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Abstract:

Digitalization throughout the industry leads to rapidly increasing amounts of data
captured and stored which brings forth challenges for indexing and accessing large
digital repositories. Very often, the data takes form of complex multi-part entities,
such as images with relational attributes, photos with geographical coordinates
or textual posts with multimedia content and implicit social relationships. The
complexity of such entities and lack of fixed structure makes it impossible to use
classical information retrieval methods based on attribute filtering, ranking or
grouping, as it is not easy or sometimes even possible to define an exact query. In
this thesis, we target data exploration as an act of exploring an unfamiliar area
via a series of intuitive, effective and efficient system-supported steps. We present
methodologies, demo applications and evaluation results targeting different data
sources of multimedia data. Furthermore, we focus on the ability to utilize mul-
tiple modalities within a single session and on integrating the results into widely
used software solutions.
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Preface

This thesis presents selected articles by Tomáš Grošup and their results. All ar-
ticles are from the area of effective data exploration and target several aspects
of the problem domain. The work covers research carried out during studies at
the Department of Software Engineering, Faculty of Mathematics and Physics,
Charles University in Prague. The author is a member of the SIRET (SImilarity
RETrieval) Research Group which focuses on similarity search and its applica-
tions.

This thesis contains a filtered selection of articles accompanied by a unifying
commentary at the beginning. This work covers 15 papers in total – 14 already
reviewed and presented at international conferences and available in their pub-
lished versions, one submitted to an academical journal available in a pre-print
version. All of the papers are available via their respective publishers (Springer,
ACM, IEEE, OpenProceedings) and have been authored or co-authored by Tomáš
Grošup. The conference paper submissions were presented as demo submissions
including software demonstrations, posters or regular talks. The conferences cover
general database communities (EDBT, ADBIS, CIKM), multimedia communities
(ICMR, MMM, CBMI) and the similarity search community (SISAP).

A full list of all publications is available at the end of this thesis. To provide
an historical overview, 8 papers are available as Chapters 2–9 in the printed ver-
sion of this thesis. Each of the Chapters 2–9 carries the name of the respective
publication. Those have been selected to demonstrate different problem areas and
evolution over time while keeping a small overlap between the works. The elec-
tronic version contains cover pages with references to digitally published versions
of the articles.

The commentary uses two special symbols to highlight the author’s publica-
tions:

• A light bulb to highlight a self-citation to a reference which is not embedded
in this thesis.

• A light bulb followed by a chapter link for a reference that is directly em-
bedded in this thesis.   2

The list also includes work published during the author’s bachelor’s (2009–
2012) and master’s (2012–2014) studies. The table 1 shows author’s contribution
to each of the papers, both authored and co-authored.
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Ref. Conf. Year Evaluation Implementation Analysis Text
[1] ICMR 2012  
[2] SISAP 2012  
[3] SISAP 2013   
[4] CBMI 2014  
[5] CBMI 2015  
[6] MMM 2015  
[7] CBMI 2015  
[8] ADBIS 2015  
[9] SISAP 2015  
[10] SISAP 2017  
[11] CIKM 2017   
[12] SISAP 2018   
[13] EDBT 2019 
[14] ICMR 2019 
[15] (submitted) 2019   

 Full or main contribution
 Major contribution (around a half)
 Partial contribution
 Small contribution
- Aspect not relevant

Table 1: A table of the author’s contributions per article.
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Chapter 1

Commentary

1.1 Introduction
The wide spread of affordable data-capturing devices has led to a rapid increase
of stored data volumes in the last two decades [16]. The majority of the data
volumes go to parts of data elements that are unstructured in nature – images,
videos or sounds for example. Such data is very rarely unaccompanied – it is
typically compounded with text descriptions, timestamps, spatial information or
other metadata; forming a multimedia and multi-modal content [17]1. Each of the
multimedia components might influence information retrieval tasks depending on
use cases which complicates systematic software support. Established tools for
search, exploration and analysis of data (e.g., see [18, 19, 20]) are based on the
relational model of structured entities with attributes , leveraging equality and
natural ordering of primitive data types. It is not only supported by efficient
indexing data structures [21], it is also well understood by end users and appli-
cation programmers thanks to expressive query languages like SQL [22]. As the
typical representation of rich multimedia content contains binary large objects
, searching by equality rarely makes sense – one would need to have the entire
object as a query upfront in order to use it as a query.

This limitation is addressed by so called content-based retrieval methods [23]
in which the content of an entity is used for a search instead of defining queries on
top of structured attributes. The dominant model for content-based multimedia
retrieval is the similarity search. It utilizes a pair-wise similarity function and
finds objects which are most similar to an input query – an example, a sketch or a
reference to an already seen item from the dataset. This has the assumption that
users’ needs are clearly specified and can be expressed in the respective software.
Multimedia exploration admits that this is not always possible, and supports
users in navigating the data collections even when the search intent is not precise
or not existent at all (”I don’t know what I’m looking for, but I’ll know when
I find it” [24]). The support comes from novel user interfaces, exploratory data
operations, and rapid query execution based on explicit and implicit user feed-
back. Internally, this leads to frequent execution of similarity queries with strict
latency requirements, making efficiency an even more important criterion. Due
to the iterative learning nature of the exploration process, search intentions are

1Multimedia is any combination of text, graphic art, sound, animation, and video that is
delivered by computer [17]
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also subject to change over time and so is the perception of similarity. Therefore,
adopting the internal search model in an effective and efficient way according to
user feedback is another challenge imposed on multimedia exploration systems.

The main challenge for any content-based retrieval method is the effectiveness
of the solution, i.e., how well the results follow expectations of humans. In case of
image retrieval, the traditional methods have been based on analytical approaches
such as MPEG-7 [25], SIFT [26] or SURF [27]. The biggest problem is the
semantic gap – a minor difference in low level (pixel-wise) representation of an
image causing a major difference in human understanding and vice versa. It was
the deep learning revolution [28] which advanced state-of-the-art results in many
retrieval domains including computer vision, beating classical solutions in many
tasks and disciplines.

Figure 1.1: Diagram of the architecture of AlexNet, a deep convolutional neural
network [29]

Figure 1.1 shows the network architecture of AlexNet [29], a pioneer of modern
architectures. The main part of the network consists of five convolutional layers
and three fully connected layers. The operation of convolution gradually allows
capturing concepts of higher levels of abstraction, and it can be shown what in-
formation each neuron detects [30, 31]. With enough training data, this closes the
semantic gap between low-level pixel information and human language class iden-
tifiers. This field of computer vision is rapidly evolving, and many architectural
paradigms have been recently introduced [32, 33]. Although the typical problem
is image classification, i.e., assigning a known class to each input image, the inner
representation of the network can be used to build valuable feature descriptors.
The descriptors can be extracted using neuron activations after a forward-pass
of the input [34], and can produce different feature descriptors (high-dimensional
vectors) based on the selection of layers.

The evolution of deep learning approaches in computer vision and the ability
to extract feature descriptors has also improved content-based retrieval methods
for other, secondary tasks. And despite being trained for a different task and even
on a different image domain, such descriptors outperform analytical approaches
like SIFT [35]. The advances together allow for querying via semantic visual at-
tributes [36, 37] based on neural activations coming from different layers. What
if we could close the loop by using such attributes for the extension of relational
database schema? That way, we could implement a multi-modal search in a famil-
iar relational environment, and leverage the power of existing software solutions.
After identification and extraction of visual attributes, there would be one step
left for humans – putting a label on it.
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1.1.1 Chapter Organization
In the rest of this chapter, we briefly go through related areas which were involved
in our research. The different areas are positioned chronologically with respect
to research conducted by the author, and loosely follow the outline given by the
introduction. Contributions which were published are marked with the symbol of
a light bulband include a reference to the original publication. Selected works are
also directly embedded in the printed version of this thesis, and are in addition
referenced using the number of the respective chapter. The chapter 2 is a short
summary about all topics touched on by the author, and was presented as a talk
at the ICMR 2019 conference [14]. The current chapter puts more focus on the   2
background, motivation and related work of different problem domains, as the
inner details of individual contributions are described within chapters 3 - 9.

1.2 Similarity Search
The similarity search is the most prominent approach to content-based search-
ing. In general, it is applicable in scenarios where standard exact-match or range
queries cannot be used, due to the complexity of the entities and human ex-
pectations of the search result. For complex entities, offering an exact search
rarely brings the expected outcome, as one would need to have the whole entity
as a query parameter upfront in order to find it. Areas with wide usage include
images, videos, sounds, DNA sequences, protein structures or 3D shapes, for ex-
ample. The principle of similarity search is a pair-wise ranking function which
assigns a score to each pair of objects. This can be either a similarity score (higher
means more similar) or a dissimilarity / distance score (lower value means more
similar). The requirement then is to search a database and return objects most
similar to an input query.

In distance-based solutions, there are two common queries for search and
exploration activities – the range query and the k-nearest neighbours query. A
range query returns all objects within a distance rq from the query object q, and
the possible number of returned objects is dynamics. A k-nearest neighbours
query (kNN) returns exactly k objects with the lowest distance to query object
q. Figure 1.2 provides an illustration of the difference.

Figure 1.2: a) Range query b)k-nearest neighbors query with k=2

Besides these two basic queries, more complex operations exist as well. One
of them is the similarity join. Similar to a relational database join, it takes
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two datasets as input, and returns all pairs of objects whose distance is lower
(or greater) than a parameter r. This makes it useful for tasks like duplicate
detection, outlier detection, or identification of common patterns in the data.

We have employed similarity search methods across all the research we have
done over the years. It is the most common approach for content-based retrieval
and exploration, and has been researched in depth for decades. The quality of
developed search solutions has two main evaluation dimensions:

1. Effectiveness, a quality of the results when compared with human expec-
tations. This is typically measured using metrics comparing the results
against a ground-truth, such as precision or recall.

2. Efficiency, a measure of speed and resource utilization to deliver a response.
This is measured in wall-clock time, but also in terms of memory usage or
operations on persistent media.

Effectiveness is mainly influenced by the design of the pair-wise similarity
function. This is a field that is constantly evolving, and in the exemplary domain
of images has been around for decades with active research contributions [38]. In
practical implementations, the similarity function does not operate on original
images (raw pixels) directly, but rather on extracted feature descriptors which
are more compact and more robust to common changes. The robustness usually
comes at a cost of increased processing times. Robust features, like SURF [27] or
PCT (Position-Color-Texture) signatures [39], are typically meant for scenarios
with an offline prepossessing phase where slower extraction times are not a big
issue.

Within our early work [2], we have introduced the concept of real-time fea-
ture extraction and re-ranking. In order to support the low-latency requirement
of the online feature extraction, we have designed a slim feature extractor as an
alternative to PCT signatures called PixelGrid. Both are designed to be used
together with the Signature Quadratic Form Distance (SQFD) [39]. The slim
version eliminates expensive operations, especially k-means clustering, and re-
duces computational complexity to the down-scaling of an image thumbnail in
two different sizes – one for the center of the image with higher density, and the
other for the edges. Figure 1.3 shows a comparison between the outcomes for
the same three images, Figure 1.3a for the original k-means based algorithm, and
Figure 1.3b for our fast extractor.

The efficiency of similarity search approaches can be improved not just by
using faster extractors or similarity functions, but also by using database indexing
techniques. For vector spaces, spatial database indexes can be used, e.g., the R-
Tree. However, the search for more effective descriptors and distance functions
leads to the requirement for a more generic solution, not restricted to vector
spaces and Euclidean distance. One such approach is based on the properties
of metric spaces, a mathematical construct enforcing certain properties on the
chosen distance function.

1.2.1 Metric Space Approach
Metric space is a set together with a metric on that set. The metric is a function
which defines a real-valued distance for any pair of elements from that set. On
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(a) PCT extraction based on k-means
clustering of pixels. (b) Slim extractor based on fast down-

scaling of an image thumbnail.

Figure 1.3: Visual demonstration of the difference in outcomes for PCT signatures
and our slim extractor used for fast re-ranking.

top of that, it enforces certain properties on the metric. This in turn allows
for the design of generic solutions for any similarity search problem that can be
represented using a metric space, and is not restricted to specialized domains.

Definition 1. Let F be a feature space, δ a distance function measured on F.
M = (F, δ) is called a metric space if distance function δ: F × F ↦→ R fulfills the
following postulates:

1. ∀x, y ∈ F, δ(x, y) = δ(y, x) symmetry

2. ∀x ∈ F, δ(x, x) = 0 reflexivity

3. ∀x, y ∈ F, x ̸= y ⇒ δ(x, y) > 0 positiveness

4. ∀x, y, z ∈ F, δ(x, z) ≤ δ(x, y) + δ(y, z) triangle inequality

It is the triangle inequality property which allows us to create efficient data
structures that do not need to calculate distances to all objects in the database in
order to answer queries. The inequality properties between all triples of objects
makes it possible to estimate lower and upper bounds of a distance between two
objects, provided that the other two sides of the ”triangle” are already known.
Figure 1.4 provides a geometrical illustration of the property.

Figure 1.4: Illustration of triangle inequality as a means to estimate lower bound
LB for the distance d(q, o) provided that distances d(q, p) and d(o, p) are known.

The family of solutions leveraging the metric space properties are called Met-
ric Access Methods, or MAMs. Zezula et al. [40] provide an extensive summary
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about the problematic and different solutions. The triangle inequality is used
for pruning the search space and avoiding possibly expensive distance calcula-
tions in various forms – recursive tree structures, hashing methods, tables with
pre-calculated distances to global pivots, or hybrid combinations of multiple ap-
proaches.

The obvious downside is that not every distance function is a metric. The
search in non-metric spaces has been typically addressed by brute force sequential
scanning, e.g., by aggressive optimization of calculations [41] or by executing
search queries on GPUs [42]. The TriGen algorithm provides a unifying approach
for turning non-metric distance functions into metrics via modifying functions
that change distance values, but preserve ordering [43, 44]. That way, MAMs can
be used even for distance functions which are not originally designed with metric
properties in mind.

1.2.2 Synergistic Modelling
The efficiency of MAMs depends on the power of lower bound values provided by
triangle inequality. It can be observed that the same distance function can have
dramatic differences in the utilization of a MAM depending on the data distribu-
tion. In a metric space that is almost equidistant (all triangles are almost equilat-
eral), the lower bound condition cannot prune any objects during the search. In
vector spaces, the curse of dimensionality [45] is a known phenomenon decreasing
speed and quality of information retrieval and data analytics in high dimensional
spaces. In metric spaces, a similar phenomenon is observed and is referred to as
intrinsic dimensionality, an experimentally confirmed approximation of indexa-
bility when using MAMs [46]. Also referred to as iDim, it is defined as ρ = µ2

2σ2 ,
where µ and σ2 are the mean and the variance of the distance distribution for
the entire collection. The lower this value is, the better the indexability options
for the collection. As the exact computation requires evaluation of all possible
pair-wise distance values, a selection of techniques exists to estimate iDim [47].

In a traditional setup, it is the domain (domains such as computer vision,
biology, acoustics) expert defining appropriate descriptors and distance functions
with the goal of maximal effectiveness. However, if the distance function is already
given, it does not leave much space for speed improvement if iDim turns out to
be high. The idea of synergistic modelling is to involve database engineers early
in the process in order to identify and measure possible compromises – having a
synergy between effectiveness and efficiency. As we have shown in [3], there are
options to sacrifice a little bit of precision for rapid increases in efficiency. This
especially makes sense in domains where even an exact search cannot provide
perfect responses (such as a search in general imagery). On the other hand, it
should not be used as a technique in situations that require maximum precision
(bio-metrics).

Synergistic modelling provides a solution for balancing precision/speed trade-
offs in similarity search, orthogonal to pure database solutions that allow the
discovery of the balance between exact and approximate search algorithmically
based on the desired approximation factor [44].
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1.3 Multimedia Exploration
The basic queries of similarity search, the range query and k-nearest-neighbours
query, fall into the category query − by −example. The user provides an example
object, and receives the most similar objects. This can be difficult in practical
applications – if the user already has an example, why would she search for
another? More often, the user has just an idea, an image of the result in her
mind. One way to address this limitation are query −by −sketch solutions where
the user provides a sketch of the desired outcome. Multimedia exploration takes
a different approach, admitting that providing a query is not always possible [48]
and instead provides an interactive experience. The user takes an active part in
the search and her discriminatory power is used to navigate through potentially
large collections of objects.

Classical data exploration for relational data is based on multi-dimensional
hyper-cubes, drill down operations and explicit filters. We have learned that
complex entities cannot use these techniques due to the lack of a standardized
structure, and impose their own challenges on exploratory systems. The typical
set of requirements for smooth human-computer interaction includes at least the
following parts:

1. Page zero. A starting point of the exploration process. At this point, the
user’s intention is not clear and no query has been provided yet. It should
provide a visual summary of the data collection and allow further naviga-
tion. At the same time, navigation options should maximize reachability,
i.e., ensure that every item in the data collection can be eventually reached
from the starting page zero.

2. Results visualization. In order to utilize the discriminatory power of the
human brain, results should be arranged in a way that allows for the quick
identification of new areas of interest, without investigating each displayed
object in detail. A common approach are similarity-based layouts [49, 50],
which put similar objects close to each other on the display (e.g., force-
directed layouts, PCA,MDS,t-SNE or IsoMap).

3. Exploratory operations. To allow the navigation through the collections,
each system provides its own set of operations. These might be based on
scrolling, touch inputs, explicit selection and many other methods. Other
options might include the look and feel of a geographical map, with the
possibility to zoom or move to the sides, giving the impression of data
collections being mapped to 2D space [51].

Besides the functional requirements, there are also implicit non-functional re-
quirements raising the challenge for large-scale exploration – efficiency, scalability,
multi-user environments or automatic adaptivity to implicit feedback [52].

1.3.1 Reranking
In the first work by the author [1], we have introduced a small scale exploration   3
system built around the idea of re-ranking. Instead of immediately exploring a
possibly large collection, a service provider (Bing images) was used to execute a
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text-based query. The system then offered a similarity-based visualization of parts
of the results using force-directed layout [53], and offered zoom-in implemented
as kNN queries. In this form, reranking was used as a mechanism to offer cross-
modal search capabilities – the user starts the process with text modality, and
receives image results arranged based on their visual appearance.

The biggest challenge in this case is the speed of online feature extraction
and instant execution of similarity queries which were based on our slim feature
extractor and MAM indexing support.

The speed of the process was improved in our further work [2] via the imme-
diate rendering of results after enough objects were downloaded to build a page
zero. While the user was inspecting this initial view, the system was download-
ing the rest of the results, extracting their descriptors, and indexing them. This
improved the user-perceived time to first render, while allowing operation on a
larger collection for further navigation.

1.3.2 Continuous Exploration
Exploration, as an interactive process, imposes special needs for fast response
times and smooth execution. While efficiency aspects of the execution are ad-
dressed by index support and server-side optimizations, smoothness of the process
from a user perspective also depends on the selected client-side display methods.
In our early work, we employed a force-directed layout which was always re-
initiated after each operation. That led to confusing movement on the screen,
and did not offer continuity for objects that remained displayed – such as in the
case of the zoom-in/out operation, where there was an overlap between objects
visible before and after the operation.

To provide continuity, we changed the system [7] so that preserved objects   4
maintained their position and new objects were attached based on their proximity
to the old ones. Force-directed layout then smooths out possible overlaps or dense
areas, but at a slower rate when compared to an initial layout creation. Figure 1.5
provides a screenshot of the exploration system with the available operations and
the similarity-based layout. In this example, the underlying dataset is a collection
of food items, with similarity defined based on their nutritional attributes.

1.3.3 Efficiency of Multimedia Exploration
Metric access methods are an efficient tool to execute basic similarity queries,
and can be used as such to enable multimedia exploration. However, MAMs
also have a valuable internal structure that already groups data into sections
based on distance values between objects. Instead of executing standard range or
kNN queries, this internal structure can be natively traversed to support different
exploratory operations.

In our work on exploration using the metric space approach [4], we have es-
tablished the terms ’iterative querying’ and ’iterative browsing’ as two options
for explorations using MAMs. Iterative querying as a generic solution to issue
standard queries provided by MAMs to explore a collection, and iterative brows-
ing as a native way to explore a collection using a specialized index structure.
Figure 1.6 illustrates the basic idea behind the two approaches.
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Figure 1.5: Screenshot of our exploration system operating on a food dataset.
Similarity is defined by multi-dimensional information about nutrients, such as
calories, proteins or fats included.

Figure 1.6: Illustration of iterative querying as a sequence of basic queries (left)
and iterative browsing as a traversal of an index structure.

We have implemented native traversal into M-Index [54] and PM-tree [55] as
two representatives of different MAMs. M-Index is built around Voronoi cluster-
ing of a metric space based on ordering (permutations) of distances to a global
set of pivots. PM-Tree as a successor of M-Tree uses a recursive hierarchy of
ball regions to maintain data, and each ball is further trimmed into cut-regions
[56] using distances to a global set of pivots. Figure 1.7 illustrates the main
construction ideas behind M-Index (Figure 1.7a) and PM-Tree (1.7b).

The downside of native MAM browsing is that their inner structure is opti-
mized for database performance and not for exploration effectiveness. We have
introduced MLES [8] as a generic exploration meta-structure, which can plug-in   5
different MAMs internally. It defines and implements exploratory operations on
a set of N-maintained inner indexes, each corresponding to a certain level and
covering increasingly larger sections of the database. The first layer, L0, cov-
ers just enough objects to contain the initial view, the page zero. Each layer
then contains all objects from the previous layer and additional objects from the
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(a) Recursive Voronoi-clustering of a
metric space based on distances to
global pivots, illustrated for the first
and second level.

(b) PM-Tree defined as a tree structure
of cut-regions based on ball regions and
distances to global pivots.

Figure 1.7: Illustration of the basic building blocks used by M-Index (left) and
PM-Tree (right).

database. The last layer, Ln contains all of the objects. As we can see in Figure
1.8, the operations defined on MLES can navigate within a single layer (pan-
ning), and go a layer up (zoom-in) or down (zoom-out). Beyond performance,
we have also researched the theoretical properties of exploration reachability and
possible ”exploration dead-ends” when using iterative querying.

Figure 1.8: Illustration of an exploration session, in this case on the MLES data
structure – an initial view, zoom-in/out and panning.

1.3.4 Evaluation
We have proposed different methods to multimedia exploration in the previous
paragraphs. Since exploration is by definition a user-centric and interactive pro-
cess, it is very difficult to estimate the quality of a solution algorithmically. Al-
though certain properties like reachability or efficiency can be measured automat-
ically, the goal of exploration is to satisfy a search intention and that is difficult
to automate into a standard ground-truth.

To allow a fair comparison between our methods, we designed a user study. We
prepared a set of artificial tasks on a medium-size collection of images consisting
of 21 993 annotated images associated in 100 different classes [5]. The user study
is called Find the Image and the task is to find images of a certain class in
a limited number of steps. The user is presented with one example of a class,
e.g. a pyramid, and is tasked to search for images of the same class. The user
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study then measures the time it takes to find the first instance, the number of
objects found over time, wall-clock time and the number of executed distance
computations among others.

For the purpose of MLES, the user study was repeated in a similar setting to
measure the differences between MLES and standard iterative querying. With
94 participants, the outcome is that MLES can consistently decrease the number
of steps needed to find first representative of a desired class [9].

1.3.5 Domain Applicability
Although our techniques are built around general concepts (similarity search,
metric access methods, similarity-based layouts or exploratory operations), all our
demonstrations so far have been targeting images. We have applied [10] the ideas
of multimedia exploration to the domain of cybersecurity and malware discovery.
The form was a tool to enable expert support for exploration of descriptor spaces
and validate their functioning. The tool provided different views, allowing the
inspection of:

• Overview and clustering of machines.

• Similarity of client machines.

• Client-server similarities based on patterns of network behaviour.

• Drill-down to multiple inflected clients and their bins in a descriptor (code-
book of fingerprints clustered into a fixed number of codewords/bins). An
example can be seen in Figure 1.9.

Figure 1.9: A part of the screen for the visual inspection of codewords/bins of a
descriptor created to detect malware. In this picture, infected client computers
are sharing multiple codewords in the representation of the descriptor.
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1.4 Multi-Modal Search
As per the Oxford dictionary2, modality is defined as a particular mode in which
something exists or is experienced or expressed. Within software, example modal-
ities (both input and output experience) include, for example, vision (images),
text, sounds, touch input, mouse input, and non-text computer visualizations.

When it comes to information retrieval, we can achieve multi-modality in
several ways:

• Presenting an object via multiple modalities

• Offering user-interaction via multiple modalities

• Enabling search criteria via multiple modalities

• A special form of multi-modality is the cross-modal search, where one
modality is the input (e.g., a text-based query) and other is the output
(e.g., videos).

When it comes to human computer interaction (HCI), [57] provides an exten-
sive survey of results in the HCI community. In this work, we focus mainly on
the multi-modal search, for example, allowing multiple modalities for information
retrieval.

The most common approach to multi-modal searches is textual annotation
of non-textual data. The best representative is Google Images, which automati-
cally annotates images using the surrounding HTML page information, and sub-
sequently allows the search for images using text queries. This fact was also
leveraged in our approach to online reranking [1], where a text query is used as   3
a starting point continued with multimedia exploration based on content-based
similarity.

Although the technique of automatic annotation works very well for the re-
trieval of images coming from web pages, it is not a generally applicable solution.
The amount of multimedia data collected every day exceeds manual annotation
possibilities, and is subject to human interpretation of the content and a personal
view on the expected granularity of the provided annotations. This can lead to
missing or misguiding annotations, opening the door to false positives and false
negatives during a search. There are attempts at automatic annotation leveraging
linguistic methods and public ontologies to improve the quality of annotations, as
well as approaches for content-based keyword assignment. However, these solu-
tions are far from a perfect and general applicability, and a content-based search
often remains the only option to investigate a specific modality.

Our work on visual reranking used content-based searches to further explore
objects with equal textual annotation. Imagine searching for a particular image of
a Jaguar (the animal). By typing in ’Jaguar’, the results will include the animal,
as well as the brand of car called Jaguar. Visually, they are very different, but
the text annotation is the same. One could extend the query to ’Jaguar animal’,
however this would sacrifice recall as not all images of animals are explicitly
labelled as ’animal.’ A content-based reranking is a means to visually inspect the
result-set using image modality and to complete the search.

2https://www.lexico.com/en/definition/modality
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For complex modalities, there are multiple ways how to design and implement
content-based retrieval, and they serve a different purpose. At the same time, it is
often not clear what aspect is most relevant to the user if her intention is not clear.
As an example: For image analysis, there are different descriptors and distance
functions for color, edges, texture, global information, local image information
and different levels of the semantic scale. Each of the aspects might be relevant
in certain search contexts. In our work on multi-model3 exploration [6], we have   6
proposed two mechanisms to combine multiple similarity and retrieval models in
a single exploration session. The contribution are two learning functions which
interpret implicit feedback coming from executed operations and use it to guess
the balance between implemented similarity models. This has been evaluated to
automatically adapt a search between local and global image descriptors, depend-
ing on what the user’s search intention is. To support indexability of dynamically
adapting distances, a modified version of MAMs [58] exists that can supported
unbounded combinations of balance weights with minimal space overhead.

1.5 Visual Attributes
Visual attributes are a special form of content-based annotation driven by the
simplicity and wide usage of relational models. By converting a particular visual
aspect from the content of the data into a clearly named and isolated attribute,
existing tools for searching, analytics or recommendation could utilize it in the
familiar model of relations and attributes.

The state-of-the-art tools for image classification have already outperformed
humans in a supervised scenario with fixed and known classes. This means that
given a catalogue of desired attributes and a sufficient number of annotated ex-
amples, the tools (typically based on deep learning) can learn a function that
assigns one of the known classes to each input with certain confidence.

In real world scenarios, both conditions might be difficult to achieve – many
domains are too complicated to allow a fixed set of classes upfront, and also do
not posses a huge standardized collection of labelled examples.

An interesting approach for discovering visual attribute is the usage of web
data - text labels, surrounding HTML pages and hyperlinks between items [59,
60]. When connected with ontologies and natural language processing, this can
also connect semantic concepts described by different words, and even show an
evolution of a certain linguistic or visual term over time [61].

A specialized area of research is the ability to discover visual concepts in
parts of images while only having an annotation for the image as a whole. By
discovering additional visual concepts at the local level [62], the quality of the
dataset can be improved and further provided to supervised methods that need
a lot of training data upfront.

What still remains a challenge, especially in long-tail domains, is the following
combination of properties:

• There is no standardized classifier specialized for the domain.
3In our work, model refers to a similarity model. The term model is overloaded, and is not

to be confused with multi-model databases that are named after multiple storage models (e.g.,
relational, document and graph-based storage and query models).
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• There is no large labelled dataset and it is either impossible or impractical
to create one.

• The domain vocabulary is rich, dynamic and subjective, therefore not pos-
sible to be defined at design time.

We have selected the domain of fashion items in an e-commerce setup as our
example model, as it meets all of the three properties. At the same time, it is
visually very rich and the visual information is an essential part of typical retrieval
needs.

1.5.1 Latent Visual Attributes
Historically, computer vision models have suffered from the semantic gap phe-
nomena – a mismatch between low-level computer representation and human
understanding of image appearance. Certain visual aspects, such as ’floral pat-
tern,’ are difficult to describe using low-level constructs, but are still present and
clearly understandable by humans. We denote them as latent, and we leverage
the power of deep learning architectures [28, 33] to use them.

We have presented [11, 63] a prototypical e-shop application which on top of   7
classical navigational options (categories, tags) also offers the option to search
using visual appearance of a product. It allows an exploration of the product
space, and by offering multi-example-query capabilities, can be used to describe
visual patterns. Such visual patterns can be named and matched against the
entire dataset, which turns them into binary attributes. The demonstration shows
how such created latent attributes can be used to recommend individual products
and outfits.

The main distinction from other works in the fashion domain working on sim-
ilar tasks (outfit recommendation [64], product retrieval [65], semantic clothing
attributes [66]) is the absence of an initial design-time preparation and no depen-
dency on specialized training data. The visual search in our prototype was using
a publicly available model of AlexNet pre-trained on generic imagery, without
any special training phase on fashion data – neither supervised nor unsupervised.
As part of our demo, we have also experimentally evaluated the quality of the
search on prepared search categories while comparing different layers of AlexNet
as source for feature descriptors.

1.5.2 Local and Global Attributes
In our next prototype [12], the idea was further improved by considering individ-
ual parts of images and allowing users to select one of the image patches as an
area of interest. For an empirical evaluation, we have prepared categories and
different configurations of search to find them. Mainly, our interest was to find a
qualitative difference between a global search, a local search and a weighted com-
bination of the two. It is the weighted combination which turned out to be the
best choice, and a very significant improvement over the original global search.
In Figure 1.10 we can see that the weighted combination (green line) was the
best performing option for a majority of search tasks, sometimes outperforming
the original global search by more than twice (in terms of distinctive cumulative
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Figure 1.10: A relative comparison of distinctive cumulative gain values for the
first returned 20 objects (DCG@20) between global, local and weighted search
executions. The circle circumference always contains the best performing option
for the given search task; the remaining two are positioned relative to it.

gain for first 20 retrieved items). The chart is sorted clockwise by the descending
relative performance of the global search, showing also what search tasks were
suitable for a global search (e.g., ’Leather gloves’) and where a local or weighted
search was significantly better (e.g., ’T-shirts with buttons’).

1.5.3 Attribute Discovery
After the successful experimental evaluation of a manual search for visual at-
tributes using system-supported multi queries and image patches, we developed
a vision of generating the attributes in the background. That way, the work of
identifying promising patterns across the data would be delegated to software,
and humans would only execute the last steps – verifying the attribute, and
putting a name on it [13].   8

We looked in to the problem, described the outstanding challenges, and pro-
posed a workflow in the form of a data-pipeline (see Figure 1.11). The vision was
built around the following conditions and outcomes:

• The domain is visually rich and concepts cannot be separated at design
time into a fixed number of concepts.

• There is no pre-trained model or labelled dataset, but generic solutions
exist for the same type of data. (specifically for images, this means that
a generic classifier exists, but there is no specialized classifier for the same
problematic)
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Figure 1.11: Proposed workflow for the discovery of latent visual attributes and
for database schema augmentation.

• In order to use the results in widely adopted software, the work happens
on the database layer and is not an application-specific task. By inte-
grating the results into the established model of database relations, multi-
ple application-specific use-cases like recommendation, search or analytics
can benefit from it at the same time. This is in contrast to solving one
application-specific task, e.g. outfit recommendation, which has decreased
applicability options beyond the scope of the original task.

In our latest research activities, we continued in the direction outlined by
that vision. We have formalized the problematic and the proposed workflow,
implemented a software architecture for offline attribute discovery and online at-
tribute acceptance and integration, and provided the results in an SQL-integrated
solution. The model was evaluated on the combined domains of shoes, clothes, ac-
cessories and household items. The online acceptance phase was tested by eight
users in the role of domain administrators, and resulted in 218 new attributes
covering 6,901 database items.

The formal methodology, software architecture and evaluation results were
submitted to the journal InformationSystems, and pre-print version of it is   9
available as Chapter 9 of this thesis.
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Figure 1.12: Example of a discovered visual attribute and the image patches
defining it. In this case, the system also identified correlation of this visual
attribute to an intersection of two existing independent attributes ’blue’ and
’jeans.’
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• Juraj Moško
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Conclusion

In this work, we have provided an overview of different options to multi-modal
exploration. For demonstration purposes, we typically used complex entities in-
volving images, texts and relational attributes – however, the presented models
are general and can be adapted to other forms of data as well.

We have developed several distance-based methodologies for multimedia ex-
ploration, considering both the effectiveness and efficiency of delivered solutions.
We have conducted large user studies to measure both processual (user time,
number of steps) and computational (wall-clock time for computer operations,
index utilization) aspects of developed solutions.

Lastly, we utilized recent advances in Deep Learning as a loosely-coupled
(replaceable) component to search for latent visual attributes. We have proposed
and demonstrated a pipeline for discovering such attributes and turning them into
immediate augmentation of relational schemes. That way, a multi-modal search
is achieved via standard SQL queries utilizing these visual attributes together
with other forms of data such as full-text and non-visual attributes (e.g., price).

Future Work
In the future, we would like to identify new applications for the proposed meth-
ods. Firstly, identifying and experimentally evaluating other domains with big
potential gains. Secondly, demonstrating the methods on non-visual sources of
multimedia such as sound or natural language.
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[46] Edgar Chávez, Gonzalo Navarro, Ricardo Baeza-Yates, and José Luis Mar-
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metric spaces using cut-regions. Inf. Syst., 43(C):1–19, July 2014.

35



[57] Fakhri Karray, Milad Alemzadeh, Jamil Abou Saleh, and Mo Nours Arab.
Human-computer interaction: Overview on state of the art. International
Journal on Smart Sensing and Intelligent Systems, 1:137–159, 01 2008.
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effective multi-model exploration. In Xiangjian He, Suhuai Luo, Dacheng Tao,
Changsheng Xu, Jie Yang, and Muhammad Abul Hasan, editors, MultiMedia
Modeling, pages 315–318, Cham, 2015. Springer International Publishing
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Appendix A

Attachments

All attachments to this thesis are available electronically under publicly available
URLs. Table 1 lists URLs for source code and deployed versions of the software.
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Name Type
Multimedia Exploration SW

http://herkules.ms.mff.cuni.cz/
Multimedia Exploration Code

https://subversion.assembla.com/svn/multimedia-exploration
Find-the-image SW

http://herkules.ms.mff.cuni.cz/find-the-image
Attribute Discovery SW

http://herkules.ms.mff.cuni.cz/vadet-admin/
Visual attributes SW
http://herkules.ms.mff.cuni.cz/vadet-merged

Attribute Discovery UI Code
https://github.com/T-Gro/VADET-Admin

Attribute Discovery preprocessing Code
https://github.com/T-Gro/Visual-Attribute-Filtering-Scripts

Table A.1: Table listing relevant attachments which are freely available online.
It distinguishes between source code (Type=Code) and deployed versions of the
software (Type=SW)
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