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Abstract: The measure of non-compactness is defined for any continuous
mapping T: X — Y between two Banach spaces X and Y as

B(T) = inf {r - 0: T(Bx) can be covered by finitely }

many open balls with radius r

It can easily be shown that 0 < B(T) < ||T| and that B(T) = 0, if and only if
the mapping T is compact.

My supervisor prof. Stanislav Hencl has proved in his paper that the mea-
sure of non-compactness of the known embedding W(If P(Q) — LP'(Q), where
kp is smaller than the dimension, is equal to its norm.

In this thesis we prove that the measure of non-compactness of the embed-
ding between function spaces is under certain general assumptions equal to

the norm of that embedding. We apply this theorem to the case of Lorentz
spaces to obtain that the measure of non-compactness of the embedding

WELPYQ) — LP™(Q)
is for suitable p and q equal to its norm.
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Chapter 1

Introduction

In this thesis we study the measure of non-compactness of linear map-
pings. This notion was firstly introduced by Gohberg, Goldenstein and
Markus in 1957 in [1].

1.1 DEFINITION

Let X and Y be Banach spaces and let T be a continuous linear mapping
from X into Y. Let us denote the open unit ball in X centered at origin
by Bx. We define the measure of non-compactness of T as

L ~ T(Bx) can be covered by finitely
B(T) := inf {r > 0: many open balls with radius r :

It can be easily shown, that 0 < B(T) < || T|| (see Observation 2.26). More-
over, the mapping T is compact if and only if B(T) = O (see Proposition 2.28).

In particular we are concerned with the measure of non-compactness of
the Sobolev embeddings. In the paper [2] it was proven, that the measure of
non-compactness of the classical embedding of W§ P(Q) into LP"(Q2) is equal
to its norm, i.e.

B <Id: WEP(Q) LP*(Q)) = |Id: WEP(Q) - LY (). (1)

Here we simplify the proof of this result, and we generalize the result to
Sobolev-Lorentz embedding. For the definitions of Sobolev-Lorentz and
Lorentz spaces see Preliminaries.

1.2 THEOREM (Non-compactness of embedding into Lorentz spaces)
Letd22,kEN,k<d,1§p<%,denotep*=d‘f—ipandletigq<oo.
Let either p > 1 or p = g = 1. Let Q be an open subset of RY with Lipschitz
boundary. Then

B(Id: WELPU(Q) — LP"UQ)) = |Id: WELPIURQ) — LP-URQ)]|.



In Chapter 2 we define the function spaces and state or prove the proper-
ties needed in the following chapters. Furthermore we define the measure
of non-compactness and prove the basic facts about it.

The result (1) from [2] is shown in Chapter 3 with slightly simplified
proof.

In Chapter 4 we formulate and prove general statement concerning em-
beddings and measure of non-compactness, and apply it to prove Theo-
rem 1.2.

And in the last Chapter 5 we use the embedding of Wé’i((O, 1)) into the
space of continuous functions 6((0,1)) to show, that the measure of non-
compactness can be smaller then the norm of the embedding.



Chapter 2

Preliminaries

2.1 Sobolev spaces

2.1 NOTATION
Let X be a Banach space. We denote the open ball with center x and radius r
by Bx(x,r), and the open unit ball centered at origin will be denoted by
Bx = Bx(0,1).

Let x € X, € > 0. By x + eByx we mean the ball Bx(x, €).

2.2 NOTATION
We denote the characteristic function of set E by yg, that is

1, x € E,
XE(I) = 0 x qﬁ- E.

2.5 NOTATION
Let v be a multi-index, i.e. a finite sequence of non-negative integers.
If v = (1,7, ...,74), then we denote the norm of 7 by

Y| =71+ vo+ - + Ya

For suitable f: Q C R? —» R we denote the weak (distributional) derivative
by

Polkd f
- 6’3’1x16’}’2x2 een 6?’dxd

D7f(x) :

().

2.4 PROPOSITION
Let f: R? — R have weak derivatives up to the order k and let |y| < k. Let
us denote fi(x) := f(Kx) for K € (0, 00). Then

D”fk(x) = K"(D?f)(Kx) = K?I(D”f)k(x).

Proof:
We know that for ¢ € B®(RY) the statement holds by the chain rule. In
particular it holds for i, that is

Dy x) = K D7) (x| = KD, )

4



Then we have by the definition of weak derivative and change of variables

[ Drste) gty = (<17 [ ftac) - Dgte)

- (17 [ 1) D7 <%y>

dy
Kd
dy
Kd

1 dy
— K7l v )
K| D7fly)-g <Ky> i

_ K / (D7f)xlx) - glx)dx.

= (=) | fly)- Klley(p%(y)
Rd

Q.E.D.

2.5 NOTATION (Sobolev space)
Let © be an open subset of R, k ¢ N and p € [1,00). For f € WSP(Q) we
consider the norm

1

[ | wep o) == Z/leg(r)lp dx

l7|<k

By WS?P(Q) we denote the set of functions from W*P(Q) with zero traces.

The classical continuous Sobolev embedding into Lebesgue space can be
found e.g. in [3, Theorem 2.4.2].

2.6 THEOREM (Sobolev embedding)

Let Q2 be an open set, p > 1 and kp < n. Let us denote p* := n’i—‘;p. Then

WEP(Q) — LP(S).

2.2 Lorentz spaces

2.7 DEFINITION
Let f be a measurable function from measurable set Q@ C R? to R. We define
the distribution function as

fi(s) == [{x € Q: |f(x)| > s}

where s > 0 and |-| denotes the Lebesgue measure in R9.
We define the non-increasing rearrangement as

f*(t) := inf{s > 0: f.(s) < t}, te(0,00)

7

and we define double-star operator as

Fo(t) = ]0 f*(s), e (0,00).
5



2.8 NOTATION
Let f: Q2 — R be a function. We denote

{f >s}:={xeQ: flx)>s},
We denote it analogously for other types of (in)equalities (<, >, <, =).

2.9 PROPOSITION
Let g: R?Y — R be a measurable function. Let K € (0, 00) and let us denote
gk(x) := g(Kx). Then

(gx)" (t) = g*(Kt).

Proof:
From the definition of the distribution function and change of variables
y = Kx it follows, that

(k). (s) = [{lgx| > s}

_ ] 1dx = ] 1dx
{lgk(x)|>s} {lg(Kx)|>s}

1
= _dy
]{|g<y>|>s} K4
_g«(s)
- 22,

Therefore

(gx)” (t) = inf{s > 0: (gx).(s) < t}
= inf{s > 0: g.(s) < Kt} = g*(K%t).

Q.E.D.

2.10 PROPOSITION
Let g: R? — R be a measurable function. Let K € (0, 00) and let us denote
gx(x) := g(Kx). Then

(QK)** (t) =g™ (de) .

Proof:
From Proposition 2.9 it follows, that

91 (0= 7 [ lond"(s)ds
%/0 g*(K%s)ds

11

Kat .
= W?/o g*(s)ds =: g™ (K"t).

Q.E.D.



2.11 COROLLARY

Let g: R? — R have weak derivatives up to the order k, |y| < k and
let K > 0. Let us denote gk(x) := g(K - x). Then by Proposition 2.4 and
Proposition 2.14 i) we have

(D(gi))" (t) = (K- (D7g)) (t) = K" (D'g)(K") and
(D"(gi))" (6) = (K7 (D7g)c) " (6) = K7 (D7g)™(K4).

2.12 LEMMA
Let f and g be two functions from Q C R? to R with disjoint supports and
let s > 0. Then

(f + glils) = fils) + guls).

Proof:
Clearly

(f +g)ls) = {If +g| > s}
= [{If| > s} u{lg| > s}|
= [{If[ > s} + [{lg] > s}
= f.(s) + gu(s).

Q.E.D.

2.13 DEFINITION
Let  be an open subset of R? and let m,q € [1,00]. We define Lorentz
space L™9(2) as

L™Q) := {f: 2 — R, such that ||f|Lmaq) < oo},

where

1
</ <t% .f*(t))q %) when q < oo,
[f[lLma(o) := 0

sup <t% -f*(t)) when q = co.

t>0

Furthermore we define

</0<>0 (t% .f**(t)>q %>é when g < oo,

sup (t% -f**(t)) when q = co.
>0

[f [l Limaey =

2.14 PROPOSITION

i) Forc >0: (c-f)* =c-f*~

11) For p € [1,00] it holds that ”'”Lp,p(Q) = ”'”LP(Q).



iii) For 1 < q < m the functional ||+| ma(q) is @ norm and L™9(£2) is a Banach
space.

iv) For 1 < m < oo the functional ||+|| jma (g i a(Q)-

Proof:
Proof of these statements can be found for example in [4].

2.15 PROPOSITION (Inclusions)
Let1 <m,q,M,Q < oo, 2 C RY measurable.

e If g < Q, then Hf”Lm,Q(Q) < C - |fllpmaey
e if m < M and || < oo, then ||f||maig) < C - ||fllmow)

where C > 0 is a constant depending on d and |2|.

Proof:
See [4, Theorem 3.8].

2.16 PROPOSITION (Lorentz norm via distribution)
Let m,q € [1,0). Then

T2 — / " s (s

Proof:
See [4, Proposition 3.6].

2.17 DEFINITION
Let Q CRY, k € Nand m,q € [1,00]. We define Sobolev-Lorentz space as

WEL™(Q) := {f: Q — R, such that ||f||werma) < oo},

where
Y D7 f [y if q < oo,
I [l wrrmag) = ly|<k
max || D7 f|| pmeo(q) if g = oo.
lv|<k

We define WEL™4(Q) as
WEL™(Q) := {f: Q > R: f e WEL™I(RY)},

where
~ { flx) ifxeQand

flx)= 17 if x € R4\ Q.

As in the case of Lorentz spaces we can define |+ maq with the same
formula where we use ||| ma(q) instead of [|+[pmaq)

The key element in the proof of the main Theorem 1.2 is the following
proposition. The proof of the proposition is from [4, Lemma 3.10].

8



2.18 PROPOSITION
Let Q CRY 1 < q <m and let f; and f, be two functions from L™9(Q2) with
disjoint support. Then

ilaiey + Wollfaiey < I + Foll ey

Proof:
If g = m, then L™9 = L™ and the inequality holds because for f; and f, with
disjoint supports we have

i+ Flley = [ Vot o™ = 1"+ [ 1l = Wl + el
Q Q Q
So we may assume that g < m. From Lemma 2.12 we know that

(ft)s + (fo)e = (1 + fo)s

Holder’s inequality for measure s~!ds yields

m

< /0 T s tg)ds) ds> q
=</0°°sq-1 <(f1~)5”( )y + o) m)<>> <<f1+f2>mq)> 5> .

< ( [ s+ g s ds> < s it ds) "

m
q

for j = 1,2. We apply Proposition 2.16 and sum over j to get with the help
of g < m that

2 m

2 00 q q
DN AL o ( [ i >ds>

j=1 j=1
&0 q %_1 2 00 .
a- 1 m q- 1 m
<</0 sTHf1 + fo )*(S)ds>m ;</ s f] S)(f1 + fo)d ()ds>
/0 5q1f1+f2)£‘()ds>q
=m ”fi +f2|[Lmq
Q.E.D.

For the case g > m analogous statement holds as well, but with different
power. For that we need the following inequality.

2.19 LEMMA
Leta,b >0and let 1 < p < co. Then

(a + b)P > aP + bP.



Proof:

If a = b = 0, then there is nothing to prove. Soleta+b > 0. The function x?
is convex, therefore

b a

b 04O b
“ <a+b 0+a+b (a+b)> T a b0+a+b
a

b P b
bP = -0 . b -0 . b)P.
<a+b +a+b @+ )> a+b +a+b (@+b)

-(a +b)’ and

Q +

I
S

Summing these two inequalities gives us the statement.
Q.E.D.

2.20 PROPOSITION
Let QCRY 1 <m < q < ooandlet f and g be two functions from L™9(<)
with disjoint supports. Then

“f“(imlq(gz) + ”g“gm.q(g) < f+ g”%mlq(gz)

Proof:
Thanks to Lemma 2.12, Proposition 2.16 and Lemma 2.19 for p := I > 1
we have

q
If + g = m [ s10f ) (s)ds
B m] sT7!(f, + gu)m(s)ds
2m/ s (f,)m ds+m/ s (g,) = (s)ds
= [flima) + 19 Tmaey
Q.E.D.
2.21 DEFINITION
Let X be a Banach space of functions from Q C R¢to R and let 1 < m < oo.
We say that X is disjointedly m-superadditive, if there is a constant M > 0

such that for any finite sequence of functions {f;};_, C X with disjoint sup-
ports it holds, that
k
B/

i=1

m

k
Y lflw <M
i=1

X
Furthermore we say that X is monotone if restricting decreases norm,
that is if E C Q2 and f € X, then

If - xellx < [Iflx-

2.22 REMARK
The Lebesgue spaces L™ and Lorentz spaces L™ are for 1 < m < oo clearly
monotone.

10



If g < m, then Proposition 2.18 implies that L™ (and therefore L™) is
disjointedly m-superadditive with M = 1.

For q > m we must be a bit more careful, because the functional ||| ma(q)
is not a norm. But for m > 1 it is equivalent to the norm ||| ma(q), and
thanks to Proposition 2.20 we know that for g < co

q q

k

Y i

i=1

k

Y o fi

i=1

< vy

Lma

’

k k
Y Wil <D v fillfma < v
i=1 i=1

Lma

where v and V are the constants from the equivalence of the functionals.
Therefore for co > q > m > 1 the space L™9 equipped with the norm
Lma is disjointedly g-superadditive.

The embeddings between Sobolev-Lorentz spaces and Lorentz spaces we
study in the next chapters are ensured by [5, Theorem 6.9].

2.23 THEOREM (Sobolev-Lorentz embedding)

Let Q© C R be an open set with Lipschitz boundary, d > 2, k € N, k < d. Let
1<p< % and 1 < g < co. Denote p* := dc_l—‘,’w. Then there is a continuous
embedding

WELPYQ) — LP™(Q).

In particular if we choose q = p we can use Proposition 2.15 to get the
continuous embeddings

WyP(Q) — LP™P(Q) — LP'(Q).

2.24 REMARKS

e The embedding holds even for p = g = 1. See again [5, Theorem 6.9].

e Butif p =1 and q > 1, then the functional |-||;r.4(0) is not equivalent to
any norm, so the situation is more complicated and will not be dealt
with here.

e Let g > p > 1. Because we do not care about the constant of the em-
bedding, and because the functionals |[|+||zrai0) and ||+[| e are equiv-
alent, we may consider either of them in the definition of Lorentz or
Sobolev-Lorentz space in the embedding.

11



2.3 Measure of non-compactness

[t is more convenient to define the measure of non-compactness using
the entropy numbers. The following definition is clearly equivalent to Defi-
nition 1.1.

Here we only need the definition of entropy numbers and definition of
measure of non-compactness, for further properties and applications see
for example [6] and references given there.

2.25 DEFINITION
Let X and Y be two Banach spaces. Let T: X — VY be a bounded linear
mapping. We define entropy numbers for k € N as

Qk—i
er(T) :=inf 4 € > 0: there exist ¢; € Y, such that T(By) C U(cj + €By) ¢,
j=1

and we define the measure of non-compactness as

B(T) := ;im er(T).
2.26 OBSERVATION
We can easily show that 0 < e,(T) < |T|. Furthermore, the numbers ey(T)
are clearly non-increasing as k — oo, so B(T) exists and 0 < B(T) < || T|.

Proof:

Let us fix k € N. If ex(T) > |T|, then there would be € > ||T| such that
T(By) is not contained in 2¢~! balls with radius €. But from the definition
of the norm of T we know that T(By) C €By. The rest is obvious.

Q.E.D.

2.27 THEOREM
Let K be a subset of a metric space. Then K is compact if and only if K is
complete and totally bounded.

Proof:
See [7, Theorems 4.3.27-4.3.29].

2.28 PROPOSITION
The mapping T between Banach spaces is compact if and only if B(T) = 0.

Proof:

="

Let € > 0. The set T(By) is compact, and therefore it is totally bounded
thanks to Theorem 2.27. Therefore there exists a finite e-net for T(By), that

is there exist k € N and at most 2¢~! points ¢; in ¥ such that

Therefore e,(T) < € and so B(T) < e. We conclude by sending € to O.

12
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&
Because Y is complete we know that T(By) is complete and thanks to The-
orem 2.27 it suffices to show that T(By) is totally bounded. For that it is
enough to show that for fixed € > 0 there is a e-net for T(By). We know
that B(T) = 0, so there is k € N such that e,(T) < &. The definition of e;(T)
clearly ensures the existence of e-net.

Q.E.D.

13



Chapter 3

Embeddings into Lebesgue
spaces

In this chapter we show the result concerning the measure of non-
compactness of the embedding of Sobolev space into Lebesgue space from
the paper [2] with slightly less technical proof. These results are corollaries
of the theorems proven in Chapter 4.

3.1 NOTATION
In R™ we will also use the [P norm, that is

and we denote the open ball in this norm by
By(x,r):={y e R": |x —y|, <r}.

5.2 LEMMA
Let {b'};_, be the canonical basis of R". Let 1 < p < co. Let x € R" and
t > 0 be such that every b’ is in B,(x, t). Then

p
1 1
tP><1— 1> + i
1+ (n—1)r <1+(n—1)v7>

Proof:
It is clearly enough to show, that

p
1 n-1 .

1 - + = inf max |b' — x|P. 2

< 1+ (n —1)"1‘1> (1 + ( ' >p xeR”isign] i @)

n —1)rt
Obviously
inf max [b' — x|} = inf max|[b' — x|} = min max|b" —x|[}.
xeR" 1<i<n xe[-5,5]" 1<i<n xe[-5,5]" 1<i<n

Because 1 < p < oo, the function |b' — x|p is strictly convex in x for every
i € {1,2,...,n}, thus M(x) := max;<n |b" — xb is strictly convex as well,

14



Therefore it has unique minimizer in [-5,5]", which we denote by ¢ =
(c1,...,¢cn). The uniqueness implies ¢; = ¢y = ... = ¢, because if we
permute the coordinates in ¢ we do not change the value of M(c), so if
we have two different coordinates in ¢, than their transposition gives us
different minimizer, which is a contradiction with the uniqueness.

Therefore ¢ = (s,s,...,s) for some s € R. Clearly if s < 0 then
M(c) > M ((0,...,0)), and if 1 < s then M(c) > M ((1,...,1)),s00 < s < 1.
And thus we know that s minimizes

f(s):= {nglbi —(s,8,...,8)b =1 —s)P + (n—-1)s?, se[0,1].

This function is smooth and f'(s) = p(n —1)sP~! —p(1 — s)~'. From that we

can deduce that the function f is decreasing on (O, %> and increas-

1+(n-1)p-1

ing on <+1 1>. Therefore the minimum of f is at s = ——— and
1+(n-1)p-1 1+(n-1)p-1

that gives us (2).
Q.E.D.
3.3 LEMmMA

Let1 < p < oo and let f € LP(Q),
g € LP" (where 5 + 5 = 1) such that

flzr # 0. Then there exists a function

gl =1,
supp(g) = supp(f) and

[ar = 1110
Q

Proof:
If p=1take g = sgnf. If p > 1 take

fla)p!

glx) = sgn (f(x)) LE

£ 1Ize

In both cases g clearly satisfies the given conditions.
Q.E.D.

3.4 LEMMA
Letp € [1,00), and let fy, ..., fr € LP(S2) have pairwise disjoint supports. Then
there exists a linear projection P: LP(Q2) — span{fy, fo, ..., fr} with norm 1.
Proof:

Without loss of generality we may assume that each ||fi||,» > 0. We use
Lemma 3.3 to get functions g; € L?, such that

lgillr =1,
supp(g;) = supp(f;) and

[t = Inlis forai e (h,.... k).
Q

15



Now, for every f € LP(Q2) we set

§3</f9>nnmp

1=

Clearly P is a linear projection of LP onto span{fi,...,f,}. Since the sup-
ports of f; (and therefore g;) are pairwise disjoint, we can use Holder’s
inequality to obtain that

filP

IP()IL> =
' llfill‘ip

< Z 1f Xsuppgi 1o 12 117

-Z] 1P < Il

supp gi

and therefore the norm of P is at most one. Now P(f;) = f; implies that the
norm is equal to one.

Q.E.D.

3.5 LEmMmMA

Let1 < p < oo, a > 0. Let X be a Banach space and let T: X — LP(Q2) be a
continuous linear map. Assume that for every € > O there exist a sequence
of points {x;};>; C X and sequence of functions {g;};>, C LP(€2), such that
the supports of g; are pairwise disjoint and that

lcillx <1,
IT(xi) = gillre) < € and (3)
| T(xi)|| ey = o — €.

Then B(T) > «

Proof:
Firstly we prove the statement for p = 1. Basically we will show (for A =
a — 3g), that the distance between T(x;) and T(x;) for i,j € N, i # j is
greater or equal than 2A, and therefore they can not fit in finitely many
balls of diameter smaller than A in the definition of entropy numbers.

So let us fix € € (0,%), find x; and g; as in (3) and denote f; := T(x;),
A:= a —3e. From (3) and triangle inequality it follows trivially for every
i € N that

lgille = [ TCc)lly — [ T(c) — gillyy 2 @ —2e = A + e
Then for i + j we have

Ifi = fille = llgi = gille = fi = gillpe = Ifi = gill 0 > llgi — gl — 2€

16



and because the supports of g; and g; are disjoint, we have

Ifi = filly = llgi — gjllp0 — 2¢
= llgills + llgsll: —2¢
> 2(A +€) —2¢
= 2A.

Now we claim that B(T) > A. Assume for contradiction that there is k € N

such that e (T) < A. From the definition of e, we have {cj}?: in L'() such
that

(4)

ok-1
{fitiey € T(Bx) € | J(cj + ABpy).
j=1
For every ball c; + AB;: there is at most one i € N such that the function
fi € ¢j + ABy1, because fi,, fi, € ¢j + ABp1 implies together with (4) that

2A < ”fh —fiQHLi < ”fh —Cj”Li + “Cj —fiQHU <A+ A =2A.

We cannot put infinitely many functions separately in finitely many balls
and thus we have a contradiction.

Finally we conclude by sending € — 0 in B(T) > A = a — 3€ to get
B(T) > a.

Now we consider the case p € (1,00). Fix € € (0,%) and find x;, g; as

in (3). Suppose (for contradiction), that B(T) < a — 3e. We will project into
finitely many dimensions (using Lemma 3.4) and arrive at contradiction with
Lemma 3.2.

So, firstly denote

1 p
1+(n—1)!’11> i (1+n-1m)"

n-1

t(p,n):= » <1 —

Clearly lim,,_,, t(p, n) = 1, so there exists n € N such that
B(T) < (& —2¢) - t(p,n) — e. (5)

For p and this n fixed denote t := t(p,n), A := a — 2¢, f; := T(x;) and
E; := suppg;. From the definition of measure of non-compactness and (5)
we obtain that there exists k € N such that e,(T) < At — €. Therefore for
some c; € LP(S2) we have

2k—1

{fitiey € T(Bx) C | J (c; + (At —&)Byy). (6)

j=1

Then we claim that for every such ball (¢c; + (At — €)Bp), j € {1,...,2F 1},
there are at most n — 1 functions f;, such that f; € (c; + (At — €)Bys).

Indeed, suppose for contradiction that there is j € N and distinct numbers
i1,...,in such that f;,....,fi, € ¢; + (At — €)Br. Let P denote a norm one
projection of LP(2) onto the linear span of functions g;,, gi,, - - - gi, given by
Lemma 3.4. Let q; denote the coordinates of c¢; in the projection, that is
P(cj) = Y .., qsgi.. Using (3) we obtain for every r € {1,2,...,n} that
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At —e > ”C]' "fir“LP
> |lcj = gi e = llgi, = fi. |l
> ||Plc; — gi )l — €

Y asgi, - g,
s=1 LP

b < Xn: ]E IQSgi5|P> + /E 11— q.lplg,|P — €.

s=1,s#r ir

— &

V4

Now thanks to (3) we have | gi||.» > a — 2¢, therefore

n

At —e > (a —2¢)7 ( > lqsl”> +tl-aP —e = Ap" —ql, - &

s=1,s#r

where {b!,...,b"} is the canonical basis of R" and q = (qi,...,qn). From
this it follows that for every r € {1,...,n} the vector b" is in B,(q, t), which
contradicts Lemma 3.2.

So we proved that inside every ball in (6) there are at most n — 1 func-
tions f;. But that contradicts the fact that there are infinitely many functions
f; and finitely many balls.

Q.E.D.

5.6 COROLLARY

Let X be a Banach space, 1 < p < oo, a > 0and let T: X — LP(Q2) be
a continuous map. Suppose that there exists a sequence of points {x; }‘21 cX
such that the supports of T(x;) are pairwise disjoint and that

Ixillx <1,
[ T(xi) o) > Q.

Then B(T) > a.

Proof:
Obviously just take g; := T(x;).

Q.E.D.

3.7 THEOREM (Non-compactness of embedding into Lebesgue spaces)
Let Q C RY be an open set with Lipschitz boundary. Let k € N, 1 < p < oo,
kp < d and denote p* = -2, Denote by I the embedding of W(f’p(Q)

d-kp*
into LP"(Q2). Then

B = [1].

Proof:

For given r > 0 denote by a, the norm of the embedding of W(If’p (B(x, r))
into LP" (B(x, r)) (it clearly does not depend on x € RY). If r > s > 0, then
trivially from definition a, > a, > 0, so we can define a = lim,_y+ a, (the
limit exists).

18



We claim, that B(I) > a. To prove that we find sequence of pairwise
disjoint balls B;(x;,r;) C Q. Fix § > 0. For every i € N there is a function
gi € WEP(B;), such that

lgillwee) <1 and
lgill o) > ar —6 > a = 6.
Corollary 3.6 applied to T = I, x; = g; and a = a — 6 gives us B(I) > a — 6.

We conclude by sending 6 to 0.
Previous inequality and Observation 2.26 give us, that

a < BI) < |I.

So it suffices to prove that a = ||I|.

If we assume, that for all r > s > 0 we have a, = a, (and therefore for
all r > 0: a, = a), then we have | Id: WP(R?) — LP"(RY)| = a. And from
that and the inequalities a = | Id: WyP(RY) — LP (RY)|| > ||| > BU) > a we
obtain, that

|1d: WyP(RY) — LP'(RY)]| = ||I]] = B(I) = a.

It remains to prove that for every r > s > 0 we have a, = as. We fix
such r,s and € > 0. Then we find g € Wée’p(B(O,r)) such that

gl wees Bor) =1 and
gL By > Ar — €.

Now consider the function h: B(O, s) — R given by h(x) = cg (gx) where
c is a positive constant such that |h|weepos) = 1. Then the change of
variables y = tx and Proposition 2.4 give us

L= Wlnnnsy = [, e 3 |(5)" 070 (52)]

lvl<k

cP / r\ |lvlp—kp
- = |ID*g(y)|” dy.
(g)d % Jpio.m l:L;‘k <s>

Because |y|p — kp <0, £ > 1 and ||g|wrrBo,r) = 1 we can continue with

cP
S o5 oy 2079 :

dx

") |y|<k (E)d_kp.
This inequality and again change of variables y = {x give us
”h”i:*(B(Os)) = /B(O,s) c”|g <§x>’p dx
p*
_ (f; ; / ,low)
s *
> e’ (a, — )"

i < )Cdp-kp> a2 (s - e



Therefore the function h proves that as; > a, — €. Sending € — 0 gives us
as > a,, and since r > s we know that a; < a,.

Q.E.D.
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Chapter 4

Embeddings into Lorentz spaces

In this chapter we generalize the results from Chapter 3. We formulate
it in quite general setting using the property of disjoint monotonicity from
Definition 2.21. Then we apply this general theorem to the embeddings into
Lorentz spaces.

4.1 General theorem

4.1 LEMMA

Let 1 < m < oo, a > 0. Let X and Y be Banach spaces and let ¥ be
disjointedly m-superadditive and monotone function space. Let T: X —» Y
be a continuous linear map. Assume that there exists a sequence of points
{xi};2; € X, such that the supports of T(x;) are pairwise disjoint and that

xix <1 and

8)
IT(xi)|v = a.
Then B(T) > a.
Proof:
Denote f; := T(x;). From the continuity we know that
Ifilly = [Ty < (T - [xiflx < [T 9)

Suppose (for contradiction) that B(T) < a. We can find € > 0 such that
B(T) < a — €. Let us fix n € N big enough, such that (|T| + a)” < & - ™,
where M is the constant from disjoint m-superadditivity.

From the definition of measure of non-compactness we obtain that there
exists k € N such that ex(T) < o — €. Therefore for some functions c; € ¥

we have
2k—1

{fi}i2 S TBx) € | (e + (@ — €)By). (10)

j=1

We claim that for every such ball (c; + (a — €)By), j € {1,...,2k7'}, there
are at most n — 1 functions f;, such that f; € (¢; + (@ — €)By).
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Indeed, suppose for contradiction that there are n distinct numbers
i1,...,i, and in fact any ball with center C and radius (a — €) such that

fii,---. fi, € C+ (a — €)By. (11)

Let S, denote the support of f; , S := Uigrgn S,. Put C=cC- ¥s and note that

clearly ||f; — C|lv < ||Ifi — C||v because of the monotonicity of V. Therefore
without loss of generality we may assume, that C is supported in S.
We observe that S, are disjoint and therefore we can write C as sum of
functions C, := C - xs, which have disjoint supports, ie. C =), ... C,.
The monotonicity of ¥ and (11) give us o

Ifi, = Celly < |Ifi, = Cllv < (& = &).
Using this and (8) we estimate for each1 <r <n
IC NIy = Ifilly = Ifi, = Crlly 2 a—(a—€) =&

Thanks to the disjoint m-superadditivity of ¥V we obtain the estimate
n

.G
r=1

Using this, (11) and (9) we get

ICly =

T . m
2 G = et > (17 )"

a-€2|C-fily 2 ICly = llfully = (ITI + ) = |T| = a,

which is a contradiction.

We proved that inside every ball in (10) there are at most n — 1 func-
tions f;. But that contradicts the fact that there are infinitely many func-
tions f; and finitely many balls.

Q.E.D.

4.2 REMARK

Corollary 3.6 used in the proof of the main theorem in Chapter 3 is a spe-
cial case of Lemma 4.1, because the space LP is clearly monotone and
p-superadditive (Remark 2.22).

4.5 NOTATION
Let X(R?) be a space of functions from R? to R and let 2 be an open subset
of RY. We denote

Xo(R) := {f € Xo(RY): f(x) =0 for x € R\ Q}.
We furthermore denote ||f| x <) = ||f|xo®a)-

4.4 REMARK
We have LP(Q2) = L{(2) and LP4(Q2) = L{'?(S2) in the case of Lebesgue resp.
Lorentz space.
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4.5 THEOREM (Non-compactness of embedding)

Let Q be an open subset of RY and let Xo(Q2) and Y,(Q2) be two Banach
spaces of functions from Q to R. Let a € (0, 00) and assume the following
conditions:

(i) The space X(€2) is continuously embedded into Y,(€2) and
[Id: Xo(€2) = Yo(2)] = a. (12)

(ii) The space Xy(B) is continuously embedded into Yy(B) for any open ball
B C © and
[Id: Xo(B) — Yo (B)|| = a. (13)

(iii) The space Yy(2) is monotone and disjointedly m-superadditive.

Denote by I the embedding of X,(Q2) into Yy(€2). (The condition (i) states that
it is continuous and |I|| = a.) Then

B = [1].

Proof:

We claim that B(I) > a. To prove that we find sequence of pairwise disjoint
balls B;(x;, r;) C Q. Fix 6 > 0. For every i € N there is a function g; € X(B;),
such that

”gi”XO <1 and
lgillv, > a - 6.

The space Y,(Q2) is monotone and disjointedly m-superadditive, so we can
use Lemma 4.1 appliedto T =1, x; = g;and a =a — 6 to get B(I) > a — 6.
We conclude by sending 6 to 0.

Observation 2.26 furthermore gives us that

a <BI) < I = a.

Q.E.D.

4.6 REMARK
Let B C Q and let X,(Q2) and Y,(Q2) be two Banach spaces of functions. Then

[1d: Xo(B) = Y(B)[| < [[Id: Xo(S2) — Yo(2)]].

Proof:
Clearly Xy(B) C Xo(2), therefore
11d: Xo(B) — Yo(B)| := sup{|[f[vym): f € Xo(B), [flxom <1}
= sup{||fllwe: f € Xo(B), [flxoe <1}

< sup{|lf we): f € Xo(S2), [Iflxe) <1}
=: ||Id: Xo(R2) = Yo(2)]-

Q.E.D.
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4.2 Applications

Since the measure of non-compactness depends on the norm, we need
to be careful about the definition of Lorentz space L™9. In the case g < m
we consider the norm ||+|;ma, but in the case g > m we need to use the
norm ||+[| ma.

1.2 THEOREM (Non-compactness of embedding into Lorentz spaces)

Letd22,kEN,k<d,1§p<%,denotep*=df‘f—’l’gpandletlgq<oo.

Let either p > 1 or p = g = 1. Let Q be an open subset of R? with Lipschitz
boundary. Then

B (Id: WELPA(Q) — LP*UQ)) = ||Id: WELPIURQ) — LP-UQ)]|.

Proof:
Let us denote the embedding of WXLP4(Q) into LP™4(Q2) by I. Firstly we
observe, that the definitions of Sobolev, Sobolev-Lorentz, Lebesgue and
Lorentz spaces WrP, WELP4, LP and LP4 agree with the Notation 4.3.

Let us denote

a,:= ||Id: WELP? (Blc,r)) — LP"9(Blc,r))|

for Blc,r) € R?. Clearly a, does not depend on ¢ € R%. Thanks to Re-
mark 4.6 we have a, > as for r > s > 0. We claim that a, = as and we
denote this value by a (that is for example a := a;).

Assume that we already know that a, = a for every r > 0. We want
to use Theorem 4.5. The validity of the embeddings in (i) and (ii) from
Theorem 4.5 follows from Theorem 2.23 and Remark 2.24.

Since functions with compact support are dense in WXLP4(Q) it can be
easily shown using Remark 4.6 that

[Id: WELPYRY) — LPY4(RY)|| = lim a, = a.
By Remark 4.6 we now have

a = [Id: WGLPA(R?) — LPI(R7)]
> [Id: WELP(Q) — L (Q)]
> || Id: W{LP9(B) - LP*(B)|| = a

for any open ball B C 2, which shows (12) and (13) of Theorem 4.5.

Finally the condition (iii) follows from the fact that LP"9(<2) is monotone
and disjointedly m-superadditive thanks to Remark 2.22, where m = p* for
p* > q and m = q for p* < q.

It remains to prove, that for r > s > 0 we have a, < as, that is

|Id: WELPA(B(O,r)) — LP™U(B(0,r))|| < ||Id: WELPA(B(0, s)) — LP™(B(0, s))|-

(14)
Because of different norms in Lorentz spaces we need to split the proof into
three parts depending on the value of q with respect to p and p*, where

p < p*.
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Part1: q <p < p*

In this case on WXLP4 resp. LP"4 we have the norm ||+||yyerea resp.
Let r > s > 0 and fix € > 0. Then we find g € WXLP4(B(0, r)) such that

|g |l werpaor =1 and
(BO,r) ~ Or — €

and let us denote

h: B(0,s) > R, h(x)=-cg <§x> ,

where c is a positive constant such that |h|wepeapos) = 1. From Corol-
lary 2.11 it follows, that

ot - e-(5)" - war ((5)"1).

s
This and the change of variables T = (g)d t give us

1 - “h“WkLPq 0,s))

Z/ 5 (D7h)* )>T

l7I<k

—ct Y / fa-t [(g)m .(D?g)* <<§>dt>r dt

_ o Z /000 <<§>d >p—1 <§>[7]q [(D7 )*(T)]q <§>d df
l7I<k
- S Q) (orerm)

Because |y|q —kq <0, £ > 1 and ]|g][Wkqu By = 1 We can continue with

= vali-k) Z/ )>q% B ﬁ:‘#k)' (15)

() "

From Proposition 2.9 it follows, that

This combined with inequality (15) and change of variables T = (5) t give

us
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e = [ (6 hot0)"
- ]Oootﬁ*—i c-g* <<§>dt>>q dt
= /OOOCQ <<§>dT>M_1 (g"(T))* (S)d dt (16)
- gl
<§ d(l;i*—i)m pra
> (E)j{'g_k) (@, - )7 > (a, - )"

Therefore the function h proves that a; > a, — €. Sending € — 0 gives us
(14).

Part2: p<q<p*

In this case we have the same norm on LP"4, but on W¥LP4 we have the
norm ||+|wrrea. The proof is the same as in the first case, just everywhere
we wrote ||+|wrrpa Wwe now write ||| werea and up to the equation (15) we
use the double-star operator ** instead of the rearrangement *. Note that
by Corollary 2.11 the double star operator ** scales in the same way as
the rearrangement *.

Part 3: p<p*<q

In this case on WELP4 resp. LP"4 we have the norm |+| wepea resp. ||| Lo a-
The proof is again the same as in the second case, now we replace ||| ;o a
with ||+|| o+« and we use ** instead of * everywhere.

Q.E.D.

4.7 REMARKS

e We can use Theorem 4.5 to easily prove Theorem 3.7.

e [f we take q = p or q = p* we get that the measure of non-compactness
of the embedding WP () < LP"P or WELPP" — LP" is equal to their
respective norm.

4.8 REMARK

Let 1 < g < Q < oo. Theorem 1.2 holds even for the embedding of
WELPA(Q) into LP"Q(Q), i.e. it's measure of non-compactness is equal to
it's norm.
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Proof:
The validity of the embedding follows from Theorem 2.23 and Proposi-
tion 2.15, because

WELP(SQ) — LPYI(Q) — LP2(Q).

The rest of the proof is analogous to the proof of Theorem 1.2, we only
need to raise the inequality (15) to the power of % and to replace g by Q in

inequalities (16).
Q.E.D.
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Chapter 5

Embedding into the space of
continuous functions

In this chapter we show that the measure of non-compactness of an
embedding can be smaller than its norm. For that we consider the Sobolev
space Wé'i((O, 1)) equipped with the norm |Ju||;, := fol |u'(x)| dx (where u’ is
the weak derivative), and the space of continuous functions G((0, 1)) equipped
with the supremum norm [u|lo = Sup,c(y) [f(x)|-

5.1 PROPOSITION
The norm of the embedding of Wé’i((O, 1)) into 6((0,1)) is equal to 3.

Proof:
Let folx) := § — |x — 1.

DNO|+—~

fo(x)

NI~

Then

1
Wfollut = /0

and

1
2
[folloo = 1/2.
Therefore |Id: W,"((0,1)) — 6((0,1))] > L.
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To show the opposite inequality we consider arbitrary function f from
the unit ball in W,"((0,1)). From [8, Theorem 8.2 and Theorem 8.12] we
know, that f has an absolutely continuous representative (we can without
the loss of generality assume that it is f) such that f(0) = f(1) = 0. Let us fix
any point A where the maximum of |f| is attained, i.e.

f(A) = max ()] = [|f|oo-

Without loss of generality we may assume that f(A) > 0, otherwise we can
consider —f. Then

1> flsa

1
- ] 1/(x)) dx
0
A 1
- / /()| dx + / 1F/(x)] dx
0 A
A 1
2/0 f(x)dx+/A —f'(x) dx
~ FA) = £(0) = f(1) + F(A) = 2£(A) = 2| ]

Therefore | Id: W,"((0,1)) — 6((0,1))] < L.
Q.E.D.
5.2 REMARK

It is well known that the embedding of Wg’i((O, 1)) into 6((0,1)) is not com-
pact, therefore

B (Id: Wi((0,1)) — @((0,1))) > 0.

5.3 PROPOSITION
The measure of non-compactness of the embedding of Wé’i((O,i)) into
3((0,1)) is less or equal than 3.

In particular, the measure of non-compactness of this embedding is
smaller than its norm (which is equal to %).

Proof:

It is enough to show that in G((0,1)) there are finitely many balls with ra-
dius % that cover BWg,i((Oll)). Clearly we can consider closed balls. We claim
that it is enough to consider the balls

Ol

oy
<]

=

=
N
ol =
N| =
S~—_

where —%, 0 and % are meant as constant functions on (0, 1).
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Consider arbitrary function f such that ||f||;1 < 1. We want to show that
it is in one of these three balls. Thanks to [8, Theorem 8.2 and Theorem 8.12]
we can without loss of generality assume that f is absolutely continuous and
f(0) = f(1) = 0. Let us fix A as any point where the maximum of f is attained
and B as any point where the minimum is attained.

maxyep,1) f(x) = f(A)

f(x)
B —
0 A \ﬁ- x
minyco1 f(x) = f(B)

We know from Proposition 5.1 that min.cp, f(x) = f(B) € [-1,0] and
maxyep, f(x) = f(A) € [0, ;]. Therefore f(A) > f(B) and

f(A) +f(B) 11

e -2 |- (17)
Without loss of generality we assume that

f(A) ;f(B) >0, 18)

more we can assume that A < B, otherwise we can use f(—x).
We use the fact that f is absolutely continuous to obtain

otherwise we may use —f and (if needed) ball B_: instead of B%. Further-

12> [fls

-/ ) e
- ") + / ) dx + / )] de
/f dx+/ —f'(x dx+/f

f(0) - f(B) + f(A) + 2(f(A) — f(B)),

therefore

<1
4

'f(A) —f(B)‘
2
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To determine into which of the balls B_ L Boor B L the function f belongs
we distinguish two cases. Recall (17) and (18).

f(A) + £(B) 1
__?__EPTA (20)

Then we claim that f € By. Thanks to estimates (19) and (20) we have

f(A) —f(B)‘

Case 1:

A) - f(B)
2

'f(A) f(B)’ N 'f(A) —f(B)’
2

1

+

+

e < [re - .

<

W~ o+

S_

1
12 3

and symmetrically we can show that |[f(B)| < i. Therefore

N =~

If = Ollee = max{|f(A), [f(B)]} <

Cf(A)+£(B) (1 1
Case 2: —5 €l (21)
Then we claim that f € Bi. We know that f(A) ¢ [0, 3], which implies
[f(A) = | < 1. Furthermore the estimates (19) and (21) yield

1 f(A) +f(B)| [|f(A)+f(B) 1
‘f(B)—é‘S‘f(B)— . M : _6’
f(B) — f(A) 1
S‘TTQ
N
S ARTEES
Therefore
1 1 1 1
Hf _EHOO = max{'f(A) ~ 5l f(B) —EH < 5

Q.E.D.
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