
Dynamics and Instabilities in
Time Series and Panel Data

Michal Pešta

2019





Charles University

Faculty of Mathematics and Physics
Department of Probability and Mathematical Statistics

Habilitation Thesis

Dynamics and Instabilities in
Time Series and Panel Data

Michal Pešta

Mathematics – Probability and Mathematical Statistics

September 1, 2019



Michal Pešta

Dynamics and Instabilities in Time Series and Panel Data

Habilitation Thesis

September 1, 2019

Charles University

Faculty of Mathematics and Physics

Department of Probability and Mathematical Statistics

Sokolovská 49/83

186 75 Prague 8 – Karlín

Czech Republic



To my wife Barbora
and to my children Gréta, Samuel, and Michal

v





Abstract

Changing behavior of data—smooth or abrupt. That is our primary goal of investi-
gation to be presented in this habilitation thesis. Several contributions of the author
to the branch of mathematics called probability and mathematical statistics are
demonstrated. Especially, the main focus lies in detection of instabilities, analysis
of changes, and modeling of dynamics when allowing for some uncertainty or im-
precision in the observations. The data structures considered are time series, panel
data, and triangular data. All of them are contaminated by random fluctuations or
unobservable disturbances.
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Preface

„Omnia mutantur, nihil interit.

— Publius Ovidius Naso
(Metamorphoses, book XV, line 165)

An intensive research has sprung up for methods to handle dynamic systems
containing randomness and, simultaneously, to analyze structural changes in data.
This habilitation thesis is structured into three core chapters with respect to the type
of data governed and the corresponding type of problems dealt.

Firstly, the introductory chapter sets up a framework of the thesis. There are main
problems and goals described. Moreover, the corresponding scientific papers, on
which this thesis is based, are presented.

The second chapter deals with detection and estimation of so-called changepoints in
time series. Ratio type and self-normalized type test statistics for at most one change
are introduced. The testing methods are enriched by resampling techniques, which
serve as improving add-ons. All approaches are invented in a way that the whole
testing procedure is supposed to be nuisance-parameter-free. Consistent estimators
for a change in mean and a change in trend of time series are developed.

In the third chapter, structural breaks in panel data are covered, especially the cases
when the panels are short. Hypothesis testing for a common change in panels
is performed. Again, the resampling methods are utilized in order to overcome
difficulties and imperfections of the asymptotic versions of the detection procedures.
Furthermore, various competing estimators for the tested common change are
introduced and shown to be consistent.

The fourth chapter is devoted to modeling of dynamics in triangular data, which
can be considered as a special case of panel data. Justification of the traditional
chain ladder method is given at long last. Moreover, modeling approaches capable

ix



of handling dependencies, like generalized estimating equations or conditional least
squares with copulae, are implemented within the triangular data framework.

Afterwards, our conclusions follow. Finally, the original versions of the foundation
papers are attached in the appendix.

Even though this habilitation thesis was originally regarded as homeopathic en-
forcement of the author’s inventiveness by himself, I have finally figured out that
I felt a compulsion to babble on about what I was truly researching.
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1Introduction

„Where we’re going, we don’t need roads.

— Christopher Lloyd
(As Dr. Emmett Brown in ‘Back to the Future’)

A character of a change can basically be rapid or gradual. We are going to stochasti-
cally inspect both types of the change in data. The considered data structures, which
possibly possess some change, are time series and panel data (or their mutations and
combinations). We will elaborate on them in the consequent section.

There are essentially two main statistical challenges with respect to existence of
the change: testing and estimation. In the first case, one is interested in answering
a question, whether there is some change present or not. This can be schematically
represented by a decision between two statements: A null hypothesis

H0 : there is no change present;

versus an alternative
H1 : there exists a change.

This situation can be simply represented by two disjunctive sets as in Figure 1.1,
where the true reality (H0 or H1) is and will remain unknown to us, whereas our
decision is encumbered by an error. And this error is desired to be controlled.

H1

H0

Fig. 1.1. Null hypothesis versus alternative.

For the second case, the aim is to predict the location or, alternatively, characteristics
of the change based on the observed data. And again, the true change description is
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and will stay unknown to us. However, imprecision of our estimation based purely
on the obtained data is intended to be kept reasonably small.

1.1 Vague talk

Whatever the changes you may think (for instance, structural breaks or continuous
dynamics), we try to investigate their presence in various data structures.

The first type of data considered are time series, where one observes finite part of
a random sequence, i.e., {Yi}ni=1 as shown in Figure 1.2.

Y1 Y2 Y3 Yn−1 Yn

Fig. 1.2. Time series.

Nevertheless, we will consider a generalized structure of the time series that can be
organized in so-called triangular scheme. Here, for the nth realization (or measure-
ment), one possesses a vector {Y(n)i }kni=1 as visualized in Figure 1.3. The usual case
is that kn ≡ n, but it does not have to be.

Y
(1)
1 Y

(1)
k1

Y
(2)
1 Y

(2)
2 Y

(2)
k2

Y
(n−1)
1 Y

(n−1)
2 Y

(n−1)
kn−1−1 Y

(n−1)
kn−1

Y
(n)
1 Y

(n)
2 Y

(n)
3 Y

(n)
kn−1

Y
(n)
kn

Fig. 1.3. Triangular scheme of a time series.

Panel data are the second type of data structures, where several finite or infinite
dimensional vectors are recorded. In Figure 1.4, we have so-called balanced panel
data {Y

(i)
j }t,nj=1,i=1 consisting of n panels such that the ith panel [Y(i)1 , . . . , Y(i)t ] is

an observed vector with a common length t. One can also think of unbalanced panel
data, where the panels do not necessarily be of the same length.
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Y
(1)
1 Y

(1)
2 Y

(1)
3 Y

(1)
t−1 Y

(1)
t

Y
(2)
1 Y

(2)
2 Y

(2)
3 Y

(2)
t−1 Y

(2)
t

Y
(n)
1 Y

(n)
2 Y

(n)
3 Y

(n)
t−1 Y

(n)
t

Fig. 1.4. Panel data (balanced).

The third type of data structure contemplated are triangular data, which can be
considered as a special case of the unbalanced panel data. Here, one measures
n panels such that the ith panel has a length n− i+ 1. This property forms the data
in the shape of a right angled isosceles, i.e., {Y(i)j }n−i+1,n

j=1,i=1 as illustrated in Figure 1.5.
Hence, each next panel is one observation shorter.

Y
(1)
1 Y

(1)
2 Y

(1)
3 Y

(1)
n−1 Y

(1)
n

Y
(2)
1 Y

(2)
2 Y

(2)
3 Y

(2)
n−1

Y
(n−2)
1 Y

(n−2)
2 Y

(n−2)
3

Y
(n−1)
1 Y

(n−1)
2

Y
(n)
1

Fig. 1.5. Triangular data.
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1.2 Motivation

To know whether a change has happened is a task that is not only interesting, but
also desirable for many scientific fields, e.g., in finance, insurance, medicine, biology,
hydrology, climatology, or ecology.

In recent years, an intensive research has sprung up for methods to handle structural
changes and developments in various data structures. A prime motivation for this
thesis is to introduce stochastic models capable of handling dynamics and instabilities
of data. Our goal is to clearly summarize already developed properties of these
models. Consequently, we want to derive additional important properties of such
models possibly allowing for so-called changepoints, to extend their applicability,
and to overcome some problems that exist up to now. We mainly take into account
modern asymptotic approaches in order to finalize unsolved questions regarding
usage of the changepoint models. Therefore, we will concentrate on and incorporate
the following:

• finite sample properties and limiting behavior,

• computational feasibility,

• robust approaches,

• weak dependence of errors,

• simulation studies,

• real data analyses.

1.3 Thesis structure and results

This habilitation thesis is based on nine original papers published in scientific
journals and one erratum. The mathematical and statistical problems contained in
these papers are structured into three chapters. At the end of each chapter, very
brief summaries in a form of key contributions are listed.

4 Chapter 1 Introduction



1.3.1 Time series

Chapter 2 deals with structural breaks in the time series framework (cf. Figure 1.2
and 1.3). The basis for this chapter is formed by the following papers:

• Peštová, B. and Pešta, M. (2018). ‘Abrupt change in mean using block boot-
strap and avoiding variance estimation’. Computational Statistics 33(1), 413–
441.
doi.org/10.1007/s00180-017-0785-4

• Pešta, M. and Wendler, M. (2019). ‘Nuisance-parameter-free changepoint
detection in non-stationary series’. TEST, Online First.
doi.org/10.1007/s11749-019-00659-1

• Pešta, M. (2016). ‘Unitarily invariant errors-in-variables estimation’. Statistical
Papers 57(4), 1041–1057.
doi.org/10.1007/s00362-016-0800-9

• Pešta, M. (2017). ‘Block bootstrap for dependent errors-in-variables’. Commu-
nications in Statistics – Theory and Methods 46(4), 1871–1897.
doi.org/10.1080/03610926.2015.1030423

1.3.2 Panel data

Changepoint problems within the panel data setup are elaborated in Chapter 3. The
main aim lies in the changepoint testing and estimation, where the panel’s length
can be relatively short. The second group of papers, building up the results for this
chapter, is as follows:

• Peštová, B. and Pešta, M. (2015). ‘Testing structural changes in panel data
with small fixed panel size and bootstrap’. Metrika 78(6), 665–689.
doi.org/10.1007/s00184-014-0522-8

• Peštová, B. and Pešta, M. (2016). ‘Erratum to: Testing structural changes in
panel data with small fixed panel size and bootstrap’. Metrika 79(2), 237–238.
doi.org/10.1007/s00184-015-0562-8

• Peštová, B. and Pešta, M. (2017) ‘Change point estimation in panel data
without boundary issue’. Risks 5(1), 7.
doi.org/10.3390/risks5010007
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1.3.3 Triangular data

Chapter 4 investigates dynamic behavior within the triangular data structures. The
goal is to develop methods capable to capture dependence among observations
structured in the right angled isosceles. The third group of papers summarizing
these outcomes are predominantly having mathematical applications in insur-
ance:

• Pešta, M. and Hudecová, Š. (2012). ‘Asymptotic consistency and inconsistency
of the chain ladder’. Insurance: Mathematics and Economics 51(2), 472–479.
doi.org/10.1016/j.insmatheco.2012.07.004

• Hudecová, Š. and Pešta, M. (2013). ‘Modeling dependencies in claims reserv-
ing with GEE’. Insurance: Mathematics and Economics 53(3), 786–794.
doi.org/10.1016/j.insmatheco.2013.09.018

• Pešta, M. and Okhrin, O. (2014). ‘Conditional least squares and copulae in
claims reserving for a single line of business’. Insurance: Mathematics and
Economics 56, 28–37.
doi.org/10.1016/j.insmatheco.2014.02.007

Afterwards, our conclusions follows. The original published papers are put in
the Appendix A. The main body of the thesis does not contain simulation studies,
practical data analyses, or proofs. However, they can be found in the papers
attached within the Appendix A.
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2Instabilities in Times Series

„There is nothing stable in the world; uproar’s your
only music.

— John Keats
(Poet of the English Romantic movement)

We deal with sequences of weakly dependent observations that are naturally ordered
in time. Their mean is supposed to be constant or having linear trend. Although,
we alternatively think of a possible instability of the unchanging mean or constant
trend: The mean or trend is subject to change at most once at some unknown time
point—occurrence of a structural break. The primary aim is to test whether such
instability is present or not. The secondary goal is to estimate such changepoint, if
it has been detected.

2.1 Change in mean using ratio statistics

The problem of an unknown change in mean of the time series is studied and
procedures for detection of such change within the observed time ordered sequence
are presented. The considered underlying stochastic model allows at most one change.
Moreover, the change is rapid, also called abrupt, which happens suddenly at some
unknown time point.

The ratio type test statistic elaborated in this section is derived from the non-ratio
type test statistics (e.g., Csörgő and Horváth (1997)) based on partial sums of the
residuals that are commonly used in the changepoint analysis. They do not need to
be standardized by any variance estimate, which makes them a suitable alternative
for the non-ratio type test statistics, most of all in situations, when it is difficult to
find a variance estimate with satisfactory properties. Such difficulty can occur in
situations with dependent random errors. However, the variance estimators often
do not perform well even in the i.i.d. case, especially under alternatives (Antoch
et al., 1997).
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We extend the ideas for the ratio type test statistics presented by Hušková (2007)
and Horváth et al. (2008) in the way that weakly dependent errors of the model are
considered together with incorporating a general score function in the test statistics.
In order to obtain critical values for the studied test statistic not only from their
asymptotic distributions, we focus on the circular moving block bootstrap method
by Politis and Romano (1992). This type of resampling procedure was applied in
a similar situation by Kirch (2006).

Kim (2000) and, consequently, Kim and Amador (2002) studied how to detect
a structural change characterized by a shift in persistence of linear time series using
a similarly constructed ratio type test statistic. This work is further continued
by the simulation study of Leybourne and Taylor (2006), where both asymptotic
and finite sample properties of the proposed test are studied. In Hušková (2007),
two ratio type test statistics based on the cumulative sums of the residuals are
briefly introduced. These are intended to be used when testing whether the mean
has changed at an unknown time and also when testing for a change from the
asymptotic stationary sequence into the asymptotic difference stationary sequence.
In Horváth et al. (2008), more details on the topic are given and other ratio type test
statistics are introduced. The applicability of the method is demonstrated through
a simulation study. Antoch and Hušková (2001), Hušková (2004), and Kirch (2006)
dealt with permutation principles and bootstrapping in the changepoint analysis.

Generally, there are two main distinguishable classes of changepoint detection
procedures: parametric (Csörgő and Horváth, 1997:Chapter 1) and nonparametric
(Csörgő and Horváth, 1997:Chapter 2). The parametric ones rely on an underlying
known parametric form of the distribution, where only the distributional param-
eters are unknown. A typical representative of the parametric methods are the
likelihood ratio (LR) based methods (Andrews, 1993). If one assumes additional
(regularity) assumptions, for instance, regarding the Fisher information matrix,
some optimality properties can be derived. E.g., a Wald-like type or a Bahadur-like
type of optimality. Optimal detections within the changepoint framework were
investigated by, e.g., Andrews and Ploberger (1994) or Andrews et al. (1996). Al-
though, one has to pay for these properties by assuming a specific parametric form
of the distribution and by adding regularity conditions, which can be sometimes
hard to verify. On the other hand, a classical representative of the nonparametric
class are cumulative sums (CUSUM) based approaches that do not assume a para-
metric distribution, which gives them wider applicability. Our proposed methods
belong to the CUSUM-based techniques.

Zhao et al. (2010) and Zhao et al. (2011) propose the ratio type tests to detect a change
in the variance of linear processes. Furthermore, a new changepoint estimation
method based on the ratio type statistics is introduced by Zhao et al. (2011). Robus-
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tification of the ratio type test statistic for change in mean detections was elaborated
by Madurkayová (2011). Chen and Tian (2014) studied a ratio type test to detect
the variance change in the nonparametric regression models under both fixed and
random design cases. A similar ratio type statistic as introduced in this section
is studied to analyse change in mean for heavy tailed distributions in the work
of Wang et al. (2016). This leads to a more general asymptotic distribution under
the null hypothesis, which is a functional of stable Lévy processes. A bootstrap
approximation method to determine the critical values and changepoint estimation
using the ratio method are also discussed. Bazarova et al. (2015) develop a ratio type
test to detect changes in the location parameters of dependent observations with
infinite variances. The ratio type statistic based on the cumulative sums’ process
is adjusted by trimming off a set of observations that are the largest in magnitude.
Moreover, the ratio and non-ratio type test statistics are compared by simulations.
Peštová and Pešta (2015) and Peštová and Pešta (2016) applied the ratio type test
statistics for detections of the structural changes in panel data.

A background of the following work comes from Peštová and Pešta (2018a).

2.1.1 Abrupt changepoint model

Let us consider observations Y1,n, . . . , Yn,n obtained at time ordered points. We are
interested in testing the null hypothesis of all observations being random variables
having equal mean values. Our goal is to test against the alternative of the first τn
observations have mean value µ and the remaining n− τn observations come from
distributions with mean values µ+ δn, δn 6= 0. We can describe the situation as
a model with at most one abrupt change in constant mean

Yk,n = µ+ δn 1{k > τn}+ εk, k = 1, . . . ,n, (2.1)

where µ, δn and τn are unknown parameters, ε1, . . . , εn are random errors, and
1{A} denotes the indicator of set A.

Despite the fact, that the observed data {Yk,n}
n,∞
k=1,n=1 form a stochastic triangular

array, the random disturbances {εn}∞n=1 are just a single sequence of random vari-
ables. So, the errors remain the same for each row of the triangular array of the
observed variables. For the sake of convenience, we suppress the index n in the
observations Yk,n as well as in the parameters δn and τn (and in the variables
depending on the latter) whenever possible. However, we have to keep in mind
that in the asymptotic results below, as n increases over all bounds, both δ = δn and

2.1 Change in mean using ratio statistics 9



τ = τn may be changing when n is increasing. Then, model (2.1) can be rewritten
as the abrupt changepoint model

Yk = µ+ δ1{k > τ}+ εk, k = 1, . . . ,n. (2.2)

The time point τ is called the changepoint.

We are going to test the null hypothesis that no change occurred

H0 : τ = n (2.3)

against the alternative that a change occurred at some unknown time point τ

H1 : τ < n, δ 6= 0. (2.4)

2.1.2 Ratio type test statistic based onM-residuals

The main focus is given to the test procedures based on the ratio type test statistics
that are functionals of the partial sums ofM-type residuals. We robustify the origi-
nal ratio type test statistic described by Hušková (2007) and Horváth et al. (2008).
A test statistic based on theM-residuals is considered

Rn(ψ,γ) = max
nγ6k6n−nγ

max
16i6k

∣∣∣∑ij=1ψ(Yj − µ̂1k(ψ))
∣∣∣

max
k6i6n−1

∣∣∣∑nj=i+1ψ(Yj − µ̂2k(ψ))
∣∣∣ , (2.5)

where 0 < γ < 1/2 is a given constant, µ̂1k(ψ) is an M-estimate of parameter µ
based on the observations Y1, . . . , Yk (under H0), and µ̂2k(ψ) is anM-estimate of µ
based on the observations Yk+1, . . . , Yn (underH0). That means, µ̂1k(ψ) is a solution
of the estimating equation

k∑
i=1

ψ(Yi − µ) = 0

and, similarly, µ̂2k(ψ) is a solution of the estimating equation

n∑
i=k+1

ψ(Yi − µ) = 0.

Let us remark that the test statistic does not require an estimate of the possible
changepoint. For the choice of ψL2(x) = x, we get one of the statistics studied
in Horváth et al. (2008). By considering different score functions, we may construct
similar statistics, but more robust against outliers and more suitable for heavy tailed
distributions.
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Strong mixing dependence

Prior to deriving asymptotic properties of the test statistic, we summarize the notion
of strong mixing (α-mixing) dependence in more detail, which will be imposed on
the model’s errors.

Prior to postulating an errors’ assumption, we summarize the notion of strong mixing
(α-mixing) dependence in more detail, which will be imposed on the model’s
errors.

Suppose that {ξn}∞n=1 is a sequence of random elements on a probability space
(Ω,F, P). For σ-fields A,B ⊆ F, let

α(A|B) := sup
A∈A,B∈B

|P(A∩B) − P(A)P(B)| .

Intuitively, α(·|·) measures the dependence of the events in B on those in A. There
are many ways in which one can describe weak dependence or, in other words,
asymptotic independence of random variables, see Bradley (2005). Considering a fil-
tration Fnm := σ{ξi ∈ F,m 6 i 6 n}, sequence {ξn}

∞
n=1 of random variables is said

to be strong mixing (α-mixing) if α(ξ◦,n) := supk∈N α(F
k
1 |F

∞
k+n) → 0 as n → ∞.

The notion of α-mixing was introduced by Ibragimov (1959).

Anderson (1958) comprehensively analyzed a class ofm-dependent processes. They
are α-mixing, since they are finite order ARMA processes with innovations sat-
isfying Doeblin’s condition (Billingsley, 1968:p. 168). Finite order processes, which
do not satisfy Doeblin’s condition, can be shown to be α-mixing (Ibragimov and
Linnik, 1971:pp. 312–313). Rosenblatt (1971) provides general conditions under
which stationary Markov processes are α-mixing. Since functions of mixing pro-
cesses are themselves mixing (Bradley, 2005), time-varying functions of any of
the processes just mentioned are mixing as well. This means that the class of the
α-mixing processes is sufficiently large for the further practical applications and
that is why we chose such a mixing condition.

Limit distribution under null hypothesis and alternative

We proceed to the assumptions that are needed for deriving asymptotic properties
of the proposed test statistic. Before that, assumptions for the score function ψ and
the distribution of the random errors ε1, . . . , εn are formulated.

2.1 Change in mean using ratio statistics 11



Assumption A.2.1. The random error terms {εi, i ∈ N} form a strictly stationary
α-mixing sequence with marginal distribution function F, that is symmetric around
zero, and for some χ > 0, χ ′ > 0 there exists a constant C1(χ,χ ′) > 0 such that

∞∑
h=0

(h+ 1)χ/2α(ε◦,h)χ
′/(2+χ+χ ′) 6 C1(χ,χ ′), (2.6)

where α(ε◦,k), k = 0, 1, . . . are the α-mixing coefficients.

Assumption A.2.2. The score function ψ is a non-decreasing and antisymmetric
function.

Assumption A.2.3.
∫
|ψ(x)|2+χ+χ

′
dF(x) <∞ and

∫
|ψ(x+ t2) −ψ(x+ t1)|

2+χ+χ ′dF(x)

6 C2(χ,χ ′)|t2 − t1|
η, |tj| 6 C3(χ,χ ′), j = 1, 2

for some constants 1 6 η 6 2 + χ+ χ ′, χ > 0, χ ′ > 0 as in (2.6) and the constants
C2(χ,χ ′) > 0, C3(χ,χ ′) > 0 both depending only on χ and χ ′.

Assumption A.2.4. Let us denote λ(t) = −
∫
ψ(e− t)dF(e), for t ∈ R. We assume

that λ(0) = 0 and that there exists a first derivative λ ′(·) that is Lipschitz in the
neighborhood of 0 and satisfies λ ′(0) > 0.

Assumption A.2.5. 0 < σ2(ψ) = Eψ2(ε1) + 2
∑∞
i=1 Eψ(ε1)ψ(εi+1) <∞.

Assumption A.2.1 is satisfied for example for the ARMA processes with continu-
ously distributed stationary innovations and bounded variance (Doukhan, 1994:Sec-
tion 2.4). The conditions regardingψ reduce to the moment restrictions forψL2(x) =

x (L2 method) taking η = 2 + χ+ χ ′. For ψL1(x) = sgn(x) (L1 method), the condi-
tions reduce to F being a symmetric distribution, having continuous density f in
a neighborhood of 0 with f(0) > 0, and η = 1 for any χ > 0 and χ ′ > 0. Similarly,
we may consider the derivative of the Huber loss function, i.e.,

ψH(x) = x 1{|x| 6 C}+C sgn(x) 1{|x| > C} (2.7)

for some C > 0. In that case to satisfy Assumptions A.2.2–A.2.4, we need to
assume F being a symmetric distribution function with the continuous density
f in a neighborhood of C and −C satisfying f(C) > 0 and f(−C) > 0 with η =

2 + χ+ χ ′.

For ψL2(x) = x, x ∈ R, the above stated Assumptions A.2.2 and A.2.4 are satisfied.
We can also drop the requirement of symmetry of F in Assumption A.2.1 and
replace it by E ε1 = 0. Assumptions A.2.3 and A.2.5 reduce to the following two
assumptions.
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Assumption A.2.6. E |ε1|
2+β <∞ for some constant β > 0.

Assumption A.2.7. 0 < σ2(ψL2) = E ε2
1 + 2

∑∞
i=1 E ε1εi+1 <∞.

Although we consider only symmetric distribution function F in our approach, there
is also another common source of outlying observations which occur in practical
applications—asymmetric random error distribution (i.e., @x0 ∈ R : F(x0 − x) =

1 − F(x0 + x), ∀x > 0). To generalize our approach for asymmetric distribution
function F, one needs to assure in modified Assumption A.2.4 that there exists some
unique t0 ∈ R such that λ(t0) = 0. Correspondingly, all other assumptions required
to hold in the neighborhood of t = 0 need to be satisfied in the neighborhood of
t = t0 instead.

Henceforth, P−→ denotes convergence in probability, D−→ convergence in distribution,
D[0,1]−−−−→
n→∞ weak convergence in the Skorokhod space D[0, 1] of càdlàg functions on [0, 1],
and [x] denotes the integer part of the real number x.

The following theorem states the asymptotic behavior of the studied ratio type test
statistic under the null hypothesis.

Theorem 2.1.1 (Under null). Suppose Y1, . . . , Yn follow model (2.2) and assume that
Assumptions A.2.1–A.2.5 hold. Then, under null hypothesis (2.3)

Rn(ψ,γ) D−−−−→
n→∞ sup

γ6t61−γ

sup
06u6t

∣∣W(u) − u/tW(t)
∣∣

sup
t6u61

∣∣W̃(u) − (1 − u)/(1 − t)W̃(t)
∣∣ , (2.8)

where {W(t), 0 6 t 6 1} is a standard Wiener process and W̃(t) = W(1) −W(t).

The null hypothesis is rejected for large values of Rn(ψ,γ). We reject H0 at sig-
nificance level α if Rn(ψ,γ) > a1−α,γ, where a1−α,γ is the (1 −α)-quantile of the
asymptotic distribution from (2.8). Explicit form of the limit distribution (2.8) under
the null hypothesis is not known. Therefore, in order to obtain the critical values, we
have to use either simulation from the limit distribution or resampling methods.

The lower bound for k in (2.5) may be relaxed to 1 (or 2, since the ratio is equal
to 0 for k = 1) and, correspondingly, supγ6t61−γ in the limit distribution of (2.8)
may be replaced with sup0<t61−γ. However, this does not remain true for the
supremum of the upper bound, i.e., supγ6t61−γ cannot be replaced by sup0<t<1

nor can it be replaced by supγ6t<1, since limt→1− supt6s61

∣∣W(s) − s
tW(t)

∣∣ = 0
a.s. Nevertheless, one may redefine the test statistics Rn(ψ,γ) by interchanging
its numerator and denominator in order to relax the upper bound for k up to n
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(or n − 1, since the reversed ratio becomes 0 for k = n) and, correspondingly,
supγ6t61−γ in the new limit distribution may be replaced with supγ<t61.

Next, we study the behavior of the test statistic under the alternative.

Theorem 2.1.2 (Under alternative). Suppose Y1, . . . , Yn follow model (2.2), assume
that δn = O(nθ) as n → ∞ for θ ∈

(
−1

2 , η
3(2+χ+χ ′) −

1
2

)
, and τ = [ζn] for some

γ < ζ < 1 − γ. Then, under Assumptions A.2.1–A.2.5 and alternative (2.4)

Rn(ψ,γ) P−−−−→
n→∞ ∞.

Theorem 2.1.2 says that in presence of the structural change in mean, the test statistic
explodes above all bounds. Hence, the procedure is consistent and the asymptotic
distribution from Theorem 2.1.1 can be used to construct the test.

The asymptotic results for Rn(ψL2 ,γ) were derived in Hušková (2007) and also
in Horváth et al. (2008) under different assumptions regarding the random errors.
For other score functions ψ, results regarding the limit behavior under fixed as well
as under local alternatives for the related non-ratio type test statistic are presented
in Hušková and Marušiaková (2012). The result for the ratio type statistic under
fixed alternative can be derived by a modification of the proof therein.

Asymptotic critical values

The explicit form of the limit distribution (2.8) is not known. The critical values
may be determined by simulations from the limit distribution from Theorem 2.1.1.
Theorem 2.1.2 ensures that we reject the null hypothesis for large values of the test
statistic. We tried to simulate the asymptotic distribution (2.8) by discretizing the
Wiener process and using the relationship of a random walk to the Wiener process.
We considered 1000 as the number of discretization points within [0, 1] interval and
the number of simulation runs equals to 100000. In Table 2.1, we present several
critical values for γ = 0.1 and γ = 0.2.

Tab. 2.1. Simulated critical values corresponding to the asymptotic distribution of the
test statistic Rn(ψ,γ) under the null hypothesis

100(1 −α)% 90% 95% 97.5% 99%

γ = 0.1 6.298815 7.293031 8.283429 9.589896
γ = 0.2 4.117010 4.745884 5.368286 6.159252
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Note that the numerator and denominator in the test statistic Rn(ψ,γ) can be
interchanged and such a modified test statistic can still be used for detection of the
abrupt change in mean (but using different critical values).

2.1.3 Block bootstrap with replacement

There are several different approaches that may be used when resampling depen-
dent observations. Classical resampling methods are not suitable, since they do
not take into account the underlying dependency structure. Here, we focus our
attention on a so-called circular moving block bootstrap method, which was introduced
by Politis and Romano (1992). Overlapping blocks of consequent observations are
formed from the original observations. The first few consequent observations from
the original sequence are appended after the last observation, so that for a sequence
of length n, we always have n possible blocks of subsequent observations to choose
from

{(Yj+1, . . . ,Yj+K), j = 0, . . . ,n− 1}; where Yi = Yi−n, i > n.

With this method, there is equal probability for each observation to be included in
the bootstrap sample.

Let L denote the number of blocks and let K be the block length. In order to keep
the notation as simple as possible, we restrict ourselves to situation, where n = KL,
i.e., a situation where the set of n observations can be divided in exactly L blocks
of length K. It can be proved, as in Kirch (2006), that the limit results remain the
same after omitting the last K1 observations, if n = KL+ K1, 1 6 K1 6 K− 1. We
will assume that K and n are both functions of L such that n = KL. Moreover, we
will suppose that

L→∞ and K→∞ as n→∞.

It is also possible to use the (standard) non-circular moving block bootstrap (Kün-
sch, 1989), where one does not append the first few consequent observations from
the original sequence after the last observation. This bootstrap version gives n−K

blocks to choose from (instead of n blocks), but we will not concentrate on this
approach here.

First, let us define the following subsets ofN×N for integer numbers l,k,L,K and
real number 0 < γ < 1/2

Πl,k,L,K =
{
(p,q) : p,q ∈ N,

1 6 p 6 l, 1 6 q 6 K, (p− 1)K+ q 6 (l− 1)K+ k
}

,

Π̃l,k,L,K =
{
(p,q) : p,q ∈ N,
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l 6 p 6 L, 1 6 q 6 K, (p− 1)K+ q > (l− 1)K+ k+ 1
}

,

ΩL,K(γ) =
{
(l,k) : l,k ∈ N,

1 6 l 6 L, 1 6 k 6 K, KLγ 6 (l− 1)K+ k 6 KL(1 − γ)
}

.

For a set of i.i.d. random variables U = (U1, . . . ,UL), uniformly distributed on the
set {0, . . . ,n− 1}, we define the following block bootstrap statistic

SUL,K(p,q, l,k) =
p−1∑
i=1

K∑
j=1

ψ
(
YUi+j −m

U
L,K(l,k)

)
+

q∑
j=1

ψ
(
YUp+j −m

U
L,K(l,k)

)
,

for p, l = 1, . . . ,L, q,k = 1, . . . ,K, p 6 l, (p − 1)K + q 6 (l − 1)K + k, where
mU
L,K(l,k) is anM-estimate that solves the estimating equation

l−1∑
r=1

K∑
s=1

ψ(YUr+s − µ) +

k∑
s=1

ψ(YUl+s − µ) = 0

with respect to µ. Similarly, we define

S̃UL,K(p,q, l,k) =
K∑

j=k+1

(
YUl+j − m̃

U
L,K(l,k)

)
1{p > l+ 1}

+

p−1∑
i=l+1

K∑
j=1

(
YUi+j − m̃

U
L,K(l,k)

)
1{p > l+ 2}+

q∑
j=1

(
YUp+j − m̃

U
L,K(l,k)

)
,

for p, l = 1, . . . ,L, q,k = 1, . . . ,K such that p > l, (p− 1)K+ q > (l− 1)K+ k+ 1
and m̃U

L,K(l,k) is anM-estimate that solves the estimating equation

K∑
s=k+1

ψ (YUl+s − µ) +

L∑
r=l+1

K∑
s=1

ψ (YUr+s − µ) = 0.

Now, define the block bootstrap version of Rn(ψ) from (2.5) by

R∗L,K(ψ,γ) = max
(l,k)∈ΩL,K(γ)

max(p,q)∈Πl,k,L,K

∣∣∣SUL,K(p,q, l,k)
∣∣∣

max
(p,q)∈Π̃l,k,L,K

∣∣∣S̃UL,K(p,q, l,k)
∣∣∣ .

Statistic R∗L,K(ψ,γ) is constructed in a similar fashion as the original ratio type
test statistic Rn(ψ,γ). The idea behind the bootstrap test statistic lies in indexing
the randomly chosen (possibly overlapping) bootstrap blocks by l = 1, . . . ,L. The
first l blocks are used in the numerator of the bootstrap statistic. The lth block
is employed in the numerator as well as in the denominator. The last L− l+ 1
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blocks are used in the denominator of the statistic R∗L,K(ψ,γ). Regarding the lth
block appearing in the numerator and denominator, this particular block is split
into two continuous disjunctive parts: the first one contains the first elements
from the lth block, has k elements, and is used for the numerator; the second part
contains the last elements from the lth block, has K− k elements, and is used for
the denominator. So, there does not exist a bootstrapped observation appearing
simultaneously in the numerator and denominator. An algorithm for the circular
block bootstrap is illustratively shown in Procedure 2.1.1 and its validity will be
proved in Theorem 2.1.3.

Procedure 2.1.1 Bootstrapping test statistic Rn(ψ,γ)

Input: Sequence of observations Y1, . . . ,Yn, block length K, and 0 < γ < 1/2.
Output: Bootstrap distribution of Rn(ψ,γ), i.e., the empirical distribution where

probability mass 1/B concentrates at each of (1)R
∗
L,K(ψ,γ), . . . , (B)R∗L,K(ψ,γ).

1: determine number of blocks L = [n/K]
2: define setΩL,K(γ)
3: for b = 1 to B do // repeat in order to obtain the empirical distribution
4: generate random sample U = (U1, . . . ,UL) from discrete uniform distribution

on {0, . . . ,n− 1}
5: for (l,k) ∈ ΩL,K(γ) do
6: define sets Πl,k,L,K and Π̃l,k,L,K
7: calculate (b)m

U
L,K(l,k) and (b)m̃

U
L,K(l,k)

8: for (p,q) ∈ Πl,k,L,K do
9: calculate (b)S

U
L,K(p,q, l,k)

10: end for
11: compute max(p,q)∈Πl,k,L,K

∣∣∣(b)SUL,K(p,q, l,k)
∣∣∣

12: for (p,q) ∈ Π̃l,k,L,K do
13: calculate (b)S̃

U
L,K(p,q, l,k)

14: end for
15: compute max

(p,q)∈Π̃l,k,L,K

∣∣∣(b)S̃UL,K(p,q, l,k)
∣∣∣

16: end for
17: compute bootstrap test statistics (b)R

∗
L,K(ψ,γ)

18: end for

We are going to show that the bootstrapped ratio type test statistic, conditioned on
the original observations, has exactly the same limit behavior as the original test statis-
tic under the null. It does not matter whether our observations come form the null
hypothesis or the alternative. In other words, we are going to prove that R∗L,K(ψ,γ)
provides asymptotically correct critical values for the test based on Rn(ψ,γ), when
the observations follow either the null hypothesis or the alternative.

Theorem 2.1.3 (Bootstrap consistency). Suppose Y1, . . . , Yn follow model (2.2) and
E |ψ(ε1)|

ν < ∞ for some ν > 2. Let Assumptions A.2.1 and A.2.3 be satisfied for
χ1,χ ′1 > 0 and for χ2,χ ′2 > 0 such that κ < χ1 < ν− 2, χ ′1 = ν− 2−χ1, and χ2 > 2+ 2κ
for some 0 < κ < ν− 2. Moreover, let Assumptions A.2.2, A.2.4, and A.2.5 be satisfied.
Under alternative (2.4), let δn = O(nθ) as n → ∞ for θ ∈

(
−1

2 , η
3(2+χ+χ ′) −

1
2

)
and
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τ = [nζ] for some ζ : γ < ζ < 1 − γ. If K = O(L) as L→∞, then we have for all y ∈ R,
as L→∞,

P
[
R∗L,K(ψ,γ) 6 y|Y1, . . . ,Yn

]
P−→ P

 sup
γ6t61−γ

sup
06u6t

∣∣W(u) − u/tW(t)
∣∣

sup
t6u61

∣∣W̃(u) − (1 − u)/(1 − t)W̃(t)
∣∣ 6 y

 ,

where {W(t), 0 6 t 6 1} is a standard Wiener process and W̃(t) = W(1) −W(t).

The conditional weak convergence in probability from the above stated Theo-
rem 2.1.3 can be replaced by the conditional weak convergence almost surely using
Theorem 3.5.1, Remark 3.5.4 from Kirch (2006), and strengthening some assump-
tions.

A choice of the block length K in the circular moving block bootstrap is an important
decision. It will affect the bootstrapped version of the test statistic. Therefore, the
block length can be viewed as a tuning parameter in the circular moving block
bootstrap procedure. One possibility, how to make such optimal choice, is to
minimize the asymptotic mean square error of the circular moving block bootstrap
variance estimate. Fitzenberger (1997) proved that this approach yields K = O(n1/3)

as n → ∞ in case of the α-mixing random errors. In contrast to this theoretical
asymptotic result, the practical choice of the block length usually needs to be made
based on one finite sample consisting of n observations. Several finite sample
approaches for choosing the block length K were proposed by Hall et al. (1995),
Politis and White (2004), and Lahiri et al. (2007).

2.2 Structural breaks and self-normalized
statistics

Many changepoint detection procedures rely on the estimation of nuisance parame-
ters (like long-run variance). If a change has occurred, estimators might be biased
and data-adaptive rules for the choice of tuning parameters might not work as
expected. If the data is not stationary, this becomes more challenging.

Under the assumption of finite expectations, changes in the location are typically
detected by comparing sample means and the asymptotic distribution can be
derived from an invariance principle for the partial sum process. However, one
has to estimate the long-run variance to utilize the traditional CUSUM-statistic and
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this involves some difficulties. For time series, the long-run variance includes the
covariances, which have to be estimated and combined with, e.g., kernels. Under the
alternative, the estimation of the covariances is biased, so the long-run covariance
is typically overestimated, which results in a loss of power, see Hušková and
Kirch (2010). In many applications, the observations do not seem to be stationary
even under the hypothesis of no change in mean, because the amount of fluctuation
is not constant. To estimate the time-varying long-run variance is even more difficult.
In a recent article, Górecki et al. (2018) have followed this approach.

The main aim of this section is to develop tests for the hypothesis of a constant ex-
pectation against the alternative of at most one changepoint that avoid the problems
of long-run variance estimation and heteroscedasticity. Our new test statistics will
involve neither nuisance parameters nor tuning constants and will work for heteroscedas-
tic and dependent time series under some mild mixing conditions. Additionally, we
will give a consistent estimator for the time of the change.

Some authors proposed to use nonparametric resampling methods like bootstrap
(e.g., Hušková and Kirch (2012) and Peštová and Pešta (2018a)) or subsampling
(e.g., Betken and Wendler (2018)) to avoid the estimation of the long-run variance.
However, these methods still involve the choice of tuning parameters like band-
widths or block sizes and only work for stationary time series. Other approaches are
ratio statistics and self-normalized statistics, which do not rely on tuning parameters.
Ratio tests have been introduced to detect changes in persistence by Kim (2000) and
since have been studied for changes in mean (Horváth et al., 2008), for changes in
variance (Zhao et al., 2011), for heavy-tailed sequences (Wang et al., 2016), for panel
date framework (Peštová and Pešta, 2015), and for robustM-estimators (Peštová
and Pešta, 2018a).

Self-normalized test statistics for changepoints were firstly proposed by Shao and
Zhang (2010) and were generalized to long range dependent time series (Shao, 2011).
Betken (2016) developed a robust self-normalized test based on the Wilcoxon-
statistic, Zhang and Lavitas (2018) proposed a self-normalized test for multiple
changepoints. Our approach is to combine new variants of the self-normalized test
statistics with the wild bootstrap. The wild bootstrap was proposed by Wu (1986)
and is consistent under heteroscedasticity. However, it does not reproduce the
dependence of the data. We will show that under our model assumptions, it still
gives the correct critical values for the self-normalized test statistics. In this way, we
can avoid using the dependent wild bootstrap of Shao (2010), which involves the
choice of a kernel and of a bandwidth parameter. One of our main contributions is
to provide a fully automatic and completely data driven changepoint detection procedure.
Let us note that in the context of time series regression with heteroscedastic and
dependent errors, Rho and Shao (2015) have already observed that a self-normalized
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test statistic is not pivotal. They also used the wild bootstrap for obtaining critical
values.

From now on, we are going to present results published in Pešta and Wendler (2019).

2.2.1 Stochastic changepoint model and self-normalization

We tend to study time series with one abrupt change in the mean at an unknown
point in time. Let us consider observations Y1,n, . . . , Yn,n obtained at n time ordered
points. We are interested in testing the null hypothesis of all observations being
random variables having equal expectation. Our goal is to test against the alter-
native of the first τn observations have expectation µ and the remaining n− τn

observations come from distributions with expectation µ+ δn, where δn 6= 0. More
precisely, our model is

Yn,k = µ+ δn 1{k > τn}+ σ (k/n) εk, k = 1, . . . ,n, (2.9)

where µ, δn, and τn are unknown parameters, {Yn,k}
∞,n
n=1,k=1 is a triangular array

of random variables, {εn}∞n=1 is a sequence of stationary centered disturbances,
σ(t) is a non-stochastic variance function, and 1{A} denotes the indicator of set A.
The time point τn is called the changepoint. This model was assumed by Górecki
et al. (2018).

We are going to test the null hypothesis that no change occurred against the alterna-
tive that a change occurred at some unknown time point τn, i.e.,

H0 : τn = n versus H1 : τn < n, δn 6= 0.

Test statistics

The CUSUM-statistic is frequently used to detect changes in the mean and it is
based on the partial sums

∑k
i=1
(
Yn,i − Ȳn,1:n

)
, k < n of the centered observa-

tions, where Ȳn,i:j =
1

j−i+1
∑j
k=i Yn,k, i 6 j. To combine the values of the partial

sums for different k’s into a single test statistic, one can use the supremum-type
CUSUM-statistic maxk=1,...,n−1

∣∣∣∑ki=1
(
Yn,i − Ȳn,1:n

)∣∣∣ or, alternatively, the integral-

type CUSUM-statistic
∑n−1
k=1

(∑k
i=1
(
Yn,i − Ȳn,1:n

))2
. These test statistics need to

be standardized by a variance of the series. However, it is practically difficult to
find a variance estimator with satisfactory properties. Such difficulty can occur in
situations with dependent or heteroscedastic random errors. Nonetheless, the vari-

20 Chapter 2 Instabilities in Times Series



ance estimators often do not perform well even in the i.i.d. case, especially under
alternatives (Antoch et al., 1997).

To avoid the estimation of variance parameters, different ratios of such test statistics
have been proposed. Horváth et al. (2008) divide the supremum-test statistic of the
first part of the series by the supremum-test statistic of the second part of the data.
Wenhua and Hao (2016) use a ratio test based on the integral-type statistic. Shao and
Zhang (2010) introduced a self-normalized statistic, which uses the supremum-type
CUSUM-statistic of the whole data set in the numerator, divided by the sum of two
integral-type statistics of the data before k and after k.

Our idea is to use a self-normalization of the CUSUM-statistic by the same type:
We divide the supremum-type statistic by two supremum-type statistics and the
integral-type statistic by two integral-type statistics. Our test statistics can be
expressed as functionals of the cumulative sums Vn(k) :=

∑k
i=1 Yn,i and Ṽn(k) :=

Vn(n) − Vn(k). We define the self-normalized test statistics as

Q(Vn) := max
16k6n

∣∣∣∣∣ Vn(k) −
k
nVn(n)

max
16i6k

∣∣Vn(i) − i
kVn(k)

∣∣+ max
k<i6n

∣∣Ṽn(i) − n−i
n−k Ṽn(k)

∣∣
∣∣∣∣∣ (2.10)

≡ max
16k6n

∣∣∣∣ k∑
i=1

(
Yn,i − Ȳn,1:n

) ∣∣∣∣
max

16i6k

∣∣∣∣ i∑
j=1

(
Yn,j − Ȳn,1:k

) ∣∣∣∣+ max
k<i6n

∣∣∣∣ n∑
j=i

(
Yn,j − Ȳn,(k+1):n

) ∣∣∣∣
and

R(Vn) :=

n∑
k=1

{
Vn(k) −

k
nVn(n)

}2

k∑
i=1

{
Vn(i) −

i
kVn(k)

}2
+

n∑
i=k+1

{
Ṽn(i) −

n−i
n−k Ṽn(k)

}2
(2.11)

≡
n∑
k=1

{
k∑
i=1

(
Yn,i − Ȳn,1:n

)}2

k∑
i=1

{
i∑
j=1

(
Yn,j − Ȳn,1:k

)}2

+
n∑

i=k+1

{
n∑
j=i

(
Yn,j − Ȳn,(k+1):n

)}2 .

For many changepoint tests, one has to skip, for instance, the first and the last
10% of observations as possible candidates for a changepoint, see, e.g., Shao and
Zhang (2010). Moreover, the amount of trimming can be viewed as an additional
tuning parameter. For our test statistics, we are able to consider all time points
k = 1, . . . ,n. The limit distribution of our statistics is obtained with the help of
the continuous mapping theorem, using limit theorems for the partial sum process
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under weak dependence and heteroscedasticity by Cavaliere (2005) or Górecki
et al. (2018).

2.2.2 Asymptotic results

We proceed to the assumptions that are needed for deriving asymptotic results for
the proposed test statistics.

Assumptions

Assumption A.2.8. {εn}
∞
n=1 form a zero-mean sequence such that Var εn = 1 and

{ 1√
n

∑[nt]
i=1 εi, 0 6 t 6 1} converges weakly in D[0, 1] to

√
λW, where λ > 0 and

{W(t), 0 6 t 6 1} is a standard Wiener process.

To control variability, we have an assumption regarding heteroscedasticity.

Assumption A.2.9. σ : [0, 1] → R
+ has at most a finite number of points of dis-

continuity. Restricted to any open interval without discontinuities, σ is Lipschitz-
continuous.

For bootstrapping, we need an assumption controlling the dependence of the
underlying errors.

Assumption A.2.10. {εn}
∞
n=1 form a zero-mean strictly stationary α-mixing sequence

such that Var εn = 1, E |εn|
p <∞ for some p > 2 with mixing coefficients α(ε◦,n)

satisfying
∑∞
n=1{α(ε◦,n)}

2(1/r−1/p) < ∞ for some r ∈ (2,p] and, additionally,∑∞
n=1 nα(ε◦,n) <∞. Furthermore, for the long-run variance, it holds that 0 < λ :=

1 + 2
∑∞
n=1 E ε1εn+1 <∞.

As usual, if the time series {εn}n∈N has more moments, the mixing assumption
becomes less restrictive, because the exponent 2(1/r− 1/p) is higher for higher
values of p. Moreover, one can replace the convergences of sums containing α(ε◦,n)
in Assumption A.2.10 by assuming α(ε◦,n) = O(n−p/(p−2)−γ) for some γ >

max{0, (p− 4)/(p− 2)}, which is more restrictive on one hand, but less complicated
on the other hand. The strong mixing properties will be inherited by Yn,k = µ+

δn 1{k > τn}+σ(k/n)εk, but this process can additionally model heteroscedasticity,
which is important for many applications.
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Asymptotic distribution of the test statistics

The following functionals of the partial sum process Un(t) := 1√
n

∑[nt]
i=1 σ(i/n)εi

can be regarded as continuous modifications of our test statistic: Let

S (Un)

:= sup
06t61

∣∣∣∣∣∣∣
Un(t) − tUn(1)

sup
06s6t

∣∣Un(s) − s/tUn(t)∣∣+ sup
t6u61

∣∣Ũn(u) − (1 − u)/(1 − t)Ũn(t)
∣∣
∣∣∣∣∣∣∣ ,

(2.12)

where Ũn(t) := Un(1) −Un(t). Moreover,

T (Un)

:=

∫ 1

0

{
Un(t) − tUn(1)

}2∫t
0

{
Un(s) − s/tUn(t)

}2ds+
∫1
t

{
Ũn(u) − (1 − u)/(1 − t)Ũn(t)

}2du
dt.

(2.13)

Under the null hypothesis and the technical assumptions from the previous subsec-
tion, the test statistics defined in (2.10) and (2.11) converge to non-degenerate limit
distributions.

Theorem 2.2.1 (Under the null). Under Assumptions A.2.8, A.2.9, and under H0,

Q(Vn)
D−→ S (Wη) and R(Vn)

D−→ T (Wη), n→∞, (2.14)

where Wη(t) := W(η(t)), η(t) :=
∫t

0 σ
2(s)ds∫1

0 σ
2(s)ds , {W(t), 0 6 t 6 1} is a standard Wiener

process, and the functionals S and T are defined in (2.12) and (2.13).

One may replace very general and theoretical Assumption A.2.8 by more practical
Assumption A.2.10.

Remark 2.2.1. Under Assumptions A.2.10, A.2.9, and under H0, relation (2.14) holds.

The null hypothesis is rejected at significance level α for large values of Q(Vn) and
R(Vn). The critical values can be obtained as the (1−α)-quantiles of the asymptotic
distributions from (2.14), if η is known. Furthermore, the tests based on these two
statistics are consistent (for fixed as well as for local alternatives), as the test statistics
converge to infinity under the alternative, provided that the size of the change does
not convergence to 0 to fast.
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Theorem 2.2.2 (Under the alternative). Suppose Assumptions A.2.8 and A.2.9 hold.
Under H1 such that |δn|

√
n → ∞ as n → ∞ and τn = [nζ] for some ζ ∈ (0, 1),

Q(Vn)
P−→∞ and S (Vn)

P−→∞ as n→∞.

Theorem 2.2.2 says that in presence of the structural change in mean, the test statis-
tics explode above all bounds. Hence, the asymptotic distributions from Theorem 2.2.1
can be used to construct the tests. Although, explicit forms of those distributions
are unknown. Therefore in order to obtain the critical values, we have to use either
simulations from the limit distributions or resampling methods. For the simulation
purposes, one would need to know or to estimate the nuisance function η(t). The
resampling techniques will help us to avoid and overcome such an issue.

2.2.3 Wild bootstrap

Wild bootstrap replications are defined as

Y?n,k :=
(
Yn,k − Ȳn,1:n

)
Xk, k = 1, . . . ,n,

where {Xn}
∞
n=1 is a sequence of i.i.d. random variables having standard normal

N(0, 1) distribution. Moreover, {Yn,k}
∞,n
n=1,k=1 and {Xn}

∞
n=1 are also independent.

The schematic algorithm of the wild bootstrap can be seen as Procedure 2.2.1. In
general, the wild bootstrap replications should be defined in the following way
Y∗n,k := Ȳn,1:n +

(
Yn,k − Ȳn,1:n

)
Xk, k = 1, . . . ,n. However, in our case how the

test statistics are defined, there would be no impact by adding Ȳn,1:n. We define
V?
n(k) :=

∑k
i=1 Y

?
n,i and Ṽ?

n(k) := V
?
n(n) − V

?
n(k).

Procedure 2.2.1 Wild bootstrap of the test statistic Q(Vn) and R(Vn)

Input: Sequence of observations Y1,n, . . . , Yn,n and number of bootstrap replica-
tions B

Output: Bootstrap distributions of Q(Vn) and R(Vn), respectively; i.e., the em-
pirical distributions where probability mass 1/B concentrates at each of
(1)Q(V?

n), . . . , (B)Q(V?
n) and (1)R(V?

n), . . . , (B)R(V?
n), respectively

1: for b = 1 to B do // repeat in order to obtain the empirical distributions
2: generate random sample [(b)X1, . . . , (b)Xn] from N(0, 1) independently for

different b
3: calculate (b)Y

?
n,k =

(
Yn,k − Ȳn,1:n

)
× (b)Xk for all k

4: calculate (b)V
?
n(k) =

∑k
i=1 (b)Y

?
n,i and (b)Ṽ

?
n(k) = (b)V

?
n(n) − (b)V

?
n(k) for

all k
5: compute the bootstrap test statistics (b)Q(V?

n) and (b)R(V?
n)

6: end for

The idea behind bootstrapping is to mimic the original distribution of the test statistic
in some sense with the distribution of the bootstrap test statistic. It is not known

24 Chapter 2 Instabilities in Times Series



and it does not matter whether our observations come form the null hypothesis
or the alternative. We are going to prove that Q(V?

n) and R(V?
n), respectively,

provide asymptotically correct critical values for the test based on Q(Vn) and
R(Vn), respectively.

Theorem 2.2.3 (Wild bootstrap validity). Suppose that Assumptions A.2.10 and A.2.9
hold. Under the null hypothesis H0 or under local alternatives H1 with δn → 0 as n→∞,

Q(V?
n)

D−→ S (Wη) and R(V?
n)

D−→ T (Wη), n→∞
almost surely conditionally on {Yn,k}

∞,n
n=1,k=1. Under the alternative hypothesis H1 with

τn = [nζ] for some ζ ∈ (0, 1) and having δn ≡ δ 6= 0 fixed, let {B(t), 0 6 t 6 1} be a
standard Wiener processes independent ofW. Then,

Q(V?
n)

D−→ S

(
Wη −

δ

ϑ
Bζ

)
and R(V?

n)
D−→ T

(
Wη −

δ

ϑ
Bζ

)
, n→∞

almost surely conditionally on {Yn,k}
∞,n
n=1,k=1 with ϑ2 =

∫1
0 σ

2(t)dt and

Bζ(t) =

{
(1 − ζ)B(t), t 6 ζ;
B(ζ) − ζB(t), t > ζ.

Theorem 2.2.3 assures that the asymptotic distribution of the bootstrap test statistics
and the limit distribution of the original test statistics coincide under the null hypoth-
esis. Thus, the bootstrap tests approximately keep the same level as the original
tests based on the asymptotics from Theorem 2.2.1 even without knowing or esti-
mating the nuisance function η(t). Moreover, the limit distribution of the bootstrap
test is not changed under local alternatives, so we avoid the power loss that would
be caused by overestimation of the long-run variance under the alternative.

Even under fixed alternatives, the distribution of the bootstrap statistics converge
to an almost sure finite limit. In contrast, an uncorrected kernel estimator for
the long-run variance would converge to infinity in this case. Depending on the
function η and the time of the change represented by ζ, the quantiles S (Wη−

δ
ϑBζ)

and T (Wη −
δ
ϑBζ), respectively, might be larger or smaller than the quantiles of

S (Wη) and T (Wη), respectively, resulting in a loss or gain of power compared
to the use of the asymptotic quantiles from Theorem 2.2.1 (which is only feasible
when η is known).

Now, the simulated (empirical) distributions of the bootstrap test statistics can be
used to calculate the bootstrap critical values, which will be compared to the values
of the original test statistics in order to reject the null or not.
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2.2.4 Consistent changepoint estimator

If a change is detected, it is of interest to estimate the time of the change. It is sensible
to use

τ̂n := argmax
16k6n

∣∣∣∑ki=1
(
Yn,i − Ȳn,1:n

)∣∣∣+ ∣∣∑ni=n−k+1
(
Yn,i − Ȳn,1:n

)∣∣
max

16i6k

∣∣∣∑ij=1
(
Yn,j − Ȳn,1:k

)∣∣∣+ max
k<i6n

∣∣∣∑nj=i (Yn,j − Ȳn,(k+1):n
)∣∣∣

≡ argmax
16k6n

∣∣Vn(k) − k/nVn(n)∣∣+ ∣∣Ṽn(n− k) − k/nVn(n)
∣∣

max
16i6k

∣∣Vn(i) − i/kVn(k)∣∣+ max
k<i6n

∣∣Ṽn(i) − (n− i)/(n− k)Ṽn(k)
∣∣

as a changepoint estimator. Our next theorem shows that under the alternative, the
changepoint τn is consistently estimated by the estimator τ̂n.

Theorem 2.2.4 (Estimator’s consistency). Suppose Assumptions A.2.8 and A.2.9. Un-
der H1 such that |δn|

√
n → ∞ as n → ∞ and τn = [nζ] for some ζ ∈ (0, 1), it holds

τ̂n/n
P−−−−→

n→∞ ζ.

2.3 Change in trend for randomly spaced series

Traditional notion of time series covers regularly spaced time series, which are also
called evenly or equally spaced time series. In contrast to that, there are situations,
where one observes outcomes Yi’s at some unevenly located time points Zi’s.
The time series {Zi, Yi}ni=1 is, therefore, called an irregularly (unevenly or unequally)
spaced time series. The time moments Zi’s are usually deterministic and measured
precisely, whereas the outcomes Yi’s are considered to be random due to some
output fluctuations (e.g., measurement imprecision).

Change in mean detection can be basically performed in the same way for regularly
and irregularly series. Therefore, we move our attention to a more general type of
structural break—change in trend.

Now, it may happen that our outcome observations Yi’s are supposed to be mea-
sured at some unknown time points Zi’s. However, due to some measurement
imprecision, the actual observation Yi, which should correspond to Zi, is indeed
observed at the time point Zi, but the time point Xi is recorded instead, where
Xi = Zi+θi and {θi}

n
i=1 are some random errors. The unobservable sequence {Zi}

n
i=1

can be regularly or irregularly spaced. A series of the couples

{[Xi, Yi]}ni=1
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is called a randomly spaced time series and, in the presented context, it can be consid-
ered as an extension of the irregularly spaced time series.

We immediately generalize the framework of the randomly spaced time series
approach by leaving the purely time series content and by allowing to handle
multivariate Xi,•’s. On the other hand, we loose natural ordering of the one-
dimensional Xi’s. Although, one still possess the basic (time) arrangement ofXi,•’s
through their underlying indices i’s.

Henceforth, we are going to deal with changepoints in linear relations encapsulating
the problem of change in trend for randomly spaced time series. We rely mainly on
results from Pešta (2016) and Pešta (2017) with partial contribution by Pešta (2011),
Pešta (2013a), Pešta (2013b), and Peštová and Pešta (2018b).

2.3.1 Changepoints in linear relations

If measured input and output data are in some linear relations, then it is of particular
interest to detect whether impact of the input characteristics has changed over time
on the output observables. Despite the fact that the relations and, consequently,
suitable underlying stochastic models are linearly defined, the possible estimates
and the corresponding inference may be highly non-linear (Gleser, 1981). It becomes
even more challenging to handle measurement errors in input and output data
simultaneously, when the linear relations are subject to change at some unknown
time point—changepoint.

There is a vast literature aimed at linear relations modeled through so-called mea-
surement error models or errors-in-variables models (for an overview, see Fuller (1987),
Van Huffel and Vandewalle (1991), Carroll et al. (2006), or Buonaccorsi (2010)),
but very little has been explored in the changepoint analysis for these models yet.
A change in regression has been explored thoroughly, cf. Horváth (1995) or Aue
et al. (2008). However, such a framework does not cover the case of measurement er-
ror models. Maximum likelihood approach (Chang and Huang, 1997) and Bayesian
approach (Carroll et al., 1999) to the changepoint estimation in the measurement
error models were applied, both requiring parametric distributional assumptions
on the errors. Kukush et al. (2007) estimated the changepoint in the input data
only. A change in the variance parameter of the normally distributed errors within
the measurement error models was investigated by Dong et al. (2016). All of these
mentioned contributions dealt with the changepoint estimation solely. Our main
goal is to test for a possible change in the parameters relating the input and output
data, both encumbered by some errors. Consequently, if a change is detected, we
aim to estimate it. By our best knowledge, we are not aware of any similar results
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even for the independent and identically distributed errors. Additionally to that,
our changepoint tests are supposed to be nuisance-parameter-free, distributional-free,
and to allow for a very general error structures.

2.3.2 Errors-in-variables model with changepoint

Errors-in-variables (EIV) or also called measurement error model

X = Z +Θ (M)

and
Y = Zβ + ε (H0)

is considered, where β ∈ Rp is a vector of unknown regression parameters possibly
subject to change,X ∈ Rn×p and Y ∈ Rn×1 consist of observable random variables
(X are covariates and Y is a response), Z ∈ Rn×p consists of unknown constants
and has full rank, ε ∈ Rn×1 and Θ ∈ Rn×p are random errors. This setup can be
extended to a multivariate case, where β ∈ Rp×q, Y ∈ Rn×q, and ε ∈ Rn×q, q > 1,
see Subsection 2.3.3.

The EIV model (M)–(H0) with non-random unknown constants Z is sometimes
called functional EIV model (Booth and Hall, 1993). On the other hand, a differ-
ent approach may handle Z as random covariates, which is called structural EIV
model (Chang and Huang, 1997). Here, we will concentrate on the first mentioned
one, i.e., the functional EIV model.

To estimate the unknown parameter β, one usually minimizes the Frobenius matrix
norm of the errors [Θ, ε], see Golub and Van Loan (1980). This approach leads to
a total least squares (TLS) estimate b = (X>X − λmin([X ,Y ]>[X ,Y ])Ip)

−1X>Y ,
where λmin(M) is the smallest eigenvalue of the matrix M and Ip is a (p× p)
identity matrix. Geometrically speaking, the Frobenius norm tries to minimize
the orthogonal distance between the observations and the fitted hyperplane. There-
fore, the TLS are usually known as orthogonal regression. One can generalize this
method by replacing the Frobenius norm by any unitary invariance matrix norm,
which surprisingly yields the same TLS estimate, having interesting invariance and
equivariance properties (Pešta, 2016). The TLS estimate is shown to be strongly and
weakly consistent (Gleser, 1981; Gallo, 1982a; Pešta, 2011) as well as to be asymptot-
ically normal (Gallo, 1982b; Pešta, 2013b; Pešta, 2017) under various conditions.

We aim to detect a possible change in the linear relation parameter β. The interest
lies in testing the null hypothesis (H0) of all observations Yi’s being random variables
having expectations Z•,iβ’s. Our goal is to test against the alternative of the first τ
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observations have expectations Z•,iβ’s and the remaining n− τ observations come
from distributions with expectations Z•,i(β + δ)’s, where δ 6= 0. A ‘row-column’
notation for a matrix M is used in this manner: Mi,• denotes the ith row of M
andM•,j corresponds to the jth column ofM . Furthermore,Mi stays for the first i
rows of M and M−i represents the remaining n− i rows of M , when the first i
rows are deleted. Now more precisely, our alternative hypothesis is

Yτ = Zτβ + ετ and Y−τ = Z−τ(β + δ) + ε−τ. (HA)

Here, δ ≡ δ(n) 6= 0 is an unknown vector parameter representing the size of change
and is possibly depending on n. The changepoint τ ≡ τ(n) < n is also an unknown
scalar parameter, which depends on n as well. Although, β is considered to be
independent of n.

Intercept and fixed regressors

Note that the EIV model (M)–(H0) has no intercept and all the covariates are encum-
bered by some errors. To overcome such a restriction, one can think of an extended
regression model, where some explanatory variables are subject to error and some
are measured precisely. I.e., Y =Wα+Zβ + ε, where W are observable true and
Z are unobservable true constants, both having full rank. Regression parameters α
and β remain unknown. Then, the non-random (fixed) intercept can be incorpo-
rated into the regression model by setting one column of the matrix W equal to
[1, . . . , 1]>. Consequently, we may project out exact observations using projection
matrixR := In −W (W>W )−1W>. Notice thatR is symmetric and idempotent.
Finally, one may work withRY = RZβ +Rε instead of (H0).

2.3.3 Spectral weak invariance principle

A theoretical device is going to be developed in order to construct the changepoint
tests. The smallest eigenvalue of [X ,Y ]>[X ,Y ]—the squared smallest singular value
of the data matrix [X ,Y ]—plays a key role. We proceed to the assumptions that
are needed for deriving forthcoming asymptotic results.

Assumptions

Firstly, a design assumption on the unobservable regressors is needed.
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Assumption A.2.11. For every ζ ∈ (0, 1), there exist positive definite

∆ζ := lim
n→∞n−1Z>τ Zτ and ∆−ζ := lim

n→∞n−1Z>−τZ−τ,

where τ = [nζ]. Moreover,∆ := limn→∞ n−1Z>Z is positive definite.

For example in one-dimensional case (i.e., p = 1), a simple design, where Zi,1 =

i/(n+ 1), provides∆ζ = ζ3/3 and∆ = 1/3.

Assumption A.2.12. {Θn,1}
∞
n=1, . . . , {Θn,p}

∞
n=1, and {εn}

∞
n=1 are pairwise independent

sequences of α-mixing absolutely continuous random variables having zero mean
and variance equal σ2 > 0 such that

α(Θ◦,j,n) = O(n−1−$j), j = 1, . . . ,p and α(ε◦,n) = O(n−1−$p+1),

as n→∞ for some$j > 0, j ∈ {1, . . . ,p+ 1}. Moreover,

sup
n∈N

Z2
n,j <∞, j ∈ {1, . . . ,p},

sup
n∈N

E |Θn,j|
4+ωj <∞, j ∈ {1, . . . ,p}, and sup

n∈N
E |εn|

4+ωp+1 <∞
for someωj > 0, j ∈ {1, . . . ,p+ 1} such that min

j=1,...,p+1
$j min

j=1,...,p+1
ωj > 2.

Let us emphasize that the sequences of the errors do not have to be stationary. A ho-
moscedastic covariance structure of the within-individual errors [Θi,•, εi] can be
generalized by knowing the heteroscedastic covariance matrix Γ > 0 in advance.
Mathematically speaking, the homoscedastic covariance matrix σ2Ip+1 can be re-
placed by a general one Γ ∈ R(p+1)×(p+1). Then, the observation data are just
multiplied by its square root as already discussed in Van Huffel and Vandewalle
( (1991):Section 8.4) or Gleser ( (1981):Section 5), i.e., the new transformed data are
[X ,Y ]Γ−1/2. This transformation of the original data is purely linear, which is
not restrictive at all in our situation. The whole asymptotic inference remain also
valid even for the heteroscedastic case. The only property that needs to be satisfied
is pairwise independence of the linearly transformed errors [Θi,•, εi]Γ−1/2. If the
covariance matrix Γ is unknown, it can be estimated when possessing repeated
observations, cf. Pešta (2013b).

Furthermore, a variance assumption for the misfit disturbances is stated. It can be
considered as an assumption for the long-run variance of residuals.

Assumption A.2.13. There exists

υ := lim
n→∞n−1 Var

{
‖Y −Xβ‖2

2
}
> 0.
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Finally, the spectral weak invariance principle for the smallest eigenvalues is pro-
vided. Let us denote λi := λmin([Xi,Yi]>[Xi,Yi]) for 2 6 i 6 n, λ0 := λ1 := 1
and λ̃i := λmin([X−(i−1),Y−(i−1)]

>[X−(i−1),Y−(i−1)]) for 1 6 i 6 n− 1, λ̃n := 0,
λ̃0 := λ̃1.

Proposition 2.3.1 (SWIP). Let M and H0 hold. If Assumptions A.2.11, A.2.12, and
A.2.13 are satisfied, then{

1√
n

(
λ[nt] − [nt]σ2)}

t∈[0,1]

D[0,1]−−−−→
n→∞

{
υ

1 + ‖β‖2
2
W(t)

}
t∈[0,1]

and {
1√
n

(
λ̃[n(1−t)] − [n(1 − t)]σ2

)}
t∈[0,1]

D[0,1]−−−−→
n→∞

{
υ

1 + ‖β‖2
2
W̃(t)

}
t∈[0,1]

,

where {W(t)}t∈[0,1] is a standard Wiener process and W̃(t) = W(1) −W(t).

Extension to multivariate case

Suppose that β ∈ Rp×q, Y ∈ Rn×q, and ε ∈ Rn×q, q > 1. Let the singular value
decomposition (SVD) of the partial data be

[X[nt],Y[nt]] = U[nt]Σ[nt]V
>
[nt] =

p+q∑
i=1

ϑ
(i)
[nt]u

(i)
[nt]v

(i)>
[nt] ,

where u(i)
[nt]’s are the left-singular vectors, v(i)[nt]’s are the right-singular vectors, and

ϑ
(i)
[nt]’s are the singular values in the non-increasing order. One may replace λ[nt]

by

Λ[nt] :=

q∑
j=1

(
ϑ
(p+j)
[nt]

)2

in Proposition 2.3.1 (and analogously for λ̃[n(1−t)]). Then, the SWIP can be derived
again (see the proof of Proposition 2.3.1), provided adequately extended assump-
tions on the errors {εn,1}

∞
n=1, . . . , {εn,q}

∞
n=1 instead of the original ones {εn}

∞
n=1.

However, the consequent proofs would become more technical.

2.3.4 Nuisance-parameter-free detection

Estimating β via the TLS approach can be viewed as solving optimizing problem

[b, Θ̂, ε̂] := arg min
[Θ,ε]∈Rn×(p+1),β∈Rp

‖[Θ, ε]‖F s.t. Y − ε = (X −Θ)β, (2.15)
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where ‖ · ‖F stands for the Frobenius matrix norm. Part of the solution (2.15) are
fitted errors [Θ̂, ε̂] such that ∥∥[Θ̂, ε̂]

∥∥2
F
= λn (2.16)

due to Golub and Van Loan (1980). And we construct the changepoint test statistics
based on property (2.16).

Changepoint test statistics

Let us think of two TLS estimates of β: The first one based on the first i data
lines [Xi,Yi] and the second one based on the first k data lines [Xk,Yk] such that
1 6 i 6 k 6 n. Under the null H0, these two TLS estimates should be close to
each other. On the other hand, under the alternative HA such that τ ∈ {i, . . . ,k},
they should be somehow different. A similar conclusion can be made for the
goodness-of-fit statistics coming from (2.16). It means that

λi −
i

k
λk

should be reasonably small under the null H0. Under the alternative HA such that
τ ∈ {i, . . . ,k}, it should be relatively large. For the multivariate case described in
previous Subsection 2.3.3, one has to replace λk by Λk =

∑q
j=1

(
ϑ
(p+j)
k

)2.

We rely on self-normalized test statistics introduced by Shao and Zhang (2010), because
the unknown quantity υ/(1 + ‖β‖2

2) from Proposition 2.3.1 cancels out in the test
statistics. Our supremum-type self-normalized test statistic based on the goodness-of-fit
is defined as

Sn := max
16k<n

∣∣λk − k
nλn

∣∣
max16i<k

∣∣λi − i
kλk

∣∣+ maxk<i6n
∣∣̃λi − n−i

n−k λ̃k+1
∣∣ (2.17)

and the integral-type self-normalized test statistic is defined as

Tn :=

n−1∑
k=1

(
λk −

k
nλn

)2∑k−1
i=1

(
λi −

i
kλk

)2
+
∑n
i=k+1

(
λ̃i −

n−i
n−k λ̃k+1

)2 . (2.18)

Let us note that evaluations of the above defined test statistics require just several
singular value decompositions, which is reasonably quick. Our new test statis-
tics involve neither nuisance parameters nor tuning constants and will work for non-
stationary and weakly dependent data.
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Under the null hypothesis and the technical assumptions from Subsection 2.3.3, the
test statistics defined in (2.17) and (2.18) converge to non-degenerate limit distributions
(their quantiles can be found in Subsection 2.3.4).

Theorem 2.3.2 (Under the null). Let M and H0 hold. Suppose Assumptions A.2.11,
A.2.12, and A.2.13 are satisfied. Then,

Sn
D−−−−→

n→∞ sup
t∈[0,1]

∣∣W(t) − tW(1)
∣∣

sups∈[0,t]

∣∣W(s) − s
tW(t)

∣∣+ sups∈[t,1]
∣∣W̃(s) − 1−s

1−tW̃(t)
∣∣ (2.19)

and

Tn
D−−−−→

n→∞
∫ 1

0

{
W(t) − tW(1)

}2∫t
0

{
W(s) − s

tW(t)
}2ds+

∫1
t

{
W̃(s) − 1−s

1−tW̃(t)
}2ds

dt, (2.20)

where {W(t)}t∈[0,1] is a standard Wiener process and W̃(t) = W(1) −W(t).

The null hypothesis is rejected at significance level α for large values of Sn and
Tn. The critical values can be obtained as the (1 −α)-quantiles of the asymptotic
distributions from (2.19) and (2.20). In order to describe limit behavior of the test
statistics under the alternative, an additional changepoint assumption is required.

Assumption A.2.14. If n→∞, then

‖δ‖2 → 0 and
{
η(β>∆β + δ∆−ζδ) −β

>∆2β
}√

n→∞, (2.21)

where σ2 + η = λmin(∆+ σ2Ip).

This assumption may be considered as a changepoint detectability requirement, be-
cause it manages the relationship between the size of the change, the location of the
change, and the noisiness of the data in order to be able to detect the changepoint.

Now, the tests based on Sn and Tn are shown to be consistent, as the test statistics
converge to infinity under some local alternatives, provided that the size of the
change does not convergence to zero too fast.

Theorem 2.3.3 (Under local alternatives). Let M and HA hold. Suppose Assump-
tions A.2.14, A.2.11, A.2.12, and A.2.13 are satisfied. If τ = [nζ] for some ζ ∈ (0, 1), then

Sn
P−−−−→

n→∞ ∞ P←−−−−
n→∞ Tn. (2.22)

Assumption A.2.14 can be sharpened as remarked below (Dembo, 1988; Ma and
Zarowski, 1995).
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Remark 2.3.1. The second part of relation (2.21) can be replaced by

√
n
{
κ+ η

−
√

(κ+ 2σ2 + η)2 − 4(κ+ σ2 −β>∆(∆+ σ2Ip)−1∆β)(σ2 + η)
}
→∞, (2.23)

where κ := β>∆β + δ∆−ζδ, and the assertion of Theorem 2.3.3 still holds.

Basically, Theorem 2.3.3 says that in presence of the structural change in linear rela-
tions, the test statistics explode above all bounds. Hence, the asymptotic distributions
from Theorem 2.3.2 can be used to construct the tests. Although, explicit forms of
those distributions stated in (2.19) and (2.20) are unknown.

Asymptotic critical values

The critical values may be determined by simulations from the limit distributions
Sn and Tn from Theorem 2.3.2. Theorem 2.3.3 ensures that we reject the null
hypothesis for large values of the test statistics. We have simulated the asymptotic
distributions (2.19) and (2.20) by discretizing the standard Wiener process and using
the relationship of a random walk to the standard Wiener process. We considered
1000 as the number of discretization points within [0, 1] interval and the number of
simulation runs equals to 100000. In Table 2.2, we present several critical values for
the test statistics Sn and Tn.

Tab. 2.2. Simulated critical values corresponding to the asymptotic distributions of the
test statistics Sn and Tn under the null hypothesis

100(1 −α)% 90% 95% 97.5% 99% 99.5%

Sn-based 1.209008 1.393566 1.571462 1.782524 1.966223
Tn-based 5.700222 7.165705 8.807070 10.597625 11.755233

Changepoint estimator

If a change is detected, it is of interest to estimate the time of the change. It is sensible
to use

τ̂n := argmax
16k6n−1

∣∣λk − k
nλn

∣∣
max16i<k

∣∣λi − i
kλk

∣∣+ maxk<i6n
∣∣̃λi − n−i

n−k λ̃k+1
∣∣
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as a changepoint estimator. Our next theorem shows that under the alternative, the
changepoint τ is consistently estimated by the estimator τ̂n.

Corollary 2.3.4 (Consistency). Let the assumptions of Theorem 2.3.3 hold. If for every
t ∈ (ζ, 1) {

η(t)
(
β>∆tβ + δ(∆t −∆ζ)δ

)
−β>∆2

tβ
}√

n
n→∞−−−−→∞ (2.24)

and for every t ∈ (0, ζ){
η̃(t)

(
β>∆−tβ + δ(∆ζ −∆t)δ

)
−β>∆2

−tβ
}√

n
n→∞−−−−→∞, (2.25)

where η(t) = λmin(∆t + tσ
2Ip) − tσ

2 and η̃(t) = λmin(∆−t + (1 − t)σ2Ip) − (1 −

t)σ2, then
τ̂n

n

P−−−−→
n→∞ ζ.

In order to estimate more than one changepoint, it is possible to use an arbitrary
‘divide-and-estimate’ multiple changepoints method relying on our changepoint
estimator, for instance, wild binary segmentation by Fryzlewicz (2014).

2.4 Key contributions

• Change in mean and in trend of time series are investigated, allowing
for heteroscedasticity and non-stationarity.

• Ratio and self-normalized test statistics are used for the changepoint
detection in order to avoid long-run variance estimation.

• General score functions are introduced for the test statistics, making the
approaches more robust against outliers and more suitable for heavy
tailed distributions.

• Circular moving block bootstrap and wild bootstrap extensions are
incorporated. Their validity is formally and computationally justified.

• Spectral weak invariance principle is proved.

• A nuisance-parameters-free methods are developed and their asymp-
totic behavior is derived under the null as well as under the alternative
hypothesis.

• Changepoint estimators are proposed and their consistency is shown.
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3Changepoint in Panel Data

„I don’t need a friend who changes when I change
and who nods when I nod; my shadow does that
much better.

— Plutarch
(Greek philosopher, biographer, and essayist)

To this end, we have considered a changepoint in a sequence of observations, where
only one stochastic copy of the sequence is available. We focus now on a change-
point problem such that several sequences are subject to change simultaneously.
Panel data of our interest consist of a moderate or relatively large number of panels,
while the panels contain a small number of observations.

3.1 Testing for a common change

The problem of an unknown common change in means of the panels is studied here,
where the panel data consist of N panels and each panel contains T observations
over time. Various values of the change are possible for each panel at some unknown
common time τ = 1, . . . ,N. The panels are considered to be independent, but this
restriction can be weakened. In spite of that, observations within the panel are
usually not independent. It is supposed that a common unknown dependence
structure is present over the panels. Foundations for the forthcoming results can be
found in Peštová and Pešta (2015) and Peštová and Pešta (2016).

Tests for changepoint detection in the panel data have been proposed usually in
case when the panel size T is sufficiently large, i.e., T increases over all limits from
an asymptotic point of view, cf. Chan et al. (2013) or Horváth and Hušková (2012).
However, the changepoint estimation has already been studied for finite T not
depending on the number of panels N, see Bai (2010). The remaining task is to
develop testing procedures to decide whether a common changepoint is present or
not in the panels, while taking into account that the length T of each observation
regime is fixed and can be relatively small.
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Motivation from insurance industry

Structural changes in panel data—especially common breaks in means—are wide
spread phenomena. Our primary motivation comes from non-life insurance busi-
ness, where associations in many countries uniting several insurance companies
collect claim amounts paid by every insurance company each year. Such a database
of cumulative claim payments can be viewed as panel data, where insurance com-
pany i = 1, . . . ,N provides the total claim amount Yi,t paid in year t = 1, . . . , T into
the common database. The members of the association can consequently profit
from the joint database.

For the whole association it is important to know, whether a possible change in
the claim amounts occurred during the observed time horizon. Usually, the time
period is relatively short, e.g., 10–15 years. To be more specific, a widely used and
very standard actuarial method for predicting future claim amounts—called chain
ladder—assumes a kind of stability of the historical claim amounts. The formal
necessary and sufficient condition is derived in Pešta and Hudecová (2012). This
section shows a way how to test for a possible historical instability.

3.1.1 Panel changepoint model

Let us consider the panel changepoint model

Yi,t = µi + δiI{t > τ}+ σεi,t, 1 6 i 6 N, 1 6 t 6 T ; (3.1)

where σ > 0 is an unknown variance-scaling parameter and T is fixed, not de-
pending on N. The possible common changepoint time is denoted by τ ∈ {1, . . . , T }.
A situation where τ = T corresponds to no change in means of the panels. The means
µi are panel-individual. The amount of the break in mean, which can also differ
for every panel, is denoted by δi. Furthermore, it is assumed that the sequences of
panel disturbances {εi,t}t are independent and within each panel the errors form
a weakly stationary sequence with a common correlation structure. This can be
formalized in the following assumption.

Assumption A.3.15. The vectors [εi,1, . . . , εi,T ]> existing on a probability space
(Ω,F, P) are iid for i = 1, . . . ,N with E εi,t = 0 and Var εi,t = 1, having the
autocorrelation function

ρt = Corr (εi,s, εi,s+t) = Cov (εi,s, εi,s+t) , ∀s ∈ {1, . . . , T − t},
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which is independent of the lag s, the cumulative autocorrelation function

r(t) = Var
t∑
s=1

εi,s =
∑
|s|<t

(t− |s|)ρs,

and the shifted cumulative correlation function

R(t, v) = Cov
(
t∑
s=1

εi,s,
v∑

u=t+1

εi,u

)
=

t∑
s=1

v∑
u=t+1

ρu−s, t < v

for all i = 1, . . . ,N and t, v = 1, . . . , T .

The sequence {εi,t}
T
t=1 can be viewed as a part of a weakly stationary process. Note

that the dependent errors within each panel do not necessarily need to be linear
processes. For example, GARCH processes as error sequences are allowed as well.
The assumption of independent panels can indeed be relaxed, but it would make
the setup much more complex. Consequently, probabilistic tools for dependent
data need to be used (e.g., suitable versions of the central limit theorem). Never-
theless, assuming, that the claim amounts for different insurance companies are
independent, is reasonable. Moreover, the assumption of a common homoscedastic
variance parameter σ can be generalized by introducing weights wi,t, which are
supposed to be known. Being particular in actuarial practice, it would mean to
normalize the total claim amount by the premium received, since bigger insurance
companies are expected to have higher variability in total claim amounts paid.

It is required to test the null hypothesis of no change in the means

H0 : τ = T

against the alternative that at least one panel has a change in mean

H1 : τ < T and ∃i ∈ {1, . . . ,N} : δi 6= 0.

3.1.2 Test statistic and asymptotic results

We propose a ratio type statistic to test H0 against H1, because this type of statistic
does not require estimation of the nuisance parameter for the variance. Generally,
this is due to the fact that the variance parameter simply cancels out from the
nominator and denominator of the statistic. In spite of that, the common variance
could be estimated from all the panels, of which we possess a sufficient number.
Nevertheless, we aim to construct a valid and completely data driven testing
procedure without interfering estimation and plug-in estimates instead of nuisance
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parameters. A bootstrap add-on is going to serve this purpose as it is seen later
on.

For surveys on ratio type test statistics, we refer to Chen and Tian (2014), Csörgő
and Horváth (1997), Horváth et al. (2008), Liu et al. (2008), and Madurkayová (2011).
Our particular panel changepoint test statistic is

RN(T) = max
t=2,...,T−2

maxs=1,...,t

∣∣∣∑Ni=1
[∑s

r=1
(
Yi,r − Ȳi,t

)]∣∣∣
maxs=t,...,T−1

∣∣∣∑Ni=1

[∑T
r=s+1

(
Yi,r − Ỹi,t

)]∣∣∣ ,
where Ȳi,t is the average of the first t observations in panel i and Ỹi,t is the average
of the last T − t observations in panel i, i.e.,

Ȳi,t =
1
t

t∑
s=1

Yi,s and Ỹi,t =
1

T − t

T∑
s=t+1

Yi,s.

An alternative way for testing the change in panel means could be a usage of
CUSUM type statistics. For example, a maximum or minimum of a sum (not a ratio)
of properly standardized or modified sums from our test statistic RN(T). The theory,
which follows, can be appropriately rewritten for such cases.

Firstly, we derive the behavior of the test statistics under the null hypothesis.

Theorem 3.1.1 (Under null). Under hypothesis H0 and Assumption A.3.15

RN(T)
D−−−−→

N→∞ max
t=2,...,T−2

maxs=1,...,t
∣∣Xs − s

tXt
∣∣

maxs=t,...,T−1
∣∣Zs − T−s

T−tZt
∣∣ ,

where Zt := XT −Xt and [X1, . . . ,XT ]> is a multivariate normal random vector with zero
mean and covariance matrix Λ = {λt,v}

T ,T
t,v=1 such that

λt,t = r(t) and λt,v = r(t) + R(t, v), t < v.

The limiting distribution does not depend on the variance nuisance parameter
σ, but it depends on the unknown correlation structure of the panel changepoint
model, which has to be estimated for testing purposes. The way of its estimation is
shown in Subsection 3.1.4. Furthermore, Theorem 3.1.1 is just a theoretical mid-step
for the bootstrap test, where the correlation structure need not to be known. That
is why the presence of unknown quantities in the asymptotic distribution is not
troublesome.
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Note that in case of independent observations within the panel, the correlation
structure and, hence, the covariance matrix Λ is simplified such that r(t) = t and
R(t, v) = 0.

Next, we show how the test statistic behaves under the alternative.

Assumption A.3.16. limN→∞ 1√
N

∣∣∣∑Ni=1 δi

∣∣∣ =∞.

Theorem 3.1.2 (Under alternative). If τ 6 T − 3, then under Assumptions A.3.15,
A.3.16 and alternative H1

RN(T)
P−−−−→

N→∞ ∞. (3.2)

Assumption A.3.16 is satisfied, for instance, if 0 < δ 6 δi ∀i (a common lower
changepoint threshold) and δ

√
N→∞, N→∞. Another suitable example of δis

for the condition in Assumption A.3.16, can be 0 < δi = KN−1/2+η for some K > 0
and η > 0. Or δi = Ciα−1

√
N may be used as well, where α > 0 and C > 0. The

assumption τ 6 T − 3 means that there are at least three observations in the panel
after the changepoint. It is also possible to redefine the test statistic by interchanging
the nominator and the denominator of RN(T). Afterwards, Theorem 3.1.2 for the
modified test statistic would require three observations before the changepoint, i.e.,
τ > 3.

Theorem 3.1.2 says that in presence of a structural change in the panel means, the
test statistic explodes above all bounds. Hence, the procedure is consistent and the
asymptotic distribution from Theorem 3.1.1 can be used to construct the test.

3.1.3 Changepoint estimation

Despite the fact that the aim of the section is to establish testing procedures for
detection of a panel mean change, it is necessary to construct a consistent estimate
for a possible changepoint. There are two reasons for that: Firstly, the estimation of
the covariance matrix Λ from Theorem 1 requires panels as vectors with elements
having common mean (i.e., without a jump). Secondly, the bootstrap procedure,
introduced later on, requires centered residuals to be resampled.

A consistent estimate of the changepoint in the panel data is proposed in Bai (2010),
but under circumstances that the change occurred for sure. In our situation, we
do not know whether a change occurs or not. Therefore, we modify the estimate
proposed by Bai (2010) in the following way. If the panel means change somewhere
inside {2, . . . , T − 1}, let the estimate consistently select this change. If there is no
change in panel means, the estimate points out the very last time point T with
probability going to one. In other words, the value of the changepoint estimate
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can be T meaning no change. This is in contrast with Bai (2010), where T is not
reachable.

Let us define the estimate of τ as

τ̂N := arg min
t=2,...,T

1
w(t)

N∑
i=1

t∑
s=1

(Yi,s − Ȳi,t)
2, (3.3)

where {w(t)}Tt=2 is a sequence of weights specified later on.

Assumption A.3.17. The sequence
{

t
w(t)

(
1 −

r(t)
t2

)}T
t=2

is decreasing.

Assumption A.3.18. There exist constants L > 0 and N0 ∈ N such that

L < σ2
[
t

w(t)

(
1 −

r(t)

t2

)
−

τ

w(τ)

(
1 −

r(τ)

τ2

)]
+
τ(t− τ)

tw(t)

1
N

N∑
i=1

δ2
i,

for each t = τ+ 1, . . . , T and N > N0.

Assumption A.3.19. limN→∞ 1
N2

∑N
i=1 δ

2
i = 0.

Assumption A.3.20. E ε4
1,t <∞, t ∈ {1, . . . , T }.

Theorem 3.1.3 (Changepoint estimate consistency). Suppose that τ 6= 1. Then under
Assumptions A1, A.3.17, A.3.18, A.3.19, and A.3.20

lim
N→∞P[τ̂N = τ] = 1.

Assumption A.3.18 assures that the values of changes have to be large enough
compared to the variability of the random noise in the panels and to the strength of
dependencies within the panels as well. Assumption A.3.19 is needed to control the
asymptotic boundedness of the variability of 1

w(t)

∑N
i=1
∑t
s=1(Yi,s− Ȳi,t)

2, because
a finite T cannot do that.

Assumptions A.3.18 and A.3.19 are satisfied for 0 < δ 6 δi < ∆,∀i (a common
lower and upper bound for the change amount) and suitable σ, r(t), and w(t).
The monotonicity Assumption A.3.17 in not very restrictive at all. For example
in case of independent observations within the panel (i.e., r(t) = t) and weight
functionw(t) = tq, q > 2, this assumption is automatically fulfilled, since sequence
{t1−q − t−q}Tt=2 is decreasing. This also gives us an idea how to choose weights
w(t).

If one is interested in sensitivity of the changepoint estimate (i.e., what is the size
of the change that can be estimated), let us consider the following model scenario:
T = 10, τ = 5, σ = 0.1, independent observations within the panel, and w(t) = t2.
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Then, Assumption A.3.18 is satisfied if 1
N

∑N
i=1 δ

2
i > 0.029 for allN > N0. In case of

a common value of δ = δi for all i, we need δ >
√

0.029 ≈ 0.170.

Assumption A.3.18 can be considered as too complicated. Therefore, one can replace
it by the following simpler, but more restrictive assumption.

Assumption A.3.21.

lim
N→∞ 1

N

N∑
i=1

δ2
i =∞.

On one hand, this assumption might be considered as too strong, because a com-
mon fixed (not depending on N) value of δ = δi for all i does not fulfill Assump-
tion A.3.21. On the other hand, Assumption A.3.21 is satisfied when δ2

j/N→∞ as
N → ∞ for some j ∈ N and δi = 0 for all i 6= j. This stands for a situation when
all the panels do not change in mean except one panel having a sufficiently large
change in mean with respect to the number of panels.

3.1.4 Estimation of the correlation structure

Since the panels are considered to be independent and the number of panels
may be sufficiently large, one can estimate the correlation structure of the errors
[ε1,1, . . . , ε1,T ]

> empirically. We base the errors’ estimates on residuals

êi,t :=

{
Yi,t − Ȳi,τ̂N , t 6 τ̂N,
Yi,t − Ỹi,τ̂N , t > τ̂N.

(3.4)

Then, the empirical version of the autocorrelation function is

ρ̂t :=
1

σ̂2NT

N∑
i=1

T−t∑
s=1

êi,sêi,s+t.

Consequently, the kernel estimation of the cumulative autocorrelation function and
shifted cumulative correlation function is adopted in lines with Andrews (1991):

r̂(t) =
∑
|s|<t

(t− |s|)κ
( s
h

)
ρ̂s,

R̂(t, v) =
t∑
s=1

v∑
u=t+1

κ

(
u− s

h

)
ρ̂u−s, t < v;

where h > 0 stands for the window size and κ belongs to a class of kernels given
by
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{
κ(·) : R→ [−1, 1]

∣∣κ(0) = 1, κ(x) = κ(−x), ∀x,
∫+∞
−∞ κ2(x)dx <∞,

κ(·) is continuos at 0 and at all but a finite number of other points
}

.

Since the variance parameter σ is not present in the limiting distribution of The-
orem 3.1.1, it neither has to be estimated nor known. Nevertheless, one can use
σ̂2 := 1

NT

∑N
i=1
∑T
s=1 ê

2
i,s.

3.1.5 Residual bootstrap and hypothesis testing

A wide range of literature has been published on bootstrapping in the change-
point problem, e.g., Hušková and Kirch (2012) or Hušková et al. (2008). We
build up the bootstrap test on the resampling with replacement of row vectors
{[êi,1, . . . , êi,T ]}i=1,...,N corresponding to the panels. This provides bootstrapped row
vectors {[ê∗i,1, . . . , ê∗i,T ]}i=1,...,N. Then, the bootstrapped residuals ê∗i,t are centered by
their conditional expectation 1

N

∑N
i=1 êi,t yielding

Ŷ∗i,t := ê
∗
i,t −

1
N

N∑
i=1

êi,t.

The bootstrap test statistic is just a modification of the original statistic RN(T),
where the original observations Yi,t are replaced by their bootstrap counterparts
Ŷ∗i,t:

R∗N(T) = max
t=2,...,T−2

maxs=1,...,t

∣∣∣∑Ni=1

[∑s
r=1

(
Ŷ∗i,r −

¯̂
Y
∗
i,t

)]∣∣∣
maxs=t,...,T−1

∣∣∣∑Ni=1

[∑T
r=s+1

(
Ŷ∗i,r −

˜̂
Y
∗
i,t

)]∣∣∣ ,
such that

¯̂
Y
∗
i,t =

1
t

t∑
s=1

Ŷ∗i,s and ˜̂
Y
∗
i,t =

1
T − t

T∑
s=t+1

Ŷ∗i,s.

An algorithm for the bootstrap is illustratively shown in Procedure 3.1.1 and its
validity will be proved in Theorem 3.1.4.

Validity of the resampling procedure

The idea behind bootstrapping is to mimic the original distribution of the test statistic
in some sense with the distribution of the bootstrap test statistic, conditionally on
the original data denoted byY ≡ {Yi,t}

N,T
i,t=1.
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Procedure 3.1.1 Bootstrapping test statistic RN(T).

Input: Panel data consisting of N panels with length T , i.e., N row vectors of
observations [Yi,1, . . . ,Yi,T ].

Output: Bootstrap distribution of RN(T), i.e., the empirical distribution where
probability mass 1/B concentrates at each of (1)R

∗
N(T), . . . , (B)R∗N(T).

1: estimate the changepoint by calculating τ̂N
2: compute residuals êi,t
3: for b = 1 to B do // repeat in order to obtain the empirical distribution
4: {[ê∗i,1, . . . , ê∗i,T ]}

N
i=1 resampled with replacement from original rows

{[êi,1, . . . , êi,T ]}Ni=1
5: calculate bootstrap panel data Ŷ∗i,t
6: compute bootstrap test statistics (b)R

∗
N(T)

7: end for

First of all, two simple and just technical assumptions are needed.

Assumption A.3.22. {εi,t}t possesses the lagged cumulative correlation function

S(t, v,d) = Cov
(
t∑
s=1

εi,s,
v∑

u=t+d

εi,u

)
=

t∑
s=1

v∑
u=t+d

ρu−s, ∀i ∈ N.

Assumption A.3.23. limN→∞ P[τ̂N = τ] = 1.

Assumption A.3.22 is not really an assumption, actually it is only a notation. Notice
that S(t, v, 1) ≡ R(t, v). Assumption A.3.23 is satisfied for our estimate proposed
in (3.3), if the assumptions of Theorem 3.1.2 hold. Assumption A.3.23 is postulated
in a rather broader sense, because we want to allow any other consistent estimate
of τ to be used instead.

Realize that it is not known, whether the common panel means’ change occurred
or not. In other words, one does not know whether the data come from the null or the
alternative hypothesis. Therefore, the following theorem holds under H0 as well as
H1.

Theorem 3.1.4 (Bootstrap justification). Under Assumptions A.3.15, A.3.22, A.3.23,
and A.3.20

R∗N(T)|Y
D−−−−→

N→∞ max
t=2,...,T−2

maxs=1,...,t
∣∣Xs − s

tXt
∣∣

maxs=t,...,T−1
∣∣Zs − T−s

T−tZt
∣∣ in probability P,
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where Zt := XT −Xt and [X1, . . . ,XT ]> is a multivariate normal random vector with zero
mean and covariance matrix Γ = {γt,v(τ)}

T ,T
t,v=1 such that

γt,t(τ) =



r(t) + t2

τ2 r(τ) −
2t
τ [r(t) + R(t, τ)],

t < τ;
0, t = τ;

r(t− τ) +
(t−τ)2

(T−τ)2 r(T − τ) −
2(t−τ)
T−τ [r(t− τ) + R(t− τ, T − τ)] ,

t > τ;

and

γt,v(τ) =



0, t = τ or v = τ,
r(t) + R(t, v) + tv

τ2 r(τ) −
v
τ [r(t) + R(t, τ)]

− tτ [r(v) + R(v, τ)], t < v < τ;
S(t, v, τ+ 1 − t) +

t(v−τ)
τ(T−τ)R(τ, T)

− v−τT−τS(t, T , τ+ 1 − t) − t
τR(τ, v), t < τ < v;

r(t− τ) + R(t− τ, v− τ) + (t−τ)(v−τ)
(T−τ)2 r(T − τ)

− v−τT−τ [r(t− τ) + R(t− τ, T − τ)]
− t−τT−τ [r(v− τ) + R(v− τ, T − τ)], τ < t < v.

The validity of the bootstrap test is assured by Theorem 3.1.4. Indeed, the con-
ditional asymptotic distribution of the bootstrap test statistic is a functional of
a multivariate normal distribution under the null as well as under the alternative.
It does not converge to infinity (in probability) under the alternative. That is why
it can be used for correctly rejecting the null in favor of the alternative, having
sufficiently large N. Moreover, the following theorem states that the conditional
distribution of the bootstrap test statistic and the unconditional distribution of the
original test statistic coincide. And that is the reason why the bootstrap test should
approximately keep the same level as the original test based on the asymptotics
from Theorem 3.1.1.

Theorem 3.1.5 (Bootstrap test consistency). Under Assumptions A.3.15, A.3.23, A.3.20
and hypothesis H0, the asymptotic distribution of RN(T) from Theorem 3.1.1 and the
asymptotic distribution of R∗N(T)|Y from Theorem 3.1.4 coincide.

Now, the simulated (empirical) distribution of the bootstrap test statistic can be
used to calculate the bootstrap critical value, which will be compared to the value
of the original test statistic in order to reject the null or not.

Note that one cannot think about any local alternative in this setup, because τ
has a discrete and finite support. Finally, the above elaborated model with the
corresponding results can be extended for a setup assuming dependence within
panels, see Maciak et al. (2018).
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3.2 Estimation of common breaks

We now introduce another improved common break point estimator, which relies
on less restrictive assumptions and has better finite sample performance compared
to the estimator presented in the previous section. Here, the theoretical summarized
results are obtained from Peštová and Pešta (2017).

Tests for changepoint detection in panel data have been proposed by Horváth and
Hušková (2012) for sufficiently large panel sizes T , i.e., the limiting results were
derived under the assumption that T increases over all limits. Testing procedures
for the change in panel means with T fixed, that can be relatively small or moderate,
were considered in Peštová and Pešta (2015). The changepoint estimation in panel
data for fixed as well as for unbounded T was studied by Bai (2010). However, the
panel changepoint estimator in Bai (2010) is derived only for a situation, where one
knows for sure, that the change in means occurred within the given time period.
This restriction can become insurmountable for some further utilizations of the
changepoint estimator, as it will be demonstrated later in this thesis. In Peštová
and Pešta (2016), a consistent changepoint estimator was introduced, requiring
no definite knowledge about existence of the changepoint in the given panel data.
In the case of no change being present, the estimator picks the last observation,
which means that no structural break is identified. However, this estimator has
several disadvantages. It assumes a certain kind of homoscedasticity in the panels.
Further, it does not take into account the possibility that the change may occur right
after the first time point. It also assumes conditions that may be viewed as too
complicated with regard to verification and model checking. The remaining task is,
therefore, to develop a changepoint estimator that is consistent regardless of the
change’s presence/absence. Moreover, such estimator would gain from allowing
heteroscedasticity in the panels, having broader scope of applications. Besides that,
the applicability of the estimator is enhanced by simple consistency conditions
and no boundary issue. The boundary issue means that the changepoint can neither
be detected nor estimated when being close to the beginning or to the end of the
observation regime.

Further on, Kim (2011) and Kim (2014) dealt with the changepoint estimator un-
der cross sectional dependence in the panels modeled by a common factor, and
expanded the estimation problem for more complicated types of structural changes.
The first and second order asymptotics that can be used to derive consistent confi-
dence intervals for the time of change in panel data was established by Horváth
et al. (2015). The panel length T was considered as unbounded and depending
on the number of panels N. However, there is some literature on the short panel
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changepoint framework where also weighting functions, as we employ later on, are
suggested, cf. Baltagi et al. (2016).

3.2.1 Abrupt change in panel data

Let us consider the panel changepoint model

Yi,t = µi + δiI{t > τ}+ σiεi,t, 1 6 i 6 N, 1 6 t 6 T ; (3.5)

where σi > 0 are unknown variance-scaling panel-specific parameters and T is
fixed, not depending on N. The possible common changepoint time is denoted by
τ ∈ {1, . . . , T }. A situation where τ = T corresponds to no change in means of the
panels. The means µi are panel-individual. The amount of the break in mean,
which can also differ for every panel, is denoted by δi. There is at most one change
per panel in model (3.5) and the type of change in the panel mean is abrupt.

Furthermore, it is assumed that the sequences of panel disturbances {εi,t}t are
independent. At the same time, the errors within each panel form a weakly station-
ary sequence with a common correlation structure. This can be formalized in the
following assumption.

Assumption A.3.24. The vectors [εi,1, . . . , εi,T ]> existing on a probability space
(Ω,F, P) are iid for i = 1, . . . ,N with E εi,t = 0 and Var εi,t = 1, having the
autocorrelation function

ρt = Corr (εi,s, εi,s+t) = Cov (εi,s, εi,s+t) , ∀s ∈ {1, . . . , T − t},

which is independent of the lag s, the cumulative autocorrelation function

r(t) = Var
t∑
s=1

εi,s =
∑
|s|<t

(t− |s|)ρs,

and the shifted cumulative correlation function

R(t, v) = Cov
(
t∑
s=1

εi,s,
v∑

u=t+1

εi,u

)
=

t∑
s=1

v∑
u=t+1

ρu−s, t < v

for all i = 1, . . . ,N and t, v = 1, . . . , T . The covariance matrix

Λ := Var
[

1∑
s=1

ε1,s, . . . ,
T∑
s=1

ε1,s

]>

is non-singular.
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The sequence {εi,t}
T
t=1 can be viewed as a part of a weakly stationary process. Note

that the within-panel dependent errors do not necessarily need to be linear processes.
GARCH processes are a plausible alternative, for instance.

The assumption of independent panels can be relaxed. It would, however, make
the setup much more complex, cf. Kim (2011). Consequently, probabilistic tools for
dependent data need to be used (e.g., suitable versions of the central limit theorem).
Nevertheless, assuming, that the claim amounts for different insurance companies
are independent, is reasonable with regard to real life experience.

Assumption A.3.25. There exist constants σ,σ > 0 not depending on N, such that

σ 6 σi 6 σ, 1 6 i 6 N.

The assumption of the bounded panel variances from both below and above allows
for heteroscedasticity between the panels. In case, when the equiboundedness
cannot be satisfied, the panel model can be generalized by introducing weights
wi,t, which are supposed to be known. Subsequently, claim ratios Yi,t/wi,t can
be modeled. For instance in actuarial practice (see the insurance motivation in
the previous section), it would mean to normalize the total claim amount by the
premium received (considered as the weight), since bigger insurance companies
are expected to have higher variability in total claim amounts paid.

3.2.2 Another changepoint estimator

A consistent estimator of the changepoint in panel data is proposed in Bai (2010),
but under circumstances that the change occurred for sure. In our situation, we
do not know whether a change has occurred or not. Therefore, we modify the estimate
proposed by Bai (2010) in the following way. If the panel means change somewhere
inside {1, . . . , T − 1}, let the estimate select this break point. If there is no change in
panel means, the estimator points out the very last time point T with probability
going to one. In other words, the value of the changepoint estimate can be T
meaning no change. This is in contrast to Bai (2010), where T is not reachable.

Our estimator of the time of change τ in panel data is defined as

τ̂N := arg min
t=1,...,T

N∑
i=1

{
1
w(t)

t∑
s=1

(Yi,s − Ȳi,t)
2 +

1
w(T − t)

T∑
s=t+1

(Yi,s − Ỹi,t)
2

}
,

(3.6)
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where Ȳi,t is the average of the first t observations in panel i and Ỹi,t is the average
of the last T − t observations in panel i, i.e.,

Ȳi,t =
1
t

t∑
s=1

Yi,s and Ỹi,t =
1

T − t

T∑
s=t+1

Yi,s.

By convention, the value of an empty sum is zero. A sequence of positive weights
{w(t)}Tt=0 is specified later on.

Consistency

We postulate additional assumptions on the panel changepoint model (3.5) in order
to derive the estimator’s consistency. The following conditions take into account
that the length T of the observation regime is fixed; that the length T does not
depend on the number of panels N; and that the length T can even be relatively
small.

Assumption A.3.26. Let g(t) := t
w(t)

(
1 −

r(t)
t2

)
for t ∈ {1, . . . , T }, g(0) ≡ 0, and

lim
N→∞ 1√

N

{
τ

τ+ 1

N∑
i=1

δ2
i − (g(τ) + g(T − τ)) max

t=1,...,T
w(t)

N∑
i=1

σ2
i

}
=∞,

lim
N→∞ 1√

N

{
T − τ

T − τ+ 1

N∑
i=1

δ2
i − (g(τ) + g(T − τ)) max

t=1,...,T
w(t)

N∑
i=1

σ2
i

}
=∞.

Assumption A.3.27. limN→∞ 1
N2

∑N
i=1 δ

2
i = 0.

Assumption A.3.28. E ε4
1,t <∞, t ∈ {1, . . . , T }.

Theorem 3.2.1 (Changepoint estimator consistency). Under Assumptions A.3.24–
A.3.28

lim
N→∞P[τ̂N = τ] = 1.

The formally postulated estimator’s consistency in Theorem 3.2.1 can be practically
interpreted: as one observes more and more panels, the probability that the pro-
posed estimator is different from the true unknown changepoint gets smaller and
smaller.

Assumption A.3.26 is not restrictive at all, although it may be seen as a complicated
one. For example in case of independent observations within the panel (i.e., r(t) = t)
and the weight function w(t) = tq, q > 2 for t ∈ {1, . . . , T }, w(0) = 1, the sequence
{g(t)}Tt=2 becomes {t1−q − t−q}Tt=2 and is non-increasing. Then Assumption A.3.26
is automatically fulfilled, if q = 2 and 1√

N

∑N
i=1
(
δ2
i − T

2σ2
i

)
→ ∞ as N → ∞.
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This also gives us an idea how to choose the weights w(t). Conditions A.3.24
and A.3.26, we impose on the model errors, only pertain to the correlation structure.
Hence, our results hold for nearly all stationary time series models of interest,
including nonlinear time series like the ARCH and GARCH processes. Moreover,
Assumption A.3.26 controls trade-off between the size of breaks and the variability
of errors. It may be considered as a detectability assumption, because it specifies the
value of signal-noise ratio for finding the consistent estimator.

Assumptions A.3.26 and A.3.27 are satisfied, for instance, if 0 < δ 6 δi 6 ∆ for
all i’s (a common lower and upper threshold for the means’ shifts), δ2 = O

(
Nζ
)
,

ζ > 0 and ∆2/N → 0 as N → ∞ (bearing in mind Assumption A.3.25). Another
suitable example of δi’s for the conditions in Assumptions A.3.26 and A.3.27, can
be δi = Kiη for some K > 0 and 0 < η < 1/2. Conditions A.3.26 and A.3.27 do not
require each panel to have a break. Sometimes, a more restrictive assumption can be
assumed instead of Assumptions A.3.26 and A.3.27, e.g.,

lim
N→∞ 1

N

N∑
i=1

δ2
i =∞. (3.7)

On one hand, this assumption might be considered as too strong, because a common
fixed (not depending on N) value of δ = δi for all i’s does not fulfill (3.7). On the
other hand, (3.7) is satisfied when δ2

j/N→∞ as N→∞ for some j ∈ N and δi = 0
for all i 6= j. This stands for a situation when all the panels do not change in mean
except one panel having a sufficiently large change in mean with respect to the
number of panels. Let us notice that one could replace Assumption A.3.26 with
a stronger assumption from (3.7), but it would mean disappearing the detectability
relation between the size of breaks and the variability of errors. One would also
lose an idea how to choose the weights. Furthermore, Assumptions E1 and E2
from Peštová and Pešta (2016) are more restrictive than Assumption A.3.26, which
makes the presented approach even more general.

Various competing consistent estimators of a possible changepoint can be suggested,

e.g., the maximizer of
∑N
i=1

[∑t
s=1(Yi,s − tȲi,T )

]2
as in Horváth et al. (2015). To

show consistency of this estimator, one needs to postulate different assumptions on
the cumulative autocorrelation function and this may be rather complex.

In our opinion, it is erroneously assumed in Bai (2010) that only the second moment
of the errors is sufficient to prove the consistency result. In particular, Lemma A.1
from Bai (2010) has to require the finite fourth errors’ moments, which coincides
with Assumption A.3.28.
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3.3 Key contributions

• Detection of structural changes in panel data, which consist of a mod-
erate or relatively large number of panels, while the panels contain
a small number of observations, is studied.

• Variance function estimation is avoided by utilizing the ratio test statis-
tics.

• There is no need to estimate the correlation structure due to residual
bootstrapping.

• A boundary issue is overcome, allowing to detect very early or late
changes.

• Various consistent changepoint estimators are developed.

• In the case of no change being present, the estimator picks the last
observation, which means that no structural break is identified.
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4Dynamics in Triangles

„I ran into Isosceles. He had a great idea for a new
triangle!

— Woody Allen
(American director, writer, and actor)

If data can be somehow organized into the triangles, then one naturally thinks of
the triangular schemes as discussed in Section 2. One of the typical properties of
these data structures is that each consecutive row has more and more data entries
compared to the previous row. What happens if it is vice-versa? Thus, we are going
to model dynamic behavior of panel data, where each next row is one observation
shorter.

4.1 Consistency and inconsistency of the chain
ladder

Claims reserving is a classical problem in general insurance. A number of various
methods has been invented in this field, see England and Verrall (2002) or Wüthrich
and Merz (2008) for an overview. Among them, the chain ladder method is proba-
bly the most popular and frequently used one for estimating outstanding claims
reserves. Besides its simplicity, this approach leads to reasonable estimates of the
outstanding loss liabilities under quite mild assumptions on the mean structure
and under the assumption of independence of the observations in different accident
years.

In recent years, many authors investigated the relationship between various stochas-
tic models and the chain ladder technique, see for instance Mack (1994b) or Ren-
shaw and Verrall (1998). A number of different properties of the estimated ultimate
claims amount have been studied. The distribution-free approach introduced
by Mack (1993) is probably the most famous one.

In this section we deal with some asymptotic properties of the estimators of de-
velopment factors within this distribution-free framework. Various types of the
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conditional asymptotic consistency are defined. Necessary and sufficient conditions
for being the development factors’ estimates conditionally consistent are provided
and discussed as originally done in Pešta and Hudecová (2012).

4.1.1 Chain ladder

We introduce the classical claims reserving notation and terminology. Outstanding
loss liabilities are structured in so-called claims development triangles. Let us
denote Xi,j all the claim amounts in development year j with accident year i.
Therefore, Xi,j stands for the incremental claims in accident year imade in accounting
year i+ j. The current year is n, which corresponds to the most recent accident year
and development period as well. That is, our data history consists of right-angled
isosceles triangles Xi,j, where i = 1, . . . ,n and j = 1, . . . ,n+ 1 − i.

Suppose that Ci,j are cumulative payments or cumulative claims in origin year i after
j development periods, i.e., Ci,j =

∑j
k=1 Xi,k. Hence, Cij is a random variable

of which we have an observation if i+ j < n+ 1 (run-off triangle, see Table 4.1).
The aim is to estimate the ultimate claims amount Ci,n and the outstanding claims
reserve Ri = Ci,n −Ci,n+1−i for all i = 2, . . . ,n.

Tab. 4.1. Run-off triangle for cumulative claims Ci,j.

Accident Development year j

year i 1 2 · · · n− 1 n

1 C1,1 C1,2 · · · C1,n−1 C1,n

2 C2,1 C2,2 · · · C2,n−1

. . .

...
...

... Ci,n+1−i

n− 1 Cn−1,1 Cn−1,2

n Cn,1
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Distribution-free approach

The distribution-free chain ladder reserving technique is still one of the most frequently
used approaches in non-life reserving.

Suppose that {Ci,j}
n,n
i,j=1 are random variables on a probability space (Ω,F,P). As-

sume the following stochastic assumptions:

[1] E[Ci,j+1|Ci,1, . . . ,Ci,j] = fjCi,j, 1 6 i 6 n, 1 6 j 6 n− 1;

[2] Var[Ci,j+1|Ci,1, . . . ,Ci,j] = σ2
jCi,j, 1 6 i 6 n, 1 6 j 6 n− 1;

[3] accident years [Ci,1, . . . ,Ci,n], 1 6 i 6 n are independent vectors.

These stochastic assumptions correspond to the distribution-free approach proposed
by Mack (1993). The parameters fj are referred to as development factors. If n years
of the claims history are available then the estimates of the development factors based
on the chain ladder method are given as

f̂
(n)
j =

∑n−j
i=1 Ci,j+1∑n−j
i=1 Ci,j

, 1 6 j 6 n− 1; f̂
(n)
n ≡ 1 (assuming no tail). (4.1)

The upper index in (4.1) is used in order to emphasize that the estimate of develop-
ment factor fj depends on n years of history, i.e., we prefer f̂(n)j more than f̂j from
the formal point of view. The ultimate claims amounts Cin are estimated by

Ĉin = Ci,n+1−i × f̂
(n)
n+1−i × · · · × f̂

(n)
n−1.

Mack (1993) proved that the estimators f̂(n)j are unbiased and mutually uncorrelated
under the assumptions [1] and [3] together with an additional assumption

[4]
∑n−j
i=1 Ci,j > 0, 1 6 j 6 n− 1.

Furthermore, the assumption [2] is essential for the calculation of the mean squared
error and the standard error of Ĉin. It has to be remarked that assumption [2]
straightforwardly postulates a condition that Ci,j > 0 [P]-a.s. for all i, j ∈ N.

If the cumulative claim Ci,n+1−i is equal to zero for some particular accident
year i ∈ {1, . . . ,n}, then all the consequent predictions Ĉi,j, where j > n+ 1 − i,
are zeros as well. But this situation occurs very exceptionally. Independence
assumption [3] can sometimes be viewed as slightly unrealistic. In these cases, the
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chain ladder does not seem to be a suitable choice in reserving. Nevertheless, the
assumptions of distribution-free chain ladder were thoroughly discussed many
times and we refer the reader for completeness to relevant articles, e.g., Mack (1994a)
or Mack (1994b).

Properties of development factors’ estimators

Unbiasedness of the development factors estimators f̂(n)j is often stressed out as an
important advantageous property of the chain ladder method. However, unbiased-
ness of an estimator as such is from the statistical point of view of less importance
compared to the consistency. A simple example illustrates why. Suppose that
Y1, . . . , Yn are iid variables sampled from a distribution with finite mean E Y. One
can use T1(Y1, . . . , Yn) = Y1 as an estimator of the unknown mean E Y. This would
be, of course, very naive in practice as only the first observation from the sample is
used and directly taken as the estimator. However, we take this example because
of its simplicity. The estimator T1 is obviously unbiased, but surely inconsistent.
On the other hand, the estimator T2(Y1, . . . , Yn) = 1

n

∑n
i=1 Yi +

1
n is biased, but

consistent. It is easy to see that T2 approaches E Y with probability one as n tends to
infinity. Alternatively speaking, for n large enough, T2 is very close to the sample
average and, hence, provides a reasonable estimate for the mean.

The latter simple example illustrates that the unbiasedness of the development
factors’ estimators does not guarantee reasonable estimates of the ultimate claims.
From an actuarial point of view, the consistency of f̂(n)j might be more tempting
property of the method. It ensures that a sufficiently large number of observations
leads to estimates close to the true quantity. In the claims reserving problem this
means that the method provides accurate estimates of the outstanding loss of
liabilities.

However, the consistency of an estimator is important property for other reasons
as well. Let us present one of them. If f̂(n)j is an unbiased estimator of fj, then

this does not imply (and in the majority of cases it is not true) that [f̂
(n)
j ]−1 is

an unbiased estimate of f−1
j . In general, [f̂(n)j ]−1 can behave quite unpredictably.

On the other hand, if f̂(n)j is a consistent estimator of fj, then [f̂
(n)
j ]−1 is a consistent

estimator of f−1
j . In general, a continuous transformation preserves the property of

being consistent estimator (continuous mapping theorem). This is very useful in
many applications. For instance, consider the Bornhuetter-Ferguson method (BF),
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see Wüthrich and Merz (2008), for reserves estimates. The claims development
pattern βj is sometimes estimated using f̂(n)j as

β̂
(n)
j =

n−1∏
k=j

1

f̂
(n)
k

.

Hence, the consistency of f̂(n)j implies the consistency of β̂(n)
j . On the other hand,

the unbiasedness of f̂(n)j does not “transfer” to β̂(n)
j in any sense.

Furthermore, an estimate of the mean squared error (MSE) of reserves depends on the
estimates of development factors and the dependence is not linear (Mack, 1993:The-
orem 3). The same holds for the MSE of prediction. Therefore, the unbiasedness
of f̂(n)j does not preserve the unbiasedness for estimates of the MSE of reserves
or prediction. Contrary to unbiasedness, the consistency of development factors’
estimates f̂(n)j also guarantees the consistency of the reserves’ or prediction’s MSE.

Finally, the estimator not only has to stay on target asymptotically but its variabil-
ity (usually measured by variance) has also to shrink, leading to better accuracy.
Since the consistency is only a qualitative property of the estimate, it is needed to
characterize the consistency of the development factors’ estimates from a quanti-
tative point of view. Indeed, the variance of the estimates will provide us a rate of
convergence of the estimates, as will be pointed out later.

4.1.2 Consistency of the estimates

The consistency of the development factors’ estimators discussed above is of indis-
putable importance. In spite of that, it has not been investigated or discussed in the
literature according to our best knowledge.

Conditional convergence

In order to formulate and prove the consistency of the chain ladder correctly, we
introduce conditional convergence almost surely, in probability and in mean square. For
detailed information see, e.g., Belyaev (1995). Suppose that ζ and χ are random
variables, and {ξn}

∞
n=1, {ζn}∞n=1 are sequences of random variables with a finite

mean on a probability space (Ω,F, P). Let us define a conditional probability given
some random variable ζ

Pζ[·] := EP[I(·)|ζ],

where I(·) is an indicator function.
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Definition 4.1.1 (Convergence in conditional probability). To say that ξn converges

to χ [Pζ]-almost surely as n tends to infinity with probability one, i.e., ξn
[Pζ]-a.s.−−−−−→
n→∞

χ, [P]-a.s. means
P
[
Pζ
{

lim
n→∞ ξn = χ

}
= 1
]
= 1.

To say that ξn converges to χ in probability Pζn as n tends to infinity with probabil-

ity one, i.e., ξn
Pζn−−−−→
n→∞ χ, [P]-a.s. means

∀ε > 0 : P
[

lim
n→∞Pζn {|ξn − χ| > ε} = 0

]
= 1.

For p > 1, to say that ξn converges to χ in Lp(Pζn) as n tends to infinity with

probability one, i.e., ξn
Lp(Pζn)−−−−−→
n→∞ χ, [P]-a.s. means

P
[

lim
n→∞Eζn |ξn − χ|p = 0

]
= 1.

The conditional convergence in probability and in Lp along some sequence of
random variables {ζn}∞n=1 can be defined, because the concept of these two types of
convergence comes from a topology. Despite of that, the almost sure convergence
does not correspond to a convergence with respect to any topology and, hence, it
is not metrizable. Thereafter, the conditional convergence almost surely cannot
be defined along a sequence of random variables, but only given one random
variable.

Consistency of the chain ladder

Let us define variables εij as

εi,j := Ci,j+1 − fjCi,j, 1 6 i 6 n, 1 6 j 6 n− 1. (4.2)

If we look at the assumption [1] from a “regression” point of view, then Ci,js play
the role of the “regressors”, and εi,j are the “disturbances”. Considering Ci,j as
fixed, the variance of the “responses” Ci,j+1 as well as the variance of the “errors”
εi,j equals to σ2

jCi,j. More formally, we have

E[εi,j+1|Ci,1, . . . ,Ci,j] = 0, Var[εi,j+1|Ci,1, . . . ,Ci,j] = σ2
jCi,j;

for all 1 6 i 6 n and 1 6 j 6 n− 1.

In the following, we investigate the asymptotic properties of the estimated develop-
ment factors f̂(n)j . Hence, we assume that the number of accident years n tends to
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infinity. For each n ∈ N, we observe variablesCi,j, i = 1, 2, . . . ,n, j = 1, . . . ,n+ 1− i,
and the estimate f̂(n)j is calculated from (4.1). The consistency of f̂(n)j means that

f̂
(n)
j approaches (in some sense) the true value fj as n → ∞. Equivalently, the

difference f̂(n)j − fj converges to zero (in some sense) as n→∞. According to (4.2),
we can express this difference as

f̂
(n)
j − fj =

∑n−j
i=1

(
Ci,j+1 − fjCi,j

)∑n−j
i=1 Ci,j

=

∑n−j
i=1 εi,j∑n−j
i=1 Ci,j

. (4.3)

The term on the right hand side of the equation (4.3) is a random variable and,
therefore, several different kinds of convergence can be considered. We will deal
with the almost sure convergence, convergence in probability, and L2 convergence.
It is common to work with the conditional probability (and expectation) given
the observed data Ci,j, i = 1, . . . ,n, j = 1, . . . ,n + 1 − i in the claims reserving.
Hence, we follow this convention (as it is reasonable from the practical point of
view) and we investigate the conditional convergences, as defined in the previous
section, instead of the unconditional ones. In particular, for each n ∈ Nwe define
D

(n)
j = {Ci,k : k 6 j, i 6 n− j+ 1} the set of cumulative claims Ci,k observed so far

such that the development year k is less or equal to j. Subsequently, we investigate
the limiting behavior of (4.3) conditional on D(n)

j . However, it is mentioned at
the end of Section 4.1.2 that the conditional convergence almost surely cannot be
defined along a sequence of random variables, but only given a single random
variable. For this reason, the almost sure consistency is studied conditional on the
set Dj = {Ci,k : k 6 j, i ∈ N} of all the past and future variables Ci,k such that
k 6 j.

The following theorem provides the sufficient as well as the necessary condition
for the weak (in probability) and strong (almost sure) consistency of the development
factors’ estimate f̂(n)j . This condition distinguishes whether the usage of the chain
ladder is a consistent approach or not. Furthermore, we show that if this condition
holds, then all the mentioned “kinds of consistency” (according to the kind of
convergence) are equivalent.

In practice, of course, we always deal only with finite data sets. However, the
results of the following theorem apply to the finite data as well ensuring that the
number of accident years n is large enough.

Theorem 4.1.1. Let us consider the chain ladder with assumptions [1]–[3]. Suppose that∑∞
i=1Ci,j > 0 [P]-a.s. for all j ∈ N, and denoteD(n)

j = {Ci,k : k 6 j, i 6 n− j+ 1} and
Dj = {Ci,k : k 6 j, i ∈ N}. For every j ∈ N, the consequent statements are equivalent:
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(i)

f̂
(n)
j

[PDj ]-a.s.
−−−−−−→
n→∞ fj, [P]-a.s.;

(ii)

f̂
(n)
j

P
D
(n)
j−−−−→

n→∞ fj, [P]-a.s.;

(iii)

f̂
(n)
j

L2

(
P
D
(n)
j

)
−−−−−−→
n→∞ fj, [P]-a.s.;

(iv)
n−j∑
i=1

Ci,j −−−−→
n→∞ ∞, [P]-a.s.

Remark 4.1.1. Due to the independence of the different accident years (assump-
tion [3]), the statements (ii) and (iii) of Theorem 4.1.1 can be equivalently replaced

by f̂(n)j

PDj−−−−→
n→∞ fj, [P]-a.s. and f̂(n)j

L2(PDj)−−−−−→
n→∞ fj, [P]-a.s., respectively.

The previous Theorem 4.1.1 postulates a complete characterization of the conditional
convergence of development factors’ estimate, because it gives necessary and suf-
ficient condition (iv) for the convergence almost surely, in probability, and in mean
square. If the condition (iv) of Theorem 4.1.1 holds, we refer to the corresponding
estimator f̂(n)j as consistent, dropping the term conditionally. As the three types of
convergence are equivalent, the type of consistency (strong, weak, L2) is left out as
well.

Note that the assumptions of Theorem 4.1.1 consist exactly of the same assumptions
as the classical distribution-free chain ladder approach. The condition

∑∞
i=1Ci,j > 0

is not restrictive at all, because the assumption [2] implies Ci,j > 0 [P]-a.s. for all
i, j ∈ N. It ensures that the estimators f̂(n)j are well defined for all j ∈ N and all
n ∈ N.

The necessary and sufficient condition for the consistency are studied in more detail
in Subsection 4.1.3.

Remark 4.1.2. We have explained above that the conditional consistency is natural
to be considered in the claims reserving. However, for the sake of completeness we
briefly discuss the unconditional consistency as well. Consider, for instance, the L2
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convergence. It follows from the proof of Theorem 4.1.1 that f̂(n)j converges to fj in
L2 (unconditionally) as n→∞ if and only if

E
[

1∑n−j
i=1 Ci,j

]
→ 0, n→∞.

However, this condition is obviously more complicated than the condition (iv) in
Theorem 4.1.1, and it is practically unverifiable. Thus, the conditional convergence
is not only more natural one in this case, but even more convenient one.

4.1.3 Rate of convergence

Consistency of an estimator is a very important but only qualitative property. If we
want to measure consistency, it is necessary to evaluate its rate. This quantitative
attribute can be obtained directly from the proof of Theorem 4.1.1 via the mean
square error of the development factor’s estimate.

Proposition 4.1.2. Consider the assumptions of Theorem 4.1.1 and let j ∈ N be fixed.
Denote the conditional mean square error of the estimate of development factor fj as

MSE
(
f̂
(n)
j

)
:= E

{[
f̂
(n)
j − E

(
f̂
(n)
j

)]2 ∣∣∣D(n)
j

}
.

Then, with probability one holds

MSE
(
f̂
(n)
j

)
= O

[n−j∑
i=1

Ci,j

]−1 , n→∞.

Crucial interpretation of previous Proposition 4.1.2 is as follows: the slower (faster)
divergence of

∑∞
i=1Ci,j implies the slower (faster) realization of consistency of the

development factors’ estimates.

On the necessary and sufficient condition

Let us investigate the necessary and sufficient condition (iv) from Theorem 4.1.1

n−j∑
i=1

Ci,j −−−−→
n→∞ ∞, [P]-a.s. (4.4)

in more detail. First, recall that variablesCi,j are called summable [P]-a.s. if
∑n
i=1Ci,j

converges [P]-a.s. to a finite variable as n → ∞. The assumption [2] of the
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distribution-free approach implies that Ci,j > 0 [P]-a.s. for all i, j ∈ N and, there-
fore, it is not restrictive to assume that Ci,j > 0 for all i, j ∈ N. In this case, Ci,j are
either summable [P]-a.s. or condition (4.4) holds.

Proposition 4.1.3. Consider the chain ladder with assumptions [1]–[3]. Suppose that
Ci,j > 0 for all i, j ∈ N, and

∑∞
i=1Ci,j > 0 [P]-a.s. for all j ∈ N. Let j ∈ N be fixed.

Then the following conditions are equivalent.

(i) The condition (4.4) holds.

(ii) ∞∑
i=1

ECi,1 =∞. (4.5)

(iii) The condition (4.4) holds for j0 ∈ N, j 6= j0.

Corollary 4.1.4. Consider the assumptions of Proposition 4.1.3 and let j ∈ N be fixed.

(i) The estimator f̂(n)j is consistent for fj if and only if
∑∞
i=1 ECi,1 =∞.

(ii) The estimator f̂(n)j is consistent for fj if and only if
∑n
i=1Ci,1 → ∞ [P]-a.s. as

n→∞.

It follows from Corollary 4.1.4 that either f̂(n)j is consistent for fj for all j ∈ N, or
none of them is consistent. Furthermore, the consistency of f̂j depends only on the
asymptotic behavior of the cumulative sums of ECi,1 (or Ci,1) and there is no effect
of the true values of fj, j ∈ N on the property of being a consistent estimator or
not.

The condition (i) of Corollary 4.1.4 is better understandable compared to (4.4),
because it is formulated in terms of divergence of series of real numbers instead of
divergence of random variables. The condition (ii) of Corollary 4.1.4 is useful for
practice. Here, we observe just one data set and, therefore, condition (4.5) cannot be
verified. On the other hand, we can deduce conclusions about behavior of

∑n
i=1Ci,1

from the observations so far.

4.2 Generalized estimating equations in triangles

A common approach to the claims reserving problem is based on generalized linear
models (GLM), where the claims in different origin and development years are as-
sumed to be independent variables. If this is violated, the classical techniques may
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provide incorrect predictions of the claims reserves or even misleading estimates of
the prediction error. In this section, the application of generalized estimating equa-
tions (GEE) for estimation of the claims reserves is shown as already demonstrated
by Hudecová and Pešta (2013).

All the classical approaches are based on the assumption that the claim amounts
in different years are independent variables. However, this assumption can be
sometimes unrealistic or at least questionable. It has been pointed out that methods,
which enable modeling the dependencies, are needed, cf. Antonio et al. (2006) or
Antonio and Beirlant (2007). The mentioned papers suggest the generalized linear
mixed models (GLMM) to handle the possible dependence among the incremental
claims in successive development years. This approach extends the classical GLM
and is frequently used in panel (longitudinal) data analyses. The GLMM approach
was proposed in a way that more granular data are required (i.e., claim-by-claim
data). In this section, we present the use of another possible extension of GLM,
namely the generalized estimating equations (GEE) method. On the contrary to the
above mentioned GLMM method, the GEE require just a simple triangle of paid
losses.

GEE were introduced by Liang and Zeger (1986) as a method for estimating model
parameters if the independence assumption is violated. The primary interest of the
analysis is to model the marginal expectation of the response variable given the
covariates. In contrast to GLMM, this method does not explicitly model the correla-
tion structure. The associations are treated as nuisance parameters and modeled
using so called “working correlation matrices”. The method yields consistent and
asymptotically normal parameter estimates even though the correlation structure is
misspecified (Ziegler, 2011:Sec. 5.2). In addition, no additional distributional assump-
tions are required, compared to a specific probability distribution for the outcome in
the GLM (or even GLMM) framework. The GEE solely assume that the distribution
belongs to the exponential family.

Outstanding loss liabilities are again structured in the claims development triangles.
Let us denote Xi,j all the claim amounts in development year j with accident year i.
Therefore, Xi,j stands for the incremental claims in accident year imade in accounting
year i+ j. The current year is n, which corresponds to the most recent accident year
and development period as well. That is, our data history consists of right-angled
isosceles triangle {Xi,j}, where i = 1, . . . ,n and j = 1, . . . ,n+ 1 − i.

Suppose that Yi,j are cumulative payments or cumulative claims in origin year i after
j development periods, i.e., Yi,j =

∑j
k=1 Xi,k (cf. Table 4.1, where the cumulative

claims are denoted by Ci,j). Hence, Yi,j is a random variable of which we have an
observation if i+ j < n+ 1 (a run-off triangle). The aim is to estimate the ultimate
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claims amount Yi,n and the outstanding claims reserve R(n)i = Yi,n − Yi,n+1−i for all
i = 2, . . . ,n.

4.2.1 GEE

Run-off triangles are comprised by observations which are ordered in time. It is
therefore natural to suspect the observations to be correlated. Probably the most
natural approach is to assume that the observations of a common accident year
are correlated—they form a cluster. On the other hand, observations of different
accident years are supposed to be independent. This assumption is similar to those
of the Mack’s chain ladder model, cf. Mack (1993).

Let us consider that the incremental claims for the accident year i ∈ {1, . . . ,n} create
an (n− i+ 1)× 1 vector Xi = [Xi,1, . . . ,Xi,n−i+1]

>. It is assumed that the vectors
X1, . . . ,Xn are independent, but the components ofXi are allowed to be correlated.
Hence, the claim triangle can be considered as a specific type of panel data with
accident year (row) clusters.

In the next subsections we explain the main principles of GEE and give some
recommendation for the use within the claims reserving. We refer to Hardin and
Hilbe (2003) and Ziegler (2011) for further reading on this topic.

Three pillars of GEE

Denote the expectation ofXi as

EXi = µi = [µi,1, . . . ,µi,n−i+1]
>.

Suppose that accident year i and development year j influence the expectation of
claim amount via so-called link function g in the following manner:

µi,j = g
−1(ηi,j) = g

−1(z>i,jθ), (4.6)

where g−1 is the inverse of scalar link function g and zi,j is a p× 1 vector of dummy
covariates that arranges the impact of accident and development year on the claim
amounts through model parameters θ ∈ Rp×1. The relation (4.6) defines the linear
predictor ηi = z>i,jθ, which together with the link function g fully specifies the mean
structure µi.
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Besides the mean structure, one needs to specify the variance of claim amounts.
Assume that the variance of the incremental claim amount Xi,j can be expressed as
a known function h of its expectations µi,j:

VarXi,j = φh(µi,j), (4.7)

where φ > 0 is a scale or a dispersion parameter. In connection to the GLM, if Xi,j
followed the Poisson distribution (or the overdispersed Poisson distribution), then
h would be an identity, i.e., h(x) = x. For the gamma distribution, h(x) = x2, etc.
The relation (4.7) defines so-called variance function.

In the GEE framework, it is not necessary to specify the whole distribution of the
data, because the method is quasi-likelihood based. Only the mean structure and
the mean-variance relationship need to be defined. Furthermore, the correlation
between the components ofXi is modeled using a working correlation matrixCi(ϑ) ∈
R

(n−i+1)×(n−i+1), which depends only on an s× 1 vector of unknown parameters
ϑ, which is the same for all the accident years i. Consequently, the working covariance
matrix of the incremental claims is

Vi = CovXi = φA1/2
i Ci(ϑ)A

1/2
i , (4.8)

where Ai is an (n − i + 1) × (n − i + 1) diagonal matrix with h(µi,j) as the jth
diagonal element. The name “working” comes from the fact that the structure ofCi
does not need to be correctly specified. Some commonly used correlation structures
are described in Section 4.2.1.

To sum up, the GEE framework has two pillars common with the GLM framework
(linear predictor and link function). However, the third pillar is different: The GEE
approach does not require any specification of the whole distribution for the out-
come as this is the case for the GLM. On contrary, the GEE only assume that the
(unknown) distribution belongs to the exponential family of probability distribu-
tions and the third pillar consists of specification of the variance-covariance structure
(variance function and working correlation matrix).

Estimation in GEE

The generalized estimating equations are formed via quasi-score vector

u(θ) =

n∑
i=1

D>i V
−1
i (Xi −µi),
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where Di = ∂µi/∂θ ≡
{
∂µi,j/∂θk

}n−i+i,p
j,k=1 . For given estimates (φ̂, ϑ̂) of (φ,ϑ),

the estimate of parameter θ solves the equation u(θ̂) = 0. The parameters (φ,ϑ)
are usually estimated by the moment estimates. The fitting algorithm is therefore
iterative: updating the estimate of θ in one step and re-estimating (φ,ϑ) in the
second step.

The procedure yields a consistent and asymptotically normal estimate of θ even
though the correlation matrixCi(ϑ) is misspecified, see Liang and Zeger (1986). The
empirically corrected variance estimates for θ̂ can be obtained using the so-called
sandwich estimate

Σ
θ̂
≡ Ĉovθ̂ = B−1(θ̂)S(θ̂)B−1(θ̂), (4.9)

where

B =

n∑
i=1

D>i V
−1
i Di, S =

n∑
i=1

D>i V
−1
i (Xi −µi)(Xi −µi)

>V −1
i Di (4.10)

are evaluated at θ̂. The matrixB−1(θ̂) is referred to as a model based estimator of the
variance matrix of θ̂. The estimatorΣ

θ̂
is consistent for Cov θ̂ even if the correlation

matrix Ci is misspecified. However, it can be slightly biased in small samples.

Covariance structure

Although the GEE method is robust to a misspecification of the correlation structure,
selection of the working correlation structure, which is closer to the true one, may
lead to more efficient estimates of θ.

There exist several common choices for the working correlation matrix. The simplest
case is to assume uncorrelated (or independent) incremental claims, i.e., Ci(ϑ) =

In−i+1 = {δj,k}
n−i+1,n−i+1
j,k=1 , where δj,k symbolizes the Kronecker’s delta being 1

for j = k and 0 otherwise. The opposite extreme case is an unstructured correlation
matrix Ci(ϑ) = {ϑj,k}

n−i+1,n−i+1
j,k=1 such that ϑj,j = 1 for j = 1, . . . ,n− 1 + 1 and

Ci(ϑ) is positive definite. As a compromise to these two extreme cases, one can
consider an exchangeable correlation structure

Ci(ϑ) = {δj,k + (1 − δj,k)ϑ}
n−i+1,n−i+1
j,k=1 , ϑ = [ϑ, . . . , ϑ]>;

anm-dependent correlation structure Ci(ϑ) = {cj,k}
n−i+1,n−i+1
j,k=1 ,

cj,k =


1, j = k,
ϑ|j−k|, 0 < |j− k| 6 m, ϑ = {ϑl}

m
l=1,

0, |j− k| > m;
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or an autoregressive AR(1) correlation structure

Ci(ϑ) = {ϑ|j−k|}n−i+1,n−i+1
j,k=1 , ϑ = [ϑ, . . . , ϑ]>.

4.2.2 Application of the GEE to claims reserving

In the claims reserving, the link function is usually chosen as the logarithm, see,
e.g., Wüthrich and Merz (2008). The most common mean structure assumes that

log(µi,j) = γ+αi +βj, (4.11)

where αi stands for the effect of accident year i, βj represents the effect of the
development year j, and γ is so-called baseline parameter corresponding a value
for the first accident and development year (taking α1 = 0 = β1). In this case
θ = [γ,α2, . . . ,αn,β2, . . . ,βn] and

zi,j = [1, δ2,i, . . . , δn,i, δ2,j, . . . , δn,j]
>.

Another common model, the Hoerl curve with the logarithmic link function, can be
coded by design matrix

zi,j = [1, δ2,i, . . . , δn,i, 1× δ2,j, . . . ,n× δn,j, δ2,j × log 2, . . . , δn,j × logn]>

and parameters of interest θ = [γ,α2, . . . ,αn,β2, . . . ,βn, λ2, . . . , λn]>. Afterwards,
log(µi,j) = γ+ αi + jβj + λj log j, where again α1 = β1 = λ1 = 0. For some other
possible mean structures in claims reserving, see Björkwall et al. (2011).

The choice of the variance function is somehow analogous to the specification
of the distribution in the GLM. Hence, suitable variance functions for the claims
reserving purposes are: linear (its quasi-score vector corresponds to the score vector
of the overdispersed Poisson distribution) or quadratic (gamma distribution). The
variance function as a non-integer power of the mean (multiplied by the scaling
parameter) can also be a practical choice if one realizes the concordance with the
Tweedie distribution (Tweedie, 1984). This distribution has been recently proven as
suitable one for the claims reserving (Wütrich, 2003) and can be considered within
the GEE as well.

Finally, one needs to choose an appropriate working correlation structure. The
most feasible choice might be AR(1) since the observations within an accident year
are ordered in time and, in such situations, it is natural that the correlation between
two observations decays with their time distance. However, in situations, where
the observations are strongly dependent—that is the decay of the correlations is
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slower than it is in AR(1)—the exchangeable structure could be considered as a good
guess as well. Finally, the independence structure should always be considered
for a comparison. For more details regarding the choice of particular working
correlation matrix, we refer to, e.g., (Hardin and Hilbe, 2003:Subsection 3.2.1).
This approach combined with the sandwich estimate of the covariance matrix of
parameter estimates θ̂ may lead to satisfactory results as well, for small data sets in
particular (Hardin and Hilbe, 2003:Chap. 4).

4.2.3 Model selection

Similarly as in the GLM setting, two nested models (nested in the mean struc-
ture) can be compared using Wald tests, see Hardin and Hilbe ( (2003):Sec. 4.5.2).
A comparison of two non-nested models in the GLM framework can be based
on information criteria as AIC or BIC, see, e.g., Björkwall et al. (2011). However,
since the GEE method is only quasi-likelihood based (and not full likelihood), these
criteria cannot be used within the GEE.

Pan (2001) suggested an analogy of the AIC for GEE, namely quasi-likelihood under
the independence model criterion (QIC). The QIC is defined as

QIC = −2Q(θ̂, I) + 2trace(Ω̂I(θ̂)Σθ̂
),

where Q(·, I) is the quasi-likelihood under working independence model, see Mc-
Cullagh and Nelder ( (1989):p. 325), and Ω̂I(θ) =

∑n
i=1D

>
i A

−1
i Di. A model with

a smaller QIC value indicates a better fit to the data. The QIC equals to AIC (up to
a constant) under the independence in cases when the model implies the proper
likelihood.

Hardin and Hilbe (2003) considered a modified version of QIC,

QICHH = −2Q(θ̂, I) + 2trace(Ω̃I(θ̂(I))Σθ̂
),

where Ω̃I(θ) =
∑n
i=1D

>
i A

−1
i Di is evaluated at the estimate θ̂(I) obtained by GEE

with the independence working correlation structure. The main advantage of this
modification is that QICHH can be easily computed, because matrices Ω̃I(θ̂(I)) and
Σ
θ̂

are provided by standard software packages for the GEE estimation.

The two criteria can be used for choosing the appropriate mean structure as well as
the working correlation matrix. However, simulations have shown that QIC tends
to be more sensitive to changes in the mean structure than changes in the covariance
structure, see Hin and Wang (2009). For this reason, Hin and Wang (2009) suggested

68 Chapter 4 Dynamics in Triangles



a correlation information criterion (CIC), which improves the performance of QIC for
selecting the appropriate working correlation structure. The CIC is defined as

CIC = trace(Ω̂I(θ̂)Σθ̂
).

Analogously, its modification defined as

CICHH = trace(Ω̃I(θ̂(I))Σθ̂
)

can be used for the comparison of working correlation structures as well.

4.2.4 Mean square error of prediction

In order to quantify the precision of the estimates and predictions, let us define the
mean square error (MSE) of prediction for the ith claims reserve

MSE
[
R̂
(n)
i

]
:= E

[
R̂
(n)
i − R

(n)
i

]2
= E

 n∑
j=n+2−i

(
X̂
(n)
i,j −Xi,j

)2

=

n∑
j=n+2−i

E
[
X̂
(n)
i,j −Xi,j

]2
+

n∑
j,k=n+2−i

j6=k

E
[
X̂
(n)
i,j −Xi,j

] [
X̂
(n)
i,k −Xi,k

]
, (4.12)

where X̂(n)
i,j = g−1

(
z>i,jθ̂

)
is the plug-in prediction of the incremental claim amounts

Xi,j based on the GEE estimate θ̂.

Mean square error in the GEE

Our aim is to derive the MSE of prediction for the claims reserves within the GEE
framework. Elaborating the expected value from the first sum in (4.12) yields

MSE
[
X̂
(n)
i,j

]
:= E

[
X̂
(n)
i,j −Xi,j

]2
= Var

[
X̂
(n)
i,j −Xi,j

]
+
(

E
[
X̂
(n)
i,j −Xi,j

])2

= Var X̂(n)
i,j − 2 Cov

(
X̂
(n)
i,j ,Xi,j

)
+VarXi,j +

(
E X̂(n)

i,j − EXi,j
)2

. (4.13)

Many authors directly assume the unbiasedness or approximate unbiasedness of
estimator X̂(n)

i,j for EXi,j, that is E X̂(n)
i,j = EXi,j or E X̂(n)

i,j ≈ EXi,j. See, for instance,
Renshaw (1994), England and Verrall ( (2002):Subsec. 7.1.2), or Wüthrich and Merz
( (2008):Sec. 3.1). Nevertheless, this is neither the case for the GLM nor the GEE,
because a non-linear link function (e.g., logarithm) makes biased prediction from
approximately unbiased parameter estimates—especially in small samples—due to
the non-exchangeability of the expectation operator and the link function.
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The conjecture of the (approximately) unbiased predictor then implies that the MSE

of prediction for incremental claims is given as MSE
[
X̂
(n)
i,j

]
≡ E

[
X̂
(n)
i,j −Xi,j

]2
≈

Var
[
X̂
(n)
i,j −Xi,j

]
. That is, the MSE is reduced to the variance of the difference

between observation and its prediction. However, the unbiasedness of X̂(n)
i,j can be

arguable (or even unrealistic), for smaller samples in particular.

If the prediction is really unbiased and the incremental claim amounts are indepen-
dent, then the MSE of prediction is equal to the process variance plus the estimation
variance, see, e.g., Wüthrich and Merz ( (2008):Sec. 3.1). On the other hand, violation
of such strict assumptions could provide incorrect MSE of prediction, because it
simply ignores the covariance or the squared bias term in (4.13).

Nevertheless, such simplification cannot be applied in the GEE framework, because
the incremental claim amounts are not independent. Hence, the covariance among
a future observation and its predictor in (4.13) is not zero anymore, because the
predictor is a function of the past observations, which are not independent of the
future observation. And this needs to be taken into account in the calculation of the
MSE.

For i = 2, . . . ,n define ~Xi = [Xi,n+2−i, . . . ,Xi,n]> as the vector of the unobserved
claim amounts of accident year i. Similarly, an arrow above a vector/matrix stands
for its complement for the unobserved data {Xi,j}, i = 2, . . . ,n and j = n+ 2 −

i, . . . ,n (bottom-right right-angled isosceles triangle). For instance, ~µi = E ~Xi

stands for the expectation of the future claims of accident year i, ~̂X
(n)

i is the
prediction of ~Xi, ~Di = ∂~µi/∂θ, etc.

Consider a first-order stochastic Taylor expansion (Brockwell and Davis, 2006:Propo-

sition 6.1.6), for the residual vector ~ri := ~Xi − ~̂X
(n)

i around θ. It gives

~ri = ~ei +

[
∂~ei
∂θ

]
(θ̂− θ) + oP(‖θ̂− θ‖), (4.14)

where ~ei ≡ ~ei(θ) = ~Xi − ~µi. Notice that ∂~ei/∂θ = − ~Di. Previous linearization is
reasonable, because under the regularity conditions for quasi-likelihood estimation
in the GEE framework postulated by White (1982) and Ziegler ( (2011):Sec. 5.2), the
quasi-likelihood GEE estimate θ̂ is strongly consistent for the parameter θ.

The MSE of ~̂X
(n)

i can be calculated using residuals ~ri and (4.14) as

MSE
[
~̂X

(n)

i

]
= E

[
~ri~r
>
i

]
≈ E

[
~ei~e
>
i

]
− E

[
~ei(θ̂− θ)

> ~D>i

]
− E

[
~Di(θ̂− θ)~e

>
i

]
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+ E
[
~Di(θ̂− θ)(θ̂− θ)

> ~D>i

]
. (4.15)

The Taylor expansion applied on u(θ̂) around θ together with the chain rule provide
a first-order approximation

θ̂− θ ≈

(
n∑
l=1

D>l V
−1
l Dl

)−1 n∑
j=1

D>j V
−1
j ej.

For a detailed derivation see Ziegler ( (2011):Sec. 5.2). This approximation together
with the independence of accident years i and j, i 6= j, imply that (4.15) can be
further expressed as

MSE
[
~̂X

(n)

i

]
≈ Cov ~Xi − Cov

(
~Xi,Xi

)
H>ii −Hii Cov

(
Xi, ~Xi

)
+

n∑
j=1

Hij CovXjH>ij (4.16)

= Cov ~Xi − 2 Cov
(
~Xi,Xi

)
H>ii + ~DiB

−1[ES]B−1 ~D>i , (4.17)

where Hij = ~Di
(∑n

l=1D
>
l V

−1
l Dl

)−1
D>j V

−1
j and the matrices B and S are

defined in (4.10).

Estimate for the MSE of prediction

One of the main goals is to estimate the theoretical MSE of prediction for claims
reserves. This means to find a proper estimate for the left hand side of approxima-
tion (4.16). Indeed, comparing relations (4.12) and (4.15) gives

MSE
[
R̂
(n)
i

]
= [1, . . . , 1]︸ ︷︷ ︸

(i−1)×1

MSE
[
~̂X

(n)

i

]
[1, . . . , 1]>.

The core problem lies in the estimation of the covariances in (4.17). The remaining
terms from (4.17) can be estimated straightforwardly using the plug-in estimates,
i.e.,

Âi := Ai(θ̂), Ĉi := Ci(ϑ̂), V̂i := φ̂Â
1/2
i ĈiÂ

1/2
i ,

D̂i :=Di(θ̂), ~̂Di := ~Di(θ̂).
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The covariance of the observed incremental claim amounts can be estimated as
suggested by Liang and Zeger (1986):

ĈovXi = (Xi − X̂i)(Xi − X̂i)
>.

It follows from (4.9), that the last term of (4.17) can be estimated by ~̂DiΣθ̂
~̂D
>
i .

Furthermore, the variance structure in (4.8) implies that the covariance of the
unobserved (future) incremental claim amounts may be estimated as

Ĉov ~Xi = φ̂ ~̂A
1/2

i
~̂Ci ~̂A

1/2

i ,

where ~̂Ai = diag{h(µi,j(θ̂)), j = n + 2 − i, . . . ,n} and ~̂Ci = Cn+2−i(ϑ̂) for the
standard correlation structures as AR(1), MA(1), independence, or exchangeable
(i.e., correlation structures with the translation symmetry property). If a different
correlation structure is used, then the future correlations ~Ci have to be predefined
in advance and estimated according to that.

Another way how to look at the covariances from (4.16) is to consider a joint vector
of the past and future incremental claim amounts for a particular accident year.
Hence,

Cov[X>i , ~X>i ]
> =

 CovXi Cov
(
Xi, ~Xi

)
Cov

(
~Xi,Xi

)
Cov ~Xi

 = φÃ
1/2
i C̃iÃ

1/2
i , (4.18)

where Ãi = diag{h(µi,j(θ)), j = 1, . . . ,n} ≡ diag{diag(Ai),diag( ~Ai)}, i.e., joint
diagonals fromAi and ~Ai are placed on the diagonal of matrix Ãi. The correlation
matrix C̃i is an extension of the original correlation matrix Ci for the standard
correlation structures as above, or needs to be known in advance.

Henceforth, the estimate of covariance among the past and future incremental claim
amounts can easily be taken from (4.18), i.e.,

Ĉov
(
~Xi,Xi

)
= φ̂ ~̂A

1/2

i
̂̄CiÂ1/2

i ,

where C̄i is a lower-left segment of the correlation matrix C̃i corresponding to
Cov

(
~Xi,Xi

)
, i.e., C̄i = {C̃i;j,k}

n,n+1−i
j=n+2−i,k=1.
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In order to calculate the estimate for the total claims reserve R(n), one just needs to
sum up the claims reserve’s estimates for each accident year due to the fact that the
claim amounts in different accident years are independent. Hence,

M̂SE
[
R̂(n)

]
=

n∑
i=2

[1, . . . , 1]︸ ︷︷ ︸
(i−1)×1

M̂SE
[
~̂X

(n)

i

]
1
...
1

 , (4.19a)

M̂SE
[
~̂X

(n)

i

]
= φ̂ ~̂A

1/2

i
~̂Ci ~̂A

1/2

i − 2φ̂ ~̂A
1/2

i
̂̄CiÂ1/2

i Ĥ>ii + ~̂DiΣθ̂
~̂D
>
i , (4.19b)

and

Ĥij = ~̂Di

(
n∑
l=1

D̂>l V̂
−1
l D̂l

)−1

D̂>j V̂
−1
j . (4.19c)

4.3 Conditional least squares and copulae

One of the main goals in non-life insurance is to estimate the claims reserve distri-
bution. A generalized time series model, that allows for modeling the conditional
mean and variance of the claim amounts, is proposed for the claims develop-
ment. On contrary to the classical stochastic reserving techniques, the number of
model parameters does not depend on the number of development periods, which
leads to a more precise forecasting. The demonstrated work relies on Pešta and
Okhrin (2014).

The main aim of this section is to deal with serious issues in contemporary reserving
techniques, which are quite often set aside, but cause serious problems in the
actuarial estimation and prediction. Such pitfalls are assumptions of independent
claims, independent stochastic errors (or residuals) in the corresponding claims
reserving model, and considering large number of parameters often depending on
the number of observations.

The majority of the classical approaches are based on the assumption that the
claim amounts in different years are independent. However, this assumption can
sometimes be unrealistic or at least questionable. It has been pointed out that meth-
ods, enabling modeling the dependencies, are needed, cf. Antonio and Beirlant (2007)
or Hudecová and Pešta (2013). Mentioned papers suggest the generalized linear
mixed models (GLMM) or generalized estimating equations (GEE) to handle the
possible dependence among the incremental claims in successive development
years. These approaches extend the classical GLM and are frequently used in panel
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(longitudinal) data analyses. In this section, we present another possible attitude,
namely the conditional mean-variance model with a copula function.

On the one hand, time series model by Buchwalder et al. (2006) nicely and simply
allow to model conditional mean and variance of the claim amounts. On the other
hand, that model possesses two disadvantages, which are common for a huge
majority of the reserving methods: infinite number of parameters (i.e., depending
on the number of observation) and independent errors. Generally, large number of
parameters decreases the precision of estimation, because of not sufficient amount
of data for the estimation. Furthermore, the classical statistical inference is not
valid anymore when the number of parameters depends on the number of observa-
tion. To overcome such difficulties, we consider a generalized time series model
with a finite number of parameters not depending on the number of development periods
and, additionally, the model errors belonging to the same accident period are not
independent.

Moreover, all the currently used bootstrap methods in claims reserving require
independent residuals in order to estimate the distribution of the reserve and, conse-
quently, calculate some distributional quantities, e.g., VaR at 99.5%. Assumption of
independent residuals can be quite unrealistic in the claims reserving setup. Hence,
an alternative and more suitable resampling method needs to be proposed in order
to sensibly estimate the reserves distribution.

Copulae have already been utilized in the claims reserving to model dependencies
between different lines of business, e.g., Shi and Frees (2011). On the contrary, it
has to be emphasized that in our approach, only one line of business is taken into
account. Copulae are therefore used to model dependencies within claims corre-
sponding to that single line of business. For sure, our approach can be generalized for
several lines of business in the way that a second level of dependence (for instance,
modeled again by the copulae) is introduced between the claim amounts from
different lines of business.

Outstanding loss liabilities are again structured in the claims development triangles.
Let us denote Yi,j all the claim amounts up to development year j ∈ {1, . . . ,n}
with accident year i ∈ {1, . . . ,n}. Therefore, Yi,j stands for the cumulative claims
in accident year i after j development periods. Thus, our data history consists
of right-angled isosceles triangle {Yi,j}, where i = 1, . . . ,n and j = 1, . . . ,n+ 1 − i

(cf. Table 4.1, where the cumulative claims are denoted by Ci,j).

The aim is to predict the ultimate claims amount Yi,n and the outstanding claims
reserve R(n)i = Yi,n − Yi,n+1−i for all i = 2, . . . ,n. Additional to that, estimation of
the whole distribution of the reserves is needed in order to provide important distri-
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butional quantities for the Solvency II purposes, e.g., quantiles for the value at risk
calculation.

4.3.1 Conditional mean and variance model

Run-off triangles are comprised of observations which are ordered in time. It is
therefore natural to suspect the observations to be dependent. On one hand, the
most natural approach is to assume that the observations of a common accident
year are dependent. On the other hand, observations of different accident years
are supposed to be independent. This assumption is similar to those of the Mack’s
chain ladder model, cf. Mack (1993).

Fi,j denotes the information set generated by trapezoid {Yk,l : l 6 j,k 6 i+ 1 − j},
i.e., Fi,j = σ(Yk,l : l 6 j,k 6 i+ 1 − j) is a filtration corresponding to the smallest
σ-algebra containing historical claims with at most j development periods paid in
accounting period i or earlier. This notation allows for a zero or even negative index
in filtration despite the fact that the claims corresponding to a zero or negative
development of accident years are not observed.

Let us define a nonlinear generalized semiparametric regression type of model. It can be
considered as a generalization of the model proposed by Buchwalder et al. (2006).
The first level of generalization is in the mean and variance structure, which was
inspired by Patton (2012). The second level of generalization regarding the depen-
dence structure will be introduced in Section 4.3.2.

Definition 4.3.1 (CMV model). The Conditional Mean and Variance (CMV) model
assumes

Yi,j = µ(Yi,j−1,α, j) + σ(Yi,j−1,β, j)εi,j(α,β), (4.20)

where α and β are unknown parameters, whose dimensions do not depend on
n, µ is a continuous function in α and σ is a positive and continuous function
in β. Disturbances {εi,j(α,β)}n+1−i

j=1 are independent sample copies of a stationary
first-order Markov process for all i. εi,j(α,β) have the common true invariant
distributionGα,β, which is absolutely continuous with respect to Lebesgue measure
on the real line. Suppose that

E[εi,j(α,β)|Fi,j−1] = 0, (4.21a)

Var[εi,j(α,β)|Fi,j−1] = s(α,β), (4.21b)

for all i and j. Moreover for the unknown true values [α∗>,β∗>]> of parameters
[α>,β>]>, the conditional variance of errors equals one, due to identifiability
purposes, i.e., s(α∗,β∗) = 1.
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The name of the model comes from the fact that the conditional mean and variance
can be expressed as

E[Yi,j|Fi,j−1] = µ(Yi,j−1,α, j),

Var[Yi,j|Fi,j−1] = σ
2(Yi,j−1,β, j)s(α,β).

This property allows for a wide variety of models for the conditional mean: types
of ARMA models, vector autoregressions, linear and nonlinear regressions, and
others. It also allows for a variety of models for the conditional variance: ARCH
and any of its numerous parametric extensions (GARCH, EGARCH, GJR-GARCH,
etc., see Bollerslev (2010)), stochastic volatility models, and others.

Patton (2012) considered a similar model, but the dependence was assumed in
a different way: dependent copies of the time series (dependence between rows)
were supposed, not dependent errors within each time series as we propose. Here,
independent rows of errors [εi,1(α,β), . . . , εi,n+1−i(α,β)] imply independent rows
of claims [Yi,1, . . . , Yi,n+1−i]. Moreover, the unconditional mean and variance of the
CMV model’s errors equal the conditional ones: E εi,j(α,β) = 0 and Var εi,j(α,β) =
s(α,β).

To provide an insight into possible candidates for the mean function µ and vari-
ance function σ, one may propose µ(Yi,j−1,α, j) = η(α, j)Yi,j−1 and σ(Yi,j−1,β, j) =
ν(β, j)

√
Yi,j−1 or σ(Yi,j−1,β, j) = ν(β, j)Yi,j−1. Sherman (1984) investigated decays

η(α, j), which should correspond to the link ratios. Hence, η(α, j) should be de-
creasing in j with limit 1 as j tends to infinity: 1 + α1 exp{−α2j}, 1 + α1 exp{−jα2},

1+α1j
−α2 , 1+α1(α2 + j)

−α3 , 1+α−αj2
1 , αα

−j
2

1 , (1− exp{−α1j
α2})−1, exp{α1j

−α2}, 1+
α1α2j

−1−α2 exp{α1j
−α2}, 1+α1/(j+α2), 1+α1/ log(j+α2), etc., where α1,α2,α3 >

0. On the other hand, the decay ν(β, j) should be decreasing in j with limit 0:
β1 exp{−β2j}, β1j

−β2 , β1 log j exp{−β2j}, β1j
−β2 exp{−β3j}, β1 exp{−β2j

2}, β1/(j+

β2), β1/ log(j+β2), β1j
−β2 exp{−β3j

2}, etc., where β1,β2,β3 > 0.

In actuarial praxis, these decays are quite often used, mainly for projecting the
development (forecasting of the claim amounts after n development periods). Despite
that, the parameters of the decay curves are not estimated directly from the triangle,
but the chain ladder estimates f̂j and σ̂2

j of the development factors fj and the
nuisance variance parameters σ2

j (Mack, 1993) are smoothed and used for the
decay parameters’ estimation. This two-step procedure does not guarantee that
the estimated decay parameters will be at least asymptotically unbiased. Unlike
that, we will estimate the parameters directly from the data triangle and prove the
estimates’ consistency.
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Sherman (1984) assumed independence of individual link ratios (development
factors) when estimating the decay parameters by parametric curve fitting. We
relax the independence assumption and model the link ratios conditionally having
dependent errors.

When comparing the CMV model with the model investigated by Buchwalder
et al. (2006), two main differences arise. The CMV model allows for dependent
errors and assumes finite number of parameters not depending on the number
of development periods n. Indeed, the CMV model requires known functions
with unknown finite dimensional parameters. Parameters of the time series model
from Buchwalder et al. (2006) are {fj}

n
j=1 and {σj}

n
j=1, which play the role of η(α, j)

and ν(β, j), respectively. It is important to note that the classical stochastic inference
is not valid in the case, when the number of parameters depends on the number
of observations. Thus, the legitimacy of the bootstrap procedure in that case is
questionable.

Furthermore in the chain ladder, the estimate for fn−1 is just a pure ratio of two
random variables. Moreover, to estimate σ2

n−1, only doubtful ad-hoc estimates
were proposed due to the fact that the claims triangle simply does not contain data
for a reasonable estimate (e.g., a consistent one).

4.3.2 Dependence modeling by copulae

Following the 2-dimensional version of Sklar’s theorem: Let H be a bivariate
distribution function with margins G1,G2, then a copula C exists such that

H(e1, e2) = C{G1(e1),G2(e2)}, e1, e2 ∈ R. (4.22)

If Gi are continuous for i = 1, 2 then C is unique. Otherwise C is uniquely deter-
mined on RanG1 × RanG2. Conversely, if C is a copula and G1,G2 are univariate
distribution functions, then the function H defined above is a bivariate distribution
function with margins G1,G2.

The representation in (4.22) can be used in construction of new bivariate distri-
butions by changing either the copula or marginal distributions. For an arbitrary
continuous bivariate distribution we determine its copula from

C(u1,u2) = H{G
−1
1 (u1),G−1

2 (u2)}, u1,u2 ∈ [0, 1], (4.23)

where G−1
i are inverse marginal distribution functions. The continuous random

variables are assumed in order to assure that the inverse functions are well de-
fined.
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As the bivariate copula is a bivariate distribution with uniform margins, the copula
density is then given through

c(u1,u2) =
∂2C(u1,u2)

∂u1∂u2
, u1,u2 ∈ [0, 1]. (4.24)

Being armed with Sklar’s theorem and (4.24), we may write the density h of the
bivariate distribution H as follows

h(e1, e2) = c(G1(e1),G2(e2))

2∏
i=1

gi(ei), e1, e2 ∈ R.

For a nice copula overview we refer reader to Joe (1997) or Nelsen (2006). There
is a huge list of different copula families satisfying different properties, and being
constructed in different ways. In the empirical study of this section we concentrate
on two members from the elliptical family, namely Gaussian and t-copula and on
three members of the Archimedean family, namely Clayton, Frank, and Gumbel.
Gaussian and t-copulae contain the dependency structure from the multivariate
Normal and multivariate t-distribution respectively, and they are directly derived
through the Sklar’s theorem. Archimedean copulae on their side are not constructed
using this theorem, but are related to Laplace transforms of univariate distribution
functions, and are defined as

C(u1,u2) = φ{φ
−1(u1) +φ

−1(u2)}, u1,u2 ∈ [0, 1];

where φ is the 2-monotone generator function with φ : [0;∞) → [0, 1], φ(0) = 1,
φ(∞) = 0. In particular generator functions for Clayton, Frank, and Gumbel
copulae are given respectively through

φClayton(x;γ) = (γx+ 1)−
1
γ , −1 6 γ <∞, γ 6= 0, x ∈ [0,∞);

φFrank(x;γ) = γ−1 log{1 − (1 − e−γ)e−x}, 0 6 γ <∞, x ∈ [0,∞);

φGumbel(x;γ) = exp {−x1/γ}, 1 6 γ <∞, x ∈ [0,∞).

These three members represent lower tail but no upper tail for Clayton copula,
elliptically contoured form for Frank copula, and no lower tail but upper tail for
Gumbel copula.

Dependent errors

Since the mean and variance trends are removed by the CMV model, the rest of the
relationship among claim amounts can be additionally captured by modeling de-
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pendent errors. The inspiration for the dependence structure was taken from Chen
and Fan (2006).

Assumption A.4.29. {εi,j(α,β)}n+1−i
j=1 are independent sample copies of a station-

ary first-order Markov process for all i generated from (Gα,β(·),C(·, ·;γ)), where
C(·, ·;γ) is the true parametric copula for [εi,j−1(α,β), εi,j(α,β)], which is given
and fixed up to unknown parameter γ and is absolutely continuous with respect to
Lebesgue measure on [0, 1]2.

It is believed that there exists a kind of information overlap between the claims from
consecutive development periods, which corresponds to the dependence between
the CMV model’s errors modeled by copulae.

Assumption A.4.29 together with the CMV model yield a copula-based model,
where the joint bivariate distribution of errors [εi,j−1(α,β), εi,j(α,β)] has the fol-
lowing distribution function

H(e1, e2) = C(Gα,β(e1),Gα,β(e2);γ).

Then, the conditional copula density can be derived as

h(e2|e1) = gα,β(e2)c(Gα,β(e1),Gα,β(e2);γ), (4.25)

where c is the copula density and gα,β is the marginal density corresponding
to the univariate distribution function Gα,β. The latter relation (4.25) will play
an important role in “making" the dependent errors conditionally independent during
the forthcoming estimation and prediction process.

4.3.3 Parameter estimation

The CMV model from Definition 4.3.1 together with the copula Assumption A.4.29
contain three vector parameters, which need to be estimated. The estimation process
consists of two stages. In the first one, mean and variance parameters α and β are
estimated in a distribution-free fashion, since no specific distributional assumptions
are proposed nor required for the claims. The second stage concerns the estimation
of the dependence structure, mainly the copula parameter γ, in a likelihood based
way.
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Estimation in CMV model

Since the CMV model is defined in a conditional style, conditional least squares (CLS)
of the sample centered conditional moments of the claims are minimized in order
to obtain estimates of the CMV model parameters.

Definition 4.3.2 (Conditional least squares estimates). Let us denote

Mn(α,β) =
1

n− 1

n∑
j=2

1
n+ 1 − j

n+1−j∑
i=1

[
Yi,j − µ(Yi,j−1,α, j)

]2
σ2(Yi,j−1,β, j)

and

Vn(α,β)

=
1

n− 1

n∑
j=2

1
n+ 1 − j

n+1−j∑
i=1

{[
Yi,j − µ(Yi,j−1,α, j)

]2
− σ2(Yi,j−1,β, j)

}2
,

where parameters α and β belong to parameter spacesΘ1 andΘ2. The conditional
least squares estimate of the mean parameter α for a fixed value of parameter
β ∈ Θ2 is defined as

α̂(β) = arg min
α∈Θ1

Mn(α,β)

and the conditional least squares estimate of the variance parameter β for a fixed
value of parameter α ∈ Θ1 is defined as

β̂(α) = arg min
β∈Θ2

Vn(α,β).

The reason, why the parameter estimates for the CMV model are defined as above,
lies in the fact that it is computationally not feasible to find the global minimum of
Mn and Vn with respect to [α>,β>]> simultaneously.

The forthcoming theory (Theorems 4.3.1, 4.3.2, and Corollary 4.3.3) assures that the
CLS estimates are reasonable and, moreover, consequent Algorithm 4.3.1 provides
a computational way for obtaining the CMV parameter estimates.

Theorem 4.3.1 (Conditional least squares consistency for the mean). Let the CMV
model hold and β ∈ Θ2 be fixed. Assume that

(i)
{[
Yi,j − µ(Yi,j−1,α, j)

]2
/σ2(Yi,j−1,β, j)

}
i,j∈N

is uniformly integrable,
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(ii) for all α,α ′ ∈ Θ1 and n ∈ N,∣∣∣[Yi,j − µ(Yi,j−1,α, j)
]2

−
[
Yi,j − µ(Yi,j−1,α ′, j)

]2∣∣∣ 6 Cjg(‖α−α ′‖) (4.26)

almost surely, where {Cj}j∈N is a stochastic sequence not depending on α such that
Cj = OP(σ

2(Yi,j−1,β, j)), j → ∞ for all i ∈ N and g is nonstochastic such that
g(t) ↓ 0 as t ↓ 0,

(iii) s(·,β) is a Lipschitz function on the compact parameter spaceΘ1 such that the true
unknown parameter α∗(β) is its unique global minimum.

Then, α̂(β) P−−−−→
n→∞ α∗(β).

Weak consistency (in probability) of the mean parameter estimate is shown, but
also the strong version (almost sure convergence) can be provided. It would require
Cj to be bounded almost surely, which is less feasible.

The Lipschitz kind of assumption (ii) can be replaced by a stronger one: uniform
equiboundedness in probability. In that case, it suffices to assume

E sup
α∈Θ1

‖∇αMn(α,β)‖ < ∆1

for all n and β, and convexity of the compact parameter spaceΘ1 for applying the
stochastic mean-value theorem. The compactness of the parameter space can even
be relaxed to its total boundedness.

A similar theorem as above is going to be postulated for the CLS variance parameter
estimate to ensure its appropriateness. Firstly, let us define

Bn,j(α,β)

:=
1

(n− 1)(n+ 1 − j)

n+1−j∑
i=1

{[
Yi,j − µ(Yi,j−1,α, j)

]2
− σ2(Yi,j−1,β, j)

}2

and

v(α,β) := lim
n→∞

n∑
j=2

EBn,j(α,β).

Theorem 4.3.2 (Conditional least squares consistency for the variance). Let the CMV
model hold and α ∈ Θ1 be fixed. Assume that

(i) random array
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{{[
Yi,j − µ(Yi,j−1,α, j)

]2
− σ2(Yi,j−1,β, j)

}2

−E
{[
Yi,j − µ(Yi,j−1,α, j)

]2
− σ2(Yi,j−1,β, j)

}2
}
i,j∈N

is uniformly integrable,

(ii) for all β,β ′ ∈ Θ2 and n ∈ N,∣∣∣∣{[Yi,j − µ(Yi,j−1,α, j)
]2

− σ2(Yi,j−1,β, j)
}2

−
{[
Yi,j − µ(Yi,j−1,α, j)

]2
− σ2(Yi,j−1,β ′, j)

}2
∣∣∣∣ 6 Djh(‖β −β ′‖) (4.27)

almost surely, where {Dj}j∈N is a stochastic sequence not depending on β such that
Dj = OP(1), j→∞ for all i ∈ N and h is nonstochastic such that h(t) ↓ 0 as t ↓ 0,

(iii) for all j 6 n, n ∈ N, andm ∈ N0,

E
∣∣E [Bn,j(α,β) − EBn,j(α,β)|Fn,j−m

]∣∣ 6 cn,jdm, (4.28)

where {cn,j}j6n,n∈N and {dm}m∈N0 are constants such that dm ↓ 0 asm→∞,

(iv) v(α, ·) is a Lipschitz function on the compact parameter spaceΘ2 such that the true
unknown parameter β∗(α) is its unique global minimum.

Then, β̂(α) P−−−−→
n→∞ β∗(α).

A natural question arises: What is the connection between the true unknown pa-
rameter values α∗ and β∗ of the CMV model and the true unknown parameter
values α∗(β) and β∗(α) from Theorems 4.3.1 and 4.3.2? The intuition behind the
CMV model is that the function µ should mimic the conditional mean of the claims
and the function σ2 should model their conditional variance. Mathematically speak-
ing, Var[Yi,j/σ(Yi,j−1,β, j)|Fi,j−1] and, similarly, Var[(Yi,j − µ(Yi,j−1,α, j))2|Fi,j−1]

should be as small as possible. Taking into account that the data triangle does not
possess the same number of claim amounts entries for each development period
j, it is reasonable to assume that if the CMV model holds, then both discrepancy
measures

lim
n→∞E

 1
n− 1

n∑
j=2

1
n+ 1 − j

n+1−j∑
i=1

Var
[

Yi,j

σ(Yi,j−1,β, j)

∣∣∣Fi,j−1

] (4.29)
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and

lim
n→∞E

 1
n− 1

n∑
j=2

1
n+ 1 − j

n+1−j∑
i=1

Var
[(
Yi,j − µ(Yi,j−1,α, j)

)2
|Fi,j−1

] (4.30)

reach their global minimum at the same true unknown parameter values α∗ and
β∗ of the CMV model. However, measures (4.29) and (4.30) are nothing else than
s(α,β) and v(α,β). Now, let us define the interior of setΘ byΘo.

Corollary 4.3.3 (Consistency of the CLS estimates). Suppose that the assumptions of
Theorems 4.3.1 and 4.3.2 hold. Let s ∈ C2(Θ1×Θ2), v ∈ C2(Θ1×Θ2), and both functions
s and v have their unique global minimum on compact setΘ1×Θ2 at [α∗>,β∗>]> ∈ Θo

1 ×
Θo

2 . If det[∂2s(α,β)/∂α∂α>] 6= 0 and det[∂2v(α,β)/∂β∂β>] 6= 0 for all [α>,β>]> ∈
Θo

1 ×Θo
2 , then [

α̂(β∗)

β̂(α∗)

]
P−−−−→

n→∞
[
α∗

β∗

]
.

The variance parameter β can be viewed as a nuisance parameter when estimating
the mean parameter α and vice-versa. The idea of joint estimation of [α>,β>]>

is to alternately perform partial optimizations from Definition 4.3.2. In fact, we
iteratively estimate α, given the fixed value of β. Consequently, we estimate β,
given the fixed value of α (obtained from the previous step). This two steps are
repeated in turns until almost no change in the consecutive estimates of [α>,β>]>,
see Algorithm 4.3.1. Based on Corollary 4.3.3, it is believed that each turn will bring
our iterated estimates closer to the true unknown parameter values. Moreover,
Algorithm 4.3.1 can be modified: the initial value of α(0) could be required on
the input instead of β(0) and the whole iteration procedure would start with the
estimation of β(1) instead of α(1).

Estimation of dependence structure

The second stage of the parameter estimation process involves the estimation of
the whole dependence structure in the claims triangle. The strict stationarity of the
first order Markov process imposed on the CMV model errors (Assumption A.4.29)
arranges that only the bivariate distribution of two in row neighbouring errors are
necessary to know. Using Sklar’s theorem, this bivariate distribution is obtained
by specifying a proper parametric copula and a marginal distribution of the errors.
Hence, the second stage consists of the estimation of the copula parameter and the
marginal errors’ distribution.
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Procedure 4.3.1 Iterative conditional least squares estimation of α and β.

Input: Cumulative claims triangle {Yi,j}
n,n+1−i
i,j=1 , mean and variance functions µ

and σ, initial (starting) parameter value β(0), maximum number of iterations
M, and convergence precision ε.

Output: CLS parameter estimates α̂ and β̂, fitted residuals {ε̂i,j}
n−1,n+1−i
i=1,j=2 .

1: m← 1 and α(0) ← 0
2: α(1) ← arg minα∈Θ1 Mn(α,β(0))
3: β(1) ← arg minβ∈Θ2 Vn(α

(1),β)
4: whilem 6M and ‖[α(m)>,β(m)>]> − [α(m−1)>,β(m−1)>]>‖ > ε do
5: α(m+1) ← arg minα∈Θ1 Mn(α,β(m))
6: β(m+1) ← arg minβ∈Θ2 Vn(α

(m+1),β)
7: m← m+ 1
8: end while
9: α̂← α(m) and β̂ ← β(m)

10: for i = 1 to n− 1 do
11: for j = 2 to n+ 1 − i do
12: ε̂i,j ← [Yi,j − µ(Yi,j−1, α̂, j)]/σ(Yi,j−1β̂, j)
13: end for
14: end for

Since the estimates of the CMV model parameters are already available, one can
estimate the unknown marginal distribution function Gα,β of the CMV model errors
εi,j(α,β) non-parametrically by the empirical distribution function

Ĝn(e) =
1

n(n− 1)/2 + 1

n−1∑
i=1

n+1−i∑
j=2

I{ε̂i,j(α̂, β̂) 6 e},

of the fitted residuals

ε̂i,j(α̂, β̂) =
Yi,j − µ(Yi,j−1, α̂, j)

σ(Yi,j−1, β̂, j)
.

The consistency of the CMV model parameter estimates α̂ and β̂ ensures that the
fitted residuals ε̂i,j(α̂, β̂) are reasonable predictors of the unknown non-observable
errors εi,j(α,β). Algorithm 4.3.1 also provides the fitted residuals as a side prod-
uct.

Assumption A.4.29 demands a prior knowledge of the parametric copula up to its
unknown parameter γ. Nevertheless in practical applications, one needs to perform
a copula goodness-of-fit in order to choose a suitable copula. Assuming that we
know the bivariate copula function C(·, ·;γ), the copula parameter γ is estimated
by the quasi-likelihood method.
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Having in mind that rows of errors [εi,1(α,β), . . . , εi,n+1−i(α,β)] are independent
for all i, the full log-likelihood for the copula parameter γ with respect to (4.25) is

L(γ) =

n−2∑
i=1

n+1−i∑
j=2

loggα,β(εi,j(α,β))

+

n−2∑
i=1

n+1−i∑
j=3

log c(Gα,β(εi,j−1(α,β)),Gα,β(εi,j(α,β));γ).

Ignoring the first term in L(γ) and replacing ε’s and Gα,β by their estimated coun-
terparts ε̂’s and Ĝn, the parameter γ can be estimated by the so-called canonical
maximum likelihood, i.e., maximizing the partial (pseudo) log-likelihood:

γ̂ = arg max
γ

L̃(γ),

L̃(γ) =

n−2∑
i=1

n+1−i∑
j=3

log c(Ĝn(ε̂i,j−1(α̂, β̂)), Ĝn(ε̂i,j(α̂, β̂));γ).

The correctness of this approach was shown by Chen and Fan (2006), where the
consistency of the canonical likelihood estimate of copula parameter γ was proved
under Assumption A.4.29. Here, the unknown unobservable CMV model errors
are just replaced by the fitted residuals based on the consistent CMV model param-
eter estimates. Algorithm 4.3.2 encapsulates the way of getting copula parameter
estimate.

Procedure 4.3.2 Copula parameter γ estimation by pseudo-likelihood.

Input: Fitted residuals {ε̂i,j(α̂, β̂)}n−1,n+1−i
i=1,j=2 and copula density c(·, ·;γ).

Output: Copula parameter estimate γ̂.
1: marginal ecdf Ĝn(e)← 1

n(n−1)/2+1
∑n−1
i=1
∑n+1−i
j=2 I{ε̂i,j(α̂, β̂) 6 e}

2: γ̂ ← arg maxγ
∑n−2
i=1
∑n+1−i
j=3 log c(Ĝn(ε̂i,j−1(α̂, β̂)), Ĝn(ε̂i,j(α̂, β̂));γ)

Chen and Fan (2006) also remarked that the empirical distribution function Ĝn
can be smoothed by kernels as an alternative estimate of the marginal distribution
of errors. This can be especially helpful in case of a smaller number of residuals
available.

Now, the whole estimation procedure becomes a semiparametric one.

4.3.4 Prediction of reserves and estimating their distribution

The main goals in actuarial reserving are prediction of reserves R(n)i and, conse-
quently, estimation of the reserves’ distribution, e.g., in order to obtain quantiles—
99.5% quantile for the Solvency II purposes (VaR calculation).
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A predictor for the reserve R(n)i can be defined as

R̂
(n)
i = Ŷi,n − Yi,n+1−i.

Therefore, finding a predictor Ŷi,n for Yi,n is crucial. One naive proposal is to predict
Yi,j as the conditional mean of previous claim amount Yi,j−1 with the plugged-in
CMV model parameter estimates

qYi,j := Eα,β[Yi,j|Yi,n+1−i]|α=α̂,β=β̂, i = 2, . . . ,n, j = n+ 2 − i, . . . ,n. (4.31)

This approach gives qYi,j = µ(qYi,j−1, α̂, j), i + j > n + 1. In spite of that, such
an approach would only be eligible if prediction (4.31) was unbiased or at least
asymptotically unbiased, which is not justified.

Semiparametric bootstrap

The prediction of unobserved claims may be done in a telescopic way based on the
CMV model formulation: start with the diagonal element Yi,n+1−i and predict
Yi,j, j > n+ 1 − i stepwise in each row

Ŷi,j = Yi,j, i+ j 6 n+ 1; (4.32a)

Ŷi,j = µ(Ŷi,j−1, α̂, j) + σ(Ŷi,j−1, β̂, j)ε̃j, i+ j > n+ 1. (4.32b)

Errors ε̃j are simulated from the fitted residuals. One convenient resampling
procedure is the semiparametric bootstrap which takes advantage of the fact that
εi,j(α,β) = G−1

α,β(Xj) for all i (due to the independent rows), where {Xj}
n
j=2 is

a stationary first-order Markov process with the copula C(x1, x2;γ) being the joint
distribution of [Xj−1,Xj].

When the errors ε̃j are simulated sufficiently many times, the empirical (bootstrap)
distribution of Ŷi,n is obtained, which should mimic the true unknown distribution
of Yi,n. Thereafter, an estimate of the reserves’ distribution is acquired and some
imported quantities of the reserves can be easily calculated, e.g., mean, variance, or
quantiles of the reserves.
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4.4 Key contributions

• Consistency of the distribution-free chain ladder method is examined.

• Necessary and sufficient conditions for the conditional consistency of
the development factors’ estimates are derived for the first time.

• Generalized estimating equations (GEE) are applied within the trian-
gular data setup, allowing for dependencies in the claims reserving
framework.

• Model selection criteria within the GEE reserving method are proposed.

• Mean square error of prediction is calculated and its estimate is pro-
vided.

• A generalized time series model for the triangular data, that allows
for modeling of the conditional mean and variance of the claims, is
assumed.

• Conditional least squares are used to estimate model parameters and
consistency of these estimates is proved.

• A copula approach is used for modeling the dependence structure.

• A semiparametric bootstrap is utilized in order to estimate the whole
distribution of the predicted reserves more precisely compared to the
traditional approaches.
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5Conclusions

„Progress is impossible without change, and those
who cannot change their minds cannot change
anything.

— George Bernard Shaw
(Irish playwright, critic, and polemicist)

This habilitation thesis studies dynamics and instabilities of complex data structures
like time series, panel data, and triangular data. The main goal lies in modeling of
the time development and detection of the structural breaks.

In the statistical analysis, it is of particular interest to be able to detect systematic
changes—so-called changepoints—in the underlying structure despite the random
fluctuations and to estimate the time of these changes. The analyses of the change-
point problems are conducted within the time series setup as well as within the
panel data framework. Various testing procedures are proposed, their asymptotic
behavior is derived, consistency is proved, and bootstrap extensions are developed.
Moreover, the changepoint estimators are invented, their performance is investi-
gated, and again consistency is shown. The merit of the presented approaches
was to avoid usage of the tuning constants or nuisance parameters involved in the
detection procedures, which makes these methods effortlessly applicable.

Prediction of the forthcoming expenses coming, for instance, from insurance vig-
orously requires its stochastic solutions. Therefore, dynamics of the actuarial data
structured in the triangles is modeled in various ways. Dependencies between
claims are allowed in order to increase the precision of statistical prediction. After
that, resampling techniques are introduced for the predictive models aiming to
provide probabilistic distributions of the future losses.
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