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Abstrakt 
 

    V této práci se zabývám vývojem stochastické obrácené 

úlohy pro magnetotelurickou metodu v případě 1D/2D 

izotropní a anizotropní úlohy a její aplikací na syntetická a 

reálná data. Magnetotelurická metoda je geoelektrická 

induktivní metoda, která využívá jako zdroj indukce v 

Zemi variace přírodního elektromagnetického pole, na 

základě jejichž zpracování a interpretace dokáže zjistit 

odpor horninového prostředí až do hloubek desítek 

kilometrů. Obrácená úloha je v magnetotelurice řešena s 

cílem určit skutečné rozložení elektrického odporu pod 

povrchem Země na základě povrchových měření. Běžné 

metody řešení obrácené úlohy jsou založeny na 

optimalizaci modelu prostředí s omezením na shodu mezi 

pozorovanými daty a modelovou odezvou. Naproti tomu 

stochastické metody jsou založené na prohledávání 

prostoru parametrů a vybírání modelů na základě jejich 

pravděpodobnosti, díky čemuž jsou vhodné pro 

mnohadimenzionální úlohy, které nelze charakterizovat 

jedním výrazným minimem. Efektivní cestou jak 

zmapovat velký prostor parametrů jsou simulace Monte 

Carlo, pomocí nichž lze efektivně třídit přijatelné modely 

z hlediska pravděpodobnosti. Výsledkem těchto simulací 

je pravděpodobnostní popis jednotlivých parametrů, nikoli 

jeden výsledný model. 

    Vzhledem k výhodám stochastické úlohy jsem vyvinul 

obrácenou úlohu založenou na vzorkovací metodě 

DREAM, která byla speciálně rozvinuta pro 

mnohodimenzionální problémy. Jedná se o adaptivní 

algoritmus Monte Carlo s Markovovými řetězci, který 

používá více souběžně běžících řetězců a kombinuje 



3 

 

několikeré vzorkování se vzorkováním z minulých stavů. 

Vzorkovací metodu DREAM jsem nejprve zapracoval do 

1D izotropní/anizotropní a následně i do 2D 

izotropní/anizotropní magnetotelurické úlohy a otestoval 

na syntetických modelech. 

    V průběhu vývoje algoritmu jsem se účastnil celé řady 

nových terénních experimentů, během nichž jsem získal, 

zpracoval a interpretoval nová magnetotelurická data, na 

která jsem následně mohl stochastickou úlohu aplikovat. 

Konkrétními cíli byly tektonické jednotky západočeské 

seismoaktivní oblasti, východní okraj Českého masivu a 

okolí bradlového pásma v karpatské soustavě. U 

syntetických modelů podává vyvinutý algoritmus celkově 

dobré výsledky. U 2D reálných izotropních úloh dosahuje 

algoritmus horších výsledků pouze v případě velkého 

množství parametrů (> 500). V případě 2D anizotropních 

syntetických i reálných úloh dosahuje algoritmus lepších 

výsledků než standardní optimalizační algoritmy. Celkově 

vyvinutý algoritmus podává velmi dobré výsledky a přes 

vysoké výpočetní nároky je jeho přidanou hodnotou 

pravděpodobnostní zmapování prostoru řešení a odhad 

jeho neurčitosti. 
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Abstract 
 

    In the thesis I deal with the development of a stochastic 

inversion procedure for the magnetotelluric method in 

1D/2D isotropic and anisotropic cases, and its application 

to both synthetic and real data. The magnetotelluric 

method is a geoelectric inductive technique that utilizes 

variations of naturally occurring electromagnetic fields as 

a source of the electromagnetic induction for estimating 

the Earth's subsurface resistivity to depths of several tens 

of kilometres. The purpose of the inversion procedure is to 

estimate a real distribution of the electrical resistivity in 

the Earth's subsurface from surface measurements. 

Common inversion procedures in magnetotellurics 

perform a model optimization by minimizing the misfit 

between the data and the model response. Stochastic 

methods are based on the exploration of the model 

parameter space, and they pick models according to their 

probability, which makes them effective for the solution of 

high-dimensional problems which do not show a single 

pronounced minimum of the target function. The effective 

ways of mapping the parameter space are sampling 

algorithms based on Monte Carlo simulations which allow 

to sort models according to their probability. Results of 

these methods are obtained in the form of a fully 

probabilistic description of the parameters, and not in the 

form of a single model like in the deterministic inversion 

procedures. 

    Due to the mentioned advantages of the stochastic 

methods, I developed a stochastic inversion procedure 

using a sampling method DREAM, which was specially 

designed for high-dimensional problems. DREAM can be 
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classified as an adaptive Monte Carlo Markov Chain 

algorithm. It runs multiple chains in parallel and combines 

a multi-try sampling with sampling from an archive of past 

states. I used at first DREAM algorithm in 1D 

isotropic/anisotropic case and lately for 2D 

isotropic/anisotropic problem and tested the technique on 

synthetic models. 

    I attended a whole series of field experiments during the 

development of the inversion procedure, where I 

measured, processed and interpreted new magnetotelluric 

data, which I could use later for testing the stochastic 

inversion. The particular targets were tectonic structures in 

the West Bohemia seismo-active region, the eastern 

termination of the Bohemian Massif and the vicinity of the 

Pieniny Klippen Belt in the West Carpathians. The 

developed algorithm gives satisfactory results in 1D case, 

as well as for synthetic 2D isotropic problems. The 

algorithm achieves worse results in 2D real isotropic 

examples only in case of large number of parameters (> 

500). In case of 2D anisotropic problems, both synthetic 

and practical, the algorithm reaches better results than the 

classical non-probabilistic procedures. The developed 

stochastic algorithm gives overall satisfactory results and, 

despite its high computational costs, it benefits from 

offering full probability maps of the solution space, and 

thus estimates of the uncertainties of the solutions. 
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1. Introduction 
 

    Most of the inversion procedures applied to the 

magnetotelluric data perform a model optimization trying to 

minimize the data vs. model misfit under structural constraints. 

Unfortunately, these algorithms have only a limited ability to 

describe the ambiguity of inversion solutions and to deal with 

local minima, where they often get stuck. Another option is to 

employ stochastic methods, which are based on exploration over 

the space of model parameters and picking models according to 

their probability. The effective procedure for a parameter search 

are sampling algorithms based on Monte Carlo methods, which 

probabilistically map the solution space by many random 

simulations. Results of these methods are obtained as full 

probability descriptions of the parameters, and not in the form 

of a single model like is the case in deterministic inversion 

procedures. 

 

2. Aims of the study 
 

    The main aim of this thesis was to develop a stochastic 

inversion procedure for the magnetotelluric method (MT) in 1D 

and 2D isotropic and anisotropic cases. The second objective 

was the application of this algorithm to both synthetic and real 

data in order to assess the effectiveness and performance of the 

stochastic procedure. 

 

3. Material and methods 
 

3.1 Magnetotelluric method 
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    Magnetotellurics is a geoelectric inductive technique that 

utilizes variations of natural occurring electromagnetic fields as 

a source of the electromagnetic induction in the Earth. MT is 

commonly used to estimate the Earth’s subsurface electrical 

resistivity from hundreds of meters to several hundred 

kilometers. After the time series are collected in the field and 

processed, an inversion procedure is typically used to determine 

the true resistivity in the subsurface. 

 

3.2 DREAM algorithm 

 

    In the Bayesian approach, the model parameters, in the form 

of posterior probability, can be derived from prior knowledge of 

the model, the experimental data and the statistical model by 

which the observed data are theoretically modeled. This process 

is like a learning procedure: from a weak knowledge about the 

model parameters (prior probability), we can gradually, by 

repeated experiments, refine our understanding about the model 

(posterior probability conditioned on the observed data). 

    The Bayesian problem cannot be solved analytically in MT, 

so it is necessary to use a sampling algorithm for the solution. 

Monte Carlo simulations (Metropolis et al., 1953) can be 

employed to generate random samples from posterior 

distribution, while the resulting probability is obtained from 

generated samples. Because the posterior is often a high-

dimensional distribution, it is necessary to use many sampling 

iterations to arrive at a sufficiently reliable summary statistics 

for the model parameters. 

    The Monte Carlo methods include a variety of algorithms, 

which use repeated random sampling in order to estimate the 

target distribution. Since the blind random Monte Carlo 

sampling is ineffective for high-dimensional problems, Monte 

Carlo Markov Chain methods (MCMC) were introduced 

(Hastings, 1970). These methods relay on a Markov chain, 

which randomly moves through the parameter space and visits, 
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in turn, the individual solutions with a stable frequency. MCMC 

methods can also employ several chains, which search through 

the space simultaneously. 

    I choose the MT-DREAM(ZS) algorithm (Laloy and Vrugt, 

2012) in Matlab environment to drive my stochastic inversion 

procedure. The underlying adaptive MCMC sampling algorithm 

was specially designed to explore high-dimensional 

distributions. It runs multiple chains in parallel and combines a 

multi-try sampling (Liu et al. 2000) with sampling from an 

archive of past states (Vrugt et al. 2008) to accelerate the 

convergence to a limiting distribution. For assessing the 

convergence, the Gelman-Rubin statistic (Gelman and Rubin 

1992) is computed for the last 50% of the samples in each chain. 

Furthermore, the algorithm is fully parallelized and can be run 

on multiple processors. 

 

3.3 Experimental data 

 

    I took part in multiple MT field campaigns during the 

development of the inversion algorithm. After the data 

collection and processing, inversion by classical procedures and 

geologic interpretation, I selected four data sets to test the 

stochastic procedure: 

 

(1) eight MT stations from a 1 km long profile in W 

Bohemia near Kopanina village focused on the 

Mariánské-Lázně Fault 

(2) seven MT stations from ca. 13 km long profile in N 

Slovakia near Ľubovňa town focused on the Klippen 

Belt structure 

(3) twenty four MT stations within EMERES experiment 

from ca. 50 km long profile in W Bohemia focused on 

geodynamically active zone near Nový Kostel village 
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(4) four MT stations from larger geologically focused 

experiment in S Moravia, which exhibits anisotropic 

effects 

 

3.4 Evaluation of performance 

 

    I used multiple statistical parameters to assess the 

effectiveness and to estimate the uncertainty of the solution. As 

a basic tool for the uncertainty estimation of single parameters, 

marginal probabilities can be used. For the whole model, 

credibility intervals, at α%-level, are useful parameter interval 

estimates (here, α =90 is used in most cases). Because classical 

inverse models are judged according to their RMS (root mean 

square) error, I applied mean deviance along the stabilized 

section of the Markov chain of the stochastic procedure, which 

can provide similar information about the data misfit. 

 

4. Results and discussion 

 

    Overall, the developed algorithm gives satisfactory results. 

The DREAM code achieves very similar results compared to 

classic inversion procedures in case of 1D isotropic/anisotropic 

models, which are quite simple in terms of number of 

parameters (<100). A more interesting situation is in case of 2D 

models. 

 

4.1 2D isotropic synthetic example 

 

    For a 2D isotropic test, I generated a synthetic model with a 

conductor 1x1 km of 3 Ω.m and a non-conductor 1x1.5 km of 

1000 Ω.m. Both structures were embedded into a 300 Ω.m 

halfspace, which was covered by  a 1 km thick layer of 100 Ω.m. 

Total number of parameters was 286 (Fig. 1). 
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Fig. 1. Synthetic model for 2D isotropic test with conductor (A), 

non-conductor (B) and top most layer with lower resistivity (C). 

 

    The DREAM algorithm was employed to invert for the 

resistivities in the model cells. A priori, the lower and upper 

bounds for the resistivity were chosen 10-0.5 Ω.m and 104 Ω.m, 

respectively, and a structural prior on minimum roughness was 

implemented. For the chain, 30,000 simulations were carried 

out. Fig. 2 shows models derived from the minimum (A) and 

maximum (B) bounds of the 90% credibility interval. The mean 

deviance over the final half of the chains, as a measure of the 

data vs. model fit, is reaching 0.79, which is very similar to the 

result of the classical inversion (RMS 0.72 by NLCG inversion 

by Pek et al., 2012). The difference between both models (A, B) 

is very small, indicating narrow parameter histograms and a 

relatively low uncertainty of the solution. 
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Fig. 2. Models from the minimum (A) and maximum (B) bounds 

of the 90% (equi-tailed) credibility interval. The conductor 

beneath stations 3 and 4 is resolved well, the same applies to the 

resistive feature under station 7. 

 

4.2 2D isotropic experimental example 

 

    Subsequently, I tested the DREAM algorithm on multiple 

experimental data sets (Kopanina, Lubovna, EMERES) within 

a 2D isotropic model setting. Various experience has been 

gained: some of the DREAM inversions were, in terms of the 

data fit, better than the classical inversion procedure, others not. 

    Satisfactory results were obtained for data collected along the 

profile close to Ľubovňa. The DREAM algorithm was applied 

to invert for the model resistivities, with a priori bounds set to 

10-0.5 Ω.m and 104 Ω.m, and with a structural prior on minimum 

roughness imposed. The total number of variable model 

parameters was 620. The results were summarized after 100,000 

simulation steps.  
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Fig. 3. Models constructed from the minimum (A) and 

maximum (B) bounds of the 90% credibility interval for the 

model resistivities. 

 

    Fig. 3. shows models constructed from the minimum (A) and 

maximum (B) bounds of the 90% credibility intervals for the 

model resistivities. The mean deviance of the data residuals is 

3.9, which is better than the RMS obtained by the NLCG 

classical algorithm (5.45), although both algorithms sense 

almost the same structures. Difference between the extreme 

models, A and B, is very small which implicates a low 

uncertainty of the obtained solution. 

 

4.3 2D anisotropic synthetic example 

 

    For a 2D anisotropic test, I used the same synthetic model as 

earlier in the 2D isotropic example (Fig. 1), except for a major 

change made in the anomalous conductor: now it exhibits 

uniaxial anisotropy with the principal resistivities of 3/300/3 

Ω.m and 30° azimuth of anisotropy. The total number of 

variable parameters was thus increased to 313. 

    The DREAM algorithm was applied to invert for the 

resistivities and anisotropy azimuths in the model cells, with a 

priori resistivity bounds of 10-0.5 Ω.m and 103 Ω.m, azimuth of 

anisotropy from -90° to 90°, and a structural prior on minimum 
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roughness imposed. The results were summarized after 100,000 

simulations. 

 

 
Fig. 4. Models derived from the minimum (A) and maximum 

(B) bounds of the 90% credibility intervals for the model 

resistivities. 

 

    Fig. 4 shows models constructed from the minimum (A) and 

maximum (B) bounds of the 90% credibility intervals for the 

individual model cell resistivities/azimuths. The mean deviance 

of the residuals is 1.02, which is very similar to the result of the 

classical inversion (RMS 1.04). The higher uncertainty of the 
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parameters is observed only in the anisotropic domain of the 

model. 

 

4.4 2D anisotropic experimental example 

 

    I used MT data from the profile in S Moravia to test the 2D 

anisotropic inverse procedure. Four stations on this profile 

exhibit out-of-quadrant phases and large splits between the 

resistivity curves, which may imply structures with strong 

anisotropy. 

    The DREAM algorithm was employed to invert for the model 

resistivities, with a priori resistivity limits of 10-0.5 Ω.m and 104 

Ω.m, azimuth of anisotropy from -90° to 90°, and prior 

structural constraint on minimum roughness considered. The 

results were summarized after 80,000 MCMC simulations. The 

total number of variable parameters was 590 in this case. 

 

 
Fig. 5. Models constructed from the minimum (A) and 

maximum (B) bounds of the 90% credibility intervals for the 

resistivities in the model cells. 
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    Fig. 5 shows models derived from the minimum (A) and 

maximum (B) bounds of the 90% credibility intervals for the 

resistivities in the model cells. The mean deviance along the 

chain is reaching 2.32, which is far better than the RMS obtained 

by the classical inversion (4.42).  Difference between the min. 

and max. models A and B is low in isotropic parts of the model 

and is increasing the in anisotropic domain. Even so, the 

difference between the extremal models is quite low, and so is 

the uncertainty of the final solution. 

 

5. Conclusions 
 

    The developed stochastic algorithm gives overall satisfactory 

results. The examples dealing with isotropic models are fully 

comparable with the classical inversion procedures, and, 

furthermore, they offer estimates of the uncertainty of the 

solution. 

    The real strength of the algorithm is in case of anisotropic 

models. While, in this case, classical inversion procedures often 

fail due to large number of local minima and high uncertainty of 

anisotropic parameters, the stochastic algorithm thoroughly 

searches the solution space, maps possible solutions and 

provides estimates of the parameters’ uncertainty. The 

computational costs of the stochastic algorithm are high: several 

days compared to hours for classical inversion procedures, but 

the obtained solutions are substantially more complete. 

    The developed algorithm is well suited for small models with 

anisotropic structures. It can be used also for isotropic examples, 

but only for models containing first hundreds of parameters, 

because time efforts for computing larger models is too great to 

be useful. 
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