involved), and after we have determined the estimations
of absolute maximum similarity transpositions for all fragments, we analyze the
fragments that are not trivial transformation 6.4 of at least one other fragment.
We perform the similarity analysis in the way described in Section 6.2.

In similarity analysis, we now work with fragments that are all transposed to
T = 0, to be the most aligned with the C4 pitch (−T for all the notes/chords in a
fragment). This approach leaves us with slightly skewed pairwise dissimilarities of
fragments that are without any additional transposition directly in the analysed
composition9. That is, we can possibly omit the variants of pairs where, in terms
of string matching terminology, their similarity is based on traces between notes
less dominant (in terms of duration) than the notes that influenced the absolute
maximum similarity transposition against the fixed pitch mirrored fragments.

9And leaves us with transpositions of fragments that, in their transposed form, were not
even in the analyzed composition
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Figure 6.5: Example of a possible omit of two successive variants. The first mea-
sure has transposition of +5 against its mirror below it, and the second measure
has transposition of +4 against its mirror below it. The two measures have dis-
sonant intervals between themselves, but they are within their key (i.e. using the
fairly low weight values from Table 5.1). However, when transposed to be the
most aligned with their mirrors and then analyzed together, half of their notes
have highly dissonant intervals, Table 5.2, when matched rhythmically.

However, the cost of possibly not finding these variants in the clustering part
of the analysis is outweighted by the benefit of avoiding possible out of bounds
pitches and dissonant fragments in the generated outputs, or the increased com-
plexity of establishing a more robust system.

6.7 Clustering Fragments to Determine Groups
of Variants

The goal of the clustering the is to find groups where each pair of fragments in a
group can be considered similar enough, within the context of a composition, for
the fragments to be considered variants of each other. These groups serve both
for determining the musical form and as reservoirs of training pairs for variant
and non-variant generating models.

However, even if we have all the pairwise similarity values match perfectly the
human perception of similarity, we have no indications of whether the phrases of
music occur more than once and what their average intersimilarity is [41].

Clustering the similar measures has to take another criterion into account.
That is the similarity is not transitive. If fragment A is similar to fragment B,
and B is similar to fragment C, fragments A and C might not be similar because of
addition of pitch intervals is not transitive and the similarity metric uses thresh-
old when comparing pitches and durations. The nontransitivity of non-identical
transpositions, see 6.5 only worsens the problem.

The boundary of belonging into a same cluster is defined per composition and
is influenced by our needs of what we want the extracted form to offer from the
information gain point of view i.e. the form might be different from that of human
composers, not only by the definition 6.3, but also by purpose.
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6.7.1 Choosing an Objective for the Clustering
The direct output of the clustering and the subsequent assignments of P and V
for the resulting terminals, however, are not precisely variants of musical material
that have musical sense of their own (e.g. phrases 1.7.1). The aim of our form
is not necessarily to behave like the generally defined form imposed by human
composers. We instead cluster the subunits that are forming the meaningful parts
of the compositions. As the combined labeling of larger musical units that allows
us to distinguish and estimate similarity between them by is carried out by several
terminals (labelings of subunits), we aim for such labeling that carries the most
information. Therefore, as phrases are usually composed of similar members, this
aim pushes our requirements to have a relatively high number of clusters.

Figure 6.6: A phrase split into two subunits [56]. In this illustraton, the units
are logical. However, in our usage, it would be arbitrarily split into 5 subunits
according to measures.

Consequentially, high number of clusters means lowering counts of cluster
members and increasing the number of outliers for certain clustering algorithms,
see [57], [58]. Clusters with low member counts means limited training examples,
therefore limited abilities of our variant generating model.

We also aim for clusterings with approximately similar member counts, which
inevitably means that intercluster similarities vary a lot for overly monothematic
compositions, such as etudes. In other words, as opposed to a human analyst,
who might conclude that a composition has e.g. one large theme occurring in
many variants and a few small dissimilar themes, we aim to identify the building
blocks of the themes. As an example, result of an extraction as A0, A1, A2,
A3,...,A42, B0, C0 10 is unsatisfying.

We chose the clustering C = C1, C2, ..., Ck that maximizes the entropy over
the counts of members in clusters. For total number of fragments N :

H = −
k∑

i=0

|Ci|
N

log |Ci|
N

(6.2)

Clustering that maximizes this is, however, trivial, e.g. clustering with n clus-
ters each of 1 member. Such clustering neither helps the form as it is supposed
to be a hierarchical overview (e.g. a grammar tree), nor the variant generating
model, which will have no training data.

Therefore along with the maximization of entropy, we also require that the
10A simplified notation of terminal PV = (P, V, x, x, x)
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resulting clusters approximately a number of members.

H = −
k∑

i=0

|Ci|
N

log |Ci|
N

if Ci ≥M (6.3)

The value of M is chosen to be 5% of the total number of analyzed fragments
rounded to the smaller natural number (floored).

6.7.1.1 Meaning of Outliers

As an issue of data mining, outliers are usually considered noise and there is an
aim to remove the them as anomalous data [59]. In our application, as the data
comes from the human composers considered masters of their art, we consider no
fragment of a composition worth discarding however dissimilar it might be from
the rest of the data.

The outliers are fragments, that are each in clusters of their own. They are
be labeled in the resulting form with DUMMY primary. It is natural to have
some of these outliers in the compositions, as they could be e.g. some transitioning
measures between two themes or climax measures of the composition. However, we
want to limit the number of these outliers. Even though they carry the information
to the model for generating dissimilar fragments, however, they limit the scope
of data available for the model generating variants of fragments.

Therefore, the set of outliers for a composition is considered a grouping O of
its own to have the same informational value as other clusters, as defined in this
subsection. Moreover, we add fragments that are in clusters of lower cardinality
than M to the count of the grouping O, using the same notation as in previous
equation (6.3), we aim to find the clustering C that maximizes H:

H ′ =
k∑

i=0

|Ci|
N

log |Ci|
N

if |Ci| ≥M

O =
k∑

i=0
|Ci| if |Ci| < M (6.4)

H = −H ′ + |O|
N

log |O|
N

The grouping O is used only for clustering information gain evaluation com-
putation in Equation (6.4). That is, the cluster (P ) assignments remain as defined
by the clustering.

6.7.2 Clustering Algorithm
To cluster the fragments, there are many choices of algorithms that more or less
satisfy our aims as defined in previous section. Another complication is that we
do not know the number of clusters in advance. Choosing the right algorithm
along with its parameters is a complicated task.

Both the more known algorithm K-means [60] and Mixture of Gaussians [60]
need to be able to compute means (centroids), and as a consequence cannot
operate on a given (dis)similarity matrix of fragments.
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One option of how to solve this problem is to use Multidimensional Scaling
algorithm [61] which non-linearly approximates a projection of the data into an
Euclidean space. Linear options are omitted because the similarity matrix does
not satisfy triangular inequality. However, the resulting approximation is neither
correct or trivially interpretable and was not used.

Considered clustering algorithm using only the similarity matrix as an in-
put were DBSCAN [57], its hierarchical version HDBSCAN [58] and hierarchical
clustering [62].

The first two algorithms also work as outlier detectors [63], possibly enabling
us to determine DUMMY primary symbols into the resulting form. However, a
disadvantage of HDBSCAN is that it classifies points that are close to the cluster,
but not having the right density of other points around them as outliers which is
undesirable. Another disadvantage (for our purposes) of both algorithms is that
they are based on the single linkage [62] principle.

Single linkage performs well on finding cluster that are of non-spherical shapes.
However, regardless of the abstract cluster shapes possibly found in our data, it
is undesirable do consider two fragments similar only because there is a path of
similar transformations in a composition. This property of the two algorithms
only multiplies the problem of the pseudometric on which the similarities are
based, i.e. not satisfied triangular inequality.

6.7.3 Hierarchical Clustering of the Fragments
We chose to use hierarchical clustering for the task and then use the entropy
criterion to choose the number of clusters.

Of the possible linkage options, ward and centroid options are leaved out
because of their need to have points in a vector space. Single linkage is left out,
because of the reasons specified in the previous section. Average and complete
linkages behave sensibly for our purposes.

We use the complete linkage, because it ensures that the (dis)similarity be-
tween the most dissimilar two fragments that are considered variants of each
other are bounded within the whole composition. Its disadvantage is a possibility
of missing out the “true” variants because of their other cluster members that
were added in the previous steps of the algorithm are too dissimilar. This offer
us the step towards average linkage (a compromise between single and complete
linkage).

However, that disadvantage of complete linkage does not limit us from offering
enough data for our models, for which we have the certainty that the worst case
is not too dissimilar. The use of complete linkage also negates the disadvantage
of the pseudometric used to compute the dissimilarity matrix as the “shortcuts”
of unsatisfied triangular inequality 5.1.3, are ignored this way.

The concrete parameter selection for the complete linkage hierarchical clus-
tering is done challenging the following aims:

Good inner structure of the clusters, such as meaningful variances of intra-
cluster similarities.

Low differences in cluster sizes.
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Invariance of cluster’s inner density

Proportion of fragments in a cluster against the number of fragments in the
composition should approximately equal in the desired output

Number of clusters in total should not be unreasonably large or small

All of these aims are more or less satisfied both by the the choice of the
algorithm along with the the following process of determining the algorithm’s
parameters using the Equation (6.4):

Algorithm 1: Determining the Threshold for the Clustering Method

Result: List of labels indicating cluster assignments of the clustering that
is closest to satisfying the general conditions described in this
section

search vals = [0, 0.01, 0.02, ..., maximal dissimilarity value];
best labeling = [0, 0, ..., 0];
best entropy = ∞;
desired size ratio = 0.05;
matrix = Our dissimilarity matrix from similarity analysis;
CompleteLinkageHierarchicalClustering::Returns list of labels indicating
cluster assignments;

CalculateEntropy::Returns the number specified by Equation (6.4);
LabelOutliers::Returns labels with single-membered clusters labeled as -1;
for i in search vals do

l = CompleteLinkageHierarchicalClustering(dissimilarity matrix =
matrix, desired number of clusters = unspecified number of clusters,
stop and output the clusters at distance threshold = i);

H = CalculateEntropy(l = l, M = Floor(|l|· desired size ratio));
if H > best entropy then

best entropy = H ;
best labeling = l;

end
end
best labeling = LabelOutliers(labels = best labeling);
return best labeling;
Hierarchical clustering has two options on how to get the flat clusters i.e. cut

its dendrogram. Both of them require a single parameter to be determined. The
first stops the steps of merging (or dividing, depending on implementation) the
clusters when the desired amount of clusters was met. The second, which is used
in Algorithm 1 stops its steps when certain distance threshold has been met.
Algorithm 1 aims to find such threshold to obtain the most desirable clusters.

6.8 Results
In this section we are going to look at the resulting extracted forms and their
“correctness”. As a dataset for evaluation of musical forms is hard to find and our
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definition of a musical form slightly differs from the one mainly used by musicians,
we are going to analyze the extracted form step by step.

One tool for such analysis is a straightforward addition of a musical form
into the compositions in a graphical way. In attachment A.7, there are all the
compositions from our dataset provided with “lyrics” for each measure indicating
the form terminal in form (P, V, T ) inscribed into the midi files themselves11.
An illustration of the attached files can be seen in Figure 6.7. We note that all
examples from the dataset in this chapter are transposed to be in C major or
C minor key. We also note that all the examples and data have their legato’s
omitted to simplify the task and keep the interpretation on the player.

11Visible in any modern sheet music tool e.g. Musescore [64]
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Figure 6.7: The extracted form (P, V, T ) inscribed into the analyzed composition
(Catches and Glees (12), Hob.XXXIc:16, 2nd mvt. by Franz Joseph Haydn, first
12 measures).

From looking at the inscribed forms, we can check the correctness of the
absolute transpositions directly. However, we cannot check the extracted form
against the “correct” form the musical form definitions vary and they are vague.
The task is mainly about intuitively knowing how the form might look with its

53



vague boundaries for meaningful pieces, and comparing it with the labels found by
the algorithm. We can also mainly search for the similar variants and determine
if they seem similar by our perception.

Another way how to analyze its results is to look at the details of the clustering
and its properties, along with looking at the specific fragments.

Figure 6.8: Clustering analysis of four samples for each of the three largest clusters
in Serenade for Strings in E major, Op. 22, 4th Mvt.

In Figure 6.8, we can see the clustering analysis that shows various cluster
members and their closest cluster neighbours, their farthest fellow cluster mem-
bers and their closest fragment, that is not in the cluster. All the similarity
comparisons are made on versions of the measures that are transposed to be the
most aligned with their fixed-pitch mirror fragments. That is, the measures in
the picture are not necessarily compared as they are, see Section 6.6.

Such analysis is provided for the all the fragments in the three largest clusters
for all of the compositions in the dataset, Attachment A.7. It allows us delve
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deeper into the inner structure of the clusters and to see the advantages and
disadvantages of the complete linkage method.

6.8.1 Analysis of the Extracted Forms
From the results, we can see a few main characteristics. When looking at the
similarity pseudometric in general, we can see that rhythmically similar fragments
are preferred, while still allowing slight variations in the form of fragmentation
and small misalignments in rhythm.

Figure 6.9: Extracted form for the first three measures of Isaac Albéniz - No. 4,
Allegro, from Sonata No. 5 Op. 82. Note that probably due to the interaction of
pitches and the “careful behavior” of the complete linkage method, the measure
on the bottom left and top right did not end up in the same cluster.

In Figure 7.2 B variants of 1 and 0 are, in our opinion, correctly determined as
variants despite their different total length and slight variation in rhythm. When
comparing these two by similarity metric, the 1 variant is transposed down by 5
semitones and all its notes remain their G major mode.
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Figure 6.10: Extracted form for measures 1-13 of Isaac Albéniz - No. 6 Op. 47.

In Figure 6.10, we can see that the decision of fragmenting the compositions
by measures can reasonably find phrases aligned to measures in higher levels of
hierarchical structure, i.e. D, B, D, B, C in its first track repeating throughout
the composition12

12 The full composition with inscribed form is attached in
cluster analysis/labeled midis/misc/minor/albeniz suite
espanola 47 06 aragon fantasia (c)yogore.mid with text.mid
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Figure 6.11: Extracted form for measures 35 - 38 three measures of String Quartet
No. 10 in E-flat major, D. 87 Op. 125, No. 1

In Figure 6.11, we can see that D variants 1 and 4 should be filtered by
the identity filter and not be put into the clustering algorithm together. This
is a problem of the dataset, where notes are usually encoded slightly shorter
than they are and their duration sometime varies i.e. for both editing software
exported midi scores and with recorded performance midi files. We allow slight
duration variation in the identity detection preprocess of 0, 1, 2, 3, ... 32nds for
every quarter of the note’s duration.

From clustering analysis in Figure 6.8 and the attached clustering analysis
A.7, we can see the shortcoming of the complete linkage hierarchical clustering
method. Where the closest fragment that is not in the cluster often seems more
similar than the farthest fragment in the cluster. However, we have the certainty
that no too dissimilar pair is clustered. We also see that while complete linkage
doesn’t ensure cluster internal structure other than the worst case, the most
similar fragment usually end up in the same cluster.

6.9 Discussion
The resulting form extractions are able to provide the training samples for the
models to generate similar and non-similar fragments and to be used as a pre-
scription for the generation process. With having the models trained, even a
handcrafted musical form can be used for the generation process.

However the similar measures found may not be conclusive due to the disad-
vantage of the chosen approach to analyze fragments normalized to be the most
aligned with the C4 pitch, which poses inaccurate dissimilarity values. This ap-
proach is in the middle of two other approaches. The first is determining the
best transposition between all the fragments to not miss out any possible variant
which, just as our middle approach, also finds the form based on variants (i.e.
transposition) of fragments that are not actually in the data. The second is cal-
culating the similarity between the “unnormalized” fragments and normalizing
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them only before using them as training for the models. This approach, however,
has a similar disadvantage as the chosen middle approach, see Figure 6.5, but
surfacing in the generation process (the concatenating and transposing generated
fragments as the form prescribes). In the resulting generated composition the
non-similar/dissonant fragments are more visible than some omitted pairs during
the training and some unmerged, yet similar, primaries in the form.

The clustering part of the analysis could be done differently due to the ar-
bitrarily made decision of the desired cluster size to be around 5 per cent of all
the measures in the analysis. However, the entropy goals and the methodology of
the clustering seems reasonable. That is, the set goal of having larger number of
clusters better finds the implicit musical structure of musical phrases and motives
that are larger than a measure e.g. two 4-measure motives, such as, AABC, AABD
are distinguished by it.

A possible future step while having the forms extracted could be using them
training a model to be able to produce generated musical forms (in our format),
e.g. just like models now generate texts [65].
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7. Generation System
This chapter looks further into the models used for generating fragments and into
the process of training them and utilizing them in conjunction with the extracted
forms from previous chapter.

All the models generate new fragments conditioned on existing fragments.
Their purpose is, however, different: one for generating variations, one for gen-
erating previously unheard fragments that follow a previous measure, and one
for generating previously unheard fragments that should sound at the same time
as the conditioning fragment. These different purposes can be served by training
the models using different subsets of input/output fragment pairs. While all three
models use the same architecture, their different purposes require some differences
in parametrization.

This chapter first explains the purposes of each model, then their general
architecture, then the general data representation and additional conditioning
features and lastly, the model specific architectures along with hyperparameter
selection and training specifics.

7.1 Model Purposes
There are 3 models:

• Variant generator

• Accompany generator

• Next-measure generator

Variant generator learns to generate fragments that are similar enough to
the input fragment to be considered a variant.

Accompany generator learns to generate fragments that are played at the
same time as the input fragment and fit well together with the input frag-
ment.

Next-measure generator learns to generate fragments that are played right
after the first of the two input fragments and is not a variant of it. There
is also a second input fragment, because of the fact that the first input
fragment could be a rest-measure, giving little to no amount of information
to the model. Therefore, the second fragment is the first non-rest-measure
found in chronological history to the point of interest in the track, if none
is found, any non-rest-measure within the track. This model is the main
source of “new” musical material.

For two of the three models, variant and next-measure generators, to be
trained, we need the preprocessing of raw data into (dis)similar fragments de-
scribed in Chapters 5 and 6. To clarify the purposes and usage of the models, we
show the Figure 7.1 again in this chapter.
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Figure 7.1: Extraction of a musical form provides both the straightforward way
to get the meaningful training data and a the way to properly call the models
when needed along with prescription for concatenating the generated fragments.
In the top-right part of the picture, un-bold letters in italic signify the fragments
that have no realization (either seed or generated in previous time step) yet.

7.2 Use of Seq2Seq Models
Seq2Seq models are models that learn the transition function between an input
sequence (source) and an output sequence (target). It consists of two autoregres-
sive generative models, the encoder and decoder. The encoder encodes the input
sequence into a fixed length vector containing the information about the input
sequence, and the decoder uses this information to sequentially generate each el-
ement of the output sequence alongside with its own vector of information about
the “in-process of generating” information about its output sequence.

Most of the current music generation systems use autoregressive models trying
to predict the next note(s) using a state information about the previous parts of
the sequence, see 3.1.

However, our case of generating a fragment given a fragment resembles ma-
chine translation tasks, where the seq2seq models are mostly used [66].
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7.2.1 Transformer
The transformer introduced in [67] is a Seq2Seq model using attention concept
that helped improve both performance and training speeds in certain NLP tasks
[67], [68], [69] and was previously used for music generation [19] which is the reason
for the choice of this model architecture in this work. The attention and self-
attention mechanisms allows to model temporal/sequential dependencies without
regard to their distance from the currently modeled step in the input or output
sequence. Each layer consists of a self-attention layer followed by feedforward
layer which is applied to each position in the sequence independently (the parallel
speedup [67]).

The attention layer transforms sequence of vectors X of dimension D of the
input sequence into sequence Q of queries,K of keys and V of values. Those we
chose to be of the same dimensionality as x vectors (they can be smaller or larger)
like in [19]. The transformation matrices for the queries, keys and values is split
into H attention heads with dimension of the resulting sequence of vectors divided
by H and indexed by h. These attention heads allows the model to focus on more
parts of the history. Output of the attention layer is a sequence of vectors Zh for
h ∈ 0, ..., H calculated as:

Zh = Softmax

⎛⎝QhK⊺
h√

D
H

⎞⎠ Vh (7.1)

Then the outputs Zh are concatenated and linearly transformed to get a se-
quence of D dimensional vectors Z. For both the encoder we allow the heads to
attend to any position (paddings are masked out), whereas in decoder attention
layers, there is a mask to ensure that we can attend only to earlier positions dur-
ing the training because if it learns to attend to the future then during generation
the future position are not yet generated and provide no information.

The feedforward layer takes Z and applies two fully connected layers in a time
distributed manner (independently). To keep the information about positions of
vectors in the sequence to the independent dense layers there is a positional en-
coding of dimension D added to each of input vectors x ∈ X. This encoding can
be some function, usually concatenation of sine and cosine function, or it can be
trained alongside with the whole model to learn a positional embedding transfor-
mation. In this work, we learned the positional embeddings. Along with learning
the positional embeddings, we also learn embbedings of the input sequence units
(what is a unit is explained in the next section) to match the hidden dimension
size D.
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Figure 7.2: Illustration of the transformer from [67].

While the encoder uses only self-attention, the decoder uses self-attention on
its input and an encoder-decoder attention (attending on the output sequence of
the encoder) in its subsequent layers.

The final sequence of vectors in the last layer of decoder is then stacked into
one dimension and there is a linear layer resulting in an output logits vector of
the size of a dictionary followed by final softmax layer.

We use the same details regarding residual connections, normalization and
activation functions as in [67].

7.3 General Specifications for the Models
In this section we specify the representation of our data and what additional fea-
tures we use and how we encode them in the input sequence. This representation
is shared for all the three versions of the transformer models. We later further
define the exact additional features and how they are encoded for each of the
models independently.

7.3.1 General Data Representation
We use the representation first presented in the work [18] as a groundwork. We
represent a musical fragment as a sequence of decisions: which note to use at a
certain point in time, what duration it should have, move to the next point in
time etc. We we change the timeshifts from [18] that represent (in centiseconds)
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a relative time to move the the decisions onward into durationshifts that are
independent of tempo of the composition. The events used to encode a fragment
are:

• 88 note-on events which correspond to ordered midi pitches from 20 to 108.
These events start a note.

• 88 note-off events, also corresponding to the midi pitches. These events
releases a note.

• 64 durationshift events, each corresponding to a durationshift of 64th notes
as one its units. Durationshifts larger than a whole note are split into more
durationshifts. These events shift the duration in the fragment. The dura-
tion can be directly converted into time if we know the tempo of a compo-
sition.

• 16 velocity events. These events represent 16 arbitrarily designed velocity
bins. Velocity of these events is applied to all subsequent notes until other
velocity event does not change it to other velocity value.

In addition to these events we have three more events. A start-of-sequence
(SOS), an end-of-sequence (EOS) and a padding (PAD) event. The first two
indicate start and end of a sequence and the padding event works as a standard
padding as in e.g. translation tasks [1].

These ranges and the 3 additional events are concatenated resulting in the
number of different events of 259, where all the events are represented as one-hot
vectors [70]. They are transformed into D dimensional vector by an embedding
transformation learned during the training.

Note that all of the fragments are inversely transposed (“normalized”) accord-
ing to the extracted form, see Chapter 6.6. The notes that span across multiple
fragments are articulated in each new fragment. Another note is that while the
similarity analysis worked with 32th note duration as its smallest unit (smaller
notes were omitted), the generation models are working with 64th note duration
as its smallest unit.

7.3.2 Additional Conditioning Features
As the design of the models limits them from the dependencies in a larger time
frame than the limited size of the input fragments themselves, we introduce con-
ditioning the input and decoder-input fragments with information that is encoded
via learnable embeddings.

To add these information into the models, we first make sure the information
is categorical and then we add it to the input sequence by concatenation along
a new axis. To further pass the additional information to the model, there are
several options.

The option of learning an embedding of dimension D and then adding it to
the embeddings of the input vector is used in the original model by the positional
embeddings. However, when adding more than one information in this manner
the model has to distinguish which part of the addition came from which infor-
mation/feature. This is not necessarily impossible but it is a complicated task
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even for a human to design unique summation value ranges for float numbers for
multiple sources given fixed weights of the models (e.g. design of unix permis-
sion numbers for non-binary float values). Therefore, we rather concatenate the
information to the input vector while keeping its dimensionality D (the model
complexity and memory demands depend of the dimensionality). The keeping of
dimensionality consequently means lowering the information space for the main
events.

To add the conditioning features to the input (source) or decoder-input (tar-
get) vectors, we lower the dimensionality of the input’s main events embedding to
a handcrafted ratio between the main events and the embedding of conditioning
features. The conditioning features are the same for all the events in the sequence,
but must be duplicated because of the independent nature of the transformer’s
sublayers (i.e. pointwise feedforward sublayers [67]).

Figure 7.3: Illustration of format of the final input/output (source/target) vectors
for the encoder and decoder.

We can also use the extracted form as a storage for the “desired” properties
of the “to be generated” fragments. We can add these properties as conditioning
features to the models e.g. not only conditioning information, that instrument
a played the input fragment but also conditioning the model to know that the
generated fragment should be played on instrument b.

The conditioning features are:

• mode - binary value indicating major or minor mode to indicate tonality
of the desired output

• time signature - categorical value indicating one of the 40 time signatures we
work with, see Attachment A.6. The use of this information is for the model
to know the beat structure and the total desired duration of the output.
This can be encoded to both the input of the encoder and the input of the
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decoder (during inference, to the partially completed input/output of the
decoder) to indicate that the input fragment is of possibly different time
signature than the output fragment.

• instrument - categorical value indicating 43 different instruments or instru-
ment classes, see Attachment A.4. Instrumental information can be also en-
coded to both the input and “output”1. This is useful when input and output
fragments are played on different instruments (e.g. accompany model)

• track index - categorical value indicating what index of a voice is the frag-
ment played. We allow maximum 16 voices to be generated and learned
upon (it is also a maximum for midi files). In midi files, the ordering of the
voices usually holds meaning when the instrument for all or some of the
voices is the same. Similarly to the instrument and time signature, we can
encode it to both input and “output”.

• motion - categorical value indicating 40 classes of motion. As the fragments
have a small scope for analyzing large scale motion, we help this by adding
a motion information. The base motion classes are defined on individual
fragments. These are “uprising” representing cases when a motion in be-
tween every two notes is uprising with maximum of 4 downfalls. Similarly
for “downfalling”. If the fragment starts and ends with the same pitch, we
encode the motion as a “phrase”. Other motions are encoded as “any”. How-
ever, this does not add any new information to the model, so we add the
motion of a previous fragment given there is one Enlarging the 4 basic mo-
tions into combination of them. However, this does not add the information
about the motion over the two fragments i.e. two successive fragments can
be uprising, but not continually. Therefore, we add 3 new classes indicating
if the difference between means of pitches of the two successive fragments
is “U”, lower than -1, “D” higher than 1, or “S” otherwise. As with all the
previous features/information, we can add the motion to both input and
output to imply the desired motion of the output to be generated.

• number of instruments playing - categorical value of 16 classes indicating
how many other voices are currently playing (we know this from the ex-
tracted form). While the main value of this information is for knowing if
the generated fragment should know if it is meant to be soloing in the
composition (solo parts of a composition are usually different in author’s
experience), we add the other numbers for voices too, mainly for symphonic
compositions where usually when all of instruments play, there is some kind
of climax (in author’s view).

• average velocity - categorical value indicating the average velocity of a frag-
ment into 16 arbitrarily binned velocity classes as in the representation of
main events 7.3.1. The average velocity of a fragment can not only indicate
the desired velocity of an output to not break the velocity coherence of a
composition, but also indicate that there should be a climax or a slow down
in its rhythm and pitches.

1the output meaning described in the previous time signature explanation
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• density - categorical value of 170 (max sequence length) values indicating
the number of events into sequence. This information is useful mainly for the
decoder-input/output in the generation process as it is directly deducible
for the encoder.

7.3.3 Hyperparameters
Multiple hyperparameter (parameters not optimized during the learning process)
values for the transformer must be set. The hyperparameters not explicitly stated
were chosen according to the original [67] paper.

The hidden dimension D is 512. Positionwise feedforward dimension is 2048.
Number of attention layers for both encoder and decoder is 6. Number of attention
heads is 8. Maximum length of a sequence is 170 due to an arbitrary compromise
between the max sized input/output fragments found during the training and
memory restrictions on the used (for training) graphics card. Size of the dictio-
nary, alongside with data encoding is specified in the next section. Dropout values
are 0.1 as in the original work [67]. For all three versions of the generation models
(variants, next-measure, accompany), we used the Adadelta [71] optimizer with
default parameters due the unsatisfying results of the optimizer and rate decays
from the original work [67] for our purposes [7].

We used gradient norm clipping [72] with a value of 1, to stabilize learning
against the vanishing and exploding gradient problem.

Instead of a standard output softmax layer in conjunction with categorical
cross-entropy loss, we used stacked sigmoid layers alongside with binary cross-
entropy loss. Rather than in order to model each position of the output vector
independently, it is due to the shape of the softmax function to which has larger
gradients on distributions with large entropy. In our experience, this results in
smaller variety of the possible outputs, where we prefer the models to have large
variety, e.g. we want to variant generator model to be able to generate many
various variants on multiple runs with a same input fragment. To get the final
distribution, we normalize the resulting outputs linearly.

As for training parameters like batch size, what constitutes a (custom) epoch
in our models, and number of epochs, we didn’t find large variety in results for
different values. As we only provide the resulting weights and require only the
reproducibility of the generated outputs, we worked with batch sizes manually
changing throughout the training, due to sharing the computational resources
with other people and with a maximum permitted number of 40 batches from
a given composition per epoch. We trained the models for largest time possible
given the valuable computing resources.

7.4 Model Specifications
This section explains the specifics of the 3 models described in Sec. 7.1 the variants
model, the next measure model and the accompany model.
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7.4.1 Variant Generator
The variant generator is a model that takes a fragment and generates a fragment
similar enough to be considered a variant of the given fragment.

In order to be able to train the model on fragment pairs that are determined to
be variants of each other, we therefore need to have the extracted forms available.
The model is trained on batches of pairs of various randomly selected variants
of randomly selected primary symbol (fragment cluster), see sec. 6.3, within one
composition. The pairs can be drawn from different voices and/or instruments.

Fragments that are empty measures (the rest is across the whole fragment)
are not considered variants. Fragments that have a primary “DUMMY” have no
variants and do not participate in the training of this particular model.

Before running the training steps we extract the conditioning features for the
fragments. For the encoder, we embed the information in the following way:

• We concatenate all the presented embeddings. Dimension of the concate-
nated embeddings vector is D = 512.

• The main events, as described in subsec. 7.3.1, of 259 categories are embed-
ded into 234 dimensions.

• Time signature of the source is embedded into a size of 20.

• Time signature of the target is embedded into a size of 20.

• Instrument of the source is embedded into a size of 40.

• Track number of the source is embedded into a size of 20.

• Mode is embedded into a size of 6.

• Average velocity of the target is embedded into a size of 20.

• Number of instruments playing while the target is played is embedded into
a size of 16.

• Density of the target is embedded into a size of 40.

• Motion of the target is embedded into a size of 36.

• Positional encoding (as part of the original transformer [67]) is embedded
into a size of 60.

For decoder, we use:
• The dimension of all the embeddings concatenated is D = 512.

• The main events, see 7.3.1, of 259 categories is embedded into a dimension
size of 254.

• Time signature of the target is embedded into a size of 20.

• Instrument of the target is embedded into a size of 40.

• Track number of the target is embedded into a size of 20.

• The rest of the embeddings are identical to the encoder.
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7.4.2 Next Measure Generator
The next measure generator also needs the extracted form prior to its training.
It takes two input fragments (concatenated), one directly preceding the output
fragment, and one additional, which is the first non-rest fragment encountered
in the history before the preceding fragment. The additional input fragment is
chosen so that when the directly preceding fragment is a rest measure which
holds little information about how the following fragment should look, we still
have some additional input information. However, we keep the rest measure there
as it is an indication for the output fragment that it starts from a long silence.

Figure 7.4: The first input fragment is directly preceding and has different pri-
mary, the second input is the first non-rest measure found in that precedes the
first input fragment

The most important part in training the next measure generator is that the
presented successive pairs from the presented training triplets must not be vari-
ants of each other. That is, the model learns to generate a fragment which is, to
a degree that was chosen by the composer of the training composition, dissimilar
to its previous fragment.

Fragments for which the primary is “DUMMY ” are part of the training data
here. Fragment, where the target sequence is a rest measure are omitted from the
training.

The conditional features for the encoder and decoder are defined exactly as
in the previous section 7.4.1 for the variant generator.

7.4.3 Accompaniment Generator
The accompany generator learns to generate a fragment that is meant to be played
together with the input fragment. It does not require the extraction of a musical
form prior to its training, however, it requires some data structure to hold the
conditioning features, for which we used the extracted form.

Conditioning features for the encoder is added in the following way:

• We concatenate all the presented embeddings, dimensionality the concate-
nated embeddings is D = 512.

• The main events, as defined in subsec. 7.3.1, of 259 are embedded into 204
dimensions.

• Time signature of the source/target is embedded into a size of 14.
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• Instrument of the source is embedded into a size of 40.

• Track number of the source is embedded into a size of 20.

• Instrument of the target is embedded into a size of 40.

• Track number of the target is embedded into a size of 20.

• Mode is embedded into a size of 6.

• Average velocity of the target is embedded into a size of 20.

• Number of instruments playing while the target is played is embedded into
a size of 16.

• Density of the target is embedded into a size of 40.

• Motion of the target is embedded into a size of 36.

• Positional encoding is embedded into a size of 60.

The conditioning features for the decoder is the same as for the encoder.
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8. Generation Scheme
Generation scheme is the design of combining combining the calls to the models
to generate the final composition. First we generate the first track using variant
and next measure models. From a seed measure of a training composition, we
generate the first variant. Then we use the next measure model whenever we
need a new primary “material”. Every time we get at least one measure with a
given primary, every other variant of the primary is generated by the variants
model. Next tracks are generated analogously, but we use the accompany model
to generate new primary material to ensure the harmonic compatibility with the
already generated tracks. If there are rest measures in all of the other measures
played at the same time, we use the next measure model to generate the new
primary.

Fragments of the composition are not generated sequentially from start to
end. They are generated independently of their position within the composition
from a starting seed via cooperation between various calls on the models. The
starting seed is a fragment from the original composition. However the starting
the seed is resampled by the variant model so the generated composition should
not have copies of any original fragment.

Finding the proper seed is done by finding the largest cluster (a primary with
the most variants) and selecting the most dense fragment in it (dense fragments
are usually more informative than e.g. whole notes over the fragment).

It is important to note that while during training, the conditioning features
for the source sequence is determined from the original composition, just like the
conditioning features for the target sequence. However, during generation, the
source conditioning features are determined from the generated realization of a
fragment, while the target conditional features are still from the corresponding
fragment of the original composition.

The musical form used for generating a piece plays at the same time a role of a
useful data structure. The terminals can additionally store whether the fragment
that they represent was already generated or not. Once that it was generated, the
form stores the generated “realization” of the fragment. As the generated frag-
ments are transposed towards a fixed pitch, the generated fragments are trans-
posed as instructed by the extracted form at the end of the generation process.

Instead of a generated form, one can of course use a handcrafted form. How-
ever, to properly handcraft a form that reflects the behavior of our forms as we
extracted them from the training data, one would first need to study the form
extraction results, so that potential idiosyncrasies of the form extraction process
are taken into account. Therefore, for the sake of simplicity, we cancel this effect
by directly using as a generation recipe forms that have been extracted from the
dataset.

8.1 Design of Model Cooperation
For the overview of the model cooperation during the generation process, we
present a simplified view on the whole process in the following figure:
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Figure 8.1: Illustration of the generation process

The Figure 8.1 can be looked upon from the Original Composition box, from
which we extract the form, see 6 and find seed and resample it as explained in
section 8.

Afterwards we generate all the variants for the seed according to the form.
The source and target sequence conditionals, see 7.3.2 are encoded into the source
and target (yet to be generated) sequences stored in the musical form. While the
first variant is bound to be generated from the resampled seed, the other variants
are generated from a random pick from a list of variant realizations that is created
for each primary during the initialization of the generation process. After every
generation of a variant, the generated realization is added to the corresponding
list of realizations.

When all variants are generated, we look at how to generate new dissimilar
primaries in their base variants. We look for a suitable inputs for the run of a
next-measure model. After each new generated base primary, We generate all its
variants.

When no more base primaries can be generated we use the accompany model
to generate accompany fragments regardless of the track of the source or target
sequence by the finding the first suitable track in order of the tracks in the musical
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form for both target and source. After each new base primary generated by the
accompany model, we generate all its variants.

When no more accompany fragment can be generated, we use the next mea-
sure model in the same fashion as in the previous paragraphs.

There are corner cases which can stop the described procedure from making a
realization for every terminal. E.g. a “DUMMY” primary at the start of a track
with no accompany played (accompany are full rest measures). These corner cases
are generated by the next measure model giving it a full rest measure as first part
of its input source sequence and a random pick of any fragment within its track
as the second part of its input. If this does not solve the problem, we give the
resampled seed measure as the second part of its input.

After we have realizations for every terminal in the extracted form, we trans-
pose these realizations according to the extracted absolute transpositions found
in the extracted form. Then we concatenate the fragments into the tracks as spec-
ified by the form. The last thing is that we apply the tempo (and its changes)
from the original composition and transpose the whole composition randomly
by -7, -6, ... or +6 semitones. This final transposition is done to counteract the
normalization of the whole dataset into C4 before the training.

8.2 Inference of the Models
Generation process uses the decoder for generating one event at the time. We
use a partially greedy decoding with ratio of 0.1 chance for the greedy (argmax)
decoding, and 0.9 chance for standard sampling.

For the sampling, we omit the use of softmax function and normalize the
resulting logits linearly.

To ensure syntactic consistency of the generated fragments, we check the to-
tal duration of the generated fragment after each generated event. If the event is
end-of-sequence event and the sum of all the durationshift events in the generated
fragment is not enough to fill the required duration given a time signature, we
multiply the end-of-sequence probability by 0.95 and resample the current time
step, possibly repeating this action. On the other hand, if the event is a dura-
tionshift and the sum of all the durationshift events is larger than the required
duration given a time signature, we also resample. The second resampling does
not alter the probabilities and its drawback is longer resampling.

If we sample a note-off event without a previous note-on event of a same pitch,
we also resample the current time step.
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9. Generation Results
This chapter shows the results of the generation system itself. For the results of
the part for music similarity and extraction of a musical form, we refer the reader
to the ending section Results 6.8 of the Chapter 6.

As a whole, evaluation of music generation systems is a problem of its own.
Evaluation usually relies on user studies with a “Turing test” question [73], pref-
erence tests, [30] or by providing a feedback from professional composers and
musicians about some of the example compositions [74]. These often have not
been methodologically convincing. The standard evaluation of the more common
machine learning tasks via test set accuracy is not applicable because every piece
of music is unique and every note/chord in its sequential data has many “correct”
decisions on what to play next.

This is a large problem in music generation community (and with other tasks
which generate “something”) that is slowly getting attention as a robust evalua-
tion can then help design more suitable models.

In this chapter, we first explain the experiments and show the results to show
the abilities of the models. Then, we look into the results of an adapted technique
from evaluating GANs (Generate Adversial Networks).

To show the abilities of our trained models, we provide several reproducible
examples. These are:

• 20 examples of 50 generated variants from one input (source) measure

• 30 composition samples with per measure graphical indications of their
intended primary, variant, transposition and an indication of the model
from which the measures were generated

• 5 example symphonic compositions to show the generating system’s abilities
to work with unspecified number of instruments up to 16 simultaneously.

• 5 example extra long (200 measures) compositions to show the generating
system’s abilities to work with longer sequences1 and surpass these disad-
vantages of standard autoregressive models.

9.1 Variants Generator
In this section, we present the resulting outputs from the model that generates a
variant measure of a given measure.

1Theoretically the length of the compositions can be unlimited, given we have such a musical
form (which can be handcrafted).
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Figure 9.1: First 13 variants of one of the attached 50 variants on the first mea-
sure. We use software Musescore [64] for rendering the midifiles into notes. The
rendering of notes from plain MIDI is a hard problem and the software sometimes
misinterprets the notes creating non-ideal accidentals. Another problem with the
note rendering is a common inner split of one staff into two (in Musescore up to
four) ”pseudovoices” which can add unnecessary rests alongside with the played
notes as seen in e.g. the second measure in this figure.

In Figure 9.1, we can see example 13 variant measures of the first measure.
In Attachment A.8, there are 50 variant measures on the first measure for 20
different first measures i.e. 980 examples of outputs from the variant model.

The resulting measures are more or less similar and from the viewpoint of
being pleasant to listen to, they hold their key and are generally rhythmically
sound. Some of the outputs from the variant generator can definitely be a nice
addition to a human composer’s inspiration toolset, while others are less viable.
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The main drawbacks of the model is illustrated in the following example:

Figure 9.2: Illustration of downsides of the model

In Figure 9.2, while all the generated variants measures are pleasant to ear
and similar across the different outputs, their similarity to the first measure, from
which were all generated is questionable. From the evaluation of the similarity
clustering in 6.8, we know that such clusterings can happen, because rests have
relatively low replacement weight. However, one would expect that statistically
more measures with similar rhythmical structure to the first measure would be
clustered. We hypothesize that this is due to the intra-opus analysis, where mea-
sures such as the first measure in the example can be less represented within
compositions and forced to be clustered to less similar measures, whereas they
could be grouped with similar measures via inter-opus analysis (which is compu-
tationally expensive).

From manually analysing the results, the main observation is the high similar-
ity between some of the outputs against lower similarity between the input and
the outputs. However, for more dense measures (dense in the number of notes)
this problems usually diminishes and the results are more viable.
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Figure 9.3: Illustration of a possible dissonant output

From the point of view of analysing the quality of the generated measures
without regard to their intersimilarity, in Figure 9.3 in measure number 10, we
can see a possible downside of the way we decode the raw outputs from the
models. While it is common that greedy decoding does not yield the best results
as opposed to e.g. beam-search [75], we don’t even use the greedy decoding in
it full potential. The reason for this is straightforward because we want to keep
the variety when it comes to generating variants for a given measure and greedy
decoding always gives the same result. Therefore, as described in Section 8.2,
at every time step during the sequence generation, we decide with probability
0.1 whether to use the greedy decoding, or 0.9 whether to just sample according
to the output probabilities. Increasing this probability to e.g. 0.5 yields more
“correct” measures in both their quality and the similarity between the input and
outputs of the model analyzed in the previous paragraph. However, it increases
the chance to get identical measures. While there is still possibility to enlarge this
probability and dump the identical measures, this enlarges the computational cost
of generation.

The problem that Figure 9.3 illustrates is that the first chord in the 10th
measure is highly dissonant and possibly never seen in training data, which can
be caused by simply sampling and not using the greedy decoding, by not having a
fully trained model, or most likely by the unusual way that the model was trained
i.e. showing multiple desired outputs for one input across the training pairs.
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9.2 Generated Compositions
The results of the joint work of the extracted musical form, the variant generating
model, the next measure model and the accompany model are presented in this
section. Not all the resulting compositions are to be considered good enough.
However, or goal was to generate at least some convincing compositions. We
also present the less compelling compositions to be able to hypothesise over the
reasons for their bad, or sometimes good parts.

In Attachment A.8, we provide:

• 30 samples of length of 70 measures.

• 5 samples of length of 200 measures.

• 5 samples of symphonic type (i.e. up to 16 instruments playing simultane-
ously) of length of 70 measures.

All these samples are reproducible with the provided seeds. We show some
example excerpts from generated compositions. Example of such sample is pre-
sented in the following Figure 9.4:
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Figure 9.4: Example measure of a symphonic sample.The presented samples have
3-4 information for each measure inscribed in the midifiles. That is the primary,
variant, transposition and a possible origin of the measure. The origin is a capital
letter, where “V” means the measure was generated by variants model, “N” by
next measures model and “A” by accompany model. If there is no origin letter, the
measure was copied from another measure having the same primary and variant
symbols.

In Figure 9.4, we can see a good example of one of the shortcomings of the
system. That is, the harmonic coherence is dependent on more than one fragment,
while we only model it with one source. Another problem is the interdependence
of the harmony component with time domain, which is also not tackled. Therefore
the generated subsequent accompany measures that are placed one after another
have no guarantee that they will follow up on continuous dependencies.
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Figure 9.5: Example from sample 10.mid in reproducible samples attachment,
measures 36-43.

In Figure 9.5, we can see how sound the choice to have fragments of measures
works to create a gradation of fragments with transpositions of variants C|0
carried on by the extracted form to the generated composition. This supports the
decision of segmenting the compositions into measures.

Figure 9.6: Example from sample 38.mid in reproducible samples attachment,
measures 1-12.

Another good example of how the the labeling of measures implicitly cap-
tures motives from higher structures of hierarchical levels is the phrase D0, B0,
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D0, B0, C0, C1, A0 seen in Figure 9.6 repeated 3 times throughout the sam-
ple 38.mid and finishing with another phrase E0, E1, E0, E1, E2, N1 seen in
Figure 9.7. We can also see and compare with Figure 6.10 that is the original
composition from which the form was extracted. While using the same form and
using a seed measure from 6.10, the generated sample 9.6 is not a copy of its
original training composition and it is an interesting composition of its own.

Figure 9.7: Example from sample 38.mid in reproducible samples attachment,
measures 63-70.

The mentioned phrase starting from measure 65 in Figure 9.7 is starting from
the first occurrence of primary E, which is generated as a new primary by next-
measure model that changes the theme of the composition, but is continuous with
the primary B.
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Figure 9.8: Example from sample 36.mid in reproducible samples attachment,
measures 1-10.

In Figure 9.8, we can see the models abilities to learn instruments and track
index specifics. As the example well fits the guitar guitar tracks composition.

Figure 9.9: Example from sample 13.mid in reproducible samples attachment,
measures 1-10.
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In Figure 9.9, we can see how a phrase can be variated by the differing parts
of it, see (B0, B1, B2, O0) to (B0, B1, B2, H0) (later in the same example,
measures 29-36 also (B0, B1, B2, O1) to (B0, B1, B2, F1)) in first track oc-
curring multiple times throughout the sample 13.mid, or by variating its parts
as seen in Figure 9.10 first track i.e. (B3, B4, B3, N0).

Figure 9.10: Example from sample 13.mid in reproducible samples attachment,
measures 19-22.

9.3 Fréchet Inception Distance
The Fréchet Inception Distance (FID) proposed by Heusel et al. [76] was used to
quantify quality of generated samples and compare various GAN types in work
by Lucic et al. [4].

It is an attempt to objectively evaluate models that are generating “some-
thing”. The samples from these models should be from the same subspace as
the real data, we aim for a distribution of generated samples that is not distin-
guishable from the distribution of the real data. However, the problem is that it
is hard to compare data points in the space of the original data (e.g. space of
images, compositions etc.). Therefore, we need a projection into a space, where
the comparison is more viable and the projections maintains a substantial part
of expressiveness of the original subspace (or conversely, nonsensical points in
the original subspace that does not belong in the manifold of the real data is
projected into nonsensical points in the new subspace).

The FID uses Inception Net [77] model model for image classification trained
on Image Net to obtain features from one of its layers for the every instance of
data. Then, it views these features as samples from multivariate normal distribu-
tion and estimates its means and covariance matrix for both the generated data
and the real data.

The FID between these estimated Gaussian parameters for the generated g
data (µg, Σg) and the real data r (µr, Σr) is defined as:

FID(r, g) = ||µx − µg||22 + Tr(Σr + Σg − 2(ΣrΣg) 1
2 ) (9.1)

The authors show the measure’s correlation with visual quality of the examples
and with human judgment while outperforming a previous quantitative measure,
the Inception Score [78], in robustness against noise.
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9.3.1 Adaptation for Music
Inception Net cannot be directly used for music data as it a model for image
classification. . Therefore, we experimented with training our own neural network
to provide us with meaningful features.

We trained a standard LSTM model to classify the authors of the musical
pieces in our dataset. The model is similar in design of the one in author’s previous
work [7], encodes the current beat given a meter, encodes note pitch plays and
their articulations, has dropout of 0.5, but has one hidden layer of size 100.

This model is trained on sections of 100 sixteenth notes with theirs positions
within the composition is randomly selected from a composition on each epoch.
The tracks of the compositions are merged into one track. The model is trained
on the 80% of whole dataset (20% left for its evaluation) and is classifying the
subsamples to 42 different authors. The batch size is 4, the number of epochs
3000 with Adam [79] optimizer (default parameters from its paper).

The capacity of the model is much lower than the one used in author’s previous
thesis ((100) LSTM hidden size against (300, 300, 250) with skip-connections) and
it is trained only on a small subportion of the data (randomized sections of 100
continuous notes). This is due to larger dataset and high computational costs.
Possibly due to the complexity of the task with 42 authors the limited provided
inputs the resulting accuracy is not convincing, at 60% on train and 20% on test
sets2. However, we mostly care about the internals of network rather than its
accuracy. In this experiment, we are interested in whether we can assume that
the extracted features capture “something” reasonable to be able to distinguish
their authors and styles. Therefore, when assuming that this “learned” subspace
is sound, then, when the generated samples are past the real music, it manifests in
the “learned” subspace. We select the last state of the LSTM as the embeddings
(features) for our generated (and real and random) samples. Then, we compare
the estimated distributions via the FID (9.1).

The FID is most commonly used to compare different models as the singular
distance between real and generated samples on itself is not indicating anything.
We compare the features of the whole real dataset with random subsections of
100 sixteenth notes against the features of random selection subsections of 100
sixteenth notes from 100 reproducible evaluation samples.

To have some kind of a baseline, we look for an upper bound estimate because
for the lower bound, we know to expect higher FID than comparison of two subsets
of data drawn from the same distribution (FID close to zero). Therefore, we want
to know what FID difference is too large. To implement such a baseline, we define
a meaningfully randomized generator. The random generator decides which note
to play for every sixteenth time frame. It first decides how many notes to play at
a given time step with probabilities:

• 0.2 for no note played

• 0.4 for one note played
2A similar work [80] is working with different format (non-symbolic data) on a different

dataset artist20 with 20 artists of pop songs, featuring F1 scores of around 0.75 averaged over
various timeframes using convolutional recurrent neural network architecture. However, the
artists have a strong distinguishing feature here, suitable for non-symbolic (audio) analysis,
which is the artists voice, lacking in our symbolic dataset
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• 0.2 for dyad played

• 0.1 for chord played

• 0.05 and 0.05 for 4 and 5 notes played simultaneously

The pitch is chosen from random Gaussian distribution with mean being (up-
per pitch bound - lower pitch bound) /2 and the standard deviation σ = 20. The
pitch bounds are same for the author classifying model, similarity analysis and
the generating models. For notes that are continuing, i.e. longer than sixteenth,
it has 1/2 chance to be either articulated or prolonged. The number of these
random compositions is 150.

The results of our music adapted version of FID comparison for the generated,
real and random samples were following:

The adapted FID
Generated vs. Real 5.902
Generated vs. Random 13.314
Real vs. Random 11.583

Table 9.1: The adapted FID against the real data and the baseline

In Table 9.1, we can see the adapted FID comparison between 100 independent
generated samples (attached in generated examples/evaluation generic) and
the training data along with their comparison to the chosen baseline. A lower
value of FID means a better result.

In Table 9.2, we show the FID comparisons between various instrumentations
of the real and the generated data. This is meant to demonstrate abilities of
learned embeddings to distinguish between other target variables than a classifi-
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cation of the author.

The adapted FID for instrumentation of the data
Piano instrumentation
Generated Piano vs. Real Piano 4.650
Generated Piano vs. Real generic 6.924
Generated Piano vs. Generated generic 2.781
Real Piano vs. Real generic 2.664
Real Piano vs. Random 11.898
Generated Piano vs. Random 14.391
String quartet instrumentation
Generated String quartet vs. Real String quartet 3.281
Generated String quartet vs. Real generic 4.339
Generated String quartet vs. Generated generic 4.448
Real String quartet vs. Real generic 3.320
Real String quartet vs. Random 12.953
Generated String quartet vs. Random 11.184
Symphonic instrumentation
Generated Symphonic vs. Real Symphonic 4.805
Generated Symphonic vs. Real generic 4.798
Generated Symphonic vs. Generated generic 3.024
Real Symphonic vs. Real generic 3.192
Real Symphonic vs. Random 12.997
Generated Symphonic vs. Random 11.186

Table 9.2: The adapted FID for instrumentation of the data

The Table 9.3 shows the FID differences between different instruments for the
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generated and the real data independently.

The adapted FID for interinstrumental comparisons
Piano vs. String quartets
Generated Piano vs. Generated String quartet 1.684
Real Piano vs. Real String quartet 1.372
Piano vs. Symphonic
Generated Piano vs. Generated Symphonic 4.146
Real Piano vs. Real symphonic 2.419
String quartet vs. Symphonic
Generated String quartet vs. Generated Symphonic 3.311
Real String quartet vs. Real Symphonic 3.481

Table 9.3: The adapted FID for interinstrumental comparisons. These show the
ability of the learned features for author classification to perform reasonably well
on distinguishing other target variables (e.g. instrumentation)

We note that while for the Table 9.1, the 100 generated compositions are in-
dependent, for Tables 9.2 and 9.3, due to time reasons, the embeddings of the
100 consecutive 16th notes are taken from 30 compositions of 70 measures (ap-
prox. 1120 16th notes) for piano and string quartet instrumentation by randomly
selecting the notes 5 times per composition. For symphonic compositions, which
are the most time demanding for generation, we iterate 20 passthroughs for each
of 5 symphonic compositions of 70 measures, meaning the results form symphonic
instrumentation are to be believed the least as the samples are not independent.

9.4 Discussion
In this section we discuss the general specifics of the generating system.

As the generated the samples have a specific number of measures, we cannot
expect the endings of the compositions to be meaningful. Even if endings are not
cut of like that, the models currently have no indication of an ending. The same
stands for the beginnings of the compositions, where in our experience it is not
that crucial to start a generated composition in a special way.

The fragment generating models are not trained to work as dependent on
each other in any order. Therefore, the generated composition can have parts
that are not locally coherent. That stands for both continuation and harmony.
The harmonic coherence has another drawback, because the accompany model is
dependent only on one particular input fragment, where the harmony is dependent
on all of the simultaneously playing fragments. This problem is further increased
when working with more tracks.

The choice of conditional features 7.3.2 is very hard to properly evaluate as
their number is relatively high (8) and they are not independent in between them
and in between the 3 trained models. Furthermore, the training of the three

86



main models is time demanding. We only experimented with their choices to
create the best sounding results. However, from the resulting examples, we can
say that the compositions generally hold their mode, are able to generate by
instrumental specifics and generate variants and accompany based on their track
order and instrumentation. Conditioning by time signature is also working quite
well, because the time signature specifies the total duration of a measure, which is
consistent across the generated samples. From examples of variants in 9.1, we can
generally see that the density conditioning also has its place in the training process
as the variants are usually of similar density. A concept of motion, indication
of solo parts or average velocity is hard to even roughly evaluate just from the
resulting examples, however, we can say that these are intuitively sensible features
to generate fragments with (e.g. a fragment that we expect to be almost silent,
downfalling and solo will consequentially have to have its note pitch and note
duration choices influenced).

We note that the examples with piano instrumentation are the most consistent
and convincing in terms of likeability and hypothesise that this is due to about
50% of our dataset (see 4) is instrumentated like that, while e.g. only 10% are
symphonic compositions.
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Conclusion
This work has shown a new hybrid approach for music generation that consists
of several different subtasks: measuring music similarity, musical form extraction
and generation of musical fragments with certain conditions. These three research
areas are all rather hard, subjective and focus of ongoing research in the field.
Our approach tries to use domain knowledge about music and tries to control the
generation process that is usually done by “black box” machine learning models.
We show that the approach is able to generate long and coherent multitrack
imitations of western classical music compositions.

It is clear we made many more or less arbitrary decisions and the whole system
could be made better by further researching each of its main three components
individually, e.g. the quality of individual variant fragments generated relies on
the quality of the used similarity pseudometric, the quality of the clustering algo-
rithm and the generating model itself. However, the main contribution is that we
have shown the approach as a whole is a viable research path and that working
with some representation of a musical form, either algorithmically extracted or
handcrafted, leads to more long term coherent music.

We used an established music similarity pseudometric based on string com-
parison and extended it to our dataset with small parameter changes and an
extension to cover polyphonic music. This adapted method seems to compute
similarity in a way that is good enough for musical form extraction. For extract-
ing the form of musical compositions, we made a decision to arbitrarily segment
the compositions by their measures, even though meaningful segments of music
are not necessarily aligned to measures, can be shorter or longer than one mea-
sure and can overlap. This step simplifies the task and in practice it seems that
such choice of segmentation is sound for many compositions, as the labelings of
measure-long fragments implicitly determines the inner structure of larger musi-
cal phrases and motives. One of the main problems of this approach lies in the
inability to find the implicit similarities between motifs of differing overall length
in terms of measures. However, the choice of aiming for a larger set of smaller
clusters incorporated in the clustering algorithm seems sound for finding the im-
plicit structure of larger motives e.g. AABC vs. AABD and, consequentially, to keep
the training pairs for the variant generator model reasonably similar.

The individual Seq2Seq models we trained (i.e. the variant generator, next
measure generator and accompany generator) are producing what we think are
satisfactory result fragments when used individually or in conjunction with other
models and a musical from to form a whole composition. Even though the choice
of conditioning the models to generate fragments of set properties (e.g. mode,
instrument, density, solo part etc.) was arbitrary, based on domain knowledge,
and not thoroughly individually evaluated, the results did anecdotally show con-
sistency with respect to the conditioned properties. The use of a musical form
during generation process reasonably mimics and establishes the desired [12] ten-
sion between the surprise and expectation forces in music.

The local coherence between the fragments is attempted by training the ac-
company and next measure models to create melodically and harmonically com-
plementary fragments. However, the generation of fragments process is sequential
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(not necessarily in order of the final composition), which can make some fragments
incompatible, especially when the local coherence is dependent on more than one
fragment (e.g. few fragments into the future, few into the history along with all
the tracks playing at the same time), while we only model it independently (on
e.g. time domain or harmony domain), and only with one source fragment. The
accompany model takes into account only one arbitrary chosen measure, which
might not be in harmony with the other measures generated or yet to be gen-
erated. This problem enlarges with larger number of tracks so the quality goes
down respectively while working with unrestricted polyphony. To tackle the de-
pendence on more fragments, while still (wrongly) assuming independence, we
experimented with other models that can be applied after the first “draft” com-
position is created. This way, the models are able to see both into the future and
the history and have all the available tracks already generated. Then, they are
used in conjunction and together with variants model along with Gibbs sampling
technique [17] [34] to iteratively “repair” the measures to increase their local co-
herency, while still keeping their long term coherence. However, adding these new
models showed less interesting compositions even though the resuls were slightly
more coherent.

In future work, we would like to experiment with additional models to be
used with musical form that utilize more dependencies between the harmony,
continuity and similarity along with Gibbs sampling. Another important research
topic is the evaluation of the quality of music generation which is a long standing
issue of music generation task.

The resulting system, while of course not producing great quality music on
every try, has a good chance to produce good quality, interesting and pleasant
compositions. The quality of music also depends on the the chosen instrumen-
tation e.g. piano compositions are roughly 50% of our dataset, while symphonic
compositions only about 10%. The FID adapted for music generation shows rea-
sonable numbers for both the evaluation of the resulting compositions themselves
and the experiments to show the distinguishing features of the embeddings.

While much can be improved, both in terms of the generation models and the
other two major components of the system, the similarity pseudometric and un-
supervised form extraction, we believe this work has shown that achieving better
control over the long-range structures in generated musical compositions through
a learned musical form is a viable path towards engaging musical compositions
by a computer.
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A. Attachments

A.1 Code
The code with programs for similarity analysis, form extraction, data prepara-
tion, neural network models, clustering analysis and programs for miscellaneous
experiments and picture creations are in folder code.

A.2 Documentation
The documentation which describes how to use all the attached programs and
comments their design is in user guide/user doc.pdf. The documentation also in-
cludes citations for all of the used libraries and subprograms.

A.3 List of Data
A list with names of the midifiles from www.kunstderfuge.com, that were used
for training in this work is provided in file dataset list.txt The data is attached
in dataset, but is encrypted with password on demand due to possible copyright
claims.

A.4 Dictionary of Instruments

Instruments
Violin, Viola, Cello, Contrabass, Higher Sax, Tremolo strings,
Pizzicato Strings, Harp, Undefined,String ensemble,
Slow strings, Choir, Voice, Orchestra hit,
Trumpet, Trombone, French horn, Higher Sax,
Baritone Sax, Oboe, Bassoon, Clarinet, Flute,
Bagpipe,Tinkle Bell, Steel Drums, Reverse Cymbal,
Instrument Families
Piano, Chromatic Percussion, Organ, Guitar,
Bass, Strings, Ensemble, Brass, Reed, Pipe, Synth Lead,
Synth Pad, Synth Effects, Ethinc, Percussive, Sound Effects

Table A.1: If the specific MIDI instrument key is found in the Instruments part
of the table, we view it as a specification of an instrument, if the key is not
found, we view it as the class of the MIDI instrument family as defined by the
MIDI [81] technical standard. The Undefined instrument stands for percussion-
like instruments that play a special role in compositions
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A.5 Clustering Analysis
All the clustering analysis are in cluster analysis/interesting measures. The files
for the analysis are stored as MIDI files in folders indicating their ”parent” com-
position, relation i.e. intra-closest, inter-closest and intra-farthest. The name of
the midi file itself indicates the position within a composition as ”a b”, where a
is the track index and b is the measure number.

As storing them as png files is space demanding, we provide the algorithm to
create pictures from these midi files for individual compositions of interest.

Midis with inscribed forms are in cluster analysis/labeled midis. Figure 6.8 is
in cluster analysis/labeled midis/piano/dvorak/major/
dvorak concerto 2-pianos 2 (c)yogore.mid.with text.mid.

A.6 Categories of Time Signatures

Time Signatures
4/4, 3/4, 2/4, 6/4, 9/4, 12/4, 2/2, 3/8,
6/8, 9/8, 12/8, 5/4, 3/2, 4/2, 7/16, 4/8,
1/8, 2/8, 1/4, 1/16, 9/16, 7/8, 5/8, 7/4,
1/32, 8/8, 1/2, 11/8, 13/16, 8/4, 17/32, 5/32,
6/8, 6/32, 3/16, 5/16, 11/16, 10/8, 2/16, 10/4,

Table A.2: Table of categories of the time signatures encountered and used for
conditioning the models. Each of the category is transformed to an embedding
which is concatenated to the input vector. The use of this information is for the
model to know the beat structure and total duration of the desired output

A.7 Musical Forms Inscribed into the Data
All the musical forms are in cluster analysis/labeled midis.

To properly view these forms, it is recommended to use Musescore [64] soft-
ware, while setting ”Split Staff” to false and possibly changing how Musescore
displays the lyrics using Style menu.

Figure 6.7 is in cluster analysis/labeled midis/haydn/major/
haydn catchi hob xxxic16 2 (c)iscenko.mid with text.mid

A.8 Generated Examples
The generated examples are stored as midi files in folder generated examples.

• The examples of the output from the variants generator are in subfolder
variants compositions.

• The examples of the generated compositions are in subfolder
reproducible samples.
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• The examples of the generated symphonic compositions are in subfolder
reproducible samples symphonic

• The examples of the generated long (200 measures) compositions are in
subfolder reproducible samples with extra long.

• The examples for FID instrumenation comparison tables 9.3, 9.2 are in sub-
folder reproducible samples piano, and reproducible samples string quartet
and the FID results Table 9.1 in examples in subfolder evaluation generic.
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