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ABSTRACT 

Endosymbiotic gain and transfer of plastids is a widespread evolutionary phenomenon 

and a major driving force of eukaryotic evolution. The integration of a new organelle is 

accompanied by changes in its structure, gene content, molecular mechanisms for biogenesis 

and transport, and re-wiring of the host and organelle metabolic pathways. To understand 

the course and underlying mechanisms of plastid evolution, it is important to study these 

processes in variety of secondary algae and notice their differences and similarities.  

Euglenophytes gained their plastids from green eukaryotic algae after a long history 

of heterotrophic lifestyle. In my thesis, I participated in analyses of newly generated 

sequence datasets: transcriptomes of Euglena gracilis and Euglena longa and mass 

spectrometry-determined proteome of E. gracilis plastid with especial regard to the potential 

novelties associated with plastid gain and incorporation. In the resulting publications we 

particularly focus on plastid protein import machinery and targeting signals and report 

extremely reduced TIC and completely absent TOC in euglenophyte plastid. Using 

the proteomic dataset, we predict potential novel plastid protein translocases recruited from 

ER/Golgi and re-analyze plastid signal domains, characterizing previously overlooked 

features. Protein inventory of E. gracilis plastid suggests complex, in some cases redundant 

metabolic capacity. Chlorophyll recycling is one of the sources of phytol for reactions not 

connected to MEP/DOXP pathway. Plastid contribution to amino acid metabolism is very 

low, if any. We screen the proteome for proteins of other than green algal phylogenetic 

affiliation and report substantial contribution from “chromists” as well as several cases of 

LGT from bacteria, including an acquisition of additional SUF pathway. 

In summary, the work presented in this thesis provides a solid contribution to plastid 

proteomics, resource for both basic and applied Euglena research and potential foundation 

for various follow-up studies. 
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1 INTRODUCTION 

Plastids sensu stricto arose through one primary endosymbiotic event but diversified 

and spread horizontally from eukaryote to eukaryote. There were at least three instances 

of secondary endosymbiosis between a heterotrophic eukaryote and green or red alga (giving 

rise to chlorarachniophytes, euglenophytes, and likely cryptophytes), followed by tertiary, 

quarternary, and possibly even higher-tier transfers (resulting in haptophytes, ochrophytes, 

chromerids and apicomplexans, and many different lineages of dinoflagellates) [1–8]. Such 

complex evolutionary history leaves substantial traces in structure, biogenesis, and functional 

capacity of these organelles. By studying similarities and differences between plastids 

originating from independent endosymbiotic events, we try to deepen the knowledge 

on global evolution of eukaryotic organelles and, by extension, eukaryotes as a whole.  

Euglenophytes represent a group of widespread freshwater photosynthetic organisms bearing 

secondary green plastids derived from pyramimonadalean alga [9] and surrounded by three 

membranes [10]. Diversity [11,12], ultrastructure [13], plastid genomes and genetics [14–24], 

and biochemistry [25–32] of these organisms is well-studied but difficulties in obtaining 

genome sequence [33] and genetic transformants [34–36] hampers the efforts to understand 

details of their molecular and cell biology and metabolic capacities. For instance, while 

the general pathway importing nuclear-encoded protein to plastids through ER and Golgi is 

understood [37,38], protein translocases mediating this route are unknown, although 

the process is believed to be similar to other complex plastids [39–42], especially those 

of peridinin dinoflagellates (also bound by three membranes), as suggested by the N-terminal 

signals plastid-targeting proteins possess  [43–45]. 

In this thesis, we present broad reconstruction of putative molecular and metabolic capacities 

of euglenophyte plastid based on newly generated comprehensive datasets of transcripts 

of E. gracilis and E. longa, and mass spectrometry-determined plastid-localized proteins 

of E. gracilis.  
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2 AIMS 

1. To annotate plastid proteome of E. gracilis and estimate its metabolic potential. 

2. To reconstruct protein import pathway of euglenophyte plastids using transcriptomic 

data of E. gracilis and E. longa and proteomic data of E. gracilis. 

3. To analyze characteristics of euglenophyte plastid-targeting domains based 

on the proteomic dataset determined by mass spectrometry. 

3 MATERIALS AND METHODS 

Materials and methods are described in detail in the respective publications. In general, DNA 

and RNA sequencing and liquid chromatography tandem mass-spectrometry (LC-MS/MS) 

proteomics were used to obtain large sequence datasets which were subsequently investigated 

using bioinformatic tools for homology detection, signal prediction, metabolic reconstruction, 

and determination of phylogenetic affiliation. 

4 RESULTS AND DISCUSSION 

The review chapter by Vanclová et al. [46] summarizes the state of knowledge regarding 

the evolution, structure, biogenesis, and biochemistry of euglenophyte plastids as of 2017. 

E. gracilis draft genome assembly reported in Ebenezer et al. [47] is 300-500 Mbp in size, 

highly fragmented and suggesting extensive expansion of non-coding sequence (>99%). 

E. gracilis transcriptome assembly is 38 Mbp with 87.9% CEGMA recovery. Many protein 

families involved in signalling are highly expanded by paralog duplication. Differential 

transcriptomic and proteomic evidence as well as the existence of polyprotein-coding 

transcripts [22,48,49] suggest that gene expression regulation takes place at protein level, 

similar to kinetoplastids [50]. The transcriptome was used for in silico prediction of plastid 

proteome of around 1900 proteins and drawing a map of chloroplast metabolic pathways.  

This was followed by LC-MS/MS of the isolated plastid and mitochondrial fractions. 

Chloroplast to mitochondrion (CP/MT) ratio of label-free quantified [51] proteins is used 
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as indicator of credibility of their organellar localization. The resulting plastid proteome 

reported in Novák Vanclová et al. [52] contains 1,345 protein groups, 43% of which could 

not be assigned a clear functional annotation or lacked homologs in other organisms 

whatsoever, suggesting a considerable potential for functional novelty and/or plasticity 

The reconstruction of E. gracilis plastid metabolism supports some enzymatic processes 

described or proposed previously based on biochemical evidence [26,53–55], but also brings 

a number of novel findings. We propose chlorophyll recycling as one of the sources of phytol 

for tocopherol synthesis which, as our data confirms, is not connected to plastidial 

MEP/DOXP pathway in E. gracilis [25,56]. Our data suggest very low, if any participation 

of plastid in amino acid metabolism of E. gracilis, which is unusual in phototrophic 

organisms. We identify additional, plastid-localized set of SUF pathway for FeS cluster 

assembly which is present in several other euglenophytes and likely represents horizontal 

acquisition from Chlamydiae or related bacteria. We also note a large proportion of proteins 

phylogenetically affiliated with “chromists” which supports “shopping bag” and “red carpet” 

model of plastid evolution [57,58]. 

Transcriptome was also generated for Euglena longa, close relative of E. gracilis which is 

secondarily non-photosynthetic but retains reduced plastid with genome. The assembly 

reported in Záhonová et al. [59] is 75 kbp with 89.1% BUSCO recovery and represents 

important context to the analyses of E. gracilis and other phototrophic euglenophytes.  

Most remarkably, we report highly derived plastid protein import machinery in E. gracilis, 

E. longa, and the early-branching, marine Eutreptiella gymnastica. While the machineries 

importing proteins to thylakoids are generally conserved in the phototrophs and absent 

in E. longa, the expected translocases of plastid envelope, namely TOC and TIC components, 

are largely absent in all organisms. The only conserved subunit is Tic21 which likely forms 

an inessential channel in plant plastid and which is present in three isoforms in E. gracilis 

plastid proteome while TOC subunits and other outer membrane proteins are completely 

absent from all euglenophyte transcriptomes, suggesting the existence of an alternative 

pathway. Taking advantage of the mass spectrometry-determined plastid proteome we 

identified several plastid-localized proteins recruited from ER/Golgi molecular machinery 

(Rab5, GOSR1, and two derlin-like rhomboid pseudoproteases) which we propose mediate 

protein-transporting vesicle fusion on the outermost membrane and possibly protein import 

across the middle membrane. If confirmed by molecular and/or imaging methods, the latter 

could disprove the presumed cyanobacterial-like origin of the membrane. 
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We used a set of 375 highly credible plastid proteins determined by MS and re-evaluated 

the topology of their N-terminal targeting domains and amino acid composition of their 

transit peptide-like (TPL) region. We report that a non-negligible cohort of proteins does not 

possess the typical hydrophobic domain motif [44] and that euglenid TPL exhibit a unique 

pattern of amino acid frequencies, most notably substantial enrichment in proline which 

could greatly affect their secondary and tertiary structure. 

5 CONCLUSIONS 

We bring protein-level support for conclusions of previous studies as well as numerous novel 

findings based on a new comprehensive set of E. gracilis plastid proteins determined by mass 

spectrometry and newly generated transcriptomes of E. gracilis and E. longa. Our proteomic 

dataset represents only a second proteome of a photosynthetic complex plastid (the first being 

the one from chlorarachniophyte B. natans, [60]) and one of the few full plastid proteomes 

of unicellular algae [61,62]. Based on these data, we report some metabolic peculiarities 

of the euglenophyte plastid, including very low contribution to amino acid metabolism 

and additional SUF system of chlamydial origin. We describe an extensive reduction 

in plastid import machinery of the inner two plastid membranes, propose novel candidate 

protein translocases, and re-evaluate the characteristics of plastid-targeting signal domains. 
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