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Introduction
It has been nearly one hundred years since Albert Einstein introduced the idea of
stimulated emission which gradually culminated into the theoretical concept of a laser.
About forty years later the first laser emission was successfully demonstrated and a
whole new branch of optics dealing with properties of intense coherent light was un-
veiled. The advancement of lasers was quickly followed by the theoretical foundation
and practical implementation of the mode locking technique enabling generation of
ultra-short laser pulses. A femtosecond is equal to a fraction 10−15 of a second and
it represents a timescale on which dynamics of chemical reactions or molecular move-
ment can be studied. It is also the limit of the shortest pulse duration generated with
visible light, since the period of oscillation of visible light is 1-3 fs. Such properties of
femtosecond pulses are very valuable as they enable to study processes at timescales
which are unreachable by any other methods. Applications of femtosecond lasers gave
birth to the new fields of physics such as ultrafast spectroscopy or femtochemistry.
The ultrafast lasers also yield another advantage because their output energy can be
squeezed into a very short time interval. Their high peak power combined with excel-
lent focusability of laser beams has proved to be irreplaceable for the study of so-called
extreme physics [1], which aims at the understanding of behavior of matter under ex-
treme pressure, temperature and electric fields such as is the environment in cores of
stars. The extreme physics mostly connects the areas of plasma, particle, relativistic
and quantum physics and is crucial for the better understanding of the fundamental
physical laws [2]. Moreover, experimental results have already pointed out at the appli-
cability of the lasers for the generation of secondary sources of radiation such as x-ray
or proton beams [3]. The high-intensity ultrafast lasers could be employed as tabletop
particle accelerators reducing the size and cost of such devices and making them widely
available for biomedical applications such as tumor treatment, coherent high resolution
single-shot 3D scanning, etc. [4].

The Extreme Light Infrastructure (ELI) project was established to boost up the
progress in this field. It comprises three pillars located in the Czech Republic, Hungary
and Romania, each of them specializing in a different field. The Eli-Beamlines pillar
based in the Czech Republic specializes in the generation of secondary sources of radia-
tion and it will host both high-repetition rate petawatt-class laser L3 and laser system
L4 with unprecedented peak power 10 PW [A7]. The L4 system aims to deliver 150 fs
pulse with 1500 kJ energy with central wavelength 1060 nm. The pulses are amplified
using the chirped pulse amplification technique [5], where the pulses are broadened
prior to their amplification in a stretcher and they are compressed in a compressor
before the experimental chamber. Such a technique is necessary to avoid possible op-
tical damage and nonlinear effects which start to occur at GW/cm2 intensity scale.
Therefore, the pulse duration has to be increased roughly 20 000 times to reach 3 ns
prior to their amplification to limit peak intensity. The individual spectral components
of the pulse have to be de-phased with respect to each other. This can be achieved
when a pulse propagates through a dispersive component, such as a pair of diffraction
gratings [6]. To reach maximal intensity at focus it is critical that the compressed
pulse has shortest pulse duration possible. To achieve that the induced spectral phase
change by the stretcher and compressor has to be matched appropriately and well con-
trolled. However, with increasing peak power of lasers the requirements on the design
and alignment of these subsystems become more stringent [7].

Even with recent advances in multilayer dielectric coatings, the laser induced dam-
age threshold of diffraction gratings is the main limiting factors in reaching higher peak
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powers [8]. The threshold is given by the fluence, which inversely scales with pulse du-
ration [9] and which is currently on the order of hundreds mJ/cm2 beam normal for
femtosecond pulses. The only means how to increase the pulse peak power without dam-
aging the gratings is then to increase the beam size to tens of centimeters depending
on the specific grating design. However, as the maximal commercially available grat-
ing size is currently limited to approximately 1 m in diameter, a tiled grating scheme
was proposed to increase the effective aperture of the compressor [10]. There is also
an alternative object-image-grating self-tiling method (called grating-mirror method in
the following text for brevity), in which the grating is aligned with a perpendicularly
positioned plane mirror effectively doubling its aperture [11, 12]. The tiled grating
scheme has been successfully implemented in 500 fs 1 PW [13] and 100 fs 25 TW laser
systems [14] but the grating-mirror scheme has been only tested in low power small
aperture laser systems so far [15, 16]. Compared to the mentioned systems, the L4
system possesses short pulse duration combined with large beam aperture, which puts
strict requirements on the alignment of tiled gratings in submicroradian range and also
on the surface and holographic quality of the gratings. Here, 1740 ln/mm and 1136
ln/mm compressor designs were compared both utilizing either tiled grating or grating
mirror scheme. Also, since the grating-mirror configuration has not yet been experi-
mentally tested for the state-of-the-art laser systems, a thorough analysis was necessary
to check its applicability for the L4 system.

Another challenge in the development of the L4 system was posed by the design of
the stretcher. Since the low line density compressor design was favoured, the grating
distance in the compressor had to be set to 15 m to reach sufficient pulse broadening. A
large stretch ratio then leads to a big footprint and residual spectral phase induced by
the aberrations of the imaging system of conventional stretcher designs. A multi-pass
stretcher with a modified Offner triplet was proposed to overcome these limitations and
a theory calculating the change in the induced spectral phase by the aberrations was
deduced to bring more insight into the stretcher design.

Goals

The topic of this thesis is dispersion management of the L4 laser system which mostly
encompasses the design and the analysis of the stretcher and compressor. The first goal
was to analyze and compare two compressor designs using analytical and numerical
methods. Since both designs require the utilization of either tiled grating or grating-
mirror method, both of these methods had to be examined as well. The second goal
was to choose an appropriate method for the alignment of the tiled grating/grating-
mirror assemblies and to test it. The third goal was to make an optical design of a
stretcher matching the selected compressor design and to find a passive method for the
suppression of the stretcher’s residual spectral phase. The next step was to propose
an alignment procedure and to implement the stretcher into the L4 laser system. The
fourth goal was to install a diagnostic sub-aperture compressor to verify the compress-
ibility of the amplified stretched pulses.

Outline

The first chapter provides the theoretical foundation necessary for the numerical and
analytical analysis of the stretcher and compressor discussed in the following sections.
Theoretical treatment of ultrashort pulses, dispersion and spatio-temporal couplings is
presented and the methods for numerical simulation of ultrashort pulse propagation
are discussed.

The second chapter provides an overview of the CPA technique. Sections 2.1-2.3
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summarize the theory of grating compressors, stretchers and methods for the alignment
of tiled grating and grating-mirror pairs. Section 2.4 presents the first outcome of this
thesis, which is a method for the analytical calculation of spectral phase deviation in-
duced by the Seidel aberrations present in the stretcher imaging system. The theory is
demonstrated on the commonly employed Banks and Offner stretcher designs in sub-
sections 2.4.1-2.4.2 and its applicability is further discussed in subsection 2.4.3. Section
2.5 then examines general dispersion management and points out several possibilities
on how to compensate residual spectral phase in the CPA systems.

The third chapter introduces the ELI Beamlines project and especially the L4 laser
system in more detail.

The fourth chapter presents an analytical and numerical analysis of the compressor
designs. Section 4.1 and 4.2 deals with 1740 ln/mm and 1136 ln/mm compressor designs
in either tiled gratings or grating-mirror configuration respectively. The outcomes of a
tolerance analysis, optimization of spectral throughput, simulation of intensity modula-
tions induced through the diffraction on tiled grating gaps are presented. The sections
also entail a novel analysis of line density variation within tiled grating compressors.
The analysis points out that the line density variation can significantly decrease focused
peak intensity for tiled grating compressors. Pre-pulses and post-pulses originating from
specular reflections off the grating-mirror assemblies are examined as well.

In the fifth chapter established methods for the alignment of tiled grating and
grating-mirror configurations are compared, experimental results are presented and an
alignment system is proposed for the L4 compressor.

The sixth chapter describes the evolution of the L4 stretcher design. In section 5.1
an optimization method reducing residual spectral phase and footprint of the stretcher
is discussed for both Offner and Banks designs. Section 5.2 encompasses the imple-
mentation of the final stretcher design into the L4 beamline, mostly discussing the
alignment procedure and the output characteristics.

In the seventh chapter, an implementation of the sub-aperture compressor is pre-
sented. The sub-aperture compressor is a miniaturized version of the main compressor
for small beam aperture yielding the same dispersion properties and was used to com-
press the stretched pulse amplified by the OPCPA section.

Finally, the work and its impact on the current state in this field are summarized
in the conclusion.
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1. Ultrashort pulses
1.1 Ultrashort pulses

Ultrashort pulses can be described as electromagnetic wave-packets with duration in
femtosecond to picosecond scale. The pulses are usually generated using mode-locking
technique [17]. Their ultrashort duration is achieved via interference of their individual
spectral components and is therefore inversely proportional to their spectral width. The
complete theoretical description can be found in Ultrashort Pulse Phenomena [18].

To begin with, it is convenient to decouple their temporal and spatial characteristics
and treat them separately. However, as it will be shown later, such separation is not
entirely accurate when spatio-temporal couplings are present. Here, we review basic
formulae relevant for the following chapters and numerical simulations. Ultrashort
pulses are usually treated in the complex representation to allow exponential notation
as they are fully characterized by the electric field. The complex spectrum E(ω) of a
pulse is connected with its real electric field ER(t) through the Fourier transform:

E(ω) =
∫︂ ∞

−∞
ER(t)e−iωtdω = |E(ω)| eiφ(ω), (1.1)

where |E(ω)| is the spectral amplitude and φ(ω) is the spectral phase of the pulse. The
complex electric field E(t) is defined as the Fourier transform of the positive part of
the spectrum only:

E(t) = 1
2π

∫︂ ∞

0
E(ω)eiωtdω = |E(t)| eiφ(t)eiω0t, (1.2)

where |E(t)| denotes temporal amplitude, φ(t) is temporal phase and ω0 is the central
frequency of the pulse. The real electric field of a pulse is obtained from the real part of
its complex amplitude ER(t) = Re{E(t)}. The temporal intensity I(t) can be derived
by substituting the electric field into the Poynting vector:

I(t) = 1/2ϵ0cn|E(t)|2 (1.3)

and it is connected with the energy of the pulse E and its spectral intensity S(ω)
through Parseval’s theorem:

E =
∫︂
I(t)dt =

∫︂
S(ω)dω, (1.4)

with
S(ω) = ϵ0cn

π
|E(ω)|2 . (1.5)

The temporal profile of a pulse is usually estimated from its measured spectrum. A
Gaussian pulse shape is most commonly used due to its mathematical simplicity and
because it resembles the output spectrum of mode-locked lasers. Temporal and spectral
amplitudes of a Gaussian pulse are described with a Gaussian function:

|E(t)| = I0√
2ϵ0cn

exp
(︄

− t2

2τ2
e

)︄
|E(ω)| = I0τe√

πϵ0cn
exp

(︂
−2τ2

e t
2
)︂

(1.6)

where I0 is the peak intensity of the pulse and τ2
e is the pulse duration half width.

Experimentally, it is more convenient to define the pulse duration corresponding to
the full width at half maximum τF W HM = 2

√︁
ln(2)τe. Since high-power laser systems
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usually operate with limited spectral bandwidth, it is desirable to generate the spectral
profile that maximizes the peak power within the given bandwidth. A super-Gaussian
spectral profile of the order N can be analytically described as:

|E(ω)| = E
cn

exp
(︄

−
(︄

|ω − ω0|N

2 (∆ωN )N

)︄)︄
(1.7)

where cn is a normalization constant and ωN is the spectral half-width. Because of
the Fourier transform relationship between the complex electric field and the complex
spectrum, there exists a connection between the pulse duration τF W HM and its spectral
width ∆ωF W HM

τF W HM ∆ωF W HM ≥ 2πcp, (1.8)

where cp is a constant depending on the shape of the pulse profile. The equality holds
when the pulse is transform-limited. Such pulses do not exhibit any kind of chirp and
have constant carrier frequency.

1.2 Dispersion

Dispersion is the phenomenon that the phase velocity of a wave depends on frequency.
Generally, when an ultrashort pulse propagates through a medium, its phase velocity
ω/k differs from its the group velocity δω/δk due to the presence of absorptive res-
onances of the medium. Dispersion properties of the medium are described by the
frequency dependence of its refraction index n(ω, z). The propagation of the optical
pulse through the medium has a form of the linear wave equation:[︄

δ2

δz2 + ω2

c2 n(ω, z)2
]︄
E(ω, z) = 0, (1.9)

with a solution:

E(ω, z) = E(ω, 0)exp(−ik(ω)z) = E(ω, 0)exp(−iφ(ω)). (1.10)

The spectral phase φ(ω) represents both the delay of pulse due to its propagation
through the medium as well as possible distortion of the pulse temporal envelope. The
solution can be further generalized by using a linear transfer function H(ω):

E(ω, z) = H(ω)E(ω, 0); H(ω) = (1 −R(ω) −A(ω))exp(−iφ(ω)), (1.11)

where A(ω) is absorption and R(ω) is total reflection loss. To add some physical insight
into how the induced spectral phase influences the temporal profile of the pulse, it is
convenient to expand it into a Taylor series around the central frequency of the pulse
ω0:

φ(ω) = φ0 + dφ
dω |ω0(ω − ω0) + d2φ

dω2 |ω0

(ω − ω0)2

2 + d3φ

dω3 |ω0

(ω − ω0)3

3! + d4φ

dω4 |ω0

(ω − ω0)4

4! + ...

= φ0 + GD(ω − ω0) + GDD
2 (ω − ω0)2 + TOD

3! (ω − ω0)3 + FOD
4! (ω − ω0)4 + ... .

(1.12)

The first term φ0 represents carrier envelope offset. Its control is important mostly
for metrology and few-cycle optical pulses. This thesis deals with optical pulses with
∼ 130 fs duration and its impact can be therefore neglected. The second term dφ

dω
is equal to the product of the inverse of the group velocity and the length of the
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medium z. Therefore, it describes the group delay (GD) of the pulse with respect to
its initial state. The group delay dispersion (GDD) homogeneously broadens the pulse
envelope. It represents linear change of the group delay with respect to the individual
spectral wave-packets which make up the pulse. The third order dispersion (TOD)
induces quadratic group delay dependence and therefore it distorts either the front
side or the back side of the pulse envelope depending on the sign of the TOD. It also
creates characteristic ripples in time intensity. The fourth order dispersion (FOD) is
cubic in the group delay and therefore induces additional pulse broadening and degrades
temporal contrast as well. ∼130 fs pulses are not usually influenced by higher dispersion
orders than FOD and thus they will be neglected here. The impact of the individual
dispersion orders on the temporal profile of a Gaussian pulse is shown in Figure 1.1.
The duration of a Gaussian pulse increases with the residual group delay dispersion as:

τF W HM = τ0F W HM

√︄
1 + (4 ln(2) GDD)2

τ4
0F W HM

(1.13)

Generally, pulses with super-Gaussian profiles have lower dependence of their pulse
duration on the GDD as the super-Gaussian function decays more quickly at the edges
compared to the Gaussian function. In reality, measured spectra deviate from the
perfect analytical curves. To evaluate the impact of residual spectral phase on the
pulse envelope, it is always necessary to calculate the Fourier transform of the measured
spectrum according to Eq. (1.2). However, for the simulations aiming at minimization
of pulse duration, it is convenient to use the Gaussian profile as the worst case scenario.

It is also important to note that the Taylor expansion from Eq. (1.12) is valid only
for systems with smooth and slowly varying phase profile such as the systems using
diffraction grating compressors and stretchers. In the case of multilayer dielectric struc-
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Figure 1.1: Impact of residual dispersion on the temporal profile of a Gaussian pulse
with 130 fs FWHM duration having GDD=20 000 fs2, TOD=200 000 fs3 or FOD =
-2 000 000 fs4)
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tures exhibiting sinusoidal phase modulations and narrow peaks, the Taylor expansion
approximation is not accurate and it might be necessary to abandon this approach.

1.3 Temporal intensity contrast

Temporal intensity contrast is defined as a ratio of the intensity at a given time to the
peak pulse intensity. The modern state-of-the-art laser systems reach focused intensity
as high as ∼ 1023 W/cm2. Time intensity contrast plays a crucial role in the majority
of experiments as the ionization and formation of pre-plasma at the target can occur
at intensities ∼ 1012 W/cm2. Therefore if the intensity rises above this level before
the arrival of the main peak, the induced pre-plasma can change the experimental
conditions and ruin the experiment. Therefore, the time intensity contrast of 10−11

in ps-scale is necessary for the highest peak power laser systems. A typical contrast
trace is sketched in Figure 1.2. Temporal contrast degradation can occur due to many
different reasons. First, the contrast is closely connected with the shape of the spec-
tral intensity and phase of the pulse. Because the temporal and spectral domain are
connected through the Fourier transform, any high-frequency content present in the
spectral domain should be avoided. Any abrupt variations of the spectral intensity
create pedestal around the main peak. Such variations are usually induced through
the spectral clipping in the stretchers and compressors when the aperture of diffraction
gratings is not sufficient for a given spectral bandwidth [19]. The same argument can
be applied for abrupt variations of the spectral phase where discontinuities are very
rare. However, more often the spectral phase exhibits rapid sinusoidal variations which
can originate from dielectric coatings or high frequency noise. The high frequency noise
can be induced by the surface quality of mirrors placed in the focal plane of grating
stretchers [20] and it has been shown that it leads to contrast degradation [21]. For a
single frequency component, it leads to the creation of pre-pulse and post-pulse with
delay equal to the period of the modulation. Noisy spectral phase profile ∆φ(ω) ≪ 1
generates a pedestal around the main peak of the pulse. The intensity of the pedestal
can be estimated as:

I(t) = I0(t) + ϵ|∆φ(t)|2, (1.14)
where I0(t) is the temporal profile of a pulse without phase modulation, ϵ is the

energy of the pulse and ∆φ(t) is the temporal Fourier transform of ∆φ(ω). Second, a

Figure 1.2: Example of a typical temporal contrast trace. The area around the main
peak in the ps scale is called a coherent pedestal and is mainly induced through the
effects discussed in this section. The temporal contrast in the ns scale is usually mostly
degraded by amplified spontaneous emission.
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pulse passing through transmissive optics such as beam-splitters, polarizers or vacuum
windows undergoes multiple reflections which are delayed with respect to the main peak.
These post-pulses can be then converted to pre-pulses in the nonlinear regime [22].
Third, scattering on the optics in the multi-pass designs of stretchers, amplifiers or
compressors can degrade the temporal contrast as well [23]. This can happen when
a pulse is double scattered so that the scattered light gets at the output of the system
before the main peak.

1.4 Gaussian beams

Gaussian beams are the solution of the Helmholtz equation in paraxial approximation
and are the most commonly encountered spatial beam profiles. Only a fundamental
TEM00 mode is discussed here as it offers the best spatial properties compared to the
other modes. Its spatial profile is given by:

E(x, y, z) = E0
w0

w(z)exp
(︃

−(x2 + y2)
w(z)2

)︃
exp

(︃
−i
(︃
kz + k

(x2 + y2)
2R(z) + arctan(z/zR)

)︃)︃
, (1.15)

where w0 is the waist size, w(z) is the beam size at a given distance from the waist,
zR is the Rayleigh length and R(z) is the wavefront curvature. These parameters are
defined as:

zR = πw2
0

λ0
, w(z) =

√︄
1 +

(︃
z

zR

)︃2
, R(z) = z

(︄
1 +

(︃
zR

z

)︃2
)︄
. (1.16)

For high-energy laser systems, super-Gaussian profiles are preferred because they ef-
fectively fill the aperture of optics and thus they maximize the energy at a fixed beam
size. Such profiles can be generated using serrated apertures combined with far-field
filtering or custom collimators. Their spatial profile in the 2D is given by (similarly to
Eq.1.7):

|E(x, y)| = E
cn

exp
(︄

−
(︄

|x|N + |y|N

wN
0

)︄)︄
, (1.17)

where E is the total energy and cn is the normalization constant. While Gaussian
beams have approximately two times higher intensity at focus for the same FWHM
width (Fig 1.3 a,b), the super-Gaussian beams have superior focused peak intensity
when the beam size is limited by the aperture of optics (Fig 1.3 c,d). Due to high
spatial frequencies, which are present in super-Gaussian beam profiles, it is necessary to
relay image the position of a waist through the system to avoid amplitude modulations
(Fig. 1.4). Usually, the beam is imaged to the center of an amplification medium at
each amplification stage and on the optics such as deformable mirrors and diffraction
gratings, which could be damaged through the amplitude modulations.

During its propagation through an optical system, a laser beam passes through and
reflects off many optical components. This can induce additional wavefront deviation
with respect to the phase of the ideal beam. The deviation is usually described by the
set of orthogonal Zernike polynomials Zm

n (ρ, ϕ) [24]:

Zm
n (ρ, ϕ) = Rm

n (ρ)cos(mψ) Z−m
n (ρ, ϕ) = Rm

n (ρ)sin(mψ) (1.18)

with the radial polynomials Rm
n (ρ) defined as:

Rm
n (ρ) =

n−m
2∑︂

k=0

(−1)k(n− k)!
k!(n+m

2 − k)!(n−m
2 − k)!

ρ(n−2)k (1.19)
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Figure 1.3: Comparison of a Gaussian and super-Gaussian profile in nearfield and
farfield. a,b) Comparison of the profiles having same FWHM and peak intensity in
nearfield. c,d) Comparison of the profiles having the same peak intensity and filling a
given aperture in nearfield.

Focusability of a laser beam can be described by the Strehl ratio which is defined as
the ratio between the peak intensity of a real distorted beam to the peak intensity of
the ideal beam:

Sx = exp(−(2πσ)2) ≈ 1 − (2πσ)2, (1.20)

where Sx is the spatial Strehl ratio and σ is the RMS of the wavefront deviation. Ac-
cording to the Marechal criterion, the optical system is regarded as well corrected for
Sx > 0.8, which is equivalent to RMS wavefront deviation ≤ λ/14.

1.5 Spatio-temporal couplings

In reality, it is not possible to separate the spatial and temporal/frequency charac-
teristics E(ω, x, y, z) ̸= E(ω)E(x, y, z) of ultrashort pulses. Such separation is often
desired for simplification and to illustrate some basic approaches. However, genera-
tion and manipulation of high-power ultrashort pulses requires to temporarily induce
some spatio-temporal couplings, such as in the pulse stretchers and compressors, for
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Figure 1.4: Evolution of super-Gaussian beam profile propagated in space. The ampli-
tude modulation makes it necessary to relay image the beam profile. a) Spatial profile
at the waist, b) spatial profile after 5m of propagation, c) spatial profile after 10m of
propagation.
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Figure 1.5: Spatial representation of Zernike polynomials

which is such approximation inadequate. These spatio-temporal couplings then may
not be entirely compensated at the end of chain or in some cases they can be used to
advantage like in broadband OPCPA. Principally, we can distinguish amplitude and
phase couplings. General spatio-temporal couplings in the first order approximation
are summarized in Table (1.1) [25]:

Table 1.1: Classification of spatio-temporal couplings

Domain Amplitude Phase
x - t pulse front tilt wave-front rotation
x - ω spatial chirp wavefront tilt dispersion
k - t time versus angle angular temporal chirp
k - ω angular dispersion angular spectral chirp

The couplings are not mutually independent. When pulse characteristics are de-
termined in one domain, the characteristics in the other domains can be calculated
using appropriate Fourier transforms. For the complete characterization of the pulse,
it is sufficient to measure the amplitude and phase profile in only one domain. For
example, to completely characterize pulse in the x-t domain, it is necessary to measure
its spatial profile, wavefront, temporal profile, temporal phase, pulse front tilt angle
and wavefront rotation. However, due to the fact that duration of ultrashort pulses is
shorter than the response time of electronics devices, it is usually more convenient to
measure the couplings in the spectral domain and to recalculate their impact to the
x − t domain. The characterization of the output pulse in both x-ω (near-field) and
k-ω (far-field) domains is also very useful for the alignment of dispersive devices such
as grating stretcher and compressors.

Angular dispersion

Angular dispersion is a well-known phenomenon discovered by Isaac Newton in his
famous prism experiment in the 17th century. When angular dispersion is present,
spectral components of light propagate in different directions. Mathematically, this
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Figure 1.6: Illustration of angular dispersion

can be expressed through the frequency dependency of k-vectors:

E(kx, ky, kz, t) = E(kx(ω), ky, kz, t) (1.21)

There is also a second definition, defining the angular dispersion as the angle be-
tween individual phase fronts. These two definitions coincide for plane waves, but they
can yield different results for Gaussian beams [26]. Here, we stick with the first def-
inition as we will deal mostly with collimated beams. Residual angular dispersion is
closely connected with distortions of a pulse front [27]. Usually, the linear term of the
angular dispersion kx(ω) = k0x + dkx

dω (ω − ω0) is dominant. In the x − ω domain, the
linear angular dispersion can be described by a linear phase term scaling with both x
and ω:

E(x, y, z, t) = E0(x, y, z, t) exp
(︃
i
2π
λ

dθ
dω |ω0(ω − ω0)x⃗

)︃
, (1.22)

where dθ
dω |ω0 is the linear angular dispersion at ω0. Free space propagation of a pulse

with residual linear angular dispersion leads to a residual GDD offset [28]:

GDD ≈ −Lω0
c

(︃ dθ
dω |ω0

)︃2
(1.23)

The linear term usually originates from wedged optics or misaligned gratings in stretch-
ers or compressors. However, in some cases quadratic or cubic terms can be present.
They are induced by the Seidel aberrations of imaging systems of grating stretchers
[A1] or they can be induced by misaligned compressors having line density variation of
the gratings. Residual angular dispersion reduces the peak power of the focused pulse
by two mechanisms as it is shown in Figure 1.6. It increases the focal spot size and it
locally broadens the pulse by limiting the spectral bandwidth at each focal point [29].

Spatial chirp

Spatial chirp is a spatio-temporal coupling for which the position of a beam centroid
varies with frequency:

E(x0 + dx
dω |ω0(ω − ω0), y, z, t) (1.24)

The spatial chirp dx
dω |ω0 is generally induced by a pulse propagating distance L with

angular dispersion:
dx
dω |ω0 = L

dθ
dω |ω0 . (1.25)

Spatial chirp prolongs pulse duration in the near-field by reducing the spectral band-
width of the pulse at each point. It has minimal effect on pulse duration in focus as all
spectral components overlap there. Spatial chirp is mostly connected with the spectral
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spread of the beam on the second grating or prism in the pulse stretchers and compres-
sors. However for ultrashort pulses with broad bandwidths, it can be easily introduced
when a pulse propagates through a tilted window as it is illustrated in Figure 1.7.

Figure 1.7: Illustration of spatial chirp after propagation through a pair of dispersive
components and a tilted window [30].

Pulse front distortion

Ideally, a pulse front should coincide with the wavefront of all spectral components.
When some distortion is present, the individual wavefronts no longer overlap and the
position of the intensity maxima is shifted in time to a position, where all spectral
components constructively interfere. Mathematically, the pulse front distortion can
be expressed as the spatial dependence of the arrival time of the pulse maxima t0
(equivalent to the group delay in spectral domain):

E(x, y, z, t) = E(x, y, z, t− t0(x, y)) (1.26)

The origin of the majority of pulse front distortions is closely connected with angular
dispersion. When a pulse passes through a dispersive component like a prism in Fig.
1.8a, the top and the bottom part of the beam undergo different optical paths. Since
they are identical, the bottom part of the beam has to delayed with respect to the
top part. However, this also means that the beam exhibits angular dispersion k − ω
domain [27]. This is true for every dispersive component - prism, gratings or etalons.
It can be also proved using basic Fourier transform theorems in linear approximation,
since the field having angular dispersion can be transformed as follows:

E(kx − aω, ky, ω) → E(x, y, ω)exp(−iaxω) → E(x, y, t− ax) (1.27)

Pulse front distortion can be also induced by the combination of spatial and temporal
chirp. The spatial chirp yields spectral spread in the x-y plane, while the temporal
chirp shifts the maxima of the individual spectral wave-packets along the time and
z-axis. Combination of chirps tilts the pulse front as in Fig. 1.8b.

Pulse front tilt

A pulse front tilt represents linear dependence of the arrival time of a pulse on its
spatial coordinate. It is equivalent to constant linear angular dispersion across the
beam profile in the absence of either spatial or temporal chirp. The dependence of tilt
angle ψ on the angular dispersion can be easily expressed as [31]:

tg ψ = ω0
dθ
dω |ω0 (1.28)
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Figure 1.8: Pulse front tilt originating from angular dispersion (a) and the combination
of spatial and temporal chirp (b) [30].

The delay between the top and bottom part of a beam can be then calculated as:

τP F T = ω0
2wx

c

dθ
dω |ω0 (1.29)

The combination of temporal and spatial chirp can also yield a pulse front tilt 1.8.
In focus, the pulse-front tilt vanishes. However, its impact on the focused pulse peak
intensity is transferred through the angular dispersion (Figure 1.6)

1.6 Ultrashort pulse propagation

Generation and manipulation of ultrashort pulses requires a laser beam to propagate
them through linear and nonlinear media. Since an analytical solution can be often
found only for the simplest systems, numerical modeling is usually necessary. For linear
systems, it is usually more convenient to propagate ultrashort pulses in the spectral
domain. Their temporal profile can be decoupled into individual spectral components
using Eq. (1.1) and the spatial profile of each component can be then propagated
through the system separately. Nonlinear parts of the system have to simulated in
time domain since the response of the medium can no longer be described by the linear
transfer function (Eq. 1.11) [18]. This thesis focuses on the linear systems only.

Generally, ultrashort pulses can be propagated by solving the linear Helmholtz
equation (Eq. (1.9)). Numerically, it is more feasible to use either the Fresnel-Kirchoff
integral, which is an approximate solution of the Helmholtz equation using spherical
waves, or to use the angular spectrum propagation method based on plane wave de-
composition. For Gaussian laser beams, it is in most cases sufficient to consider their
propagation under paraxial approximation. That leads to the exactly same formulae
using both methods [32]. The angular spectrum propagation method will be discussed
here, since it is more robust, easier to implement numerically and has less boundary
conditions.

Angular spectrum propagation method

In the angular spectrum propagation method, the spatial profile of a complex electric
field E(ω, x, y, 0) at the given z position z = 0 is 2D Fourier transformed into the
k-domain:

E(ω, kx, ky, 0) = 1
2π

∫︂∫︂
E(ω, x, y, 0)exp(−i(kxx+ kyy))dkxdky, (1.30)
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where E(ω, kx, ky, 0) represents a plane wave propagating along the wave vector k⃗ =
(kx, ky, kz) with

kz =
√︄(︃2π

λ

)︃2
− k2

x − k2
y. (1.31)

The input field can be therefore described as a projection of many plane-waves propagat-
ing along the k-vector k⃗ with amplitude |E(ω, kx, ky, 0)|. After free space propagation
along the z-axis over a distance z, the electric field acquires an additional phase factor
exp(−ikzz). The output field can be then calculated as the inverse Fourier transform
of the input field times the acquired phase factor:

E(ω, x, y, z) =
∫︂∫︂

E(ω, kx, ky, 0)exp(−i(kxx+ kyy + kzz))dkxdky, (1.32)

Under the paraxial approximation, the kz component can be simplified by performing
the Taylor expansion of the square root from Eq. (1.31):

kz = 2π
λ

−
k2

x + k2
y

2(2π
λ )2 (1.33)

The Eq. (1.32) can be then rewritten to:

E(ω, x, y, z) = exp(−ikz)
∫︂∫︂

E(ω, x, y, 0)exp(−ik
2
x + k2

z

2k z))exp(−i(kxx+kyy))dkxdky, (1.34)

which is equivalent to Fresnel propagation. Eq. (?? can be also reformulated so that
the output field can be regarded as a convolution of the input field with a point spread
function represented by the acquired phase factor:

E(ω, x, y, z) = E(ω, x, y, 0) ∗ PSF; PSF = exp(−i
k2

x + k2
y

2k z)) (1.35)

Focusing

In general, there are several ways of calculating the propagation of the electric field
from the exit pupil of the optical system into the focal region [33]. The Fraunhofer
integral is usually calculated as it based on the Fourier transform and can be easily
numerically implemented. Since it is derived under the scalar approximation, it is more
suitable for calculation of the focusing with large f-numbers, where the amplitude of
the neglected longitudinal Ez component is very small. The distribution of the electric
field in the focal plane E(ω, xf , yf ) can be calculated as:

E(ω, xf , yf ) ≈ ω

∫︂∫︂
E(ω, x, y)exp(i(xxf + yyf ))dxdy (1.36)

After applying the Fourier transform spatially for each frequency component, the tem-
poral profile at each point can be obtained doing the inverse Fourier transform from
frequency into the time domain at each xf , yf focal point (Eq. (1.2)). If the electric
field distribution close to the focal plane is in the area of interest, the field distribu-
tion can be obtained by introducing small defocus spatial phase term before applying
Eq. (1.36) [33]. In case that calculation of focal spot distribution with small f-number
is required, commercial software such as Wyrowski VirtualLab Fusion [34] can be used.
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Ray-tracing

For complex linear systems such as laser pulse compressors and stretchers, proper
diffraction propagation even under the paraxial approximation is too CPU intensive due
sampling requirements in both spatial and time domains. Therefore, it is advantageous
to obtain the transfer function of the system by some other simpler method such as
ray-tracing. Since ray-tracing neglects any diffraction/interference induced effects, it
can be performed under the assumption that there is no pronounced clipping of the
beam and that the propagation distance is within the Rayleigth range of the beam.
On the other hand, ray-tracing allows much faster optimization since its calculation is
based on matrix multiplication.

Propagation of a pulse through an optical system induces both amplitude |E(x, y, ω)|
and phase changes φ(x, y, ω) according to Eq. (1.11). The amplitude |E(x, y, ω)| can be
modified locally taking into account the vignetting of individual rays and transmittance
and reflectance curves of each optical component within the optical system. It is also
possible to estimate energy loss due to scattering on the optics. The induced spectral
phase change φ(x, y, ω) is then calculated from the optical path of the individual rays.
Recently, a new term ”Phase-tracing” was coined to describe this method. Its process
is shown in Fig. 1.9.

First, a spatio-temporal x-y-ω grid is created and an input electric field is estab-
lished. Each grid point represents object plane coordinates and frequency of a ray. Rays
corresponding to a grid point with non-zero electric field amplitude are then propagated
from the object to the image plane using the laws of geometrical optics. The position
and phase of the output rays is then interpolated to match the output x-y-ω grid. From
the vignetting and optical path of the rays, the transfer function of the system H(ω) is
recovered. The input electric field is then multiplied by the transfer function and can
be then transformed to farfield and time domain using Eqs. (1.36) and (1.2).

Figure 1.9: General schematic of phase-tracing

Ray-tracing can be performed using either an extended ABCD matrix formalism
or dedicated software. In the case of this thesis, ZEMAX Optic Studio was used in
connection with Matlab using ZOSAPI link. The seamless integration of ZEMAX into
Matlab allowed simple manipulation of large arrays of data and their further processing.
Even though ray-tracing is now commonly integrated into commercial software, a great
care must be taken to avoid systematic errors such as inexact definition of the optical
system, sub-sampling and others.

For fast optimization of dispersive systems, a macro calculating GD and higher
dispersive orders can be programmed [35]. According to Eq. (1.12), the group delay is
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calculated as a frequency derivative of the acquired phase through the system:

GD(x, y) = dφ(x, y, ω)
dω = 1

c

(︃
nL+ L

dn
dω + n

dL
dω

)︃
(1.37)

Undoubtedly, Eq. (1.37) holds only when rays with different wavelengths originating
from the same point in the object plane meet each other at one point in the image
plane [36] or are collinear at the output. Therefore, Eq. 1.37 is valid only for aberration-
free imaging systems or afocal systems like pulse compressors with no residual angular
dispersion. Since rays represent infinite plane waves, the optical path of each ray can
be corrected so that their wavefronts intersect at the image point for aberrated systems
(shown in Fig. 1.10) [36]. A correction factor ∆L is then:

∆L = sin θλ
xx

λ + sin θλ
yy

λ, (1.38)

where θλ
x and θλ

y is the angular deviation of a ray with respect to the z-axis. xλ and yλ

is the lateral distance between the point where the ray intersects the image plane the
image point. When the entire entrance pupil is scanned with rays such as in Fig. 1.9,
the correction factor has to be omitted.

Figure 1.10: Optical path length correction factor for aberrated optical systems

Sampling considerations

Frequency content of a sampled signal is constrained by the Nyquist-Shannon sampling
theorem stating that the highest measurable frequency is given by the half of sampling
frequency (i.e., the inverse of a sampling step). This can be directly applied to the
sampling of amplitude and phase profiles of ultrashort pulses. The highest sampling
frequency determines the resolution in the time domain. The sampling step in the
frequency domain then determines the width of the temporal window. Dependency
of sampling resolution and window in conjugate domains are shown in Table 1.2. It
has to be noted that the Nyquist-Shannon sampling theorem was formulated for the
continuous signals. From Table 1.2 it might seem that even with a limited beam size,
the increase of xmax can increase resolution. Such a technique is called zero-padding.
In reality, it only decreases the sampling step of the transformed signal while the real

19



Table 1.2: Resolution and boundaries of the fast Fourier transform algorithm

Spatial Spatial freq. Frequency Temporal
dx max(|kx|) dω tmax
xmax dkx ωmax dt

resolution remains limited by the actual beam size. The zero-padding technique is
equivalent to sync interpolation of the signal.

Nyquist-Shannon sampling theorem also entails aliasing of an analytic signal. Ul-
trashort pulses often acquire large amounts of quadratic phase either when spatially
focused or chirped in stretcher or compressor. If the neighbouring points in x-y-ω
domains have bigger than π phase difference, the profile of the unwrapped phase is
ambiguous and its alias can be recovered (Fig. 1.11). This can be very tricky to notice
and has to be carefully monitored, since the phase in the first image of Fig 1.11 seems to
be well sampled. Moreover, there are no apparent high-frequency modulations present
so the sampling step might seem adequate according to Nyquist-Shannon criterion.
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Figure 1.11: Example of the aliasing error due to sub-sampling. An analyzed signal
is sub-sampled so that significant amount of information is lost when the signal is
wrapped to 2π interval. When the signal is unwrapped back, the alias of the initial
signal is recovered.

The other type of errors originate from the discrete nature of the FFT algorithm
such as a picket fence effect and spectral leakage. The picket fence effect can distort
the position and maximal amplitude of a peak as it is illustrated in Fig. 1.12. Spectral
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Figure 1.12: Demonstration of a picket fence effect (a) and spectral leakage (b) in
farfield domain. The original and recovered signal are represented by identical functions
in nearfield with the same sampling interval dx. The recovered signal has 3 times smaller
xmax than the original signal which results in a smaller step in the xf domain (a) and
bigger information loss at the edges of its x range leading to more pronounced clipping
of the signal (b).
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leakage can increase the noise floor of the simulated temporal contrast. Mathematically,
the spectral leakage is the convolution of the Fourier image of the input function with
the Fourier image of the windowing function. The windowing function is usually a
rectangular window with width equal to the sampling range.

The number of sampling points is limited by computational power. If smaller sam-
pling step is needed to increase resolution, the width of the window in which the
calculation is performed has to be decreased. This makes difficult to numerically evalu-
ate spatio-temporal properties of ultrashort pulses in compressors and stretchers using
diffraction propagation methods. A quadratic temporal chirp demands small sampling
step in the time domain to avoid aliasing effect. On the other hand, it broadens the
pulse and therefore it requires a wide temporal window. The same holds for the spatial
domain due to angular dispersion and spatial chirp. At the output of a well-aligned
compressor or stretcher, the angular chirp is usually small. If the compressor is exam-
ined in the combination with the stretcher, the output temporal chirp is also very small.
Diffraction propagation methods require to have the beam well sampled at each stage
compared to the phase tracing method, where the sampling as to be sufficient only at
the object and image plane. Sampling requirement is then much smaller for the phase
tracing method as the numerical analysis is usually done to study small deviations from
the ideal system. For this reason, it much more efficient to phase trace the stretcher
and compressor systems when spatio-temporal information is required.
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2. Chirped pulse amplification
Since the invention of Q-switching and mode locking techniques, laser community tire-
lessly worked on increasing energy and peak power of lasers every year, motivated by
the possibility of laser induced nuclear fusion enabling the production of free fusion en-
ergy (Figure 2.1). The peak power of systems using a master oscillator power amplifier
configuration rapidly grew. It culminated in the eighties when the peak power reached
a gigawatt-scale. At this power, nonlinear effects start to occur even for non-focused
beams. Notably, self-focusing leads to optical damage of amplifiers accompanied by self-
phase modulation causing distortion of the pulse profile preventing further progress of
direct amplification scheme. This lead to the adaptation of a chirped pulse amplifica-
tion (CPA) technique [5], which was initially discovered in order to increase the power
of radar. With this technique, pulses are temporally stretched in a device with pos-
itive dispersion prior to their amplification to reduce their peak power. Then, pulses
are compressed to their initial duration in a device with opposite dispersion, which is
usually a compressor comprising a pair of diffraction gratings (Fig. 2.2). The CPA
technique allowed to increase the peak power of laser pulses up to several petawatts
during the last two decades and its potential has not been yet depleted [37,38].

Figure 2.1: Schematic of the evolution of laser peak power

Soon, it was recognized that the concept of the CPA is also very useful for an
optical parametric amplification process (OPCPA), where nanosecond pulse duration
of a seed allows to apply much higher pump energies and therefore to reach much higher
overall gain (Fig. [2.2]). Compared to the CPA, the OPCPA offers better quality of
the amplified pulse at the price of a more complicated setup. In general, it allows to
achieve large single pass gain and to get very broad gain bandwidth under certain phase-
matching conditions. Small absorption of a pump limits the heating of a crystal and
therefore reduces thermal lensing effects. It eliminates the need to cool the crystal and
enhances the quantum efficiency of the process. Also, as the amplification occurs only
when both pump and seed pulses propagate through the crystal, amplified spontaneous
emission is not present. On the other hand, it is necessary to well synchronize the
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Figure 2.2: In the CPA, the seed pulse extract the energy from the excited crystal
pumped by either optically or electrically. In the OPCPA, the energy of the pump pulse
is directly transferred to the seed pulse by the nonlinear optical parametric amplification
phenomena.

pump and the seed and match their pulse durations. The pump and the seed have to
be also appropriately phase-matched to allow energy transfer. The spatial quality of a
pump is imprinted into a seed, so it is required even for the pump to exhibit excellent
spatial uniformity.

2.1 Compressor

In 1968 E.B. Treacy discovered that propagation of a pulse through a pair of par-
allel diffraction gratings induces negative group-delay dispersion [39]. 16 years later
Martinez clarified that the mechanism behind which leads to negative group-delay dis-
persion is angular dispersion [40] regardless of its origin - whether it is refraction,
diffraction or interference. Based on that, new types of devices with the ability to com-
press pulses were proposed such as a prism compressor, grism compressor, multi-layer
dielectric structures, acousto-optics modulators [41]. However, only diffraction gratings
are able to provide sufficient dispersion, large aperture and high laser induced damage
threshold necessary for their successful implementation in state-of-the-art high power
laser systems (Table 2.1). Therefore, this chapter will mainly focus on the treatment
of dispersion induced by diffraction gratings.

For an arbitrary incidence, the k-vector of the diffracted beam k⃗d from a diffraction

Table 2.1: Comparison of basic parameters between different compressor types.

Type Dispersion Aperture LIDT Alignment

Gratings high ∼ 1m high hard

Prisms & grisms low ≲ 10 cm low moderate

MLD structures low ∼ 1 m high easy

A-O modulator medium ≲ 1 cm low easy
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grating has to fulfill the following condition:

nr⃗ × (k⃗d − k⃗i −mK⃗) = o⃗ (2.1)

where nr⃗ is the grating normal vector, k⃗i is the k-vector of the incident beam, K⃗ is the
grating vector and o⃗ is the null vector. Eq. (2.1) can be further simplified to a more
common form known as the grating equation:

sin α+ sin β = mNλ

cos γ sin γ = − sin δ, (2.2)

where α is the angle of incidence, β is the diffraction angle, m is the diffraction order, N
is line density of the grating, λ is the wavelength of the incident wave, γ is the off-plane
angle of the incident wave and δ is the off-plane angle of the diffracted wave. Fig. 2.3
shows how are these angles related to each other. We define the diffraction plane as a
plane which is perpendicular to the grating grooves (e.g. the grating K⃗ vector lies in
this plane).

Figure 2.3: Schematic of diffraction of light on a grating. n⃗r is the normal vector to
the grating surface. K⃗ is the grating k-vector. The diffraction plane, perpendicular to
the grating grooves, is marked with green. α is then the angle between the projection
of the incident k-vector into the diffraction plane and the grating normal n⃗r, β is the
angle between the projection of the diffracted k-vector into the diffraction plane and
grating normal n⃗r, γ is the angle between the incident k-vector and the diffraction plane
(inclination angle), δ is the angle between the diffracted k-vector and the diffraction
plane. The rotation about the axis parallel with grooves (y⃗) is named yaw, the rotation
about the grating normal (z⃗) is called roll and the rotation about the axis perpendicular
to the grating grooves and lying in the grating plane (x⃗) is named pitch.

A grating pulse compressor as proposed by Treacy consists of 2 grating pairs, where
each pair is composed of two diffraction gratings aligned with parallel faces and grooves
as in Fig. 2.4. In this configuration, higher frequency components of a pulse propa-
gating through the grating pair have shorter optical path compared to lower frequency
components. The second pair of gratings then ensures that all frequency components
spatially overlap at the output. The phase accumulated by the pulse propagating
through a pair of parallel diffraction gratings can be calculated as [41]:

φ(ω) = kd⃗ · G⃗ = ω

c
G

cos(α− β)
cos α , (2.3)

where L⃗ denotes the vector representing grating distance for the central wavelength of
the pulse and G is the perpendicular grating distance. Analytic expressions for group
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Figure 2.4: Schematic of a grating compressor. α is the angle of incidence, β is the
diffraction angle, G is perpendicular grating distance, L is grating spacing for the central
wavelength of the pulse. The diffraction plane lies in the xz plane and we assume that
it is horizontal in following chapters. The vertical plane is then perpendicular to the
diffraction plane and parallel with the gravity.

delay dispersion can be then calculated as a derivative of Eq. (2.3) with respect to
frequency according to Eq. (1.12):

GDDcmpr = − λ3
0GN

2

2πc2cos3(β0)) ; TODcmpr = − 3λ
2πcGDDcmpr

(︃
1 + sin α

cos2 α

)︃
;

FODcmpr = 3λ2

4π2c2GDDcmpr

(︂
1 + 8λN cos α

sin2 α
+ λ2N2[1 + tan2(α)(6 + 5 tan2(α))]

)︂
,

(2.4)

where β0 is the diffraction angle for the central wavelength of the pulse. In many cases,
it is more convenient to use the grating distance L for the central wavelength of the
pulse instead of the perpendicular grating distance G. Their relationship is simply
L cos(β0) = G.

When a grating is tilted and an off-plane angle is introduced, its diffraction plane
is tilted with respect to the incidence plane. the incident and diffracted beam then
no longer lie in the same ”horizontal” plane. The footprint of the dispersed beam on
the second grating is tilted and slightly curved with respect to the diffraction plane.
This is illustrated in Fig. 2.5. Since the dispersed spectral components retain the
vertical ky-component and are dispersed in the xz plane, their k-vectors lie on the
surface of a sphere centered at the incidence point. The intersection of the k-vectors
of the dispersed pulse with the sphere creates a circle parallel with the horizontal xz
plane. The footprint of the dispersed beam is then the projection of this circle onto the
plane of the second grating. Simply put, the offplane angle is the same for all frequency
components and since the grating normal is tilted with respect to the incident beam,
higher frequency components have shorter optical path when they propagate between
gratings. Therefore, they acquire smaller y-component than low frequency components
with longer optical path.

There are two options how to introduce the offplane angle. The first way is to
rotate the grating about an axis perpendicular to the grating grooves and parallel to
the grating plane (pitch). The second way is to slightly rotate grating grooves in the
grating plane (roll). When the grating is first tilted about the y-axis (yaw) by Y to set
the incidence angle and then the offplane angle γ is introduced by either pitch Π or roll
Ω, their relation can be expressed as[A4]:

sin(γP itch) = −sin(Π) cos(Y ) sin(γRoll) = −sin(Ω) sin(Y ) (2.5)
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The incidence angles in the diffraction plane αP itch, αRoll are then given by:

cos(αP itch) = cos(Π)cos(Y )√︂
sin2(Y ) + (cos(Π)cos(Y ))2

cos(αRoll) = cos(Ω)cos(Y )√︁
cos2(Y ) + (cos(Ω)sin(Y ))2

(2.6)

From Eq. (2.5), it follows that the desired off-plane angle can be induced by a smaller
pitch angle when α < 45° and by smaller roll when α > 45°. The suitability of either
of these configurations is then driven by the particular design of the compressor. The
effective aperture of the second grating is decreased as the amount of vertical spatial
chirp and the orientation of the second grating varies for either of these configurations.
Diffraction efficiency of the gratings can be influenced as well especially for narrow
bandwidth high line density MLD gratings.

Compressor misalignments

We consider a grating compressor well-aligned if both gratings within the pair are
parallel to each other, gratings have equal line densities, the angle of incidence on the
first grating is equal to the negative value of the angle of incidence on the third grating
and the distance L between both grating pairs is the same. In general, we can divide
compressor misalignments into two categories. The first one is the variation of global
parameters (while gratings within the pair remain aligned) - the angle of incidence on
both grating pairs α, the grating distance within each pair L and line densities of the
gratings N . These lead only to the deviation of the induced spectral phase φ(ω), which
can be directly calculated using Eq. (2.4). The second category is the misalignment
of individual gratings. Each grating has 4 degrees of freedom: 3 rotational: yaw, pitch

Figure 2.5: Offplane diffraction in a grating compressor. a) Visualization of the offplane
diffraction taken from [42] b) Footprint of the dispersed pulse on the second grating c)
Side view of the compressor d) Top view of the compressor
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Figure 2.6: Illustration of pitch and roll rotation of a diffraction grating.

and roll (see Fig. 2.4); and line density variation. When any of these parameters
differs from the designed value, the compressor yields spatio-temporal couplings of the
compressed pulse. The couplings mainly manifest in the deviation of the spectral phase
and a linear pulse front tilt which is equivalent to linear angular dispersion. The impact
of each misalignment is summarized in Table 2.2.

For a compressor having an arbitrary grating orientation, the residual angular dis-
persion and the induced spectral phase deviation in terms of GDD and TOD can be
calculated using analytical formulae derived in the article [43]. Here we show basic for-
mulae for the case of a small misalignment in single degree of freedom and for γ, δ = 0,
which will be useful in the following chapter. The pointing deviation of the diffracted
beam θx in the diffraction plane due to the yaw grating misalignment θyaw and the
small line density variation ∆N can be derived using only the grating equation as:

θx = θyaw
cos β
cos α + ∆Nλ

cos α (2.7)

From that, the residual angular dispersion in the diffraction plane dθx
dλ can be for the

small yaw misalignment expressed as:

dθx

dλ = θyawN
tan β

cos α + ∆N
cos α (2.8)

Therefore, the line density variation can be partly compensated by tilting the grating
by θ∆N

yaw:

θ∆N
yaw = ∆N

N tan β
(2.9)

The Eq. 2.9 is valid only for small line density variations since it works with the linear
term of the residual angular dispersion only and it neglects quadratic and cubic terms.
For the small pitch misalignment θpitch and roll misalignment θroll, the residual angular
dispersion in the plane perpendicular to the diffraction plane can be calculated as:

dθy

dλ = θpitchNtan β + θRollN (2.10)
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Table 2.2: Impact of basic misalignments on the spectral phase and residual angular
dispersion of the compressed pulse.

∆N θyaw θpitch θroll α L N

G1, G4 φ(ω), dθx

dλ

dθx

dλ

dθy

dλ

dθy

dλ
- - -

G2, G3 φ(ω),dθx

dλ
φ(ω),dθx

dλ

dθy

dλ

dθy

dλ
- - -

G1+G2 or G3+G4 - - - - φ(ω) φ(ω) φ(ω)

2.2 Phasing gratings and mirrors

2.2.1 Grating-Grating

Since the size of commercially available gratings is restrained to approximately 1 m
diameter, a tiled grating scheme was proposed to overcome this limitation [10]. It
follows the well-established design of segmented mirror telescopes used in astrophysics
pioneered by J.Nelson in the design of Keck telescopes. A tiled grating is composed
of an array of smaller diffraction gratings having parallel faces and grooves so that
they behave like one large diffraction grating. However, it is necessary to align the
gratings with sub-microradian and sub-micrometer accuracy in five degrees of freedom
to reach sufficient quality of diffracted wavefront (Figure 2.7). The impact of individual
misalignments on the spatial phase of a beam is summarized in Table 2.3.

Three degrees of freedom are angular, which represent the rotation of the face of
the grating and yield a phase offset linear in x⃗ or y⃗. A yaw misalignment effectively
changes the incidence angle and therefore it offsets the diffraction angle. Pitch and
roll misalignments then deviate the beam pointing in the vertical direction. A piston
misalignment represents a condition that the faces of all diffraction gratings within
tiled grating have to lie in one plane. It yields spatially constant phase offset. For a
monochromatic laser, the offset is periodic with period equal to the wavelength cor-
rected for the angle of incidence and diffraction. For broadband pulses, the piston
yields also temporal delay. A lateral shift safeguards that the periodicity of the groove
spacing is retained even with the gaps between the individual gratings. Generally, each
grating groove induces additional 2π phase shift in the spatial phase of the diffracted
beam [44]. This phase can be recalculated into the tilt of the diffracted beam, which
is represented by the grating equation. If one grating within a tile is offset by zL,

Figure 2.7: 6 degrees of freedom for the alignment of tiled gratings
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Table 2.3: Spatial phase induced by the misalignment of a tiled grating pair. θY aw,
θP itch and θRoll are the angles of the yaw, pitch and roll misalignment respectively,
zP is the distance between the grating faces, zL is the shift misalignment, y⃗ is the
vector parallel with the grating grooves and perpendicular to propagation direction of
the beam and x⃗ is the vector that is perpendicular to y⃗ and the beam propagation
direction [45].

Misalignment 0th order 1st order

Yaw 4π
λ θY awx⃗ 2π

λ (1 + cos(α)
cos(β) )θY awx⃗

LDV - 2π∆N
cosβ x⃗

Pitch 4π
λ cos(α)θP itchy⃗ 2π

λ (cos(α) + cos(β))θP itchy⃗
Roll - 2π

λ (sin(α) + sin(β))θRolly⃗
Piston 4π

λ cos(α)zp
2π
λ (cos(α) + cos(β))zp

Shift - 2πNzL

the spatial phase of the part of the beam which is incident on this grating is offset by
2πNzL with respect to the rest of the beam. This also means that compared to the
piston, the shift misalignment is periodic with 1/N period even for broadband pulses
and therefore it is sufficient to compensate it only within a groove period. The yaw,
pitch and piston represent mirror-like misalignments and they influence the reflected
and diffracted wavefront at both the zeroth and first diffraction orders. Line density
variation, roll and shift represent misalignments of the grating grooves with respect to
the other grating and they deviate the wavefront of the diffracted beams only.

The line density variation (LDV) is mostly determined by the technology of the
grating manufacturer. It is possible to partly compensate the induced wavefront de-
viation from LDV by intentionally misaligning the grating in yaw since they are both
present in the x⃗z plane.

The concept of tiling multiple gratings together has been successfully tested in
several laser facilities so far (LULI [45], POLARIS [14] or OMEGA-EP [13]). The
mutual position of the gratings was determined either interferometrically [45,46] or by
far-field monitoring [47]. Both methods require to measure both the specular 0th order
and diffracted 1st order to cover all possible misalignments.

Figure 2.8: Photograph of a tiled grating assembly from the POLARIS laser system [14].
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2.2.2 Grating-Mirror

Recently, a simplified scheme was proposed where a diffraction grating is phased with
a perpendicularly positioned mirror (Fig. 2.9) [11,12]. Such setup reduces the number
of degrees of freedom to 3 and eliminates the need to set the piston absolutely. Two
angular degrees of freedom - yaw and pitch - represent the ordinary degrees of freedom
for the alignment of the mirror. While the yaw misalignment represents the yaw of the
imaged grating, the pitch misalignment of the phased mirror is equivalent to the roll
misalignment of the imaged grating. The third degree of freedom is called piston of the
mirror (a movement along the normal axis of the mirror). It disrupts the periodicity
of the grooves between the grating and its image and therefore it is equivalent to the
shift misalignment between the real and imaged grating. However, due to the mirroring
effect, the induced phase change of each of these misalignments is two times higher than
for a tiled grating pair. The spatial phase difference between the splitted halves of the
beam induced by the misaligned grating-mirror pair can be calculated as [48]:

ϕ(x, y, z) = 4π
λ0

(1 + cos(α)
cos(β) )θY awx⃗ + 4π

λ0
(sin(α) + sin(β))θP itchy⃗ + 4πNdzP iston (2.11)

For the grating-mirror configuration, it is sufficient to monitor the 1st diffraction order
only as it covers all three degrees of freedom. For the specular 0th order reflection from
the grating, the grating-mirror configuration behaves like ordinary rooftop mirror and
therefore it is possible to detect the yaw misalignment only.

Figure 2.9: Sketch of a grating mirror assembly. One half of the incident beam is
diffracted off the grating as the +1st diffraction order. The other half is reflected from
the mirror and consequentially it is diffracted as the -1st diffraction order and reflected
off the mirror again. Thereby the mirror creates a virtual grating by mirroring the real
grating.

2.2.3 Measurement methods

Interferometry

For the monitoring of the mutual position of phased gratings and mirrors a Fizeau
interferometer can be used (Figure 2.10). In the Fizeau interferometer, a high-quality
reflection flat is placed in front of a tested surface and a nulled fringe pattern is recorded.
The surface profile of the tested optic can be then obtained from the position of the
maxima of the fringes. To enhance the accuracy of the extraction of the surface profile,
there are two main types of fringe analysis methods.

In the phase-shifting interferometry, the tested optics has to be motorized and move
in parallel direction with respect to the interferometric beam. The nulled fringe pattern
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Figure 2.10: Schematic of a Fizeau interferometer

is recorded at four distinct positions being at λ/4 distance from each other . Using these
four measurements, the surface profile can be analytically retrieved with precision better
than λ/100. The phase shifting interferometry is susceptible to vibration and requires
piezo-motorized mount of either of the optics. Contrarily, the Fourier fringe pattern
analysis (FFA) [49] is an instantaneous method, where both the test and reference
optics are static. In FFA, it is necessary to tilt the reference optics with respect to the
test optics to introduce a linear fringe pattern. The measured intensity pattern g(x, y)
can be expressed as:

g(x, y) = a(x, y) + b(x, y)cos(2πν0x+ φ(x, y)), (2.12)

where φ(x, y) is the phase profile, ν0 is the spatial-carrier frequency representing the
tilt angle between the reference and test optics and a(x, y), b(x, y) are slowly varying
intensity fluctuations with respect to ν0. These intensity fluctuations originate from
the background illumination and non-uniformity of the transmission and reflection. Eq.
(2.12) can be reformulated as:

g(x, y) = a(x, y) + c(x, y)exp(i2πν0x) + c∗(x, y)exp(−i2πν0x);
c(x, y) = 1/2 b(x, y)exp(iφ(x, y))

(2.13)

After computing the spatial 2D Fourier transform, the measured fringe pattern G(x, y)
consists of three terms separated by the carrier frequency ν0:

G(x, y) = A(ν, ξ) + C(ν − ν0, ξ) + C∗(ν + ν0, ξ) (2.14)

Next, the first and the last term are filtered using bandpass filter and the remaining
term is shifted to zero:

C(ν − ν0, ξ) → C(ν, ξ) (2.15)

Lastly, the inverse 2D Fourier transform of the remaining term is computed and its
complex logarithm is calculated:

log(c(x, y)) = log(1/2 b(x, y)) + iφ(x, y) (2.16)

Following this procedure, the phase profile φ(x, y) being in the imaginary part of the
c(x, y) is then separated from the intensity variation b(x, y) and can be easily recovered.
The procedure is summarized in Fig. 2.11. The phase profile has to be unwrapped to
remove discontinuities occurring at 2π intervals. Generally, unwrapping of spatial phase
in 2D is a complicated problem which is beyond the scope of this thesis. There are
several well-established algorithms such as Itoh’s [50] and Goldstein’s [51], their stability
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and accuracy mostly depends on the amount of the noise present in the data. The FFA
method is more prone to errors than the phase-shifting interferometry performed in
the controlled environment, nevertheless precision up to λ/100 has been reported with
carefully processed data [52].

Figure 2.11: Phase extraction using the Fourier fringe pattern analysis method. The
measured interference pattern (a) is Fourier transformed, a term with the carrier fre-
quency ν0 (b) is filtered, shifted to zero and inverse Fourier transformed. Its phase
profile (c) is then extracted from its imaginary part and yaw, pitch and piston coeffi-
cients are retrieved from plane fit of each beam half (d).

Since the FFA method requires tilting the reference optics with respect to the
measured one, the beam reflected from the reference and the beam reflected from the
test optics no longer share the same optical path through the interferometer. Usually,
an optical system decreasing the beam diameter and imaging the measured surface on
the camera recording the fringe pattern is employed. A systematic ”retrace” error is
then induced by the aberrations of this optical system and therefore it increases with
the carrier frequency of the interferogram. It can be calibrated in situ [53] by recording
the fringe pattern for different carrier frequencies and comparing the calculating phase
profiles. An easier but less robust option is to place a different ”calibration” reference
flat with known surface profile instead of the test surface without changing the pointing
of the beam. The retrace error can be then obtained for this exact configuration (i.e.
with the fixed carrier frequency). The impact of the retrace error can be calculated
from the optical model of the imaging system and is usually bellow λ/20.

Another type of error originates from insufficient separation of the terms from Eq.
(2.14). In the case of tiled gratings, there is always a gap between the optics and the
interferometric beam is scattered by the chamfered edges of the optics. This increases
the high spatial frequency content of the interferometric beam so that the high fre-
quencies of the A and C∗ terms can leak into the C term. Since the Fourier transform
is performed numerically using the FFT algorithm, other errors can originate from its
discrete nature. The picket fence effect manifests in a fact that the shift in Eq. (2.15)
does not likely go to zero but in most cases some small residual carrier frequency ν0
remains. This is due to the fact that the centroid of the C term is not likely exactly on
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the sampling point of the FFT. This error introduces tip and tilt offset of the recovered
phase. It is automatically subtracted when comparing the tip and tilt between the
beams halves for phasing, however it can introduce artificial piston phase offset. In
general, it can be compensated by fitting and subtracting tip and tilt phase for the
whole aperture.

Farfield

The idea behind far-field monitoring of phased grating assemblies is that the perfect
focal spot is obtained only when the phased gratings and mirrors are well aligned. A
typical farfield monitoring setup is sketched in Fig. 2.12. A collimated monochromatic
laser source is incident on the gap between the gratings, the specular reflection and
the first diffraction order are focused and their focal spot profiles are recorded on
CCD cameras. Fig. 2.13 illustrates possible farfield distribution in the presence of
phasing misalignments. The resolution of the far-field method can be estimated from

Figure 2.12: Typical farfield setup for the alignment of tiled gratings. A collimated
laser beam is incident on the tiled grating and is centered on the grating-grating gap. A
specular reflection is monitored to align the yaw, pitch and piston. The 1st diffraction
order is measured to adjust the roll and lateral shift.

the Rayleight resolution criterion as the misalignment of the assembly can be measured
only if we are able to resolve the individual focal spots. For an aberration-free focusing
system, the angular resolution is ∼ λ

2w0
.

For an initial alignment, the angular accuracy can be increased up to ∼ 0.2 λ
2w0

by
intentionally misaligning the phased grating in the perpendicular degree of freedom [47].
Focal spots are split in one plane and the centroids of both focal spots can then be
accurately compared in the other plane where they no longer overlap (i.e. misaligned
in the yaw to measure the pitch). After the intentional misalignment is corrected, the
process can be repeated for the other plane. However, such accuracy cannot be achieved
during the online measurement of the phasing alignment and it is not very beneficial for
laser systems with high repetition rates. The method also requires to have the grating
on a rotational stage with very good accuracy and repeatability to achieve sufficient
precision when the intentional misalignment is corrected. Accuracy up to 0.2 µrad and
20 nm for piston has been reported with this method [54].

Compared to the interferometric method, the far-field method has a simpler setup
and is less prone to systematic errors. However, since the split foci method is not
suitable for online monitoring of the phasing, the accuracy of the interferometric method
is superior. The interferometric method is also more resistant to random noise such as
air fluctuation which can be averaged out to some extent.
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Determination of absolute piston

One of the biggest challenges of the tiled grating configuration is the precise alignment
of the absolute piston error due to the fact that the induced phase offset is periodic
for monochromatic laser beams and therefore it is not possible to acquire its absolute
value using a single wavelength laser and single angle of incidence. According to Table
2.3, the piston phase offset φ0 is given by:

φ0 = 4π cos(α)zp

λ
, (2.17)

which is periodic for monochromatic beams with period zper
p = λ

2cos(α) within 2π phase
range. The period zper

p is in the order of µm for conventional systems, which is insuf-
ficient and below the mechanical accuracy of positioning of the assembly. Therefore,
several methods have been proposed using either broadband laser or multiple monochro-
matic lasers to increase the period.

The spectrally resolved far-field method using broadband laser was reported to work
within 2 µm - 100 µm range [54]. The method utilizes the fact that the spatial phase
induced by the piston misalignment is wavelength dependent. Therefore the absolute
value of the piston misalignment can be retrieved by monitoring of the spectrally dis-
persed far-field profile. A broadband beam is incident on the grating-mirror gap and
the zeroth order is focused and then dispersed by a diffraction grating. The dispersed
farfield profile is then recorded on the camera. Since the period of the piston mis-
alignment varies with the wavelength, the farfield profile of each spectral component
changes as well. If the absolute misalignment is big, the slope of the induced phase
fast and the phase can go through 2π range several times within the bandwidth. The
farfield profile gradually changes through all the possible farfield shapes sketched in

Figure 2.13: Spatial intensity distribution in focal spot for various yaw, pitch, piston
and combined misalignments. The focal spots were numerically simulated in Matlab
using FFT and the phase formulae from Table 2.3.
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Figure 2.14. If the absolute misalignment is small, the farfield profile slowly changes
within 2π period without changing its shape. The spectrally resolved farfield method
can be also directly used to diagnose the main beam.
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Figure 2.14: Simulated farfield profile in the case of no misalignment (a) and the
absolute piston offset being tens of µm (b).

Other methods increase the piston period by using either directly two wavelengths
[55] or two incidence angles [56] and comparing their farfield profiles while scanning
the piston displacement zp. Such then system exhibits a synthetic period zs

p, which
represents such displacement zs

p for which both beams gain the same phase offset within
2π range, i.e. mod(φλ1,α1

0 , 2π) = mod(φλ2,α2
0 , 2π):

zλα
p =

⃓⃓⃓⃓2cos(α1)
λ1

− 2cos(α2)
λ2

⃓⃓⃓⃓−1
, (2.18)

where α1, α2 and λ1, λ2 are the angles of incidence and central wavelengths of both
beams. To further increase the synthetic period both zeroth and first diffraction orders
can be monitored using both two beams. Using this method, the absolute piston error
can be set-up with periodicity up to 40 µm. So, the initial positioning of the gratings
in the compressor chamber has to be done with better than 40 µm accuracy by some
other method. Since the spectrally resolved far-field method exhibits no periodicity
and the determination of the absolute piston error has to be done only during the first
alignment, it is generally less ambiguous and easier to implement.
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2.3 Stretcher

In high peak power femtosecond CPA systems, design of the stretcher is usually based on
the compressor. The stretcher is located at the beginning of the CPA chain, where the
beam has small diameter and energy. Therefore, its design is more flexible. Ideally, the
stretcher should yield exactly opposite chirp compared to the compressor and material
dispersion in the CPA chain. A diffraction grating stretcher is usually preferred as it
can induce almost exactly the opposite spectral phase change as the grating compressor,
which is preferred for systems requiring high dispersion. However, different types of
stretchers such as bulk material (long optical fibers), fiber Bragg gratings [57], grisms
[58] and other can be employed in systems with shorter stretched pulse durations. The
comparison of the stretcher types is summarized in Table 2.4.

Table 2.4: Comparison of basic parameters of basic stretcher types.

Type Dispersion Tunability Alignment

Gratings high moderate hard

Fiber Bragg grating medium small easy

Bulk material medium none easy

A-O modulator low high easy

Prisms/Grisms low small moderate

The idea of a grating pulse stretcher was firstly proposed by O.E. Martinez [40]
motivated by the compensation of the negative group velocity dispersion in low loss
region (1.3-1.6 µm) of telecommunication fibers. Soon it was recognized that it would
be very useful in CPA systems where it could be used as the counterpart of the grating
compressor since the existing systems had trouble with the compensation of high dis-
persion orders. A typical grating stretcher comprises a pair of diffraction gratings and
a 1:1 telescope placed in between the gratings to reverse the sign of the group velocity
dispersion (Fig. 2.15). Since the second grating is placed in front of the image of the
first grating, the system is equivalent to a compressor having the negative distance
between the first and the second grating. Ideally, the stretcher would yield exactly

Figure 2.15: Schematic of a grating pulse stretcher. s is the distance between the first
grating and the entrance pupil (the first lens), simg is the distance between the last
lens and the image of the first grating, L is the distance between the image plane and
the second grating.
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opposite dispersion (Eq. (2.4)). However, if aberrations are present in the stretcher
imaging system, the spectral phase of the stretched pulse is deviated with respect to the
ideal state. The phase profile of the grating stretcher has to be computed by numerical
ray-tracing algorithms. Residual spatial chirp and angular dispersion appearing at the
output of the stretcher are also induced by the aberrations. On the other hand, they
can be also used to advantage to balance the dispersion of the whole chain when there
is significant amount of material present. Recently, a new method for the analytic cal-
culation of the induced spectral phase deviation and spatio-temporal couplings, when
aberrations are present, has been published by our group [59] and it is described in the
following section.

Since its invention, the stretcher design has undergone many innovations. In 1993,
White et al. found that through the modification of chromatic and spherical aberrations
of doublet lenses, TOD and FOD of the stretcher can be adjusted [60]. Around the
same time, another group tried to eliminate the impact of the chromatic aberration
and the lens material dispersion by replacing the lenses with cylindrical mirrors [61].
The main advantage of the cylindrical mirrors compared to spherical ones is that they
introduce aberrations only in the diffraction plane and therefore do not introduce spatio-
temporal couplings in the perpendicular plane. Nevertheless, the aberrations present
in the diffraction plane which deviate the spectral phase making the design not ideal
for the ultrashort laser systems with pulse durations below ≲ 20 fs.

An aberration-free stretcher design was discovered three years later [62]. The
aberration-free Offner stretcher is composed of 2 gratings with a reflective Offner triplet
in between wherein the first grating lies at the center of curvature of the first concave
mirror (Fig. 2.16). The Offner stretcher exhibits only very small deviation of the
spectral phase since all Seidel aberrations are compensated by the design. However,
to achieve separation between the input and output beams, the incidence point has
to be offset from the optical axis of the imaging system. To compensate higher or-
der aberrations originating from that offset, the concave mirrors can be replaced with
cylindrical ones. The incidence point lies in the plane which is not imaged and the
radius of curvature of the convex mirror can be adjusted [63]. The Offner stretcher
offers the spectral phase profile closest to the ideal, on the other hand it compromises
of many optical components, which has to be precisely manufactured and aligned to
achieve good performance, and can have relatively large footprint. Nevertheless, this
design is vastly preferred for all laser systems with few-cycle pulse duration.

Others attempted to find a more simple and compact configuration. Banks adapted
the initial Martinez design and converted it to all-reflective single grating configuration
using only one concave mirror [64] allowing to account for large material dispersion
through the uncompensated spherical aberration. A similar effect was observed in the
single-grating Offner stretcher [65], where the grating is shifted from the aberrations-
free position towards the first concave mirror. Another, ingenious aberration-free
stretcher design was implemented in Gemini laser [66]. The imaging system consists
of a concave mirror and a plane mirror placed in its focal plane. The first grating is
then placed in the center of curvature of the concave mirror. However, compared to
the other designs, the second grating is placed in between the concave and the flat
mirror where the beam is still converging. The simpler configuration compared to the
2-grating Offner is paid off by higher wavefront aberrations - especially chromatism and
astigmatism. The individual simplified layouts of the stretcher designs are sketched in
Fig. 2.16.

In recent years, it has been noted that the temporal intensity contrast of the pulse
can be degraded by the stretcher itself even with the sufficient spectral bandwidth
and high dispersion orders compensated. The coherent pedestal, which is the area in
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Figure 2.16: Simplified schematic of the common grating pulse stretcher designs.
a) Martinez/Banks stretcher; b) Offner stretcher; c) Ross stretcher

the ps-scale around the main peak, can be induced through the scattering of the first
grating [67]. A noticeable improvement has been achieved using etched fused silica
transmission gratings instead of the reflective gold ones [68]. The transmission gratings
have lower surface roughness and better groove quality due to simpler manufacturing
process. The scattering model has been further explored by Li [23] who showed that
multi-pass stretcher designs are theoretically more prone to the contrast degradation
through multiple scattering. Temporal contrast of a focused pulse can be also degraded
through the spatio-temporal couplings at the Fourier plane of the stretcher imaging
system. This coupling is mostly noticable for stretcher designs having a mirror at the
focal plane of a concave mirror. At the focal plane, the individual spectral components
are spatially dispersed and they are incident on different parts of the mirror surface.
High frequency surface imperfections of the mirror are then directly transferred to the
spectral phase profile of the pulse at focus. General high-frequency noise of the spectral
phase raises the noise-floor of temporal contrast [20]. The measurement by a spatio-
temporal cross correlator confirmed that the stretchers without a mirror in the Fourier
plane have superior on-axis farfield contrast [69].
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2.4 Seidel aberrations in grating pulse stretchers

The following text is based on the article published in [A1].

As was stated before, the spectral phase of the stretcher is usually calculated using
numerical ray-tracing when aberrations are present in the stretcher imaging system.
The Offner stretcher with a grating placed near the center of curvature of the concave
mirror is aberration-free. Eqs. (2.4) are then very close to the reality and no numerical
modeling is necessary. However, for all the other cases the analytic formulae are very
beneficial as they enable to choose the right stretcher design from scratch and crosscheck
the results of numerical ray-tracing. In the following paragraph, the work in the field
which has been done up to now is summarized.

First, Martinez calculated the spectral phase of a perfect stretcher [70]. Later, an
extended ABCD formalism was introduced by Martinez [71] and expanded by Kosten-
bauder [72]. However, the linear nature of this formalism only allows for the calculation
of GDD and not the determination of higher-order terms. Druon et al. proposed an-
other extension of the ABCD formalism by using nonlinear operators instead of linear
matrices [73] enabling calculation of the spectral phase in the general case. The spec-
tral dependence of the group delay was also calculated by Zhang [74] using ray-tracing
analytically. Even though the spectral phase and higher order dispersion terms for
grating stretchers can be analytically obtained by the usage of the last two methods,
the resulting formulae are not illustrative without numerical substitution and do not
offer much physical insight. Here, we present an elegant analytical method which can
be used to calculate the deviation of GDD, TOD and FOD with respect to the ideal
state based on the Seidel aberration coefficients.

Transfer function

According to Goodman [75], we can express the relation between the object U(x, y, ω)
and its image Uimg(ximg, yimg, ω) using the amplitude transfer functionH(νx, νy), which
acts as a spatial frequency filter and modifies the amplitude and phase of the input beam
spatial spectrum as:

FT [Uimg(ximg, yimg, ω)](νx, νy, ω) = H(νx, νy)FT [U(x, y, ω)](νx, νy, ω) , (2.19)

where x, y (ximg, yimg) are Cartesian coordinates in the object (image) plane, νx and νy

are spatial frequencies and FT stands for a Fourier transform. The amplitude transfer
function is a complex function and it can be expanded to:

H(νx, νy, ω) = P (ξ(νx), η(νy))e−ikΦ(ξ(νx),η(νy),x,y) , (2.20)

where P describes the amplitude transmittance and Φ is the aberration function, which
represents a wavefront deviation with respect to a Gaussian reference sphere (see Fig-
ure 2.17).

For a grating pulse stretcher, the dependence of the pupil coordinates on νx, νy and
ω can be expressed in the paraxial approximation as:

ξ = x0 + sλνx; η = y0 + sθ(ω) + sλνy , (2.21)

where s is the distance between the first grating and the entrance pupil, λ is the
wavelength, θ(ω) is the ray angular deviation coming from angular dispersion. We can
expect that the position of a ray on the entrance pupil in grating stretchers is mostly
given by its frequency, which comes from the Fourier transform of the temporal profile
of the pulse and not the transform of its spatial profile [see Fig. 3]. In the following,
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Figure 2.17: Schematic of a grating pulse stretcher. s is the distance between the first
grating and the entrance pupil (the first lens), simg is the distance between the last
lens and the image of the first grating, L is the distance between the image plane and
the second grating.

we will thus neglect the effect of a finite beam size (sλνx ≈ 0, sλνy ≈ 0) and proceed
with the calculation for a plane wave. Pupil coordinates can then be expressed as:

ξ = x0; η = y0 + sθ(ω) . (2.22)

Assuming that the entrance pupil of the stretcher is large enough so that the spectrum
of the pulse is not truncated, we can put P (ξ, η) = 1. If we substitute pupil coordinates
Eq. (2.22) into Eq. (2.19), we get:

FT [U(ximg, yimg, ω)](νx, νy, ω) = e−ikΦ(ξ(x0),η(ω,y0,s),x0,y0)FT [U(x, y, ω)](νx, νy, ω) .
(2.23)

According to Eq. (2.23), the aberration function can be used to calculate the deviation
of the spectral phase of the pulse φ(ω) at the image plane with respect to the ideal case
without aberrations:

φ(ω, simg) = ω

c
Φ(ξ(x0), η(ω, y0, s), x0, y0). (2.24)

To calculate the spectral phase at some other point, we can proceed the same way as
for the ideal stretcher with the effective grating distance Leff [41]. To our knowledge,
the additional residual angular dispersion originating from the aberrations at the image
point does not induce additional phase changes when the pulse is propagated from the
image point to the position of the second grating. The total spectral phase of the pulse
is then given by the sum of the spectral phase deviation coming from aberrations and
the spectral phase of the ideal stretcher:

φ(ω,L) = ω

c
Φ(ξ(x0), η(ω, y0, s), x0, y0) − Leff

ω

c
cos(θ(ω)). (2.25)

Figure 2.18: Coordinate system definition. We define the object as a place, where the
laser pulse hits the diffraction grating with coordinates (x0, y0). To simplify calculation,
it is convenient to choose coordinate-axis so that diffraction occurs in the horizontal
yz plane (diffraction plane). We assume that the optical axis of the stretcher telescope
is parallel with z-axis and the propagation direction of the central wavelength of the
pulse and intersects the object plane at the point (0,0).
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This theory can also be used to calculate the residual angular dispersion of the stretcher,
which can generally lead to additional pulse broadening and reduces peak power in
the focus [28]. The residual angular dispersion is present because rays with different
frequencies propagate through the stretcher with different angles and acquire different
angular deviation due to aberrations. In other words, the derivative of the wavefront
at a given point corresponds to the propagation direction of the ray coming from that
point. The aberration function represents a deviation of the real wavefront from a
perfect wavefront. The derivative of the aberration function with respect to the pupil
coordinate then expresses a variation in the propagation direction of aberrated rays.
Since each pupil coordinate is assigned to a ray of different frequency, this variation of
propagation direction is spectrally dependent. Residual angular dispersion can then be
calculated as:

dθy(ω) = cos(β)
cos(α)

dΦ(ξ(x0), η(ω, y0, s), x0, y0)
dη = cos(β)

cos(α)
1

θ(ω)
dΦ(x0, y0, s, ω)

ds

dθx(ω) = dΦ(ξ(x0), η(ω, y0, s), x0, y0)
dξ = dΦ(x0, y0, s, ω)

dx0
,

(2.26)

where the cos(β)
cos(α) factor comes from the grating equation and rescales the angular dis-

persion in the diffraction plane as the pulse hits the second grating. In the rest of the
article, the residual angular dispersion dθ(ω) is expressed as a function of wavelength,
as it is more common, rather than frequency.

Aberration function

Following Welford [76], we can define a wave aberration function:

Φ(ξ, η, x, y) = B(ξ2 + η2)2 + C(ξx+ yη)2 +D(x2 + y2)(ξ2 + η2)
+ E(x2 + y2)(ξx+ yη) + F (ξ2 + η2)(ξx+ yη) ,

(2.27)

where B is the spherical aberration, C is the astigmatism, D is the field curvature, E is
the field distortion and F is the coma coefficient. In the following calculations, we deal
with the impact of the fourth order aberrations only. The aberration function can be
easily extended to include higher order aberrations as well, but in general their analytic
calculation is very complicated. We also neglect tilt and defocus terms as they represent
a shift of the center of the Gaussian reference sphere with respect to the image point
and the aberrations are usually measured with respect to the sphere originating from
the Gaussian image point.

If we substitute pupil coordinates ξ and η from Eq. (2.22) to Eq. (2.27) and put
x = x0 and y = y0, we get:

Φ(x0, y0, s, ω) = Bs4θ4(ω) + y0 (4B + F )s3θ3(ω) + y2
0 (6B + C +D + 3F )s2θ2(ω)

+ x2
0 (2B +D + F )s2θ2(ω) + ....

(2.28)

In a grating stretcher, θ(ω) is defined by the grating equation and can be linearly
approximated by:

θ(ω) = arcsin(mN 2πc
ω

− sin(α)) − arcsin(mN 2πc
ω0

− sin(α)) .= mN(2πc)
ω2

0cos(β0)(ω − ω0) ,

(2.29)
where ω0 is the central frequency of the pulse, α is the angle of incidence on the grating,
β0 is the diffraction angle of the central frequency, m is the diffraction order and N

42



is the line density of the grating. The linear approximation of θ(ω) ∼ (ω − ω0) allows
for an estimation of the impact of each term from Eq. (2.28) on the spectral phase
dispersion terms [Eq. (1.12)]. The first term from Eq. (2.28) is quartic in θ(ω) and it
deviates the FOD. The second term is cubic and deviates the TOD. The third and the
fourth terms then deviate the GDD. In the following calculations, the terms that are
linear or constant in θ(ω) are neglected because they mostly introduce additional group
delay or a constant phase offset respectively, and do not change the temporal profile of
a pulse. The odd power terms in θ(ω) are present only when the object has a y0 offset
as they originate from the middle term of η2 = (y0 +sθ(ω))2 = y2

0 +2y0sθ(ω)+(sθ(ω))2.
The linear approximation of θ(ω) limits the accuracy of the method because it ne-

glects the contribution of the terms of the lower powers to the given dispersion order.
For example, the quadratic term of Eq.(2.28) also contributes to TOD through the
nonlinear part of θ(ω). In general, the contribution of terms derived within the linear
approximation to the corresponding dispersion orders is a few orders of magnitude big-
ger than the contribution of these nonlinear corrections. Nevertheless, these corrections
might be still required for systems with a high stretch ratio or broad bandwidth.

In general, x0 and y0 offsets are required for the separation of input and output
beams in multi-pass stretchers. Usually, the x0 offset is used for separation of the beams
between subsequent passes while y0 offset is required for the separation of the beams
only in 4 and higher pass designs. In stretchers using only one grating and reflective
optics, the x0 offset is usually much bigger than y0 because it also separates the beam
between subsequent grating hits. In the following two sections, two possible setups
will be discussed. First, we consider a situation when the object (i.e. the place where
the pulse hits the grating) is on the optical axis of the stretcher telescope. This case
is important for 2-pass stretchers and stretchers using cylindrical optics, where the x0
offset does not matter because the beam is imaged only in the yz plane. Second, we
consider a general situation when the pulse hits a grating at the arbitrary point (x0,
y0), which is relevant for the majority of stretcher designs.

On-Axis object

First, let’s assume that the object lies on the optical axis of the stretcher telescope
(x0 = 0 and y0 = 0). Only spherical aberration is present because all the other
coefficients from Eq. (2.28) vanish due to the cylindrical symmetry. The spectral phase
deviation at the image plane φab

on is then:

φab
on(ω, simg) = ω

c
Φ(s, ω) = ω

c
Bs4θ4(ω) .= Bs4m

4N4(2π)4c3

ω8
0cos4(β0) ω(ω − ω0)4 . (2.30)

Because the first three derivatives with respect to frequency at the central frequency of
the spectral phase defined by eq. (2.30) are zero, the spherical aberration induces FOD
deviation FODab:

d4φab
on

dω4

⃓⃓⃓⃓
⃓
ω0

.= 24Bs4m
4N4(2π)4c3

ω7
0cos4(β0) = FODab . (2.31)

Higher order dispersion terms can be calculated when the linear approximation of θ(ω)
is not used.

Off-axis object

When the object does not lie on the optical axis, all terms from Eq. (2.28) are relevant.
Combining Eq. (2.24) and Eq. (2.28), we can calculate the spectral phase deviation
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φab
off for any object position in the object plane as:

φab
off (ω, simg) = ω

c
Φ(x0, y0, s, ω) = φab1

off + φab2
off + φab3

off + φab4
off + ..., (2.32)

where the individual terms φab1
off , φab2

off , φab3
off and φab4

off originate from the terms on the
right of Eq. (2.28) with preserved order.

The first term φab1
off represents the on-axis term φab

on from the previous section
[Eq. (2.31)]. The second term φab2

off varies linearly with the y0 offset and it has an
impact on TOD and higher order terms. If we substitute the linear approximation of
θ(ω) [Eq. (2.29)] into Eq. (2.32), we can derive TOD deviation TODab at the image
position:

d3φab2
off

dω3

⃓⃓⃓⃓
⃓
ω0

= y0(4B + F )s3

c

d3(ωθ3)
dω3

.= 6y0(4B + F )s3m
3N3(2π)3c2

ω5
0cos3(β0) = TODab .

(2.33)
The contribution of φab2

off to FOD deviation FODab
T OD can be obtained if we leave out

the linear approximation of θ(ω) from Eq. (2.29) and calculate the fourth derivative of
φab2

off with respect to frequency numerically:

d4φab2
off

dω4

⃓⃓⃓⃓
⃓
ω0

= y0(4B + F )s3

c

d4(ωθ3)
dω4 = FODab

T OD . (2.34)

The last two terms φab3
off and φab4

off from Eq. (2.32) are quadratic in both θ(ω) and
either y0 or x0 and thus mainly introduce GDD deviation GDDab:

d2(φab3
off + φab4

off )
dω2

⃓⃓⃓⃓
⃓
ω0

.= 2(y2
0(6B +C +D+ 3F ) + x2

0(2B +D+ F ))s2m
2N2(2π)2c

ω3
0cos2(β0) = GDDab .

(2.35)
The contribution of the φab3

off and φab4
off terms to TOD deviation TODab

GDD cannot be
calculated in the scope of the linear aproximation of θ(ω), but it can be analytically
derived with the help of the outcome of Eq. (2.35) and the known ratio between the
TOD and GDD of the ideal stretcher [41]. The formula for the ratio between the GDD,
TOD and FOD depends on the power of θ(ω). φab3

off , φab4
off and the ideal stretcher phase

(the second term of Taylor series of cosine in Eq. (2.25)) are all quadratic in θ(ω) and
thus they retain the same ratio between the GDD, TOD and FOD. Because we know
the ratio between the individual dispersion orders for a perfect stretcher, we can easily
calculate the induced TOD deviation from GDDab:

d3(φab3
off + φab4

off )
dω3

⃓⃓⃓⃓
⃓
ω0

= −GDDab 3λ
2πc

(︃
1 + λ

d

sin(α)
cos2(α)

)︃
= TODab

GDD . (2.36)
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Table 2.5: Summary of the induced spectral deviation phase by the individual Seidel
aberrations in the linear approximation.

Dispersion B C D E F

orders Spher. Astig. Field Cur. Dist. Coma

FOD •

TOD (y0) • •

GDD (x0) • • •

GDD (y0) • • • •

2.4.1 Martinez/Banks stretcher

As an example of how to apply this method, we can look into the impact of Seidel
aberrations in the Martinez-type stretcher with spherical optics. The aberrations of this
design are essentially the same as those of the Banks stretcher (depending on the conic
constant of the optics). An imaging system of the Banks stretcher comprises a curved
mirror and two plane mirrors; one located at the focal plane of the curved mirror to
retro-reflect the beam; the second mirror serves to steer the focused beam from concave
on the retro reflecting mirror (Fig. 2.19) without hitting the grating. In the original
Banks design the grating has a stripe without grooves in the middle which serves instead
of the second plane mirror. The design is all reflective to prevent chromatic aberration
but it exhibits spherical aberration and therefore considerable FOD deviation. The
arrangement of the imaging system allows it to reach high stretch ratios while the
footprint of the stretcher remains small. Thanks to simple imaging system it is also
very robust and easy to align. The Banks design has been successfully implemented
in both 30 fs [77] and 150 fs [37] TW/PW CPA chains. Optically, the imaging system
of the stretcher can be substituted with 2 spherical mirrors at 2f distance. Seidel
aberration coefficients for such system are presented in Table 2.6. For the following
calculations, it is convenient to introduce dimensionless variables which scale with the
radius of curvature R = 2f :

s′ = s

R
; x′

0 = x0
R

; y′
0 = y0

R
. (2.37)

Table 2.6: Aberration coefficients of Martinez-type stretcher. Coefficients were derived
using theory presented in [76].

Spherical Astigmatism Field curvature Coma
B C D F

(R− s)2

2R3s2
1
Rs2 − 1

2Rs2 −R− s

R2s2

On-axis

Using Eq. (2.31) and the spherical aberration coefficient from Table 2.6, the dependence
of the FOD deviation on the distance of the first grating from the first lens of the
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Figure 2.19: Banks stretcher scheme. A beam is incident on the diffraction grating
with a vertical offset x0 and is diffracted to the concave mirror. The mirror is curved
and so it reflects the beam with a slight downward angle. The beam then strikes the
smaller folding mirror centered in front of the grating. The folding mirror then reflects
the beam to the back reflecting mirror located at the focal plane of the concave mirror.
Reflection from the back refl+ecting mirror repeats this sequence in reverse order, only
on the lower half of the optics. Finally, the beam diffracts of the grating with vertical
offset −x0 and is sent back for a second pass by a vertical roof. y0 offset is introduced
when it is necessary to add another 2 passes through the stretcher. As there is only
single grating, one pass through the stretcher is equivalent to Leff = −2Ls compressor
grating distance.

stretcher can be calculated:

FODab = 12(R− s)2

R3s2 s4m
4N4(2π)4c3

ω7
0cos4(β0) ∼ R

(︂
s′2 − 2s′3 + s′4

)︂
. (2.38)

The FOD deviation linearly increases with R and decreases as the object approaches the
first lens. It reaches maximum when the object lies in the focal plane. It seems logical
to put the object close to the first lens to minimize the FOD deviation. However, this
can increase the residual angular dispersion dθy(λ). Using Eq. (2.26) and the spherical
aberration coefficient from Table 2.6, the residual angular dispersion can be expressed
as:

dθy(λ) = cos(β)
cos(α)

1
θ(λ)

d(Bs4θ4(λ))
ds = cos(β)

cos(α)
(︂
s′ − 3s′2 + 2s′3

)︂
θ3(λ) .= K1 · (λ− λ0)3 ,

(2.39)
where K1 is a function of s′. Within the linear approximation of θ(ω), the residual
angular dispersion in the yz plane is cubic in (λ−λ0). Its value is given by the relative
position of the grating within the stretcher s′ regardless of the absolute value of R.
Fig. 2.20 shows a comparison of FOD and dθy(λ) dependencies on s′. The results were
verified by independent numerical ray-tracing calculations in Zemax OpticStudio.

Off-axis

When a laser pulse hits the grating at a point which is not on the optical axis of
the telescope, aberrations introduce GDD and TOD deviations and increase residual
angular dispersion in the xy and xz planes. By substitution of the respective aberration
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Figure 2.20: Comparison of FODAb [Eq. (2.38)] and the residual angular dispersion
[Eq. (2.39)] for different relative grating positions. Analytically calculated data are
in solid lines, results obtained by numerical ray-tracing are marked with dots. The
calculation was done for N = 1480 ln/mm, α = 48.19°, λ0 = 0.82 µm (parameters
taken from [64]).

coefficients from Table 2.6 into Eq. (2.33), TOD deviation TODab can be calculated as
follows:

TODab = 6y0

(︄
4(R− s)2

2R3s2 − (R− s)
R2s2

)︄
m3N3(2π)3c2

ω5
0cos3(β0) ∼ y′

0R
(︂
s′ − 3s′2 + 2s′3

)︂
.

(2.40)
Analogously, GDD deviation GDDab

P B can be derived with the help of eq. (2.35) and
Table 2.6 :

GDDab = R
(︂
x′2

0 (−1 − 2s′ + 2s′2) + y′2
0 (1 − 6s′ + 6s′2)

)︂ m2N2(2π)2c

ω3
0cos2(β0) . (2.41)

Both GDDab and TODab linearly increase with R, their dependencies on the grating
position s′ are shown in Fig. 2.21. If we substitute the aberration coefficients from

Figure 2.21: a) Comparison of GDDAb [Eq. (2.41)] and angular dispersion coefficient
K2 [Eq. (2.42)] for various grating positions with x′

0 = 1/20. b) TODAb [Eq. 2.40]) and
GDDAb deviation (Eq. (2.41)) for various relative grating positions with y′

0 = 1/40.
The contribution of the φab3

off phase term [Eq. 2.36] was included in the calculation of
TODAb. The calculation was done for N = 1480 ln/mm, α = 48.19°, λ0 = 0.82 µm
(parameters taken from [64]) and R = 2 m. Analytically calculated data are in solid
lines, results obtained by numerical ray-tracing are marked with dots.
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Table 2.6 into Eq. (2.26) we can derive formulae for the residual angular dispersion:

dθx(λ) = x′
0

2 (1 + 2s′ − 2s′2)θ2(λ) .= K2 · (λ− λ0)2

dθy(λ) = cos(β)
cos(α)((s′ − 3s′2 + 2s′3)θ3(λ) + y′

0(1 − 6s′ + 6s′2)θ2(λ)+

+ (3y′2
0 (2s′ − 1) + x′2

0 (2s′ − 1))θ(λ)) .=
.= K1 · (λ− λ0)3 +K3 · (λ− λ0)2 + (K4 +K5) · (λ− λ0),

(2.42)

where K2, K3, K4 and K5 are functions of s′, x′
0 and y′

0. The residual angular dispersion
in the xz-plane is quadratic in (λ - λ0) and it linearly increases as we put the object
further from the optical axis. The angular dispersion in the yz plane constitutes three
terms. The first term K1, which is cubic in (λ−λ0), originates from the on-axis spherical
aberration [Eq. ((2.39)]. The second term K3 linearly increases with the object distance
from the optical axis in the diffraction plane and is quadratic in (λ − λ0). The third
and the fourth terms are quadratic in y0 or x0 respectively, while they are linear in
(λ − λ0). Total angular dispersion in the yz plane is then given by the interplay of
these terms. The dependencies of K2, K3 and K4 on s′ and the angular deviation of
individual spectral components are shown in Fig. 2.22(a) and Fig. 2.22(b) respectively.
For example, when a grating lies in the focal plane of the first lens, only the K3 term
is present which results in quadratic residual angular dispersion in the yz-plane. If we
place the grating close to s′ = R/4 in the given configuration then we can minimize
residual angular dispersion because the individual terms from Eq.(2.42) almost cancel
each other out.

Figure 2.22: a) Comparison of normalized K1, K3 and K4 dependencies on grating
position s′, their relative scaling depends mostly on y′

0 and θ(ω). b) Angular dispersion
dθx(λ) in the yz-plane for different s′. In this example, θ(ω) was obtained directly from
the grating equation without linear approximation [Eq. (2.26)] due to broad bandwidth.
Analytically calculated data are in solid lines, results obtained by numerical ray-tracing
are marked with dots. The calculation was done for y′

0 = 1/20, N = 1480 ln/mm,
α = 48.19°, λ0 = 0.82 µm and R = 2 m.

GDD, TOD and FOD deviations in a Martinez stretcher depend on the position
of the first grating s′ and linearly scale with R, while the residual angular dispersion
depends on s′ only. Spectral phase deviation tends to decrease if the grating is very
close to the first lens which allows it to reach very high stretch ratios. Nevertheless, the
deviation which depends on y′

0 increase. As the x′
0 offset is usually much bigger than

y′
0 offset (which can even be zero for the 2-pass design), the impact of the y′

0 offset is
for much smaller then the impact of the x′

0 offset most cases. It is also interesting to

48



note that when the grating is placed into the focal plane of the concave mirror (hence
the stretcher has zero stretch ratio), the Banks design induces biggest FOD deviation.

According to our calculations, there is no ideal grating position in the Martinez
stretcher. However, with given space and spectral phase requirements Eqs. (2.38) -
(2.42) may be used to find the ideal combination of R, s′ and θ(ω) to reach the ideal
spectral phase profile with minimal angular dispersion. The calculation in the previous
sections was done for a perfectly aligned stretcher, but it is possible to extend it to
cases when there is some kind of misalignment present in the stretcher telescope.

2.4.2 Offner stretcher

Parts of the following text were published in [A2].
Offner stretcher is commonly employed in laser systems with pulse durations ≲ 20 fs as
its aberration-free nature make it suitable for systems with broad bandwidth [78, 79].
Compared to the Banks/Martinez stretcher, the Offner stretcher exhibits zero stretch
ratio when the diffraction gratings are located in the center of curvature of the concave
mirror. If the first grating is located at that point, the design is aberration-free in
terms of Seidel aberrations and therefore it induces no spectral phase deviation in
this approximation. Its stretch ratio is then increased by shifting the second grating
towards the concave mirror. However, in some systems it is beneficial to introduce
some spherical aberration to enable compensation of residual FOD originating from
the material dispersion. In that case, the first grating has to be shifted as well and
therefore it is more advantageous to convert the design into a single grating Offner
stretcher (Fig. 2.23).

Figure 2.23: Schematic of a single grating Offner stretcher. A beam is incident on
the diffraction grating with vertical offset x0 and it is diffracted to the concave mirror
with radius of curvature R1. The concave mirror then reflects the beam downwards
and focuses it on the convex mirror with radius of curvature R2 and the sequence is
repeated in reverse order on the lower half of the optics. Finally, the beam with spatial
chirp leaves the grating with vertical offset −x0 and is sent back for the second pass by
a vertical roof mirror.

In the original Offner triplet design, the radii of curvature of the convex mirror
R2 has to be set to precisely −R1/2 in order to compensate residual field curvature
and astigmatism. However, if the first grating is shifted from the curvature center, the
design is no longer aberration free and therefore it can be beneficial to adjust R2 as
well. This adds another degree of freedom which can improve the performance of the
stretcher. The detuning of R2 shifts the position of the image of the grating simg, the
effective distance Leff equivalent to the negative compressor grating distance can be
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Table 2.7: Aberration coefficients of an Offner triplet calculated according to the aber-
ration theory presented in [76], where B is a coefficient of spherical aberration, C of
astigmatism, D of field curvature and F of coma.

Ab. (R1 = −2R2)

B (R1 − s)4

2R3
1s4

C 2(R1 − s)2

R1s4

D (R1 − s)2

R1s4

F −2(R1 − s)3

R2
1s4

Ab. (R1 ̸= −2R2)

B R8
1−3R7

1R2+8R6
1R2s+4R5

1R3
2−16R5

1R2
2s+24R4

1R2
2s2−32R3

1R3
2s2+32R2

1R4
2s2+32R2

1R3
2s3−64R1R4

2s3+32R4
2s4

8R3
1R4

2s4

C R6
1−3R5

1R2+4R4
1R2s+4R3

1R3
2−8R3

1R2
2s+4R2

1R2
2s2+16R4

2s2

16R1R4
2s4

D − −R6
1+3R5

1R2−4R4
1R2s−4R3

1R3
2+8R3

1R2
2s−4R2

1R2
2s2+16R1R3

2s2+16R4
2s2

32R1R4
2s4

F − R7
1−3R6

1R2+6R5
1R2s+4R4

1R3
2−12R4

1R2
2s+12R3

1R2
2s2−16R2

1R3
2s2+16R1R4

2s2+8R1R3
2s3−16R4

2s3

16R2
1R4

2s4

then calculated as:

Leff = simg − s2 = R1 − R2
1

2R2
− s− s2, (2.43)

where s2 is the position of the second grating and s = s2 for a single-grating Offner
stretcher. Basically, as R2 approaches ∞, the design is transformed from Offner to
Banks. The individual Seidel aberration coefficients of the Offner triplet necessary for
the evaluation of the general formulae from previous section are presented in Table 2.7.
The coefficients for the Offner triplet with detuned R2 are rather complicated and they
are better understood graphically. By substitution of the corresponding aberration
coefficients from Table 2.7 into Eqs. (2.31) and (2.35), we plot GDDab and FODab

profiles as functions of s and R2 in Figure 2.24. With R2 = −R1/2 the results meet
expectations as the aberrations are zero at the center of curvature of the concave mirror
(s = R1) and grow as s shifts away. Also, the decrease of the curvature of the convex
mirror leads to the decrease of FODab and vice versa. Changes in R2 produce offsets in
the GDDab curves. The dependence of the FODab, TODab and GDDab on the grating
position can be easily analytically expressed for the original Offner triplet design using
the second column from Table 2.7:

FODab (R1=−2R2)= (R1 − s)4

2R3
1

m4N4(2π)4c3

ω7
0cos4(β0) ∼ R1(1 − s′)4 (2.44)

TODab (R1=−2R2)= −y0
2(R1 − s)3

R3
1

m3N3(2π)3c2

ω5
0cos3(β0) ∼ −R1y

′
0(1 − s′)3 (2.45)

GDDab (R1=−2R2)=
(︄
x2

0
(R1 − s)2

R3
1

+ 3y2
0

(R1 − s)2

R3
1

)︄
m2N2(2π)2c

ω3
0cos2(β0)

∼ R1
(︂
x′2

0 (1 − s′)2 + 3y′2
0 (1 − s′)2

)︂ (2.46)
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Figure 2.24: Dependence of FODab (a), GDDab (b) and TODab (c) deviation on the
grating position s and the residual angular dispersion in diffraction plane at s′ = 0.7
(d) for 1-grating Offner stretcher with various R2 and R1 = 1.5 m, x0 = 0.05 m and
y0 = 0.02 m.

For the calculation of the residual angular dispersion of a system with broad band-
width, it is necessary to abandon the linear approximation. Because there is no deriva-
tive with respect to the frequency in Eq. (2.26), the calculation is quite straightforward
with R2 = −R1/2. The residual angular dispersion in the xz plane dθx(λ) and yz plane
dθy(λ) can be obtained using aberration coefficients from Table 2.7:

dθy(λ) = −2cos(β0)
cos(α)

(︂
(x′2

0 + 3y′2
0 )(1 − s′)θ(λ) + 3y′

0(1 − s′)2θ2(λ) + (1 − s′)3θ3(λ)
)︂
,

dθx(λ) (R1=−2R2)= 2x′
0(R1 − s′)2θ2(λ),

(2.47)

where α is the angle of incidence and θ(λ) is the angular deviation of the wavelength
component with respect to the central wavelength of the pulse. The formulae for angular
dispersion with arbitrary R2 can be calculated in the same manner using coefficients
from Table 2.7, but we omit them here for the sake of clarity as they are very long and
do not offer much physical insight.

From Fig. (2.24a) it is evident that the aberrations which occur when the grating
shifted towards the concave mirror are partly compensated by increasing the absolute
value of R2. When s′ ≈ 0.7 and R2 ≈ −0.55 R1, all GDDab, TODab and FODab

are close to zero and the design is being almost aberration free. The residual angular
dispersion vanishes at that point too. Consequently, for each grating position s there
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is some R2 for which the aberrations are minimized and where the design is close to
the ideal stretcher (see Fig. 2.25). Moreover, if there is some residual FOD in the
system, the combination of the grating position and R2 can be adjusted to compensate
it. Compared to the original two grating Offner stretcher, the single grating Offner
stretcher offers two times higher stretch ratio while its footprint remains smaller as
the grating is not located at the center of curvature of the concave mirror. This is
mainly advantageous for systems with narrower bandwidth requiring high stretch ratios.
The stretcher remains compact so it can be placed into a vacuum chamber to prevent
spectral phase noise induced by air turbulence and to enhance its stability.
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Figure 2.25: Dependence of R2 on s1 for a classic Offner stretcher versus for a single
grating Offner stretcher with R2 adjusted to compensate spherical aberration calculated
according to Eq. 2.44 with coefficient from Table 2.7.

2.4.3 Discussion

In general, the accuracy of the analytical method can be considered to be equivalent
to ray-tracing when there is a very small (y′

0 ≲ 1/100) offset and it is bounded to the
accuracy of the linear approximation of θ(ω). The most severe limitation of the accuracy
originates in the terms with odd powers of θ(ω) in Eq. (2.28). These terms occur only
with the y′

0 offset and they introduce errors in the calculation of higher dispersion
orders within the linear approximation. For example, the neglected term that is linear
in θ(ω) mainly introduces group delay deviation but its higher derivatives, which are
zero under the linear approximation, also partly contribute to GDD and higher order
dispersion terms. However, the linear approximation does not restrict the usage of this
method with respect to the bandwidth of the system as the individual dispersion terms
are defined as local derivatives at the central wavelength of the pulse. For a precise
calculation of the angular dispersion of a pulse with broad bandwidth (>30 nm), it is
necessary to abandon the linear approximation and use the general grating equation.
Nevertheless, this calculation is very straightforward as θ(ω) can be calculated directly
from the grating equation.

Residual angular dispersion can be suppressed in multi-pass setups by employing
roof mirrors in the design. Roof mirrors flip the beam over either xz or yz plane
which reverses the sign of the angular dispersion. Unfortunately, total compensation
is not possible because of the fact that roof mirrors also change either the x′

0 or the y′
0

coordinate for the next pass, which according to Eq. (2.39) leads to uneven absolute
values of residual angular dispersion between subsequent passes.

The method gives accurate results even for a full round trip and multi-pass setups.
However, it should be noted that the residual angular dispersion acquired after each
pass may lead to errors in the calculation of the spectral phase for the next pass as θ(ω)
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is slightly different. These errors especially increase with y′
0 offset as it induces changes

in the angular dispersion in the diffraction plane. They mainly distort the FOD and
higher dispersion orders but they strongly depend on the profile of the residual angular
dispersion and their impact is thus hard to generalize.

The deviation of the spectral phase dispersion terms obtained by this method coin-
cided with a numerical ray-tracing algorithm with deviation less than 0.1% for ”on-axis”
and x′

0 ”off-axis” terms and less than 5% for y′
0 ”off-axis” terms. If the accuracy is not

sufficient, it is possible to either expand θ(ω) into the next Taylor term or use this
method numerically and directly calculate the spectral phase from Eq. (2.28). Also, it
might be necessary to consider higher order aberrations.
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2.5 Dispersion management

To ensure that the compressed pulse retains transform limited profile and thus maximal
intensity, the sum of the induced spectral phase changes at each CPA stage must be
equal to zero (excluding group delay and constant phase offset):

φstretcher(ω) + φmaterial(ω) + φcompressor(ω) = 0. (2.48)

Usually, it is convenient to expand the spectral phase of each term from Eq. (2.48) into
the individual dispersion orders using Taylor expansion from Eq. (1.12) and discuss
them separately. Dispersion properties of the commonly employed components are
compared in Table 2.8. Since dispersion of diffraction gratings is much higher than any
of other components, a grating stretcher has to be used with a grating compressor in
most cases. Other components are then usually employed to correct remaining spectral
phase originating either from material dispersion or stretcher aberrations. Depending
on the transform-limited pulse duration, dispersion orders up to the fifth order have
to be precisely controlled. Which particular components are employed then depends
on the number of degrees of freedom the system has. For the following discussion, it
is assumed that the spectral phase induced by the material is much smaller than the
spectral phase induced by the compressor. That is generally true for all high-power
laser systems using a grating compressor.

When material is added into the CPA chain with an ideal stretcher and a compres-
sor, the residual GDD and TOD is positive (Table 2.9). It can be then compensated by
decreasing the stretcher grating spacing L and the angle of incidence α to tune GDD
and to increase the GDD/TOD ratio of the stretcher. Since the material dispersion
is small, the stretcher remains close to the nominal configuration. Through this ad-
justment the residual FOD is increased as the adjustment of the incident angle also
increases the FOD/GDD ratio of the stretcher with respect to the compressor. The
residual positive FOD originating from the mismatched stretcher compressor pair is
usually much higher then the negative FOD of the material itself. Therefore, material
dispersion mainly increases the residual FOD of the ideal CPA chain. Another degree
of freedom is therefore necessary for its compensation.

According to the previous chapter, the spherical aberration in the stretcher imaging
induces the FOD deviation with respect to the ideal case. Since the distance of the
grating from the zero stretch point depends on two variables - R and s, the imaging
system can be designed to have such spherical aberration so that the residual FOD is
compensated. The dependency of the FOD profile on the position of the first grating
within the Offner and Banks stretcher designs is compared in Fig. 2.26. The Banks

Table 2.8: Comparison of dispersion properties of different components. The sign of
the spectral phase of components that induce angular dispersion can be reversed when
they are used in stretcher-like configuration.

Type GDD TOD FOD Typical ∆τ

A-O modulator +/- +/- +/- 1 ps
Bulk material + + - 1-100 ps
Chirped mirrors +/- +/- +/- 1 ps
Gratings - + - 10-1000 ps
Grism - - - 10 ps
Prism - - - 1 ps
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Table 2.9: Compensation of the material-induced spectral phase (mat) for a CPA
system with a grating stretcher (s) and a grating compressor (c).

Setup Adjusted GDD TOD FOD

s+c - 0 0 0
s+c+mat - + + -
s+c+mat L 0 + -
s+c+mat L,α 0 0 +
s+c+mat L,α, N | R 0 0 0

stretcher offers larger FOD deviation for small stretch ratios and it is therefore suitable
for systems having large material dispersion such as systems with regenerative ampli-
fiers. The FOD deviation induced by the Offner stretcher is smaller and it can be tuned
to zero for an arbitrary grating position through the adjustment of the radius of the
curvature of the convex mirror. The Offner stretcher design is more useful for systems
demanding high stretch ratio and having relatively small material dispersion.

Another option is to decrease the line density of the stretcher gratings with respect
to the compressor [80]. Gratings with lower line densities have small angular dispersion
and according to Eq. (2.4) also smaller GDD/TOD and GDD/FOD ratios. The residual
GDD, TOD and FOD can be therefore compensated through the optimization of L,
α and N . When any of the above-discussed methods is not possible like for example
for already operating systems, it also possible to implement a Dazzler for the active
dispersion control or a grism pair compressor for the passive control of residual FOD
[78].
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Figure 2.26: FOD as a function of s for the Banks stretcher, Offner stretcher with
R2 = −R1/2 and the Offner stretcher with R2 = −0.6R1. The FOD curves were
caculated according to Eqs. (2.38, 2.44).
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3. ELI
Extreme light infrastructure (ELI) is an European project which aims to improve cur-
rent state-of-the-art ultrashort high-power laser systems and is dedicated to funda-
mental study of laser matter interaction in ultrarelativistic regime (I¿1024 W/cm2).
Currently, ELI constitutes of 3 pillars. ELI-ALPS in Szeged, Romania focuses on the
generation of attosecond pulses which could help to understand electron dynamics in
atoms, molecules, plasmas and solids. ELI-NP located in Magurele, Romania is de-
signed to further interrogate the structure of atomic nucleus and its dynamics. The
ELI-Beamlines facility is in Dolńı Břežany, Czech Republic and was opened for the
first experiments in 2018. Altogether, 4 state-of-the-art laser systems (L1-L4) are cur-
rently being developed; each suited for specific experiments in dedicated experimental
halls (E1-E6). The primary mission is generation of new secondary sources of radiation
such as gamma, proton, heavy ion beams. The architecture of ELI-Beamlines allows to
combine any of these sources into one target and to achieve unprecedented pump and
probe experiments [A3]. A schematic of the ELI-beamlines facility is sketched in Fig.
3.1.

Figure 3.1: Schematic of ELI-Beamlines facility

The L1 laser system is fully based on the OPCPA technique [81]. Its pump lasers
are amplified in Yb:YAG thin disk regenerative amplifiers. The 5 TW peak power,
high repetition rate 1kHz and pulse duration shorter than 20 fs make it an excellent
tool for the generation of secondary UV to soft X-ray radiation which will be used
for the characterization of biomedical samples. The L2 system will be also based on
the OPCPA technique. The pump lasers will be amplified using cryogenically cooled
Yb:YAG multi-slab amplifiers developed by Rutherford Appleton Laboratory. The final
output parameters are yet to be decided. The L3 laser system (also called HAPLS) is
amplified in Ti:Sapphire crystals [79]. The majority of energy is extracted from two
helium cooled multi-pass power amplifiers pumped by the second harmonic of diode-
pumped Nd:glass pump laser. Each amplifier is pumped by high power laser diode
arrays, each providing an 800-kW peak power and currently being the highest peak-
power pulsed laser diode arrays in the world. 1 PW peak power with 10 Hz repetition
rate make the L3 system an ideal tool for the broad range of experiments such as
particle acceleration.
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The L4 10 PW laser system is based on a hybrid OPCPA and mixed Nd:glass
amplification techniques and was designed to deliver <150 fs pulses with 1500 J energy
with the central wavelength of 1060 nm at 1 shot per minute [A8]. High pulse energy
combined with focused intensity reaching 1024−25 W/cm2 will enable new types of
experiments for particle acceleration and exotic physics. The layout of the L4 laser
is summarized in Fig. 3.2. The L4 system is developed by a consortium of National
energetics and Ekspla, which provides pump lasers for the ns-OPCPA section and a
flashlamp system for the main power amplifiers. The ELI-Beamlines participates in the
design and implementation of the stretcher, the ns-OPCPA, the relay imaging system
between the second power amplifier and the compressor, the compressor and temporal
diagnostics.

Figure 3.2: Layout of the L4 laser system.

L4

The design of the L4 system is mostly based on the Texas Petawatt Laser [37, 82].
The laser chain starts with a femtosecond mode-locked oscillator synchronized to the
ELI-Beamlines master clock. A pulse from the oscillator is amplified in the 3-stage
picosecond OPCPA section to 30 mJ and compressed to 100 fs in a small compressor
(CMP). At this stage, the pulse has enough energy to undergo nonlinear pulse cleaning,
which improves its temporal contrast by several orders of magnitude [83]. The pulse
is then pre-stretched to picosecond duration by another grating compressor and it
is transferred to a nanosecond grating pulse stretcher operating under vacuum. The
design of the stretcher is discussed in the sixth chapter of this thesis. After the stretcher,
the pulse retains only around 150 µJ energy and has roughly 8 ns duration with 40
nm spectral bandwidth. Subsequently, the pulse is amplified in 5 stage ns-OPCPA
pumped by Nd:YAG lasers to 4 J (Figure 3.3). Spectral gain of the OPCPA stages is
designed to pre-compensate spectral narrowing induced by the power amplifiers. This
is accomplished by arbitrary shaping the temporal envelopes of the pump lasers [84].
The supergaussian square profile of the seed is generated using serrated aperture and
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a) b) c) d) e) 

Figure 3.3: Output nearfield profile of the amplified beam of the system at each OPCPA
stage [84].

further enhanced through the amplification process.
After the ns-OPCPA section, the pulse enters power amplifiers, where a combination

of silicate and phosphate neodymium doped glass is employed to broaden the gain
bandwidth. Both power amplifiers are 4-pass designs using liquid-cooled glass slab
modules in a split-disc configuration and are pumped by flashlamps. The silicate glass
has a generally lower damage threshold due to the presence of platinum inclusions
compared to the platinum-free phosphate glass. So the first power amplifier mostly uses
silicate slabs, while the second amplifier phosphate ones. The beam size is increased
to 16 cm in the first amplifier and to 26 cm in the second amplifier to limit fluence.
The beam is relay imaged during each pass using a parabolic mirror telescope from
the center of the amplifier to a deformable mirror, which is used to correct residual
wavefront aberrations. Spatial uniformity of the beam is further enhanced by far-field
filtering through vacuum ceramic pinholes during each pass. In total, the pulse is
amplified to 120 J by the first power amplifier and up to 2 kJ by the second amplifier.

The amplified pulse is then transported by a compressor imaging system (CIS) to
a compressor floor. The CIS system consists of two keplerian telescopes using three
off-axis parabolas, one spherical mirror and plane mirrors. The residual aberrations
originating from the spherical mirror are corrected by an additional deformable mirror.
To decrease the fluence on the compressor gratings, the square beam profile is expanded
from 25 cm to 62.5 cm width. The CIS system relay images the deformable mirror of
the PA2 onto the fourth compressor grating to avoid the spatial intensity modulations
originating from the supergaussian profile of the beam. The compressor uses 1136
ln/mm gratings in the off-plane configuration. The aperture of the second and third
grating is extended by phasing them with a perpendicularly positioned mirror. The
detailed design and analysis of the compressor is discussed in the following chapter.

The L4 laser system is also able to operate in a different regime, where the power
amplifier 2 is bypassed for the femtosecond beam. The femtosecond laser chain then

Figure 3.4: a) Simulated spectrum at the output of the OPA and power amplifiers [84]
using the measured gain profiles of Nd:glasses b) Gain profile of phosphate and silicate
Nd:glass
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provides roughly 100 J PW-class 150 fs pulse using power amplifier 1 only. The power
amplifier 2 is then seeded with a separate front end (called Long pulse front end)
allowing variable temporal shaping in the ns-scale. The output ∼ 2 kJ amplified ns
pulse can be then possibly combined with the compressed 1 PW beam for pump and
probe experiments.

Grating 1 
Grating 4 

Grating 2 

Plane mirror Plane mirror 

Figure 3.5: Optical layout and a visualisation of the compressor chamber
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4. Compressor design
For the state-of-the-art laser systems with the highest peak powers, the design of the
compressor is driven by the availability of diffraction gratings with sufficient aperture
and laser induced damage threshold for the given beam-line parameters. The power am-
plification stages of the L4 system require at least 3 ns stretched pulse duration to avoid
optical damage and to suppress the accumulation of nonlinear phase. Given 13 FWHM
bandwidth of the Gaussian spectrum, the compression ratio has to be roughly 210
ps/nm. Due to the high energy of the pulse and large stretch ratio, the only viable way
of the compression is to use diffraction gratings, preferably the multilayer dielectric
(MLD) ones as they offer higher laser induced damage threshold (LIDT) and overall
diffraction efficiency. At the time, only two grating designs were able to fulfill the
high LIDT requirements - low line density 1136 ln/mm gratings or 1740 ln/mm grat-
ings frequently used in similar laser systems. These two designs have to be used in
completely different compressor configurations since the 1136 ln/mm gratings exhibit
the best diffraction efficiency near Littrow angle of incidence, while the 1740 ln/mm
gratings operate at 74° angle of incidence. Moreover, the 1136 ln/mm gratings have
lower dispersion which results in much longer grating distance. The basic parameters
of both compressor setups are summarized in Table 4.1 and will be discussed in more
detail further in this chapter.

Table 4.1: Basic parameters of both pulse compressor designs. N is the groove density of
diffraction gratings, λ0 is the central wavelength of the pulse, L is the grating distance
along the central wavelength, α is the angle of incidence, β0 is the diffraction angle
for the central wavelength, γ is the off-plane angle, wx is the half-width of the spatial
profile of the beam and dim describes approximate dimensions of the compressor.

N (ln/mm) λ0 (nm) L (m) α β0 γ wx (cm) dim (m)
1136 1060 15.1 37° 37° 3.25° 30 18x3x4
1740 1060 2.25 74° 62° 0 20 12x3x3

For the safe operation of both compressor designs, it is desirable to limit the fluence
of an ideal beam at the 4th grating below 400 mJ/cm2 beam normal to avoid the risk
of laser induced damage. Figure 4.1 shows the dependence of the fluence on the grat-
ing surface on the beam size. The beam size was set to minimize the fluence taking
into account the fact, that the size of available diffraction gratings was restrained to
approximately 1 m in diameter. For the 1136 system, the ideal beam size is 60 cm as it
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Figure 4.1: The fluence of the ideal pulse having top-hat spatial profile recalculated
to the grating normal a) and the width of the beam on the grating for both grating
designs. The operational position is marked with a circle.
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fills the aperture of the 80x60 cm grating tilted at 37° having 1 m diameter. For 1740
system, due to the large angle of incidence, the beam footprint on the fourth grating
must be bigger than 1 m to constrain the fluence. However, monolithic gratings with
such dimensions were not commercially available. Hence, the configuration requires
either alignment of two gratings side by side or the alignment of one grating with a
perpendicularly positioned mirror to double the effective aperture. Nevertheless, the
aperture of the second and third grating, where the individual frequencies are spatially
separated, has to be doubled for both designs to avoid clipping of the dispersed spectra.

Tolerance budget

The aim of the tolerance analysis is to estimate the impact of each degree of freedom
in the system on the focused intensity of the laser pulse. No wavefront or spectral
phase compensation is possible after the compressor due to the high peak intensity of
the compressed pulse. Residual spectral phase can be to some extent pre-compensated
by the precompressor, strecher or Dazzler without any significant issues. Contrar-
ily, the wavefront pre-compensation has to be very carefully applied since wavefront
distortion at the compressor input could possibly introduce some spatiotemporal cou-
plings or yield unwanted spatial modulation on the fourth grating. In general, the
outcome of the tolerance analysis and the preliminary alignment procedure determines
the opto-mechanical design of the grating mounts in the compressor - mostly their
range, resolution and stability.

The simulation assumed either Gaussian or super-Gaussian spectrum of the fourth
order having transformed limited pulse duration of 130 fs. The spatial profile was chosen
to match the grating aperture. For both compressor configurations the super-Gaussian
profile of the twentieth order was used to model spatial intensity with wx = 20 cm
for 1740 ln/mm and wx = 30 cm for the 1136 ln/mm design. For the pulse with no
spatio-temporal couplings, total Strehl ratio can calculated as the product of two terms.
First, a spatial Strehl ratio can calculated as the ratio between the maximum of the
spatial intensity of the real wavefront and the ideal wavefronts in the k − ω domain.
Second, a temporal Strehl ratio is the ratio between the real and the transform limited
temporal profile in the k − t domain.
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Figure 4.2: (a) The comparison of Gaussian and Supergaussian spectral profiles having
transform limited pulse duration 130 fs; (b) Spatial intensity profiles for 1740 ln/mm
and 1136 ln/mm designs.

Spectral Strehl ratio Sω > 0.8

The Strehl ratio in the spectral domain is mainly driven by the wavefront deviation
induced by the misaligned gratings and mirrors within the grating assemblies (GA).
However, it can be also degraded by the residual angular dispersion induced by the
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non-parallel grating pairs. The wavefront error induced by the wavefront quality of the
gratings was neglected at this stage. The simulation assumed perfect plane wavefront
at the input of the compressor. Possibly, the wavefront error at the compressor output
could be partly pre-compensated by the deformable mirror in CIS. However, it could
increase the possibility of introducing spatial intensity modulations into the beam pro-
file on the fourth grating. The deformable mirror is therefore assumed to be set so that
the pulse has a plane wavefront at the compressor input.

Temporal Strehl ratio St > 0.9

The Strehl ratio in the temporal domain 0.9 is equivalent to 13 fs pulse broadening for
approx. 130 fs transform-limited pulse duration. There are two major sources of the
degradation of the temporal profile at focus - the residual angular dispersion and the
spectral phase. They are independent and cannot compensate each other.

Spatio-temporal couplings
The residual angular dispersion decreases the peak intensity of the compressor pulse
via two mechanisms. Different pointing of the individual spectral components leads to
spatial broadening of the focal spot profile and it simultaneously narrows the spectral
bandwidth at each point. This is illustrated in Figure 4.3 where the spatio-spectral
Strehl ratio (the focused spectral intensity) is compared with spatio-temporal Strehl
ratio (the focused temporal intensity). The impact of residual angular dispersion scales
with the beam size as a larger beam can be focused to tighter focal spot. The maximal
residual linear angular dispersion can be estimated to 30 nrad/nm. It is mainly induced
by the non-parallel gratings in the compressor. It can be present both in the horizontal
and the vertical plane, so the bounds for maximal residual AD in one plane have to be
decreased by

√
2 factor to 20 nrad/nm.

-2 0 2

x
f
 ( rad) 10 -6

0

0.5

1

S
p
a
ti
a
l 
In

t.
 (

a
.u

.)

Farfield profile

0 nrad/nm

50 nrad/nm

100 nrad/nm

0 20 40 60 80 100

AD (nrad/nm)

0.4

0.6

0.8

1

R
e
la

ti
v
e
 i
n
t.
 (

a
.u

.)

Strehl ratio

S
t

S

a) b)

Figure 4.3: Degradation of the peak intensity due to residual linear angular dispersion
defined in µrad/nm. The simulation was done for Gaussian pulse with transform-
limited pulse duration 130 fs with super-Gaussian spatial profile of the twentieth order
with 0.3 m half-width.

Uncompensated spectral phase
The impact of the residual phase on the temporal Strehl ratio is plotted in Figure
4.4. Assuming the Gaussian spectrum, the maximal residual spectral phase can be
estimated to be 2500 fs2 and 250 000 fs3, 4 000 000 fs4. The faster decay of the tails
of the super-Gaussian spectra of the fourth order relaxes these parameters to 4000 fs2

and 250 000 fs3, 4 000 000 fs4. The output spectrum of laser can be expected to lie in
between. For the purpose of this tolerance analysis, the Gaussian spectrum is assumed
to be the worst case scenario. According to Table 2.2, the residual spectral phase is
mostly induced by the deviation in the grating spacing, incorrect angle of incidence
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into the compressor and the yaw misalignment of the second and third grating.
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Figure 4.4: Degradation of the peak intensity due to residual spectral phase of a
pulse with Gaussian (a) and super-Gaussian spectrum of the fourth order (b) having
transform-limited pulse duration of 130 fs. The temporal Strehl ratio was calculated
independently for the individual dispersion orders.

Budget

The maximum misalignment, which would breach the constraints for the Strehl ratio,
was estimated for each parameter. Based on that a tolerance budget taking into ac-
count all the possible misalignments was established. The total error was uniformly
distributed among the uncoupled degrees of freedom. The maximum possible contri-
bution of the individual degree of freedom was then calculated:

individual error = Total error√
Degrees of freedom

(4.1)

Afterward, the results were verified by Monte Carlo analysis using optical model in
ZEMAX Opticstudio.

Method

The tolerance analysis can be decoupled into two separate problems. The mutual align-
ment of the grating assemblies and the alignment of the gratings within the assembly
can be studied independently. An optical model in ZEMAX Opticstudio was created
to evaluate the sensitivity of the individual degrees of freedom with respect to the
tolerance budget. The residual angular dispersion was obtained from the spectral de-
pendence of ray pointing at the compressor output, spatial Strehl ratio was simulated
using Huygens point spread function and the residual spectral phase was calculated us-
ing user developed macro based on principles discussed in Section 1.6. The simulated
values were also verified with theoretical formulae where possible [43]. The temporal
Strehl ratio was calculated as follows. The studied compressor configuration was phase-
traced. The retrieved spatial profile for each spectral component was then exported
into Matlab using ZOSAPI link. In Matlab, far-field distribution was numerically cal-
culated using the 2D FFT algorithm according to Eq. (1.36). The far-field points with
the highest spatial intensity were then transformed into the temporal domain using the
1D FFT algorithm (Eq. 1.2). The peak temporal intensity of the examined case was
then compared with the peak temporal intensity of the ideal system having constant
phase in the x− ω domain.
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4.1 1740 ln/mm compressor

The 1740 ln/mm grating design has been successfully implemented in high energy laser
systems such as Texas Petawatt [37] or OMEGA EP [46]. The operational angle of the
gratings is set to 74° for 1060 nm central wavelength with diffraction efficiency better
than 95% within the whole bandwidth [85]. To constrain the fluence on the last grating,
the beam size has to be enlarged to 40 x 40 cm resulting in 145 cm footprint width of the
beam on the first and the last grating (Figure 4.1). Since monolithic gratings with such
aperture were not commercially available, a tiled grating and a grating-mirror scheme
allowing to increase the effective grating aperture were considered. The compressor
is composed of 4 gratings assemblies (GA) in the typical Treacy configuration (Figure
2.4). Due to large incidence angle, each grating assembly has to be either in the tiled
grating (G-G) or grating-mirror (G-M) configuration. The overall schematic of the
first half compressor for both tiled grating and grating-mirror configuration is shown
in Figure 4.5. The second half of the compressor is arranged symmetrically.

Figure 4.5: Schematic of the compressor in tiled-grating (a) and grating-mirror config-
uration (b).

Spectral throughput

The nominal model of the compressor was designed so that the ray with 1060 nm
wavelength incident on the center of the GA1 is diffracted to the center of the GA2.
Since the gratings have limited aperture, the edges of spectra are truncated depending
on the spatial coordinate of the beam. The grating gap at the GA1&4 creates a dip
in spatial amplitude for all spectral components around x=0, whereas the position
of the grating gap at the GA2&3 depends on the wavelength. The spatio-spectral
intensity profile of the beam after the compressor is shown in Figure 4.6a. The overall
transmissivity curve of the compressor with a super-Gaussian spectrum and the spatial
offset on the GA2 of the individual spectral components is shown in Figure 4.6b. The
overall transmittance of the compressor due to truncation was estimated to be 96%
(Figure 4.2).

GA-GA tolerances

An analysis of the required alignment accuracy for the individual grating assemblies
was performed under the assumption that the gratings and the mirror within each
assembly are perfectly aligned. The simulated sensitivities of the individual degrees of
freedom to residual angular dispersion, output Strehl ratio and spectral phase deviation
are summarized in Table 4.2.

The compressor is the most sensitive to misalignments within the horizontal (diffrac-
tion) plane, namely to the yaw and line density variation. These misalignments change

65



Spectral intensity

-0.2 0 0.2

x (m)

1040

1050

1060

1070

1080

W
a

v
e

le
g

th
 (

n
m

)

0

0.5

1

R
e
l.
 i
n
te

n
s
it
y

1040 1050 1060 1070 1080

Wavelegth (nm)

0

0.5

1

T
ra

n
s
m

is
s
iv

it
y

-0.5

-0.25

0

0.25

0.5

S
p

a
ti
a

l 
o

ff
s
e

t 
(m

)

Total spectral intensity

Transmissivity

Spectrum

Spatial offset

a) b)

a) b)

Figure 4.6: a) Spectral truncation induced by the compressor. b) Transmissivity curve
compared with the expected spectral profile of the pulse and the spatial offset on the
GA2 of the individual spectral components. The simulation was made Matlab assuming
0.8 m width of the gratings in the diffraction plane, a 6 mm grating-grating gap and
no clipping in the vertical plane.

Table 4.2: GA-GA alignment tolerances to meet values from tolerance budget, the
spectral phase error is induced through the misalignment of the GA2 or GA3 only

DoF AD Sω Spectral phase
Target 20 nrad/nm > 0.80 2500 fs2

Yaw (µrad) 2 13 6
Pitch (µrad) 6 46 3000
Roll (µrad) 12 87 700
LDV (ln/mm) 6 · 10−3 2 · 10−2 3 · 10−3

∆L (µm) - - 85
∆α (µrad) - - 15

the magnitude of the angular dispersion (AD) so that the AD of the first grating does
not match the AD of the second grating. The pitch and roll misalignments effectively
tilt the diffraction plane of one of the gratings with respect to the other one and a small
vertical component of AD then remains uncompensated. The residual spectral phase
is then mostly induced by the yaw misalignment of the GA2 and GA3. When the GA2
or GA3 is slightly rotated by several µrad, the optical path of the dispersed spectral
components is also changed in the µm scale for meter sized gratings. So, the individual
spectral components acquire different group delay than intended which results in pulse
broadening.

The other parameters are the error in the angle of incidence ∆α into the compres-
sor (assuming perfectly parallel gratings) and the incorrect spacing ∆L between the
gratings. These two parameters can be partly corrected after the alignment of the
compressor. Usually, the grating spacing is mechanically set up to be approximately
the same for both grating pairs with mm accuracy and then the grating distance of one
pair is fine-tuned to minimize pulse duration. Consequently, the grating pairs do not
have exactly the same grating spacing. But since the spatial chirp linearly scales with
the propagation distance, the residual spatial chirp is negligible. Small errors in the
incidence angle can be easily corrected by a slight adjustment of the stretcher incidence
angle or the grating spacing (Eq. 2.4).

The required alignment precision is therefore driven by minimization of the resid-
ual angular dispersion for the angular degrees of freedom. That also corresponds to
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the operational needs since the residual spectral phase can be to some extent pre-
compensated by the Dazzler or stretcher. A small adjustment of the order of tens of fs
does not influence the temporal profile of the chirped pulse with nanosecond duration.
On the contrary, the residual angular dispersion is mostly induced by wedged windows
and other optics and it should be kept minimal throughout all the chain. Moreover,
it inversely scales with the magnification of the beam. Therefore, it is not feasible to
tune the angular dispersion prior to the compressor. It is therefore critical to align the
compressor so that the corresponding GA pairs are parallel in the first place.

There are altogether 4 grating assemblies, each one has one adjustable degree of
freedom in the horizontal plane (yaw) and two degrees of freedom in vertical plane
(pitch, roll). Since the tolerance values are driven by the angular dispersion, the toler-
ance budget for each grating will be driven by the second column of the Table 4.2. The
yaw tolerance value will be therefore divided by

√
4 · 1 and the pitch and roll tolerance

values by
√

4 · 2. The tolerance budget representing the target alignment precision of
each grating is presented in Table 4.3. The piston error can be treated separately as it
can be easily adjusted after the alignment.

Table 4.3: Tolerance budget for the alignment precision of each individual grating

Yaw Pitch Roll Piston
1 µrad 2 µrad 4 µrad 42 µm

Phasing tolerances

Generally, the misalignment of the gratings within the GA yields a wavefront deviation.
In the presence of misalignment, the wavefront of one beam half is tilted or gains a
constant phase offset with respect to the other half. This wavefront offset is achromatic
when the GA1 or GA4 are misaligned. The situation is a bit different on the GA2 and
GA3 where the individual spectral components are spatially offset. However, since the
spatial offset is much smaller then the overall width of the beam on the tiled grating
(see position of grating gap in Figure 4.6), the impact of their misalignment is very
similar to the GA1.

There are altogether six degrees of freedom for the alignment of the tiled gratings
and three degrees of freedom for the grating-mirror configuration. The sensitivity to
misalignments is two times bigger for the grating-mirror configuration according to the
theoretical prediction. Since there are four GAs, there are altogether 4 · 6 = 24 degrees
of freedom for tiled G-G configuration and only 4 · 3 = 12 degrees of freedom for the
G-M configuration. According to Eq. 1.20, the total Strehl ratio can be estimated as
the product of the individual Strehl ratios of each misalignment. The misalignments in
horizontal (yaw, piston, LDV, shift) and vertical (pitch, roll) planes are independent
and cannot compensate each other. Contrarily, the misalignments within one plane can
partly compensate each other even if they originate from a different GA. The target
Strehl ratio SGG and SGM for a single misalignment can be derived as :

0.8 = S
(
√

4·4+
√

4·2)
GG 0.8 = S

(
√

4·2+
√

4·1)
GM , (4.2)

where the first term in the exponent represents horizontal misalignments and the sec-
ond one vertical misalignments. Eq. 4.2 has solution SGG = 0.97 and SGM = 0.95
respectively. Tolerance values for each degree of freedom were simulated using a non-
sequential model in Zemax Opticstudio and confirmed by numerical analysis in Matlab
using analytic expressions from Table 2.3. The results were then employed as bounds
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in a Monte Carlo analysis performed in ZEMAX with an uniform distribution of mis-
alignments. The simulation was run 500 times and yielded a 0.87 mean value of the
Strehl ratio with 0.8 reached in 80% of cases.

Table 4.4: Estimation of the maximal misalignment within GAs leading to 0.8 Strehl
ratio after the compressor assuming a normal distribution of the errors within the
compressor. The tolerance values in the table represent 0.97 Strehl ratio of a single
misalignment for the G-G configuration and 0.95 Strehl ratio for the G-M configuration.

DoF Tiled G-G G-M
Yaw 0.3 µrad 0.2 µrad
Pitch 0.7 µrad 0.2 µrad
Piston 70 nm 40 nm
Line density variation 2 · 10−4 ln/mm
Roll 0.3 µrad
Lateral shift 70 nm

Diffraction on grating gaps

The beam clipping on the grating gaps induces spatial intensity modulations as the
beam propagates through the compressor. Since the gratings in the GA4 operate
close their LIDT as the pulse retains its minimal duration there, the estimation of the
magnitude of the modulations is crucial to establish a sufficient safety margin. The
simulation was performed in Matlab using the Fresnel propagation algorithm in the
diffraction plane (1D spatially). The spatial amplitude of each spectral component
was propagated through four apertures representing the individual GAs. Their mutual
distances were set according to the GA-GA distance in the compressor (Table 4.1).
Figure 4.7a shows the spatial intensity profiles at the GA4 of the individual spectral
components, Figure 4.7b represents the resulting spatial intensity modulation of the
beam, which is calculated as a spectral sum of the spatial intensities. The modulation
maxima reach up to 1.5 times of the maximum of the input intensity profile.

Figure 4.7: Diffraction induced intensity modulations on the GA4.

The side modulations induced by the grating gap at the GA2&3 are not present
in the spatial profile because they are averaged out as their position varies with wave-
length. The modulation induced by the GA1 gap can be suppressed by leaving slight
(∼0.0005 m/nm) spatial chirp at the compressor output [86]. The spatial chirp shifts
the modulation maximum in dependence on the wavelength so that the modulation is
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smeared out in the same way as the modulations from the GA2&3. Such small spatial
chirp influences the pulse duration and the focused peak intensity only marginally as
it represents only 1 cm sweep between the edges of 20nm bandwidth in the nearfield.
Nevertheless, the modulations induced by the GA4 gap cannot be suppressed this way
as all the spectral components overlap and are collimated there. The modulation then
increases the risk of damaging subsequent optics. The modulation could be theoreti-
cally suppressed by apodization the part of the beam incident on the gap prior to the
compressor.

Line density variation

Since the line density variation (LDV) of the grating is determined through the manu-
facturing process highly sensitive to the refraction index of the air, the grating producer
is able to restrict it only to certain intervals. Line densities of the compressor gratings
may then differ. According to Table 2.2, the LDV in compressors generally induces
both residual angular dispersion and spectral phase deviation. To compensate it, the
grating can be tilted in yaw so that it matches the linear angular dispersion of its
counterpart according to Eq. 2.9. Such compensation then leads to even bigger detun-
ing of the output spectral phase. That can be compensated through the adjustment
of the incidence angle α and the grating spacing L of the both grating pairs to tune
the output GDD and TOD and to minimize spatial chirp. The impact of the higher
dispersion orders on pulse broadening is then minimal. However, the quadratic term
of angular dispersion remains uncompensated, which can decrease the Strehl ratio for
systems with large LDV or broad bandwidth. A simulation in ZEMAX confirmed that
the impact of LDV in the order of 0.1 ln/mm on the Strehl ratio is negligible (Table
4.5).

Table 4.5: Compensation of line density variation in the 1740 ln/mm compressor; θ∆NC
Y aw

stands for the yaw adjustment necessary to suppress residual angular dispersion, ∆L
and ∆α stand for the adjustments of the grating spacing and the angle of incidence to
compensate the residual spectral phase.

LDV θ∆NC
Y aw ∆ L ∆α Sω

ln/mm µrad µm µrad -
0.1 31 636 209 1
1 305 3840 2093 0.94
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Figure 4.8: Residual quadratic angular dispersion present when the LDV is compen-
sated by the GA yaw. a) Farfield profile in ray approximation; b) The dependence of
pointing deviation on wavelength
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Line density variation within GAs (G-G)

For tiled grating assemblies, the compensation is more complicated since the LDV also
influences the diffracted wavefront from the GA. Because the sensitivity to the LDV
within GAs is bigger than to the LDV between the opposite GAs (compare Table 4.2
and 4.4), the LDV within GA has to be compensated first. That can be achieved by
tilting one of the gratings within the GA with respect to the other in the yaw by θGA

Y aw

equal to:
θGA

Y aw = −∆Nλ
cos α+ cos β . (4.3)

The residual angular dispersion can be minimized by tilting whole GAs with respect to
each other. However, as the spectral components propagate by one of the four possible
paths sketched in Figure 4.9, the exact compensation of residual AD is possible only
for a single path.

Figure 4.9: Possible optical paths through tiled grating assembly. Paths 1 and 2 are
the most frequent ones (a); Paths 3 and 4 are propagated only by the rays incident
near the grating gap with eligible wavelength.

Because the majority of the rays propagate along paths 1 and 2, it is advisable
to minimize their AD. To do that, three steps must be followed. First, the gratings
should be grouped into the pairs with the closest line densities to achieve the smallest
line density variation ∆NGA possible for all GAs. This minimizes θGA

Y aw which mainly
results in the difference in the residual angular dispersion between the path 1 and 2.
Second, the gratings on the opposite sides of the compressor (G1-G4, G2-G3) must be
arranged to have the closest line density difference (ideally |N1 −N4| = |N3 −N2|). If
the line density difference is the same for both paths, it can be entirely compensated by
tilting whole GA. Third, GA2 has to be tilted by θ∆NC

Y aw + θGA
Y aw/2 in order to minimize

the residual angular dispersion for both ray paths. The angle θ∆NC
Y aw is given by the

average line density variation ∆NC = N1+N2−N3−N4
2 and can be calculated as:

θ∆NC
Y aw = ∆NC

N tg β (4.4)
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Fourth, the second half of the compressor should be populated with gratings in a such
way that its residual AD has the opposite value compared to the first compressor half.

Figure 4.10: Procedure of the compensation of the line density variation in a tiled
grating compressor. First, gratings within a GA are tilted by θGA

Y aw to compensate
for the wavefront error of the diffracted beam. Second, the angle between the GAs is
adjusted to minimize the residual angular dispersion.

The whole procedure is sketched in Figure 4.10. The residual angular dispersion of
the corrected system can be expressed with the help of Eq. (2.8) using the angles from
Eqs. (4.3) and (4.4). Since the tilts are symmetric, paths 1&2 and 3&4 retain the same
residual angular dispersion. The residual AD dθx

dλ |P 1&2 (dθx
dλ |P 3&4) for beam paths 1&2

(3&4) can be calculated as:

dθx

dλ |P 1&2 = K(λ) · (N1 −N2 +N3 −N4) = K(λ) · (∆NGA1 − ∆NGA2)
dθx

dλ |P 3&4 = K(λ) · (N1 −N2 −N3 +N4) = K(λ) · (∆NGA1 + ∆NGA2)
(4.5)

with
K(λ) = 1

2cos(α) + 1
2(cos(α) + cos(β))

tg(β)
cos(α)Nλ, (4.6)

with ∆NGA1 = N1 −N2 and ∆NGA2 = N4 −N3. Following Eq. (4.5), it can be deduced
that the compensation of paths 1&2 goes against the compensation of path 3&4. The
worst-case scenario for paths 1&2 happens when all gratings have same line densities
except for one having LDV difference δN . Otherwise, it should be possible to arrange
the gratings in such way that δN is at least partly compensated (assuming that G1 to
G4 are interchangeable). The right side of Eq. (4.5) is then equivalent to K(λ) δN
with K = 10 for 1060 nm wavelength and the simulated compressor setup. The 20
nrad/nm requirement from the tolerance budget then determines the condition for the
maximal LDV δN < 0.002 ln/mm.
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Theoretical prediction was cross-checked with spatio-temporal simulation in ZE-
MAX OpticStudio combined with Matlab. The compressor aligned according to Fig-
ure 4.10 was ray-traced; the optical path and output pointing of the rays were extracted
in dependence on their entrance pupil position and wavelength. The residual angular
dispersion, GDD and TOD were then calculated. The output profile was also focused
using Fraunhofer approximation and the temporal Strehl ratio was obtained. The grat-
ings were then aligned according to Figure 4.10. A simple simulation where only one
grating had line density variation was performed. The results from Table 4.6 confirm
that only 0.003 ln/mm line density variation can result in ten percent decrease of the
focused intensity.

Table 4.6: Simulation with line density variation of only one grating. Path 3 and 4
are neglected as there is only one grating with LDV. ∆GDD describes GDD difference
between path 1 and 2.

∆N θGA
Y aw θ∆NC

Y aw AD Path1 AD Path2 ∆GDD Sω St

ln/mm µrad µrad µrad/nm µrad/nm fs2

0.003 4.3 0.5 0.03 -0.03 1200 0.95 0.93
0.01 14.2 1.5 0.1 -0.1 3800 0.91 0.87

To generalize results, the compressor was populated with gratings having uniformly
distributed LDV ±0.01 ln/mm. Three methods for the arrangement of the gratings
and two methods for the alignment of the compressor are compared in Table 4.7. In
the first case the compressor was randomly populated with generated gratings. In the
second case, gratings were sorted to minimize LDV within the GAs. In the third case,
the gratings were again sorted to minimize LDV within GA but they were also swapped
within the GAs to mutually compensate the LDV of the other GAs according to the
procedure discussed above. For each case, two alignment methods were studied. In each
alignment method one of the gratings within GA was tilted to suppress the phasing
wavefront error (Eq. 4.3), the mutual angle between GA1&2 and GA3&4 and grating
spacing was optimized to limit residual angular dispersion and GDD. For the alignment
method number 1, the optimization was done for path 1 (Figure 4.9). The alignment
method number 2 followed the procedure sketched in Figure 4.10 leaving even angular
dispersion and GDD for both paths 1&2. The effective line density variation ∆Neff is
generally a value comparable with a compressor having only one grating with LDV ∆N
(assuming that the minimization procedure is undertaken) and it was calculated as:

∆Neff = ∆NGA1 − ∆NGA2 + ∆NGA3 − ∆NGA4

= N1 −N2 +N3 −N4 +N5 −N6 +N7 −N8
(4.7)

Simulation results confirm that it is critical to arrange gratings in a way that min-
imizes the LDV within the GA and that also mutually compensates the residual LDV
between the different GAs. The alignment method number 2 described in Figure 4.10
yields better results as the residual AD is uniformly distributed between paths 1&2
compared to the alignment method number 1. On the other hand, the alignment
method number 1 is more feasible experimentally since it requires measurement of AD
and GDD for only one path. In the alignment method number 2, the GDD and AD
would have to be adjusted for both paths in successive steps. Nevertheless, the ar-
rangement (”Optimized”) and the alignment method number 2 described above allow
to considerably minimize the impact of LDV within tiled grating compressor. Still,
the mutual compensation of LDV is possible only when the LDV of the gratings are
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Table 4.7: Comparison of the impact line density variation in the compressor. ∆Neff

represents the effective line density variation being equivalent to a compressor having
only a single grating with LDV ∆Neff . AD and GDD are marked with corresponding
path number. The Strehl ratio of the ideal system in this simulation was reduced to
St = 0.96 and Sω = 0.97 due to the clipping of the spectral edges on GA2&3.

Grating Random Sorted Optimized
N1 (ln/mm) 1739.991 1739.991 1739.991
N2 (ln/mm) 1739.995 1739.991 1739.991
N3 (ln/mm) 1739.992 1739.992 1739.995
N4 (ln/mm) 1740.006 1739.995 1739.992
N5 (ln/mm) 1740.004 1739.996 1739.996
N6 (ln/mm) 1739.996 1740.004 1740.004
N7 (ln/mm) 1739.991 1740.006 1740.009
N8 (ln/mm) 1740.009 1740.009 1740.006
∆Neff (ln/mm) -0.028 -0.014 -0.002
Alignment method 1 2 1 2 1 2
St 0.34 0.58 0.53 0.83 0.92 0.95
Sω 0.46 0.68 0.66 0.88 0.95 0.97
AD1 (nrad/nm) 0 -280 0 -140 0 -20
AD2 (nrad/nm) 560 280 280 140 40 20
GDD1 (fs2) 0 1300 0 -2400 0 1000
GDD2 (fs2) -2600 -1300 -4700 2400 -2100 -1000

comparable. If one grating has remarkably bigger LDV, it determines the Strehl ratio
after the compressor.

In Figure 4.11 the pulse-front of the output pulse is compared for the alignment
methods for the second case. The residual linear AD leads to pulse front tilt in general.
The alignment method number 1 results in no AD for the one beam half and constant
AD for the other beam half (Table 4.7). However, for the alignment method number 2
the sign of the angular dispersion is flipped at the grating gap and therefore the sign
of the pulse front tilt delay is opposite as well. The pulse front profile then resembles
reversed V-shape. The alignment method number 2 clearly leads to smaller maximal
deviation of the group delay across the beam profile and therefore yields higher Strehl
ratio.

Retro-reflections (G-M)

Since the zeroth diffraction order of the grating-mirror configuration is equivalent to a
specular reflection from a roof mirror, the grating-mirror assembly horizontally retro-
reflects the beam back with relative intensity equal to the zeroth order efficiency of
the grating (∼ 1%). The retro-reflections pose a risk to a laser system as they cannot
not be filtered by the relay pinholes. They can be also further amplified during back
propagation (Nd:glass lifetime is in the order of microseconds) which can lead to their
damage. The summary of three most risky retro-reflections is presented in Table 4.8.

The first retro-reflection originates from the GA1 (Figure 4.12a) but since the beam
is not yet dispersed, the reflected pulse has the same duration as the incoming pulse.
The second back-reflection originates from the GA2 (Figure 4.12b). Firstly, the beam
is diffracted off the GA1 and its spectrum is dispersed. The dispersed beam then hits
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Figure 4.11: Comparison of the pulse front profiles (a-b) and focal spot profiles (c-d)
in the diffraction plane after the compressor with an uniform LDV of the gratings for
both alignment methods with normalized z-scale. The simulation was performed for
the ”sorted” case from Table 4.7 in ZEMAX OpticStudio linked with Matlab. The
pulse front and focal spot profile in the plane perpendicular to the diffraction plane are
not aberrated.

the GA2 and is reflected back as the zeroth diffraction order. Since the pointing of
each spectral component is preserved, the beam is then collimated as it is diffracted
again from the GA1. The beam travels 2L distance between the gratings and therefore
the temporal chirp of the pulse is compensated. Because the zeroth order reflection
off the GA2 inverses the spatial coordinates of the beam in the diffraction plane, the
spatial chirp is doubled and can be estimated to be 1 cm/nm. The L4 beam has 40 cm
diameter at the compressor input with 20 nm bandwidth. The overlap of the spectra
is therefore sufficient to obtain a few hundred fs pulse even in the nearfield. A ¡200 fs
pulse can be expected in te farfield where the spatial chirp has no effect. Assuming 1500
J at the input and 1% zeroth order efficiency, the retro-reflection can reach 100 TW
peak power. The third back-reflection comes from the GA3 (Figure 4.12c). The beam
propagates through the first half of the compressor and is incident on the GA3. It
is again diffracted as the zeroth order, back reflected and its spatial coordinates are
inverted in the diffraction plane. After it propagates back through the first half of the
compressor its spatial chirp is doubled and it is temporal chirp is compensated. The
back reflected pulse has therefore the same properties as the back-reflected pulse from
GA2.

Table 4.8: The summary of back reflections originating from the zeroth diffraction order
from grating-mirror assemblies in the compressor.

0th order at GA1 GA2 GA3
Pulse duration ∼3 ns ∼130 fs ∼130 fs
Energy 1 % 1% 1%
Delay 0 ns 20 ns 40 ns
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Figure 4.12: Retro-reflections for the grating mirror configuration coming from the
zeroth order diffraction of the GA1 (a), GA2 (b) and GA3 (c).

The retro-reflections can be filtered when the gratings are vertically tilted to deviate
the pointing of the retro-reflection in the vertical plane. When the tilt is small, the
retro-reflection can be possibly filtered at the relay pinholes. However, since the peak
power of the retro-reflections approaches 100 TW, pinhole filtering is not advisable as
it can lead to pinhole drilling and contamination of vacuum. A preferable approach
would be to introduce a larger vertical tilt so that the zeroth order from the GA2 (GA3)
misses the GA1 or preferably some optics upstream and is guided to a beam dump.

Postpulses (G-M)

When the beam is diffracted as the zeroth order two times, it has the same propagation
direction as the main beam but it is delayed with respect to ti. Generally, properties
of these post-pulses are very similar to the pre-pulses mentioned above. Their char-
acteristics is summarized are Table 4.9. The most intense post-pulse is created when
the beam is reflected as the zeroth diffraction order subsequently from the GA3 and
GA2 respectively. Such a post-pulse is delayed by 40 ns with respect to the main beam
and has only 0.01% energy. Otherwise, it has exactly the same properties as the main
pulse. Contrarily, the other two post-pulses are temporarily chirped and exhibit large
spatial chirp as the dispersed beam propagates three times longer distance between the
GA1 and GA2 or GA3 and GA4 compared to the main pulse.

Table 4.9: The summary of post-pulses originating from the double zeroth order diffrac-
tion of the beam.

0th order at GA4, GA3 GA3, GA2 GA2, GA1
Pulse duration 4.5 ns 130 fs 4.5 ns
Energy 0.01 % 0.01 % 0.01 %
Delay 20 ns 40 ns 20 ns
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Discussion

The 1740 ln/mm compressor design poses several challenges. For a grating-grating
configuration, line density variation of the gratings has to be precisely determined
during the manufacturing process with 0.003 ln/mm precision, otherwise it would lead
to complex spatio-temporal couplings. In the grating-mirror configuration, line density
variation is not present since the grating is imaged by a mirror. On the other hand,
the zeroth order diffraction order from the GA2 and GA3 configuration are retro-
reflected and compressed during their back-propagation. The peak power of these retro-
reflections can reach up to 100 TW, they cannot be easily relay filtered and therefore
they pose a risk to the laser system. In both configurations, diffraction at the grating
gaps has to be mitigated. Diffraction induced modulations at the GA4 (having highest
LIDT requirements) can be possibly smoothed out by spatial chirp smoothing. Still,
the modulation originating from the GA4 gap cannot be suppressed and it tightens the
requirements on damage threshold of all subsequent optics. Both configurations have
strict tolerances for the accuracy of GA-GA alignment in the order of microradians. The
grating-mirror configuration offers slightly better opto-mechanical requirements than
the tiled grating configuration because the number of degrees of freedom is limited to
three. Nevertheless, sub-microradian alignment accuracy is necessary for both types of
assemblies.
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4.2 1136 ln/mm compressor

The multilayer dielectric 1136 ln/mm grating design offers the best diffraction efficiency
near the Littrow angle in the 1040-1080 nm region. To separate the incident and
diffracted beams, the gratings have to be vertically tilted and can be then arranged in
a ”butterfly” configuration sketched in Figure 4.13. The gratings are tilted by 37.0°
in the horizontal (diffraction) plane to operate near the Littrow angle for the central
wavelength 1060 nm. The incident and the diffracted beam are then separated in
the vertical plane by 4.07° pitch yielding 3.25° off-plane angle. The off-plane angle
was chosen with regard to the CIS design, which transports the beam from the last
amplifier into the compressor, and the physical dimension of the compressor hall. The
grating spacing for the central wavelength of the pulse was set to 15.1 m to reach the
target compression ratio. Thanks to the small incidence angle, only a 75x60 cm clear
aperture of the first and the last grating is required for a square beam with 60 cm
width. To increase the aperture of the GA2&3, the grating-mirror configuration was
favoured as it is more cost effective and the retro-reflections discussed in the previous
chapter are filtered due to the off-plane angle. Mirrors with 75x65 cm dimensions were
selected. The clear aperture of the mirrors is equivalent to 56 cm grating width, since
they are tilted at 53° with respect to the incoming beam. The mirrors have to exhibit
flat spectral reflectivity close to 100%, since a part of the dispersed beam is incident
four times on the mirrors and two times on the gratings in total whereas the other
part is incident only two times on the grating. The multilayer dielectric 1136 ln/mm
gratings with 85x65 cm clear aperture and more than 98% reflectivity in 1040-1080 nm
region are to be produced in Lawrence Livermore National Laboratory.

Figure 4.13: Drawing of the compressor in the grating mirror configuration exported
from a ZEMAX model.

Spectral truncation

Since the 1136 ln/mm compressor configuration employs an off-plane angle, the calcu-
lation of the compressor throughput is more complicated as it is a 3D problem. The
diffracted components gain both horizontal (21 mm/nm) and vertical (1 mm/nm) spa-
tial chirp as they propagate towards GA2. Since the GA2&3 can be either tilted by
either pitch (4.07°) or roll (5.45°), its effective aperture is also rotated with respect to
the classical compressor configuration and the dispersed beam can be clipped also in
vertical plane as it is shown in Figure 4.14.

For a numerical analysis, the vertical position of the GA2&3 was fixed and pitch
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Figure 4.14: Effective aperture of the grating mirror assembly compared with the spatial
profile of the dispersed beam at the GA2 for roll (a) and pitch (b) configurations.

and roll tilts were adjusted to maximize the compressor throughput. The output beam
profiles of the individual spectral components and the overall transmissivity of the
compressor for both configurations are presented in Figure 4.15. The pitch tilt leads to
better overall transmissivity as the aperture of GAs is filled better for all wavelengths.

Figure 4.15: Spectral truncation in the 1136 ln/mm compressor. Footprints of the
individual spectral components in the nominal configuration with roll (a) and pitch
(b) tilts compared with the input beam profile (black dashed square). GR and M sign
mark the beam part incident on the grating and mirror within GAs respectively. c)
The compressor transmissivity for roll and pitch configurations and the spatial offset
on the GA2 for the individual spectral components.
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At the roll configuration, the spectral components are clipped mostly by the grating
because the roll angle of the grating aperture is much bigger than the vertical angle of
the spatially dispersed beam. At the pitch configuration, the dispersed beam is clipped
mostly on the mirror from both sides. The transmissivity curve can be shifted to either
sides of the spectra by moving the GA assembly horizontally in the perpendicular
direction to the input beam. The overall spectral throughput of the compressor due
to truncation can be estimated to be 95% for the nominal pitch and 92% for the roll
configuration and hence the pitch configuration was favoured.

GA - GA alignment tolerances

The simulated sensitivity of the individual degrees of freedom calculated from the nu-
merical ZEMAX model are presented in Table 4.10. The tolerances were cross-checked
using analytical formulae wherever possible.

Table 4.10: GA-GA alignment toleraces for the 1136 ln/mm design

DoF AD Sω Spectral phase
Target 20 nrad/nm > 0.80 2500 fs2

Yaw (µrad) 20 69 17
Pitch (µrad) 23 90 280
Roll (µrad) 18 70 200
LDV (ln/mm) 0.016 0.6 0.011
∆L (µm) - - 600
∆α (µrad) - - 17

The tolerance values are again mostly driven by the residual AD induced by the
angular misalignments (yaw, pitch, roll). The maximal yaw misalignment leading to
pulse broadening due to spectral phase deviation is very close to the value given by the
residual AD. The piston error has a very small impact on residual spectral phase due
to the low line density of the gratings. AD originating from the line density variation
(LDV) has to be compensated by tilting the grating by respective angle and will be
discussed in following section.

The tolerance budget closely follows the argumentation presented in the correspond-
ing section of the 1740 ln/mm compressor. The maximal allowable yaw misalignment is
driven by the spectral phase error closely followed by the horizontal angular dispersion.
The spectral phase error is induced only through the misalignment of GA2 and GA3
where the individual spectral components are spatially dispersed, whereas the residual
AD si present for all degrees of freedom. The misalignment of the angle of incidence
∆α of the grating pairs and the piston error ∆L can be corrected using Dazzler or by
tuning the stretcher, so they are not included. The yaw tolerance value will be there-
fore divided by

√
4 · 1 and the pitch and roll tolerance values by

√
4 · 2. The tolerance

budget representing target alignment precision of each grating is presented in Table
4.11.

Table 4.11: The tolerance budget for the misalignment values of each individual grating

Yaw Pitch Roll Piston
10 µrad 8 µrad 6 µrad 400 µm
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Phasing tolerances

The 1136 ln/mm configuration has 1.5 times bigger beam size but it uses only two
phased grating assemblies, so it can be expected that the tolerance values will be close
to the 1740 ln/mm design. There are altogether 12 degrees of freedom for the tiled
grating and only 6 for grating-mirror configuration. The target Strehl ratio SGG and
SGM for a single misalignment can be again derived as:

0.8 = S
(
√

2·4+
√

2·2)
GG 0.8 = S

(
√

2·2+
√

2·1)
GM , (4.8)

where the first term in the exponent represents horizontal misalignments and the second
one vertical misalignments, which cannot mutually compensate each other. Eq. 4.8
leads to SGG = 0.95 and SGM = 0.94 respectively. The tolerance values for each
degree of freedom were simulated in a non-sequential model in Zemax Opticstudio and
confirmed by numerical analysis in Matlab using analytic expressions from Table 2.3.
The results are shown in Table 4.12 and were then employed as bounds in a Monte Carlo
analysis performed in ZEMAX with an uniform distribution of misalignments within
the bounds. The simulation run 500 times with random misalignments and it yielded
0.91 mean value of Strehl ratio with 0.86 reached in 80% of cases for the grating-mirror
configuration.

Table 4.12: Estimation of the maximal misalignments within the GAs leading to 0.8
Strehl ratio after the compressor assuming a normal distribution of the errors within
the compressor. The tolerance values in the table represent 0.95 Strehl ratio of single
misalignment for a G-G configuration and 0.94 Strehl ratio for G-M configuration.

DoF Tiled G-G G-M
Yaw 0.2 µrad 0.1 µrad
Pitch 0.3 µrad 0.2 µrad
Piston 80 nm 50 nm
Line density variation 2 · 10−4 ln/mm
Roll 0.4 µrad
Lateral shift 100 nm

Diffraction on grating gaps

Because G1 and G4 are single gratings there are no diffraction induced intensity mod-
ulations at the fourth grating. The modulations induced by the gap at GA2&3 are
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Figure 4.16: Diffraction induced intensity modulations of each spectral component (a)
are averaged out on G4 where all spectral components overlap (b).
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averaged out as the position of the gap within the beam aperture is dependent on the
wavelength (see Figure 4.16).

Line density variation

The process of the compensation LDV is again analogous to the 1740 ln/mm configura-
tion. One grating within the pair is tilted to suppress the residual AD, and the overall
angle of incidence and grating spacing has to be then adjusted to tune the spectral
phase. Since 1136 ln/mm gratings have lower dispersion, looser tolerance values can
be expected. The tilts and piston required for the compensation of the residual AD
and residual GDD, TOD with respect to the nominal configuration are summarized
in Table 4.13. The residual quadratic angular chirp is illustrated in Figure 4.17. The
impact of 1 ln/mm LDV is indeed very low compared to 1740 ln/mm design.

Table 4.13: Compensation of line density variation in the 1136 ln/mm compressor;
θ∆NC

Y aw stands for the yaw adjustment needed to suppress residual angular dispersion,
∆L and ∆α stand for the adjustments of the grating spacing and the angle of incidence
needed for the compensation of residual spectral phase.

LDV θ∆NC
Y aw ∆ L ∆α Sω

ln/mm mrad mm mrad -
1 1.1 18.9 2.5 0.99
5 5.5 71.9 11 0.9

1040 1060 1080
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Figure 4.17: The residual quadratic angular dispersion present when LDV is compen-
sated by GA yaw.

Pre/post-pulses (GM)

Since only the GA2&3 are in the grating-mirror configuration and all assemblies are
vertically tilted, there are no retro-reflection into the laser as in 1740 ln/mm design.
However, as the compressor operates near the Littrow angle, the specular reflection from
the GA2&3 is reflected in the same direction as the diffracted beam. In the horizontal
plane, the GAs operate as a roof mirror. Therefore they retro-reflect the incoming beam
back and spatially inverse the beam in the horizontal plane with respect to the GA gap.
Similarly, the diffracted and reflected beams are mirror-like reflected and propagate
under the same angle in the vertical plane but since they have slightly different optical
paths, they are vertically offset. The process is illustrated in Figure 4.18.

When the beam is diffracted as the zeroth order from either GA2 or GA3, it is
diffracted off the gratings only 3 times in total as the first diffraction order. It has
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a) b) Specular reflection (0th) Diffracted (1st) 

c) Side-view both beams (single wavelength) 
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Figure 4.18: Optical path of the main vs the ghost beam at the GA3 exported from
ZEMAX; a) Comparison of the optical path of various wavelengths for the specular
reflection b) Comparison of the optical path of various wavelengths for the diffraction
c) Side view on the GA3

residual angular chirp equal to the grating dispersion at the compressor output. There-
fore, there is a wavelength λp for which the incidence angle α is equal to its Littrow
angle at the off-plane configuration so that this wavelength propagates in a parallel
direction with the main beam after both beams are diffracted at G4. If we substitute
the incidence and the off-plane angles using known yaw and pitch rotations of the grat-
ings from Eq. (2.5, 2.6) into the grating equation Eq. (2.2), λp can be estimated to
1059.5 nm. After the compressor, both beams will propagate approximately 30 m to
the experimental chamber with a 0.9 m diameter focusing parabolic mirror. Since the
ghost beam propagates with the residual AD, it gains residual spatial chirp. A part of
the spectrum is then clipped at the G4 and the aperture of the parabolic mirror. Also,
only a narrow part of the spectrum centered at λp is focused to the same spot as the
main beam. Determination of the arrival time of this specular reflection with respect
to the main pulse and the estimation of its energy is very important to prevent possible
ionization of the experimental targets.

The estimation of the arrival times is a very intricate task. Generally, it depends
on the position of the grating mirror gap with respect to λp, the input temporal chirp
and the sign of the (λp-λ0) (i.e. whether is λp delayed with respect to the λ0 in the
compressor). Nevertheless, the delay of the specular reflection with respect to the main
beam can be partly estimated through the comparison of the optical path at each
grating. A spatio-temporal simulation was performed in ZEMAX and Matlab to verify
the results. To decrease sampling requirements originating from the linear (angular
dispersion) and quadratic (temporal chirp) phase dependence in the x-ω domain only
a 6 cm beam diameter and 1 nm bandwidth centered at λp were employed. Such
simplification offers sufficient resolution without losing any significant information. The
nominal configuration of the compressor was ray-traced to calibrate the time axis (set
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Figure 4.19: Simulated spatio-temporal profile of the nominal configuration. The sim-
ulation used only a 6 cm diameter and 1 nm spectral bandwidth to limit sampling
requirements. a) Near-field spectral intensity profile; b) Near-field spectral phase pro-
file; c) Focused spectral intensity; d) Focused temporal intensity

up the zero arrival time). The diffraction order of either GA2 or GA3 was then changed
to zero and the compressor was ray-traced again. At the parabola, the nearfield profile
of the beam was transformed to farfield using Fraunhofer diffraction integral for each
spectral component (Eq. 1.36). The temporal profile was then calculated through the
temporal Fourier transform at each far-field point (Eq. 1.2). A virtual compressor in
the exactly same configuration with negative distances was placed in ZEMAX before the
examined compressor model. The beam propagating through the nominal configuration
therefore exhibited zero OPD and zero GDD in total at the image plane. This helped to
suppress uncertainty of the arrival time of the ghost pulse due to reflections in Fourier
domain and also to reduce the sampling requirements. A simulated spatio-temporal
profile of the nominal configuration is shown in Figure 4.19. The duration of the focused
pulse is around 2 ps due to narrow bandwidth employed in the simulation. However,
since the ghost beam has residual angular dispersion, the spectral overlap in the focal
plane is much smaller. The pulse duration of the focused ghost beam then mostly
depends on the simulated beam size which is inversely proportional to the focused spot
size which influences the spectral overlap in focus. Two scenarios will be examined here.
First, the delay of the specular reflection of GA3 and second the specular reflection of
GA2 will be discussed.

GA3 Zeroth order

In this scenario, the first half of the compressor operates as usual. The beam incident
on the GA3 has regular spatial chirp present after the GA2 and no residual AD, it
is collimated and half of its temporal chirp is compensated. The specular reflection
off the GA3 then only inverses the spatial chirp and sends the beam towards the G4.
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Figure 4.20: Residual angular dispersion (a) and the spatial chirp (b) of the ghost beam
at the position of the focusing parabola exported from the Zemax model. The profile
of the main beam is marked with dashed black curve.

Because the G4 diffracts the beam as its first order, the beam is angularly dispersed
and its spatial chirp is further increased during its propagation towards the parabolic
mirror. The simulated profile of the residual angular dispersion (Figure 4.20a) at focus
confirms that the propagation direction of 1059.5 nm component is parallel with the
beam. The nearfield profile (Figure 4.20b) shows that there is no significant clipping
of the spatial profile of λp at the aperture of the focusing parabola.

To determine the arrival time of the ghost beam with respect to the main beam,
their optical path at the GA3 and G4 were compared for λp. The top view of the GA3
(Figure 4.21a) shows that the ghost beam has approximately 10 cm longer optical path
since it travels from the G3 to the M3 in the rooftop configuration whereas the main
beam diffracts solely from the G3. Contrarily, since the ghost beam is horizontally
shifted with respect to the main one due to its specular reflection off the GA3, the
optical path of the ghost beam at the G4 is 16 cm shorter compared to the main beam.
In total, that means that the ghost beam has 6 cm shorter optical path then the main
pulse and therefore it should arrive approximately 200 ps prior to the main pulse. The
numerical simulation presented in Figure 4.22 confirms that the ghost reflection is a pre-
pulse with arrival time 250 ps prior to main pulse. Its pulse duration is around 300 ps
at each point due to spectral narrowing induced by residual angular dispersion at focus.
However, in simulation the ghost beam has bigger spectral overlap in focus since the
beam diameter was limited to 6 cm. In reality, the beam size is 10 times bigger, so 10
times longer pulse duration can be expected assuming aberration free focusing system
and perfect flat wavefront of each spectral component. The arrival time of the ghost

Figure 4.21: Comparison of the optical path of the ghost reflection and the main beam
at GA3 (a) and G4 (b).
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Figure 4.22: Simulated spatio-temporal profile of the configuration with specular re-
flection of GA3. a) Nearfield profile; b) Nearfield phase profile; c) Focused spectral
intensity; d) Focused temporal intensity

pulse can be possibly adjusted by moving the GA gap towards the point of incidence
of the input beam (intersection of the grating front surface and the blue line in Figure
4.21). Nonetheless, it is not feasible to filter the prepulse entirely as the movement
of GA gap also shifts the compressor spectral transmissivity. The prepulse duration
is expected to be several ns. According to Figure 4.21, -10 cm shift of the grating
mirror gap induces 200 ps change in the delay of the ghost pulse. Filtering the prepulse
would then require more than -50 cm shift of the grating mirror assembly which would
significantly reduce the compressor transmissitivity for the higher wavelengths.

The relative intensity of the postpulse can be estimated as follows: First, due to the
angular dispersion only a subset of spectra is focused into the same spot as the beam.
Here, we assume that the light incident within 15 µm radius from the focused beam
can influence the contrast of the focused main pulse (10 times the spot size). Since
the residual angular dispersion is 1.4 mrad/nm, only 10 pm bandwidth of the ghost
pulse is encircled in the target radius having only 2 · 10−3 relative energy. Second,
the geometrical vignetting of the rays leads to truncation of 30% of the rays within
the encircled bandwidth. Third, the encircled bandwidth corresponds to ∼ ns pulse
duration. The residual temporal chirp can be neglected as the compression factor is
−200 ps/nm. Fourth, the diffraction efficiency into zeroth order is estimated to be
approximately 1%. Altogether, the relative intensity 10−9 can be obtained. In reality,
the relative intensity of the pre-pulse will be further reduced by tighter focusing which
will mainly result in additional pulse broadening.

GA2 Zeroth order

The scenario where GA2 diffracts as the zeroth order is more complicated. The beam
is diffracted of the G1 and incident on the GA2. The specular reflection at the GA2
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Figure 4.23: Residual angular dispersion (a) and the spatial chirp (b) of the ghost beam
at the position of the focusing parabola exported from the Zemax model. The profile
of the main beam is marked with the dashed black curve.

flips the horizontal coordinates but retains the angular dispersion. The reflected beam
therefore gains additional spatial chirp as it propagates towards the GA3. The GA3
diffracts the beam and since its spatial coordinate was inversed, the angular dispersion
is doubled by diffraction. At the G4 the ghost beam has approximately four times
bigger spatial chirp than at the GA2. Diffraction at then G4 reduces the residual AD
of the ghost beam to half - i.e. it is only flipped with respect to the GA3 scenario
(Figure 4.23a). The simulation confirms that even for this scenario, λp is equal to
1059.5 nm. At the focusing parabola, the ghost beam has much bigger spatial chirp
than in the previous scenario and therefore more energy is clipped there (Figure 4.23b).
Nevertheless, the narrow bandwidth centered at λp propagates through the compressor
without significant losses.

The ghost beam has approximately 10 cm longer optical path at the GA2 compared
to the main one as it travels from the G2 to the M2 in the rooftop configuration (Figure
4.24). The optical path between the GA3 and G4 is the same for both beams because
the optical path difference at the GA3 is opposite to the optical path difference at the
G4 as the effective apertures of the GA3 and G4 are parallel. It follows that 9 cm longer
optical path of the ghost beam leads to approximately 300 ps delay with respect to the
main pulse, which agrees with the results from the numerical simulation presented in
Figure 4.25.

The relative intensity of the post-pulse can be estimated to 10−9 analogously to the
previous scenario since the residual angular dispersion has the same absolute value and

Figure 4.24: Comparison of the optical path of the ghost reflection and the main beam
at GA2 (a), GA3 (b) and G4 (c).
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there is no significant clipping of λp spectral component.

Figure 4.25: Simulated spatio-temporal profile of the configuration with specular re-
flection of GA3. a) Nearfield profile; b) Nearfield phase profile; c) Focused spectral
intensity; d) Focused temporal intensity

Discussion

Thanks to the low line density of the gratings, the 1136 ln/mm compressor design
offers looser alignment tolerances compared to the 1740 ln/mm design. The grating-
mirror configuration of the GA2&3 suppresses line density variation issues and since
the first and the last grating comprises a single grating, there is no diffraction induced
intensity modulation at the compressor output. The simulation results confirm that
the grating-mirror configuration is feasible as it has a smaller number of degrees of
freedom and avoids the determination of the absolute piston misalignment. Still, it
requires almost two times better alignment precision for the alignment of the mirrors
with respect to the gratings. The pre-pulses and post-pulses originating from the
zeroth diffraction orders at the second and third grating-mirror assemblies will have to
be examined experimentally. Their delay with respect to the main beam can be partly
adjusted by moving the grating mirror gap which modifies also compressor spectral
throughput. Nevertheless, the entire filtration of the pre-pulses might not be possible
due to their long temporal duration. These pre and post pulses might introduce a
ns-pedestal around the main pulse with relative intensity lower then 10−9. The relative
intensity of the pedestal is mostly dependent on spectral overlap in the focal plane and
therefore it will be given by the focusing setup and the aberrations of the real beam.
To summarize, the 1136 ln/mm design exhibits generally looser alignment tolerances,
it avoids diffraction induced intensity modulations at the compressor output and line
density variation issues and it was therefore selected for the implementation of the L4
compressor.
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5. Phasing
This chapter encompasses design and testing of the alignment system for grating-mirror
assemblies for the 1136 ln/mm compressor. It will mostly focus on the means of optical
alignment of the assemblies as optical methods directly monitor the mutual position of
the optical surfaces. The other methods such as the ones using displacement sensors
are able to provide sub-nm precision but they measure displacement towards some
reference which is not directly coupled with the optical surface. Therefore such sensors
cannot be employed for the first alignment of the grating mirror assembly. Moreover,
position of their reference can drift in time with respect to the optical surface due to
thermal effects and introduce additional systematic errors.

Tolerance values from Table 4.12 demand sub-microradian resolution for the mutual
alignment of the grating and mirror in the 1136 ln/mm compressor design. Resolution
better than λ/50 is required from interferometric methods for a beam with w0 = 25 mm
at a 1 µm wavelength. Such resolution is achievable for relative measurements moni-
toring the mutual position of the grating and mirror using the Fourier fringe analysis
method [87]. For an absolute measurement required for the first alignment, a careful
calibration is necessary as the interferometric method posses some systematic errors
even when for an ideal surface figure of the measured component.

The resolution of the farfield method can be roughly estimated from the Rayleigh
criterion. Using the same beam parameters mentioned above, the angular resolution
can be estimated to 10 µrad. With the help of numerical processing, the resolution
can be further improved by comparing the fitted width of the measured focal spot with
some ideal spot reflected off some reference optics. The dependency of the beam width
on yaw, pitch and piston misalignments are shown in Figure 5.1. Simulation shows that
0.1 µrad yaw misalignment yields only 0.1% increase of the measured beam width. Such
precision is hardly achievable due to noise-induced through the air turbulence and dark
noise induced by the thermal heating of the camera. The resolution could be improved
using split foci method reported in [47], where the assembly is intentionally misaligned
in one angular degree of freedom (pitch), while the centroid position is measured for
the other angular degree of freedom (yaw). Since the focal spots do not overlap, the
coordinates of centroid can be compared with high accuracy. However, such a method
cannot be employed for the online measurement of the assembly as it would require to
misalign the assembly between shots. The interferometric method clearly offers better
resolution at fixed beam size. Also, a calibration taking into account the surface figures
of optics, retrace and other types of errors can be implemented into the interferometric
method more easily. The resolution of both methods cannot be improved by lowering
the wavelength of the alignment laser due to the reflectivity of the MLD coatings of
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Figure 5.1: Sensitivity of the far-field phasing method. Graphs a)-c) show the depen-
dence of the relative increase of the 1/e2 width of the focus on the indvidual misalign-
ments.
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the gratings and mirrors as it is discussed later.
During operation, an alignment setup will be used to maintain the mutual position of

grating and mirror within the assembly. Since an alignment beam will probe only a part
of the total GA aperture, it is expected that the final fine tuning of the alignment will
be done based on the full aperture measurement of the main beam. Such measurement
cannot distinguish which GA induces the error, but since only GA2&3 are tiled, their
small misalignments can be mutually compensated. Nevertheless, the alignment system
will be designed and calibrated to eliminate absolute errors as much as possible. These
errors are relevant for the first alignment of the GA but not for the relative measurement
required to fix the position of GAs during operation.

Configuration

The setup is based on a Fizeau interferometer with additional far-field diagnostics
and it will be settled on an optical table placed next to the compressor chamber.
A fiber coupled Bragg grating diode is split by a 50/50 beamsplitter. Each branch
then serves for diagnostics of one grating assembly. Both branches are collimated
to a w0=2.5 mm and the beam then passes through two more beam-splitters. The
first BS1 and the second BS2 beamsplitter serve for far-field and near-field diagnostics
of the back-reflected beam respectively. The beam diameter is further expanded ten
times by a Keplerian telescope composed of f200 and f2000 planoconvex lenses. The
vertical coordinate of the beam is increased by a periscope to fit it vertically in between
G1/GA3 and G2/GA4. Afterward, the beam passes through a vacuum window into the
compressor chamber. Inside, 40% is back-reflected by a transmission flat with a slight
pointing deviation to introduce a carrier frequency into the interferogram. The rest
of the beam passes through the flat and is reflected off the motorized mirror oriented
at 45°. The mirror steers the beam towards the grating-mirror assembly with a slight
vertical angle so that it is incident at the exact Littrow angle with no off-plane deviation.
The beam is then diffracted and it propagates the exactly same path backwards to the
BS2 where it is further demagnified by a 2:1 Keplerian telescope and an interferogram
is recorded on a camera. Both telescopes are designed so that the grating-mirror gap
is imaged on the NF camera CCD chip. An intermediate image plane will be located
10 cm in the front of the f200 lens. The back-reflected beam is also reflected off the BS1
and it is focused by a f700 lens onto a camera. The focused spot diameter is expected
to be roughly 200 µm to achieve sufficient resolution using a regular camera with few

Figure 5.2: Layout of the Fizeau interferometer for grating-mirror phasing

90



Figure 5.3: Layout of the phasing beams within the compressor exported from a ZE-
MAX model. Most parts of the interferometer will be located on a separate optical
table located close to the compressor chamber. The probe and interferometric beams
will be injected to the compressor using periscope and a dedicated flange.

µm pixel size.
The best visibility of fringes is achieved with a 40R/60T coating with diffraction

efficiency of the grating-mirror assembly better than 90%. All the large aperture optics
after the f2000 lens is planned to have λ/20 PV at 633 nm surface figure to reduce sys-
tematic errors. The expected layout of the interferometric beams within the compressor
is illustrated in Figure 5.3.

Systematic Errors

Uncertainties discussed in this section are mainly relevant for the measurement of the
initial mutual position of the grating and mirror. There are three main types.

The most significant error comes from the surface figure of the back side of the
transmission flat and the front side of the steering mirror. The reference beam reflected
off transmission flat gains wavefront deviation equivalent to two times the surface figure
of the back side compared to the probe beam. The surface figure steering mirror induces
the error equivalent to three times surface figure since the beam hits the mirror two
times and the mirror is tilted at 45°. The deviation in the retrieved coefficients is
then given by the symmetry of surface figures of the measured optics. For example, a
defocus and vertical astigmatism introduce deviation in the yaw coefficient. An oblique
astigmatism deviates the pitch. A coma aberration then deviates the piston only.

Another systematic error originates from the fact that the alignment beam samples
only a sub-aperture of the grating and mirror. The local gradient of the surface figure
then does not have to match the overall gradient of the full surface figure. The difference
between these gradients induces an alignment error. However, since the part of the
beam which is incident on the mirror also hits the grating, a part of this error is self-
compensated due to the mirror symmetry. The grating induced wavefront gradient in
the vertical plane is exactly mirrored and therefore it does not induces any pitch error.
The same applies for the piston error. The grating induced wavefront gradient in the
horizontal plane is doubled and introduces the yaw error. The errors induced by the
mirror surface figure are all doubled. To estimate the impact of the sub-aperture error,
a full grating surface figure was simulated in Matlab using Zernikes polynomials of the
2-8 order. The top right corner of the grating aperture with 5x10 size was selected as
the sub-aperture. A copy of the grating sub-aperture was mirror inversed. Both sub-
apertures were fitted with a plane and their coefficients were compared. The simulation
was performed 20 times with λ/3 PV grating surface figure and yielded maximal PV
error of the grating sub-aperture λ/20 with 2µrad yaw coefficient.

Another major systematic error is called retrace error and it can be explained as
follows. Since the reference beam, reflected off the transmission flat, and the probe
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Figure 5.4: Example of the subaperture error. In the shown example, the Peak-To-
Valley ratio wavefront error of the full grating was set to 300 nm, while the Peak-To-
Valley ratio of the subaperture yielded only 40 nm resulting in 1 µrad yaw difference.

beam, diffracted at the grating-mirror assembly, do not share exactly the same path
during back propagation, their wavefront deviation gained during back-propagation can
differ. The retrace error is a systematic error which increases with a carrier frequency
of the interferogram and is induced via two mechanisms. First, the reference beam
has slight angular deviation and therefore it passes through the lenses under different
angles. Second, as the reference beam propagates back it becomes spatially offset with
respect to the probe beam within the aperture of the optics. Surface figures of the
mirrors and lenses are not ideal and therefore the induced wavefront deviation of both
beams is spatially shifted with respect to each other and no longer compensate each
other entirely. To estimate the impact of the retrace error, an optical analysis was
performed in ZEMAX using randomly generated surface figures using the spherical,
astigmatism and coma aberration with a peak to valley ratio according to the previous
section. The angular deviation of the beam reflected off the transmission flat was set to
250 µrad and the wavefront of the probe and the reference beams was subtracted. The
PV of the retrace error was smaller then λ/50 in each of 20 cases with the wavefront
PV of the individual beams smaller then λ/3. The surface figure of the transmission
flat and steering mirror was neglected in the simulation to separate the retrace error.

The errors originating from surface figures of the optics can be numerically sub-
tracted assuming that the surface figures are accurately characterized and that the
interferometric beam is centered within their aperture. The sub-aperture error can be

Table 5.1: Systematic errors of the interferometric measurement. The table shows the
maximal possible errors induced by surface figures of optics for a given PV.

Error source Est. PV Yaw Pitch Piston
µrad µrad nm

Tranmission flat λ/15 3 3 60
Steering mirror λ/11 4 4 90

Subaperture grating (λ/3 full ap.) λ/20 2 - -
Subaperture mirror (λ/10 full ap.) λ/50 1 1 40

Retrace error λ/50 1 1 20
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included in a similar fashion if the surface and holographic errors of the grating are
known. The retrace error can be calibrated using one of the established methods [88].
It also possible to set up the whole system at the working position and place a high
quality reflection flat in between the steering mirror and the grating-mirror assembly.
The retrieved phase profile should correspond to the overall systematic error of the
system. The accuracy of this approach is mostly limited by the surface figure of the
additional reflection flat.

Laser source

A laser used for the alignment has to operate near the central wavelength of the laser.
Compared to the tiled grating setup, the grating-mirror configuration is bound by the
following condition. Since one part of the beam is reflected straight off the grating,
the other part undergoes additional two reflections from the mirror. Both farfield and
nearfield phasing methods require to have roughly the same intensity of both beam
halves (even though interferometric method is more flexible in this aspect). The align-
ment laser has to therefore operate in the wavelength region, where the mirror is close
to 100% reflectivity, to get similar intensity of the both beam halves. According to
the expected reflectivity plots of the MLD mirrors, the working region is 1020 - 1100
nm. The alignment laser should also meet following criteria. First, it should preferably
operate at the Littrow angle to avoid the placement of the additional back reflecting
mirror. Second, the beam path should not collide with the existing beam paths in the
compressor. Third, it should have sufficient coherence length. Since the transmission
flat has to be positioned at the other half of the compressor than the measured grat-
ing assembly to avoid the optical path of the main beam, the laser coherence length
should be at least 30 m which corresponds to a 4 MHz linewidth. Fourth, it should be
preferably fiber-coupled and temperature stabilized to avoid pointing and wavelength
drifts.

The operating wavelength around 1030 nm meets all these requirements, since the
35.8° Littrow angle has suitable beam path through the compressor (Fig. 5.3). The
selected laser diode QFBGLD-1030-5 [89] is a fiber bragg grating wavelength stabilized
single mode laser. The diode is operated by an Arroyo 6305 ComboSource laser diode
driver with integrated temperature control. Since the diode has only 5 mW output,
the output power will be too low for a pre-alignment of the inteferometric setup due to
larger beam size. This pre-alignment will be done with a separate 400mW fibre-coupled
laser diode with the same central wavelength having shorter coherence length. After
the prealignment the diodes will be swapped and therefore the output pointing should
be preserved.

5.1 Fizeau interferometer

To evaluate experimental accuracy of the phasing methods, a Fizeau interferometer
with farfield diagnostics was built (Figure 5.5). A frequency stabilized He-Ne laser is
collimated to 2 cm diameter. After passing through a beamsplitter cube, a part of
the beam is back-reflected by a high quality transmission-flat, while the rest of the
beam is incident on the measured surface and is retro-reflected back. Both beams are
then down-collimated by a 7:1 telescope and their interference pattern is measured by
a 12-bit Bassler ACA camera. A far-field profile of the beam is also monitored by an
8-bit U-Eye camera.The spatial phase profile is extracted from the interference pattern
by the Fourier fringe pattern analysis method discussed in Section 2.2.3. Compared
to the more established phase-shifting technique, the Fourier fringe pattern analysis
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Figure 5.5: Layout of the constructed Fizeau interferometer

method allows to obtain phase at real-time without the need of additional moving
actuators on either transmission flat or measured object. The procedure of the phase
extraction was programmed in Labview to allow easy portability and broad hardware
compatibility. The individual steps of the algorithm are sketched in Figure 2.11. Firstly,
a mask defining the region of interest is created. The masked intensity pattern is
Fourier transformed to a spatial frequency domain. The term with the induced carrier
frequency is then Hanning filtered to reduce spectral leakage, moved to zero and inverse
Fourier transformed back to the spatial domain. The resulting complex field contains
the measured wrapped phase profile. The phase profile is unwrapped by the Goldstein
algorithm [51]. Both beam halves are then fitted with a plane and the coefficients of the
plane fit are then compared to retrieve the relative yaw, pitch angles and the relative
piston according to Eq. (2.11). The farfield intensity distribution calculated from the
retrieved coefficients can be then compared to the measured one.

5.2 Testing

The following text is based on [A5].

Initial laboratory tests were conducted on an in-house developed mount equipped
with flexible joints offering sub-microradian precision for the positioning the mirror
with respect to the grating. The mount was developed to prove the validity of the

Figure 5.6: Experimental setup: 633 nm He-Ne beam is incident on a grating-mirror
assembly under the Littrow angle, the position of the mirror is also monitored by
capacitive sensors and a tilt-meter.
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grating-mirror concept and was then employed in the sub-aperture compressor. For
the testing, the mount was fitted with smaller sized optics - a Spectrogon 1740 ln/mm
gold grating and a flat silver mirror. The mirror was attached in an aluminium block to
fit the mount designed for a long striped mirror. The experimental scheme is sketched
in Figure 5.6 and photos of the setup are shown in Figure 5.7.

For the measurement of yaw and piston misalignments, the mount was equipped
with capacitive sensors. CS05 and CS05Fl probes with CapaNCDT6200 driver were
provided by MicroEpsilon for the testing. The sensors measure the distance between
their front face and a conductive surface in 500 µm range with few nm resolution.
Readout positions of the sensors were zeroed at the beginning of the measurement.
The yaw coefficient was calculated as the relative position difference of the sensors
divided by their distance. The piston coefficient was obtained from the position of the
CS05Fl sensor, which was located close to the grating-mirror gap, where the piston
is defined. However, it was necessary to add a small correction term due to the fact
that the sensor was not located exactly at the interface of the mirror and the grating
but was shifted by 1.5 cm (see Fig.5.6a). The correction factor was calculated as:
CS05FLpos + Yaw · 1.5 cm. The pitch misalignment of the mirror was monitored by a
Jewell 755-series high gain inclinometer sensor. The sensor contains conductive liquid,
an air bubble and three platinum electrodes. When the sensor is tilted, the area where
the liquid touches the electrodes changes due to the movement of the air bubble. That
in turn modifies the ratio of the resistivity of the electrode pairs which can be further
processed to calculate the tilt of the sensor with respect to the gravitational vector.
The sensor is capable of measurement of the tilts about two-axis - one representing the
pitch of the mirror, the other representing the roll (rotation about the normal of the
mirror). The resolution is 1 µrad at low-gain mode with 16 mrad range and 0.1 µrad

Figure 5.7: Grating-mirror compressor mount with the attached sensors
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Figure 5.8: Short-term measurement, where the mirror was intentionally misaligned
each step. a) shows the absolute value of the yaw misalignment, b) shows the relative
value between the individual steps of yaw, c) shows the absolute value of the pitch
misalignment, d) shows the relative value between the individual steps of pitch, e) shows
the absolute value of the piston misalignment, f) shows the relative value between the
individual steps of piston

at high gain mode with 2 mrad range. The sensor requires a first-order temperature
correction. Temperature of the mount and air was monitored by RTD OMEGA sensors
with 0.001◦ C resolution.

Firstly, we conducted a short-term measurement in which the mirror was intention-
ally misaligned in few consecutive steps and its position was monitored using all the
methods described above. Fig.5.8a,b show excellent agreement of the yaw misalign-
ment measurement between the ELI-developed Fizeau interferometer, Zygo Dynafiz
and capacitance sensors. The standard deviation between the individual methods was
calculated to be 0.2 µrad. The measurement of the mirror piston by capacitive sensors
also coincides with the interferometric measurement with standard deviation of 15 nm
(Fig.5.8e,f). The interferometrically measured mirror pitch misalignment was compared
to the output of Jewell tiltmeters with a standard deviation within the resolution of
the tilt-meter 0.4 µrad (Fig.5.8c,d). The graph also shows small systematic error as the
magnitude of the tilt calculated by the tiltmeter is bigger than the tilt obtained from
the interferometric measurement.

The accuracy of the measurement was mostly limited by the interferometric mea-
surement because the beam diameter was only 2 cm. 0.2 µrad yaw misalignment then
represents only 0.02 rad phase difference between the beam edges. On the other hand,
the measurement was not influenced by the absolute error because only relative phase
changes were calculated. The accuracy could be increased by using larger sized optics
which would allow to increase the beam diameter.

Several long-term measurements were carried over the period longer than 12 hours
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(Fig. 5.9, 5.10). During the long-term measurements, the yaw and piston measured by
the capacitive sensors were usually much smaller than the actual displacement measured
by the interferometry. The interferometric pitch measurement had slightly different
gradient due to the temperature sensitivity of the tilt sensor. The deviation could have
been also induced by thermal movement of the mirror since the tilt sensor was attached
to the aluminium block while the intereferometer measured the optical surface of the
mirror attached within the block.
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Figure 5.9: Selected long-term measurement of the grating-mirror alignment stability.
a) Temperature at several positions, b) Yaw misalignment, c) Pitch misalignment and
d) Piston misalignment.

The discrepancy between the short-term and long-term measurements of the piston
was probably induced by the temperature expansion/shrinking of the aluminium desk
on which the grating and the mirror were mounted. It can be explained as follows.
The grating has a zerodur substrate and was attached to the mount at its center.
There was 2.5 cm distance between the middle of the grating and the front plane of
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Figure 5.10: Selected long-term measurement of the grating-mirror alignment stability.
a) Temperature at several positions, b) Yaw misalignment, c) Pitch misalignment and
d) Piston misalignment.
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the mirror. With decreasing temperature, the grating size remained almost constant
(0.5 ppm change per ◦C), while the 2.5 cm part of the aluminium desk between the
mirror and the place where the grating is attached shrank faster (20 ppm per ◦C).
The edge of the grating then approached the front side of the mirror and therefore
the piston drifted with the temperature change as it was measured interferometrically.
On the other hand, the capacitive sensors were mounted on the desk from behind of
the mirror and they thermally drifted with it. Therefore, they could not measure this
temperature-induced drift. In Fig.5.11 the piston difference between the capacitive
sensors and the interferometric measurement is compared with the thermal expansion
of a 2.5 cm long aluminium slab according to Fig.5.9a. The data show good agreement.
To avoid this effect, it is necessary to attach the capacitive sensors directly to the optics
or, at least, attach the sensors to the mount/frame holding the optics which has the
thermal expansion coefficient very close to the one of the grating substrate.
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Figure 5.11: Comparison of the temperature expansion of the aluminium mount and
the piston difference between the interferometric and capacitive sensor measurement
for two longterm measurements. a) data from Fig.5.9, b) data from Fig.5.10.

The validity of the interferometric method was also crosschecked by comparing the
simulated farfield profile (obtained from the measured yaw, pitch and piston coeffi-
cients) with the measured one. The beam profiles shown in Figure 5.12 show good
agreement.

5.3 Discussion

The testing was conducted with 2 cm beam diameter incident on a small scale model of
the grating-mirror assembly. The data measured by the ELI-developed Fizeau interfer-
ometer were compared with the output of the capacitance sensors for yaw and piston
misalignments and tilt-meter for the pitch misalignment. Since there were no other
means of the measurement of the absolute alignment of the grating mirror assembly
than the interferometry itself, the measurement did not include possible systematic
errors. Their impact was also lower due to the smaller aperture of the system. Short-
term, these measurements show excellent agreement with accuracy better than 0.2 µrad
for yaw, 0.4 µrad for pitch and 15 nm for piston. The resolution of the interferometer
scales with the beam size, which was the main factor limiting its resolution. Therefore,
the results point out that 10 cm beam aperture of the alignment beam for the main
compressor should provide sufficient resolution. Also, since the reference and probe
beam will be separated in vacuum, lower impact of the noise induced by air turbulence
is expected.

The long-term measurements were influenced by the thermal expansion/shrinking
of the aluminium desk to which the grating and the mirror were attached. Due to these
thermal effects, piston and yaw measured by the capacitive sensors were always smaller
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than piston and yaw obtained from the interferometric measurement. The measurement
of pitch using tilt-meters also yielded deviation with respect to the interferometer and
it could be improved by placing the tilt-meter on the optics substrate. The results will
be comprehended in the design and positioning of the mounts for the capacitive sensors
in the main compressor.
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Figure 5.12: The comparison of the measured farfield with farfield distribution sim-
luated according to yaw, pitch piston coefficients obtained the interferograms. a)
Recorded interferogram; b) Fourier transform of the interferogram; c) Retrieved phase
profile for the perfect alignment; d) Perfect alignment; e) piston = 3 rad; f) yaw,pitch
= 30 µrad; piston = 1.5 rad
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6. Stretcher design
The design of the stretcher of the L4 beamline is based on the design of the compressor
which was bound by the fluence and aperture requirements. Thanks to relatively narrow
spectral bandwidth of the system, it is beneficial to employ a single grating stretcher
having an aberrated imaging system. The single grating stretcher eliminates the need
to measure parallelism of the first and second grating, it has a smaller footprint and
allows easy tuning of the angle of incidence on the grating position in order to adjust
the GDD and TOD. In the single grating stretcher design, output beam pointing is
not influenced by the translation or rotation of the grating. The aberrations present
in the imaging system can be then used to tune the stretcher FOD deviation to match
the residual FOD originating from material dispersion.

The design goals were to allow transmittance of 40 nm bandwidth without clipping
to avoid degradation of time intensity contrast, to limit wavefront aberrations, to min-
imize residual spatio-temporal couplings and to entirely compensate residual spectral
phase in the CPA chain. Also, it was preferred to keep the footprint of the stretcher
as small as possible so it could be placed inside a vacuum chamber. Evacuating the
stretcher chamber limits the spectral phase noise originating from air non-homogenities
and turbulence and therefore it enhances stability of temporal profile and contrast. An
acousto-optic modulator (Dazzler) is included in the CPA chain to control higher dis-
persion orders. However, its efficiency decreases when larger group delays have to
compensated. So, it is advisable to design the system to have theoretically flat spectral
phase and use Dazzler to compensate the real-world deviation only.

The individual dispersion orders of the L4 system are summarized in Table 6.1.
The material section comprises mostly fused silica windows and amplifier glass and was
modeled using Sellmeier coefficients. Since the material dispersion is several orders of
magnitude smaller than the compressor dispersion, it can be expected that the optimal
configuration of an ideal stretcher should be very close to the compressor. It is therefore
advantageous, if possible, to employ the same MLD 1136 ln/mm grating design in the
stretcher to reduce its cost and to enhance its transmittance. However, as it will be
shown later, it was also advantageous to consider 1300 ln/mm line density for the Banks
design due to its inherent aberrations.

Table 6.1: Dispersion of the L4 laser system

Dispersion term GDD (fs2) TOD (fs3) FOD (fs4)

Material 78 256 126 581 −245 067
Compressor 1136 −128 135 131 462 792 672 −2 663 047 191

Stretcher target 128 056 875 −462 916 581 2 663 292 258

With line density of the gratings fixed, a stretcher optimization procedure was done
as follows. First, the ideal grating spacing and the angle of incidence to suppress
the material GDD and TOD was calculated (Table 6.2). Based on these values, the
optimal radii of curvature and number of passes through the stretcher were guessed
and subsequently implemented into a ZEMAX model. The model was then optimized
to meet the design goals according to Fig. 6.2. In general, an adjustment of the radii
of curvature influences the amount of the spherical aberration in the stretcher imaging
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Table 6.2: The residual FOD originating from the material dispersion and configuration
of the ideal aberration-free stretcher having fixed line density with L and α selected to
compensate GDD and TOD from Table 6.1.

Line density (ln/mm) Ltot/ L4pass/L8pass (m) α(°) ∆ FOD (fs4)

1136 30/7.5/3.8 36.95 4 · 106

1300 24.5/6.1/3.1 54.45 6 · 107

system and it helps to compensate the residual FOD according to Eq. (2.31). With a
fixed number of passes in the Banks design, there is only one combination of the grating
position, incidence angle and radii of curvature for which the GDD, TOD and FOD
are compensated. A single grating Offner stretcher is more flexible in this regard as it
offers another degree of freedom which is the radius of curvature of the convex mirror
R2. Therefore, for any arbitrary value of the radius of the concave mirror R1 there is
such radius of the convex mirror R2 so that the FOD is compensated. That is again
achieved through the adjustment of the spherical aberration of the imaging system
(see Fig. 2.26 for comparison). Nonetheless, due to aberration induced spatio-temporal
couplings, it is practical to keep R2 close to the position which minimizes the Seidel
aberrations (see Fig. 2.25 for reference). Of course, the same versatility can achieved in
the Banks stretcher through the adjustment of line density of gratings [80]. The impact
of the residual FOD from Table 6.2 on the temporal profile of a pulse is illustrated in
Fig. 6.1.
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Figure 6.1: Pulse broadening (a) and time intensity contrast degradation (b) due to
the residual FOD 6 · 107 fs4 in the system. The simulation was made for Gaussian and
super-Gaussian spectrum of the order 4 having a transform limited pulse duration of
130 fs. The residual FOD of the 1136 ln/mm system with an ideal stretcher is negligible.

Retro-reflecting elements are useful design tools for the compensation of residual
spatio-temporal couplings in stretchers. There are multiple possible setups such as
a plane mirror, a roof mirror, a staircase like structure [61] or a beam inverter [90]
(Fig. 6.3). Their effectiveness depends on the symmetry of the imaging system and
the symmetry of their configuration with respect to the optical axis of the system.
Generally, if the beam is retro-reflected back and it is incident on the grating approxi-
mately under the same angle as during its previous pass, spatial chirp is compensated.
Moreover, if the individual spectral components propagate exactly the same path back-
wards after the reflection like with a corner-cube retro-reflector, the residual angular
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Figure 6.2: Diagram of a stretcher optimization process.

dispersion can be canceled as well. However, to separate the input and output beams,
the beam is usually spatially offset and the beam profile is also often inversed. Ac-
cording to Eqs.(2.42, 2.47), the magnitude of the residual angular dispersion varies
between subsequent passes having different x0 and y0 offsets. Furthermore, when the
beam is spatially inversed, spatial chirp changes its sign and it is then doubled during
back-propagation. Therefore there are no simple rules which could be valid in every
situation. However, the individual properties of each retro-reflecting structure working
at most situations are summarized in Table 6.3.

A plane mirror positioned perpendicularly to the central wavelength of the beam
cancels the spatial chirp but doubles the angular chirp in both planes. If the spatial
separation of the beams at the output is necessary, the mirror can be vertically tilted
(assuming diffraction plane being horizontal). The tilt then results in slightly different
dispersion of the grating along the vertical plane yielding some vertical spatial chirp
at the output. For this reason, a vertical roof mirror is usually placed after the first
pass in stretchers and compressors. The vertical roof mirror retro-reflects, inverses and

Table 6.3: Compensation of residual spatio-temporal couplings by retro-reflector design
in stretchers. x⃗, x⃗ denotes horizontal vs vertical axis, 0x⃗ means compensation of a
spatio-temporal coupling and 2x⃗ means that the spatio-temporal coupling is doubled.
There are two possible configurations for a roof mirror and staircase structure; x⃗ and
y⃗ axis can be therefore swapped.

Plane Roof Staircase Beam inverter

Beam inversion - x⃗ x⃗ x⃗ & y⃗

Beam offset - x⃗ y⃗ x⃗ | y⃗
Spatial chirp 0x⃗, 0y⃗ 2x⃗, 0y⃗ 2x⃗, 0y⃗ 2x⃗, 2y⃗
Angular dispersion (no offset) 2x⃗, 2y⃗ 0x⃗, 2y⃗ 0x⃗, 2y⃗ 0x⃗, 0y⃗
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Figure 6.3: Comparison of various retro-reflecting elements. a) Plane mirror; b) Roof
mirror; c) Staircase structure; d) Lens beam inverter

offsets the beam along the vertical axis. Therefore, it helps to compensate the vertical
angular dispersion as it retains the vertical pointing of each spectral component. But
since the beam is inversed along the vertical axis, the vertical spatial chirp is doubled.
In the horizontal plane the vertical roof can be substituted with a plane mirror. It
cancels the spatial chirp and doubles the angular dispersion.

A horizontal staircase structure operates in a similar way as the roof mirror. It
comprises four plane mirrors tilted horizontally at 45°. The first and the last mirror
is also slightly vertically tilted to separate the input and output beams. Compared
to the roof mirror the staircase structure offsets the beam vertically while the beam
coordinates are inversed horizontally (or vice versa). It therefore retains similar prop-
erties regarding the compensation of the spatio-temporal couplings as the roof mirror.
However, as it offsets and inverses the beam in different planes, it can provide better
compensation of the residual angular chirp than the roof mirror in some situations. A
staircase-like structure or a horizontal roof mirror or are usually used after the second
pass to suppress the residual vertical spatial chirp and horizontal angular dispersion.

A beam inverter can be composed of either one lens with a plane mirror positioned
in its focal plane or a 1:1 keplerian telescope. It spatially inverses the beam along both
axis and retains the pointing of the beam like corner-cube reflector. In general, the
residual angular dispersion in both planes is canceled and the spatial chirp is doubled.
The beam inverter also allows to arbitrarily offset the output with respect to input in x-
y plane. The beam inverter is advantageous to use only when there is no residual spatial
chirp. It can help to completely suppress the residual angular chirp in dependence on
the x0 and y0 offsets.
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6.1 FOD, footprint optimization

Banks design

Since the MLD 1136 ln/mm gratings have to operate very close to the Littrow angle to
have good diffraction efficiency, it is necessary to introduce an offplane angle to separate
the incident and diffracted beam. Unfortunately, the Banks design is not well suited
for the off-plane Littrow angle setup. The radius of curvature of the concave mirror,
the grating position and the off-plane angle have to be precisely matched otherwise
the beam is clipped or cannot be injected or extracted from the stretcher. This is
illustrated in Fig. 6.4, where back reflecting (BM2), horizontal roof (RM) and injection
and extraction (I/O) mirrors are located in between the beam trajectories through
the stretcher. Such positioning would require very ingenious opto-mechanical design
and would make the stretcher very hard to align properly without any beam clipping.
Generally, it is therefore not possible to entirely compensate the FOD through the
adjustment of the radius of curvature in the off-plane Banks design as its length can
be adjusted only within a very small interval without any significant clipping of the
beam. Given the required stretch factor, it was necessary to choose 12.8 m radius of

Figure 6.4: Schematic of the 4-pass Banks stretcher using 1136 ln/mm gratings in the
off-plane configuration. I/O stands for an Input/Output, DG for a diffraction grating,
CC for a concave mirror, FM for a folding mirror located near the grating, BM for a
plane mirror located at focal plane of the concave, BM2 for a plane mirror reflecting
the beam back for the second/fourth pass and HR for a small horizontal roof reflecting
the beam for the third pass. The red number describes the number of times the beam
hits the grating during its first two passes though the system. After the fourth hit,
the beam is reflected to the horizontal roof mirror and it propagates upwards in the
opposite direction.
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Figure 6.5: Dependence of the FOD deviation on the radius of curvature of the concave
mirror for the simulated Banks designs calculated according to Eq. (2.38). A stretch
ratio remained fixed during the calculation to meet the GDD and TOD from Table 6.1.

the concave mirror due to the beam clipping issues. The stretcher then exhibits very
large spherical aberration leading to the residual FOD 5 · 107 fs4 and a large footprint.
To summarize, the off-plane Banks design was therefore considered to be unsuitable for
the L4 beamline.

Another option was to increase the line density of the stretcher gratings to shift
the operating angle further from the Littrow angle so that the off-plane configuration
would not be necessary for the separation of the incident and diffracted beam. The
combination of the angle incidence, the line density and the position of the grating was
selected to enable such separation and to match the target GDD and TOD. The radius
of curvature of the concave mirror was then adjusted to tune the FOD. Commercially
available gratings with predefined line densities were preferred to reduce possible cost.
A 1300 ln/mm grating design was found suitable as the operating angle of incidence
54.35° is far enough from the Littrow angle 43.5° at 1060 nm. Higher line density of the

Figure 6.6: 8-pass 1300 ln/mm Banks schematic. I/O stands for Input/Output, DG
for a diffraction grating, CC for a concave mirror, FM for a folding mirror located near
the grating, BM for a back reflecting mirror located at focal plane of the concave, VR
for a large vertical roof, HR for a small horizontal roof.
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gratings increases dispersion and therefore the grating spacing required for the GDD
compensation is decreased from 30 m to 25 m. The residual FOD of the system with an
aberration-free stretcher would be then increased to 6 · 107 fs4. A typical 4-pass Banks
design using a vertical and a horizontal roof mirror would therefore require ∼3.5 m
distance of the grating from the focal plane of the concave mirror. According to Figure
6.5, such design would require more than 10 m long radius of curvature of the concave
mirror to suppress the residual FOD. That would result in the footprint of the stretcher
that is larger than 4 m since a plane mirror has to be placed in the focal plane of the
concave mirror in the Banks design. To decrease the footprint, it is possible to include
two additional horizontal roof mirrors to add four more passes through the stretcher.
The layout of the 8-pass stretcher and its roof mirror system is shown in Figure 6.6.
The additional four passes enabled to significantly reduce the radius of curvature of the
concave mirror to half (5 m) and therefore to shrink the overall footprint of the stretcher
to 2.5 m. The simulated dependence of the residual group delay of a pulse at the output
of the full CPA chain is sketched in Figure 6.7. The residual group delay is induced by
the higher order aberrations from the stretcher imaging system. The simulation also
exhibits slight wavefront distortion at the stretcher output (mainly astigmatism with
P-V λ/50) and negligible spatio-temporal couplings. The residual angular dispersion
is well within the natural divergence of the beam with 7 mm diameter. In this design,
gratings with gold coating would have to be employed. Typical reflectivity of gold
coated gratings is expected to be around 90% and reflectivity of the other optics is
expected to be 99%. In total, 16 reflections off the grating and 64 reflections off the
other optics would yield overall transmission less than 10%.

Figure 6.7: Simulated output beam parameters for the 8 pass 1300 ln/mm Banks design.
a) Nearfield profile having 7 mm beam diameter; b) Farfield profile encircled by 184
µrad Airy ring c) Wavefront of the central wavelength; d) Output group delay profile
after the compressor
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Offner

Next, a single grating Offner stretcher design in the off-plane configuration was consid-
ered (Figure 6.8). The off-plane incidence angle offers an advantage over the in-plane
incidence for a single grating configuration as the grating can be easily positioned in
between the concave and the convex mirror thanks to the vertical separation of the
beams. In the in-plane configuration this is not possible because a single grating would
obstruct the convex mirror as they are vertically at the same level. Therefore, the
off-plane configuration can be more compact as it allows to place the grating further
away from the zero stretch point which in turn enables to reduce the radii of curvature
of the mirrors. On the other hand, since the concave mirror is tilted with respect to
the convex mirror, their curvature centers no longer overlap. The imaging system is
then aberrated even for the object positioned at the center of curvature of the concave
mirror. However, as the grating is moved towards the concave mirror to increase the
stretch ratio, the ”in-plane” aberrations increase and the contribution of this off-plane
term has less weight. The off-plane incidence on the diffraction grating yields angular
dispersion in the vertical plane which results in vertical spatial chirp after the first pass.
Because the vertical roof mirror inverses the beam vertically, the spatial chirp is then
doubled after the second pass. It is therefore necessary to add a horizontal roof mirror
to compensate the vertical spatial chirp making the design four passed at least.

Compared to the Banks design, a single grating Offner stretcher offers an additional
degree of freedom - the radius of curvature of the convex mirror R2. Since it was pre-
ferred to keep the line density of the stretcher fixed, the radii of curvature of the convex
and the concave mirrors was adjusted to optimize the residual FOD and minimize the
stretcher footprint. By substituting the residual FOD of the system from Table 6.1, the
ideal ratio of the curvatures of the concave and convex mirror was calculated according
to Eq. (2.24) and it is sketched in Figure 6.9). The optimal R1 and the offplane angle
were then selected to reach sufficient vertical spacing between the optics and the beam
according to a ray-tracing model.

A single pass through the Offner stretcher with the grating at L distance from the
center of curvature is equivalent to Leff = −2L distance between the pair of diffraction
gratings. For the 4-pass design the grating has to be almost 4 m away from the center
of curvature of the concave mirror to meet target GDD and TOD values from Table
6.1. When the diffraction grating is too close to the concave mirror, the beam reflected

Figure 6.8: Single grating Offner stretcher in the off-plane configuration. To achieve
separation of the input and output beams, the diffraction grating and the concave
mirror have to be tilted with respect to the input beam.

108



2 4 6 8 10 12 14

R
1
 (m)

-8

-6

-4

-2

0

R
2
 (

m
)

classic Offner

8 pass with R
2

 FOD adapted

4 pass with R
2

 FOD adapted

Figure 6.9: FOD compensation through the adjustment of the R2 in the Offner stretcher
design. For the R1 close to 14 m (7 m), the adjustment of R2 is no longer necessary
for 4 pass (8 pass), respectively. The FOD using was calculated using Eq. (2.24) with
the offplane angle neglected. The stretch ratio remained fixed during the optimization
to meet the GDD, TOD and FOD from Table 6.1

off the concave mirror starts to get clipped by the bottom edge of the grating in the
vertical plane (see Figure 6.8). In order to avoid it, the grating has to be positioned at
least 1 m away from the concave mirror which bounds R1 to be longer than 5 meters
with R2 = −R1/2. But when the absolute value of R2 is increased, the position of the
grating image shifts towards the real grating, The effective stretcher grating distance
Leff is then decreased according to Eq. (2.43). For R1 = 6 m and R2 = −4 m, the
grating image is shifted by 1 meter. The grating has to be moved 1 m closer to the
concave mirror to compensate this effect. R1 = 6 was therefore chosen as a starting
point for the FOD curve in Fig. 6.9. Consequently, the FOD compensated 4-pass
design has a footprint bigger than 3 m, since the convex mirror has to be placed at the
focal plane of the concave mirror.

With the eight pass design, L is reduced to 1.9 m which in turn enables to further
decrease R1. However, R1 is closely linked with the off-plane angle. With short R1, the
distance between the grating and the concave mirror is decreased. That in turn makes
necessary to increase the offplane angle to reach sufficient vertical separation between
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Figure 6.10: Dependence of the residual angular dispersion in xz and yz planes on
the offplane angle of a single pass through the single grating Offner stretcher with
R1 = 3.8 m, R2 = 2.225 m and s = 2 m. Dashed curves are calculated according to
Eq. (2.26) for a stretcher with no off-plane angle. Seidel aberration coefficients can be
calculated only for systems without tilts so we assumed zero off-plane angle and used
coefficients from Table 2.7
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Figure 6.11: Residual angular dispersion (AD) and spatial chirp (SC) after each pass,
the black circle represents Airy ring with 184 µrad radius (7 mm circular aperture).
VR stands for a vertical roof, HR for a horizontal roof and BI for a beam inverter

the convex mirror and diffraction grating to prevent beam clipping. A x0 spacing has to
be adjusted as well as the beam diffracted off the grating has to be incident on the lower
part of the concave mirror during each pass. The increase of x0 combined with higher
aberrations of the system due to shorter R1 of the eight pass system then yield bigger
residual angular dispersion (Figure 6.10). The term linear in λ and quadratic in x0 from
Eq. (2.47) is dominant which is confirmed by approximate theoretical calculation using
Eq. (2.26) with an arbitrary R2. Nevertheless, the calculated values are still very
close to the simulated ones and share similar profile. For R1 = 3.8 m, R2 = 2.225 m

Figure 6.12: 8 pass 1136 ln/mm Offner schematic. I/O stands for Input/Output, DG
for a diffraction grating, CC for a concave mirror, CX for a convex mirror, VR for a
large vertical roof, HR for small horizontal roofs.

110



and γ = 2.8°, the angular deviation of the individual spectral components is within 60
µrad for single pass, which is smaller than the natural divergence of a Gaussian beam
with wx = 3 mm (expected input beam size). Such configuration had sufficient vertical
separation of the beams and it was selected as a good compromise between the output
beam quality and small footprint.

The residual angular dispersion and spatial chirp can be further effectively reduced
with the roof mirror design. To compensate horizontal spatial chirp a vertical roof
has to be installed after the first pass. After the second pass, there is vertical spatial
chirp due to the off-plane diffraction and therefore a horizontal roof mirror has to be
used. After the first four passes, spatial chirp in both planes is completely suppressed,
but slight residual angular dispersion in both planes remain. In that situation, it
is advantageous to employ a beam inverter which reverses the profile of the angular
dispersion. The beam then undergoes the same sequence as during the first four passes.
The beam inverter comprises two spherical mirrors with 2 m focal distance used in a
Keplerian telescope configuration. The beam inverter helped to reduce the residual
angular deviation to less than 20 µrad within the target bandwidth. The pass-to-pass
evolution of the residual angular dispersion is shown in Figure 6.11.

The configuration of the final stretcher design is sketched in Figure 6.12. The initial
design was performed in a non-sequential mode of ZEMAX. Once the design was fixed,
it was converted to a sequential mode to enable more detailed analysis of the system.
The output beam profile shown in Figure 6.13 exhibits minimal spatial and angular
chirp. Wavefront deviation of the system with ideal optics is mainly astigmatic with
λ/100 PV for the central wavelength. The group delay is well compensated within
the whole bandwidth. The residual term originates from the higher order aberrations.
The beam undergoes 16 reflection off the grating and 64 reflections off the mirrors, the
expected throughput of the stretcher was simulated to be approximately 40%. The
entire stretcher can be fitted into a 2500x800x500 mm chamber.

Figure 6.13: Output beam parameters for the 8 pass 1136 ln/mm Offner stretcher.
Spatial chirp (a), residual angular dispersion enclosed within the Airy ring of a 7 mm
aperture (b) and the wavefront of the central wavelength of the pulse (c); d) The
simulated output group delay profile after the compressor.
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6.2 Installation and alignment

The 8-pass single grating Offner design was selected to be implemented into the L4
beamline since the 1136 ln/mm MLD gratings offer better diffraction efficiency with
lower scattering compared to the gold gratings employed in the Banks design. The MLD
coating has 99% diffraction efficiency at the offplane Littrow configuration within the
target bandwidth. Also, its optomechanical design can be more robust as no opti-
cal component is vertically surrounded by beams. An independent tolerance analysis
of the stretcher made by Matt Kepler from National Energetics confirmed that the
stretcher offers sufficient flexibility for the real application with non-ideal optics. The
stretcher can accommodate line density variation (± 5 ln/mm), compressor grating
spacing change (± 0.2 m) or different grating incidence angles (± 0.2°). As was men-
tioned before, the big advantage of a single grating design is that the output beam
pointing and centering is retained when the grating is rotated or translated. This al-
lows to easily match the dispersion of the stretcher with the compressor. An FOD
deviation is induced by the aberrations of the imaging system and material dispersion.
When the grating spacing/incidence angle of both compressor and stretcher is changed,
the residual FOD remains unchanged and therefore the compensation still works. To
prevent possible spatio-temporal couplings and contrast degradation, high quality op-
tics were procured with max irregularity λ/10 peak to valley of the reflected wavefront,
surface gradient λ/20/cm at 633 nm and less than 0.5 nm rms surface roughness. The
grating and concave mirror have a rectangular aperture with 420x150 mm dimension,
the convex mirror has a circular aperture with 6 inch diameter. The width of the
vertical roof mirror was set to 340 mm to match the effective aperture of the tilted
grating.

Alignment

The apex angle of roof mirrors was preliminarily aligned using an autocollimator. All
the optics were then mounted and placed at their appropriate position into a vacuum
chamber according to a CAD model with few mm uncertainty. The autocollimator
was then moved in to set up the grating roll angle. Its vertical pointing was set-up

Figure 6.14: Opened stretcher chamber during the alignment.
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using a penta-prism and a liquid mirror having horizontal surface (water filled cup).
The penta-prism deviates the beam vertically by 90° and so the beam is back-reflected
from the water level only when the input vertical pointing is perpendicular to the
gravity and thus perfectly horizontal. The autocollimator was then pointed at the
grating normal and the grating pitch angle was adjusted to retrieve a back-reflection.
Afterward, the grating was rotated to the Littrow angle and the roll angle was set-up
in the same manner. The procedure was then repeated to minimize possible systematic
error introduced by crosstalk of the grating mount. Nevertheless, the roll angle can be
set-up only approximately since the Offner triplet is cylindrically symmetric and there
is only a single grating used.

The stretcher was initially prealigned using a narrow-band 1064 nm Nd:Yag laser
and in-house alignment plates (Figure 6.16). Three alignment plates were used - one
in the front of the roof mirrors (input plate), one at the grating and one at the concave
mirror. Each plate consists of sixteen holes with a 1 cm diameter, each one centered
at the position of the 1064 nm ray according to the ZEMAX model combined with
the optomechanical CAD model. The corresponding number of the pass through the
plate is engraved near each hole to avoid ambiguity. The alignment procedure using
the plates is identical to the setting up beam centering and pointing with two pinholes.
The tilts of each optical component and the vertical position of the large roof mirror
were adjusted so that the beam propagated through all the holes to the output mirror.
The alignment plates were then removed and beam pointing of each pass was fine-
tuned by monitoring the beam scatter on the convex mirror with an IR viewer. Since
the convex mirror lies in the focal plane of the concave mirror, focal spots of all eight
passes should overlap there if they have parallel propagation direction. Their mutual
position can be adjusted by tilting the individual roof mirrors. The roof mirrors should
be subsequently blocked to observe a perfect overlap of each pass during the procedure.
The beam pointing into the stretcher is monitored by a far-field measurement at the
stretcher input.

The alignment of the stretcher was verified using a fiber-coupled broadband su-
perluminescent diode. The spectrum of the diode is centered at 1055 nm with 20 nm
bandwidth and the diode was collimated to 2 mm half-width. The yaw angle of the
vertical roof can be fine-tuned through the compensation of the residual spatial chirp
with a broadband source. The vertical roof should be positioned so that it is perpen-
dicular in the yaw to the input beam incident on the grating. If there is some slight

Figure 6.15: Diffraction grating, concave and roof mirror in the stretcher
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Figure 6.16: Aluminum alignment plate placed in front of the concave mirror. Each
hole represents one reflection off the mirror.

deviation, the incidence angle on the grating slightly differs between the first and the
second pass. Consequently, horizontal spatial chirp is not entirely compensated after
the second pass. This residual horizontal spatial chirp is then doubled after the beam is
reflected from the horizontal roof mirror (the third, fourth pass) and it can be observed
at the input of the beam inverter (the fifth pass). Analogously, it is necessary to set
up the output beam pointing from the beam inverter by measuring the spatial chirp at
the stretcher output. The output of the beam inverter has to be aligned to be parallel
with the input beam. To increase the resolution of the measurement of the residual
spatial chirp it is advantageous to close an iris at the stretcher input to limit the beam
size. Degradation of the beam quality due to diffraction is limited because the beam
is imaged through the stretcher. The position of the convex mirror can be fine-tuned
through the minimization of the residual horizontal angular dispersion after the third
or fifth pass.

After the alignment, the output near-field and far-field diagnostic cameras were
installed at the stretcher input and nearfield and farfield profiles of the superluminescent
diode were recorded in Figure 6.17. A subtle near field modulation was induced through
the clipping of the beam tails on a square input and output mirror. To prevent this
size of the mirrors was increased from half inch to one inch. Different size of the input
and output farfield is due to different combination of the focusing lenses and objectives
on the cameras which was changed for the OPA beam. The measurement of the diode
output spectrum confirmed a flat spectral response of the stretcher (Figure 6.18). Total
transmittance of the stretcher was measured to be roughly 25% using the diode. This
corresponds to approximately 98% reflectivity of each optical component as there is 72
reflections in total. The major source of losses is expected to be the coating of optics
and the scattering on the grating.

Finally, the L4 beam was injected into the stretcher by matching its input farfield

Figure 6.17: Input and output beam profile of the superluminsecesnt diode from the
stretcher.
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Figure 6.18: Comparison of the input/output spectrum of the SLD diode (a) and the
L4 beam (b) from the stretcher measured using a fiber tip, which confirms that the
transmitted bandwidth is wider than 37 nm.

and centering with the superluminescent diode. After the propagation through the
stretcher both farfield and nearfield profiles are retained (Figure 6.19). The inhomo-
geneity of the NF profile originates from the pulse cleaner and it is completely sup-
pressed by the ns-OPA amplification. The measurement of the output spectra confirmed
transmitted bandwidth wider than 37 nm (Figure 6.18). The operational bandwidth of
the stretcher was shifted towards lower frequencies (1047-1085 nm) to enhance the gain
profile of the power amplifiers (Figure 3.4). The input and output spectrum were sam-
pled by a tip of multi-mode fiber coupled into a spectrometer. The input and output
spectrum differs within 37 nm bandwidth due to the spatial inhomogeneity imprinted
by the pulse cleaner and stretcher itself and the interference effects in the fiber itself.

For a day-to-day operation the stretcher chamber was evacuated to ¡1 mbar. The
robust design of the chamber prevented any deformation inside and after the pump-
down the output beam pointing and centering remained well within the beam spot
size. Transition from the air to vacuum shifts the effective line density of the stretcher
grating by 0.2 ln/mm a decreases the grating spacing L by 6 mm approximately and
was later compensated.

Input FF Output FF Output NF
a) b) c)

Figure 6.19: Input (a) and output beam profile (b,c) after the stretcher with the L4
beam.
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7. Subaperture compressor
The subaperture compressor is a miniaturized version of the main L4 compressor which
was designed to measure the temporal profile of a pulse throughout the amplification
and to test the feasibility of grating-mirror phasing. It has the same dispersion prop-
erties as the main compressor. An input beam diameter is decreased to approximately
1 cm to minimize the size of the gratings. The layout of the subaperture compressor
exported from a CAD/ZEMAX model is shown in Figure 7.1. It comprises four 1136
ln/mm diffraction gratings with two folding mirrors in between which serve to decrease
the overall footprint of the compressor. The second and the third grating are phased
with a plane mirror. The compressor uses one horizontal and one vertical roof mirror
and it is four passed altogether.

Figure 7.1: Layout of the subaperture compressor. G1-4 stands for the first to fourth
grating, FM1-2 for the first and the second folding mirror, PM1-2 for phasing mirrors,
EM for an elliptical plane mirror, HR for a horizontal roof mirror and VR for a vertical
roof mirror.

The beam propagates through the compressor as follows. It hits G1 at the top left
corner close to the Littrow angle (α = 37°) and it is deviated upwards with offplane
angle (γ = 4°). The beam is then reflected off the first folding mirror FM1 (positioned
perpendicularly to the input beam) and is incident on the G2 and the PM2. The
G2 collimates the angularly dispersed beam and diffracts the beam horizontally to
the G3 and PM3. From the G3 the beam is diffracted with slight downward angle,
it is reflected off the second folding mirror FM2 and finally hits G4. The horizontal
roof mirror HR horizontally offsets and retro-reflects the beam which then repeats the
sequence up to G1 in reverse order. Afterwards, the beam is incident on G1 in top
left corner and is diffracted to the elliptical mirror which steers the beam to vertical
roof mirror VR. The VR again retro reflects the beam and offsets it downwards. The
whole sequence is then repeated for the lower part of G1-4 aperture. The total optical
path through the compressor is almost 45 m. The four pass design enabled to reduce
the grating distance L for single pass from 15 m to 3.75 m. It employs two small
5 x 5 cm diffraction gratings, two large 35 x 5 cm gratings phased with 30 x 5 cm
mirrors. The upper part of both towers holding G2 and G3 is designed so that the
phasing assembly can be replaced with a single grating to improve its stability and to
eliminate possible phasing errors when it will be used simultaneously with the main
compressor. The compressor is placed inside an enclosure to prevent spectral phase
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Figure 7.2: Schematic of the diagnostics of the subaperture compressor

noise originating from air turbulence. Under normal laboratory conditions, this noise
prevents from measuring pulse duration shorter than few hundred femtoseconds due to
long optical path in the compressor.

The schematic of temporal diagnostics layout is shown in Figure 7.2. The output
beam from the OPA/PA1/PA2 sections is reflected off AR coated wedged window
(∼0.5%) and it is routed into the subaperture compressor. The input beam is clipped
to 1 cm diameter using an iris and possibly de-magnified beforehand to get better
energy throughput. After the compressor the beam is downsized three times to 3 mm
diameter and distributed to a single shot autocorellator, Wizzler, Tundra and spatial
diagnostics.

Alignment

For the initial alignment of the subaperture compressor all mounts were positioned
according to CAD and Zemax models. The folding mirrors FM1 and FM2 were aligned
by autocollimation through two pinholes of the same height centered on the holes of
the optical table with better than miliradian precision. The orientation of the gratings
was tuned using monochromatic alignment laser with central wavelength of 1064 nm
according to ZEMAX/CAD model. Since the beam propagates 3.8 m in between the
gratings and since the folding mirrors were pre-aligned, such alignment has miliradian
accuracy as well. Grating parallelism was then fine tuned to minimize residual angular
dispersion. To measure it, a beam sampler monitoring both input and output farfield
beam profile was installed at the compressor input. First, a plane mirror was placed
after the G2 to retro-reflect the dispersed beam and the tilts of the G1 were adjusted.
Second, a plane mirror was placed in between the G4 and the HR and the procedure was
again repeated for tilts of the G4. The orientation of the roof mirrors was ten adjusted
to retrieve an unclipped beam profile at the output and to match the footprint position
of the individual passes on the G1 according to Figure 7.1.

Next, the angle and the position of the gratings was readjusted to retrieve the pulse
duration in the ps-scale using a single shot autocorrelator (working in the scanning
mode). The alignment procedure was reverified after each angular adjustment. After-
ward, the shortest pulse duration was fine-tuned by motorized translation and rotation
of the stretcher grating. The compressed beam spatial profile shows good quality with
negligible angular and spatial chirp (Figure 7.4). Since the setup comprises vertical
and horizontal roof mirrors, the residual angular dispersion is partly self-compensated
during retro propagation in both planes. The beam profile at the output of the OPCPA
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Figure 7.3: Photos of the installed subaperture compressor with phasing diagnostics

section having a top-hat shape was clipped at the relay plane by a circular iris to reduce
the beam size. Even though the relay plane was imaged through the compressor on
the last grating, the high spatial frequencies were smeared out. A very long imaging
distance combined with relatively small apertures (1 inch diameter) of the lenses and
mirrors induced the beam profile that resembles a Gaussian profile at the compressor
output.

Pulse duration measurement

For initial measurements, only the first OPCPA section was active to limit the pulse
energy. At this stage, DAZZLER wasn’t implemented into the system to check the
dispersion management. The measured output spectrum confirms that the compressor
exhibits flat spectral response with a 3 nm dip centered at 1062 nm (Figure 7.5 vs
7.6a.). The spectral dip is induced through the clipping of the dispersed beam on the
grating-mirror gap. The grating was aligned with mirror to have chamfers as close as
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Figure 7.4: Output beam nearfield profile (a) and farfield profile using f2000 lens (b)
measured after the sub-aperture compressor. The red circle marks the position of 1/e2

relative intensity calculated from the nearfield profile.
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Figure 7.5: Simulated tranmission profile of the subaperture compressor in the single
grating and grating-mirror configurations. The simulation was calculated with a Gaus-
sian beam profile with w0 = 3.5 mm (according to Figure 7.4a) with an 8 mm gap
between the grating and mirror.

possible to each other. The effective size of the gap was mostly influenced by the fact
that the grating was not coated to the edge of the substrate.

The compressed pulse duration was measured with an in-house developed single
shot autocorrelator having calibration error ±10 fs. A comparison of the AC trace
calculated from the recorded spectrum with the measured one is shown in Figure 7.6d.
The recorded spectrum corresponds to the 150 fs Fourier transformed pulse duration
and the autocorrelation constant k = 1.48 (i.e. the ratio between the duration of the

Figure 7.6: Compression of the OPA amplified beam using object-image-grating self-
tiling method. Measured spectrum using a fiber tip (a), the simulated temporal profile
from the spectrum (b), the measured autocorrelation trace (c) and the comparison
between the measured and the simulated autocorrelation profile (d). The blue curve
is the trace measured by a single short autocorrelator, the red and yellow AC trace
were calculated from the measured spectra. The red curve is transform limited pulse
profile, while the yellow curve represents additional pulse broadening due to residual
FOD 6 · 107fs4 discussed in the previous chapter.
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Figure 7.7: Compression of the OPCPA amplified beam using the single grating con-
figuration with only OPCPA stage 1 active. The recorded ipnut and XPW spectrum
(a) and retrieved temporal profile having the pulse duration of 151 fs FWHM (b) using
Fastlite Wizzler with Fourier limit of 149 fs.

pulse and its autocorrelation). The side lobes are induced through the clipping of the
middle part of the spectra. However, the measured profile of the spectral intensity is
not entirely accurate as the position of the spectral dip varies with spatial coordinate
of the beam. The measurement also confirms that the residual FOD originating from
the aberrations in the stretcher and material dispersion is well compensated by the
adjustment of the stretcher imaging system. The AC trace is slightly tilted due to a
small misalignment of the autocorrelator which does not influence the measured pulse

Figure 7.8: Compression of the pulse amplified to 30J using the OPCPA and PA1
sections. Measured spectrum from scatter(a), the simulated temporal profile from the
spectrum having 158 fs FWHM transform limit (b), the measured autocorrelation trace
corresponding to 166 fs FWHM (c) and the comparison between the measured and
the simulated autocorrelation profile (d). The blue curve is the autocorrelation trace
measured by a single short autocorrelator, the red and yellow AC trace were calculated
from the measured spectra. The yellow curve represents additional pulse broadening
due to residual FOD of 6 · 107fs4 discussed in the previous chapter.
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profile.
Later, the laser system was reinstalled in the ELI Beamlines, the subaperture com-

pressor was modified to a single grating configuration and tested with full OPCPA
chain. The compressibility was then also verified using Fastlite Wizzler. Figure 7.7
presents the recorded XPW spectrum and the retrieved temporal profile of the pulse
having 174 fs FWHM with the Fourier limit of 170 fs FWHMs.

Next, the output of the first power amplifier (PA1) was routed to the compressor
to measure compressibility of the amplified pulses. Figure 7.8 shows a retrieved spec-
trum, single-shot autocorrelation trace and corresponding pulse duration of the pulse
amplified to ∼ 30J. The measured pulse duration 166 fs is close to the transform limit
of the measured spectra 158 fs.

The preliminary measurement of temporal contrast (Figure 7.9) shows no pre-pulses
and post-pulses and a low noise floor of 10−10 at -80 ps which is currently limited by
the dynamic range of the Ultrafast Innovations TUNDRA+ device. The measurement
was done with the stretcher and the subaperture compressor on air. Coherent pedestal
likely originates from the scattering and surface quality of the optics in the strecher and
sub-aperture compressor due to their multi-pass design. It might also come from the
saturation of the first OPCPA stage. These assumptions will be tested in the contrast
measurement at the output of the main compressor next year.

Figure 7.9: Preliminary temporal contrast of the OPCPA chain measured during testing
of the TUNDRA+ device

Phasing

A phasing setup was employed to align the gratings within the sub-aperture compres-
sor. To ensure correct positioning of the PM2 (PM3) with respect to the G2 (G3),
a Fizeau interferometer was set up. A detailed layout is provided in Figure 7.10. A
frequency stabilized He-Ne laser is fiber coupled and collimated to 2 cm diameter by
f40 fiber collimator. After the collimator the beam is split by a 50:50 beamsplitter and
each branch is propagated towards the grating-mirror assembly. A two inch uncoated
wedge with λ/15 PV surface quality was used as a reference surface (transmission flat)
and was slightly tilted with respect to the incoming beam to introduce carrier frequency
into the interferogram. After the retro-reflection, the beam is downsized five times by a
keplerian telescope which simultaneously images the grating-mirror gap on the camera.
The interferogram is processed by an in-house developed LABVIEW program using
fourier fringe analysis method [49], which provides the relative yaw, pitch and piston
coefficients. To verify the results, farfield distribution is recorded as well. Systematic
errors were neglected at this stage they have a very small impact due to the small beam
size. Figure 7.11 shows an interferogram and a retrieved phase profile of the aligned as-
sembly. Small misalignments in the order of µrad had no impact on the measured pulse
duration. The setup exhibited good longterm stability in ambient conditions in both
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Figure 7.10: Layout of the phasing setup for the subaperture compressor.

angular degrees of freedom (Figure 7.12). The stability of the current optomechanic
design is very susceptible to temperature changes as was discussed in Chapter 5.2 and
therefore the piston drifted several periods during the five hour stability measurement.
The period of the piston can be calculated as the half of the groove period which is
440 nm for 1136 ln/mm gratings. In this measurement, full aperture optics were in-
stalled compared to the previous experiment and therefore the distance between the
front side of the mirror and the point where the grating is attached increased to 10 cm
approximately. The laboratory where the measurement was conducted was stabilized
to ±1°C which yields ±2 µm shift of the mirror with respect to the grating. That also
corresponds to Figure 7.12c, where the piston drifts through five periods in total, which
is equivalent to 2.2 µm shift. The grating-mirror assemblies of the main compressor
will be housed in the evacuated chamber in the environment with better temperature
stability to suppress temperature gradients as much as possible. The standard devia-
tion of the measured values with respect to their moving average was determined to
be 0.1 µrad for yaw, 1 µrad for pitch and 20 nm for piston. The resolution of the
measurement was again mainly limited by the air turbulence between the transmission
flat and the grating-mirror assembly. The worse stability of the pitch measurement
might have been caused by the fact that a different type of actuator was temporarily
employed to drive the flexible joints and it might not have been sufficiently pushing the
flexible joints to constrain their movement and enhance their stability.

Figure 7.11: Interferogram (a), its spatial Fourier transform (b) and the retrieved phase
(c) by the Fourier fringe pattern analysis method.
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Figure 7.12: Measurement of phasing stability of the subaperture compressor for
yaw(a), pitch(b) and piston(c) over a 5 hour period using an in-house build Fizeau
interferometer. The red curve represents a moving average of 10 samples. Data were
acquired once per 10 seconds.

Discussion

We have demonstrated the feasibility of the object-image-grating self-tiling-method for
the main L4 compressor. The measured pulse duration is close to its transform limit
which confirms that the pulse is compressed with low residual phase and which also
points out that the residual fourth order dispersion should be compensated by the design
of the stretcher. This proves that dispersion management was correctly implemented.

The resolution of the interferometric method meets the values specified in Table 4.11
for yaw and piston misalignment with a slight deviation in the pitch misalignment. The
results indicate that the resolution of the interferometer should be well bellow the target
values from Table 4.11 for the main compressor since both transmission flat and the
measured grating-mirror assembly will be in vacuum and since the resolution will be
improved 3.5 times by increasing the beam size to a 7 cm clear aperture.
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Conclusion
Currently, a 10 PW kJ-class laser system is being re-assembled in the ELI-Beamlines[A3,
A5]. The L4 system is based on the direct chirped pulse amplification technique and
aims to deliver 1500 kJ pulses with 150 fs duration with wavelength centered at 1060
nm. This thesis dealt with the dispersion management of this system which mostly
encompasses the design and analysis of the stretcher and compressor. The work pre-
sented here aimed to combine the analytical and numerical approaches to provide phys-
ical insight, detailed explanation of phenomena while using the benefits of numerical
simulation.

The limited aperture and damage threshold of the compressor gratings remains one
of the bottlenecks in reaching higher peak powers for the current state-of-the-art laser
systems. The work presented here provides a detailed analysis of methods enabling
to increase the effective aperture of the compressor. Currently, these methods seem
to be the only ones viable method for reaching 100 PW or EW peak powers for the
forthcoming laser systems. The analysis is also crucial for the implementation of the
compressor into the L4 system as the grating-mirror configuration will be used for the
first time in a TW-PW class laser system.

Generally, the conceptual design of the compressor of the L4 system was mostly
driven by the availability of diffraction gratings with sufficient damage threshold and
aperture. However, there were no monolithic gratings applicable due to high fluence of
the beam. Therefore, the compressor has to use an existing multilayer dielectric grating
design with high damage threshold and the effective aperture of the gratings has to be
increased using either tiled grating or object-image-grating self-tiling (grating-mirror)
configurations. In this thesis, compressor designs employing 1740 ln/mm and 1136
ln/mm gratings were compared for both configurations.

The 1740 ln/mm compressor design required to extend the aperture of all four
gratings due to high incidence angle. We showed that it is advantageous to avoid tiling
the first and the last grating in the compressor and, if possible, to keep them monolithic.
The grating gap introduces amplitude modulations which can be suppressed by leaving
slight spatial chirp at the compressor output. We also demonstrated that the line
density variation of diffraction gratings in tiled grating compressors can become one
of the limiting factors of such systems if it is not precisely controlled. Line density
variation induces both wavefront error and residual angular dispersion of the output
beam which cannot be entirely compensated. Only 0.01 ln/mm variation (5 ppm) could
then lead to more than 10% decrease of the focused peak intensity for the L4 system.
The impact of the line density variation will be further examined for < 30 fs systems
and published. This issue was not present for the grating-mirror configuration as the
grating is self-imaged by the mirror. Nevertheless, zeroth diffractions orders from the
grating-mirror configuration retro-reflect back into the laser chain and they also create
post-pulses with propagation direction parallel to the main beam.

In the 1136 ln/mm compressor design it was necessary to extend the aperture of the
second and the third grating only. Because the compressor is in the off-plane configu-
ration with Littrow angle incidence on the gratings, the grating-mirror configuration is
preferred over the tiled grating configuration as there are no back-reflections. However,
zeroth diffraction orders from the second and third grating propagate in parallel direc-
tion with the main beam and can reach the experimental target. They are expected
to form a nanosecond pedestal with relative intensity smaller than 10−9 around the
main pulse. Nevertheless, the 1136 ln/mm compressor design requires generally looser
tolerances for the alignment, it avoids the line density variation issues and diffraction
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induced modulations and it was therefore favoured against the 1740 ln/mm design.
A system for the mutual alignment of the grating-mirror assemblies was proposed

for the 1136 ln/mm compressor. We showed that an interferometric method provides
better resolution and is more suitable for the online diagnostics than a farfield method.
To test it, we built a Fizeau interferometer and we extracted the phase profile from the
interferogram by the Fourier fringe analysis method using an in-house developed Lab-
view Program. The resolution of the interferometer was then compared experimentally
with the commercial capacitive sensors, a tilt-meter and an interferometer Zygo Dy-
nafiz [A5]. The experiment confirmed the feasibility and applicability of the proposed
system for the main compressor of the L4 laser system.

Next, the design of a stretcher matching the 1136 ln/mm compressor design was
presented. Banks and Offner all reflective designs in the off-plane configuration were
compared [A6]. Generally, because the stretcher has to introduce very high stretch
ratio, aberrations present in the stretcher imaging system induce spectral phase devi-
ation with respect to the ideal stretcher. To understand it, a theory which connects
the residual spectral phase with Seidel aberration coefficients was deduced [A1]. The
theory comprises analytical formulae for the calculation of the deviation of individual
dispersion orders and residual angular dispersion. Using this theory we showed that the
residual FOD can be independently controlled in the Offner stretcher by adjusting the
radius of curvature of the convex mirror [A2]. Such control is also very useful for passive
compensation of material dispersion. It can be simply implemented during the design
through the modification of the stretcher imaging system and it eliminates the need to
insert additional optical components such as a grism pair or Dazzler. Generally, the
theory may be used for the optimization of the spectral phase of CPA chains without ex-
tensive numerical ray-tracing and it can be utilized in the design of the upcoming laser
systems requiring high stretch ratios while keeping the stretcher dimensions compact.

Based on the theory, a single grating Offner stretcher was designed in the 8-pass
configuration. The radii of curvature of the convex and concave mirror were adjusted to
minimize the footprint and to fine-tune the spectral phase deviation to exactly match
the compressor and material dispersion properties. The stretcher was then successfully
implemented into the L4 system. The stretcher has only 3 m footprint, while it pro-
vides stretch ratio equivalent to 30 m grating distance. It exhibits >38 nm transmission
bandwidth without measurable spatiotemporal couplings at the output. To check the
compressibility of the stretched amplified pulses, a miniaturized version of the compres-
sor yielding the same dispersion properties was installed. The measured pulse duration
corresponded to the transform limit of the measured spectra and confirms that the
residual FOD is well compensated by the stretcher. The compressor was also used to
test the developed interferometric method for phasing of the grating-mirror assemblies.

The author’s personal responsibility was to perform all the analytical and numerical
simulations regarding the stretcher and the compressor presented in this thesis, to de-
velop the interferometer with the phase extraction algorithm and to experimentally test
it. The author was also responsible for the alignment of the stretcher and sub-aperture
compressor and for the characterization of the compressed pulse. The compressibility
of the entire L4 laser chain was recently demonstrated to be nearly 150fs using the
diagnostic compressor. Dazzler wasn’t operated during the test. This proves that the
dispersion management was correctly implemented.
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system with 11 mJ output at 1 kHz, compressible to 12 fs. Opt. Express, OE,
24(16):17843–17848, August 2016.

[82] E. Gaul, T. Toncian, M. Martinez, J. Gordon, M. Spinks, G. Dyer, N. Truong,
C. Wagner, G. Tiwari, M. E. Donovan, T Ditmire, and B. M. Hegelich. Improved
pulse contrast on the Texas Petawatt Laser. J. Phys.: Conf. Ser., 717(1):012092,
2016.

[83] Rahul C. Shah, Randall P. Johnson, Tsutomu Shimada, Kirk A. Flippo, Juan C.
Fernandez, and B. M. Hegelich. High-temporal contrast using low-gain optical
parametric amplification. Opt. Lett., OL, 34(15):2273–2275, August 2009.
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List of Abbreviations
Abrreviations

AD Angular dispersion
CPA Chirped Pulse Amplification
ELI Extreme Light Infrastructure
EM Eliptical mirror
FFA Fourier Fringe pattern Analysis
FM Folding mirror
FOD Fourth Order Dispersion
FWHM Full Width at Half Maximum
GA Grating Assembly
GDD Group Delay Dispersion
HR Horizontal roof mirror
LDV Line Density Variation
LIDT Laser Induced Damage Threshold
MLD Multi-Layer Dielectric
OPCPA Optical parametric chirped pulse amplification
PA1 Power Amplifier 1 of the L4 laser
PA2 Power Amplifier 2 of the L4 laser
PM Phasing Mirror
PV Peak to Valley ratio
TOD Third Order Dispersion
VR Vertical roof mirror
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Symbols Greek

α angle of incidence
β diffraction angle
γ off-plane angle of incident wave
δ off-plane angle of diffracted wave
ϵ0 vacuum permittivity
η entrance pupil coordinate
θpitch pitch misalignment
θroll roll misalignment
θyaw yaw misalignment
λ wavelength
λ0 central wavelength
ξ entrance pupil coordinate
π 3.1415 ...
σ wavefront rms
τe2 pulse duration half width at 1/e2

τF W HM pulse duration full width at half maximum
τ0F W HM transform-limited pulse duration half width at 1/e2

φ(ω) spectral phase of a pulse
Φ aberration function
ω frequency
ω0 central frequency of a pulse
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Symbols Roman

c speed of light
cn normalization constant
cp pulse profile constant
k scalar k-vector
i imaginary unit
k⃗i incident k-vector
k⃗d diffracted k-vector
m diffraction order
n refraction index
s grating distance from the entrance pupil
s′ dimensionless parameter s/R
wx beam diameter
x spatial coordinate
xf spatial coordinate in focus
x0 x-offset from the optical axis in stretcher
y spatial coordinate
yf spatial coordinate in focus
y0 y-offset from the optical axis in stretcher
z spatial coordinate along the propagation direction
zr Rayleigh length
A(ω) absorptivity
B spherical aberration coefficient
B0 B-integral
C field curvature coefficient
D astigmatism coefficient
E distortion coefficient
F coma coefficient
FODab FOD deviation in stretcher due to aberrations
G perpendicular grating distance
G1, G2, G3, G4 first to fourth grating in the compressor
GDDab GDD deviation in stretcher due to aberrations
H(ω) optical transfer function
K⃗ grating k-vector
I(t), I(ω) temporal intensity, spectral intensity
L propagation distance for the central wavelength
N line density of diffraction grating
∆N line density variation
R(ω) Reflectivity
R radius of curvature
R1 radius of curvature of concave mirror in the Offner stretcher
R2 radius of curvature of convex mirror in the Offner stretcher
St Strehl ratio in the temporal domain
Sω Strehl ratio in the spectral domain
TODab TOD deviation in stretcher due to aberrations
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[A5 ] Štěpán Vyhĺıdka, Pavel Trojek, Daniel Kramer, David Snopek, Martin Šolc,
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