
Charles University in Prague

Faculty of Mathematics and Physics

MASTER THESIS
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Chapter I

Introduction

It was a breaktrough both in algebra and in topology when Marshall Stone published in
1936 his paper “The Theory of Representation of Boolean Algebras” [14]. In this article the
author presented a structural isomorphism between Boolean algebras and a certain class
of topological spaces. Futhermore, the spaces we encounter there, unlike those typically
studied before, were not motivated by geometry (subsets of Euclidean spaces and spaces
from analysis, and similar) but arised from algebraic structures [9].

Frames (locales), the basic structure of point–free topology are a natural generalization
of the concept of a topological space. This generalization is based on the properties of
the lattices of open sets of topological spaces (and typically contains all the information
one needs). The results in thus extended context often bring new insight into the classical
facts. In contrast with the choice dependence of many of them, a large part of the theory of
frames can be treated constructively. This phenomenon is aptly expressed by the famous
slogan in Banaschewski’s [1]:

Choice–free localic argument + suitable choice principle =
classical result in spaces.

(It should be noted, however, that there are numerous results going far beyond the classical
context.)

In this thesis we present the Stone representation theorem, generally known as Stone
duality in the point–free context. The proof is choice–free, and the Banaschewski’s slogan
is valid again: using the Boolean Ultrafilter Theorem we then can derive the classical
spatial Stone duality. Not surprisingly, the Stone duality (to be more precise, equivalence)
is by far simpler than the original. The fact that we do not have to be concerned with
points helps a lot.

The point–free approach allows us to analyze easily some particular parts of the Stone
duality. For each infinite cardinal κ we show that the counterpart of the κ–complete
Boolean algebras is constituted by the κ–basically disconnected Stone frames. We also
present a precise characterization of the morphisms which correspond to the κ–complete
Boolean homomorphisms.
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Booleanization is the construction of a Boolean algebra from a Heyting algebra by
taking the set of elements of the form a = a∗∗ (for a topological space the Booleanization of
its frame of open sets is the system of all regular open subsets; it forms a complete Boolean
algebra). In point–free topology it has a useful and somewhat surprising property: it is the
smallest dense sublocale of the original frame [8]. This fact has no counterpart in classical
topology.

Analogously with the Stone duality for topological spaces, the frames corresponding to
the complete Boolean algebras are precisely the extremally disconnected Stone frames.
Hence we obtain a proper class of variants of disconnectedness in between the zero-
dimensionality and the extremal disconnectedness. Note that although the Booleanization
is not functorial in general, in this part of the duality it is, and constitutes an equivalence
of the parts in question.

We finish the thesis by focusing on the De Morgan (or extremally disconnected) frames
and present a new characterization of these. Let us call a dense sublocale S of a frame
L superdense if the Čech–Stone compactifications of S and L are isomorphic. Now, a
completely regular frame L is De Morgan if and only if each dense sublocale of L is
superdense. We also show that in contrast with this phenomenon, a metrizable frame has no
non-trivial superdense sublocale; in other words, a non-trivial Čech–Stone compactification
of a metrizable frame is never metrizable.

Organization of the thesis

In Chapter II we present the necessary facts from order theory, category theory and
topology which we will need in the subsequent chapters. In Chapter III several discon-
nectedness properties and the Čech–Stone compactification are discussed. In Chapter IV
we present the Stone duality in both the point–free and the space setting. Chapter V
is devoted to particular parts (fragments) of the Stone duality. In Chapter VI we show
that Booleanization is an equivalence of the“complete parts” of the Stone duality. Finally,
in Chapter VII we present a new characterization of De Morgan frames and prove the
non-metrizability of non-trivial Čech–Stone compactification.

Acknowledgement
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text (although, all remaining errors are mine), and for helping with some of the proofs, in
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I would also like to thank my family for their support and my colleagues for creating
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Chapter II

Preliminaries

In this chapter we present a summary of all relevant and well–known facts to point–free
topology which we will need in the following chapters.

We assume the reader has a basic knowledge of set theory, mainly that he knows
basic facts about cardinal numbers, cardinalities and Axiom of Choice. We refer to the
monograph Frames and Locales written by Pultr and Picado [13] as an introduction to
point–free topology.

A few comments on notation

For sets X, Y and a mapping f : X → Y , denote f [S] = { f(s) | s ∈ S } and f−1[M ] =
{ x ∈ X | f(x) ∈M } for any subsets S ⊆ X and M ⊆ Y . [0, 1] is the closed interval of
real numbers greater than or equal to 0 and less than or equal to 1, similarly, [0,∞) is the
set of all non-negative real numbers, and Q is the set of all rational numbers.

We will often denote a mathematical structure, such as lattice, topological space, frame
etc., by the same symbol we use for its underlying set. In expressions, the rightmost unary
operation is applied first. For example ↓

∨
i a
∗
i is the same as ↓ (

∨
i(a
∗
i )).

The propositions which rely on Axiom of Choice or Boolean Ultrafilter Theorem are
marked by (?).

1. Partially ordered set

1.1. Let A be a set and let ≤ be a binary relation on A ((≤) ⊆ A × A). We say that
(A,≤) is a partially ordered set if the relation ≤ is partial order, i.e. satisfies:

(P1) reflexivity: a ≤ a for all a ∈ A,

(P2) antisymmetry: a ≤ b and b ≤ a implies a = b for all a, b ∈ A,

(P3) transitivity: a ≤ b and b ≤ c implies a ≤ c for all a, b, c ∈ A.
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A partially ordered set (A,≤) is said to be with 1 or with the top (resp. with 0 or with
the bottom) if 1 ∈ A (resp. 0 ∈ A) and 1 ≥ a (resp. 0 ≤ a) for all a ∈ A. A partially
ordered set is said to be bounded if it is both with 0 and with 1. Denote by (A,≤)op the
partially ordered set (A,≤′) where (≤′) = { (b, a) ∈ A× A | a ≤ b }.

Let S be a subset of A. We say that u is an upper bound of S if u ≥ x for all x ∈ S.
We say that s is a supremum of S, and we write s =

∨
S, if s is the least upper bound of

S. We say that l is an lower bound or an infimum if l is an upper bound or the supremum
of S in Aop.

A partially ordered set (A,≤) is join–semilattice if every two element subset has a
supremum. Similarly, meet–semilattice has an infimum for every two element subset. A
lattice is partially ordered set which is both join– and meet–semilattice. We write a∨ b for
the supreum (the meet) of {a, b} and a ∧ b for the infimum (the join).

A mapping f : A→ B between two partially ordered sets is called monotone if f(x) ≤
f(y) wherever x ≤ y. If, moreover, A and B are lattices and f(x ∨ y) = f(x) ∨ f(y) and
f(x ∧ y) = f(x) ∧ f(y) for all x, y ∈ A, we say that f is a lattice homomorphism.

1.2. A lattice is called a complete lattice if each of its subsets has an infimum and a
supremum.

Proposition. For a lattice L are the following conditions equivalent:

• L is a complete lattice;

• every subset of L has a supremum;

• every subset of L has an infimum.

For a complete lattice we therefore have two infinitary operations the meet
∨

and the
join

∧
. Note that every complete lattice is bounded, 0 =

∨
∅ =

∧
L and 1 =

∧
∅ =

∨
L.

A lattice homomorphism f : A→ B between two complete lattices is a complete lattice
homomorphism if f(

∨
X) =

∨
f [X] and f(

∧
X) =

∧
f [X] for each subset X ⊆ A.

1.3. A lattice D is distributive if the following equation holds for all a, b, c ∈ D:

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c).

Proposition. For a lattice L, the following conditions are equivalent:

• L is a distributive lattice,

• a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) for all a, b, c ∈ L,

• For each a, b, c ∈ L there exists at most one x ∈ L such that

a ∨ x = b

a ∧ x = c.
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1.4. Let A and B be two partially ordered sets. Monotone mappings f : A → B and
g : B → A are in Galois connection or are Galois adjoint if

f(x) ≤ y iff x ≤ g(y) for all x ∈ A, y ∈ B.

Or equivalently

fg(y) ≤ y and x ≤ gf(y) for all x ∈ A, y ∈ B.

Then, we say that f is a left Galois adjoint of g and g is a right Galois adjoint of f .
For a monotone map f , its left or right Galois adjoint do not need to exists but if it does,
it is uniquely determined. We will write f ∗ for the right adjoint and f∗ for the left adjoint.

For two monotone maps in Galois connection f, g we have that

fgf = f and gfg = g.

Proposition. For a monotone map f : A → B, if f is a left (resp. right) Galois adjoint
then f preserves all existing suprema (resp. infima).

Moreover, the converse implication also holds if A and B are complete lattices.

1.5. Let L be a lattice with 0. A pseudocomplement a∗ of an element a ∈ L is the greatest
element x such that

x ∧ a = 0.

Equivalently, a∗ is the pseudocomplement of a if

x ∧ a = 0 iff x ≤ a∗ for all x ∈ L.

A lattice is called pseudocomplemented if every element has a pseudocomplement. Pseu-
docomplements, if they exist, satisfy the following properties:

1. a ≤ a∗∗,

2. a∗ = a∗∗∗,

3. a ≤ b implies a∗ ≥ b∗,

4. (a ∧ b)∗∗ = a∗∗ ∧ b∗∗.

1.6. Let L be a meet semilattice with 0 and with a binary operation →. Then L is said
to be a Heyting algebra if the following holds

a ∧ x ≤ b iff a ≤ x→ b for all a, b, x ∈ L.

Note that each Heyting algebra is pseudocomplemented semilattice with pseudocom-
plements defined

a∗ = a→ 0.

From the definition we see that the operation x → (−) is the right Galois adjoint to
(−) ∧ x. Therefore, each meet semilattice admits at most one Heyting operation.
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Proposition. Let H be pseudocomplemented, in particular a Heyting algebra. Then

(
∨
i

ai)
∗ =

∧
i

a∗i

holds whenever
∨
i ai exists in H.

Proposition. A complete lattice admits a Heyting operation iff the following equation
holds

(
∨
i

ai) ∧ b =
∨
i

(ai ∧ b) for all ai, b.

1.7. Let B be a bounded distributive lattice. We say that B is a Boolean algebra if for
every element a ∈ B there exists a (complement) ac ∈ B such that

a ∨ ac = 1 and a ∧ ac = 0.

Since B is a distributive lattice, such ac is uniquely determined. Each Boolean algebra
is a Heyting algebra with the Heyting operation defined as follows

a→ b = ac ∨ b.

Hence, it is also a pseudocomplemented lattice with pseudocomplements equal to comple-
ments.

Let f be a lattice homomorphism between two Boolean algebras. f is said to be a
Boolean homomorphisms if f preserves 0 and 1. The following equations holds for any
Boolean algebra

(
∨
i

ai)
c =

∧
i

aci resp. (
∧
i

ai)
c =

∨
i

aci ,

whenever
∨
i ai resp.

∧
i ai exists.

1.8. Let L be a bounded distributive lattice. Then a subset F ⊆ L is a filter if

(F1) 0 6∈ F and 1 ∈ F ,

(F2) a ∈ F and a ≤ b ∈ L implies b ∈ F , and

(F3) a, b ∈ F implies a ∧ b ∈ F .

Similarly, an ideal is a subset I ⊆ L such that

(I1) 1 6∈ I and 0 ∈ I,

(I2) a ∈ I and a ≥ b ∈ L implies b ∈ I, and

(I3) a, b ∈ I implies a ∨ b ∈ I.
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A filter F ⊆ L is called prime filter if a ∨ b ∈ F implies a ∈ F or b ∈ F . F is called
completely prime filter if

∨
A ∈ F implies a ∈ F for some a ∈ A. A principal filter is any

filter of L of the form ↑a = { x | x ≥ a }.
Similarly, an ideal I is called prime ideal, completely prime ideal or principal ideal if I

is a prime filter, completely prime filter or principal filter of Lop. Principal ideals will be
denoted by ↓a = { x | x ≤ a }.

Proposition. Let B be a Boolean algebra and a filter F ⊆ B. Then the following are
equivalent

• F is a maximal filter,

• F is a prime filter.

• For every b ∈ B, either b ∈ F or bc ∈ F .

From the Proposition we see that the definition of a maximal filter and a prime filter
coincide for Boolean algebras, hence we call such filter ultrafilter .

1.9. Axiom of Choice will be mostly used in its equivalent form – Zorn’s Lemma:

(AC) Let X be a non-empty partially ordered set such that every non-empty
chain has an upper bound. Then X has at least one maximal element.

By Boolean Ultrafilter Theorem we mean the following choice principle

(BUT) Let B be a Boolean algebra and let F be a filter of B. Then there
exists a ultrafilter extending F .

This is equivalent to

(BUT’) Let B be a Boolean algebra and let F be a filter and let I be an ideal
of B such that F ∩ I = ∅. Then there exists a prime filter G extending
F such that still G ∩ I = ∅.

Finally, the last choice principle we will need to know is Axiom of Countable Dependent
Choice

(CDC) Let R be a binary relation on a set X such that for every a ∈ X there
exists b ∈ X satisfying aRb. Then there exist a countable sequence
(ai)

∞
i=1 such that aiRai+1 for all i = 1, 2, . . . .

Axiom of Choice is stronger than Boolean Ultrafilter Theorem or Axiom of Countable
Dependent Choice; it logically implies both of them.
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2. Category theory

2.1. A category C is a class of objects (obj C), a class of morphisms (morph C) and two
mappings dom, codom: morph C → obj C (domain and codomain) satisfying conditions
(C1)–(C3) bellow.

Notation: For a morphism f ∈ morph C, we write f : A → B or A
f→ B whenever we

want to express the fact that A = dom(f) and B = codom(f).

(C1) Let f : A → B, g : B → C be two morphisms of C. Then there exists their composi-
tion, the morphism g · f : A→ C.

(C2) The composition satisfies the associativity law : (f · g) · h = f · (g · h) whenever the
compositions are defined.

(C3) For each object A ∈ obj C there exists an identity morphism 1A satisfying 1A · f = f
and g · 1A = g whenever the compositions are defined.

We say that a category is small if morph C is a set. A dual category Cop of a category
C is the category with the same class of objects as C has and with all morphisms of C
reversed, i.e. for each morphism f : A → B ∈ morph C, f̂ : B → A is a morphism of Cop.
The composition � of Cop is defined as

f̂ � ĝ = ĝ · f.

To simplify the notation, we will write fg instead of f · g, A ∈ C instead of A ∈ obj C
and similarly for morph, whenever there is no danger of confusion.

Examples. The most natural example of a category is the category Set of all sets, all
maps between them and composition defined as map composition.

An important example is the category Bool of all Boolean algeras and all Boolean
homomorphisms. Also, an arbitrary partially ordered set (X,≤) is a category with the
set X as objects and one morphism between x, y ∈ X whenever x ≤ y (composition holds
thanks to transitivity of ≤).

Observe that the dual category of (X,≤) is precisely the category (X,≤)op.

2.2. A morphism f is a monomorphism whenever fg = fh implies g = h. Analogously, f
is an epimorphism if gf = hf implies g = h. Finally, f is an isomorphism if there exists a
f−1 such that

f · f−1 = 1 and f−1 · f = 1.

If fg = 1, then f is an epimorphism and g is a monomorphism.

2.3. For categories C,D the mappings F : obj C → objD and F : morph C → morphD
constitute a (covariant) functor if

F (f) : F (A)→ F (B) for any f : A→ B ∈ morph C,
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F (1A) = 1F (A) for any A ∈ obj C, and F (gh) = F (g)F (h).

Similarly, we say that F is a contravariant functor if

F (f) : F (B)→ F (A) for any f : A→ B ∈ morph C,

F (1A) = 1F (A) for any A ∈ obj C, and F (gh) = F (h)F (g).

It is sometimes possible to think of the contravariant functor as of the functor of the
form F : C → Dop. The composition of functors F : C → D and G : D → E is denoted by
G ◦ F : C → E or simply GF .

Examples. Let C be a category. The identity functor on C is defined by the mappings

IdC(A) = A : obj C → obj C, and IdC(f) = f : morph C → morph C.

Let D be a non-empty category and let T be an object of D. Then the constant functor
is defined as follows

K(A) = T and K(f) = 1T for all A, f ∈ C.

2.4. Let F,G : C → D be two functors. A collection of morphisms m = (mA)A∈obj C is a
natural transformation between F and G, m : F

•−→ G, if

mA : F (A)→ G(A), for all A ∈ obj C,

and the following diagram commutes

F (A) G(A)

F (B) G(B)

mA

F (f) G(f)

mB

for all f : A→ B, morphisms of C.
If a natural transformation m is a collection of isomorphism, we say that m is a natural

equivalence. For two functors F and G, if there exists a natural equivalence m : F
•−→ G,

we say that F and G are naturally equivalent and write F ∼= G.

Example. For a functor F : C → D, the collection of morphisms (1F (A))A∈C is an identity

natural transformation F
•−→ F .

2.5. A limit of a diagram D in the category C (that is, of a functor D : D → C for a small
category D) is a constant functor L : D → C and a natural transformation l : L

•−→ D
satisfying universal property.

In other words, l is such that for any constant functor K : D → C and a natural
transformation k : K

•−→ D there exists an unique natural transformation k̃ : K
•−→ L

such that the following diagram commutes

10



L D

K

l

k̃
k

(in the category [D, C] of all functors from D to C and natural transformations as mor-
phisms). From the definition, we see that limits are determined uniquely up to isomor-
phisms.

A colimit is defined dually to limit. A colimit of a diagram is a constant functor
L : D → C and a natural transformation l : D

•−→ L such that for any constant functor
K : D → C and a natural transformation k : D

•−→ K there exists an unique natural
transformation k̃ : L

•−→ K satisfying k = k̃ l.
A category is said to be (co)complete if there is a (co)limit for every diagram.

Examples. A well–known example of a limit in Set is the (cartesian) product of sets∏
i∈I Xi together with projections (

∏
i∈I Xi → Xj)j∈I .

Similarly, a natural example of colimit in Set is the coproduct, the disjoint union, of
sets

∐
i∈I Xi together with injections (Xj →

∐
i∈I Xi)j∈I .

2.6. Functors F : C → D and G : D → C are adjoint (with F on the left and G on the
right) if there exist units of adjuction, that is, natural transformations (the unit and the
counit)

λ : FG
•−→ IdD and ρ : IdC

•−→ GF,

such that the following compositions of natural transformations

F
Fρ−−−→ FGF

λF−−−→ F and G
ρG−−→ GFG

Gλ−−−→ G

are equal to identity natural transformations on F and on G, or more precisely: F (ρA) ·
λF (A) = 1F (A) and ρG(B) ·G(λB) = 1F (B) for all A ∈ C and B ∈ D.

Proposition. Right adjoinits preserve limits and left adjoinits preserve colimits.

Two categories C,D are said to be equivalent , and we write C ∼= D, if there exists
adjoint functors F : C → D and G : D → C with units of adjunction consisting of natural
equivalences.

2.7. A category C is said to be subcategory of a category D if obj C ⊆ objD, morph C ⊆
morphD and the composition of morphisms in C coincide with that in D. Further, if
{ f | f : A→ B ∈ C } = { f | f : A→ B ∈ D } for every A,B ∈ obj C, we say that C is a
full subcategory of D.

A full subcategory C of a category D is reflexive (or coreflexive) if the embedding

functor J : C ⊆−−→ D is a right (or left) adjoint.

Example. The category Bool is reflexive subcategory of the category of bounded dis-
tributive lattices and lattice homomorphisms.

11



Proposition. Each reflexive subcategory of a (co)complete category is (co)complete. Sim-
ilarly for coreflexive categories.

3. Topology and point–free topology

3.1. Let X be a set and τ an arbitrary set of subsets of X. Then the pair (X, τ) is a
topological space if

(T1) ∅, X ∈ τ ,

(T2) M⊆ τ implies
⋃
M∈ τ , and

(T3) for U, V ∈ τ , also U ∩ V ∈ τ .

A subset of X which is an elements of τ is called open and the complement of an open
set is called closed. A subset of X is said to be clopen if it is both open and closed. The
closure of a set is the least closed set containing it.

Let (X, τ), (Y, σ) be topological spaces. A mapping f : X → Y is said to be continuous
(with respect to τ and σ) if

f−1[U ] ∈ τ, for all U ∈ σ.

Denote by Top the category of all topological spaces and continuous mappings. Isomor-
phisms of Top are called homeomorphisms.

As we see from the conditions (T1)–(T3), the set τ ordered by inclusion is a complete
lattice. Moreover, we have (

⋃
i Ui) ∩ V =

⋃
i(Ui ∩ V ) for Ui, V ∈ τ . Therefore, we can

generalize the notion of topological space:
Let L be a complete lattice. We say that L is a frame if

(
∨

A) ∧ b =
∨
a∈A

(a ∧ b)

for any A ⊆ L and b ∈ L. We see that frames are just complete Heyting algebras and,
consequently, pseudocomplemented lattices. The pseudocomplements are given by the
formula

a∗ =
∨
{ x | x ∧ a = 0 } .

For an open set of a space, taking pseudocomplements in the corresponding frame of open
sets is the same as taking the interior of the complement.

Let L and M be frames and f : L → M a monotone map. f is said to be a frame
homomorphism if f preserves all joins, finite meets, the top and the bottom (1 and 0).
Denote by Frm the resulting category of all frames and frame homomorphisms.

We have the obvious (contravariant) functor Ω: Top→ Frm

Ω(X, τ) = τ and Ω(f) : U 7→ f−1[U ],

12



for (X, τ), f ∈ Top.
Since a frame homomorphism f preserves suprema it has a right adjoint f ∗. It is called

a localic map. The category of frames (in this context called locales) and localic maps will
be called Loc. Trivially Loc ∼= Frmop.

Again, we have a functor Lc: Top→ Loc (covariant this time)

Lc(X, τ) = τ and Lc(f) = Ω(f)∗.

3.2. Separation axioms. For a topological space (X, τ), we say that it is

T0: if for every two distinct points x, y ∈ X there exist an open U ∈ τ such that x ∈ U 63 y
or x 6∈ U 3 y.

T1: if for every two distinct points x, y ∈ X there exist an open U ∈ τ such that x ∈ U 63
y.

T2: if for every two distinct points x, y ∈ X there exist disjoint open sets U, V ∈ τ
separating x and y, i.e. x ∈ U 63 y and x 6∈ V 3 y.

T3: if for each point x ∈ X and each closed F ⊆ X such that x /∈ F there exist disjoint
open sets separating x and F .

T3.5: if for each point x ∈ X and each closed F ⊆ X such that x /∈ F there exist a
continuous function f : X → [0, 1] separating x and F , i.e. f(x) = 0 and f [F ] ⊆ {1}.

T4: if for every two disjoin closed subsets of X there exist two disjoint open sets separating
them, or equivalently, there exists a continuous function separating them.

We see that

T4 & T1 =⇒ T3.5 & T0 =⇒ T3 & T0 =⇒ T2 =⇒ T1 =⇒ T0.

Topological spaces satisfying T2, T3 and T0, T3.5 and T0, or (just) T4 are called, in this
order, Hausdorff, regular, completely regular, or normal. The condition T3 is equivalent to
the condition

U =
⋃{

V ⊆ X
∣∣ V ⊆ U

}
, for all open U ∈ τ.

Observe that V ⊆ U if and only if V ∗ ∪ U = X in the frame Ω(X). Define,

a ≺ b
def≡ a∗ ∨ b = 1,

A frame L is said to be regular if

a =
∨
{ x | x ≺ a } ,

13



for all a ∈ L. Then, a space X is regular if and only if the frame Ω(X) is regular.
Analogously for complete regularity, define

a ≺≺ b
def≡ there exists ai ∈ L, for all i ∈ Q ∩ [0, 1], such that

a0 = a, a1 = b and ai ≺ aj whenever i < j.

Then, a frame L is completely regular if

a =
∨
{ x | x ≺≺ a } ,

for all a ∈ L. Again, a space X is completely regular if and only if the frame Ω(X) is.
Finally, a frame is said to be normal if

a ∨ b = 1 =⇒ ∃c such that a ∨ c = 1 and c∗ ∨ b = 1.

Similarly as in topological spaces we have that any normal and regular frame is completely
regular.

(Proof. For x ≺ y, the x∗ ∨ y = 1 holds, from normality there exists a q,
such that x∗ ∨ q = 1 and q∗ ∨ y = 1, thus x ≺ q ≺ y. Hence, by (CDC):
{ x | x ≺ b } = { x | x ≺≺ b } )

Observation. Let C ∈ {≺,≺≺}. Then

1. a′ ≤ aC b ≤ b implies a′ C b′,

2. a1 C b1 and a2 C b2 implies a1 ∧ a2 C b1 ∧ b2 and a1 ∨ a2 C b1 ∨ b2, and

3. aC b implies b∗ C a∗.

3.3. For a topological space X, a continuous map i : {?} → X is identified with a point
of X. For each such map, we have the associated frame homomorphism Ω(i) : ΩX → 2,
where 2 is the frame Ω({?}) = {0 < 1}. Therefore, it is convenient to define a point of a
frame L as a frame homomorphism L→ 2.

Note that every frame homomorphism p : L → 2 determines a completely prime filter
(as p−1[{1}]), and vice versa. The completely prime filters in topological spaces represents
the neighbourhoods of points.

Another way of defining points of a frame is by prime elements. An element p 6= 1 is
prime or meet–irreducible if a ∧ b ≤ p implies a ≤ p or b ≤ p. Then, the frame homomor-
phisms p : L→ 2 are in one-one correspondence with prime elements (as

∨
p−1[{0}]). The

prime elements of topological space corresponds to the open sets X \ {x}.
A frame L is said to be spatial or has enough points if L = Ω(X) for some space X.

Proposition. A frame is spatial iff each of its elements is a meet of prime elements.

14



3.4. A subspace (Y ⊆ X, τ
∣∣
Y

) of a topological space (X, τ) (where τ
∣∣
Y

= { Y ∩ U | U ∈ τ })
determines the one-one inclusion (and continuous) mappings j : Y ⊆ X. The associated
localic map Lc(j) : Lc(Y ) ⊆ Lc(X) is one-one and its adjoint is an onto frame homomor-
phisms Ω(j) : Ω(X)→ Ω(Y ).

For a locale L and a subset S ⊆ L, S is said to be a sublocale of L if the inclusion
(one-one) mapping j : S ⊆ L is a localic map and, for s, t ∈ S, s ≤ t whenever j(s) ≤ j(t).
Or equivalently, there exists an onto frame homomorphisms j∗ : L→ S.

One has an another useful characterisation of sublocales. Let L be a frame, a subset
S ⊆ L is sublocale if and only if

(S1) S is closed under all meets, and

(S2) x→ s ∈ S for each s ∈ S and x ∈ L.

Denote by Sl(L) the set of all sublocales of L. Then, Sl(L) ordered by inclusion is a
co-frame (in other words, Sl(L)op is a frame). The empty sublocale O = {1} is the least
sublocale and L is the greatest.

3.5. A sublocale is said to be open resp. closed if it is of the form

o(a) = { a→ x | x ∈ L } resp. c(a) = ↑a,

for some a. A sublocale which is both open and closed is called clopen. An inspiration for
this definition comes naturally from topological spaces. For a topological space (X, τ) and
an open subset U ∈ τ , we have the inclusion mapping

j : (U, { V ∈ τ | V ⊆ U })→ (X, τ)

and an onto frame homomorphisms Ω(j) : V 7→ V ∩ U . Hence, we have the formula

Lc(j) : V 7→ U → V,

for the associated localic embedding, the right adjoint to Ω(j). The sublocales c(a) and
o(a) are mutually complemented in Sl(L) (c(a)∨o(a) = L and c(a)∧o(a) = O). Moreover,
we have ∨

i

o(ai) = o(
∨
i

ai), o(a) ∧ o(b) = o(a ∧ b),∧
i

c(ai) = c(
∨
i

ai), and c(a) ∨ c(b) = c(a ∧ b).

For a sublocale S ⊆ L, its closure, the least closed sublocale containing S, is given by
the formula

S = ↑(
∧

S).

From that, we immediately see that a sublocale S ⊆ L is dense (that is, S = L) iff 0L ∈ S.

The closure of sublocales satisfies the familiar properties: S ⊆ S, O = O, S = S and
S ∨ T = S ∨ T ; and also o(a) = c(a∗).
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Proposition. Preimage of a closed (resp. open) sublocale under a localic map f is closed
(resp. open). Moreover,

f−1[c(a)] = c(f∗(a)) and f−1[o(a)] = o(f∗(a)),

where f∗ is the left Galois adjoint to f .

3.6. Nuclei. Let L be a frame. A nucleus ν on L is a monotone map ν : L→ L satisfying
the following four properties:

(N1) a ≤ ν(a),

(N2) a ≤ b implies ν(a) ≤ ν(b),

(N3) νν(a) = ν(a), and

(N4) ν(a ∧ b) = ν(a) ∧ ν(b).

For a frame L and a nucleus ν : L→ L, set S = ν(L). The set S, together with suprema
and infima defined ⊔

ai = ν(
∨

ai) and a u b = a ∧ b,

is a sublocale of L. Indeed, from (N4), we know that u is the infimum and, from (N2), we
know that

⊔
is the supremum. Moreover, we have

(
⊔

ai) u b = ν(
∨

ai) ∧ ν(b) = ν(
∨

(ai ∧ b)) =
⊔

(ai u b).

Hence ν(L) is a frame, we will show that the monotone map defined as (ν̄ : a 7→ ν(a)) : L→
ν(L) is an onto frame homomorphism. Then, we know that ν(L) is a sublocale of L. It is
enough to show that

ν(
∨

ai) = ν(
∨

ν(ai)) (=
⊔

ν(ai)).

We have
∨
ai ≤

∨
ν(ai) by (N1) and ν(

∨
ai) ≤ ν(

∨
ν(ai)) by (N2). On the other hand

ν(ai) ≤ ν(
∨
ai) by (N2). Hence

∨
ν(ai) ≤ ν(

∨
ai) and ν(

∨
ν(ai)) ≤ νν(

∨
ai) = ν(

∨
ai)

by (N2) and (N3).
Thus, nuclei deteremine sublocales. One has more, there is an one-one correspondence

between nuclei and sublocales.
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Chapter III

Connectedness and compactification

Compactness, connectedness and variants of disconnectedness are standard properties
of topological spaces. In this chapter, we will prove some well–known facts from Set
theoretical topology in the context of point–free topology.

1. Connectedness and variants of disconnectedness

1.1. Definition. We say that a frame L is disconnected if L contains non-trivial elements
a and b (that is, different from the top and the bottom of L) such that a ∨ b = 1 and
a ∧ b = 0. If a frame is not disconnected, we say that it is connected .

1.2. Observation. For a frame L, the following conditions are equivalent:

1. L is disconnected.

2. There exists a non-trivial (that is, other than O and L) sublocale that is both open
and closed.

3. There exists an one-one frame homomorphism f : B2→ L, where B2 is the Boolean
algebra on four elements.

1.3. Lemma. Let L be a frame. The following are equivalent:

1. Closure of each open sublocale of L is open.

2. For all a ∈ L: o(a) = o(a∗∗).

3. For all a ∈ L: a∗∗ ∨ a∗ = 1.

Proof. The implication from 2 to 1 is trivial. For the implication from 3 to 2, first observe
that

o(a∗∗) ∨ o(a∗) = o(a∗∗ ∨ a∗) = o(1) = L, and

o(a∗∗) ∧ o(a∗) = o(a∗∗ ∧ a∗) = o(0) = O.
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However, o(a∗) is complemented with c(a∗). In other words

c(a∗) ∨ o(a∗) = L, and

c(a∗) ∧ o(a∗) = O.

By distributivity of the frame of all all sublocales of L, o(a∗∗) = c(a∗) = o(a).
Finally, for the implication from 1 to 3: o(a) = c(a∗) = o(b) for some b ∈ L, hence

o(a∗ ∨ b) = o(a∗) ∨ o(b) = L, and

o(a∗ ∧ b) = o(a∗) ∧ o(b) = O.

Thus a∗ is complemented with b and b = a∗∗ from the uniqueness of complements.

1.4. Definition. A frame satisfying conditions 1, 2 and 3 from the previous Lemma is
called extremally disconnected or De Morgan.

A frame L is said to be zero–dimensional if every element is a join of complemented
elements.

1.5. Observation. 1. Any zero–dimensional frame is completely regular.

2. Any regular and extremally disconnected frame is zero–dimensional.

Proof. 1. For every complemented a, we have a ≺≺ a. Therefore by zero–dimensionality,

e =
∨
{ c | c ≤ e, c is complemented } ≤

∨
{ x | x ≺≺ e } ≤ e

for each e.

2. Note that x ≺ y implies x∗∗ ≺ y. Since x ≤ x∗∗ and every element of the form
x = x∗∗ is complemented in extremally disconnected frame, we obtain a frame is
zero–dimensional.

1.6. Note that in the classical terminology, a topological space is connected, disconnected,
zero–dimensional or extremally disconnected if and only if the frame of its open sets is
connected, disconnected, zero–dimensional or extremally disconnected.
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2. Compactness and compactification

2.1. Definition. A frame L is compact if for every cover , that is a subset C ⊆ L such
that

∨
C = 1, there exists a finite subcover (a finite F ⊆ C such that

∨
F = 1).

2.2. Proposition. If L is a compact regular frame then L is completely regular.

Proof. It suffices to check that L is normal. Then by the Proposition in II.3.2, L is also
completely regular. Let a, b ∈ L and let a ∨ b = 1. Then from regularity, we know that

a =
∨
{ x | x ≺ a } and b =

∨
{ y | y ≺ b } .

Set A = { x | x ≺ a } and B = { y | y ≺ b }. Since
∨
A ∨

∨
B = 1, by compactness,

there exists a finite F ⊆ A ∪ B, such that
∨
F = 1. From II.3.2, fa =

∨
(F ∩ A) ≺ a and

fb =
∨

(F ∩B) ≺ b. Further,

(fa ∧ f ∗b ) ∨ b = (fa ∨ fb) ∧ (f ∗b ∨ b) = (
∨

F ) ∧ 1 = 1.

By the same argument, (fb ∧ f ∗a ) ∨ a = 1. Further, (fb ∧ f ∗a ) ∧ (fa ∧ f ∗b ) = 0, therefore L is
normal.

2.3. The frame of ideals. Let L be a join–semilattice with 0. Denote by JL the set of
all ideals of L. We will show that JL ordered by inclusion is a frame. Set intersections of
ideals are again an ideal and hence (by II.1.2) JL is a complete lattice. For the suprema
we have the explicit formula.

Let Ii ∈ JL, for i ∈ J , and set∨
i∈J

Ii = {
∨

F | F is a finite subset of
⋃
i∈J

Ii } . (Idl-
∨

)

The set defined this way is again an ideal and it is the supremum of { Ii | i ∈ J }. Also,
for any ideals J and Ii of L, for i ∈ J , the following equality holds

(
∨
i

Ii) ∩ J =
∨
i

(Ii ∩ J).

The ⊇ inclusion is trivial, for the other inclusion take x ∈ J such that x =
∨
F for some

finite F ⊆
⋃
i Ii. Then F ⊆ J (as J is an ideal) and also F ⊆

⋃
i(Ii ∩ J). We get,

x ∈
∨
i(Ii ∩ J). Thus, JL is a frame.

Moreover, JL is a compact frame: Let Ii ∈ JL, for i ∈ J , such that
∨
i Ii = L = 1JL.

Then there exists a finite F ⊆
⋃
i Ii such that

∨
F = 1. Set i(f) ∈ J such that f ∈ Ii(f)

for all f ∈ F . Then also
∨
f∈F Ii(f) = 1JL. Therefore JL is a compact frame.

Conclusion. The set JL ordered by inclusion is a compact frame.
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2.4. Definition. We say a frame homomorphism f : L→M is dense if f(a) = 0 implies
a = 0.

We say a compact frame K together with a frame homomorphism c : K → L is the
(Čech–Stone) compactification of a frame L if c is dense and for every dense frame homo-
morphism d : K ′ → L, with K ′ compact regular, there exists an unique frame homomor-
phism d̃ : K → K such that the following diagram commutes

K L

K ′

c

d̃
d

2.5. Observation. If the Čech–Stone compactification exists, it is determined uniquely,
up to isomorphism.

The following construction is due to Banaschewski and Mulvey [2].

2.6. Regular ideals and a frame of regular ideals. Let L be a completely regular
frame. We say an ideal I is regular if for any a ∈ I there exists a b ∈ I such that a ≺≺ b.
Denote by RL the set of all regular ideals of L.

For two regular ideals I1, I2 ∈ RL, their set intersection is again a regular ideal. Indeed,
take any a ∈ I1 ∩ I2, then a ≺≺ bi for some bi ∈ Ii and a ≺≺ b1 ∧ b2 ∈ I1 ∩ I2 from II.3.2.

For any regular ideals J and Ii of L, for i ∈ J , from previous we know that
∨
i∈J Ii is

an ideal. We will show that it is a regular ideal. For a ∈
∨
i∈J Ii, by (Idl-

∨
), there exists

a finite F ⊆
⋃
i∈J Ii such that a =

∨
F . For every f ∈ F there exists an ef ∈ Ij, for some

j ∈ J , such that f ≺≺ ef . We see that
∨
f∈F ef ∈

∨
i∈J Ii and, from II.3.2,

∨
F ≺≺

∨
f∈F ef .

Hence, the set RL is a subframe of JL. Consequently, RL is compact.

2.7. For an a ∈ L, set
σL(a) = { x | x ≺≺ a } .

This set is a regular ideal. We will omit the subscript if the frame L is obvious.
The following property of σ will be expedient: σ(a) ≺ σ(b) for any a ≺≺ b.

(Proof. First, interpolate a ≺≺ x ≺≺ y ≺≺ b. By II.3.2, x∗ ≺≺ a∗ and x∗ ∈
σ(a∗) ⊆ σ(a)∗. Since y ∈ σ(b) and x∗∨y = 1, we have σ(a)∗∨σ(b) = 1RL. )

2.8. Proposition. RL is completely regular.

Proof. We will show that RL is regular, then it is also completely regular from Proposi-
tion 2.2 and from the fact that RL is compact. Given any I ∈ RL,

I =
⋃
{ σ(a) | a ∈ I } =

∨
{ σ(a) | a ∈ I } =

∨
{ σ(a) | a ≺≺ b ∈ I } .

We know that a ≺≺ b implies σ(a) ≺ σ(b) and we also know that b ∈ I implies σ(b) ⊆ I,
hence

I ⊆
∨
{ σ(a) | σ(a) ≺ σ(b) ⊆ I } ⊆

∨
{ σ(a) | σ(a) ≺ I } ⊆

∨
{K | K ≺ I } ⊆ I.
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2.9. The functor R. Now, we are ready to define a functor from the category of com-
pletely regular frames to the category of compact regular frames. Denote by

R : CRegFrm→ RegKFrm

the following two mappings. On objects:

R(A) = RA,

for every completely regular frame A, and on morphisms:

(Rf)(I) = ↓f [I],

for every morphism frame homomorphism f : L→M and I ∈ RL.
The set f [I] is obviously closed under finite meets, hence ↓f [I] is an ideal. From the

fact that a ≺≺ b implies f(a) ≺≺ f(b), we see that ↓f [I] is a regular ideal. Further, we
observe that

• Rf preserves joins:

(Rf)(
∨
i

Ii) = ↓f [{
∨

F | F a finite subset of
⋃
i

Ii }]

= ↓ {
∨

F | F a finite subset of
⋃
i

f [Ii] }

= {
∨

F | F a finite subset of
⋃
i

↓f [Ii] }

=
∨
i

(Rf)(Ii); and that

• Rf preserves finite meets:

(Rf)(I1 ∩ I2) = ↓f [I1 ∩ I2] ⊆ ↓f [I1] ∩ ↓f [I2] = (Rf)(I1) ∩ (Rf)(I2).

For x ∈ ↓f [I1]∩ ↓f [I2], there exists yi ∈ Ii, for i = 1, 2, such that f(y1) = f(y2) = x.
Since f is a frame homomorphism, f preserves finite meets, hence f(y1 ∧ y2) =
f(y1) ∧ f(y2) = x. We know that y1 ∧ y2 ∈ I1 ∩ I2, therefore x ∈ ↓f [I1 ∩ I2].

We obtain that Rf is a frame homomorphism. As a result, we have the following

Proposition. R is a functor.

2.10. For a completely regular frame L, define γL : RL→ L as follows:

γL : I 7→
∨

I.
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We see that

γLσ(a) = a and σγL(I) ⊆ I. (III.1)

Since both γL and σ are monotone maps, we see that they form a Galois ajdunction, with
γL to the left and σ to the right. Hence, γL preserves joins. It also preserves finite meets:∨
I1 ∧

∨
I2 =

∨
{ a1 ∧ a2 | ai ∈ Ii } ≤

∨
{ a | a ∈ I1 ∩ I2 } =

∨
(I1 ∩ I2) ≤

∨
I1 ∧

∨
I2.

Consequently, γL is a frame homomorphism and σ is a localic map. Observe that γL is
also dense:

∨
I = 0 implies I = {0}.

2.11. The following diagram commutes

RL L

RM M

γL

Rf f

γM

for any frame homomorphism f : L → M between completely regular frames (since (γM ·
Rf)(I) =

∨
(↓f [I]) =

∨
f [I] = f [

∨
I] = fγM(I)). Thus, γ : R •−→ Id is a natural

transformation

2.12. Lemma. If L is a compact regular frame, then γL is an isomorphism and L ∼= RL.

Proof. Let I be a regular ideal of L. We already know that σγL(I) ⊇ I. For x ∈ σγL(I),
we have x ≺≺

∨
I, hence x∗ ∨

∨
I = 1. By compactness of L, there exists a finite F ⊆ I

such that x∗ ∨
∨
F = 1. We see that

∨
F ∈ I and x ≺≺

∨
F , hence x belongs to I and

σγL(I) ⊆ I.
Regular ideals of L are precisely the ideals of the form σ(a). Thus, γL is an one-one

frame homomorphism and consequently γL is an isomorphism.

2.13. From the previous we obtain

Theorem. The functor R and the natural transformation γ provides a coreflection of the
category of completely regular frames onto the category of compact regular frames.

In other words, for a completely regular frame L, the mapping γL : RL → L is the
compactification of L.

2.14. Note that a topological space is compact if and only if the frame of its open sets is
compact.

2.15. As a consequence of Hofmann–Lawson’s Duality [7] (which depends on the Axiom
of Choice), we obtain

Theorem. The category of compact regular frames is equivalent to the dual of the category
of compact regular spaces.

In particular each regular compact frame is spatial. (?)
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3. Properties of compactification with respect to dis-

connectedness

3.1. Proposition. A completely regular frame is disconnected iff its Čech–Stone compact-
ification is disconnected.

Proof. For a completely regular frame L, if L is disconnected, then by 1.2 there exists
a one-one frame homomorphism f : B2 → L. From 2.13, we know that there exists an
extension, a frame homomorphism f̃ : B2 → RL, such that γLf̃ = f . Since f is one-one, f̃
is also one-one.

For converse, suppose RL is disconnected. There exists a non-trivial clopen sublocale
S of RL, and then S ∩ L is a non-trivial clopen sublocale of L.

For the clarity of proofs, when there is no danger of confusion, we will write just S

instead of S
RL

for the closure of a sublocale S ⊆ RL, whereas we will write S
L

for the
closure of S in L.

3.2. Lemma. Let S be a dense sublocale of L and let U ⊆ L be an open sublocale. Then

U ∩ SL = U
L

.

Proof. Let U = o(a), for some a. Then
∧

(o(a)∩S) =
∧
{ a→ s | s ∈ S } = a→

∧
S. We

have
∧
S = 0, since S is dense in L (and includes 0L). Hence U ∩ SL = ↑(

∧
(U ∩ S)) =

↑(a→ 0) = c(a∗) = U
L
.

3.3. Lemma. Let L be a completely regular frame and let M be a clopen sublocale of L.
Then the closure of M in RL is also clopen.

Proof. Let N be the complement sublocale of M in L. L is dense in RL, hence we have

M ∨N = M ∨N = M ∨NL
= L = RL.

Since M and N are complemented in L, there exists an onto localic map f : L → B2

such that
f [M ] ⊆ ↑a and f [N ] ⊆ ↑b,

where a and b are the two complemented elements of B2 different from 0 and 1. From

Theorem 2.13, we know that there exists a localic map f̃ : RL → B2 such that f̃
∣∣∣
M

= f .

Since localic maps preserve meets, we know that f [M ] ⊆ f [M ], hence

f̃ [M ] ⊆ f̃ [M ] = f [M ] ⊆ ↑a and f̃ [N ] ⊆ ↑b.

By the Proposition in II.3.5,

M ⊆ f−1[↑a] = ↑f∗(a) and N ⊆ f−1[↑b] = ↑f∗(b),
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and therefore, for m =
∧
M and n =

∧
N ,

m ≥ f∗(a) and n ≥ f∗(b).

Finally, from m ∨ n ≥ f∗(a) ∨ f∗(b) = f∗(a ∨ b) = 1 we have

M ∧N = c(m) ∧ c(n) = c(m ∨ n) = c(1) = O.

Hence, M and N are mutually complemented sublocales of RL.

3.4. Proposition. Let L be an extremally disconnected frame. Then RL is also extremally
disconnected.

Proof. Let U be an open sublocale of RL. Take V = U ∩ L an open sublocale of L. We

know that V
L

= U ∩ LL = U ∩ L∩L = U ∩L (the last equality follows from Lemma 3.2).

From extremal disconnectedness, V
L

is clopen in L and, from Lemma 3.3, V
L

is clopen in
RL. Then

U = U ∩ L ⊆ V
L

= U ∩ L ⊆ U = U.

3.5. Remark. Analogously to set topology, it is not always the case that Čech–Stone
compactification of zero–dimensional frames is again zero–dimensional. Frames in which
this is true are called strongly zero–dimensional [10].
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Chapter IV

Stone duality

In 1936 Marshall Stone published a paper called “The Theory of Representations of
Boolean Algebras” [14], describing a duality of two categories, the category of Boolean alge-
bras and Boolean homomorphisms and the category of compact Hausdorff zero–dimensional
topological spaces and continuous maps. At that time he could not use the language of
category theory, of course.

The word “duality” means that one category is equivalent to the dual of the other cate-
gory. The duality at that time was a big surprise because it has shown similarities between
a objects with nice algebraic structure, the Boolean algebras, with, another mathematical
objects witch was thought to have no algebraic structure at all, topological spaces.

In this chapter, we will first discuss the Stone duality in the point–free context. Since
the adjunction between topological spaces and frames is contravariant, the construction
will be covariant and we speak of the Stone correspondence. In the second part we will
obtain the standard Stone duality for topological spaces.

1. Stone correspondence for frames

1.1. Definition. We say a frame is Stone frame if it is compact and zero–dimensional.
By StoneFrm denote the category of Stone frames and frame homomorphisms.

1.2. Definition. Let B be a Boolean algebra. Define JωB to be the set of all ideals of B.
For a Boolean homomorphism f : A→ B, define Jωf : JωA→ JωB as

(Jωf)(I) = ↓f [I].

Note. We do not assume B complete, hence we depart from the notation used in III.2.3.

1.3. Lemma. Let B be a Boolean algebra and I ∈ JωB. Then I is complemented iff
I = ↓b for some b ∈ B.

Proof. Let I be a complemented ideal. Since I ∨ Ic = 1JωB there exists a ∈ I and b ∈ Ic
such that a ∨ b = 1. From I ∧ Ic = 0JωB we have a ∧ b = 0 and I ∧ ↓b = 0JωB. From the
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uniques of complements we get Ic = ↓b, indeed I ∨ ↓b = 1JωB and I ∧ ↓b = 0JωB. Using
the same argument we get I = ↓a.

The converse implication is trivial, since ↓a ∨ ↓ac = 1JωB and ↓a ∧ ↓ac = 0JωB.

1.4. Proposition. Jω : Bool→ StoneFrm is a functor.

Proof. JωB is a compact frame by III.2.3. Lemma 1.3 implies that ↓a is complemented
and ↓a ≺ ↓a for all a ∈ B. Thus for any ideal I ∈ JωB, we obtain

I =
∨
{ ↓a | a ∈ I } =

∨
{ ↓a | ↓a ≺ I } ⊆

∨
{ J | J ≺ I } ⊆ I.

Hence, JωB is zero–dimensional. If f is a Boolean homomorphism, then Jωf is a frame
homomorphism (for the same reason as the Rf is in III.2.9).

1.5. Definition. Let L be a Stone frame. Define BωL to be the set of all complemented
elements of L and for a frame homomorphism between Stone frames f : L→M define

Bωf = f
∣∣
BωL

: BωL→ BωM.

From the fact that a homomorphic image of a complemented element is a complemented
element and since join or meet of two complemented elements is again complemented (for
complemented elements a and b, ac ∨ bc is the complement of a ∧ b and ac ∧ bc is the
complement of a ∨ b), one can see that BωL is a Boolean algebra and Bωf is well–defined
Boolean homomorphism.

1.6. Observation. Bω : StoneFrm→ Bool is a functor.

1.7. For a Boolean algebra B, define iB : B → BωJω(B) as follows

iB : b 7→ ↓b.

The definition is sound by Lemma 1.3 and iB is a Boolean homomorphism: indeed ↓a∨↓b =
↓(a ∨ b), ↓a ∧ ↓b = ↓(a ∧ b), and ↓1 = B respectively ↓0 = {0} is top respectively bottom
of BωJω(B).

From Lemma 1.3, we also see that iB is an isomorphism and the following diagram
commutes

A BωJω(A)

B BωJω(B)

iA

f BωJω(f)

iB

for any Boolean homomorphism f : A→ B (for any a ∈ A, BωJω(f) iA(a) = BωJω(f)(↓a) =
↓f [↓a] = ↓f(a) = iB f(a)). From previous we have
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Proposition. The collection i = (iA)A of Boolean homomorphisms forms a natural equiv-
alence between BωJω and the identity functor on Bool.

1.8. Similarly, for a Stone frame L, we have a mapping vL : JωBω(L)→ L defined as

vL : I 7→
∨

I,

and a mapping in the opposite direction ι : L→ JωBω(L):

ι : e 7→ ↓e ∩ BωL.

We can see that both vL and ι are monotone maps, vLι = idL (by zero–dimensionality of
L) and idJωBω(L) ⊆ ιvL. Therefore vL is the left Galois adjoint to ι and hence vL preserves all
suprema. Since

∨
I1 ∧

∨
I2 =

∨
{ a1 ∧ a2 | ai ∈ Ii } ≤

∨
{ a | a ∈ I1 ∩ I2 } =

∨
(I1 ∩ I2) ≤∨

I1 ∧
∨
I2, vL also preserves finite infima which makes vL a frame homomorphism.

Finally, idJωBω(L) = ιvL: take any x ∈ ιvL(I). From the definitions we immediately see
that x ≤

∨
I and x is complemented in L. By the fact that

1 = x ∨ xc ≤
∨

I ∨ xc

and by compactness of L there is a finite F ⊆ I such that
∨
F ∨xc = 1. Since x = 1∧x =

(
∨
F ∨ xc)∧ x = (

∨
F ∧ x)∨ (xc ∧ x) =

∨
F ∧ x we get that x ≤

∨
F and therefore x ∈ I.

From previous observations, we know that vL is an isomorphism of L and JωBω(L).
Also by direct computation, for any homomorphism of Stone frames f : L → M , we see
that the following diagram commutes

JωBω(L) L

JωBω(M) M

JωBω(f)

vL

f

vM

(for any I ∈ JωBω(L), (vM ·JωBω(f))(I) =
∨

(↓f [I]) =
∨
f [I] = f(

∨
I) = f vL(I)). Again,

as a consequence of previous paragraphs we obtain

Proposition. The collection v = (vL)L of frame homomorphisms is a natural equivalence
between JωBω and the identity functor on StoneFrm.

1.9. Using previous facts we obtain the main result of this section.

Theorem. Functors Bω and Jω constitute an equivalence of categories StoneFrm and
Bool.
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2. Stone duality for spaces

The classical spatial version of Stone duality follows from the Stone correspondence
between Stone frames and Boolean algebras from previous section. We have the duality
between the category of compact zero–dimensional frames and the category compact zero–
dimensional spaces (restricted Hofmann–Lawson’s Duality, Theorem III.2.15).

However the Hofmann–Lawson’s Duality depends on the Axiom of Choice. In this
section we will prove the Stone duality by assuming only the Boolean Ultrafilter Theorem.

2.1. Similarly to frames:

Definition. We say a topological space is Stone space if it is compact, Hausdorff and
zero–dimensional.

By StoneSp denote the category of Stone spaces and continuous mappings.

2.2. Let B be a Boolean algebra. Define

XB = { F ⊆ B | F is an ultrafilter of B } and τB = {WI | I ∈ JωB } ,

where WI is the set { F ∈ XB | F ∩ I 6= ∅ }. The pair (XB, τB) is a topological space:

(T1) τB contains ∅ = W↓0 and XB = W↓1.

(T2)
⋃
iWJi = W∨

i Ji
: ⊆ holds trivially since

⋃
Ji ⊆

∨
Ji. On the other hand, for an

ultrafilter F such that F ∩
∨
i Ji 6= ∅, there is an e =

∨
E where E is a finite subset

of
⋃
Ji and e ∈ F . Since F is prime, there is an e′ ∈ E such that e′ ∈ F and therefore

Jj 3 e′ and F ∩ Jj 6= ∅ for some j.

(T3) WI ∩WJ = WI∧J : F ∈ WI ∩WJ iff F ∩ I 6= ∅ and F ∩ J 6= ∅ iff F ∩ I ∩ J 6= ∅ iff
F ∈ WI∩J .

We will denote the topological space (XB, τB) by SB.

2.3. Lemma. Let B be a Boolean algebra. Then SB is a Stone space.

Proof. Compactness follows directly from compactness of JωB. Note that the comple-
mented elements are of the form W↓a for some a ∈ B: W↓a ∪W↓ac = W↓(a∨ac) = XB and
W↓a ∩W↓ac = W↓(a∧ac) = ∅. Since every open set is an union of sets of the form W↓a, the
SB is zero–dimensional.

To show that SB is also Hausdorff, take any ultrafilters E 6= F . Without any loss of
generality there is some e ∈ E \ F . We have e ∨ ec = 1 and since F is an ultrafilter we
have ec ∈ F . We also have e ∧ ec = 0 and so W↓e and W↓ec separates E and F .

2.4. Lemma. Let f : A → B be a Boolean homomorphism and let F be an ultrafilter of
B. Then f−1[F ] is an ultrafilter of A.
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Proof. Set E = f−1[F ]. First, we will show that E is a filter. Trivially, 1 ∈ E and
0 6∈ E. For x, y ∈ E, there are x′, y′ ∈ F such that x′ = f(x) and y′ = f(y). Hence
x′ ∧ y′ = f(x)∧ f(y) = f(x∧ y) and x∧ y ∈ E. For the upwards closeness, take any x ∈ E
and y ≥ x. y ∈ E as f(y) ≥ f(x) ∈ F .

E is also an ultrafilter. For a, b ∈ A such that a ∨ b ∈ E, f(a) ∨ f(b) = f(a ∨ b) ∈ F
and so f(a) or f(b) is in F and therefore a or b is in E.

2.5. Let f : A → B be a Boolean homomorphism. Denote by Sf : SB → SA the map
defined as

Sf : F 7→ f−1[F ].

From the previous Lemma, we see that the definition is sound. We will show that Sf is
also continuous. Take any WI ∈ τB. We have

(Sf)−1[WI ] =
{

(Sf)−1(F )
∣∣ F ∩ I 6= ∅ }

= { E | ∃F ⊆ B ultrafilter, (Sf)(E) = F, and F ∩ I 6= ∅ }
=
{
E
∣∣ f−1(E) ∩ I 6= ∅

}
= { E | E ∩ f [I] 6= ∅ }

= { E | E ∩ ↓f [I] 6= ∅ } = W(Jωh)(I).

2.6. Theorem. S : Bool→ StoneSp is a functor.

Proof. Follows immediately from 2.3 and 2.5.

2.7. Our situation is as follows

StoneFrm Bool

StoneSp

Bω

Jω

SΩ

2.8. Proposition. The collection of morphisms πB : JωB → ΩS(B) defined for B ∈ Bool
by I 7→ WI , constitutes a natural equivalence Jω ∼= Ω ◦ S. (?)

Proof. From the definition of SB, we can see that πB is an onto frame homomorphism.
Take any I 6= J , I, J ∈ JωB. Without loss of generality take e ∈ I \J . Now the filter ↑e

is disjoint with the ideal J and by Boolean Ultrafilter Theorem there exists an ultrafilter
U ⊇ ↑e disjoint with J . The intersection U ∩ I is not empty, it contains e, and therefore
WI 6= WJ .

The naturalness of π follows from the commutativity of the following diagram
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JωA ΩS(A)

JωB ΩS(B)

πA

Jωf ΩS(f)

πB

for any Boolean homomorphism f : A→ B. Indeed, by 2.5, we have

ΩS(f)(WI) = (Sf)−1[WI ] = W(Jωh)(I),

for any I ∈ JωB.

2.9. Conclusion. Bω ◦ Ω ◦ S ∼= IdBool. (?)

Proof. By the previous Proposition and the Stone correspondence for Stone frames and
Boolean algebras (Theorem 1.9), we have Bω ◦ Ω ◦ S ∼= Bω ◦ Jω ∼= IdBool.

2.10. Proposition. The collection of morphisms ρX : X → SBωΩ(X) defined for X ∈
StoneSp by x 7→ Fx = { U clopen | x ∈ U }, constitutes a natural equivalence IdStoneSp

∼=
S ◦ Bω ◦ Ω.

Proof. We will show that ρX is a homeomorphism.

• ρX is one–one: For two points x1 6= x2 of X, from Hausdorff property there are U1, U2

such that U1 ∩ U2 = ∅ and xi ∈ Ui. From zero–dimensionality of X there are two
clopen subsets M1 ⊆ U1,M2 ⊆ U2, and xi ∈Mi. Hence Fx1 6= Fx2 .

• ρX is onto: Take any F ultrafilter. We will prove F ⊆ Fx for some x ∈ X. Suppose
it is not the case, then

⋂
F = ∅. Further, X = X \

⋂
F =

⋃
U∈F (X \ U). Therefore

C = {X \ U | U ∈ F } is a cover and from compactness there exist a finite subcover
C ′ ⊆ C. Then, X =

⋃
X\U∈C′(X \U) = X \

⋂
(X\U)∈C′ U . This is a contradiction, since⋂

(X\U)∈C′ is empty set.

And so F ⊆ Fx; but F is an ultrafilter, hence maximal, and hence F = Fx.

• ρX and ρ−1
X are continuous: From previous (•), we know that each ultrafilter of X is

of the form Fx, for some x. Hence

ρ−1
X [WI ] =

{
ρ−1
X (Fx) = x

∣∣ Fx ∩ I 6= ∅ } = { x | x ∈M ∈ I } =
⋃

I ∈ τX , and

ρX [W ] = { Fx | x ∈M ⊆ W,M is clopen }
= { F | F ∩ (↓W ∩ BωΩ(X)) 6= ∅ } = W↓W∩BωΩ(X) ∈ τSBωΩ(X).

Finally, ρ = (ρX)X is a natural equivalence. The following diagram commutes
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X SBωΩ(X)

Y SBωΩ(Y )

ρX

f SBωΩ(f)

ρY

for any continuous map f : X → Y . Indeed,

SBωΩ(f)(Fx) = (BωΩ(f))−1[Fx] = Ω(f)−1[Fx]

=
{

Ω(f)−1(M)
∣∣M clopen, x ∈M

}
= {N | x ∈M,M clopen, f [M ] = N }
= {N | f(x) ∈ N } = Ff(x) = ρY (f(x)).

2.11. From the previous, we have

Theorem. Functors Ω ◦ Bω and S are mutually inverse. Thus, categories Bool and
StoneSpop are equivalent. (?)

2.12. Similarly to the previous section, we obtained an equivalence of categories. However,
the adjoint functors of this equivalence are contravariant, thus we obtained a duality of
two categories instead of a correspondence.

Note that we can make the correspondence, from the previous section, into duality by
the duality between the category of frames and the category of locales.

3. Notes on constructivity

One can check that the whole correspondence between Stone frames and Boolean alge-
bras has been proved constructively. Therefore, the necessity of a choice principle needed
in classical Stone duality between Stone spaces and Boolean algebras is necessary only to
show that spaces constructed from Boolean algebras have enough points.

Analogously, the compactification of completely regular frames described in the previ-
ous chapter was constructive; its counterpart for topological spaces is equivalent to Boolean
Ultrafilter Theorem [2].

To be more precise, in the proof of the compactification we used the fact that compact
regular frames are completely regular (Proposition III.2.2). We construct an interpolative
relation ≺≺ using the Axiom of Countable Dependent Choice (CDC), but by Banaschewski
and Pultr [6], we can avoid using CDC by working with strongly regular frames instead
of completely regular. The whole construction can then be made constructive, even in the
sense of topos theory.
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Strongly regular frames are frames in which, for every element x, the following equation
holds

x =
∨
{ y | y (≺)o x } ,

where (≺)o is the largest interpolative relation contained in ≺. Such a relation can be
constructed as the union of all interpolative relations contained in≺. Under CDC, complete
regularity is precisely the same as strong regularity [6].
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Chapter V

Parts of duality

In this chapter, we analyse some parts of the Stone correspondence for Stone frames and
Boolean algebras. Namely, we will show that the category of κ–complete Boolean algebras
is in the correspondence with the category of κ–basically disconnected Stone frames.

We will also show how the restriction of the class of Boolean homomorphisms affects
the morphisms on the side of Stone frames.

1. κ–complete Boolean algebras

For the rest of this section, let κ be a fixed infinite regular cardinal.

1.1. Definition. A lattice is κ–complete, if any subset of cardinality less than κ has a
supremum and an infimum. A homomorphism is said to be κ–complete if it preserves all
suprema and infima of subsets of cardinality less than κ.

Let L be a Stone frame and let s be an element of L. We say that s is κ–generated if
s =

∨
S for some S ⊆ BωL of cardinality less than κ.

1.2. The following Lemma will be often expedient for computations.

Lemma. Let B be a κ–complete Boolean algebra and let I be a κ–generated element of
JωB. Then I∗ = ↓(

∨
I)c in JωB. In particular, for a ∈ B, (↓a)∗ = ↓ac.

Proof. I is of the form
∨
{ ↓s | s ∈ S } for some S ⊆ B of cardinality less than κ. Since

b ∧ s = 0 iff b ≤ sc, we have

I∗ = (
∨
{ ↓s | s ∈ S })∗ =

∨
{ ↓b | b ∈ B, b ∧ s = 0, for all s ∈ S }

=
∨
{ ↓b | b ∈ B, b ≤

∧
s∈S

sc } =
∨
{ ↓b | b ∈ B, b ≤ (

∨
S)c } = ↓(

∨
S)c = ↓(

∨
I)c.

1.3. Definition. Let L be a Stone frame. We say that L is κ–basically disconnected if
m∗∗ ∨m∗ = 1 for all κ–generated elements m ∈ L.
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1.4. Lemma. If B is a κ–complete Boolean algebra then JB is a κ–basically disconnected
Stone frame.

Proof. By Lemma IV.1.3, we know that complemented ideals are precisely the principal
ideals of B. For a subset M of B of cardinality less than κ set I =

∨
{ ↓a | a ∈M }. We

will show that I∗∗ ∨ I∗ = 1JB.
Set m =

∨
M and J = ↓m. Observe that I∗∗ = J : Trivially from Lemma 1.2 we have

I∗∗ ⊆ J∗∗ = J . The other inclusion, the J ⊆ I∗∗, follows from

I∗ =
⋃
{ ↓a | ↓a ∧ I = 0JB } =

⋃
{ ↓a | a ∧m = 0 } = (↓m)∗ = J∗.

Consequently, I∗∗ ∨ I∗ = J ∨ J∗ = ↓m ∨ ↓mc = 1JB.

1.5. The following Lemma will be often very useful. We will use it without further refer-
ence.

Lemma. Let B be a Boolean algebra such that each of its subset of cardinality at most κ
has a supremum. Then B is κ–complete.

Consequently, any Boolean homomorphism preserving all κ–meets (or κ–joins) is κ–
complete.

Proof. Let S be an arbitrary subset of B such that |S| < κ. Set M = (
∨
{ bc | b ∈ S })c,

we will show that M is the infimum of S.
Take an a ∈ S. We have a∧M = acc∧(

∨
{ bc | b ∈ S })c = (ac∨

∨
{ bc | b ∈ S })c = M .

Hence a ≥M .
Now suppose m ≤ a for all a ∈ S. Then m∧M = (mc∨

∨
{ bc | b ∈ S })c = (mc)c = m.

Hence m ≤M .

1.6. Lemma. If L is a κ–basically disconnected Stone frame then BωL is a κ–complete
Boolean algebra. The joins in BωL are defined by the following formula⊔

M = (
∨

M)∗∗.

Proof. For M a subset of BωL of cardinality less than κ, set m =
∨
M . Since L is κ–

basically disconnected, we have m∗∗ ∨ m∗ = 1 and therefore m∗∗ ∈ BωL. So m∗∗ is an
upper bound for M in BωL.

Now, let n be an arbitrary upper bound for M in BωL. Then n is also an upper bound
in L, but m ≤ n since m is the supremum of M in L. This gives us the desired relation
m∗∗ ≤ n∗∗ = n, hence m∗∗ is the supremum of M in BωL.

1.7. From Lemma 1.5 and Lemma 1.6, we conclude that κ–complete Boolean algebras are
in (Stone) correspondence with κ–basically disconnected Stone frames. The same holds
for topological spaces, a topological space is κ–basically disconnectedness iff any union of
cardinality less than κ clopen sets has open closure. Hence, we have a duality between
κ–complete Boolean algebras and κ–basically disconnected Stone spaces [12].

Now, we will focus on morphisms.
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1.8. Observation. Let f : A → B be a κ–complete Boolean homomorphism and let I be
a κ–generated ideal of A. Then

(Jωf)(I∗) = (Jωf)(I)∗.

Proof. It is straightforward. We have

(Jωf)(I∗) = (Jωf)(↓(
∨

I)c) (Lemma 1.2)

= ↓f [↓(
∨

I)c] = ↓f((
∨

I)c)

= ↓f(
∨

I)c (f is a Boolean homomorphism)

= ↓(
∨

f [I])c (κ–completeness of f)

= ↓(
∨
↓f [I])c = ↓(

∨
(Jωf)(I))c

= (Jωf)(I)∗.

The use of κ–completeness of f in the fourth step is valid because I is κ–generated. In
particular, I =

∨
{ ↓s | s ∈ S } for some S a subset of A of the cardinality less then κ.

1.9. Definition. Let f : L→M be a homomorphism between Stone frames. We say that
f is a κ–basically complete if f(a∗) = f(a)∗ holds for all κ–generated elements a ∈ L.

In other words, the last observation states that the functor Jω sends any κ–complete
Boolean homomorphism to a κ–basically complete frame homomorphism. As we will see
in the following Lemma, morphisms of the image of κ–complete part of Boolean algebras
in Stone correspondence are characterised precisely this way.

1.10. Lemma. Let f : L → M be a κ–basically complete frame homomorphism. Then
Bωf : BωL→ BωM is a κ–complete Boolean homomorphism.

Proof. Let A be an arbitrary subset of BωL such that |A| < κ. We have

(Bωf)(
⊔

A) = f((
∨

A)∗∗)

= f((
∨

A)∗)∗ ((
∨

A)∗ is complemented)

= f(
∨

A)∗∗ (
∨

A is κ–generated)

= (
∨

f [A])∗∗ (f is a frame homomorphism)

=
⊔

f [A] =
⊔

(Bωf)[A].

Therefore Bωf is κ–complete.

1.11. From Lemmas 1.4 and 1.6, we see that the restriction of Stone correspondence to
subcategories of κ–complete Boolean algebras on one side and κ–basically disconnected
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Stone frames on the other side (without any restriction on morphisms) is still a duality of
categories.

If we set κ–ComplBool to be the category of κ–complete Boolean algebras and κ–
complete Boolean homomorphisms and set κ–BDStoneFrm to be the category of κ–
basically disconnected Stone frames and κ–basically complete frame homomorphisms, then
it is sound (by the previous two Lemmas) to define two functors

Jκ : κ–ComplBool→ κ–BDStoneFrm, and

Bκ : κ–BDStoneFrm→ κ–ComplBool,

as the restriction of Jω and Bω to the corresponding subcategories. Note that the notation
is consistent with the previously defined Jω and Bω. We get the following

Theorem. The functors Jκ and Bκ constitute an equivalence between categories
κ–ComplBool and κ–BDStoneFrm.

Proof. The only thing we need to show is that the morphisms of natural equivalences for
identity functors and functors BωJω and JωBω are morphisms of our categories.

For the first part, we will show that iB : B → BωJω(B) is a κ–complete Boolean homo-
morphisms for any κ–complete Boolean algebra B. Let B′ be an arbitrary subset of B of
cardinality less than κ. Then by straightforward computation we get⊔

b∈B′
iB(b) =

⊔
b∈B′
↓b = (

∨
b∈B′
↓b)∗∗ = ↓(

∨
b∈B′

b) = iB(
∨
b∈B′

b),

where the third equality follows from Lemma 1.2.
For the second part, we need to show that vL : JωBω(L)→ L is κ–basically complete for

any κ–basically disconnected Stone frame L. We will show that vL is λ–basically complete
for any regular cardinal λ. Take any I ∈ JωBω(L), we have

vL(I∗) = vL(
∨
{ ↓s | ↓s ∧ I = 0 }) =

∨
{ vL(↓s) | ↓s ∧ I = 0 }

=
∨
{ s | s ∧ vL(I) = 0 } = vL(I)∗.

2. Complete Boolean algebras

By Theorem 1.11 we know that there is an equivalence between the category of κ–
complete Boolean algebras and κ–complete Boolean homomorphisms and the category of
κ–basically disconnected Stone frames and κ–basically complete frame homomorphisms.
Since, there is no limitation or upper bound for the cardinal κ in Theorem 1.11, let us have
a look at the part of the correspondence where κ is arbitrary large.
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2.1. It is interesting to see, how the Stone frame part of the correspondence looks like.
Take any object L and an element a ∈ L. From zero–dimensionality, we know that a is
λ–generated for some regular cardinal λ, but L is λ–basically disconnected so that

a∗∗ ∨ a∗ = 1

holds. Since a has been chosen arbitrarily we see that L extremally disconnected. Similarly,
any morphism of this part of the duality f with domain L is λ–basically complete, hence
the following holds

f(a∗) = f(a)∗. (B.C.)

We will call morphisms satisfying (B.C.) for all elements a basically complete frame homo-
morphisms.

We will denote the resulting category of extremally disconnected Stone frames and
basically complete frame homomorphisms by ExtrDStoneFrm.

2.2. On the side of Boolean algebras, we have that Boolean algebras with arbitrary large
joins and Boolean homomorphisms preserving such joins. Thus the observed category is
the category of complete Boolean algebras and complete Boolean homomorphisms. We
will denote it by ComplBool.

2.3. Recall that, the definitions of iB : B → BωJω(B) and vL : JωBω(L)→ L are

iB : b 7→ ↓b and vL : I 7→
∨

I.

For a complete Boolean algebra B, take any { ai | i ∈ I } subset of B. Then⊔
i∈I

iB(ai) =
⊔
i∈I

↓ai = (
∨
i∈I

↓ai)∗∗ = ↓(
∨
i∈I

ai)
cc = ↓(

∨
i∈I

ai) = iB(
∨
i∈I

ai).

Consequently, iB is a complete Boolean homomorphism, that is a morphisms of ComplBool.
For any extremally disconnected Stone frame L, from the proof of Theorem 1.11, we

know that vL is λ–basically complete frame homomorphism for all regular cardinals λ,
therefore vL is also basically complete and is a morphisms of ExtrDStoneFrm.

Therefore, (vL)L∈ExtrDStoneFrm and (iB)B∈ComplBool are collection of morphisms of cat-
egories ExtrDStoneFrm and ComplBool.

2.4. As a conclusion, we can define functors

J∞ : ComplBool→ ExtrDStoneFrm, and

B∞ : ExtrDStoneFrm→ ComplBool,

as the restriction of Jω and Bω to the corresponding categories and obtain the following

Theorem. The categories ExtrDStoneFrm and ComplBool are equivalent.
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StoneFrm Bool

σ–BDStoneFrm σ–ComplBool

..
.

..
.

κ–BDStoneFrm κ–ComplBool
..

.

..
.

ExtrDStoneFrm ComplBool

Bω
Jω

Bσ

⊆ ⊆

Jσ

⊆ ⊆

Bκ
⊆ ⊆

Jκ
⊆ ⊆

B∞

⊆ ⊆

J∞

Figure V.1: Diagram of categories in Stone correspondence.

(Note that the subcategories indicated as ⊆ are not full.)

The whole situation is depicted in Figure V.1 where κ is a regular cardinals greater or
equal to ω1, σ–ComplBool denotes the category ω1–ComplBool and σ–BDStoneFrm
denotes the category ω1–BDStoneFrm.

2.5. Here we present an alternative point of view on what we already know from the
discussion above.

Proposition. Let B be a complete Boolean algebra. Then the frame JωB is an extremally
disconnected Stone frame.

Proof. In a Boolean algebra the relations ≺ and ≤ coincide. Moreover, each complete
Boolean algebra is a (completely regular extremally disconnected) Boolean frame. Thus
JωB equals RB.

From Lemma III.3.4, we know that compactification preserves extremal disconnected-
ness and therefore JωB is also extremally disconnected. We also know that JωB is a Stone
frame by Lemma IV.1.4.

The proof of the previous Proposition unveils an important fact about the complete part
of Stone correspondence. It shows that this part of the correspondence is an equivalence
of two subcategories of the category of frames (on Boolean side, without any restriction to
frame homomorphisms) and that the correspondence is provided by a purely topological
construction by compactification.
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Chapter VI

Construction of R

1. Summarization

Recall Theorem III.2.13. The compactification of a complete regular frames is obtained
as the frame of all regular ideals. The construction of a Stone frame in the Stone corre-
spondence (Theorem IV.1.9) is given in similar fashion. The functor Jω maps a Boolean
algebra to the frame of all ideals of the Boolean algebra. We can equivalently say that any
Stone frame is obtained from a Boolean algebra by taking the frame of all regular ideals
since in any Boolean algebra the relations ≤, ≺ and ≺≺ coincide.

In classical topology, the compactification and the Stone representation of Boolean
algebras are the same construction as well. The compactification of a completely regular
topological space is homeomophic to the space of all ultrafilters of that space. Similarly
for the Stone duality, each Stone space is constructed as the space of all ultrafilters of some
Boolean algebra.

The whole (point-free) situation is depicted in the diagram below.

RegKFrm CRegFrm

StoneFrm Bool

KDMRFrm CBool DMRFrm

⊆
⊆

⊆

⊆

⊆obj

Jω

Bω

⊆

R

where the symbol ⊆obj denotes an inclusion of objects of one category to another. (New
categories in the diagram: CBool denotes the category of complete Boolean algebras and
all Boolean homomorphisms. The category KDMRFrm is the category of all extremally
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disconnected Stone spaces, or in other words all compact De Morgan regular frames, and
all frame homomorphisms. RegKFrm denotes the category of compact regular frames,
CRegFrm the category of completely regular frames.)

In the diagram, Stone duality is drawn in the area surrounded by the dotted rectangle
and the compactification is drawn in the area surrounded by the dashed curve. As we know
from the discussion above, the construction on objects is exactly the same for both marked
parts of the diagram. However, the Stone correspondence is an equivalence of categories,
whereas the compactification is just a coreflection.

Taking the frame of all regular ideals of a bounded pseudocomplemented lattice is a
general construction of compact frames. A natural question arises: Is it possible to extend
the category ComplBool to a wider subcategory of DMRFrm and again obtain the
equivalence of categories carried by R? From the following diagram we can see why it is
not possible.

KDMRFrm CBool DMRFrm

ExtrDStoneFrm ComplBool

⊆obj

R
∣∣
DMRFrm

B∞

⊆

J∞

⊆

⊆

Objects of CBool are in correspondence with objects of KDMRFrm. On the other
hand, R provides a coreflection of the category DMRFrm onto KDMRFrm. Since
ComplBool is a subcategory of CBool, we cannot hope to expand the correspondence
by extending the category ComplBool into a wider subcategory of DMRFrm.

2. Booleanization

In this section we will prove that Booleanization is functorial in the part of the Stone
correspondence for extremally disconnected Stone frames, and that it constitutes an equiv-
alence of categories.

2.1. Definition. Let H be a Heyting algebra. By Booleanization of H we mean the set

BH = { a∗∗ | a ∈ H } .

2.2. Proposition. If H be a Heyting algebra then BH, with joins and meets defined

a t b = (a∗ ∧ b∗)∗ and a u b = a ∧ b,

is a Boolean algebra.
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Proof. First, we will show that the operations u and t are really the meet and the join on
BH. Let a, b, c ∈ BH:

• From II.1.5, a u b = a∗∗ ∧ b∗∗ = (a ∧ b)∗∗ ∈ BH.

• Whenever a, b ≤ c then a∗, b∗ ≥ c∗ and so a∗ ∧ b∗ ≥ c∗, hence a t b = (a∗ ∧ b∗)∗ ≤
c∗∗ = c. Trivially a t b ∈ BH.

For a ∈ BH: a∗ = a∗∗∗ ∈ BH too, a t a∗ = (a∗ ∧ a∗∗)∗ = 0∗ = 1 and also a u a∗ =
a ∧ a∗ = 0. Hence, each element is complemented and BH is a Boolean algebra.

2.3. Let L be a frame. The mapping defined as a 7→ a∗∗ is a nucleus:

(N1) a ≤ a∗∗: it is a standard inequality (from II.1.5);

(N2) a ≤ b implies a∗∗ ≤ b∗∗: since taking pseudocomplements is antitone;

(N3) a∗∗ ∗∗ = a∗∗: follows from a∗ = a∗∗∗; and

(N4) (a ∧ b)∗∗ = a∗∗ ∧ b∗∗: it is again a standard equality (from II.1.5).

Therefore, by II.3.6, BL is a sublocale of L and consequently a complete Boolean
algebra. As a direct consequence of II.3.6, the mapping

βL : L→ BL, a 7→ a∗∗,

is a frame homomorphism.

2.4. Note. BL is the smallest dense sublocale of L; joins are given by the formula (a∨b)∗∗
(since a 7→ a∗∗ is a nucleus).

2.5. Definition. For a frame homomorphism f : L → M set Bf : BL → BM to be the
mapping

Bf : a 7→ f(a)∗∗.

2.6. The following Proposition is taken from [4].

Proposition. Let f : L→M be a frame homomorphism. Then Bf is a frame homomor-
phism such that the following diagram commutes

L BL

M BM

βL

f Bf

βM

if and only if f(a∗∗) ≤ f(a)∗∗ for all a ∈ L.
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Proof. First observe that

f(a∗∗)∗∗ = f(a)∗∗ ⇐⇒ f(a∗∗) ≤ f(a)∗∗, for all a ∈ L. (W.O.)

⇐ is straightforward and ⇒ follows from f(a∗∗) ≤ f(a∗∗)∗∗. Commutativity of the
diagram is precisely the equality f(a∗∗)∗∗ = f(a)∗∗.

The last thing we need to show is that f(a∗∗) ≤ f(a)∗∗ implies that Bf is a frame
homomorphism. It is straightforward to see that Bf preserves 0, 1 and u. For t–preserving
take a, b ∈ BL and compute

(Bf)(a) t (Bf)(b) = (f(a)∗∗ ∨ f(b)∗∗)∗∗ ≥ f(a∗∗ ∨ b∗∗)∗∗ = f(a ∨ b)∗∗ = (Bf)(a t b),

where the middle and the last equality hold by (W.O.). The opposite inequality follows
from f(a)∗∗ ∨ f(b)∗∗ ≤ f(a ∨ b)∗∗. Thus Bf is a Boolean homomorphism.

We will show that Bf preserves arbitrary joins. Again using (W.O.), we get

(Bf)(
⊔

A) = f((
∨

A)∗∗)∗∗ = f(
∨

A)∗∗ = (
∨

f [A])∗∗.

Now take any a ∈ A, from f(a) ≤
∨
f [A] we have f(a)∗∗ ≤ (

∨
f [A])∗∗. Since a was

chosen arbitrary, we also have
∨
a∈A f(a)∗∗ ≤ (

∨
f [A])∗∗ and therefore (

∨
a∈A f(a)∗∗)∗∗ ≤

(
∨
f [A])∗∗. The opposite inequality is trivial, hence

⊔
(Bf)[A] = (

∨
f [A])∗∗.

Thus we obtain ⊔
(Bf)[A] = (

∨
f [A])∗∗ = (Bf)(

⊔
A),

which is what we wanted.

2.7. Proposition. Let C be a subcategory of the category of frames and frame homomor-
phisms satisfying (W.O.). Then

B : C → ComplBool,

defined on objects as in 2.1 and on morphisms as in 2.5, is a functor.

Proof. From 2.3 we know that BL is a complete Boolean algebra. As a direct implication
of Proposition 2.6 we get that for any morphism f : L → M in C the following diagram
commutes.

L BL

M BM

βL

f Bf

βM

Bf is a frame homomorphisms, but it is also a complete Boolean homomorphisms, as we
know from V.1.5. Since the following diagram also commutes for any morphisms f, g we
see that B respects morphisms composition.
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L BL

M BM

N BN

βL

f

gf

Bf

B(gf)
βM

g Bg

βN

Finally, for any identity frame homomorphism iL, B(iL) is the identity on BL. Conse-
quently, B is a functor.

2.8. Lemma. Let f : L→M be a frame homomorphism and a ∈ L such that a∗∗∨a∗ = 1.
Then

f(a∗∗)∗ = f(a∗).

In particular, for a = a∗∗ we have

f(a)∗ = f(a∗).

Proof. From the assumptions we see that the following holds

f(a∗∗) ∨ f(a∗) = f(a∗∗ ∨ a∗) = 1,

f(a∗∗) ∧ f(a∗) = f(a∗∗ ∧ a∗) = 0.

Hence, f(a∗∗) is complemented and f(a∗) is its complement. From distributivity of M
we know that complements are unique; thus f(a∗) = f(a∗∗)∗.

2.9. For any frame homomorphism between two extremally disconnected Stone frames
f : L→M . By Lemma 2.8, f(a∗∗)∗ = f(a∗) for any a ∈ L. Note that we have

f(a∗∗)∗ = f(a∗) and f(a∗∗) ≤ f(a)∗∗ ⇐⇒ f(a∗) = f(a)∗, for all a ∈ L. (N.O.)

(Indeed, the f(a∗) ≤ f(a)∗ is always true and f(a∗) = f(a∗∗)∗ ≥ f(a)∗∗∗ = f(a)∗, the
opposite direction is straightforward).

Hence, for a category of extremally disconnected frames, in order to satisfy the condi-
tions of Proposition 2.7, we need to restrict morphisms only to those frame homomorphisms
satisfying (N.O.).

Observe that the category ExtrDStoneFrm satisfies the conditions of Proposition 2.7.
For a frame homomorphism, to be basically complete is precisely the same condition as to
satisfy (N.O.).

Conclusion. B : ExtrDStoneFrm→ ComplBool is a functor.

In literature the frame homomorphisms satisfying (W.O.) are called weakly open and
frame homomorphisms satisfying (N.O.) are called nearly open [3].
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2.10. Observation. BL = B∞L for any extremally disconnected Stone frame L.

Proof. BL ⊇ B∞L holds always. Let x ∈ BL. Then x = x∗∗ and from extremal discon-
nectedness also x∗∗ ∨ x∗ = 1, hence x ∈ B∞L.

2.11. Until the end of this section, we will use the following Lemma frequently and without
further reference.

Lemma. Let L be a frame. Then:

1. For all J ∈ JL: J∗ = ↓(
∨
J)∗.

2. For all a ∈ L: (↓a)∗ = ↓a∗ in JL.

3. If L is Boolean, then for all J ∈ JL: J∗∗ = ↓
∨
J .

Proof. We will prove just the first statement, the others follow directly from it. Let J be
any ideal on L. Observe that a ∧

∨
J = 0 iff ↓a ∧ J = 0BL. Since

J∗ =
∨
{L | L ∧ J = 0BL } =

⋃
{ ↓a | ↓a ∧ J = 0BL } and

(
∨

J)∗ =
∨
{ a | a ∧

∨
J = 0 } ,

we see that ↓a ⊆ J∗ iff a ∈ J∗ iff a ≤ (
∨
J)∗; hence J∗ = ↓(

∨
J)∗.

2.12. Proposition. The functor B ◦J∞ is naturally equivalent to the identity functor on
ComplBool.

Proof. Let B be a Boolean frame. We see that J ∈ BJ∞(B) iff J = J∗∗ = ↓
∨
J .

Denote by ĩB : B → BJ∞(B) the mapping a 7→ ↓a. From the previous Observation
we know that the definitions of ĩB and iB coincide, therefore by IV.1.7, ĩB is a Boolean
isomorphism. From V.2.3, we see that ĩB is a morphisms of ComplBool.

Now, for any complete Boolean algebras A and B and for any complete Boolean ho-
momorphism f : A→ B, the following diagram commutes

A BJ∞(A)

B BJ∞(B)

ĩA

f BJ(f)

ĩB

Indeed, we have
BJ∞(f)(↓a) = (↓f [↓a])∗∗ = ↓f(a)∗∗ = ↓f(a).

Hence, the collection ĩ = (̃iB)B of complete Boolean homomorphisms forms a natural
equivalence between BJ∞ and the identity functor on ComplBool.
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2.13. Proposition. The functor J∞ ◦B is naturally equivalent to the identity functor on
ExtrDStoneFrm.

Proof. Let L be an extremally disconnected Stone frame. Similarly to the general case,
define ṽL : J∞B(L)→ L as

ṽL : I 7→
∨

I.

From Observation 2.10, we know the definitions of ṽL and vL are the same, and ṽL is a
frame isomorphism by IV.1.8. From V.2.3, ṽL is a morphism of ExtrDStoneFrm.

Further, let L and M be extremally disconnected Stone frames and let f : L → M be
a basically complete frame homomorphism. The following diagram commutes

J∞B(L) L

J∞B(M) M

J∞B(f)

ṽL

f

ṽM

To show that, let I ∈ J∞B(L). First observe, for x ∈ I, x = x∗∗ and since L is
extremally disconnected, x ∨ x∗ = 1. Therefore, f(x∗) = f(x)∗ by Lemma 2.8. Now, we
can compute

(J∞B)(f)(I) = ↓ { f(x)∗∗ | x ∈ I } = ↓ { f(x) | x ∈ I } = ↓f [I].

And from that, we see

ṽM((J∞B)(f)(I)) =
∨
↓f [I] =

∨
f [I] = f(

∨
I) = f(ṽL(I)).

The conclusion follows from commutativity of the diagram above. The collection ṽ =
(ṽL)L of basically complete frame homomorphisms is a natural equivalence between J∞B
and the identity functor on ExtrDStoneFrm.

2.14. From 2.9—2.13, we obtain the main result of this section.

Theorem. The functors B and J∞ provide an equivalence between the categories
ExtrDStoneFrm and ComplBool.
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Chapter VII

More about De Morgan frames

In this chapter we present a new characterisation of De Morgan (that is, extremally
disconnectedness) completely regular frames. In the second part we extend the classical
spacial result, that the compactification of a metrizable space is not metrizable, to context
of point–free topology.

1. Density and superdensity

1.1. Observation. 1. If gf is dense, then f is also dense.

2. If g is dense and f is dense, then fg is dense.

1.2. Lemma. Let S be a sublocale of L. S is dense in L iff BS = BL.

Proof. ⇒: Suppose S is dense sublocale, then pseudocomplements in S are also pseudo-
complements in L (from the fact that 0L ∈ S and a∗S = a→ 0L = a∗L). From the definition
of sublocale, we know BL = { x→ 0L | x ∈ L } is a subset of S. Hence, if x = x∗∗ ∈ BL
then x ∈ S and also x ∈ BS. The other inequality, the BS ⊆ BL, is trivial.
⇐: Follows from the fact that a ≤ a∗∗, for any a ∈ L, and that 0L = 0∗∗L ∈ BL =

BS.

1.3. Proposition. If S is dense in L and L is De Morgan, then S is De Morgan.

Proof. Let x ∈ S. From the proof of the previous Lemma, we know that pseudocomple-
ments in S coincide with those in L. Since each sublocale is determined by some nucleus,
from II.3.6, we know that supremum in S is greater or equal to supremum in L. Thus,
x∗∗ ∨S x∗ ≥ x∗∗ ∨L x∗ = 1.

1.4. Definition. Let f : L → S be a dense onto frame homomorphism. We say that S
is superdense in L or that f is superdense if, for any compact regular K and any frame
homomorphism h : K → S, there exists a frame homomorphism h̃ : K → L such that the
following diagram commutes
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L S

K

f

h̃
h

1.5. Lemma. Let f be an onto frame homomorphism between completely regular frames.
Then Rf is also onto.

Proof. It immediately follows from the fact that a ≺≺ b implies f(a) ≺≺ f(b).

1.6. Proposition. Let L be a completely regular frame and let S be a sublocale of RL
such that L ⊆ S ⊆ RL. Then RS ∼= RL.

Proof. We will translate the proposition to the language of frames and frame homomor-
phisms. Let i : S → L and j : RL→ S be onto frame homomorphisms such that ij equals
to γL, the compactification of L. We will prove that Rj is an isomorphism.

From the fact that γ : R •−→ Id is a coreflection, we get that R(γL) is an isomorphism.
Therefore, Rj is one-one since R(γL) = Ri · Rj and monomorphisms in Frm are one-one.
From the previous Lemma, we know that Rj is onto.

A frame homomorphism which is both onto and one-one is an isomorphism.

1.7. Observation. 1. Let f and g be superdense. Then fg is also superdense.

2. If fg is superdense, then f is superdense.

3. Let L be a completely regular and S its sublocale. S is superdense in L iff S is
superdense in RL.

4. Let S be a dense sublocale of a completely regular locale L. S is superdense in L iff
the Čech–Stone compactifications of L and S are isomorphic.

Proof. 1 and 2 are straightforward. For 3, ⇒ follows from 1 and ⇐ follows from 2.
For 4, ⇐ is again straightforward and for ⇒: Let i : L → S be an onto frame homo-

morphism. From naturalness of γ, we see that the diagram

RL L

RS S

γL

Ri i

γS

commutes. From superdensity, there exists a frame homomorphism γ̃S : RS → L such that
γS = iγ̃S. Further, there exists an unique frame homomorphism ˜̃γS : RS → RL such that
γ̃S = γL ˜̃γS. Thus, we obtain that

i γL = γSRi = i γ̃SRi = i γL ˜̃γSRi.
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From the uniques of compactification, 1RL = ˜̃γSRi, hence Ri is one-one. From
Lemma 1.5, Ri is also onto. Hence Ri is an isomorphism.

1.8. Theorem. Let L be a completely regular frame. Then L is De Morgan iff each dense
sublocale S ⊆ L is superdense.

Proof. ⇒: Given a dense sublocale S of L and an onto frame homomorphism i : L → S.
Let M be a compact regular frame and let h : M → S be a frame homomorphism. We
know that S is dense in RL from Observation 1.1, and BS = BR(L) from Lemma 1.2.
By Theorem VI.2.14 for the complete part of Stone correspondence, we know that RL ∼=
RBR(L).

Hence, BS = BR(L) ⊆ S ⊆ RL ∼= RBR(L). By Proposition 1.6 we have that
RS ∼= RL and S is superdense in RL. Therefore there exists a frame homomorphism
g : M → RL such that the following diagram commutes

RL L S

M

γL i

g h

Obviously, γLg is the desired homomorphism to L.
⇐: We know that BL is extremally disconnected. Hence, its compactification, the

γBL : RB(L) → BL, is also extremally disconnected by Proposition III.3.4. From the
assumption, βL : L → BL is superdense, therefore there exists a frame homomorphism
f : RB(L)→ L such that βLf = γBL.

From Observation 1.1 we know that f is dense and from Proposition 1.3 we know that
L is De Morgan.

2. Non–metrizability of compactification

In contrast with a De Morgan frame, a metric frame has no non-trivial superdense
sublocale. That is a non-trivial Čech–Stone compactification of a metrizable frame is
never metrizable.

2.1. Lemma. Let L be a regular frame. Then, for each prime p ∈ L, c(p) = ↑p = {p, 1}.

Proof. Given q > p. From regularity we know that there exists an a ∈ L such that

a ≺ q and a 6≤ p.

From meet–irreducibility of p and from a ∧ a∗ = 0, we have a∗ ≤ p. Hence, q = p ∨ q ≥
a∗ ∨ q = 1.

2.2. Proposition. Let RL be a spatial frame such that RL 6∼= L. Then RL ∼= R(o(a))
for some prime a ∈ RL.
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Proof. Suppose there is no prime a ∈ RL such that L ⊆ o(a), then L ∩ c(a) 6= O = {1}
for all prime a. By the previous Lemma we know that c(a) = {a, 1}, hence L contains all
prime elements of RL.

However, RL is spatial and each of its element is a meet of prime elements. Then L ∼=
RL since every sublocale is closed under meets, a contradiction. Hence, L ⊆ o(a) ⊆ RL
for some prime a and from Proposition 1.6 we have RL ∼= R(o(a)).

2.3. Definition. A topological space X is said to be metrizable if there exists a distance
function ρ : X ×X → [0,∞) such that, for all x, y, z ∈ X,

(M1) ρ(x, y) = 0 if and only if x = y,

(M2) ρ(x, y) = ρ(y, x),

(M3) ρ(x, z) ≤ ρ(x, y) + ρ(y, z);

and the set {Bρ(x, q) | x ∈ X, q ∈ Q } generates the topology on X, where Bρ(x, q) =
{ y ∈ X | ρ(x, y) < q }.

2.4. Theorem. Let K = Ω(X) be a spatial compact regular frame with X metrizable.
Then K has no non-trivial superdense sublocale.

Proof. Suppose S ( K is a sublocale such thatRS ∼= K. By Proposition 2.2, R(o(a)) ∼= K
for some prime a and o(a) = X \ {x} for some x ∈ X.

We have,

Bρ(x, q) ∩ (X \ {x}) 6= ∅, for all q ∈ Q, (VII.1)

where ρ is the distance function on X. Otherwise, X \ {x} would be a closed and compact
subspace of X and equal to R(X \ {x}).

By (VII.1) it is sound to choose a sequence (an)∞n=1 (by (CDC)) such that

a1 ∈ X \ {x}, and

an+1 ∈ Bρ

(
x,
ρ(x, an)

2

)
∩ (X \ {x}).

For i = 1, 2, . . . , set Ui = Bρ(x, ρ(x, ai)/2)∩ (X \ {x}). Then U i+1 ⊆ Ui and Ui \U i+1 6= ∅,
for all i. For a subspace Xi = U2i \ U2i+3, set

Ai = U2i \ U2i+1 and Bi = U2i+2 \ U2i+3.

Ai and Bi are disjoint closed subsets of Xi, therefore, from normality, there exists a con-
tinuous function fi such that

fi[Ai] =

{
0 if i is odd

1 if i is even
and fi[Bi] =

{
1 if i is odd

0 if i is even
.
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Set X0 = (X \ {x}) \ U2. Observe that X \ {x} =
⋃∞
i=0 Xi, Xi ∩ Xj = ∅ whenever

0 < i < i+ 1 < j and that Xi ∩Xi+1 = Ai = Bi+1 for i > 0. Finally, set

E =
⋃

i>0, odd

Ai ∪
⋃

i>0, even

Bi and F =
⋃

i>0, even

Ai ∪
⋃

i>0, odd

Bi.

We see that E and F are disjoint closed subsets of X \ {x}.
Define a constant function f0 on X0: f0(x) = 1 for all x ∈ X0, then f =

⋃∞
i=0 fi is a

function from X \ {x} to [0, 1] which separates E and F . Since [0, 1] is compact, there
exists an extension f̃ : X → [0, 1]. However, the value of f̃(x) should be equal to 0 (Bρ(x, q)
intersects E for every positive q ∈ Q) and it should also be equal to 1 (Bρ(x, q) intersects
E for every positive q ∈ Q). We obtained a contradiction, therefore, such S ( K cannot
exist.
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[13] Jorge Picado and Aleš Pultr. Frames and locales. Springer-Birkhauser Basel, 2011.

[14] Marshall H Stone. The theory of representation for boolean algebras. Transactions of
the American Mathematical Society, 40(1):37–111, 1936.

51



Index

(AC), 8
(BUT), 8
(CDC), 8
κ–BDStoneFrm, 36
κ–ComplBool, 36
Bool, 9
ComplBool, 37
ExtrDStoneFrm, 37
StoneFrm, 25
StoneSp, 28
B2, 17
B∞, 37
Bκ, 36
Bω, 26
βL, 41
BH, 40
Bf , 41
J∞, 37
Jκ, 36
Jω, 25
RL, 20
SB, 28
γL, 21
R, 21
iB, 26
vL, 27

Axiom of Choice, 8
Axiom of Countable Dependent Choice, 8

basically complete, 37
κ–basically complete, 35
κ–basically disconnected, 33
Boolean algebra, 7

Boolean homomorphisms, 7
Boolean Ultrafilter Theorem, 8
Booleanization, 40
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