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Abstract: The measure of non-compactness is defined for any continuousmapping T : X ˇ Y between two Banach spaces X and Y as

β(T) := inf{r > 0 : T(BX) can be covered by finitelymany open balls with radius r

}
.

It can easily be shown that 0 ≤ β(T) ≤ ∥T∥ and that β(T) = 0, if and only ifthe mapping T is compact.
My supervisor prof. Stanislav Hencl has proved in his paper that the mea-sure of non-compactness of the known embedding Wk,p0 (Ω) → Lp∗(Ω), where
kp is smaller than the dimension, is equal to its norm.
In this thesis we prove that the measure of non-compactness of the embed-ding between function spaces is under certain general assumptions equal tothe norm of that embedding. We apply this theorem to the case of Lorentzspaces to obtain that the measure of non-compactness of the embedding

Wk0 Lp,q(Ω) → Lp∗,q(Ω)
is for suitable p and q equal to its norm.
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Chapter 1

Introduction

In this thesis we study the measure of non-compactness of linear map-pings. This notion was firstly introduced by Gohberg, Goldenstein andMarkus in 1957 in [1].
1.1 DEFINITIONLet X and Y be Banach spaces and let T be a continuous linear mappingfrom X into Y . Let us denote the open unit ball in X centered at originby BX. We define the measure of non-compactness of T as

β(T) := inf{r > 0 : T(BX) can be covered by finitelymany open balls with radius r

}
.

It can be easily shown, that 0 ≤ β(T) ≤ ∥T∥ (see Observation 2.26). More-over, the mapping T is compact if and only if β(T) = 0 (see Proposition 2.28).
In particular we are concerned with the measure of non-compactness ofthe Sobolev embeddings. In the paper [2] it was proven, that the measure ofnon-compactness of the classical embedding of Wk,p0 (Ω) into Lp∗(Ω) is equalto its norm, i.e.

β
(

Id : Wk,p0 (Ω) → Lp∗(Ω)) = ∥Id : Wk,p0 (Ω) → Lp∗(Ω)∥. (1)
Here we simplify the proof of this result, and we generalize the result toSobolev-Lorentz embedding. For the definitions of Sobolev-Lorentz andLorentz spaces see Preliminaries.
1.2 THEOREM (Non-compactness of embedding into Lorentz spaces)Let d ≥ 2, k ∈ N, k < d, 1 ≤ p < d

k , denote p∗ = dp
d−kp and let 1 ≤ q < ∞.Let either p > 1 or p = q = 1. Let Ω be an open subset of Rd with Lipschitzboundary. Then

β
(
Id : Wk0 Lp,q(Ω) → Lp∗,q(Ω)) = ∥Id : Wk0 Lp,q(Ω) → Lp∗,q(Ω)∥.
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In Chapter 2 we define the function spaces and state or prove the proper-ties needed in the following chapters. Furthermore we define the measureof non-compactness and prove the basic facts about it.The result (1) from [2] is shown in Chapter 3 with slightly simplifiedproof.In Chapter 4 we formulate and prove general statement concerning em-beddings and measure of non-compactness, and apply it to prove Theo-rem 1.2.And in the last Chapter 5 we use the embedding of W 1,10 ((0, 1)) into thespace of continuous functions C((0, 1)) to show, that the measure of non-compactness can be smaller then the norm of the embedding.
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Chapter 2

Preliminaries

2.1 Sobolev spaces
2.1 NOTATIONLet X be a Banach space. We denote the open ball with center x and radius rby BX(x, r), and the open unit ball centered at origin will be denoted by
BX = BX(0, 1).Let x ∈ X, ε > 0. By x + εBX we mean the ball BX(x, ε).
2.2 NOTATIONWe denote the characteristic function of set E by χE , that is

χE(x) := { 1, x ∈ E,0, x ̸∈ E.

2.3 NOTATIONLet γ be a multi-index, i.e. a finite sequence of non-negative integers.If γ = (γ1, γ2, . . . , γd), then we denote the norm of γ by
|γ| = γ1 + γ2 + · · · + γd.

For suitable f : Ω ⊆ Rd → R we denote the weak (distributional) derivativeby
Dγf (x) := ∂|γ|f

∂γ1x1∂γ2x2 · · · ∂γdxd
(x).

2.4 PROPOSITIONLet f : Rd → R have weak derivatives up to the order k and let |γ| ≤ k. Letus denote fK(x) := f (Kx) for K ∈ (0, ∞). Then
DγfK(x) = K|γ|(Dγf )(Kx) = K|γ|(Dγf )K(x).

Proof:We know that for φ ∈ C∞(Rd) the statement holds by the chain rule. Inparticular it holds for 1
K , that is

Dγφ 1
K
(x) = K−|γ| (Dγφ)( 1

Kx
) = K−|γ|(Dγφ) 1

K
(x).
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Then we have by the definition of weak derivative and change of variables∫
Rd

DγfK(x) · φ(x) dx = (−1)|γ|
∫
Rd

f (Kx) · Dγφ(x) dx

= (−1)|γ|
∫
Rd

f (y) · Dγφ
( 1

Ky
) dy

Kd

= (−1)|γ|
∫
Rd

f (y) · K|γ|Dγφ 1
K
(y) dy

Kd

= K|γ|
∫
Rd

Dγf (y) · φ
( 1

Ky
) dy

Kd

= K|γ|
∫
Rd

(Dγf )K(x) · φ(x) dx.

Q.E.D.

2.5 NOTATION (Sobolev space)Let Ω be an open subset of Rd, k ∈ N and p ∈ [1, ∞). For f ∈ Wk,p0 (Ω) weconsider the norm
∥f∥Wk,p(Ω) := ⎛⎝∑

|γ|≤k

∫
Ω |Dγg(x)|p dx

⎞⎠ 1
p

.

By Wk,p0 (Ω) we denote the set of functions from Wk,p(Ω) with zero traces.
The classical continuous Sobolev embedding into Lebesgue space can befound e.g. in [3, Theorem 2.4.2].

2.6 THEOREM (Sobolev embedding)Let Ω be an open set, p ≥ 1 and kp < n. Let us denote p∗ := np
n−kp . Then

Wk,p0 (Ω) ↪̌ Lp∗(Ω).
2.2 Lorentz spaces
2.7 DEFINITIONLet f be a measurable function from measurable set Ω ⊆ Rd to R. We definethe distribution function as

f∗(s) := |{x ∈ Ω: |f (x)| > s}| ,where s > 0 and |•| denotes the Lebesgue measure in Rd.We define the non-increasing rearrangement as
f∗(t) := inf{s > 0 : f∗(s) ≤ t}, t ∈ (0, ∞)and we define double-star operator as

f∗∗(t) := 1
t

∫ t

0 f∗(s), t ∈ (0, ∞).
5



2.8 NOTATIONLet f : Ω → R be a function. We denote
{f > s} := {x ∈ Ω: f (x) > s},

We denote it analogously for other types of (in)equalities (<, ≥, ≤, =).
2.9 PROPOSITIONLet g : Rd → R be a measurable function. Let K ∈ (0, ∞) and let us denote
gK(x) := g(Kx). Then (gK)∗ (t) = g∗(Kdt).
Proof:From the definition of the distribution function and change of variables
y = Kx it follows, that

(gK)∗ (s) = |{|gK| > s}|

= ∫{|gK(x)|>s} 1 dx = ∫{|g(Kx)|>s} 1 dx

= ∫{|g(y)|>s}
1

Kd dy

= g∗(s)
Kd .

Therefore
(gK)∗ (t) = inf{s > 0 : (gK)∗(s) ≤ t}= inf{s > 0 : g∗(s) ≤ Kdt} = g∗(Kdt).

Q.E.D.

2.10 PROPOSITIONLet g : Rd → R be a measurable function. Let K ∈ (0, ∞) and let us denote
gK(x) := g(Kx). Then (gK)∗∗ (t) = g∗∗ (Kdt

)
.

Proof:From Proposition 2.9 it follows, that
(gK)∗∗ (t) := 1

t

∫ t

0 (gK)∗(s) ds

= 1
t

∫ t

0 g∗(Kds) ds

= 1
Kd

1
t

∫ Kdt

0 g∗(s) ds =: g∗∗(Kdt).
Q.E.D.
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2.11 COROLLARYLet g : Rd → R have weak derivatives up to the order k, |γ| ≤ k andlet K > 0. Let us denote gK(x) := g(K · x). Then by Proposition 2.4 andProposition 2.14 i) we have
(Dγ(gK))∗ (t) = (

K|γ| · (Dγg)K)∗ (t) = K|γ| · (Dγg)∗(Kdt) and(Dγ(gK))∗∗ (t) = (
K|γ| · (Dγg)K)∗∗ (t) = K|γ| · (Dγg)∗∗(Kdt).

2.12 LEMMALet f and g be two functions from Ω ⊆ Rd to R with disjoint supports andlet s > 0. Then (f + g)∗(s) = f∗(s) + g∗(s).
Proof:Clearly

(f + g)∗(s) = |{|f + g | > s}|= |{|f | > s} ∪ {|g | > s}|= |{|f | > s}| + |{|g | > s}|= f∗(s) + g∗(s).
Q.E.D.

2.13 DEFINITIONLet Ω be an open subset of Rd and let m, q ∈ [1, ∞]. We define Lorentz
space Lm,q(Ω) as

Lm,q(Ω) := {f : Ω → R, such that ∥f∥Lm,q (Ω) < ∞},

where
∥f∥Lm,q (Ω) :=

⎧⎪⎪⎨⎪⎪⎩
(∫ ∞

0
(

t 1
m · f∗(t))q dt

t

) 1
q when q < ∞,

sup
t>0
(

t 1
m · f∗(t)) when q = ∞.

Furthermore we define
∥f∥L(m,q)(Ω) :=

⎧⎪⎪⎨⎪⎪⎩
(∫ ∞

0
(

t 1
m · f∗∗(t))q dt

t

) 1
q when q < ∞,

sup
t>0
(

t 1
m · f∗∗(t)) when q = ∞.

2.14 PROPOSITION
i) For c ≥ 0 : (c · f )∗ = c · f∗.
ii) For p ∈ [1, ∞] it holds that ∥•∥Lp,p(Ω) = ∥•∥Lp(Ω).
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iii) For 1 ≤ q ≤ m the functional ∥•∥Lm,q (Ω) is a norm and Lm,q(Ω) is a Banachspace.
iv) For 1 < m < ∞ the functional ∥•∥L(m,q)(Ω) is a norm equivalent to ∥•∥Lm,q (Ω).
Proof:Proof of these statements can be found for example in [4].
2.15 PROPOSITION (Inclusions)Let 1 ≤ m, q, M, Q ≤ ∞, Ω ⊆ Rd measurable.

• If q < Q, then ∥f∥Lm,Q(Ω) ≤ C · ∥f∥Lm,q (Ω),
• if m < M and |Ω| < ∞, then ∥f∥Lm,q (Ω) ≤ C · ∥f∥LM,Q(Ω),where C > 0 is a constant depending on d and |Ω|.

Proof:See [4, Theorem 3.8].
2.16 PROPOSITION (Lorentz norm via distribution)Let m, q ∈ [1, ∞). Then

∥f∥q
Lm,q (Ω) = m

∫ ∞

0 sq−1[f∗(s)] q
m ds.

Proof:See [4, Proposition 3.6].
2.17 DEFINITIONLet Ω ⊆ Rd, k ∈ N and m, q ∈ [1, ∞]. We define Sobolev-Lorentz space as

WkLm,q(Ω) := {
f : Ω → R, such that ∥f∥WkLm,q (Ω) < ∞

}
,

where
∥f∥WkLm,q (Ω) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⎛⎝∑

|γ|≤k

∥Dγf∥q
Lm,q (Ω)

⎞⎠ 1
q if q < ∞,

max
|γ|≤k

∥Dγf∥Lm,∞(Ω) if q = ∞.
We define Wk0 Lm,q(Ω) as

Wk0 Lm,q(Ω) := {f : Ω → R : f̃ ∈ WkLm,q(Rd)},

where
f̃ (x) := { f (x) if x ∈ Ω and0 if x ∈ RdrΩ.As in the case of Lorentz spaces we can define ∥•∥WkL(m,q)(Ω) with the sameformula where we use ∥•∥L(m,q)(Ω) instead of ∥•∥Lm,q (Ω).The key element in the proof of the main Theorem 1.2 is the followingproposition. The proof of the proposition is from [4, Lemma 3.10].
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2.18 PROPOSITIONLet Ω ⊆ Rd, 1 ≤ q ≤ m and let f1 and f2 be two functions from Lm,q(Ω) withdisjoint support. Then
∥f1∥m

Lm,q (Ω) + ∥f2∥m
Lm,q (Ω) ≤ ∥f1 + f2∥m

Lm,q (Ω).
Proof:If q = m, then Lm,q = Lm and the inequality holds because for f1 and f2 withdisjoint supports we have

∥f1 + f2∥m
Lm(Ω) = ∫Ω |f1 + f2|m = ∫Ω |f1|m + ∫Ω |f2|m = ∥f1∥m

Lm(Ω) + ∥f2∥m
Lm(Ω).

So we may assume that q < m. From Lemma 2.12 we know that
(f1)∗ + (f2)∗ = (f1 + f2)∗.

Hölder’s inequality for measure sq−1 ds yields(∫ ∞

0 sq−1(fj) q
m
∗ (s) ds

)m
q

= (∫ ∞

0 sq−1((fj) q
m
∗ (s)(f1 + f2) q(q−m)

m2
∗ (s))((f1 + f2) q(m−q)

m2
∗

) ds
)m

q

≤
(∫ ∞

0 sq−1(fj)∗(s)(f1 + f2) q
m −1
∗ (s) ds

)(∫ ∞

0 sq−1(f1 + f2) q
m
∗ (s) ds

)m
q −1

for j = 1, 2. We apply Proposition 2.16 and sum over j to get with the helpof q < m that
m− m

q

2∑
j=1 ∥fj∥m

Lm,q (Ω) = 2∑
j=1
(∫ ∞

0 sq−1(fj) q
m
∗ (s) ds

)m
q

≤
(∫ ∞

0 sq−1(f1 + f2) q
m
∗ (s) ds

)m
q −1 2∑

j=1
(∫ ∞

0 sq−1(fj)∗(s)(f1 + f2) q
m −1
∗ (s) ds

)
= (∫ ∞

0 sq−1(f1 + f2) q
m
∗ (s) ds

)m
q

= m− m
q ∥f1 + f2∥m

Lm,q (Ω).
Q.E.D.

For the case q > m analogous statement holds as well, but with differentpower. For that we need the following inequality.
2.19 LEMMALet a, b ≥ 0 and let 1 ≤ p < ∞. Then

(a + b)p ≥ ap + bp.
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Proof:If a = b = 0, then there is nothing to prove. So let a+b > 0. The function xpis convex, therefore
ap = ( b

a + b · 0 + a
a + b · (a + b))p

≤ b
a + b · 0p + a

a + b · (a + b)p and
bp = ( a

a + b · 0 + b
a + b · (a + b))p

≤ a
a + b · 0p + b

a + b · (a + b)p.

Summing these two inequalities gives us the statement.
Q.E.D.

2.20 PROPOSITIONLet Ω ⊆ Rd, 1 ≤ m < q < ∞ and let f and g be two functions from Lm,q(Ω)with disjoint supports. Then
∥f∥q

Lm,q (Ω) + ∥g∥q
Lm,q (Ω) ≤ ∥f + g∥q

Lm,q (Ω).
Proof:Thanks to Lemma 2.12, Proposition 2.16 and Lemma 2.19 for p := q

m > 1we have
∥f + g∥q

Lm,q (Ω) = m
∫ ∞

0 sq−1(f + g) q
m
∗ (s) ds

= m
∫ ∞

0 sq−1(f∗ + g∗) q
m (s) ds

≥ m
∫ ∞

0 sq−1(f∗) q
m (s) ds + m

∫ ∞

0 sq−1(g∗) q
m (s) ds

= ∥f∥q
Lm,q (Ω) + ∥g∥q

Lm,q (Ω).
Q.E.D.

2.21 DEFINITIONLet X be a Banach space of functions from Ω ⊆ Rd to R and let 1 ≤ m < ∞.We say that X is disjointedly m-superadditive, if there is a constant M > 0such that for any finite sequence of functions {fi}k
i=1 ⊆ X with disjoint sup-ports it holds, that

k∑
i=1 ∥fi∥m

X ≤ M
 k∑

i=1 fi


m

X

.

Furthermore we say that X is monotone if restricting decreases norm,that is if E ⊆ Ω and f ∈ X, then
∥f · χE∥X ≤ ∥f∥X.

2.22 REMARKThe Lebesgue spaces Lm and Lorentz spaces Lm,q are for 1 ≤ m < ∞ clearlymonotone.
10



If q ≤ m, then Proposition 2.18 implies that Lm,q (and therefore Lm) isdisjointedly m-superadditive with M = 1.For q > m we must be a bit more careful, because the functional ∥•∥Lm,q (Ω)is not a norm. But for m > 1 it is equivalent to the norm ∥•∥L(m,q)(Ω), andthanks to Proposition 2.20 we know that for q < ∞

k∑
i=1 ∥fi∥q

L(m,q) ≤
k∑

i=1 vq∥fi∥q
Lm,q ≤ vq

 k∑
i=1 fi


q

Lm,q

≤ vqV
 k∑

i=1 fi


q

Lm,q

,

where v and V are the constants from the equivalence of the functionals.Therefore for ∞ > q > m > 1 the space Lm,q equipped with the norm
∥•∥L(m,q) is disjointedly q-superadditive.

The embeddings between Sobolev-Lorentz spaces and Lorentz spaces westudy in the next chapters are ensured by [5, Theorem 6.9].
2.23 THEOREM (Sobolev-Lorentz embedding)Let Ω ⊆ Rd be an open set with Lipschitz boundary, d ≥ 2, k ∈ N, k < d. Let1 < p < d

k and 1 ≤ q ≤ ∞. Denote p∗ := dp
d−kp . Then there is a continuousembedding

Wk0 Lp,q(Ω) ↪̌ Lp∗,q(Ω).In particular if we choose q = p we can use Proposition 2.15 to get thecontinuous embeddings
Wk,p0 (Ω) ↪̌ Lp∗,p(Ω) ↪̌ Lp∗(Ω).

2.24 REMARKS
• The embedding holds even for p = q = 1. See again [5, Theorem 6.9].
• But if p = 1 and q > 1, then the functional ∥•∥Lp,q (Ω) is not equivalent toany norm, so the situation is more complicated and will not be dealtwith here.
• Let q > p > 1. Because we do not care about the constant of the em-bedding, and because the functionals ∥•∥Lp,q (Ω) and ∥•∥L(p,q)(Ω) are equiv-alent, we may consider either of them in the definition of Lorentz orSobolev-Lorentz space in the embedding.
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2.3 Measure of non-compactness
It is more convenient to define the measure of non-compactness usingthe entropy numbers. The following definition is clearly equivalent to Defi-nition 1.1.Here we only need the definition of entropy numbers and definition ofmeasure of non-compactness, for further properties and applications seefor example [6] and references given there.

2.25 DEFINITIONLet X and Y be two Banach spaces. Let T : X → Y be a bounded linearmapping. We define entropy numbers for k ∈ N as
ek(T) := inf

⎧⎨⎩ε > 0 : there exist cj ∈ Y , such that T(BX) ⊆
2k−1⋃
j=1 (cj + εBY )

⎫⎬⎭ ,

and we define the measure of non-compactness as
β(T) := lim

k→∞
ek(T).

2.26 OBSERVATIONWe can easily show that 0 ≤ ek(T) ≤ ∥T∥. Furthermore, the numbers ek(T)are clearly non-increasing as k → ∞, so β(T) exists and 0 ≤ β(T) ≤ ∥T∥.
Proof:Let us fix k ∈ N. If ek(T) > ∥T∥, then there would be ε > ∥T∥ such that
T(BX) is not contained in 2k−1 balls with radius ε. But from the definitionof the norm of T we know that T(BX) ⊆ εBY . The rest is obvious.

Q.E.D.

2.27 THEOREMLet K be a subset of a metric space. Then K is compact if and only if K iscomplete and totally bounded.
Proof:See [7, Theorems 4.3.27-4.3.29].
2.28 PROPOSITIONThe mapping T between Banach spaces is compact if and only if β(T) = 0.
Proof:“ ”:Let ε > 0. The set T(BX) is compact, and therefore it is totally boundedthanks to Theorem 2.27. Therefore there exists a finite ε-net for T(BX), thatis there exist k ∈ N and at most 2k−1 points cj in Y such that

T(BX) ⊆
2k−1⋃
j=1 (cj + εBY ).

Therefore ek(T) ≤ ε and so β(T) ≤ ε. We conclude by sending ε to 0.
12



“⇐”:Because Y is complete we know that T(BX) is complete and thanks to The-orem 2.27 it suffices to show that T(BX) is totally bounded. For that it isenough to show that for fixed ε > 0 there is a ε-net for T(BX). We knowthat β(T) = 0, so there is k ∈ N such that ek(T) < 12ε. The definition of ek(T)clearly ensures the existence of ε-net.
Q.E.D.
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Chapter 3

Embeddings into Lebesgue
spaces

In this chapter we show the result concerning the measure of non-compactness of the embedding of Sobolev space into Lebesgue space fromthe paper [2] with slightly less technical proof. These results are corollariesof the theorems proven in Chapter 4.
3.1 NOTATIONIn Rn we will also use the lp norm, that is

|x|p := p

√ n∑
i=1 |xi|p

and we denote the open ball in this norm by
Bp(x, r) := {y ∈ Rn : |x − y|p < r}.

3.2 LEMMALet {bi}n
i=1 be the canonical basis of Rn. Let 1 < p < ∞. Let x ∈ Rn and

t > 0 be such that every bi is in Bp(x, t). Then
tp >

(1 − 11 + (n − 1) 1
p−1
)p + n − 1(1 + (n − 1) 1

p−1)p .

Proof:It is clearly enough to show, that(1 − 11 + (n − 1) 1
p−1
)p + n − 1(1 + (n − 1) 1

p−1)p = inf
x∈Rn

max1≤i≤n
|bi − x|pp. (2)

Obviously
inf

x∈Rn
max1≤i≤n

|bi − x|pp = inf
x∈[−5,5]n max1≤i≤n

|bi − x|pp = min
x∈[−5,5]n max1≤i≤n

|bi − x|pp.

Because 1 < p < ∞, the function |bi − x|pp is strictly convex in x for every
i ∈ {1, 2, . . . , n}, thus M(x) := max1≤i≤n |bi − x|pp is strictly convex as well.

14



Therefore it has unique minimizer in [−5, 5]n, which we denote by c =(c1, . . . , cn). The uniqueness implies c1 = c2 = . . . = cn, because if wepermute the coordinates in c we do not change the value of M(c), so ifwe have two different coordinates in c, than their transposition gives usdifferent minimizer, which is a contradiction with the uniqueness.Therefore c = (s, s, . . . , s) for some s ∈ R. Clearly if s < 0 then
M(c) > M ((0, . . . , 0)), and if 1 < s then M(c) > M ((1, . . . , 1)), so 0 ≤ s ≤ 1.And thus we know that s minimizes

f (s) := max1≤i≤n
|bi − (s, s, . . . , s)|pp = (1 − s)p + (n − 1)sp, s ∈ [0, 1].

This function is smooth and f ′(s) = p(n − 1)sp−1 − p(1 − s)p−1. From that wecan deduce that the function f is decreasing on (0, 11+(n−1) 1
p−1
) and increas-

ing on ( 11+(n−1) 1
p−1 , 1). Therefore the minimum of f is at s = 11+(n−1) 1

p−1 andthat gives us (2).
Q.E.D.

3.3 LEMMALet 1 ≤ p < ∞ and let f ∈ Lp(Ω), ∥f∥Lp =/ 0. Then there exists a function
g ∈ Lp′ (where 1

p + 1
p′ = 1) such that

∥g∥Lp′ = 1,supp(g) = supp(f ) and∫
Ω gf = ∥f∥Lp .

Proof:If p = 1 take g = sgn f . If p > 1 take
g(x) := sgn (f (x)) |f (x)|p−1

∥f∥p−1
Lp

.

In both cases g clearly satisfies the given conditions.
Q.E.D.

3.4 LEMMALet p ∈ [1, ∞), and let f1, . . . , fk ∈ Lp(Ω) have pairwise disjoint supports. Thenthere exists a linear projection P : Lp(Ω) → span{f1, f2, . . . , fk} with norm 1.
Proof:Without loss of generality we may assume that each ∥fi∥Lp > 0. We useLemma 3.3 to get functions gi ∈ Lp′ , such that

∥gi∥Lp′ = 1,supp(gi) = supp(fi) and∫
Ω gifi = ∥fi∥Lp for all i ∈ {1, . . . , k}.
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Now, for every f ∈ Lp(Ω) we set
P(f ) := k∑

i=1
(∫

Ω fgi

)
fi

∥fi∥Lp
.

Clearly P is a linear projection of Lp onto span{f1, . . . , fn}. Since the sup-ports of fi (and therefore gi) are pairwise disjoint, we can use Hölder’sinequality to obtain that
∥P(f )∥p

Lp = k∑
i=1
⏐⏐⏐⏐∫Ω fgi

⏐⏐⏐⏐p ∫Ω |fi|p

∥fi∥p
Lp

= k∑
i=1
⏐⏐⏐⏐∫Ω fgi

⏐⏐⏐⏐p
≤

k∑
i=1 ∥fχsupp gi∥

p
Lp∥gi∥p

Lp′

= k∑
i=1
∫

supp gi

|f |p ≤ ∥f∥p
Lp(Ω),

and therefore the norm of P is at most one. Now P(fi) = fi implies that thenorm is equal to one.
Q.E.D.

3.5 LEMMALet 1 ≤ p < ∞, α > 0. Let X be a Banach space and let T : X → Lp(Ω) be acontinuous linear map. Assume that for every ε > 0 there exist a sequenceof points {xi}∞
i=1 ⊆ X and sequence of functions {gi}∞

i=1 ⊆ Lp(Ω), such thatthe supports of gi are pairwise disjoint and that
∥xi∥X < 1,

∥T(xi) − gi∥Lp(Ω) < ε and
∥T(xi)∥Lp(Ω) ≥ α − ε.

(3)
Then β(T) ≥ α.
Proof:Firstly we prove the statement for p = 1. Basically we will show (for A =
α − 3ε), that the distance between T(xi) and T(xj) for i, j ∈ N, i =/ j isgreater or equal than 2A, and therefore they can not fit in finitely manyballs of diameter smaller than A in the definition of entropy numbers.So let us fix ε ∈

(0, α3 ), find xi and gi as in (3) and denote fi := T(xi),
A := α − 3ε. From (3) and triangle inequality it follows trivially for every
i ∈ N that

∥gi∥L1 ≥ ∥T(xi)∥L1 − ∥T(xi) − gi∥L1 ≥ α − 2ε = A + ε.

Then for i =/ j we have
∥fi − fj∥L1 ≥ ∥gi − gj∥L1 − ∥fi − gi∥L1 − ∥fj − gj∥L1 ≥ ∥gi − gj∥L1 − 2ε,
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and because the supports of gi and gj are disjoint, we have
∥fi − fj∥L1 ≥ ∥gi − gj∥L1 − 2ε= ∥gi∥L1 + ∥gj∥L1 − 2ε

≥ 2(A + ε) − 2ε= 2A.

(4)
Now we claim that β(T) ≥ A. Assume for contradiction that there is k ∈ Nsuch that ek(T) < A. From the definition of ek we have {cj}2k−1

j=1 in L1(Ω) suchthat {fi}∞
i=1 ⊆ T(BX) ⊆

2k−1⋃
j=1 (cj + ABL1).

For every ball cj + ABL1 there is at most one i ∈ N such that the function
fi ∈ cj + ABL1 , because fi1 , fi2 ∈ cj + ABL1 implies together with (4) that2A ≤ ∥fi1 − fi2∥L1 ≤ ∥fi1 − cj∥L1 + ∥cj − fi2∥L1 < A + A = 2A.We cannot put infinitely many functions separately in finitely many ballsand thus we have a contradiction.Finally we conclude by sending ε → 0 in β(T) ≥ A = α − 3ε to get
β(T) ≥ α.

Now we consider the case p ∈ (1, ∞). Fix ε ∈
(0, α3 ) and find xi, gi asin (3). Suppose (for contradiction), that β(T) < α − 3ε. We will project intofinitely many dimensions (using Lemma 3.4) and arrive at contradiction withLemma 3.2.So, firstly denote

t(p, n) := p

√(1 − 11 + (n − 1) 1
p−1
)p + n − 1(1 + (n − 1) 1

p−1)p .

Clearly limn→∞ t(p, n) = 1, so there exists n ∈ N such that
β(T) < (α − 2ε) · t(p, n) − ε. (5)For p and this n fixed denote t := t(p, n), A := α − 2ε, fi := T(xi) and

Ei := supp gi. From the definition of measure of non-compactness and (5)we obtain that there exists k ∈ N such that ek(T) < At − ε. Therefore forsome cj ∈ Lp(Ω) we have
{fi}∞

i=1 ⊆ T(BX) ⊆
2k−1⋃
j=1 (cj + (At − ε)BLp ) . (6)

Then we claim that for every such ball (cj + (At − ε)BLp ), j ∈ {1, . . . , 2k−1},there are at most n − 1 functions fi, such that fi ∈ (cj + (At − ε)BLp ).Indeed, suppose for contradiction that there is j ∈ N and distinct numbers
i1, . . . , in such that fi1 , . . . , fin ∈ cj + (At − ε)BLp . Let P denote a norm oneprojection of Lp(Ω) onto the linear span of functions gi1 , gi2 , . . . gin given byLemma 3.4. Let qs denote the coordinates of cj in the projection, that is
P(cj) =∑n

s=1 qsgis . Using (3) we obtain for every r ∈ {1, 2, . . . , n} that
17



At − ε > ∥cj − fir ∥Lp

≥ ∥cj − gir ∥Lp − ∥gir − fir ∥
≥ ∥P(cj − gir )∥Lp − ε

=  n∑
s=1 qsgis − gir


Lp

− ε

≥ p

√( n∑
s=1,s=/ r

∫
Eis

|qsgis |p
)+ ∫

Eir

|1 − qr|p|gir |p − ε.

Now thanks to (3) we have ∥gi∥Lp ≥ α − 2ε, therefore
At − ε > (α − 2ε) p

√( n∑
s=1,s=/ r

|qs|p
)+ |1 − qr|p − ε = A|br − q|p − ε,

where {b1, . . . , bn} is the canonical basis of Rn and q = (q1, . . . , qn). Fromthis it follows that for every r ∈ {1, . . . , n} the vector br is in Bp(q, t), whichcontradicts Lemma 3.2.So we proved that inside every ball in (6) there are at most n − 1 func-tions fi. But that contradicts the fact that there are infinitely many functions
fi and finitely many balls.

Q.E.D.

3.6 COROLLARYLet X be a Banach space, 1 ≤ p < ∞, α > 0 and let T : X → Lp(Ω) bea continuous map. Suppose that there exists a sequence of points {xi}∞
i=1 ⊆ Xsuch that the supports of T(xi) are pairwise disjoint and that

∥xi∥X < 1,
∥T(xi)∥Lp(Ω) ≥ α.

Then β(T) ≥ α.
Proof:Obviously just take gi := T(xi).

Q.E.D.

3.7 THEOREM (Non-compactness of embedding into Lebesgue spaces)Let Ω ⊆ Rd be an open set with Lipschitz boundary. Let k ∈ N, 1 ≤ p < ∞,
kp < d and denote p∗ = dp

d−kp . Denote by I the embedding of Wk,p0 (Ω)into Lp∗(Ω). Then
β(I) = ∥I∥.

Proof:For given r > 0 denote by ar the norm of the embedding of Wk,p0 (B(x, r))into Lp∗ (B(x, r)) (it clearly does not depend on x ∈ Rd). If r > s > 0, thentrivially from definition ar ≥ as ≥ 0, so we can define a = limr→0+ ar (thelimit exists).
18



We claim, that β(I) ≥ a. To prove that we find sequence of pairwisedisjoint balls Bi(xi, ri) ⊆ Ω. Fix δ > 0. For every i ∈ N there is a function
gi ∈ Wk,p0 (Bi), such that

∥gi∥Wk,p(Ω) < 1 and
∥gi∥Lp∗ (Ω) > ar − δ ≥ a − δ.Corollary 3.6 applied to T = I , xi = gi and α = a − δ gives us β(I) ≥ a − δ.We conclude by sending δ to 0.Previous inequality and Observation 2.26 give us, that

a ≤ β(I) ≤ ∥I∥.So it suffices to prove that a = ∥I∥.If we assume, that for all r > s > 0 we have ar = as (and therefore forall r > 0 : ar = a), then we have ∥ Id : Wk,p0 (Rd) → Lp∗(Rd)∥ = a. And fromthat and the inequalities a = ∥ Id : Wk,p0 (Rd) → Lp∗(Rd)∥ ≥ ∥I∥ ≥ β(I) ≥ a weobtain, that
∥ Id : Wk,p0 (Rd) → Lp∗(Rd)∥ = ∥I∥ = β(I) = a.It remains to prove that for every r > s > 0 we have ar = as. We fixsuch r, s and ε > 0. Then we find g ∈ Wk,p0 (B(0, r)) such that

∥g∥Wk,p(B(0,r)) = 1 and
∥g∥Lp∗ (B(0,r)) > ar − ε.Now consider the function h : B(0, s) → R given by h(x) = cg

( r
s x
), where

c is a positive constant such that ∥h∥Wk,p(B(0,s)) = 1. Then the change ofvariables y = r
s x and Proposition 2.4 give us

1 = ∥h∥p
Wk,p(B(0,s)) = ∫

B(0,s) cp
∑
|γ|≤k

⏐⏐⏐⏐(r
s

)|γ| (Dγg)(r
sx
)⏐⏐⏐⏐p dx

= cp( r
s
)d−kp

∫
B(0,r)

∑
|γ|≤k

(r
s

)|γ|p−kp
|Dγg(y)|p dy.

(7)
Because |γ|p − kp ≤ 0, r

s > 1 and ∥g∥Wk,p(B(0,r)) = 1 we can continue with
1 ≤ cp( r

s
)d−kp

∫
B(0,r)

∑
|γ|≤k

|Dγg(y)|p dy = cp( r
s
)d−kp .

This inequality and again change of variables y = r
s x give us

∥h∥p∗

Lp∗ (B(0,s)) = ∫
B(0,s) cp∗

⏐⏐⏐g (r
sx
)⏐⏐⏐p∗ dx

= cp∗( r
s
)d

∫
B(0,r) |g(y)|p∗ dy

> cp∗( r
s
)d (ar − ε)p∗

= ( cp( r
s
)d−kp

) d
d−kp (ar − ε)p∗ ≥ (ar − ε)p∗.
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Therefore the function h proves that as ≥ ar − ε. Sending ε → 0 gives us
as ≥ ar , and since r > s we know that as ≤ ar .

Q.E.D.
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Chapter 4

Embeddings into Lorentz spaces

In this chapter we generalize the results from Chapter 3. We formulateit in quite general setting using the property of disjoint monotonicity fromDefinition 2.21. Then we apply this general theorem to the embeddings intoLorentz spaces.
4.1 General theorem
4.1 LEMMALet 1 ≤ m < ∞, α > 0. Let X and Y be Banach spaces and let Y bedisjointedly m-superadditive and monotone function space. Let T : X → Ybe a continuous linear map. Assume that there exists a sequence of points{xi}∞

i=1 ⊆ X, such that the supports of T(xi) are pairwise disjoint and that
∥xi∥X < 1 and

∥T(xi)∥Y ≥ α.
(8)

Then β(T) ≥ α.
Proof:Denote fi := T(xi). From the continuity we know that

∥fi∥Y = ∥T(xi)∥Y ≤ ∥T∥ · ∥xi∥X ≤ ∥T∥. (9)
Suppose (for contradiction) that β(T) < α. We can find ε > 0 such that
β(T) < α − ε. Let us fix n ∈ N big enough, such that (∥T∥ + α

)m < n
M · εm,where M is the constant from disjoint m-superadditivity.From the definition of measure of non-compactness we obtain that thereexists k ∈ N such that ek(T) < α − ε. Therefore for some functions cj ∈ Ywe have {fi}∞

i=1 ⊆ T(BX) ⊆
2k−1⋃
j=1 (cj + (α − ε)BY ) . (10)

We claim that for every such ball (cj + (α − ε)BY ), j ∈ {1, . . . , 2k−1}, thereare at most n − 1 functions fi, such that fi ∈ (cj + (α − ε)BY ).
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Indeed, suppose for contradiction that there are n distinct numbers
i1, . . . , in and in fact any ball with center C and radius (α − ε) such that

fi1, . . . , fin ∈ C + (α − ε)BY . (11)Let Sr denote the support of fir , S := ⋃1≤r≤n Sr . Put C̃ = C · χS and note thatclearly ∥fi − C̃∥Y ≤ ∥fi − C∥Y because of the monotonicity of Y . Thereforewithout loss of generality we may assume, that C is supported in S.We observe that Sr are disjoint and therefore we can write C as sum offunctions Cr := C · χSr which have disjoint supports, i.e. C =∑1≤r≤n Cr .The monotonicity of Y and (11) give us
∥fir − Cr∥Y ≤ ∥fir − C∥Y ≤ (α − ε).

Using this and (8) we estimate for each 1 ≤ r ≤ n

∥Cr∥Y ≥ ∥fir ∥Y − ∥fir − Cr∥Y ≥ α − (α − ε) = ε.

Thanks to the disjoint m-superadditivity of Y we obtain the estimate
∥C∥m

Y =  n∑
r=1 Cr


m

Y

≥ 1
M

n∑
r=1 ∥Cr∥m

Y ≥ 1
M nεm >

(
∥T∥ + α

)m.

Using this, (11) and (9) we get
α − ε ≥ ∥C − fi1∥Y ≥ ∥C∥Y − ∥fi1∥Y ≥

(
∥T∥ + α

)
− ∥T∥ = α,

which is a contradiction.We proved that inside every ball in (10) there are at most n − 1 func-tions fi. But that contradicts the fact that there are infinitely many func-tions fi and finitely many balls.
Q.E.D.

4.2 REMARKCorollary 3.6 used in the proof of the main theorem in Chapter 3 is a spe-cial case of Lemma 4.1, because the space Lp is clearly monotone and
p-superadditive (Remark 2.22).
4.3 NOTATIONLet X(Rd) be a space of functions from Rd to R and let Ω be an open subsetof Rd. We denote

X0(Ω) := {f ∈ X0(Rd) : f (x) = 0 for x ∈ RdrΩ}.

We furthermore denote ∥f∥X0(Ω) := ∥f∥X0(Rd).
4.4 REMARKWe have Lp(Ω) = Lp0 (Ω) and Lp,q(Ω) = Lp,q0 (Ω) in the case of Lebesgue resp.Lorentz space.
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4.5 THEOREM (Non-compactness of embedding)Let Ω be an open subset of Rd and let X0(Ω) and Y0(Ω) be two Banachspaces of functions from Ω to R. Let a ∈ (0, ∞) and assume the followingconditions:(i) The space X0(Ω) is continuously embedded into Y0(Ω) and
∥Id : X0(Ω) → Y0(Ω)∥ = a. (12)

(ii) The space X0(B) is continuously embedded into Y0(B) for any open ball
B ⊆ Ω and

∥Id : X0(B) → Y0(B)∥ = a. (13)
(iii) The space Y0(Ω) is monotone and disjointedly m-superadditive.Denote by I the embedding of X0(Ω) into Y0(Ω). (The condition (i) states thatit is continuous and ∥I∥ = a.) Then

β(I) = ∥I∥.

Proof:We claim that β(I) ≥ a. To prove that we find sequence of pairwise disjointballs Bi(xi, ri) ⊆ Ω. Fix δ > 0. For every i ∈ N there is a function gi ∈ X(Bi),such that
∥gi∥X0 < 1 and
∥gi∥Y0 > a − δ.The space Y0(Ω) is monotone and disjointedly m-superadditive, so we canuse Lemma 4.1 applied to T = I , xi = gi and α = a − δ to get β(I) ≥ a − δ.We conclude by sending δ to 0.Observation 2.26 furthermore gives us that

a ≤ β(I) ≤ ∥I∥ = a.

Q.E.D.

4.6 REMARKLet B ⊆ Ω and let X0(Ω) and Y0(Ω) be two Banach spaces of functions. Then
∥Id : X0(B) → Y0(B)∥ ≤ ∥Id : X0(Ω) → Y0(Ω)∥.

Proof:Clearly X0(B) ⊆ X0(Ω), therefore
∥Id : X0(B) → Y0(B)∥ := sup{∥f∥Y0(B) : f ∈ X0(B), ∥f∥X0(B) ≤ 1}= sup{∥f∥Y0(Ω) : f ∈ X0(B), ∥f∥X0(Ω) ≤ 1}

≤ sup{∥f∥Y0(Ω) : f ∈ X0(Ω), ∥f∥X0(Ω) ≤ 1}=: ∥Id : X0(Ω) → Y0(Ω)∥.

Q.E.D.
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4.2 Applications
Since the measure of non-compactness depends on the norm, we needto be careful about the definition of Lorentz space Lm,q . In the case q ≤ mwe consider the norm ∥•∥Lm,q , but in the case q > m we need to use thenorm ∥•∥L(m,q) .

1.2 THEOREM (Non-compactness of embedding into Lorentz spaces)Let d ≥ 2, k ∈ N, k < d, 1 ≤ p < d
k , denote p∗ = dp

d−kp and let 1 ≤ q < ∞.Let either p > 1 or p = q = 1. Let Ω be an open subset of Rd with Lipschitzboundary. Then
β
(
Id : Wk0 Lp,q(Ω) → Lp∗,q(Ω)) = ∥Id : Wk0 Lp,q(Ω) → Lp∗,q(Ω)∥.

Proof:Let us denote the embedding of Wk0 Lp,q(Ω) into Lp∗,q(Ω) by I . Firstly weobserve, that the definitions of Sobolev, Sobolev-Lorentz, Lebesgue andLorentz spaces Wk,p0 , Wk0 Lp,q, Lp and Lp,q agree with the Notation 4.3.Let us denote
ar := ∥Id : Wk0 Lp,q (B(c, r)) → Lp∗,q(B(c, r))∥for B(c, r) ⊆ Rd. Clearly ar does not depend on c ∈ Rd. Thanks to Re-mark 4.6 we have ar ≥ as for r > s > 0. We claim that ar = as and wedenote this value by a (that is for example a := a1).Assume that we already know that ar = a for every r > 0. We wantto use Theorem 4.5. The validity of the embeddings in (i) and (ii) fromTheorem 4.5 follows from Theorem 2.23 and Remark 2.24.Since functions with compact support are dense in Wk0 Lp,q(Ω) it can beeasily shown using Remark 4.6 that
∥Id : Wk0 Lp,q(Rd) → Lp∗,q(Rd)∥ = lim

r→∞
ar = a.

By Remark 4.6 we now have
a = ∥Id : Wk0 Lp,q(Rd) → Lp∗,q(Rd)∥

≥ ∥Id : Wk0 Lp,q(Ω) → Lp∗,q(Ω)∥
≥ ∥Id : Wk0 Lp,q(B) → Lp∗,q(B)∥ = afor any open ball B ⊆ Ω, which shows (12) and (13) of Theorem 4.5.Finally the condition (iii) follows from the fact that Lp∗,q(Ω) is monotoneand disjointedly m-superadditive thanks to Remark 2.22, where m = p∗ for

p∗ ≥ q and m = q for p∗ < q.
It remains to prove, that for r > s > 0 we have ar ≤ as, that is

∥Id : Wk0 Lp,q(B(0, r)) → Lp∗,q(B(0, r))∥ ≤ ∥Id : Wk0 Lp,q(B(0, s)) → Lp∗,q(B(0, s))∥.(14)Because of different norms in Lorentz spaces we need to split the proof intothree parts depending on the value of q with respect to p and p∗, where
p < p∗.
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Part 1: q ≤ p < p∗

In this case on Wk0 Lp,q resp. Lp∗,q we have the norm ∥•∥WkLp,q resp. ∥•∥Lp∗,q .Let r > s > 0 and fix ε > 0. Then we find g ∈ Wk0 Lp,q(B(0, r)) such that
∥g∥WkLp,q (B(0,r)) = 1 and

∥g∥Lp∗ ,q (B(0,r)) > ar − ε

and let us denote
h : B(0, s) → R, h(x) = cg

(r
sx
)

,

where c is a positive constant such that ∥h∥WkLp,q (B(0,s)) = 1. From Corol-lary 2.11 it follows, that
(Dγh)∗(t) = c ·

(r
s

)|γ|
· (Dγg)∗((r

s

)d
t
)

.

This and the change of variables T = ( r
s
)d t give us

1 = ∥h∥q
WkLp,q (B(0,s))= ∑

|γ|≤k

∫ ∞

0
(

t
1
p (Dγh)∗ (t))q dt

t

= cq
∑
|γ|≤k

∫ ∞

0 t
q
p −1 [(r

s

)|γ|
· (Dγg)∗((r

s

)d
t
)]q dt

= cq
∑
|γ|≤k

∫ ∞

0
((s

r

)d
T
) q

p −1 (r
s

)|γ|q [(Dγg)∗ (T)]q (s
r

)d dt

= cq( r
s
)q( d

p −k) ∑
|γ|≤k

∫ ∞

0
(r

s

)|γ|q−kq (
T

1
p (Dγg)∗(T))q dT

T

Because |γ|q − kq ≤ 0, r
s > 1 and ∥g∥q

Wk0 Lp,q (B(0,r)) = 1 we can continue with
1 ≤ cq( r

s
)q( d

p −k) ∑
|γ|≤k

∫ ∞

0
(

T
1
p (Dγg)∗(T))q dT

T = cq( r
s
)q( d

p −k) . (15)
From Proposition 2.9 it follows, that

h∗(t) = c · g∗
((r

s

)d
t
)

.

This combined with inequality (15) and change of variables T = ( r
s
)d t giveus
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∥h∥q
Lp∗ ,q = ∫ ∞

0
(

t
1

p∗ · h∗(t))q dt
t

= ∫ ∞

0 t
q

p∗ −1 ·
(

c · g∗
((r

s

)d
t
))q dt

= ∫ ∞

0 cq
((s

r

)d
T
) q

p∗ −1 (g∗(T))q (s
r

)d dt

= cq( r
s
)d( q

p∗ −1)+d
∥g∥q

Lp∗ ,q

≥

⎛⎝ cq( r
s
)q( d

p −k)
⎞⎠ (ar − ε)q ≥ (ar − ε)q.

(16)

Therefore the function h proves that as ≥ ar − ε. Sending ε → 0 gives us(14).
Part 2: p < q ≤ p∗

In this case we have the same norm on Lp∗,q , but on Wk0 Lp,q we have thenorm ∥•∥WkL(p,q) . The proof is the same as in the first case, just everywherewe wrote ∥•∥WkLp,q we now write ∥•∥WkL(p,q) and up to the equation (15) weuse the double-star operator ∗∗ instead of the rearrangement ∗. Note thatby Corollary 2.11 the double star operator ∗∗ scales in the same way asthe rearrangement ∗.
Part 3: p < p∗ < q

In this case on Wk0 Lp,q resp. Lp∗,q we have the norm ∥•∥WkL(p,q) resp. ∥•∥L(p∗ ,q) .The proof is again the same as in the second case, now we replace ∥•∥Lp∗,qwith ∥•∥L(p∗ ,q) and we use ∗∗ instead of ∗ everywhere.
Q.E.D.

4.7 REMARKS
• We can use Theorem 4.5 to easily prove Theorem 3.7.
• If we take q = p or q = p∗ we get that the measure of non-compactnessof the embedding Wk,p0 (Ω) ↪̌ Lp∗,p or Wk0 Lp,p∗ ↪̌ Lp∗ is equal to theirrespective norm.

4.8 REMARKLet 1 ≤ q ≤ Q < ∞. Theorem 1.2 holds even for the embedding of
Wk0 Lp,q(Ω) into Lp∗,Q(Ω), i.e. it’s measure of non-compactness is equal toit’s norm.
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Proof:The validity of the embedding follows from Theorem 2.23 and Proposi-tion 2.15, because
Wk0 Lp,q(Ω) ↪̌ Lp∗,q(Ω) ↪̌ Lp∗,Q(Ω).

The rest of the proof is analogous to the proof of Theorem 1.2, we onlyneed to raise the inequality (15) to the power of Q
q and to replace q by Q ininequalities (16).

Q.E.D.
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Chapter 5

Embedding into the space of
continuous functions

In this chapter we show that the measure of non-compactness of anembedding can be smaller than its norm. For that we consider the Sobolevspace W 1,10 ((0, 1)) equipped with the norm ∥u∥1,1 := ∫ 10 |u′(x)| dx (where u′ isthe weak derivative), and the space of continuous functions C((0, 1)) equippedwith the supremum norm ∥u∥∞ = supx∈(0,1) |f (x)|.
5.1 PROPOSITIONThe norm of the embedding of W 1,10 ((0, 1)) into C((0, 1)) is equal to 12 .
Proof:Let f0(x) := 12 −

⏐⏐x − 12 ⏐⏐.

x0 12 1

12
f0(x)

Then
∥f0∥1,1 = ∫ 1

0
⏐⏐⏐⏐(12 −

⏐⏐⏐⏐x − 12
⏐⏐⏐⏐)′⏐⏐⏐⏐ dx = ∫ 12

0 1 + ∫ 1
12

1 = 1,

and
∥f0∥∞ = 1/2.Therefore ∥Id : W 1,10 ((0, 1)) → C((0, 1))∥ ≥ 12 .
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To show the opposite inequality we consider arbitrary function f fromthe unit ball in W 1,10 ((0, 1)). From [8, Theorem 8.2 and Theorem 8.12] weknow, that f has an absolutely continuous representative (we can withoutthe loss of generality assume that it is f ) such that f (0) = f (1) = 0. Let us fixany point A where the maximum of |f | is attained, i.e.
f (A) = max

x∈[0,1] |f (x)| = ∥f∥∞.

Without loss of generality we may assume that f (A) ≥ 0, otherwise we canconsider −f . Then
1 ≥ ∥f∥1,1

= ∫ 1
0 |f ′(x)| dx

= ∫ A

0 |f ′(x)| dx + ∫ 1
A

|f ′(x)| dx

≥
∫ A

0 f ′(x) dx + ∫ 1
A

−f ′(x) dx

= f (A) − f (0) − f (1) + f (A) = 2f (A) = 2∥f∥∞.

Therefore ∥Id : W 1,10 ((0, 1)) → C((0, 1))∥ ≤ 12 .
Q.E.D.

5.2 REMARKIt is well known that the embedding of W 1,10 ((0, 1)) into C((0, 1)) is not com-pact, therefore
β
(

Id : W 1,10 ((0, 1)) → C((0, 1))) > 0.

5.3 PROPOSITIONThe measure of non-compactness of the embedding of W 1,10 ((0, 1)) into
C((0, 1)) is less or equal than 13 .In particular, the measure of non-compactness of this embedding issmaller than its norm (which is equal to 12 ).
Proof:It is enough to show that in C((0, 1)) there are finitely many balls with ra-dius 13 that cover BW1,10 ((0,1)). Clearly we can consider closed balls. We claimthat it is enough to consider the balls

B− 16 := BC((0,1))
(

−16 , 13
)

,

B0 := BC((0,1))
(0, 13

) and
B 16 := BC((0,1))

(16 , 13
)

,

where −16 , 0 and 16 are meant as constant functions on (0, 1).
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Consider arbitrary function f such that ∥f∥1,1 ≤ 1. We want to show thatit is in one of these three balls. Thanks to [8, Theorem 8.2 and Theorem 8.12]we can without loss of generality assume that f is absolutely continuous and
f (0) = f (1) = 0. Let us fix A as any point where the maximum of f is attainedand B as any point where the minimum is attained.

x0 A
B 1

12maxx∈[0,1] f (x) = f (A)

minx∈[0,1] f (x) = f (B)

f(x)

We know from Proposition 5.1 that minx∈[0,1] f (x) = f (B) ∈
[
−12 , 0] andmaxx∈[0,1] f (x) = f (A) ∈

[0, 12]. Therefore f (A) ≥ f (B) and
f (A) + f (B)2 ∈

[
−14 , 14

]
. (17)

Without loss of generality we assume that
f (A) + f (B)2 ≥ 0, (18)

otherwise we may use −f and (if needed) ball B− 16 instead of B 16 . Further-more we can assume that A ≤ B, otherwise we can use f (−x).We use the fact that f is absolutely continuous to obtain
1 ≥ ∥f∥1,1

= ∫ 1
0 |f ′(x)| dx

= ∫ A

0 |f ′(x)| dx + ∫ B

A
|f ′(x)| dx + ∫ 1

B
|f ′(x)| dx

≥
∫ A

0 f ′(x) dx + ∫ B

A
−f ′(x) dx + ∫ 1

B
f ′(x) dx

= f (A) − f (0) − f (B) + f (A) + f (1) − f (B) = 2(f (A) − f (B)),
therefore ⏐⏐⏐⏐f (A) − f (B)2

⏐⏐⏐⏐ ≤ 14 . (19)
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To determine into which of the balls B− 16 , B0 or B 16 the function f belongswe distinguish two cases. Recall (17) and (18).
Case 1: f(A) + f(B)

2 ∈
[
0, 1

12

] (20)
Then we claim that f ∈ B0. Thanks to estimates (19) and (20) we have

|f (A)| ≤
⏐⏐⏐⏐f (A) − f (A) − f (B)2

⏐⏐⏐⏐+ ⏐⏐⏐⏐f (A) − f (B)2
⏐⏐⏐⏐

≤
⏐⏐⏐⏐f (A) + f (B)2

⏐⏐⏐⏐+ ⏐⏐⏐⏐f (A) − f (B)2
⏐⏐⏐⏐

≤ 112 + 14 = 13and symmetrically we can show that |f (B)| ≤ 13 . Therefore
∥f − 0∥∞ = max{|f (A)|, |f (B)|} ≤ 13 .

Case 2: f(A) + f(B)
2 ∈

(
1

12 , 1
4

] (21)
Then we claim that f ∈ B 16 . We know that f (A) ∈

[0, 12], which implies⏐⏐f (A) − 16 ⏐⏐ ≤ 13 . Furthermore the estimates (19) and (21) yield⏐⏐⏐⏐f (B) − 16
⏐⏐⏐⏐ ≤

⏐⏐⏐⏐f (B) − f (A) + f (B)2
⏐⏐⏐⏐+ ⏐⏐⏐⏐f (A) + f (B)2 − 16

⏐⏐⏐⏐
≤
⏐⏐⏐⏐f (B) − f (A)2

⏐⏐⏐⏐+ 112
≤ 14 + 112 = 13 .

Therefore f − 16


∞
= max{⏐⏐⏐⏐f (A) − 16

⏐⏐⏐⏐ , ⏐⏐⏐⏐f (B) − 16
⏐⏐⏐⏐} ≤ 13 .

Q.E.D.
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