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Foreword

This habilitation thesis summarizes almost all my work devoted to the topic of electronic
noise and full counting statistics (FCS) in interacting nanosystems carried out in the years
2004-2015. I started working on this topic during my first postdoc stay at DTU (Technical
University of Denmark) in Lyngby (suburb of Copenhagen) with Prof. Antti-Pekka Jauho
together with Antti’s Ph.D. student Andrea Donarini and master student Christian Flindt.
During my stay in 2002-4 I co-supervised both of them and as this research topic turned out
to be quite fruitful and successful we continued our collaboration for a few more years. After
my second postdoc in Copenhagen in 2004-6 at the Niels Bohr Institute with Prof. Karsten
Flensberg (devoted to an unrelated topic of superconducting quantum dots), I brought the FCS
topic with me back to Prague in fall 2006. It continued being my major research direction for
about next 5 years, significantly fueled by a bilateral grant of the Czech Science Foundation
with Prof. Tobias Brandes from TU Berlin in 2007-10 and Dr. Katarzyna Roszak taking the
associated postdoc position with me in Prague. Another postdoc candidate Dr. Federica Haupt
eventually chose to go to Konstanz to Prof. Wolfgang Belzig but due to Wolfgang’s courtesy
she could continue working on the topic of inelastic noise corrections which she started with
me during her short stay in Prague in November 2007. This event seeded a whole branch
of FCS research based on nonequilibrium Green’s function formalism and resulted in 3 joint
papers. Certain aspects of the noise topic were also subject of the master thesis of my first
student Jan Prachař (defended in September 2008). I was a co-organizer, together with Tobias
Brandes, of the 431. WE-Heraeus Seminar “Noise and Full Counting Statistics in Mesoscopic
Transport” in May 2009 in Physikzentrum Bad Honnef, Germany. After 2011, when a new
grant of the Czech Science Foundation focused on superconducting quantum dots (the second
topic I imported from Copenhagen) started, the research activity on FCS has been steadily
declining both on my side, since my main interest logically moved mainly to superconductivity,
as well as globally — my research community of quantum transport shifted its focus to different
other topics which was largely given by the lack of sufficient experimental input in the FCS
subfield. For a few more years there were still papers being published, which, however, were
based on results obtained by 2011. In 2013, I published an invited mini-review article in Journal
of Computational Electronics (here included as P.17) which forms the basis of the present text
of my habilitation thesis.

As already mentioned, I include basically all papers on the noise and FCS topic in the
thesis. Altogether, it is 18 papers published between 2004 and 2015 and covering a broad
scope of techniques, physical topics as well as “genres”. I just left out several works published
as conferences proceedings, albeit some in reasonable journals (Physics of Fluids, Physica E,
J. Stat. Mech.) and with non-negligible citation numbers (e.g., J. Stat. Mech. has about 20
citations), but with subsidiary contributions from my side. On the other hand, in all the
included papers I was an essential part of the research team and those papers wouldn’t exist
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6 Noise and FCS of electronic transport in nanosystems

without my major contribution. They form a wide selection of works ranging from experimental
ones (P.8 and P.15) and associated theory developed just for the experiment (P.16) via technique
developments (P.11 and P.12) to articles addressing purely conceptual questions (P.7 and P.10)
and/or specific mechanisms (P.1, P.14, and P.18). Some of them actually bridge several of the
categories and strongly reflect the nonlinear character of the highly dynamic creative processes
behind their birth. Consequently, it is not easy to write a single introductory text which could
exhaustively capture all their aspects in an orderly manner. To succeed at least partially I
have decided to order the paper list in simple chronological order according to their publication
dates. To relate individual papers to the specific parts of the introductory text, I put references
to the pertinent papers in the chapter/section titles (which are reproduced in the table of
contents). One should keep in mind that at least some of the papers have relation to two or
even more of the sections — in such cases I have decided to mention the paper in the single
section which characterizes it the best. I do hope that this approach, although imperfect, is
optimal for simultaneous clarity of the introductory text and orientation in the paper list.
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Chapter 1

Introduction to the FCS concept
(papers P.7, P.8, and P.17)

Full Counting Statistics of electronic transport through nanoscopic systems was introduced in
the 90’s by papers by Levitov and Lesovik [1, 2] motivated by the photon counting statistics
studied in the quantum optics for decades [3]. The quantity of interest in the FCS studies is
the whole probability distribution Pn(t) that n electrons passed in time t through a particular
cross-section in the electronic circuit. Calculation of this probability distribution or some
related (equivalent or derived) quantities such as the cumulant generating function (CGF)
or individual cumulants is the core task in the field and I will review some of the methods
for accomplishing this task here. The core motivation behind the FCS concept is the hope
that FCS with much more information content that just the conventionally measured mean
current can significantly help with the analysis of quantum transport experiments especially in
the nanoscale realm (transport in quantum dots and/or molecules etc.), where the transport
mechanisms are largely unknown. Thus the primary task of FCS is the diagnostics of nanoscopic
transport mechanisms.

Even if the probability distribution Pn(t) is known, one may be theoretically interested
in (or the experiment only provides) various aspects of it. This is demonstrated in Fig. 1
on the elementary example of unidirectional tunneling across a high barrier (corresponding
to high voltage-to-temperature ratio so that jumps back are basically impossible). Due to
low transparency of the high barrier, the tunneling events are rare and uncorrelated which,
analogously to the radioactive decay, corresponds to the Poissonian probability distribution of
the number of passed charges Pn(t) = (γt)ne−γt/n!, n ≥ 0 (and Pn(t) ≡ 0, n < 0) characterized
by a single parameter γ giving the tunneling rate and consequently also the mean particle
current. Fig. 1 depicts this simple distribution from various points of view. The first panel a)
shows the Poissonian distribution for 3 different values of the mean number of passed charges
〈n〉 = γt. The distributions peak around the respective mean values and their width also grows
in accordance with the relation 〈〈n2〉〉 ≡ 〈(∆n)2〉 = 〈n2〉−〈n〉2 = γt = 〈n〉 (notation: 〈•〉 denotes
mean values, e.g., moments of a distribution, while 〈〈•〉〉 are cumulants). Panel b) illustrates the
very same probability distribution but now as a function of the (stochastic) particle current I ≡
n/t. The distributions now peak around the time-independent mean value of the current 〈I〉 ≡
〈n〉/t = γ and with increasing time become sharper since 〈(∆I)2〉 = 〈(∆n)2〉/t2 = γ/t. Thus,
the current distribution with increasing time approaches the δ-function, i.e., it is self-averaging.
Panel c) offers yet an alternative point of view and exemplifies the central-limit-theorem-like
behavior of Pn(t). When properly scaled, the renormalized distribution

√
γtPn(t) as a function
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Figure 1: Full Counting Statistics of a tunnel junction. The Poissonian probability distribution
of the number of passed charges Pn(t) = (γt)ne−γt/n! is shown from various points of view. a)
Plot of Pn(t) for different values of parameter γt. b) Probability distribution for the particle
current I ≡ n/t (with the mean current 〈I〉 = γ). c) Rescaled distribution demonstrating
convergence to the Gaussian limit (dashed black line). d) Large deviation point of view, i.e.,
exponential resolution of the probability distribution. The Gaussian approximation of panel c)
is shown again as the dashed black curve, while the large deviation result stated in the main
text is the full black line nearly coinciding with the data. [Reshaped figure taken from P.17.]

of (n−γt)/√γt goes to a universal Gaussian curve e−x
2/2/
√

2π (black full curve). Finally, panel
d) focuses on the tails of the distribution and plots it on the logarithmic scale as a function of
the current similarly to b). This is known as the large-deviation principle [4]. One can see again
a universal result, which is, however, different from the simple Gaussian (black parabola) for
currents far enough from its typical/mean value. Rather, all the distributions for various times
effectively lie on the large-deviation result (dashed brown line) reading −ι log ι + ι − 1 with
ι ≡ I/〈I〉 = n/γt, which around ι = 1 coincides with the Gaussian approximation −(ι− 1)2/2.
These facts can be easily understood when we approximate the factorial in the Poissonian
Pn(t) by the Stirling formula n! ≈ (n/e)n

√
2πn leading to Pn(t) ≈ 1√

2πγtι
e−γt(ι log ι−ι+1). Using

ι log ι − ι + 1 = (ι − 1)2/2 + O ((ι− 1)3) we get in the long-time limit the Gaussian behavior
around the peak of Fig. 1c) while in the same limit we recover the large-deviation rate function
[4] RPoisson(I) ≡ − limt→∞ logP (t)/t = γ(ι log ι− ι+ 1) in Fig. 1d).

While the self-averaging current distribution in Fig. 1b) corresponds to the most common
direct measurement of the (mean) current via an ammeter, the other panels of Fig. 1 show
various alternatives. It is possible to measure directly the full probability distribution Pn(t)
(Refs. [5, 6, 7, 8], and P.8) by a point-contact detector placed nearby the measured circuit
although thus far this method is effectively limited to very weak currents in the incoherent
hopping limit. Yet, good enough statistics could be obtained in P.8 to extract up to 15 cu-
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mulants of the distribution. Panel c) corresponds to the situation where only the mean value
and variance of the distribution is monitored. This is a compromise solution between just
the mean current measurement and the full distribution function. Measuring the variance of
the distribution corresponds to the zero-frequency component of the current-noise spectrum
as I will show below. This is the level of characterization of nontrivial interacting quantum
nanosystems currently available experimentally (Ref. [9] and P.15) which I will demonstrate on
examples in Sec. 4. Panel d) shows yet a more detailed approach addressing the exponentially
rare tails of the probability distribution. Experimentally, this poses the biggest challenge as
the required statistics for resolving the tails of the distribution is huge. Moreover, most of the
events lie in the typical window around the peak of the distribution so that only a small frac-
tion of measured data are actually interesting. As a natural solution to this problem threshold
detection schemes were proposed [10, 11] utilizing Josephson junctions (JJs) as threshold detec-
tors. However, experiments performed so far have failed to verify the quantitative predictions
even for the simplest test cases (tunnel barriers) [12, 13, 14]. It is still unclear what is behind
these discrepancies, whether it is caused by the so-called environmental effects (effects of the
measurement circuit) [15] or by the insufficient accuracy of theoretical predictions describing
the JJ threshold detectors as discussed in P.7.

The simple tunnel junction example can be used also for the illustration of the standard
probabilistic/statistical concept of the cumulant generating function (CGF). Cumulant gen-
erating function is defined as S(χ; t) ≡ log

∑
n∈Z Pn(t)einχ and χ is in our context called the

counting field.1 The obvious basic properties of S(χ; t) are S(χ = 0; t) = 0 from the normal-
ization of probability and 2π-periodicity in the counting field S(χ + 2π; t) = S(χ; t) from the
quantized discrete nature of charge n ∈ Z. Its exponential (known as the characteristic func-
tion) eS(χ;t) =

∑
n Pn(t)einχ generates the moments of the probability distribution via the cor-

responding derivative with respect to χ at χ = 0, i.e., ∂k

∂(iχ)k
eS(χ;t)

∣∣∣
χ=0

= 〈nk〉(t) ≡∑n n
kPn(t).

Moments, even though they equivalently characterize the probability distribution, have never-
theless several disadvantages: first, they are not homogeneous in t even in the large-time limit
and, second, there are infinitely many of them nonzero due to the condition 〈n2k〉 ≥ 〈nk〉2 [16].

Cumulants 〈〈nk〉〉(t) ≡ ∂kS(χ;t)
∂(iχ)k

∣∣∣, generated by the CGF being the logarithm of the moment-

generating characteristic function, are proportional to t for large times (as demonstrated for the
Poissonian case) and their high-order behavior is less restricted by the lower-order ones. Mar-
cienkiewicz theorem [16] states that either only the first two cumulants are nonzero (Gaussian
distribution) or all are non-zero, yet approximations truncating high-order cumulants are mean-
ingful contrary to their counterparts for moments which necessarily break the above inequalities.
Cumulants’ relation to moments cannot be expressed explicitly in a simple manner — few lowest
ones read 〈〈n〉〉 = 〈n〉; 〈〈n2〉〉 = 〈(n−〈n〉)2〉; 〈〈n3〉〉 = 〈(n−〈n〉)3〉; 〈〈n4〉〉 = 〈(n−〈n〉)4〉−3〈〈n2〉〉2; . . .
Cumulants correspond to connected correlation functions in the field-theoretic language and the
relation between the moment-generating characteristic function and the CGF is the same as
between the partition function and the thermodynamic potential (e.g., free energy). This is an
important analogy which will be mentioned again in Sec. 4.2 concerning the non-equilibrium
Green’s functions. Questions of homogeneity in time exactly correspond to the issue of extensiv-
ity (i.e., homogeneity in volume) in the linked cluster expansion for thermodynamic potentials
[17].

1Generally the charges can jump across a given interface in both directions and, therefore, in principle Pn(t)
for all integer n can be nonzero and contribute to CGF.
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For the Poissonian distribution we get S(χ; t) = log
∑∞

n=0

(γt)n

n!
e−γteinχ = γt(eiχ− 1), which

is indeed homogenous in time (the exact proportionality to t is, however, not a generic feature).
Cumulants of the Poissonian distribution are constant 〈〈nk〉〉(t) = γt and its CGF is analytic in
the whole complex χ-plane, which is also a peculiarity of this particular probability distribu-
tion. It turns out that the generic behavior of CGFs is actually non-analyticity in the complex
χ-plane, which implies ubiquitous factorial growth of high-order cumulants and their oscilla-
tions with parameters of the CGF, cf. P.8 and P.11, Sec. IV. I just finish this brief introduction
into the properties of CGFs by pointing out the connection to the large-deviation theory of
rate functions R(I) determined by Pn(t) ≈

t→∞
e−tR(I) [4]. Knowing the CGF of a distribution

we can invert the relation for the characteristic function above to evaluate the Pn(t) in terms

of S(χ; t) as Pn(t) =
∫ 2π

0
dχ
2π
eS(χ;t)e−inχ. For the Poissonian distribution we can easily calculate

the integral exactly, but since I want to demonstrate a more general principle, let’s consider
an approximate evaluation of the integral for large t (and consequently also large n) via the
steepest descent/saddle point method. The saddle point χ0 lies on a purely imaginary axis
of the complex χ-plane and satisfies the condition γeiχ0 = I or iχ0 = log ι. Consequently,
Pn(t) ≈

t→∞
eγt(e

iχ0−1−iχ0ι) = e−tR
Poisson(I) recovering the above expression for the large-deviation

rate function RPoisson(I). However, this procedure is general and not limited to the Poisso-
nian case only. The asymptotic large-deviation behavior of the probability distribution reads

Pn(t) ≈
t→∞

et(S(χ0;t)/t−iχ0I) with limt→∞
1
t
∂S(χ;t)
∂(iχ)

∣∣∣
χ0

= I, i.e., the rate function R(I) is the Legen-

dre dual to the CGF normalized by (long) time and taken as a function of iχ. Consequently,
R(I) is a convex function. Moreover, it is also positive since it determines the asymptotic
behavior of bounded probability density [4].

Finally, before closing this introductory section, it should be noted that the introduced
counting concept can be used in a wider context than just discrete electron counting. Analo-
gous approach based on the evaluation of the characteristic/generating functions exists also for
continuous quantities and has been applied to, e.g., the classical stochastic dynamics of super-
conducting phase in Josephson junctions, where it was used for calculating the (zero-frequency)
voltage noise within the RSJ [18] and RCSJ [19] models, or the evaluation of quantum heat-
flow distributions in electronic [20] as well as phononic [21] systems. I will demonstrate the
continuous-variable counting on a coarse-grained model of electronic transport in Sec. 2.2 (cor-
responding to P.18).



Chapter 2

Examples of classical counting in
resonant level transport

In this section I will further develop the theory of electron counting in two examples involving
generic model of transport through a resonant electronic level. I assume spinless transport
through a single electronic level coupled to noninteracting leads. This corresponds to realistic
situations in artificial quantum dots or molecules when the spin degree of freedom is unimpor-
tant (and contributes to the transport just by the factor 2) and a single electronic level lies in
the transport window of the bias voltage. This model is chosen for the simplicity and clarity of
presentation of concepts and formalisms. Extension to many-level systems is straightforwardly
possible. The Hamiltonian of the basic building block, i.e., the level coupled to the leads is
given by

H0 = ε0d
†d+

∑
k;α=L,R

εkαc
†
kαckα +

∑
k;α=L,R

(tkαc
†
kαd+ t∗kαd

†ckα). (2.1)

I introduce by the standard definition the tunnel couplings to the respective leads as γα(ε) =
2π
∑

k |tkα|2δ(ε − εkα) ≡ γα, where I set ~ = 1 (and also e = 1, kB = 1 throughout the whole
text) and assume the wide-band limit implying the energy-independence of the γ’s. The two
leads are separately kept in local thermodynamic equilibria at temperature T and respective
chemical potentials µL,R whose difference defines the bias voltage V ≡ µL − µR. I study
various examples generalizing this simple resonant level Hamiltonian by adding interaction
terms potentially with other degrees of freedom (e.g., vibrations). The extra terms in the
Hamiltonian are then specified at the appropriate places. Despite of quantum ingredients
the electron counting considered in this chapter is still essentially classical. Truly quantum
extensions with their specifics related to non-commutativity of variables will be discussed in
the last chapter 4.

Apart from specifically designed experiments mentioned earlier, electrons are typically not
counted directly but rather the time-dependent current is monitored and its statistics studied.
The relation between the number of passed electrons n(t) and current I(t) is simply n(t) =∫ t

0
dτI(τ). That implies the definition of stationary (i.e., t→∞) current cumulants reading

〈〈Ik〉〉 ≡ lim
t→∞

〈〈nk〉〉
t

= lim
t→∞

d〈〈nk〉〉
dt

= k lim
t→∞

∫ t

0

dτk−1 · · ·
∫ t

0

dτ1〈〈I(t)I(τk−1) · · · I(τ1)〉〉, (2.2)

which reduces to the mean stationary current 〈〈I〉〉 = 〈I(t→∞)〉 and zero-frequency noise

〈〈I2〉〉 = 2

∫ ∞
0

dτ〈∆I(τ)∆I(0)〉 =

∫ ∞
−∞

dτ
[
〈I(τ)I(0)〉 − 〈I(t→∞)〉2

]
(2.3)

13
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(the mean values are evaluated with respect to the stationary state) for the first two current
cumulants.

2.1 Resonant tunneling in the sequential limit

Here, I describe an archetypical example of the resonant tunneling transport through a single
resonant level governed by the Hamiltonian (2.1) in the limit of small couplings γ’s to the leads
(compared to the temperature T or detuning of the resonant level ε0 from the Fermi energies
of the leads) so that the dynamics of the level occupation and charge transfer is described by
a simple Markovian rate equation.1 The dynamics of the occupation of the level P1(t) and
probability of being empty P0(t) = 1− P1(t) satisfies the following master equation

d

dt

(
P0(t)
P1(t)

)
=

(
−γLfL − γRfR γL(1− fL) + γR(1− fR)
γLfL + γRfR −γL(1− fL)− γR(1− fR)

)
·
(
P0(t)
P1(t)

)
, (2.4)

where fL/R ≡
(
e(ε0−µL/R)/T + 1

)−1
are the Fermi-Dirac distributions of the respective leads at

the resonant-level energy. By the identification of the various Fermi-golden-rule rates with
corresponding charge-transfer processes (e.g., γLfL corresponds to the transfer of charge from
the left lead onto the resonant level, while γL(1− fL) describes the reverse process etc.) we can
straightforwardly extend the master equation to include the charge counting say across the left
tunneling barrier and write the pertinent master equation for the joint probability distribution
P0/1(n; t) of level being empty/occupied and n charges having passed through the left tunnel
barrier (the positive direction is chosen to be from the left lead towards the resonant level)

dP0(n; t)

dt
= −(γLfL + γRfR)P0(n; t) + γL(1− fL)P1(n+ 1; t) + γR(1− fR)P1(n; t), (2.5a)

dP1(n; t)

dt
= γLfLP0(n− 1; t) + γRfRP0(n; t)− [γL(1− fL) + γR(1− fR)]P1(n; t). (2.5b)

Introducing P̃0/1(χ; t) =
∑

n P0/1(n; t)einχ we have

d

dt

(
P̃0(χ; t)

P̃1(χ; t)

)
=

(
−γLfL − γRfR γL(1− fL)e−iχ + γR(1− fR)
γLfLe

iχ + γRfR −γL(1− fL)− γR(1− fR)

)
·
(
P̃0(χ; t)

P̃1(χ; t)

)
≡W(χ)·P̃(χ; t)

(2.6)
with the solution P̃(χ; t) = exp(W(χ)t) ˜·Pinit(χ; t = 0). We are interested in the CGF for long
times which approaches limt→∞ S(χ; t)/t = λ0(χ) ([22] and P.3), where λ0(χ) is the eigenvalue
of the generalized rate matrix W(χ) with the largest real part. For small χ’s relevant for
the evaluation of the cumulants (derivatives of CGF at χ = 0) eigenvalue λ0(χ) is the one
adiabatically developed from the zero eigenvalue corresponding to the stationary state of the
level at χ = 0. For arbitrary χ other branches of the characteristic solution might be relevant
with interesting topological properties [23]. Here, let’s only consider the small-χ branch with

λ0(χ) =
γL + γR

2

(√
1 +

4γLγR
(γL + γR)2

[fL(1− fR) (eiχ − 1) + fR(1− fL) (e−iχ − 1)]− 1

)
.

(2.7a)

1The full solution of the model (2.1) is discussed in Sec. 4.2.
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The first two current cumulants, i.e., the mean current and the zero-frequency noise, are

〈I〉 = −iλ′0(0) =
γLγR (fL − fR)

γL + γR
(2.7b)

and

〈〈I2〉〉 = −λ′′0(0) =
γLγR
γL + γR

· (γ2
L + γ2

R) (fL + fR − 2fLfR) + 2γLγR [fL(1− fL) + fR(1− fR)]

(γL + γR) 2
.

(2.7c)

Two limits are instructive to consider:

1. Zero bias voltage V → 0 (equilibrium case, fL = fR = f). Current is zero while
the thermal noise remains finite 〈〈I2〉〉 =

V→0
2f(1 − f) γLγR

γL+γR
and can be related via the

equilibrium fluctuation-dissipation theorem 〈〈I2〉〉V→0 = 2TG to the linear conductance

G = ∂〈I〉
∂V

∣∣∣
V→0

= −f ′ γLγR
γL+γR

. Notice that the CGF (2.7a) is not just a quadratic function

of the counting field χ even in equilibrium, i.e., the thermal equilibrium fluctuations of
a nanoscopic system are not Gaussian but contain also higher-order (even) cumulants
(equilibrium CGF is an even function of χ).

2. Large symmetrically applied bias voltage so that fL → 1, fR → 0 (shot noise limit).
Current 〈I〉 = γLγR

γL+γR
and noise expressed in terms of the Fano factor F = 〈〈I2〉〉/〈I〉 =

γ2L+γ2R
(γL+γR)2

are given by the well-known formulas [24]. Fano factor lies between 1/2 for
a symmetric double-barrier structure γL = γR and the Poissonian value 1 for a very
asymmetric one, say γL � γR (effectively, the transport is fully determined and limited
by just the right barrier and the FCS approaches the Poissonian case considered in the
introductory chapter 1). CGF in this shot-noise limit reads

λ0(χ) =
V→∞

γL + γR
2

(√
1 +

4γLγR (eiχ − 1)

(γL + γR)2
− 1

)
(2.8)

and exhibits the generic (square-root) singularities in the complex χ-plane leading to the
universal factorial growth and oscillations of high-order cumulants (P.8 and [25]) as well
as the seeming breaking of 2π-periodicity in χ for the symmetric case γL = γR related to
the topological phase transitions in the generalized-rate-matrix spectrum [23].

This example, however simple, illustrates the general method used for the evaluation of the
FCS for nanostructures with many levels and arbitrary number of leads in the incoherent tun-
neling regime, which typically involves Coulomb blockade [22], described by master equations
for many-body-level occupations. The prescription for the construction of the generalized rate
matrix of Ref. [22] via the inclusion of the counting field(s) is just a straightforward extension of
the approach used in this example. The CGF for current statistics is then just the appropriate
eigenvalue of the generalized rate matrix2. Moreover, the charge conservation can be generally

2For larger systems it is not possible any longer to express the eigenvalue analytically like here in Eq. (2.7a).
Yet, one can still find the cumulants semi-analytically using the recurrent scheme of P.6 briefly introduced in
Sec. 4.1.
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proven from the structure of the generalized rate matrix ([22] and P.2). For the present two-
lead setup, this means that the CGFs evaluated with counting fields either at the left or right
junctions are identical (provided the positive directions of current were chosen consistently)
yielding the same current cumulants at the two junctions. This expresses the charge conserva-
tion in the stationary regime, when mean current, zero-frequency noise, etc. do not depend on
the cross-section along the circuit where they are measured.

2.2 Inelastic corrections to resonant transport in the

large-voltage regime (paper P.18)

In this section, I study a less-trivial example of classical counting of electrons. Once again, we
consider transport across a resonant level (2.1) which is now weakly coupled to an otherwise
isolated local vibrational mode with the frequency ω and free linear-harmonic-oscillator Hamil-
tonian Hvib = ωa†a via the interaction Hamiltonian Hint = Md†d(a+a†) =

√
2Md†dQ coupling

the level occupation d†d to the displacement of the local oscillator Q = (a + a†)/
√

2. Even in
the weak coupling regime evaluation of the FCS is a challenging quantum problem, which will
be discussed in the quantum regime later in Sec. 4.2, but it has a simple physically intuitive
solution in the limit of large bias [P.18]. For simplicity we assume that the symmetric coherent
coupling γ = γL + γR ≡ 2γL is the largest energy scale of the problem, in particular it is much
larger than the symmetrically applied bias voltage V which, in turn, is bigger than the vibration
frequency and temperature γ � V � ω, T (recall the convention e = ~ = kB = 1). The elastic

transport is governed by the transmission coefficient T = γ2

∆2+γ2
with ∆ = ε0−µ being the offset

of the resonant level from the equilibrium chemical potential of the leads (µL,R = µ± V/2). In
the large-voltage limit V � ω the characteristic time of electron tunneling across the nanosys-
tem 1/V is much shorter than the period of oscillation 2π/ω of the vibrational mode and,
thus, the oscillator may be considered as adiabatically gating the single electronic level and
consequently changing the electronic transmission coefficient T (Q) = γ2

(∆−
√

2MQ)2+γ2
. The mean

current then results from the averaging the oscillator position Q(t) = A cosωt over the oscil-
lation period 2π/ω. The first nonzero correction stems from the second order in M expansion
of the expression for 〈T (Q)〉 ≈ T + 2(M2T 2/γ2)(3 − 4T )〈Q2〉. Performing the average one
gets 〈Q2〉 = A2/2 = N + 1/2 with N the mean occupation number of the oscillator. This
yields the mean inelastic correction to the current I inel = (〈T (Q)〉 − T )V = I0(N + 1/2) with
I0 = 2VM2T 2(3− 4T )/γ2 [P.9]. We can extend this result by considering slow fluctuations of
the oscillator amplitude A(t) or, equivalently, the oscillator occupation number N(t) driven by
the fluctuating energy exchange between the oscillator and the passing electrons on a timescale
much longer than the oscillator period 2π/ω. This timescale is governed by the inverse of the
rates α↓,↑ for increasing/decreasing the oscillator occupation number entering the birth-death
type of master equation for the occupation number probability density pk(t) that N(t) = k
([26, 16, 27] and P.13)

dpk(t)

dt
= α↓

[
(k + 1)pk+1(t)− kpk(t)

]
+ α↑

[
kpk−1(t)− (k + 1)pk(t)

]
. (2.9)

Nonequilibrium rates α↓,↑ can be evaluated microscopically ([28, 29] and P.13) and are propor-
tional to ωM2T 2/γ2 with the small dimensionless coupling constant M2T 2/γ2 � 1 ensuring
the required time-scale separation. Under these conditions we have Iinel(t) = I0N(t) for the
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inelastic current correction (more precisely, its dynamical part, i.e., without the constant factor
I0/2 contributing solely to the mean current). The passed charge used in the FCS now reads
Qinel(t) ≡

∫ t
0
dτIinel(τ) = I0

∫ t
0
dτN(τ). Obviously, in this coarse-graining approach the charge

is no longer discrete and rather Qinel(t) is a continuous random variable which is a simple
functional of the stochastic process N(t). Analogously to the previous subsection we can write
again an extended master equation for the joint probability density pk(q, t) of the state of the
system (oscillator occupation N(t) = k) and the number of passed charges Q(t) = q

∂pk(q, t)

∂t
= α↓

[
(k + 1)pk+1(q, t)− kpk(q, t)

]
+ α↑

[
kpk−1(q, t)− (k + 1)pk(q, t)

]
− I0k

∂pk(q, t)

∂q
.

(2.10)
This equation can be recast into an equivalent form for the Laplace-transformed quantity
p̃k(χ, t) ≡

∫∞
−∞ dqe

iχqpk(q, t) more suitable for the direct evaluation of the cumulant generating
function (CGF) S(χ; t) = log

∑∞
k=0 p̃k(χ, t) via

∂p̃k(χ, t)

∂t
= α↓

[
(k+ 1)p̃k+1(χ, t)− kp̃k(χ, t)

]
+ α↑

[
kp̃k−1(χ, t)− (k+ 1)p̃k(χ, t)

]
+ iχI0kp̃k(χ, t).

(2.11)
This equation can be solved by the method of characteristics [27, Sec. VI.6.] and the final
result reads (details can be found in P.18)

lim
t→∞

S(χ; t)

t
=
α↓ − α↑ − iχI0 −

√
(α↓ + α↑ − iχI0)2 − 4α↓α↑

2
. (2.12)

Since the charge in our approximation is not quantized, the resulting CGF is not 2π-periodic in
the counting field χ. Nevertheless, CGF still possesses the generic branch-cuts in the complex
χ-plane repeatedly mentioned previously. This CGF is identical in the large-voltage limit to
the one calculated fully microscopically with significantly bigger computational effort [30] and
it generates the nonequilibrium inelastic corrections to the mean current and noise consistent
with previous studies [P.9, P.13]. Large voltage behavior of cumulants 〈〈Im〉〉 ∝ V 2m stemming
from (2.12) which agrees with the corresponding quantum result by Utsumi et al. [30] is at
variance with earlier results by Urban et al. [31] predicting 〈〈Im〉〉 ∝ V m+1. Although the exact
source of discrepancy of the two microscopic approaches is not fully identified yet, our physically
intuitive classical calculation presented here has convinced even the authors of Ref. [31] that
their method must be incorrect.
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Chapter 3

Counting at interfaces described by the
quasi-classical singular coupling limit
(papers P.1–P.5 and P.10)

It was in this specific quasi-classical limit where I first encountered the counting concept as an
active part of my research. It was connected with the study of quantum dynamics of so called
nanoelectromechanical systems (NEMSs), in particular the “quantum shuttle” [32] with the
setup schematically shown in Fig. 2. Due to their potentially strong coupling to the leads such
NEMSs are typically described by the generalized master equation (GME) in a special form
which is known in mathematical physics context under the name of singular coupling limit [33].
In electronic transport this approximation can be justified in the limit of energy-independent
tunnel coupling between the system and leads (so called wide-band limit) and large bias voltage
effectively keeping one of the leads occupied at any energy while the other one is always empty
[34, 35] (see the scheme in Fig. 2). The advantage of this approximation is that the electron
hopping between the leads and the system is described locally, only by system operators living
at the interface. This is very different even from the standard weak coupling approach, where
the coupling is determined from the eigenstates of the system Hamiltonian and, consequently,
is typically highly nonlocal throughout the whole system/device. The hopping superoperator
entering the singular-coupling GME can be easily identified solely from the tunneling part of
the total Hamiltonian and the immediate hopping interpretation of the resulting term leads to

Lead Lead

0 x̂

µL = ∞

µR = −∞
ΓL ΓR Pn

Figure 2: The quantum shuttle consists of a nanosized grain moving in a harmonic potential
between two leads. A high bias between the leads drives electrons through the grain. [Figure
taken from P.3.]
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a simple counting picture at the interface. In more detail, the GME has this generic form

˙̂ρ(n)(t) = (L − I)ρ̂(n)(t) + Iρ̂(n−1)(t) , (3.1)

with n = 0, 1, . . . and ρ̂(−1)(t) ≡ 0. From the n-resolved density operator one can obtain, at
least in principle, the complete probability distribution Pn(t) = Tr

[
ρ̂(n)(t)

]
which can then be

used for the evaluation of the FCS exactly as in previous sections. It can be also used for the
evaluation of the finite-frequency current noise spectrum SI(ω), which was also considered in
the works P.4 and P.6, via the so-called MacDonald formula [36, 37] reading

SI(ω) = ω

∫ ∞
0

dt sin(ωt)
d

dt

[∑
n

n2Pn(t)−
(∑

n

nPn(t)
)2
]
. (3.2)

It should be noted, however, that despite of the simple quasi-classical interpretation of
the electron hopping process at the interface(s), the system Liouvillean L as well as the hop-
ping/current superoperator I in principle capture fully quantum internal dynamics of the sys-
tem under consideration including various interference phenomena and coherence effects. It
is just the instant electron hopping at the interface(s) enabling simple quasi-classical counting
simplifying the whole approach in the given limit, but the internal dynamics of the system can
be arbitrarily complicated and deeply in the quantum regime (which can be the case in double-
and/or triple-dot setups considered in P.10 and P.2).

Having found the explicit form for the superoperators L and I for a given problem (e.g., the
single-dot quantum shuttle), the zero- and/or finite-frequency noise can be evaluated by using an
operator generalization of the generating function method as in P.1, P.2 and/or P.4.1 Another
possibility is the perturbative evaluation of the cumulant generating function (corresponding
to the extremal eigenvalue of a modified Liouvillean analogously to (2.7a) in Sec. 2.1) as was
done up to the third cumulant in P.3 (the perturbative method was significantly extended in
P.6 and I correspondingly discuss it more explicitly in the following chapter). In any case, the
resulting formulae involve two basic quantities which typically must be calculated numerically:
the stationary density matrix ρ̂stat determined as the null vector of the Liouvillean Lρ̂stat = 0
and a pseudoinverse of the LiouvilleanR (i.e., inverse of L taken solely on the complement of the
null space). These quantities can be numerically hard to obtain — for example for the single-
dot shuttle they involved superoperator matrices with linear size 20 000 which were 15 years
ago at the edge of (especially internal memory) capacity of usual PCs. The direct evaluation
was really impractical also because of long computational times so that we developed with
substantial help of numerical mathematician Prof. Timo Eirola from Helsinki University of
Technology (now renamed the Aalto University) Arnoldi iterative schemes for the computation
of ρ̂stat and R (applied to a given vector). Since L is not hermitian, we couldn’t use the
more standard Lanczos algorithm. To achieve convergence of the Arnoldi iteration we had
to develop a preconditioner, which corresponded to the solution of the Sylvester part of the
problem, cf. Appendix A of P.2.

Alternatively, in some setups involving internal charge flows within the system (such as
double-dot of P.10 or triple-dot in P.2) the zero-frequency current noise can be equivalently
calculated using these internal current operators with the help of the quantum regression the-
orem [26]. Charge conservation implies exactly that all current cumulants must be constant

1Finite-frequency noise spectrum is not constant along the circuit, unlike its zero-frequency counterpart,
and, thus, it’s evaluation requires more detailed information about the junction such as relative capacitances
between the system and the two leads as explained in P.4.
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along the circuit, i.e., it doesn’t matter at which position the current is evaluated (this issue is
explained in detail in Sec. III of P.2). However, the exact identities stemming from the charge
conservation may be broken by adopted approximations and this is indeed the case in the model
of a dissipative double-quantum-dot studied in P.10. There we showed with my master student
Jan Prachař that various commonly used approximations in a GME equation describing joint
effects of electronic leads and dissipative bosonic bath on a double-dot lead to significant issues
in the resulting noise. These noise issues are a specific manifestation of generic problems of
Markovian GMEs [26, 38] and of general non-additivity of multiple baths (which we discussed
briefly already in Sec. II.B of P.2 and which still forms an active research topic as seen, e.g.,
in Ref. [39]). There seems to be no satisfactory universal solution of such problems within
the framework of Markovian GMEs, but there are no generic viable non-Markovian extensions
available either. The only reliable solution of such problems can be probably achieved just
by heavy numerical tools such as Quantum Monte Carlo recently developed for the FCS of
nonequilibrium single-impurity Anderson model [40]; in our group this numerical methodology
is pursued by my former postdoc Martin Žonda and, once its implementation is completed, it
may serve as an invaluable benchmark of far simpler (semi)analytical methods.

Finally, I devote the rest of this chapter to a brief introduction to a prime example of FCS
usage in its original spirit as a diagnostic tool of a nontrivial quantum transport mechanism. For
that we look at the single-dot quantum shuttle of Fig. 2 again. In our first paper addressing
this system [32] we concluded from the stationary Wigner function that in an intermediate
mechanical damping regime the transport through the movable quantum dot happens via some
form of coexistence of (essentially static) tunneling and shuttling mechanisms. The exact
dynamical picture of this coexistence was unclear and missing. When studying the electronic
noise in this model in P.1, we noticed a huge enhancement of noise quantified by the Fano factor
reaching values of several hundreds. Based on this result we conjectured that the coexistence is
actually a bistable switching between the two dynamical mechanisms with timescale(s) much
longer than the typical transport times of individual electrons. To verify this assumption
we calculated numerically also the third cumulant in P.3 and compared it with the expected
analytical results for dynamically bistable systems.

FCS of such bistable systems has been studied [41], and it was found that the first three cu-
mulants are (assuming that the individual channels are noiseless, which is a fair approximation
in the shuttle case)

〈〈I〉〉 =
ISΓS←T + ITΓT←S

ΓT←S + ΓS←T

, (3.3a)

〈〈I2〉〉 = 2(IS − IT)2 ΓS←TΓT←S

(ΓS←T + ΓT←S)3
, (3.3b)

〈〈I3〉〉 = 6(IS − IT)3 ΓS←TΓT←S(ΓT←S − ΓS←T)

(ΓS←T + ΓT←S)5
. (3.3c)

Here IS/T denote the current associated with the shuttling/tunneling channel (these are known
even analytically), while ΓT←S is the transition rate from the shuttling to the tunneling channel
and ΓS←T is the rate of the reverse transition. Their calculation is a highly nontrivial and
technically demanding task as is demonstrated in P.5, Sec. 5.3 in a special limit for the single-
dot quantum shuttle. FCS offers an elegant alternative utilizing its diagnostic power — as we
showed in P.3 by calculating numerically the first three cumulants of the current, i.e., the mean
current, zero-frequency noise, and the third cumulant called “skewness”, we can extract the two
switching rates from the first two cumulants (mean current and noise) using formulas (3.3a) and
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Figure 3: Results for the first three cumulants in the quantum shuttle as functions of its me-
chanical damping γ. The full lines indicate numerical results, while the circles in the rightmost
panel are given by the analytic expression (3.3c) for the third cumulant assuming that the
shuttle in the transition region effectively behaves as a bistable system. [Figure taken from
P.3.]

(3.3b) for the dichotomous process and then (successfully) test the bistability assumption by
plugging these rates in to the analytical formula (3.3c) for the third cumulant of the dichotomous
process and comparing it to the full numerical solution (cf. Fig. 3).

We used a similar methodology with my postdoc Martin Žonda in a different context of
purely classical stochastic dynamics of underdamped Josephson junctions (so called RCSJ
model) [19] to decipher various dynamical regimes of the noisy phase evolution and obtained
highly nontrivial quantitative results for the switching rates between trapped and running solu-
tions as well as rates of multiple phase slips. Also there the counting field approach proved its
extreme usefulness as a diagnostic tool enabling unambiguous identification and quantitative
characterization of dynamics of nanoscopic systems.



Chapter 4

Counting in the fully quantum regime

Counting electrons in the quantum regime, i.e., when quantum-mechanical coherent effects are
relevant, is intimately related to the issues of quantum measurement and detection schemes
analogously to the situation in quantum optics. The conceptual problems are particularly
obvious when there is explicit coherence between the two parts of the circuit divided by the
cross-section, where the counting is supposed to take place in a “gedanken experiment”. This is
realized for example in Josephson junctions with flowing supercurrent driven by phase difference
[42], but formulation problems exist similarly in the normal case as well. Strong projective
measurement can be applied to strictly monitor charge transfers such as in the experiments
involving the quantum point contact in close proximity of the studied system ([5, 6, 7, 8]
and P.8) which, however, completely kills the quantum coherence and renders the transport
essentially classical. An alternative is to weakly couple a current detector so as to perturb
the studied system the least possible. One should then study the full quantum-mechanical
dynamics of the system + detector. The issues of the detector back-action are beyond the
scope of this work, I refer readers to the proceedings [43] and references therein.

When the dynamics and thus also the backaction of the detector is neglected (“virtual
detector”), one can formulate a quantum-mechanical formula for the CGF in the quantum
regime [44, 45]

eS(χ;t) =

〈
TC exp

[
− i

2

∫
C

dτχ(τ)I(τ)

]〉
(4.1)

formulated as a generating functional on the Keldysh contour C. The counting field χ(τ)
assumes for long times t opposite constant values±χ on the two branches of the Keldysh contour
and couples to the measured current through the circuit represented by the current operator
I(τ) in the interaction picture with respect to the system Hamiltonian. The mean value is taken
with respect to the nonequilibrium state of the electronic system. This effectively describes the
influence functional due to the electronic circuit on the quantum coordinate (antisymmetric on
the Keldysh contour) of the detector. For the current operator localized at either of the tunnel
junctions (α = L, R) the coupling term χα(τ)Iα(τ) can be moved by a gauge transformation
into the respective tunneling term of the Hamiltonian by modifying

HTα =
∑
k

(tkαc
†
kαd+ t∗kαd

†ckα) 7−→

HTα(χα(τ)) =
∑
k

(
tkαc

†
kαde

iχα(τ)/2 + t∗kαd
†ckαe

−iχα(τ)/2
)
.

(4.2)

This contour-dependent modification of the system Hamiltonian is the starting point for the

23
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evaluation of the CGF in the quantum case. The appropriate derivatives of the CGF yield
for large times the current cumulants with Keldysh ordering. In particular, the first cumulant
simply gives the quantum-mechanical mean value of the current, while the second one yields the
zero-frequency component of the symmetrized irreducible current-current correlation function,
i.e., the noise.

It should be noted that the probabilities Pn(t) =
∫ 2π

0
dχ
2π
eS(χ;t)e−inχ calculated from Eq. (4.1)

are generally not positive, in particular for superconducting transport [42]. This can be un-
derstood by realizing the origin of formula (4.1) as stemming from the description of the mea-
surement scheme. In the superconducting case the current depends on the superconducting
phase difference which is a conjugated variable to the number of passed charges. The attempts
of their simultaneous measurement necessarily cause problems reflected in “negative probabil-
ities”. Instead of interpreting Pn’s as probabilities, it is more sensible to relate them to the
Wigner function of the measurement apparatus which can turn negative [42].1

4.1 Generalized Master Equation approach: quantum

memory effects at resonant Fermi edges (papers P.6,

P.11, P.14, P.15, and P.16)

The above modified Hamiltonian (4.2) can be used also in approaches involving the reduced
density matrix of the nanosystem. The starting Liouville-von Neumann equation for the whole
generalized density matrix %̃(χ; t) of the system + reservoirs (leads) then gets modified into
[47, 48]

i
d%̃(χ; t)

dt
= H(χ)%̃(χ; t)− %̃(χ; t)H(−χ). (4.3)

This requires the appropriate modification of the standard methods for the evaluation of re-
duced density matrix ρ̃(χ; t) = Trres%̃(χ; t) of the system only. It can be easily shown that
within the lowest-order approximation, i.e., the second order in the tunnel couplings tkα corre-
sponding to the Fermi-golden-rule rates the master equation resulting from the Liouville-von
Neumann equation with counting field(s) is identical to that of Sec. 2.1 and prescription of
Bagrets and Nazarov [22]. Going beyond the lowest-order approximation requires more so-
phisticated approaches as non-classical effects such as cotunneling, level broadening, and/or
(quantum) memory become important. Standard GME approaches capable of including these
effects were extended to incorporate the counting field(s). The first study [48] used the pertur-
bative real-time diagrammatic technique [49, 50] to go beyond the lowest-order tunneling limit
by incorporating the next order (cotunneling) with ensuing non-Markovian effects revealed by
noise and higher-order cumulants. Infinite resummation of the perturbative series within the
so-called resonant tunneling approximation [49, 51] was performed in Refs. P.14 and [52]. It
was concluded that repeating the successful approximation scheme with the counting field does
not necessarily reproduce the properties of the results without the counting field (i.e., results
for the mean current only) such as the exactness for noninteracting systems [P.14]. At the
level of noise and higher cumulants there are omitted diagrams even in the noninteracting case
[52], yet the approximation scheme still generally performs better than less sophisticated ones.
Nevertheless, development of reliable approximations for resummation of perturbation series
for GMEs remains an open issue.

1A fresher point of view based on non-classical dynamics can be found in more recent Ref. [46].
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We have developed for general non-Markovian GMEs a recurrent evaluation method of
high-order cumulants based on a perturbative expansion of the extremal eigenvalue of the
generalized (by inclusion of the counting field(s)) memory kernel [P.6]. The recurrent scheme
is very stable and enables to reach high-order cumulants (order of tens) well in the regime of
universal oscillations P.11. Here, I will use it just to calculate the second cumulant (i.e., noise)
for a fundamentally non-Markovian problem of low-temperature transport close to Fermi edges
[P.15, P.16]. I start with showing the principle of the recurrent scheme on the problem of noise
evaluation for a general non-Markovian generalized memory kernel. Higher-order cumulants
are obtained by following the recurrent scheme further on.

Let’s consider a GME for the generalized reduced density matrix ρ̃(χ; t) in the general form
[P.6]

dρ̃(χ; t)

dt
=

∫ t

0

dt′w(χ; t− t′)ρ̃(χ; t′) + η(χ; t). (4.4)

The CGF is then given as S(χ; t) = log Trsysρ̃(χ; t) which for the long times t → ∞ is deter-
mined2 by the pole z0(χ) of the resolvent [z −W(χ; z)]−1 of the Laplace-transformed version
of Eq. (4.4) (P.6 and P.11) with W(χ; z) ≡

∫∞
0
dte−ztw(χ; t). This pole yielding the CGF

limt→∞ S(χ; t)/t = z0(χ) is the solution of the equation

z0(χ) = λ0(χ; z0(χ)) (4.5)

with λ0(χ; z) the extremal eigenvalue of W(χ; z) adiabatically developed for small χ from zero
corresponding to the stationary state (without the counting field). Since cumulants are deter-
mined by the Taylor expansion of S(χ; t) around χ = 0 we can determine the eigenvalue λ0(χ; z)
perturbatively via the Rayleigh-Schrödinger perturbation scheme. Then also the equation for
the pole z0(χ) (4.5) can be solved perturbatively in χ which completes the task of cumulant
evaluation.

The full recurrent procedure is explained in detail in P.6 and P.11, here I only demonstrate
it on the evaluation of the mean current and noise. Because of the probability conservation
condition Trsysρ̃(χ = 0; t) = 1 for any t which implies for the kernel TrsysW(χ = 0; z)• = 0
for any z and, consequently, also λ0(χ = 0; z) = 0, we can write for the eigenvalue up to the

second order in χ and z: λ
(2)
0 (χ; z) = λ′0χ+ λ′′0χ

2/2 + λ̇′0χz. Then, we can solve Eq. (4.5) up to

the second order in χ as z
(2)
0 (χ) = λ′0χ+ (λ′′0 + 2λ̇′0λ

′
0)χ2/2 yielding

〈I〉 = λ′0 = TrsysW ′ρ̂stat (4.6a)

and

〈〈I2〉〉 = λ′′0 + 2λ̇′0λ
′
0 = Trsys[W ′′ − 2W ′RW ′]ρ̂stat + 2〈I〉Trsys[Ẇ ′ −W ′RẆ ]ρ̂stat , (4.6b)

with prime/dot denoting the χ/z-derivatives at zero and ρ̂stat (R) being the stationary state
(pseudoinverse) of the effective Liouvillean L ≡ W(χ = 0; z = 0) analogously to the previous
chapter. The second term on the right hand side of (4.6b) constitutes the non-Markovian
correction to the noise due to memory effects.

Now, we can apply these results to the case of a resonant level in the Fermi-edge-singularity
(FES) regime, which exhibits strong memory effects as was shown theoretically [P.16] and

2The initial-condition term η(χ; t) does not contribute to the long-time FCS behavior, cf. P.6.
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successfully compared to the experiment [P.15]. Following the experimental setup with the
FES occurring at the resonance with the left lead ([53] and P.15) the Hamiltonian (2.1) is
supplemented by the interaction term Hint = d†d

∑
kL,k

′
L
VkLk′Lc

†
kL
ck′L describing the scattering

of the left-lead electrons by the occupied resonant level. This interaction term is responsible for
the Fermi-edge singularity and the resulting scattering phase shifts determine the FES critical
exponent α [54]. The Coulomb interaction of the level with the right lead does not seem to play
any role in the experiment. On the other hand, the tunnel couplings to the leads are dominated
by the right one being much larger than the left γR � γL. The resonance is achieved by strongly
biasing the right lead µR → −∞ until the electrostatically gated resonant level hits the left-
lead chemical potential. Under these circumstances it is possible to integrate out the right
lead exactly while the left one can be treated in the lowest-order in the small γL. The GME
for generalized occupations P̃i(χ; t) ≡ ρ̃ii(χ; t), i = 0, 1 was derived by a physically-motivated
decoupling for reduced-density matrix coherences ρ̃01(χ; t), ρ̃10(χ; t) in Ref. P.16 resulting in
the generalized memory kernel

W(χL, χR; z) =

(
−γL(z) γbL(z)e−iχL + γRe

iχR

γL(z)eiχL −γbL(z)− γR

)
, (4.7)

with the counting fields χL,R at the left/right tunnel junction and the forward/backward non-
Markovian tunneling rates given by

γL(z; ∆) ∝ =
[(

i

2πT

)α
B

(
1− α

2
+
z + γR

2
(1− i∆)

2πT
, α

)]
,

γbL(z; ∆) = γL(z;−∆),

(4.8)

with ∆ ≡ 2(µL − ε0)/γR the dimensionless energy distance from the resonant edge, α the FES
exponent, and B(x, y) the Beta function. When Eqs. (4.6a) and (4.6b) are applied to the
kernel (4.7) we get regardless of the used counting field (which is the consequence of a charge
conserving approximation) for the mean current and noise expressed in terms of the Fano factor
the following expressions

I(∆) = e
γRγL(0; ∆)

γR + γL(0; ∆) + γbL(0; ∆)
(4.9a)

and

F (∆) = 1− 2γRγL(0; ∆)

(γR + γL(0; ∆) + γbL(0; ∆))2

+ 2γR
(γR + γbL(0; ∆))γ′L(0; ∆)− γb′L(0; ∆)γL(0; ∆)

(γR + γL(0; ∆) + γbL(0; ∆))2
. (4.9b)

The second line of (4.9b) is the non-Markovian correction due to the memory effects. It should
be mentioned that the mean current does not contain any non-Markovian correction in ac-
cordance with findings of Refs. [48], P.6, and P.11. In the shot noise limit ∆ � 1 both the
backflow rate γbL(0; ∆) as well as the non-Markovian corrections, i.e., the derivative terms in the
second line of Eq. (4.9b) are negligible and we recover the standard Markovian expressions from
Sec. 2.1. However, for low enough temperature T . γR and close enough to the edge |∆| . 10
the non-Markovian corrections are relevant and their features are clearly visible in the Fano
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Figure 4: Current and noise in the Fermi-edge-singularity transport with the critical exponent
α = 0.4. a) Mean current and b) Fano factor as functions of dimensionless energy distance
from the resonant edge ∆ = 2(µL− ε0)/γR for two different temperatures T = 0 (full blue line)
and T = 2γR (dashed red line). Poissonian limit F = 1 is depicted in b) by the thin horizontal
line. [Reshaped figure taken from P.17.]

factor curves as depicted in Fig. 4 showing the mean current (4.9a) and Fano factor (4.9b) for
two different temperatures as functions of the dimensionless distance from the edge ∆. We see
at zero temperature the sharp FES peak in the mean current and accompanying strong sup-
pression of the Fano factor above the edge and slightly super-Poissonian noise (F > 1) below
it. These are effects associated with the strong quantum-induced memory which are destroyed
by increased temperature as demonstrated by the other curve corresponding to T = 2γR. The
crossover temperature is on the order of the dominant tunnel broadening T ∼ γR. Straightfor-
ward generalization of the present calculation to the spinfull case with magnetic-field-induced
Zeeman splitting and strong Coulomb blockade excluding level’s double occupancy was suc-
cessfully applied to the analysis of the experiment with excellent agreement with the measured
data [P.15].

4.2 Nonequilibrium Green’s function approach: inelas-

tic effects in atomic wires (papers P.9, P.12, and

P.13)

Complementarily to the previous case of GMEs based on expansion in the tunnel coupling
with otherwise arbitrary interactions within the system there is an alternative route to the
FCS evaluation starting from the noninteracting limit of electronic transport and incorporating
many-body interactions perturbatively via the NEGF method [55]. There exists an extension of
the standard NEGF scheme incorporating counting field(s) [56] based on the above-mentioned
decorating of the Keldysh-Schwinger contour by the counting field and modifying the tunneling
part of the Hamiltonian (4.2). The formal development of the theory is similarly to the standard
NEGF method rather involved and lengthy, so I will only summarize the final conclusions and
give operational description for the usage of the method. Readers interested in deeper levels
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of the formalism are encouraged to consult relevant literature, in our context of resonant-level
transport especially Refs. [56, 57].

The quantum formulation of the basic formula for the CGF at junction α = L,R reads
[56, 57]

eSα(χα;t) =

〈
TC exp

[
−i
∫
C

dτHTα(χα(τ); τ)

]〉
(4.10)

with the tunneling part of the Hamiltonian corresponding to the junction α modified according
to the prescription with the counting field assuming different values on the two branches of the
Keldysh-Schwinger contour C, more precisely χα(τ−) = χ−α for 0 < τ− < t on the forward (or
“−”) branch and χα(τ+) = χ+

α for 0 < τ+ < t on the backward one (“+”), χα(τ) = 0 otherwise.
For long-enough t so that transients are negligible the CGF simplifies to Sα(χα; t → ∞) =
−itU(χ−α = χα, χ

+
α = −χα) [57] with the adiabatic potential which can be determined by

∂U(χ−α , χ
+
α )

∂χ−α
=

〈
∂HTα(χα(τ); τ)

∂χ−α

〉
χα

. (4.11)

The mean value is taken here with respect to the state determined by the modified Hamilto-
nian. The adiabatic potential is an analogy of the thermodynamic potentials, e.g., free energy,
in the equilibrium statistical physics. They can be evaluated directly by perturbative meth-
ods involving Feynman diagrams but when infinite resummations are needed, they cannot be
done directly for the thermodynamic potentials. Rather, their derivatives for example with
respect to coupling strength are used which effectively leads to evaluation of Green’s functions.
Perturbation expansions for Green’s functions can be resummed straightforwardly [58]. Here,
the situation is exactly analogous — the derivative of the adiabatic potential constitutes some
kind of (nonequilibrium and generalized by the counting field) Green’s function for which a
perturbation theory in terms of Feynman diagrams can be formulated with the possibility of
resummations, i.e., dressing the lines of diagrams. Moreover, the CGF itself is basically never
needed, but its derivatives at least of the first order are, see above the prescriptions for the
cumulants and large-deviation rate function. Thus, the derivative of the adiabatic potential is
the most natural and needed quantity to calculate.

As already mentioned the derivative of the adiabatic potential is an equal-time Green’s
function involving both the resonant-level and lead operators and when the many-body inter-
action is localized on the resonant level only (as, for example, in the Anderson model with
local Coulomb interaction U or for localized electron-vibration couplings studied here) it can
be expressed in terms of the local interacting Green’s functions only via a sort of a generalized
Meir-Wingreen formula [59]. For the single resonant level with localized interaction this formula
gives for the derivative of the CGF ([57] and P.9)

lim
t→∞

1

t

∂Sα(χα; t)

∂(iχα)
=

∫
dε

2πi
γα(ε)

[
e−iχα(1− fα(ε))G−+

χα (ε) + eiχαfα(ε)G+−
χα (ε)

]
. (4.12)

Green’s functions G±∓χα (ε) are the appropriate Keldysh components in the energy domain of

the generalized NEGF defined via Gχα(τ, τ ′) ≡ −i
〈
TCd(τ)d†(τ ′)

〉
χα

. The difference from the

definition of standard NEGF is in the mean value being taken with respect to the modified
tunneling Hamiltonian including the counting field χα. This has significant consequences for the
properties of these generalized NEGFs — because of the presence of two opposite counting fields
at the two branches of the Keldysh-Schwinger contour the fundamental identity connecting the
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four components of standard NEGFs is broken, i.e., G−− +G++ 6= G−+ +G+−. Consequently,
the customary NEGF reduction to retarded, advanced, and Keldysh (or lesser) components
of Green’s function only cannot be carried out. Now, all the four Keldysh components of
the NEGF are independent and the Keldysh or Langreth-Wilkins rules for the perturbation
expansion do not hold any longer. One must retain the whole 2x2 matrix structure in the
perturbation scheme for the extended NEGFs, but otherwise it works straightforwardly.

Similarly as for the standard Meir-Wingreen formula also Eq. (4.12), which reduces to the
normal Meir-Wingreen form when χα = 0, contains all the complexity of many-body physics
via Green’s functions G±∓χα (ε) which include the effects of interactions as well as the counting
field. They yield all the characteristics of the interacting electronic transport, but of course
their evaluation is the core problem. Generally, they are determined by the Dyson equation
(check marks above the letters denote matrices in the Keldysh space) Ǧχ = ǧχ + ǧχΣ̌χǦχ with
free (i.e., without many-body interaction) NEGF ǧχ(ε) reading [57]

ǧχ(ε) =

(
ε− ε0 − i

∑
α γα(fα − 1

2
) i

∑
α γαfαe

iχα

−i∑α γα(1− fα)e−iχα −ε+ ε0 − i
∑

α γα(fα − 1
2
)

)−1

. (4.13)

If one inserts the appropriate components of this non-interacting Green’s function into Eq. (4.12),
one obtains (we assume counting at the right junction)

lim
t→∞

1

t

∂SR(χR; t)

∂(iχR)
=

∫
dε

2π

T (ε) [fL(1− fR)e−iχR − fR(1− fL)eiχR ]

1 + T (ε) [fL(1− fR)(e−iχR − 1) + fR(1− fL)(eiχR − 1)]

= i
∂

∂χR

∫
dε

2π
log
[
1 + T (ε)

[
fL(1− fR)(e−iχR − 1) + fR(1− fL)(eiχR − 1)

]]
(4.14)

recovering the Levitov formula [2] for a ballistic point contact characterized here by the Breit-
Wigner transmission coefficient T (ε) = γLγR

(ε−ε0)2+(γL+γR)2/4
for the resonant level. Relation of this

fully coherent result to its sequential-tunneling limit (2.7a) is explained in Ref. [22]. Many-body
interactions are incorporated via the self-energy Σ̌χ entering the Dyson equation; as usually it
can be found in practice only approximately by the perturbation theory.

In Refs. P.9, P.12, and P.13 we have used the above outlined theory for studying inelastic
corrections to the ballistic transport across a (generally multilevel) nanosystem weakly locally
coupled to a vibrational mode with frequency ω (see Sec. 2.2 for details of the setup and
notation). Due to assumed weak electron-vibration interaction (dimensionless coupling in ex-
perimentally relevant setups is on the order of 0.01) we used the simplest bare perturbation
theory directly for the NEGF Ǧχ(ε) in the lowest, i.e, second order in the coupling, which
involves just the Hartree and Fock diagrams. In P.9 we considered only the single-level case
while in P.12 the method was extended to general multi-orbital systems which is suitable for
the implementation in ab initio packages (our theory was indeed included by Dr. Thomas Fred-
eriksen into the INELASTICA code [60]).The experimentally interesting quantity is the inelastic

noise signal ∆
(2)
inel ≡ ∂〈〈I2〉〉/∂V |V=ω+− ∂〈〈I2〉〉/∂V |V=ω− at the inelastic threshold V = ω which

is the noise analogy of the inelastic conductance jump. Tedious but straightforward calcula-
tions in P.9 yield for this quantity at zero temperature (in practice condition ω � T is well

satisfied) ∆
(2)
inel ∝ 8T 2 − 8T + 1 as a function of the elastic transmission coefficient at the

equilibrium chemical potential of the leads T ≡ T (µ). This quantity is positive for both large
(T → 1) and small (T → 0) transmissions and changes sign to negative at crossing values
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T± = (2 ±
√

2)/4
.
= 0.85, 0.15. However, measurement of inelastic noise in gold atomic wires

[9] found the crossing at T+
.
= 0.96 (transparencies below ∼ 0.6 could not be achieved in the

experiment so the value T− remains unknown).
The above mentioned theoretical result for the crossing values was only derived for a sin-

gle level model, which is certainly not appropriate for an atomic chain consisting of several
(∼ 5) atoms, but two works building on our multi-orbital theory P.12 basically repeated the
conclusions from this simple picture. Analytical theory for single elastic channel systems rel-
evant to atomic chains [61] confirmed the T+ = (2 +

√
2)/4

.
= 0.85 as the upper bound for

any single-channel system. Also elaborate ab initio simulations [60] including several channels
could not recover the experimentally found crossing value above this bound. All the calcu-
lations mentioned so far assumed perfectly equilibrated vibration mode. That may not be
necessarily the case in experiments so that we also studied in P.13 the opposite case of fully ex-
ternally undamped vibrational mode. That calculation is more challenging since the counting
field “penetrates” into the vibrational dynamics and more sophisticated resummation meth-
ods are needed even in the weak-coupling situation to account for the correlations between
charge transfer and vibronic dynamics. These cause highly nontrivial backaction effects on the
noise and FCS of such non-equilibrated system, which make even qualitative changes (e.g.,
different large-voltage asymptotics of inelastic noise and higher cumulants) with respect to the
vibronic equilibrium case. Among others, also the crossing values are changed (in particular
T+

.
= 0.816), but not in a way explaining the experiment. Even though a systematic study of

multi-orbital systems with a non-equilibrated vibrational mode has not been performed yet (to
the best of my knowledge), the chances that the vibronic nonequilibrium could be responsible
for the measured anomalous crossing value seem rather low. Thus the discrepancy between
the experiment and theory remains a mystery so far.3 Our calculation P.13 contradicted the
earlier results of Ref. [31], which motivated us to come up with a more heuristic and physically
intuitive approach to this problem to obtain an independent check of our microscopic results
and resolve the discrepancy. As an answer to that call we performed the classical calculation
in the large voltage limit P.18 described in Sec. 2.2.

3My personal opinion is that the sharp energy dependence of elastic characteristics of the measured junction
observed already in the conductance curve in Fig. 1 of Ref. [9] invalidates the assumptions of the lowest-order
expansion approach adopted by us (and others) and, consequently, our results are not applicable to those
experimental data. Unfortunately, there are no indications that a similar experiment could be soon repeated,
which would allow the community to address these problems more systematically.
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Summary

In this text serving as introduction to the attached 18 papers on the theory of noise and FCS
in interacting nanoscopic systems I have tried to give a brief overview of concepts, methods,
problems and results presented in those papers. Here, it may be appropriate to single out
several important results achieved:

• General scheme for the evaluation of arbitrarily high cumulants in non-Markovian systems
described by the GME formalism.

• Theoretical formulation and experimental proof of the existence of memory effects in the
(zero-frequency) current noise.

• Discovery and experimental confirmation of a universal oscillatory behavior of high-order
current cumulants.

• Comprehensive theoretical predictions for inelastic noise signal in nanosystems with weak
electron-vibration interaction based on an extended formalism of the NGF.

• Usage of the lowest three current cumulants for the identification and detailed analysis
of bistable quantum dynamics.

There are numerous interesting open questions remaining, but the rapid general progress
made in the theory of FCS over the first decades of this century has more recently stalled. The
main reason for this situation is the lack of relevant experiments, which is, especially in the field
of condensed matter, a fatal issue. The experiments on noise are generally hard, the conjunction
with nanoscopic objects makes them even harder (yet not impossible). Higher cumulants turned
out to be nearly impossible — fighting the central limit theorem in its regime of validity is really
challenging and none of the existing experiments has convinced the community that this path
is worth further pursuit. This may sound like a complete failure story but it is not totally so.

First, noise measurements do exist, even if they are rare, and their conceptual understand-
ing is sufficient. The FCS approach to evaluation of just noise is still an innovative one and
it enabled to circumvent several technical subtleties encountered by different more direct ap-
proaches. It’s likely that experimental nanoscopic noise studies will eventually become more
common and will fuel the corresponding theoretical efforts.

Second, the counting approach itself has a great potential for identification of microscopic
transport mechanisms in various regimes of operation of nanoscopic setups. It can be simply
used as an effective theoretical tool to decipher internal dynamics of nanosystems just from

31
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the electronic transport characteristics, let it be experimentally measured (like the Fermi edge
singularity data) or just numerically calculated (like in the shuttle case). In this respect the
method is not limited by the lack of experimental data as it can be equally well utilized for
understanding transport mechanisms in systems simulated by advanced numerical techniques
(such as Quantum Monte Carlo or Langevin dynamics) serving as “numerical experiments”.

It is in this context, where I still do work with the FCS methods (although for classical
stochastic systems — noisy phase dynamics in nanoscopic Josephson junctions), which en-
able me to efficiently extract highly nontrivial characteristics of the system dynamics (such as
switching or phase-slips rates) that are very hard to obtain otherwise. So despite of the general
decline of the original context within nanoscopic quantum electronic transport, the things I
have learnt remain useful in other directions of my research, which (apart from nice 18 papers)
proves the value of the invested efforts and time into their study.
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(2012). DOI: 10.1038/srep00374

P.16 Non-Markovian effects at the Fermi-edge

singularity in quantum dots
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