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Introduction
Partial differential equations (PDE) describe many phenomena of the world around
us. Apart the classical physical problems of fluid dynamics, elasticity, sound, elec-
trodynamics or quantum mechanics, many problems in more humanistic areas such as
economics or social sciences can be modeled as PDEs.

Numerical solution of partial differential equations

Unfortunately, only a minor fragment of these equations can be solved analytically.
Therefore, using numerical methods for approximation of the solution is inevitable.
With the development of computers in the second half of the twentieth century new
possibilities arose. The finite element method (FEM), finite volumes (FV) and dis-
continuous Galerkin method (DG) are the most popular methods using the variational
formulation for solving boundary-value problems, see, e.g., Ciarlet [1979], Godlewski
and Raviart [1996], Eymard et al. [2000], Di Pietro and Ern [2012], Dolejšı́ and Feis-
tauer [2015].

Unlike standard finite elements, the discontinuous Galerkin method does not re-
quire continuity between neighboring elements. That makes it more convenient for
problems where even the exact solution possesses discontinuity, e.g., in computational
fluid dynamics. The solution process starts with dividing the computational domain
into finite number of elements (triangles or quadrilaterals in 2D, and tetrahedra or hex-
ahedra in 3D) and the solution is approximated in the space of piecewise polynomial
functions.

In order to provide trustworthy results, these numerical solution has to be comple-
mented with a relevant estimate on the error. To estimate the error of the numerical
solution, i.e., its distance from the exact solution, is seemingly impossible task since
the true solution is not known (if it was reachable, the numerical solution would not
have much use), so the distance |u− uh| (u denotes the exact solution and uh its nu-
merical approximation) has to be bounded only using uh and the data of the solved
problem. Many methods for computing the so-called a posteriori error estimates of
numerical solution of PDEs were developed through last 50 years, see, e.g., Verfürth
[1996], Ainsworth and Oden [2000], Neittaanmäki and Repin [2004], Verfürth [2013],
Vohralı́k [2010] and the reference cited therein.

The a posteriori error estimates are used also for the automatic mesh adaptation.
Therefore the estimates need to be divided into localized error indicators approximat-
ing the computational error on a small part of the domain (e.g., one element). These
may be later used to drive the automatic mesh adaptation which offers a very power-
ful tool for the efficient, accurate and robust numerical algorithms for solving partial
differential equations, Park et al. [2016].

Goal-oriented error estimates

Usually, methods for a posteriori error estimation measure the error of the approxi-
mate solution in a norm which typically arises from the mathematical formulation of
the problem. On the other hand, in engineering application there may exist some quan-
tity of interest (e.g., lift of an airplane wing), computation of which is the main goal of
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the simulation. Therefore, the so-called goal-oriented error estimating techniques fo-
cusing on the error measured with respect to this quantity of interest exhibit a powerful
tool for the numerical approximation of problems where we are not interested in the
approximate solution itself but rather in a certain solution-dependent target quantity.
The quantity of interest is usually represented by a (linear) functional J(u), where u
is the exact solution of the given problem. Further, the error between the exact value
J(u) and its approximation J(uh) is estimated.

In order to connect the target functional with the solved problem, the so-called
adjoint problem (corresponding to the given equation) is used. It contains the adjoint
operator to the differential operator of the original (primal) problem and the target
functional on the right-hand side. The adjoint (or dual in other literature) problem
is used for numerical analysis since 1970s for a priori analysis of the error (e.g., the
well-known Aubin-Nitsche trick, Brenner and Scott [1994]), in optimization or when
post-processing a numerical solution, see e.g., Giles and Süli [2002].

We refer to Becker and Rannacher [1995, 1996] where the so-called dual weighted
residual (DWR) estimates dealing with this subject were introduced. For the first time,
this method was formulated for finite element method applied to linear elliptic partial
differential equations. Since then it was intensively explored and developed for many
other problems. In Bötcher and Rannacher [1996] application of the DWR method on
ordinary differential equations is compared to other a posteriori estimates for one-step
numerical methods. In Rannacher and Suttmeier [1997] the DWR method is intro-
duced for linear elasticity. We recommend latter publications, e.g., Bangerth and Ran-
nacher [2003], Becker and Rannacher [2001], Giles and Süli [2002], where the method
is thoroughly studied.

The DWR method uses the adjoint problem in a specific way to weight local residua
of the numerical solution. In other words, it measures how sensitive the target func-
tional is on a potential error localized in certain area (e.g., one mesh element). It
was demonstrated in many numerical experiments, see e.g., Bangerth and Rannacher
[2003], Becker and Rannacher [2001], that this weighting of the local residua enables
obtaining approximations of J(u) much more efficiently compared to other methods.

In its theoretical formulation the method relies on computing the exact solution z of
the adjoint problem. Unfortunately, in most cases this is equivalently difficult (or im-
possible) as obtaining the true solution of the original problem. Therefore, in practical
computations the goal oriented error estimates require a sufficiently accurate approx-
imation of the solution of the adjoint problem. One possibility is to solve the adjoint
problem on a globally refined mesh and/or with polynomial approximation of higher
degree, see, e.g., Šolı́n and Demkowicz [2004], Hartmann and Houston [2006a,b],
Harriman et al. [2003]. This method usually gives quite reliable results, but it is com-
putationally very time-consuming, since the computational demanding of the discrete
adjoint problem exceeds the primal one. Alternatively, the adjoint solution may be
computed in the same discrete function space as the primal one and then reconstructed
locally and hence much faster.

Discretization of the primal and adjoint problems leads to two linear algebraic sys-
tems which are usually solved by a suitable iterative technique. Therefore the resulting
discrete solutions (and also their error estimates) are influenced by the algebraic error
resulting from the inexact solution of both algebraic systems (primal and adjoint). The
goal-oriented estimates can be naturally extended by estimates measuring the impact
of these algebraic errors on the error of the quantity of interest, see, e.g., Meidner et al.
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[2009], Rannacher and Vihharev [2013], Arioli et al. [2013].
The DWR method can be also generalized for nonlinear PDEs. Its derivation for a

general nonlinear variational problem was developed in Becker and Rannacher [2001].
The method, introduced via the Euler-Lagrange method of constrained optimization,
may be employed for many nonlinear differential equations. In Heuveline and Ran-
nacher [2001] it is applied to a generalized eigenvalue problem, in Becker et al. [1998]
for optimization problems, in Bangerth and Rannacher [1999] for hyperbolic problems
and in Hartmann and Houston [2006a] for compressible Navier-Stokes equations.

For nonlinear problems the adjoint problem is introduced for the linearized original
problem and hence it is always linear. Therefore, its solution is usually much faster
than the solution of the original problem. Typically the approximation of the adjoint
solution corresponds to one iteration of the Newton method used for primal problem,
see, e.g., Hartmann and Houston [2006a].

The application of DWR method for DG discretizations is described in detail, e.g.,
in Kanschat and Rannacher [2002] for elliptic partial differential equations, in Hart-
mann and Houston [2002] for Euler equations and in Hartmann and Houston [2006b],
Hartmann and Houston [2006a] for Navier-Stokes equations. Since the DG method be-
longs to the family of the nonconforming methods, the suitability of the discretization
for the adjoint problem is more delicate (compared to standard FEM). The so-called
adjoint consistency of the discretization, i.e., whether the solution of the adjoint prob-
lem satisfies the discrete adjoint problem, has to be verified. The importance of this
property was firstly pointed out in Harriman et al. [2004] and then further explored in,
e.g., Hartmann [2006, 2007].

Adaptive refinement

The aim of the goal-oriented mesh adaptation is, based on a posteriori error estimates,
to reduce the error of the quantity of interest under some given tolerance using as small
number of degrees of freedom (DoF) as possible. Starting with an initial coarse mesh,
sizes of the mesh elements are iteratively updated according to the goal-oriented error
indicators.

Moreover, even the element shapes may be optimized during the adaptation pro-
cess. The so-called anisotropic adaptation method which generates anisotropic meshes
consisting of possibly thin and long triangular elements, has been exhibited to be a
very efficient tool for the reduction of the number of degrees of freedom. Its use is
highly advantageous for many applications (namely in fluid dynamics), as was demon-
strated, see, e.g., Belme et al. [2012], Ait-Ali-Yahia et al. [2002], Aguilar and Good-
man [2006], Frey and Alauzet [2005], Habashi et al. [2000], Dompierre et al. [2002],
Dolejšı́ and Felcman [2002], Simpson [1994], Breuss et al. [2006], Dolejšı́ [1998] and
the references mentioned therein.

Most of the anisotropic mesh adaptation techniques mentioned above are based on
the interpolation error estimates of the numerical solution. To use it for goal-oriented
error estimates, it is necessary to link the anisotropy of the elements with respect to
a solution-dependent target functional, we refer to Balan et al. [2016], Loseille et al.
[2010], Venditti and Darmofal [2002], Dolejšı́ et al. [2017], for a survey and visions
of goal-oriented mesh adaptations, see Fidkowski and Darmofal [2011], Park et al.
[2016]. However, these techniques are mostly heuristic. Rigorous goal-oriented error
estimates taking into account the anisotropy (= size, aspect ratio and orientation) of
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mesh elements were derived in Alauzet et al. [2009], Formaggia and Perotto [2003]
for purely diffusive problems and in Carpio et al. [2013] for a convection-diffusion-
reaction equation. However, these results deal only with a piecewise linear approxi-
mation.

Further, the anisotropic adaptation may be coupled with the hp-adaptation method,
which enables the polynomial approximation degree to vary among the mesh elements.
The hp-finite element methods have a prominent place among other adaptive methods
since, under some assumptions, they give an exponential rate of convergence, cf. Gui
and Babuška [1986], Babuška et al. [1997], Babuška and Strouboulis [2001], Schwab
[1998], Demkowicz [2007]. Therefore, the use of hp-anisotropic meshes, with possi-
bly high polynomial approximation degrees, offers enough of flexibility to an efficient
and accurate numerical approximation of PDEs. This was also identified as one of the
key enabling technologies in the Workshop on High-Order CFD Methods, Wang et al.
[2013].

Novelty of the results presented in the thesis

This thesis contributes to the research dealing with goal-oriented error estimates and
anisotropic hp-adaptation for linear and nonlinear partial differential equations. The
novelty of the results can be summarized in the following way.

• error estimates including algebraic error – in Meidner et al. [2009], there was
presented an adaptive technique technique which controls that the algebraic er-
rors are bounded by the discretization ones. However, it is not clear if this tech-
nique is optimal in the sense that an “over-solution” is performed. We study
these aspects in Chapter 2.

• higher order reconstruction technique – we develop a new higher order recon-
struction technique for arbitrary polynomial approximation degrees on unstruc-
tured grids. Numerical experiments show that the reconstruction is stable even
for anisotropic meshes.

• anisotropic hp-mesh adaptation – combination of hp-method and anisotropic
mesh adaptation in the framework of the goal-oriented error estimates is a com-
pletely original work. A rigorous analysis was performed for a scalar linear
problem and then extended to nonlinear problems including compressible Eu-
ler equations. We develop a little different approach for the compressible Euler
equations in comparison to Hartmann and Houston [2006b], Hartmann [2007].

Outline

The content of the thesis is divided into four chapters.
In Chapter 1 the goal-oriented estimation method is introduced for prototypical

linear and nonlinear problems. The important aspects, advantages and drawbacks are
discussed. Finally, these are illustrated by several exemplary numerical experiments.

In Chapter 2 we introduce the DG discretization of convection-diffusion-reaction
equation. The computational error is estimated in the framework of the DWR method.
Further, we focus on the control of the algebraic errors arising from iterative solutions
of algebraic systems corresponding to both primal and adjoint problems. Moreover,
we present two different reconstruction techniques allowing an efficient evaluation of
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the error estimators. We propose a complex algorithm which controls discretization
and algebraic errors and it drives the adaptation of the mesh.

In Chapter 3 we introduce the goal-oriented error indicators enabling anisotropic
adaptation of the mesh, which provide upper bounds to the estimates derived in previ-
ous chapter. The concept of anisotropy of triangles and polynomial functions is pre-
sented. Further, the size, shape and polynomial degree optimization of each elements
are discussed. These estimates are based on the concepts of anisotropic adaptation
from Dolejšı́ [2014], Dolejšı́ [2015] which were later generalized for goal-oriented er-
ror estimation in Dolejšı́ et al. [2018], Dolejšı́ et al. [2019], Bartoš et al. [2019]. Finally,
we develop a hp-variant of the goal-oriented anisotropic mesh adaptation algorithm.
Numerical experiments, presented at the end of the chapter, demonstrate the efficiency
of the proposed algorithm.

In Chapter 4 we introduce the DG discretization for the Euler equations describ-
ing the flow of an inviscid compressible fluid. The goal-oriented error estimates are
introduced for the drag, lift and momentum coefficients, which represent the most sig-
nificant quantities of interest for such problem. Special attention is paid to the adjoint
consistency of the discretization of the adjoint problem. Furthermore, hp−anisotropic
error indicators based on the approach from Chapter 3 are presented. Several numerical
experiments document the performance of the method.

We note that some parts of this text were already published in several articles.
Chapter 2 follows, only with minor modifications, the article Dolejšı́ and Roskovec
[2017]. The content of the Chapter 3 is a unification of the results published in Dolejšı́
et al. [2019] and Bartoš et al. [2019].
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1. Goal-oriented error estimates for
model problems
In this chapter we introduce the basic ideas of the goal-oriented error estimates. We fol-
low the Dual Weighted Residual method (DWR) as originally developed in Becker and
Rannacher [1996] and further described in Becker and Rannacher [2001] and Bangerth
and Rannacher [2003].

1.1 DWR method for linear problems
As a model problem for the linear case we consider the Poisson equation on a polygo-
nal (d = 2) or polyhedral (d = 3) domain Ω ∈ Rd with homogeneous Dirichlet condi-
tions

−∆u = f in Ω, (1.1)
u = 0 on ∂Ω,

where f is some given function.
Except the solution of the given (primal) problem (1.1), the goal-oriented error

estimates require to solve and additional so-called adjoint (or dual) problem. If we
denote the operator L :=−∆ in (1.1) the adjoint problem in its strong form reads

L ∗z = J, (1.2)

where L ∗=−∆ is the adjoint operator to L and J is the target functional representing
the quantity of interest.

1.1.1 Weak formulation and discretization of the primal problem
Let us start with introducing the following notation. For a domain D ⊂ Rd, L2(D) is
the Lebesgue space of square-integrable functions on D. This space is equipped with
the norm defined by

∥v∥D =

(∫
D
|v|2 dx

)1/2

and scalar product

(v,w)D :=
∫

D
vwdx.

We introduce the multi-index notation. A multi-index α is an n-tuple of non-negative
integers and its length is given by |α| = ∑

d
j=1 α j. Further, let k ≥ 1, we define the

Sobolev spaces

Hk(D) := {v ∈ L2(D); Dαv ∈ L2(D) ∀α, |α| ≤ k},

where Dαv denotes the weak partial derivative of v given by

Dαv =
(

∂

∂x1

)α1

· · ·
(

∂

∂xd

)αd

v.
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For v ∈ Hk(D) we define the Sobolev-norm and seminorm, respectively

∥v∥Hk(D) :=

(
∑
|α|≤k
∥Dαv∥2

L2(D)

)1/2

, |v|Hk(D) :=

(
∑
|α|=k
∥Dαv∥2

L2(D)

)1/2

.

Further, we define the Sobolev space

H1
0 (D) := {v ∈ H1(D);w

⏐⏐
∂D = 0}.

Due to the Poincaré inequality

∥v∥L2(D) ≤ c∥∇v∥L2(D) , v ∈ H1
0 (D),

hence the H1−seminorm is a norm on H1
0 (D). If D = Ω, we usually omit the subscript

Ω in the notation of norms or scalar products.

Definition 1.1. Let f ∈ L2(Ω) and V = H1
0 (Ω), we say that a function u ∈V is a weak

solution of problem (1.1), if

a(u,ϕ) = ( f ,ϕ)Ω ∀ϕ ∈V, (1.3)

where

a(u,ϕ) =
∫

Ω

∇u ·∇ϕ dx. (1.4)

The existence and uniqueness of the weak solution u can be proven using the Lax-
Milgram Lemma, see Brenner and Scott [1994][Theorem 2.7.7].

Let us denote Th a partition covering Ω consisting of finite number of closed d-
dimensional simplices K with mutually disjoint interiors. The boundary of the element
K ∈ Th will be denoted by ∂K, its diameter hK = diam(K) and |K| its d-dimensional
Lebesgue measure.

Let Pp(K) denote the space of polynomial functions up to degree p with support
on element K. We introduce the notation Vh, h > 0 for a general finite element space of
functions containing piecewise polynomial functions. For conforming finite elements
Vh is given by

V c
h = {v ∈C(Ω); v

⏐⏐
K ∈ Pp(K) ∀K ∈Th}, (1.5)

while for the discontinuous Galerkin method (DG) no continuity across mesh elements
is required, i.e.,

V d
h = {v ∈ L2(Ω); v

⏐⏐
K ∈ Pp(K) ∀K ∈Th}, (1.6)

Further we define a function space Wh such that both u ∈Wh and Vh ⊂Wh. Since
Vh⊂V for the conforming finite element method we may simply put Wh =V. However,
for nonconforming methods, where Vh ̸⊂ V, the choice of Wh is not trivial. For the
discontinuous Galerkin method we set

Wh := H2(Ω,Th) = {v ∈ L2(Ω); v
⏐⏐
K ∈ H2(K)∀K ∈Th}. (1.7)
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Definition 1.2. We say that uh ∈Vh is the discrete solution of the primal problem (1.3)
if it satisfies

ah(uh,ϕh) = ℓh(ϕh) ∀ϕh ∈Vh, (1.8)

where ah(·, ·) and ℓh(·) denote the discrete forms coming from the discretization of
problem (1.3).

We note that ah = a, ℓh(·) = ( f , ·)Ω for conforming FEM and the detailed definition
of ah and ℓh will be introduced in (2.6). We assume that the problem (1.8) is well-
posed, for more detailed analysis of the assumptions on the data and properties of the
solution uh see e.g., Ciarlet [1979], Brenner and Scott [1994] (for conforming FEM)
and e.g., Dolejšı́ and Feistauer [2015] (for DG).

Further, we assume that the discrete problem (1.8) is consistent, i.e. the weak
solution u ∈V of (1.3) satisfies also

ah(u,ϕ) = ℓh(ϕ) ∀ϕ ∈Wh. (1.9)

This implies the so-called Galerkin orthogonality of the error eh = u− uh of the
primal problem

ah(eh,ϕh) = 0 ∀ϕh ∈Vh. (1.10)

Finally, we define the residual of the discrete primal problem by

rh(uh)(ϕ) = ℓh(ϕ)−ah(uh,ϕ). (1.11)

1.1.2 Quantity of interest
In many applications the solution itself may not be as important as some feature reliant
on it. Then the main goal of the computation is to provide a sufficiently accurate
approximation of the quantity of interest rather than the solution itself. In this case it is
advantageous if also the a posteriori control of the error can be considered with respect
to the target functional J ∈ V ′, where the value J(u) represents the given quantity of
interest.

Typically J is given as a volume integral over some ΩJ ⊂Ω or a boundary integral
over some part of the boundary ΓJ ⊂ ∂Ω. We present a few possible examples:

• point value u(a) for an a∈Ω : since point values are not well defined for Sobolev
functions in V these have to be approximated by regularized point value J(u) =

1
|Bε (a)|

∫
Bε (a) udx, where Bε(a) is a ball with center at point a ∈ Ω and diameter

ε ≪ 1, for more detailed analysis see Kanschat and Rannacher [2002].

• mean normal flux: J(u) = 1
|E|
∫

E n ·∇u dS, where n denotes the unit outer normal
of ∂Ω and E ⊂ ∂Ω. We refer to Section 1.1.9 where the setting of the boundary
conditions for the adjoint problem for boundary target functionals is explained.

• energy norm error ∥∇(u−uh)∥ : this choice of target quantity may be used, see
Remark at the end of Section 1.1.4, to show the equivalence between DWR
method with

J(ϕ) =
1

∥∇(u−uh)∥

∫
Ω

∇ϕ ·∇(u−uh)dx

and the well-known energy-norm a posteriori error estimates, see, e.g., Brenner
and Scott [1994].
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1.1.3 Adjoint problem and abstract error identities

The goal-oriented error estimates are based on the relation between the residual (1.11)
of the primal problem and the error with respect to the target functional J(u)− J(uh).
We follow the line of reasoning from Šolı́n and Demkowicz [2004].

Let J ∈W ′h and rh(uh)∈W ′h then we may express this relationship between rh(uh)(·)
and J(·) by defining G ∈W ′′h such that

G(rh(uh)) = J(eh).

Since the function space Wh is a Hilbert space, it is reflexive and the functional G can
be related to some function z̃ ∈Wh. We may write

G(rh(uh)) = rh(uh)(z̃). (1.12)

Further, using the properties of residual we obtain

rh(uh)(z̃) = ℓh(z̃)−ah(uh, z̃)
= ah(u, z̃)−ah(uh, z̃) = ah(eh, z̃). (1.13)

Now, it is obvious that the function z̃ ∈Wh can be defined as the solution of

ah(ψ, z̃) = J(ψ) ∀ψ ∈Wh. (1.14)

Notice that the problem (1.14) was defined employing the discrete bilinear form
ah. However, if we add the assumption that the numerical scheme is adjoint consistent,
i.e.

ah(ψ,z) = J(ψ) ∀ψ ∈Wh, (1.15)

where z is the solution of the adjoint problem (1.2), then z̃ = z.
Now, employing (1.13) and (1.11) and the Galerkin orthogonality (1.10) we obtain

the primal abstract error identity for the error of the target quantity

J(eh) = ah(eh,z−ϕh) = rh(uh)(z−ϕh) ∀ϕh ∈Vh. (1.16)

Moreover, we may introduce the discrete adjoint problem.

Definition 1.3. We say that zh ∈Vh is the discrete adjoint solution if it satisfies

a(ψh,zh) = J(ψh) ∀ψh ∈Vh. (1.17)

Similarly as in the primal case, the adjoint consistency (1.15) implies the Galerkin
orthogonality of the error of the adjoint problem, i.e., denoting e∗h = z− zh

a(ψh,e∗h) = 0 ∀ψh ∈Vh. (1.18)

Finally, introducing the residual of the adjoint problem by

r∗h(zh)(ψ) := J(ψ)−ah(ψ,zh). (1.19)
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we get also the adjoint abstract error identity

J(eh) = a(eh,z) = a(u−uh,z− zh)

= a(u−ψh,z− zh) = J(u−ψh)−a(u−ψh,zh)

= r∗h(zh)(u−ψh) ∀ψh ∈Vh. (1.20)

Further, there holds the following error equivalence

J(u−uh) = J(u)− J(uh) = ℓh(z)− ℓh(zh) = ℓh(z− zh), (1.21)

since due to (1.9), (1.15) and (1.8), (1.17) we have that

ℓh(z) = ah(u,z) = J(u), ℓh(zh) = ah(uh,zh) = J(uh). (1.22)

Therefore, the difference ℓh(z− uh) expresses the error of the quantity of interest as
well.

Due to (1.16) and (1.20) we see that the error of the target functional can be equiv-
alently expressed by the primal and adjoint residuals, respectively. We may even take
the arithmetic average of (1.16) and (1.20)

J(u)− J(uh) =
1
2
(rh(uh)(z−ϕh)+ r∗h(zh)(u−ψh)) , ϕh,ψh ∈Vh. (1.23)

Remark. While trivial for conforming finite elements (since ah = a), the adjoint con-
sistency (1.15) is crucial for nonconforming discretizations such as the discontinuous
Galerkin method. For an adjoint inconsistent discretization (e.g., the nonsymetric in-
terior penalty Galerkin (NIPG) method, see Dolejšı́ and Feistauer [2015]) the function
z̃ ∈Wh in (1.14) differs from z and it is not smooth on the edges of the mesh Th, which
causes a slower convergence rate of the error J(eh). In Experiment 1.3.3 an example
of such nonsmooth adjoint solution (of a problem with a known solution) is shown.

1.1.4 Classical dual weighted residual method
Here, we follow the DWR approach as was introduced in Bangerth and Rannacher
[2003]. It should help to clear up how the method got its name “Dual Weighted Resid-
ual”.

We assume that the problem (1.1) was discretized by the conforming finite element
method, i.e., ah(·, ·) = a(·, ·), ℓh(·) = ( f , ·)Ω and Vh = V c

h is the space of continuous
piecewise polynomial functions. Integrating the error identity (1.16) by parts on each
mesh element we obtain

rh(uh)(z−ϕh) = ∑
K∈Th

(( f +∆uh,z−ϕh)K− (∇uh ·n,z−ϕh)∂K)

= ∑
K∈Th

(
( f +∆uh,z−ϕh)K +

1
2
([[∇uh ·n]],z−ϕh)∂K\∂Ω

)
(1.24)

where [[∇uh ·n]] denotes the jump of ∇uh ·n across an element edge, i.e., for two
neighboring elements K,K′ ∈ Th with common edge Γ and unit normal n pointing
from K to K′, we define [[∇uh ·n]] := (∇uh

⏐⏐
K′∩Γ
−∇uh

⏐⏐
K∩Γ

) ·n.
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Then we obtain the a posteriori error representation of the error

J(eh) = ∑
K∈Th

(
(Rh,z−ϕh)K +(rh,z−ϕh)∂K\∂Ω

)
∀ϕh ∈Vh, (1.25)

where

Rh
⏐⏐
K := f +∆uh, rh

⏐⏐
Γ

:=

{
1
2 [[∇uh ·n]] for Γ⊂ ∂K\∂Ω,

0 for Γ⊂ ∂Ω.
(1.26)

Then using the triangle inequality and Cauchy-Schwarz inequality we get

|J(eh)| ≤ ∑
K∈Th

|(Rh,z−ϕh)K +(rh,z−ϕh)∂K| (1.27a)

≤ ∑
K∈Th

(∥Rh∥K ∥z−ϕh∥K +∥rh∥∂K ∥z−ϕh∥∂K) ∀ϕh ∈Vh, (1.27b)

Finally, due to the Hölder inequality we obtain the following a posteriori error
estimate of the error with respect to the target functional

|J(u−uh)| ≤ ∑
K∈Th

ρKωK, (1.28)

with the element residuals ρK and weights ωK given by

ρK :=
(
∥Rh∥2

K +h−1
K ∥rh∥2

∂K

)1/2
, (1.29a)

ωK :=
(
∥z−ϕh∥2

K +hK ∥z−ϕh∥2
∂K

)1/2
, (1.29b)

for an arbitrary ϕh ∈Vh.
Unlike in (1.16) the estimate (1.28) is not independent from the choice of ϕh and

hence the choice of ϕh strongly influences the tightness of the error estimate (1.28).
For FEM we may choose ϕh := Ihz, where Ih : V → Vh is the Lagrange interpolation,
see Brenner and Scott [1994].

Moreover, every step of (1.27a), (1.27b), (1.28) possibly increases the gap between
J(eh) and the error estimate. Even though it is a bit counter intuitive and very unusual
when thinking about adaptive solution of PDEs, even a very poor approximate solution
uh may lead to J(eh) = 0 since the target functional J does not possess the standard
additive property of norms and hence the individual summands of J(eh) in (1.25) may
change signs. We call this property the global orthogonality of the error components.
This property is lost when the triangle inequality is used in (1.27a).

Further artificial growth in the estimate may appear due to the application of the
Cauchy-Schwarz inequality in (1.27b) since some of the summands belonging to an
element K ∈Th may be close to orthogonal and then

(Rh,z−ϕh)K +(rh,z−ϕh)∂K ≪∥Rh∥K ∥z−ϕh∥K +∥rh∥∂K ∥z−ϕh∥∂K .

Remark. In order to show that the standard energy-norm error estimates, see, e.g.,
Babuška and Rheinboldt [1978], Brenner and Scott [1994], can be derived also in the
goal-oriented setting, we choose the (bit artificial) target functional

J(ϕ) =
1

∥∇eh∥
(∇ϕ,∇eh)Ω,
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where eh = u−uh is considered as a fixed quantity.
Then the corresponding adjoint problem for conforming FEM reads: find z ∈ V

such that

(∇ψ,∇z)Ω =
(∇ψ,∇eh)Ω

∥∇eh∥
∀ψ ∈V. (1.30)

It is clear that the adjoint solution is given by z = eh
∥eh∥

. Then from the estimate (1.28)
we get

|J(eh)| = ∥∇eh∥ ≤ ∑
K∈Th

ρKωK ≤

(
∑

K∈Th

h2
Kρ

2
K

)1/2(
∑

K∈Th

h−2
K ω

2
K

)1/2

. (1.31)

Employing the standard interpolation error estimate, see, e.g., Brenner and Scott
[1994],

inf
ϕh∈Vh

(
∑

K∈Th

h−2
K ∥z−ϕh∥2

K +h−1
K ∥z−ϕh∥2

∂K

)1/2

≤CI ∥∇z∥ , (1.32)

in (1.31) we obtain the following estimate

∥∇eh∥ ≤

(
∑

K∈Th

h2
Kρ

2
K

)1/2

CI ∥∇z∥ ≤CI

(
∑

K∈Th

h2
Kρ

2
K

)1/2

(1.33)

since evidently ∥∇z∥ ≤ 1. Finally, recalling the definition of ρK in (1.29a) we come
to the well-known energy-norm error estimate, for details of this method see, e.g.,
[Brenner and Scott, 1994, Section 9.2],

∥∇eh∥ ≤CI

(
∑

K∈Th

h2
K ∥ f +∆uh∥2

K +
hK

2
∥[[∇uh ·n]]∥2

∂K\∂Ω

)1/2

. (1.34)

1.1.5 Computable error estimates
In previous section we have presented the error identities (1.16), (1.20), (1.23) which
can equivalently express the error of the target functional J(eh). Unfortunately, these
are only of theoretical use since they contain unknown functions u and z. In order to
obtain a computable error estimates these functions have to be approximated.

Omitting the very few cases when z can be found exactly or estimated a priori (such
as in Remark 1.1.4), these have to be computed by some numerical method.

It is evident that the approximation z ≈ zh is not satisfactory since due to the
Galerkin orthogonality (1.10) rh(uh)(zh) = 0. Hence the function z has to be approxi-
mated by some z+h in V (+)

h , where V (+)
h need to be a space richer than Vh (and similarly

u≈ u+h , where u+h ∈V (+)
h ).

The error identities (1.16) and (1.20) can be rewritten as

J(eh) = rh(uh)(z−ϕh) = rh(uh)(z− z+h )+ rh(uh)(z+h −ϕh), (1.35a)

J(eh) = r∗h(zh)(u−ψh) = r∗h(zh)(u−u+h )+ r∗h(zh)(u+h −ψh). (1.35b)
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Usually the terms rh(uh)(z−z+h ), r∗h(zh)(u−u+h ) are neglected and we choose ϕh :=
Πz+h and ψh := Πu+h , where Π : Wh→Vh is some interpolation (for conforming FEM)
or projection (for DG) operator satisfying

∥ϕ−Πϕ∥ ≤Chp+1 ∥ϕ∥H p+1(Ω) ∀ϕ ∈ H p+1(Ω). (1.36)

Further, we introduce the primal and dual error estimators

ηS := rh(uh)(z+h −Πz+h ), η
∗
S := r∗h(zh)(u+h −Πu+h ). (1.37)

Then we obtain the computable estimates

J(eh)≈ ηS, J(eh)≈ η
∗
S J(eh)≈

1
2
(ηS +η

∗
S) . (1.38)

Any of these can be used to approximate the error of the target quantity and further
also to derive error indicators for adaptive mesh refinement, see Section 1.1.6.

Basically, there are two options how z+h (or u+h , respectively) can be obtained – the

discrete adjoint problem (1.17) can be either directly solved in V (+)
h (approximation

by a higher order method) or this approximation may be obtained using some local
post-processing of zh given by z+h := R(zh) (approximation by a higher-order recon-
struction).

The first approach is used in Šolı́n and Demkowicz [2004], where the so-called
reference primal and adjoint solutions ure f ,zre f are computed, on a globally refined
mesh with h/2 and with one degree higher polynomial approximation, i.e., ure f ,zre f ∈
V p+1

h/2 . It leads to very precise results since the reference solution ure f ,zre f approximate
the unknown solutions very accurately, c.f. Mitchell and McClain [2014] where several
adaptive methods for solving elliptic PDEs are compared. On the other hand, the
solution of the algebraic systems corresponding to the reference solutions is much
more time-consuming compared to the original problems for uh and zh. Quite similar
approach which computes the adjoint problem with higher polynomial degree (but on
the same mesh) is used in Hartmann and Houston [2006b].

The main advantage of the higher-order reconstruction technique is that it does
not significantly increase the computational costs, since it is computed locally for each
K ∈Th and hence can be easily performed in parallel. Moreover, the algebraic systems
corresponding to the discrete primal and adjoint problems utilize the same matrix.
More precisely, we obtain

Auh = b and ATzh = c, (1.39)

where Nh denotes the dimension of Vh, A ∈ RNh×Nh is the matrix coming from the dis-
cretization of (1.1), b,c ∈ RNh correspond to the right-hand sides of (1.8) and (1.17),
respectively, and uh,zh ∈ RNh denote the algebraic representations of the discrete so-
lution uh and zh, respectively. That can be beneficial in practical computations, see
Dolejšı́ and Tichý [2019], where both of these systems are solved simultaneously
by the BiCG iterative method. On the other hand, even though such reconstruction
may preform well in numerical experiments, it is usually difficult to theoretically pro-
vide guaranteed a priori proof that the reconstructed functions z+h and u+h , respectively,
should have better approximation properties than the original discrete solution zh.

For conforming FEM mostly reconstructions based on some patch-wise higher-
order interpolation are used. We mention the pioneering work Zienkiewicz and Zhu
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[1992a,b] and later works Meidner et al. [2009], Richter and Wick [2015], Rannacher
and Vihharev [2013] where those reconstructions are used for the goal-oriented er-
ror estimates, e.g. in Richter and Wick [2015] linear functions are reconstructed to
quadratic using the patch-wise structure of quadrilateral meshes. Further, we refer to
the work Carpio et al. [2013] where a patch-wise, higher-order interpolation recovery
extensible to finite elements of arbitrary order is used. It is capable to evaluate the
weights of the error estimator on unstructured meshes composed of anisotropic trian-
gles. The extension of any of those approaches to the discontinuous Galerkin method
is questionable, since, e.g., nodal values of functions, used in most of the techniques,
are ambiguous on element edges due to the discontinuity of functions in V d

h .
In Chapter 2 we present two possible ways how the reconstruction can be com-

puted for the DG method on simplicial meshes which were firstly introduced in articles
Dolejšı́ and Solin [2016] and Dolejšı́ and Roskovec [2017]. Apart from those we are
not aware of any paper where a local reconstruction of the DG solution would be used
to goal-oriented estimates, even though, for instance, the reconstruction based on or-
thogonal polynomials from Huynh [2009] may be applicable on quadrilateral meshes.

1.1.6 Adaptive algorithm

The main aim of the goal-oriented error estimation method is to obtain an approxima-
tion of the quantity of interest J(uh) with its error under some given tolerance TOL.
Given an initial mesh T

(0)
h , we iteratively adapt the mesh until the error estimate (1.38)

decreases under the tolerance TOL. Employing the goal-oriented error estimate (1.38)
may considerably decrease the computational effort if it is used for adaptive mesh re-
finement. In order to benefit from the estimate (1.38) for mesh adaptation ηS and η∗S
need to be to localized into positive error indicators describing local error contribu-
tions.

In conforming FEM this is usually done by plugging some partition of unity into
(1.37) (see, e.g., Richter and Wick [2015] ). In DG discretizations we simply define
element-wise contributions of (1.37) for each K ∈Th by

ηS,K = |rh(uh)((z+h −Πz+h )χK)|, η
∗
S,K = |r∗h(zh)((u+h −Πu+h )χK)|, (1.40)

which corresponds to a partition of unity formed of the characteristic functions of mesh
elements, i.e., 1 = ∑K∈Th

χK , plugged into (1.37). Either or both of those can be used
as a local error indicator for mesh refinement.

The functional J generally does not have the additive property such as norms and
it can attain both positive and negative values on different elements, c.f. Section 1.1.4.
Therefore, we cannot expect that the sum of the local error indicators would sharply
approximate the total error J(eh).

Remark. Although the primal and adjoint residuals are theoretically equivalent,
see (1.16), (1.20), in the following way

rh(uh)(z−ϕh) = r∗h(zh)(u−ψ) ∀ϕh,ψh ∈Vh, (1.41)

their localizations (1.40) can differ notably (even if z+h := z and u+h := u) and may lead
to differently refined meshes.
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More precise description of a general goal-oriented mesh adaptation algorithm is
given in the following algorithm.

Algorithm 1: Goal-oriented adaptive algorithm

1 let TOL > 0 be the given tolerance and T
(0)

h be the initial coarse mesh
2 for n = 0,1, . . . do
3 evaluate u(n)h and z(n)h by solving (1.8) and (1.17) on T

(n)
h

4 reconstruct u+,(n)
h and z+,(n)

h

5 compute η
(n)
h = 1

2(η
(n)
S +η

∗,(n)
S )

6 if η
(n)
h ≤ TOL then

7 STOP computations
8 else
9 using indicators η

(n)
S,K, η

∗,(n)
S,K , ∀K ∈T

(n)
h generate new mesh T

(n+1)
h

10 end
11 end

1.1.7 Guaranteed upper bounds
One of the biggest drawbacks of the goal-oriented error estimates as presented in pre-
vious Sections is that the estimate (1.38) is not a guaranteed upper bound of the error
quantity J(eh) due to neglecting of the “higher-order” terms in (1.35).

In this section we assume that the higher-order solutions u+h ,z
+
h ∈ V (+)

h are com-
puted by solving the problems (1.8) and (1.17), respectively, with polynomials of
higher degree on a globally refined mesh as in Šolı́n and Demkowicz [2004] (V (+)

h =

V p+1
h/2 ). Further, we denote the two parts of the error terms in the primal error identity

(1.35) by

J(eh) = rh(uh)(z−ϕh) = rh(uh)(z+h −ϕh)+ rh(uh)(z− z+h ) =: ηh + εh. (1.42)

In general, we expect that εh is “higher order term” than ηh.
If there exist an ”energy” norm ||| · ||| such that the bilinear form ah can be bounded

in the following way

ah(ϕ,ψ)≤ |||ϕ||||||ψ|||, ϕ, ψ ∈V,

we may exploit the Galerkin orthogonality of z+h

ah(ψ
(+)
h ,z− z+h ) = 0 ∀ψ(+)

h ∈V (+)
h

and formally write

εh = rh(uh)(z− z+h ) = ah(u−uh,z− z+h ) (1.43)

= ah(u−u+h ,z− z+h )≤ |||u−u+h ||||||z− z+h |||.

Generally, such norm bounding the bilinear form ah is clearly linked to the con-
crete problem and discretization method used, see, e.g., [Dolejšı́ and Feistauer, 2015,
Lemma 2.28], for discontinuous Galerkin method applied to Poisson equation. Then
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under sufficient assumptions on the regularity of the primal and adjoint problems we
get

|||u−u+h |||= O((h/2)p+1), |||z− z+h |||= O((h/2)p+1)

and hence asymptotically we have that ηh + εh→ ηh.
On the other hand, on a coarse mesh the term εh may be superior to the estimate

itself. In [Nochetto et al., 2009, Section 2] a numerical example was presented showing
that the classical DWR method (neglecting of the approximation error εh) may be
unreliable. More precisely, for some given tolerance TOL the adaptive algorithm based
on ηh stops after computation on the first mesh since ηh < TOL even though the true
error is still higher than the prescribed tolerance (and εh≫ ηh).

We briefly summarize the main ideas given in Nochetto et al. [2009] for a design
of a more reliable variant of the goal-oriented estimate not suffering of the problems
arising from neglecting εh which they call “safeguarded DWR estimator”.

In order to obtain a guaranteed upper bound of the error of the target quantity J(eh)
the term εh has to be estimated somehow. The most straightforward method would be
to estimate the higher-order therm |||u−u+h ||| and |||z−z+h ||| from (1.43) by global energy
norm estimates, e.g., Babuška and Rheinboldt [1978]. Unfortunately, that requires
to solve an additional (and larger) algebraic system of equations to compute u+h and
further the estimate may be very pessimistic due to a large overestimation in (1.43).
Therefore the authors of Nochetto et al. [2009] suggest a slightly different approach.
Due to the relation

εh = rh(uh)(z− z+h ) = ah(u−uh,z− z+h ) (1.44)

= ah(u−ψ
(+),z− z+h ) = r∗h(z

+
h )(u−ψ

(+)) ∀ψ(+) ∈V (+)
h .

computation of u+h can be avoided and instead the term r∗h(z
+
h )(u−ψ(+)) can be esti-

mated by some less or more standard methods.
Later several other papers struggling with this unreliability of DWR method were

published. Among others we mention the articles Ainsworth and Rankin [2012], where
the quantities of interest of arbitrary order finite element approximations in the context
of a linear second-order elliptic problem are bounded by a fully computable error es-
timates, Mozolevski and Prudhomme [2015], where the method based on equilibrated
flux reconstruction technique, cf. Vohralı́k [2010], is employed to derive guaranteed
asymptotically exact estimates of the target quantity, Ladeveze et al. [2013], where
the authors use the Saint-Venant’s principle to obtain guaranteed and accurate error
estimates for FEM discretizations of linear elasticity problems.

1.1.8 Goal oriented error estimates including algebraic errors
Unfortunately, due to algebraic errors neither the “exact” discrete solution uh of (1.8)
nor the solution zh of (1.17) are available in practical computations. Instead, we com-
pute a sequence of their approximations u(k)h,A ∈ Vh and z(k)h,A ∈ Vh, k = 0,1, . . . resulting
from a finite number of iterations of an algebraic iterative solver. We note that even
when using direct solvers the results are affected by rounding errors and hence uh and
zh are still not attainable.

Here we shortly introduce the goal-oriented error estimates including algebraic er-
rors following the ideas from Meidner et al. [2009], Dolejšı́ and Roskovec [2017] and
Dolejšı́ and Tichý [2019]. Further this concept will be described in detail in Section
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2.3. Considering the algebraically inexact discrete solution u(k)h,A the Galerkin orthogo-
nality (1.10) and (1.18) do not hold anymore. Hence we must add an additional term
measuring the deviation from the Galerkin orthogonality due to algebraic errors. For
the primal error identity (1.16) using the triangle inequality we have

J(u−u(k)h,A) = ah(u−u(k)h,A,z) = ah(u−u(k)h,A,z−ϕh)+ah(u−u(k)h,A,ϕh) (1.45)

= rh(u
(k)
h,A)(z−ϕh)+ rh(u

(k)
h,A)(ϕh) ∀ϕh ∈Vh.

Selecting ϕh := z(k)h,A in (1.45) we get

J(u−u(k)h,A) = rh(u
(k)
h,A)(z− z(k)h,A)+ rh(u

(k)
h,A)(z

(k)
h,A) = eS,n + eA,n, (1.46)

where the quantity eS,n := rh(u
(k)
h,A)(z− z(k)h,A) represents the discretization error of the

primal problem and the quantity eA,n := rh(u
(k)
h,A)(z

(k)
h,A) represents the algebraic error of

the primal problem. We note that eS,n matches (1.8) if u(k)h,A = uh since eA,n disappears
in that case.

In order to derive the counter-part to the adjoint error identity (1.20) including the
algebraic errors we exploit the error equivalence (1.21). Then we obtain the following
adjoint error identity including algebraic errors

ℓh(z− z(k)h,A) = ah(u,z− z(k)h,A) = ah(u−ψh,z− z(k)h,A)+ah(ψh,z− z(k)h,A) (1.47)

= r∗h(z
(k)
h,A)(u−ψh)+ r∗h(z

(k)
h,A)(ψh) ∀ψh ∈Vh.

Similarly to the primal case we choose ψh := u(k)h,A and we obtain

ℓh(z− z(k)h,A) = r∗h(z
(k)
h,A)(u−u(k)h,A)+ rh(u

(k)
h,A)(u

(k)
h,A) = e∗S,n + e∗A,n, (1.48)

where e∗S,n := r∗h(z
(k)
h,A)(u−u(k)h,A) represents the discretization error of the adjoint prob-

lem and e∗A,n := r∗h(z
(k)
h,A)(u

(k)
h,A) stands for the algebraic error of the primal problem.

We use the quantity ℓh(z− z(k)h,A) as analogue to J(u− u(k)h,A), since both terms co-

incide when u(k)h,A = uh and z(k)h,A = zh, but strictly speaking the identity (1.48) is not
equivalent to the error of the quantity of interest since due to algebraic errors generally

J(u−u(k)h,A) ̸= ℓh(z− z(k)h,A). (1.49)

Nevertheless, it is shown in Dolejšı́ and Tichý [2019] that if the bi-conjugate gradient
(BiCG) method is used to compute the approximations u(k)h,A and z(k)h,A then

J(u−u(k)h,A) = ℓh(z− z(k)h,A) k = 1,2, . . . (1.50)

1.1.9 Adjoint problem for a general linear problem
Let us briefly present a technique which enables verifying whether a given target func-
tional J is compatible with a general linear problem and to define the boundary con-
ditions for the adjoint problem. This method originates from Giles and Pierce [1997]
and it was further utilized for goal-oriented error estimates in Hartmann [2006].
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Let f ∈ L2(Ω) and g ∈ L2(∂Ω), we consider a linear problem

L u = f in Ω, (1.51)
Bu = g on ∂Ω, (1.52)

where L and B denote linear differential operators defined on Ω and on ∂Ω, respec-
tively. Let J be the target functional given by

J(u) =
∫

Ω

jΩudx+
∫

∂Ω

jΓC u dS, (1.53)

where C is some differential operator on the boundary and jΩ, jΓ are some given
functions defined on Ω and ∂Ω, respectively.

The adjoint problem to (1.51) is reads

L ∗z = jΩ in Ω, (1.54)
B∗z = jΓ on ∂Ω, (1.55)

where L ∗ is the adjoint operator to L and B∗ is some differential boundary operator
(B∗ is not adjoint operator to B). We may further define the dual functional

J∗(z) =
∫

Ω

f zdx+
∫

∂Ω

gC ∗z dS, (1.56)

even though it is not directly needed for the error estimation.
We say that the target functional (1.53) is compatible with the problem (1.51) if it

holds

J(u) = ( jΩ,u)Ω +( jΓ,C u)∂Ω = (L ∗z,u)Ω +(B∗z,C u)∂Ω (1.57)
= (z,L u)Ω +(C ∗z,Bu)∂Ω = ( f ,z)Ω +(g,C ∗z)∂Ω = J∗(z).

Here we use the notation (w,v)Ω =
∫

Ω
wvdx and (w,v)∂Ω =

∫
Ω

wv dS for better clarity.
The first two and the last two equalities hold directly from the definitions of the

problems (1.51), (1.54) and the functionals (1.53), (1.56), hence the critical step is to
prove that

(L ∗z,u)Ω +(B∗z,C u)∂Ω = (z,L u)Ω +(C ∗z,Bu)∂Ω. (1.58)

Integrating the left-hand side of the equality (1.51) by parts we obtain

(L u,z)Ω = (L ∗z,u)Ω +(A1z,A2u)∂Ω, (1.59)

where L ∗ is the adjoint differential operator to L and A1,A2 the differential operators
on the boundary ∂Ω originating from the integration by parts.

Therefore, target functional J is compatible with the problem (1.51), only if the
operators B∗ and C ∗ satisfy

(A1z,A2u)∂Ω = (B∗z,C u)∂Ω− (C ∗z,Bu)∂Ω. (1.60)

In Section 2.1.3 we employ this method to verify the compatibility of a given target
functional and determine the boundary conditions of the adjoint problem for the linear
convection-diffusion equation.
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The adjoint consistency of a discretization (1.15) also depends on the choice of the
target functional J(·). In some cases, the functional is not in a suitable form and it is
necessary to modify J (see Hartmann [2007] for more details) in the following way

J̃(v) := J(i(v))+
∫

Ω

rJ(v) dS, (1.61)

where i(·), rJ(·) are appropriate functions. We say that a modification of target func-
tional (1.61) is consistent if J̃(u) = J(u) for u being the exact solution of problem (1.3).
Thus the consistency of the modification (1.61) is guaranteed if u satisfies i(u) = u
and rJ(u) = 0. Even though the exact value of the target functional J(u) remains un-
changed, J̃(uh) ̸= J(uh). Moreover, J̃ is not linear anymore and hence the approach for
nonlinear problems, which will be explained in Section 1.2, has to be adapted to this
case.

1.2 Goal-oriented error estimates for nonlinear prob-
lems

In this section we extend the method for obtaining goal-oriented error estimates to
nonlinear problem. We proceed in similar way to the procedure described in [Bangerth
and Rannacher, 2003, Chapter 6] and in Hartmann [2006].

Let Ω ∈Rd be a bounded open domain. We consider the following nonlinear prob-
lem

A (u) = 0 in Ω, B(u) = 0 on ∂Ω. (1.62)

For linear problems the connection of the target quantity and the solved problem is
established using the adjoint (or dual) problem. Contrarily, there is no adjoint operator
to A and hence the adjoint problem to (1.62) cannot be defined directly. First, prob-
lem (1.62) has to be linearized and then the adjoint operator will be defined with its
linearization.

We start with introducing the Fréchet derivative of an operator.

Definition 1.4. Let V,W be normed vector spaces and U ⊂ V be an open subset of
V . Then a function f : U →W is called Fréchet differentiable at x ∈U if there exist a
continuous linear operator f ′[x] : V →W such that

lim
∥h∥V→0

∥ f (x+h)− f (x)− f ′[x](h)∥W
∥h∥V

= 0. (1.63)

We call f ′[x] ∈L (V,W ) the Fréchet derivative of f at the point x.

The function in the bracket [·] represents the state where the linearization is taken
about and hence f ′[x](h) is the directional derivative at x with direction h.

We assume that both A , B are differentiable operators and that the quantity of
interest can be expressed as a nonlinear functional

J(u) =
∫

Ω

jΩ(u)dx+
∫

∂Ω

jΓ(u) dS (1.64)
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with Fréchet derivative

J′[u](v) =
∫

Ω

j′Ω[u](v)dx+
∫

∂Ω

j′Γ[u](v) dS. (1.65)

The (strong) adjoint problem to (1.62) reads: find a function z such that

(A ′[u])∗z = j′Ω[u] in Ω, (B′[u])∗z = j′Γ[u] on ∂Ω, (1.66)

where (A ′[u])∗ and (B′[u])∗ are the adjoint operators to A ′[u] and B′[u], respectively.
We consider Hilbert spaces V,Wh and the finite dimensional space Vh ⊂Wh, con-

sisting of piecewise polynomial functions on a given mesh Th, see (1.5), (1.6). Further
ah(·; ·) represents a form corresponding to some discretization of the problem (1.62)
(FEM or DG). In this case ah is nonlinear with respect to its first argument, but linear
with respect to the second one. Now we can introduce the discretization of the problem
(1.62).

Definition 1.5. We say that a function uh ∈ Vh is the discrete solution of the problem
(1.62) if it satisfies

ah(uh;ϕh) = 0 ∀ϕh ∈Vh. (1.67)

We assume that both problems (1.62) and (1.67) are well-posed and their solutions
u and uh exist uniquely. The discretization (1.67) is said to be consistent, c.f. (1.9), if
the exact solution u of the primal problem (1.62) satisfies

ah(u;ϕ) = 0 ∀ϕ ∈Wh. (1.68)

where Wh is a suitable infinite dimensional space such that Vh ⊂Wh and u⊂Wh.
Further, let ah : Wh×Wh → R be Fréchet differentiable. Then for its directional

derivative in the direction (ϕ,ψ) ∈Wh×Wh we may write

D(ϕ,ψ)ah(u;w) = lim
t→0

ah(u+ tϕ;w+ tψ)−ah(u;w)
t

= lim
t→0

ah(u+ tϕ;w)+ tah(u+ tϕ;ψ)−ah(u;w)
t

= lim
t→0

ah(u+ tϕ;w)−ah(u;w)
t

+ah(u;ψ)

= D(ϕ,0)ah(u;w)+ah(u;ψ). (1.69)

For the integrity of notation we use ah
′[u](ϕ,w) := D(ϕ,0)ah(u;w) in the rest of the

text, denoting the directional derivative of ah with respect to its first (nonlinear) vari-
able. Then, similarly to (1.66), we can introduce the discrete adjoint (dual) problem.

Definition 1.6. We say that a function zh ∈Vh is the discrete adjoint solution of problem
(1.66) if it satisfies

ah
′[uh](ψh,zh) = J′[uh](ψh) ∀ψh ∈Vh. (1.70)

The discretization (1.67) is said to be adjoint consistent, c.f. (1.15), if z (the exact
solution of (1.66)) satisfies

ah
′[u](ψ;z) = J′[u](ψ) ∀ψ ∈Wh. (1.71)

23



In other words, the associated discrete adjoint (dual) problem is a consistent discretiza-
tion of the continuous adjoint problem (1.66). Similarly to the linear case, see Section
1.1.9, only some choices of target functionals are compatible with an adjoint consistent
discretization. For some functionals it is necessary to replace the target functional by
slightly adjusted satisfying J̃(u) = J(u).

Remark. We note that the adjoint continuous and discrete problems (1.66) and (1.70)
differ more than in the linear case, since while in (1.66) the linearization is done around
u, the linearization in (1.70) is done around uh.

1.2.1 Error estimation for nonlinear problems
Unlike the linear case, it is not obvious how should the adjoint problem help in esti-
mation of the error of the quantity of interest J(u)− J(uh). The basic relation between
the adjoint problem and the error measured with respect to the target functional is pre-
sented in the Theorem 1.7. For these estimates we introduce the following notation.
For arbitrary functions ϕ, ψ ∈V we denote

rh(uh)(ϕ) :=−ah(uh;ϕ) (1.72a)
r∗h(uh,zh)(ψ) := J′[uh](ψ)−ah

′[uh](ψ,zh) (1.72b)

the primal and adjoint residuals, respectively. Further, we denote eh = u− uh, e∗h =
z− zh the primal and adjoint errors, respectively.

Theorem 1.7. Let J : Wh→R and ah : Wh×Wh→R be three-times differentiable and
let (1.67) and (1.70) be consistent and adjoint consistent discretization of (1.67). Then
for the solutions u solving (1.62) and uh solving (1.67), it holds

J(u)− J(uh) =
1
2

rh(uh)(z−ϕh)+
1
2

r∗h(uh,zh)(u−ψh)+R
(3)
h (1.73)

∀ϕh,ψh ∈Vh.

The dependency of the expression R
(3)
h on the error eh is qubic and it is given by

R
(3)
h =

1
2

∫ 1

0

{
J′′′[uh + teh](eh,eh,eh)−ah

′′′[uh + teh](eh,eh,eh,zh + te∗h)

−3ah
′′[uh + teh](eh,eh,e∗h)

}
t(t−1)dt. (1.74)

Proof. Our proof is inspired by the proof of [Bangerth and Rannacher, 2003, Proposi-
tion 6.1]. Unlike in their approach we avoid introduction of the Euler-Lagrange method
since in our opinion it is in this case a bit artificial technique, which complicates the
understanding of the underlying relations.

Due to the primal consistency (1.68), formulation (1.67), the integral representation
formula and (1.69) it holds for error of the target functional

J(u)− J(uh) = J(u)− J(uh)−ah(u;z)+ah(uh;zh) (1.75)

=
∫ 1

0
J′[uh + teh](eh)−D(eh,e∗h)

ah(uh + teh;zh + te∗h)dt.

=
∫ 1

0
J′[uh + teh](eh)−

(
ah
′[uh + teh](eh,zh + te∗h)+ah(uh + teh;e∗h)

)
dt.
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From the Trapezoidal error formula we have

∫ 1

0
f (t)dt =

1
2
( f (0)+ f (1))+

1
2

∫ 1

0
f ′′(s)s(s−1)dt

for any function f ∈C2([0,1]).
Employing this error representation and further the primal consistency (1.68) and

adjoint consistency (1.71) we get

J(u)− J(uh) =
1
2
[
J′[uh](eh)−ah

′[uh](eh,zh)−ah(uh;e∗h) (1.76)

+(J′[u](eh)−ah
′[u](eh,z))−ah(u;e∗h)

]
+R

(3)
h

=
1
2
(r∗h(uh,zh)(eh)+ rh(uh)(e∗h))+R

(3)
h

where R
(3)
h is the error term from the trapezoidal rule. The statement of the theorem is

the a direct consequence of relations

rh(uh)(e∗h) = rh(uh)(z−ϕh) ∀ϕh ∈Vh,

r∗h(uh,zh)(eh) = r∗h(uh,zh)(u−ψh) ∀ψh ∈Vh.

Furthermore, we can get also a simplified error representation employing only the
primal residuum (1.72a).

Theorem 1.8. The error of the target functional satisfies also

J(u)− J(uh) = rh(uh)(z−ϕh)+R
(2)
h ∀ϕh ∈Vh, (1.77)

where R
(2)
h depends quadratically on the error eh and it is given by

R
(2)
h =

∫ 1

0

(
ah
′′[uh + seh](eh,eh,z)− J′′[uh + seh](eh,eh)

)
t dt (1.78)

Proof. Similarly to the previous proof we employ the integral representation theorem
and then thanks to the integration by parts we get

J(u)− J(uh)− rh(uh)(z−ψh) = J(u)− J(uh)−ah(u;z)+ah(uh;z) (1.79)

=
∫ 1

0
(J′[uh + teh](eh)−ah

′[uh + teh](eh,z))1dt

=−
∫ 1

0

(
J′′[uh + teh](eh,eh)−ah

′′[uh + teh](eh,eh,z)
)

t dt.

We note that the boundary terms from integration by parts disappear due to the adjoint
consistency (i.e., (J′[u](eh)−ah

′[u](eh,z)) ·1 = 0 ).
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1.2.2 Alternative approach
In the following we present a slightly different approach to a posteriori error estimation
from Hartmann [2005], Hartmann and Houston [2006b]. This approach enables deriv-
ing of the error representation without the terms coming from the linearization, hence
theoretically it provides a more direct relation between the error and the residual of
the primal problem. The cost for that is that the adjoint problem is derived an integral
form and in order to obtain a computable quantity the integral representation has to
be replaced by its approximation (linearization). That is done by the authors without
formulating precisely what the error term caused by this linearization looks like.

We consider the (adjoint consistent) DG discretization of the general nonlinear
problem (1.62). Further, we assume that the target functional J(·) is differentiable and
hence we can define

J(u,uh;ψ) :=
∫ 1

0
J′[tu+(1− t)uh](ψ)dt, (1.80)

where J′[w](·) denotes the Fréchet derivative of J evaluated at some w ∈ V. Then it
holds J(u,uh;u−uh) = J(u)− J(uh).

Here, V is some suitably chosen function space such that Vh ⊂ V. Similarly, we
define the mean-value linerization of the form ah by

M(u,uh;ψ,ϕ) :=
∫ 1

0
ah
′[tu+(1− t)uh](ψ,ϕ)dt (1.81)

for all ϕ ∈ V. Here, ah
′[w](·,ϕ) denotes the Fréchet derivative of u ↦→ ah(u,ϕ) for

ϕ ∈ V fixed at some w ∈ V. We denote (once more) that the linearization defined in
(1.81) is only a formal manipulation, since for concrete problems ah

′[w](·, ·) may not
exist in general and hence its suitable approximation has to be used instead, cf. Hart-
mann [2005], where finite difference quotients are employed to this approximation, or
Hartmann and Houston [2006a], where the approximation is defined for the compress-
ible Navier-Stokes equations.

We have
M(u,uh;u−uh,ϕ) = ah(u;ϕ)−ah(uh;ϕ).

Then we can introduce the adjoint problem in the following shape: find z∈V such that

M(u,uh;ϕ,z) = J(u,uh;ϕ) ∀ϕ ∈V. (1.82)

Then we directly obtain the following error representation

J(u)− J(uh) = J(u,uh;u−uh) = M(u,uh;u−uh,z)
= ah(u;z)−ah(uh;z) =−ah(uh;z−ϕh) ∀ϕh ∈Vh. (1.83)

In general we assume that the problem (1.82) possesses an unique solution, al-
though in a concrete application this clearly depends on the definition of M(u,uh; ·, ·)
and the choice of the considered target functional J.

In order to obtain a computable a posteriori error estimate the unknown solution z
needs to be replaced by some suitable numerical approximation z̃. To this end the ad-
joint problem is linearized which directly leads to (1.71) and its discretized counterpart
equals (1.70).
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1.2.3 Differences from linear case
Similarly to the linear case u, z in (1.73), or at least z in (1.77), have to be replaced by
some computable quantities in order to obtain computable estimates of the error of the
quantity of interest. Fortunately, all of the techniques presented in Section 1.1.5 can
be used as well for nonlinear problems. Moreover, the remainder terms R

(3)
h and R

(2)
h

are usually neglected, which again leads to estimates which are not guaranteed upper
bounds. Altogether we arrive to the approximate error representations

J(u)− J(uh)≈
1
2
(
rh(uh)(z+h −ϕh)+ r∗h(uh,zh)(u+h −ψh)

)
(1.84)

J(u)− J(uh)≈ rh(uh)(z+h −ϕh) (1.85)

based on (1.73) and (1.77), respectively.
In the linear case, the primal and adjoint residuals coincide, see (1.41). That is no

longer true for the nonlinear case, but the deviation from this relation can be estimated
using

∆r = r∗h(uh,zh)(u−ψh)− rh(uh)(z−ϕh) ∀ϕh,ψh ∈Vh, (1.86)

where

∆r =
∫ 1

0
ah
′′[uh + seh](eh,eh,zh + te∗h)− J′′[uh + seh](eh,eh)dt. (1.87)

The proof of (1.86) can be found in Bangerth and Rannacher [2003].

1.2.4 Solution of the nonlinear discrete primal problem
The discrete problem (1.67) forms a nonlinear system of algebraic equations, which
has to be solved by some iterative method. The most widely used method for solving
such system is the Newton method. Compared to linear problem it is obviously much
more computationally expensive since the Newton method requires a solution of a
linear problem in each step. On the other hand, solving the adjoint problem (1.70)
for the converged primal solution corresponds to one additional step of the Newton
method. Therefore the goal-oriented error estimates require relatively small overhead
in the computation effort. Here, we briefly introduce the algorithm of the Newton
method.

Let Nh denote the dimension of the space Vh and let Bh = {ϕi(x), i = 1, . . . ,Nh}
denote a set of linearly independent functions forming a basis of Vh. Any function
uh ∈Vh can be expressed in the form

uh(x) =
Nh

∑
j=1

ξ
j
ϕ j(x) ∈Vh ←→ ξξξ = (ξ j)Nh

j=1 ∈ RNh, (1.88)

where ξ j ∈ R, j = 1, . . . ,Nh are its basis coefficients with respect to Bh. Obviously,
(1.88) defines an isomorphism between uh ∈Vh and ξξξ ∈RNh . We call ξξξ k the algebraic
representation of uh.

In order to rewrite the nonlinear system (1.67) to its algebraic representation, we
define the vector-valued function Fh : RNh → RNh by

Fh (ξξξ ) = (ah(uh;ϕi))
Nh
i=1 , (1.89)

27



where ξξξ ∈ RNh is the algebraic representation of Uh ∈Vh.
Therefore, the algebraic representation of the systems (1.67) reads: Find ξξξ ∈ RNh

such that

Fh(ξξξ ) = 0. (1.90)

Further, we denote the Nh×Nh Jacobi matrix

DFh(ξ̄ξξ )

Dξξξ
=
(
ah
′[ūh](ϕ j,ϕi)

)Nh
i, j=1 (1.91)

where ϕi ∈ Bh, i = 1, . . . ,Nh and ξ̄ξξ ∈ RNh is the algebraic representation of ūh ∈Vh.
Now we introduce the damped Newton method solving (1.90). This method gen-

erates a sequence ξξξ
l, l = 0,1, . . . of approximations of the true numerical solution ξξξ .

For l = 0, ... the l−th iterative approximation ξξξ
l ∈ RNh is updated by

ξξξ
l+1 = ξξξ

l +λ
l
δδδ

l, (1.92)

where the update vector δδδ
l ∈ RNh is given as the solution of the problem

DFh(ξ̄ξξ
l
)

Dξξξ
δδδ

l =−Fh(ξξξ
l). (1.93)

The so-called damping parameter λ l improves the convergence of the method, see
Deuflhard [2004]. After solving linear system (1.93), we check, whether it holds

κ
l =

Fh(ξξξ
l+1)

Fh(ξξξ
l)
 < 1. (1.94)

When this condition is satisfied, we proceed to the next Newton-like iteration, oth-
erwise, we put λ l = λ l/2 and set ξξξ

l+1 with this new λ l and check whether (1.94) is
now satisfied. This process is iterated until (1.94) holds or some minimal level of the
step-length λMIN > 0 is achieved. The damping procedure provides convergence of
the method under weaker assumptions on the function F than the standard Newton
method, see Deuflhard [2004].

1.2.5 Goal-oriented error estimates including algebraic errors
Similarly to Section 1.1.8, we comment on how the algebraic errors arising from the
inexact solution of the problems (1.67) and (1.70) can be included to the goal-oriented
error estimates.

The whole iteration process (1.92) is terminated when some error criterion de-
creases under a given tolerance TOLnl. In general case it is usually usedFh(ξξξ

l)
 < TOLnl or

δδδ
l
 < TOLnl. (1.95)

Choosing appropriate tolerance TOLnl and error criterion for terminating the iterative
process (1.92) has a key role for efficiency of the adaptive algorithm.
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Since we are interested in estimating the error J(u)− J(uh) it suggests itself to use
some criterion connected with estimates of the error with respect to the quantity of
interest. Following the analysis of Rannacher and Vihharev [2013] we revisit the error
estimates from Section 1.2.1 assuming now that the solution of the discrete problems
(1.67) and (1.70) are only approximated.

Lemma 1.9. Let u(l)h,A, z(l)h,A ∈ Vh be the inexact solutions of the problems (1.67) and
(1.70), respectively. Then it holds

J(u)− J(u(l)h,A) =
1
2

rh(u
(l)
h,A)(z− z(l)h,A)+

1
2

r∗h(u
(l)
h,A,z

(l)
h,A)(u−u(l)h,A) (1.96)

+ rh(u
(l)
h,A)(z

(l)
h,A)+R

(3)
h .

Proof. We proceed similarly to (1.75), with the difference that ah(u
(l)
h,A;z(l)h,A) ̸= 0.

Hence we obtain

J(u)− J(u(l)h,A) = J(u)− J(u(l)h,A)−ah(u;z)+ah(u
(l)
h,A;z(l)h,A)−ah(u

(l)
h,A;z(l)h,A). (1.97)

The rest of the proof follows exactly the progression of the proof of the Theorem
1.7.

Hence we may replace the criterion for the error of the Newton solver (1.95) by

|rh(u
(l)
h,A)(z

(l)
h,A)|< TOLnl. (1.98)

Further, even the linear system (1.93) does not have to be solved exactly, but only
up to a given tolerance TOLlin using some iterative method instead. A goal-oriented
adaptive algorithm controlling all of these sources of errors was presented in Ran-
nacher and Vihharev [2013].

1.3 Demonstration experiments
We present two numerical experiments which should give some basic intuition on how
the adjoint problems behave for both linear and nonlinear problem. While it can be
usually quite easily seen for linear problems from the parameters of the primal problem
and the definition of the quantity of interest, it is often quite unclear for nonlinear
problems, where the adjoint problem depends also on the primal solution u which is
a priori unknown. Finally we compare an adjoint consistent and adjoint inconsistent
DG discretizations for a linear problem where the exact primal and adjoint solution
equal.

1.3.1 Linear convection-diffusion example
On square domain Ω = (0,1)2 we consider a convection-diffusion equation

L u :=−ε∆u+∇ · (bu) = 0, (1.99)

where the convection is given by vector b = (−x2,x1) and the parameter prescribing
the amount of diffusion is ε = 10−6. We prescribe homogeneous Neumann boundary
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Figure 1.1: Linear convection-diffusion: boundary condition

conditions on ΓN = {(x1,x2)∈ ∂Ω; x1 = 0} and Dirichlet boundary condition on ΓD =
∂Ω\ΓN . There, we put

u =

{
1 if x1 ∈ (1

3 ,
2
3) and x2 = 0,

0 elsewhere on ΓD.
(1.100)

The setting of the boundary conditions is depicted in Figure 1.1.
Multiplying the equation by a test function, integrating over Ω and finally employ-

ing integration by parts we determine that the corresponding adjoint operator is given
by

L ∗z =−ε∆z−b ·∇z. (1.101)

While the diffusive part of the operator L ∗ remains the same, convective flow of
L ∗ propagates in the reversed direction than in L .

We set ΩJ as square with vertices [0.25,0.625], [0.3125,0.6875], [0.375,0.625],
[0.3125,0.5625] and we choose

J(ϕ) :=
∫

ΩJ

ϕ dx. (1.102)

In Figure 1.2 we sketched the primal and adjoint solutions, respectively, together
with ΩJ . Due to the small amount of diffusion these are not discontinuous as Figure
1.2 depicts, but smoothened over the edges in a layer proportional to the amount of
diffusion ε .

First, we show a typical result of adaptive algorithm based on a standard method
of a posteriori error estimation (no quantity of interest involved). For this purpose we
used the (RES) method from Dolejšı́ [2013] estimating the dual norm of the residual
of the numerical solution.

In Figure 1.3 the adaptively refined mesh and isocurves of the corresponding nu-
merical solution uh are shown after several iterations of the adaptive algorithm (RES).
We see that the mesh is strongly refined along both waves where the solution u pos-
sesses steep gradients.
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Figure 1.2: Linear convection-diffusion: sketch of primal (left) and adjoint solution
(right)

Figure 1.3: Linear convection-diffusion: adaptively refined mesh and isocurves of the
numerical solution obtained by (RES) algorithm (not goal-oriented)
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Figure 1.4: Linear convection-diffusion: adaptively refined mesh and isocurves of the
numerical solution obtained by (DWR) algorithm

In Figure 1.4 the analogous results are shown after several adaptive steps based on
the goal-oriented error estimation (DWR) as introduced in Algorithm 11. Unlike the
previous case the mesh is only refined in the vicinity of the “wave” passing through ΩJ
and only in the direction opposite to the convection of L .

We note that the quantity of interest J(u) is approximated with very similar preci-
sion for both methods, but the DWR method attains it with half the amount of degrees
of freedom and hence much faster.

1.3.2 Nonlinear equation
Recalling the argumentation in Section 1.2 we note that the adjoint problem for non-
linear problems is formulated using the linearization of the problem around its solution
u (or uh for its discrete counterpart). Generally, the relation of the adjoint solution with
the original is rather unclear for nonlinear problems, since it not influenced only by the
definition of the primal problem, but also by the shape of the solution u itself.

Let us consider the nonlinear scalar problem

−ε∇ · (K(u)∇u)+∇(bu) = f in Ω = (0,1)2, (1.103)
u = gD on ΓD = (x1,x2) ∈ ∂Ω, (1.104)

∇ ·u = gN in ΓN = ∂Ω\ΓD, (1.105)

where the coefficients are given by ε = 10−2, b=(1,0)T,K(u)= I|u|γ and the constant
γ ≥ 0 will be specified later. We note that the question of existence and uniqueness of
the solution of the problem with (1.103) general data f , gD, gN would require a deeper
analysis. In this experiment, the functions f , gD, gN are chosen such that the exact
solution has the form

u = arctan(α(x1−β ))+
π

2
, (1.106)

with α = −25 and β = 0.4. The quantity is of interest is chosen as the mean value
of u over rectangle region ΩJ with corners [0.75,0.375], [0.875,0.375], [0.875,0.625],
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ΩJ ΩJ

Figure 1.5: Linear case (γ = 0): isolines of the primal solution (left) and adjoint solu-
tion (right)

[0.75,0.625],i.e.,

J(u) :=
1
|ΩJ|

∫
ΩJ

udx. (1.107)

The linearized adjoint problem to (1.103) in its strong form reads

−ε∇ · (K(u)∇z+K′[u](z)∇u)−b ·∇z =
1
|ΩJ|

χΩJ . (1.108)

Although the problem (1.103) is a bit artificial, we believe that it is illustrative for
visualizing the relation between primal and adjoint solutions for nonlinear problems
(similarly to Example 1.3.1 for the linear case). Generally, the relation of the adjoint
solution with the original is rather unclear, but in this case we can exploit the knowl-
edge of the primal solution to comment on the shape of the adjoint solution z, see right
parts of the Figures 1.5 and 1.6.

If we choose the parameter γ = 0 (in the definition of K), we obtain a linear
convection-diffusion problem similar to Example 1.3.1. In Figure 1.5 we see that the
adjoint solution z is linearly “spreading” with the increasing distance from ΩJ in the
direction of −b, which is caused by the constant diffusion contained in the problem.

When we choose γ = 2, the diffusion of the problem (1.103) becomes nonlinear.
We may imagine that u stands for temperature and the quantity of interest represents its
mean value over ΩJ in an environment where the diffusion of u depends on the value
of u while the convective flow remains constant. Then the adjoint problem helps us
to estimate the dependence of the value of u in ΩJ on its values in different parts of
the domain Ω which can be later used to conduct the adaptive mesh refinement. Since
u ≈ 0 on the right half of the domain Ω, convection (with opposite direction as in the
primal problem) dominates there. The character of the problem (1.108) changes to
convection-diffusion over the transition zone around x1 = 0.4.

This “physical” interpretation also helps us to understand why the adjoint problem
is linear even for nonlinear primal problems. The nonlinearity in u expresses the de-
pendence of the model on the value of u. While that is not a priori known for the primal
problem, it is already resolved when solving the adjoint problem.
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ΩJ

Figure 1.6: Nonlinear case (γ = 2): isolines of the primal solution (left) and adjoint
solution (right)

1.3.3 Importance of adjoint consistency
We present an numerical experiment illustrating the importance of adjoint consistency
of the discretization. We set Ω = (0,1)2 and we consider the Poisson problem with
homogeneous Dirichlet boundary condition

−∆u = f in Ω,

u = 0 on ∂Ω. (1.109)

We choose f =−32x(1− x)y(1− y) so the exact solution equals

u = 16x(1− x)y(1− y). (1.110)

Further, we set

J(u) :=
∫

Ω

f udx, (1.111)

so the adjoint problem is equivalent to the primal one (and z = u). In this example we
use linear polynomial (p = 1) on a regular mesh containing 125 triangles.

In Figure 1.7 the results obtained by the symmetrical (SIPG) and nonsymmetrical
(NIPG) interior penalty Galerkin method, respectively, are compared. Only the SIPG
version is adjoint consistent, see Lemma 2.5 in Chapter 2, while NIPG is not. We can
see that while the primal and adjoint solution coincide for SIPG method, the adjoint
solution obtained by NIPG method contains nonphysical mesh-dependent oscillations,
caused by the inconsistent terms in the discretization scheme.
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Figure 1.7: Poisson problem, comparison between the primal and adjoint solutions
obtained by the SIPG (top) and NIPG (bottom) methods
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2. Linear convection-diffusion
problem
In this chapter we deal with discontinuous Galerkin discretization of a linear convec-
tion-reaction-diffusion equation and the corresponding a posteriori error estimates of
J(u)− J(uh), where uh is the approximate solution.

The goal oriented error estimates require a sufficiently accurate approximation of
the solution of the (continuous) adjoint problem. One possibility is to solve the adjoint
problem on globally refined mesh which is time-consuming. We present two different
reconstruction techniques allowing an efficient and accurate approximation of the so-
lution of the adjoint problem. This way of post-processing is commonly used for finite
element computations, see Richter and Wick [2015], but in DG discretizations most
of the methods for goal-oriented error estimation described in literature, e.g., Hart-
mann and Houston [2006a], Harriman et al. [2003], are based on globally higher-order
solution of the adjoint problem.

The discretization of the primal and adjoint problems leads to two linear algebraic
systems, which are usually solved by a suitable iterative technique. Therefore the error
of the resulting solution and its error estimate are influenced by the error resulting
from inexact solution of both algebraic systems. Following the ideas from Arioli et al.
[2013], we take into account also the algebraic error resulting from inaccurate solution
of the algebraic systems mentioned above. This aspect was considered in Meidner
et al. [2009] with the emphasis on the multigrid methods for conforming finite element
methods. The novelty of our approach is the consideration of the algebraic error of the
adjoint problem, which was not taken into account in Meidner et al. [2009]. Then we
are able to balance the discretization and algebraic errors for the primal as well as for
the adjoint problem.

Further, we propose an adaptive algorithm including stopping criteria for the itera-
tive solutions of the primal and adjoint algebraic problems.

Finally, numerical experiments are presented where the decrease of the algebraic
errors, when employing the algebraic estimators, is demonstrated.

2.1 Problem description
Let Ω ⊂ Rd be a bounded polygonal domain with Lipschitz boundary. Moreover,
let the vector valued function b = {bi}d

i=1 be a linear convection coefficient whose
entries bi are Lipschitz continuous real-valued functions in Ω, c denotes the reaction
coefficient and A= {ai, j}d

i, j=1 is a symmetric diffusion tensor with bounded piece-wise
continuous real-valued entries, satisfying the elliptic property

ζTA(x)ζ ≥ 0 ∀ζ ∈ Rd,a.e. x ∈Ω.

By n(x) we denote the unit outward normal vector to ∂Ω at x ∈ ∂Ω. We define a
disjoint decomposition of the boundary ∂Ω by

Γ0 := {x ∈ ∂Ω : n(x)TA(x)n(x)> 0},
Γ− := {x ∈ ∂Ω\Γ0 : b(x) ·n(x)< 0},
Γ+ := {x ∈ ∂Ω\Γ0 : b(x) ·n(x)≥ 0}.
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Figure 2.1: Example of the division of the boundary ∂Ω into Γ−, Γ+, and Γ0 = ΓD∪
ΓN .

Obviously, these sets are disjoint and ∂Ω = Γ0∪Γ−∪Γ+. Further, we divide Γ0 into
two disjoint subset ΓD and ΓN , see Figure 2.1. We assume that Γ−∪ΓD ̸= /0 and that
b ·n≥ 0 on ΓN whenever ΓN ̸= /0.

We consider the following linear convection-diffusion-reaction model problem

L u :=−∇ ·A∇u+∇ · (bu)+ cu = f in Ω, (2.1a)
u = uD on ΓD∪Γ−, (2.1b)

A∇u ·n = gN on ΓN , (2.1c)

where u : Ω→R is an unknown scalar function. Since the diffusion may degenerate in
some parts of Ω, problem (2.1) has to be considered as a first-order PDE in those parts
and hence no boundary condition can be set on Γ+. This kind of problems is termed as
”partial differential equations with nonnegative characteristic form” in Houston et al.
[2002].

We assume that the data satisfy f ∈ L2(Ω), uD is trace of some u∗ ∈ H1(Ω) on
ΓD∪Γ−, gN ∈ L2(ΓN), c ∈ L∞(Ω).

We proceed to the weak formulation of (2.1).

Definition 2.1. The function u ∈H1(Ω) is called the weak solution of (2.1) if u−u∗ ∈
H1

D(Ω) := {v ∈ H1(Ω); v
⏐⏐
ΓD∪Γ−

= 0} and

a(u,ϕ) = ℓ(ϕ) ∀ϕ ∈ H1
D(Ω), (2.2)

where

a(u,ϕ) :=
∫

Ω

A∇u ·∇ϕ dx−
∫

Ω

(ub ·∇ϕ− cuϕ) dx+
∫

Γ+∪ΓN

b ·nuϕ dS,

ℓ(ϕ) :=
∫

Ω

f ϕ dx+
∫

ΓN

gNϕ dS, u,ϕ ∈ H1(Ω).

The well-posedness of the boundary value problem (2.2), in the case of homoge-
neous boundary conditions, is shown in Houston et al. [2000]. The well-posedness of
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(2.2) with the non-homogeneous Dirichlet boundary condition can be proved by the
standard technique based on the decomposition u = u0 + u∗ where u0 ∈ H1

0 (Ω) and
solving a(u0,ϕ) = ℓ(ϕ)−a(u∗,ϕ) ∀ϕ ∈ H1

0 (Ω).

2.1.1 DG discretization of the problem

For the DG discretization we introduce a partition Th covering Ω consisting of finite
number of closed d-dimensional simplices K with mutually disjoint interiors. The
boundary of the element K ∈ Th will be denoted by ∂K, its diameter hK = diam(K)
and |K| its d-dimensional Lebesgue measure.

By Fh we denote the union of all faces contained in the partition Th and F I
h , F D

h
the union of interior and Dirichlet boundary faces, respectively. Further, let F ID

h :=
F I

h ∪F D
h . For each face Γ ⊂F I

h there exist two neighboring elements KL, KR ∈ Th
such that Γ = KL ∩KR. It is possible to define a unit normal vector n = (n1, . . . ,nd)
at almost every point of Fh. The orientation of n can be chosen arbitrarily for the
interior faces, so we can assume that n = nKL =−nKR . Further, for K ∈Th we set

∂K− := {x ∈ ∂K;b ·n(x)< 0}, ∂K+ := {x ∈ ∂K;b ·n(x)≥ 0}. (2.3)

We assume that there exists h0 > 0 such that {Th}h∈(0,h0)
is a system of triangula-

tions is shape-regular and locally quasi-uniform, see Dolejšı́ and Feistauer [2015]. We
do not require the conforming properties known from finite element methods. There-
fore the triangulations Th could contain so called hanging nodes. Over the triangula-
tion Th we define the so-called broken Sobolev space, c.f. (1.7), over the triangulation
Th as

Hs(Ω,Th) = {v ∈ L2(Ω), v
⏐⏐
K ∈ Hs(K)∀K ∈Th} (2.4)

with the norm and the semi-norm ∥v∥Hs(Ω,Th)
=
(

∑K∈Th
∥v∥2

Hs(K)

) 1
2 and |v|Hs(Ω,Th)

=(
∑K∈Th

|v|Hs(K)
2
) 1

2 , respectively.
Discontinuous Galerkin method is very convenient for hp-adaptation. Therefore,

to each K ∈ Th we assign its local polynomial degree pK . Then we define set p :=
{pK; K ∈Th} and the finite dimensional space

Sp
h = {v ∈ L2(Ω); v

⏐⏐
K ∈ PpK(K)∀K ∈Th}. (2.5)

The dimension of Sp
h corresponding to the number of degrees of freedom can be calcu-

lated as Np
h := dimSp

h = ∑K∈Th

(pk+d
d

)
. The pair {Th,p}=: Th,p is called the hp-mesh.

Let Γ⊂F I
h , v∈H1(Ω,Th), we introduce the notation vL = trace of v

⏐⏐
KL

on Γ, and
vR = trace of v

⏐⏐
KR

on Γ, Further, we denote the jump of v on Γ by [[v]] = vL− vR and
its mean value ⟨v⟩= 1

2(vL + vR). On Γ⊂F D
h we set [[v]] = ⟨v⟩= vL, where KL is such

element, that Γ = KL ∩ ∂Ω. Given an element K ∈ Th we denote by v− the exterior
trace of v defined on ∂K\∂Ω, the interior trace on ∂K will be denoted simply by v.

We discretize the equation (2.2) using the interior penalty Galerkin method (IPG),
see, e.g., [Dolejšı́ and Feistauer, 2015, Section 4.6] or Houston et al. [2002]. For
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u,ϕ ∈ H2(Ω,Th) we define the forms

Ah(u,ϕ) := ∑
K∈Th

∫
K
A∇u ·∇ϕ dx (2.6a)

− ∑
Γ∈F ID

h

∫
Γ

⟨A∇u⟩ ·n[[ϕ]]+θ ⟨A∇ϕ⟩ ·n[[u]] dS,

Jδ
h (u,ϕ) := ∑

Γ∈F ID
h

∫
Γ

δ [[u]][[ϕ]] dS, (2.6b)

Bh(u,ϕ) := ∑
K∈Th

(
−
∫

K
ub ·∇ϕ− cuϕ dx (2.6c)

+
∫

∂K+
b ·nKuϕ dS+

∫
∂K−\∂Ω

b ·nKu−ϕ dS
)

ℓh(ϕ) :=
∫

Ω

f ϕ dx+
∫

ΓN

gNϕ dS− ∑
K∈Th

∫
∂K−∩∂Ω

(b ·n)uDϕ dS (2.6d)

+ ∑
Γ∈F D

h

∫
Γ

(δϕ−θA∇ϕ ·n)uD dS.

The choice of θ ∈{−1,0,1} leads to the nonsymmetric (NIPG), incomplete (IIPG),
and symmetric (SIPG) variant of the discontinuous Galerkin method. The penalty pa-

rameter δ is chosen by δ
⏐⏐
Γ
= δΓ =

εCW p2
Γ

hΓ
,Γ ∈F ID

h , where ε denotes the amount of
diffusivity (≈ |A|), hΓ = diamΓ, pΓ = max(pK, pK′) for Γ ⊂ K ∩K′ and CW > 0 has
to be chosen large enough to guarantee convergence of the method, see [Dolejšı́ and
Feistauer, 2015, Chapter 2]. Further, we introduce the DG-norm, c.f. Chapter 1.43,

|||v||| := ∑
K∈Th

(A1/2
∇v
2

K
+

1
2
∥v∥2

∂K−∩(ΓD∪Γ−)+
1
2
∥[[v]]∥2

∂K−\∂Ω
+

1
2
∥v∥2

∂K+∩∂Ω

+∥c0v∥2
K

)
+
∫

Γ∈F ID
h

(
δ [[v]]2 +

1
δ
⟨A∇v ·n⟩2

)
dS. (2.7)

We use the convention that the edges Γ where nTAn = 0 are omitted from the integra-
tion in the form Jδ

h (·, ·) and in the DG-norm.
Finally, we put

ah(u,ϕ) := Ah(u,ϕ)+ Jδ
h (u,ϕ)+Bh(u,ϕ), u,ϕ ∈ H2(Ω,Th). (2.8)

We are ready to define the discrete problem.

Definition 2.2. We say that uh ∈ Sp
h is the discrete solution of (2.2) obtained by dis-

continuous Galerkin method if

ah(uh,ϕh) = ℓh(ϕh) ∀ϕh ∈ Sp
h . (2.9)

Lemma 2.3. The discrete problem (2.9) is consistent with the weak formulation (2.2),
i.e., the exact solution u ∈ H2(Ω) satisfies

ah(u,ϕ) = ℓh(ϕ) ∀ϕ ∈ H2(Ω,Th). (2.10)
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Proof. See, e.g., [Dolejšı́ and Feistauer, 2015, Chapters 2 and 3], Harriman et al.
[2003].

That gives us the Galerkin orthogonality of the exact and discrete solutions, c.f.
(1.10),

ah(u−uh,ϕh) = 0 ∀ϕh ∈ Sp
h , (2.11)

which is a crucial property in goal-oriented estimates.

2.1.2 Quantity of interest
The goal of the whole computation process is to determine the value of the quantity
of interest J(u), where J is a linear functional defined for the weak as well as the
approximate solutions. It was shown in Hartmann [2007], that the primal problem
(2.1), the corresponding adjoint problem and target functional J(u) have to satisfy the
so-called compatibility condition which together with the consistency of the numerical
method and the adjoint consistency guarantee the regularity of the adjoint solution and
then the optimal order of convergence. The low regularity of the solution of the adjoint
problem, c.f. Example 1.3.3, causes a suboptimal convergence rate of the DWR error
estimate, see Hartmann [2007], Harriman et al. [2004].

We consider the functional J in the form

J(u) =
∫

Ω

jΩ(x)u(x)dx+
∫

ΓD

jΓDA∇u ·n dS+
∫

Γ+∪ΓN

jΓN u dS, (2.12)

where jΓD, jΓN ∈ L2(∂Ω) and jΩ ∈ L2(Ω) are given functions, typically characteristic
functions of some subdomain in ∂Ω or Ω, respectively.

2.1.3 Derivation of the adjoint problem
We derive the adjoint problem to the problem (2.1) with the target functional given by
(2.12) and verify the compatibility of the target function with the primal problem (2.1).
Recalling the reasoning of the Section 1.1.9 we multiply the left-hand side of equation
(2.1a) by a function z ∈ H2(Ω) and integrate by parts over Ω∫

Ω

L uzdx =
∫

Ω

−∇ ·A∇uz+∇ · (bu)z+ cuzdx (2.13)

=
∫

Ω

(A∇u) ·∇z−b ·∇zu+ cuzdx+
∫

∂Ω

−(A∇u) ·nz+(b ·n)uz dS

=
∫

Ω

∇ · (A∇z)u−b ·∇zu+ cuzdx

+
∫

∂Ω

−(A∇u) ·nz+(b ·n)uz+(A∇z) ·nu dS

We directly see that the adjoint operator to L is defined by

L ∗z =−∇ ·A∇z−b ·∇z+ cz.

The boundary operator B∗ has to be derived separately on each individual part of the
boundary according to (1.60). Recalling the notation from Section 1.1.9 we have∫

∂Ω

A1zA2u dS =
∫

∂Ω

−(A∇u) ·nz+(b ·n)uz+(A∇z) ·nu dS. (2.14)
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On ΓD we have Bu = u, C u =A∇u ·n and hence B∗z =−z. On the Neumann part of
the boundary ΓN we have Bu=A∇u ·n, C u= u and hence for the boundary condition
of the adjoint problem we get B∗z =A∇z ·n+b ·nz. On Γ+ we have Bu = 0, C u = u
and hence B∗z = b ·nz and finally B∗ = 0 on Γ− since there holds Bu = u and J
vanishes there.

Therefore target functional (2.12) is compatible with the equation (2.1) and the
corresponding adjoint problem reads in its strong formulation: Find a function z : Ω→
R such that

−∇ ·A∇z−b ·∇z+ cz = jΩ in Ω, (2.15)
z =− jΓD on ΓD,

A∇z ·n+b ·nz = jΓN on ΓN ,

b ·nz = jΓN on Γ+.

The adjoint problem (2.15) contains a Newton boundary condition on ΓN , but since
b ·n≥ 0 on ΓN this boundary condition will contribute to the coercivity of the problem
and the problem is well-posed.

Definition 2.4. We say that a function zh ∈ Sp
h is the discrete adjoint solution if it

satisfies

ah(ψh,zh) = J(ψh) ∀ψh ∈ Sp
h . (2.16)

We recall that a discretization (2.9) of the problem (2.2) with the target function J
given by (2.12) is adjoint consistent if the exact solution z ∈ H2(Ω) of (2.15) satisfies
(2.16), i.e.

ah(ψ,z) = J(ψ) ∀ψ ∈ H2(Ω,Th). (2.17)

2.1.4 Adjoint consistency

In the following, we deal with the adjoint consistency of the discrete adjoint problem
(2.16). We show that in order to guarantee the adjoint consistency, the right-hand side
of (2.16) has to be slightly modified.

Following the approach from Hartmann [2007] we rewrite (2.16) element-wise and
by integration by parts and the definition of the forms (2.6) we get that the solution of
(2.16) satisfies

r∗h(zh)(ψh) = ∑
K∈Th

∫
K

r∗K,V(zh)ψh dx

+
∫

∂K
r∗K,B(zh)ψh + r∗K,D(zh)∇Aψh ·n dS = 0 ∀ψh ∈ Sp

h ,

(2.18)

where the adjoint residuals consist of

r∗K,V(zh) := jΩ +∇ · (A∇zh)+b ·∇zh− czh, (2.19)

42



r∗K,B(zh) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1
2 [[A∇zh]]n+(1−θ)⟨A∇zh⟩ ·n− (δn ·nK +b ·n)[[zh]]

on ∂K+ \∂Ω,

−1
2 [[A∇zh]]n+(1−θ)⟨A∇zh⟩ ·n−δn ·nK[[zh]]

on ∂K− \∂Ω,

−(1−θ)A∇zh ·n−δ zh on ∂K−∩ΓD,

−(1−θ)A∇zh ·n− (δ +b ·n)zh on ∂K+∩ΓD,

jΓN −A∇zh ·n−b ·nzh on ∂K∩ΓN ,

jΓN −b ·nzh on ∂K∩Γ+,

0 on ∂K∩Γ−,

r∗K,D(zh) :=

⎧⎪⎨⎪⎩
1
2 [[zh]] on ∂K \∂Ω,

jΓD + zh on ∂K∩ΓD,

0 on ∂K∩ (∂Ω\ΓD).

Considering the symmetric variant of DG (θ = 1) we see that if z ∈ H2(Ω) is
the solution of the problem (2.15), it nullifies the volume residual r∗K,V and also all
residuals on interior edges and boundary edges except ΓD. On ΓD we have z = − jΓD

from r∗K,D, but also δ z+b ·nz = 0 on ∂K+∩ΓD and δ z = 0 on ∂K−∩ΓD, which are
in conflict unless jΓD = 0.

This problem can be overcome by a small modification of the target functional
according to the method introduced in (1.61). We define

N (uh) :=
∫

ΓD

rJ(v) dS, rJ(v) =

{
−δ (v−uD) jΓD on ∂K−∩ΓD

−(δ +b ·n)(v−uD) jΓD on ∂K+∩ΓD

(2.20)

and then

J̃(v) := J(v)+N (uh), (2.21)

The modification is designed such that J̃(u) = J(u) for u being the exact solution
of the problem (2.1). Further, since J̃(v) is affine, it holds J̃(u)− J̃(uh) = J̃′u(u− uh),
where

J̃′u(v) = J(v)− ∑
K∈Th

(∫
ΓD∩∂K−

vδ jΓD dS−
∫

ΓD∩∂K+
v(δ +b ·n) jΓD dS

)
(2.22)

is the Gateaux derivative of J̃ in direction v. In order to guarantee the adjoint consis-
tency of the adjoint problem, we can replace the adjoint problem (2.16) by

ah(ψh,zh) = J̃′u(ψh) ∀ψh ∈ Sp
h . (2.23)

From definition of the modification of the target functional we deduce that

J(u)− J(uh) = N (uh)+ J̃′u(eh)

= N (uh)+ah(eh,zh) (2.24)

So the term N (uh) may be viewed as the ”amount of violation” of the Dirichlet bound-
ary condition.

All the derivations presented in Subsection 2.1.4 can be summarized into the fol-
lowing result.
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Lemma 2.5. The SIPG variant of (2.23) is an adjoint consistent discretization of the
problem (2.1) with target functionals defined according to (2.21),i.e.,

r∗h(z)(ψ) = 0 ∀ψ ∈ H2(Ω,Th) (2.25)

Moreover, it provides the Galerkin orthogonality for the adjoint solutions z and zh

ah(ψh,z− zh) = 0 ∀ψh ∈ Sp
h . (2.26)

On the other hand for nonsymmetric variants (θ ∈ {−1,0}) the adjoint discretiza-
tion is surely not adjoint consistent with (2.15) due to ⟨A∇z⟩ ̸= 0 in (2.19). Therefore
we limit our further steps only for SIPG variant.

In the following, we will restrict ourselves for the sake of simplicity to the case
when jΓD = 0, i.e., when the modification of J is not needed, but all our further deriva-
tions may be easily generalized also to the case when jΓD ̸= 0 using the relation (2.24).

2.1.5 Goal-oriented error estimates
In the framework presented in Section 1.1.3 we introduce the goal-oriented error es-
timates. Using the adjoint consistency (2.17), the consistency (2.10), the Galerkin
orthogonality of the error (2.11), we get the primal error identity (c.f. (1.16)) for the
error of the quantity of interest

J(eh) = ah(u−uh,z) = ℓh(z)−ah(uh,z) =: rh(uh)(z)
= rh(uh)(z−ϕh) ∀ϕh ∈ Sp

h (2.27)

where rh(uh)(·) denotes the residual of the problem (2.9). Let us note that the Galerkin
orthogonality was used only in the last step, i.e, the identity J(u− uh) = rh(uh)(z) is
valid also for uh violating the Galerkin orthogonality, which is the case of the approxi-
mate solution suffering from algebraic errors.

Similarly, exploiting (2.26) we get the adjoint error identity (c.f. (1.20))

J(u−uh) = ah(u−uh,z− zh) = ah(u−ψh,z− zh)

= J(u−ψh)−ah(u−ψh,zh)

=: r∗h(zh)(u−ψh) ∀ψh ∈ Sp
h , (2.28)

where r∗h(zh)(·) denotes the residual of the adjoint problem (2.16).
Hence, similarly to (1.21) the residuals rh(uh)(·) and r∗h(zh)(·) are equivalent in the

following way

rh(uh)(z−ϕh) = r∗h(zh)(u−ψh) ∀ϕh,ψh ∈ Sp
h . (2.29)

2.2 Reconstruction of the discrete solutions
Except for a very few examples, neither u nor z are a priori known. Therefore, they
must replaced by some computable quantities in (2.27) and (2.28). Following the con-
cept from Section 1.1.5 we define

ηS := rh(uh)(z+h −Πz+h ), η
∗
S := r∗h(zh)(u+h −Πu+h ), (2.30)
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where Π : L2(Ω)→ Sp
h is an arbitrary projection to Sp

h . Obviously the functions z+h and
u+h must be from a richer space than Sp

h otherwise the residuals would degenerate, since
rh(uh)(ϕh) = r∗h(zh)(ϕh) = 0 for all ϕh ∈Vh, c.f. Section 1.1.5.

As in (1.35) we get the following equality for the error (primal formulation)

J(u−uh) = rh(uh)(z−φh) = rh(uh)(z+h −φh)+ rh(uh)(z− z+h ) (2.31)
:= ηh + εh ∀φh ∈ Sp

h ,

where the second term is usually neglected, see Section 1.1.7. Motivated by the equal-
ity (2.29), c.f. (1.38), we employ the arithmetic average of ηS and η∗S and define the
following a posteriori error estimate

J(eh)≈ η
I :=

1
2
(ηS +η

∗
S) . (2.32)

In order to localize (2.30) into positive error indicators describing local error con-
tributions we proceed according to the Section 1.1.6 and introduce element-wise con-
tributions of (2.30)

ηS,K = rh(uh)((z+h −φh)χK), η
∗
S,K = r∗h(zh)((u+h −ϕh)χK), K ∈Th, (2.33)

where χK denotes the characteristic function of element K. Further, we define

η
I
K :=

1
2
(
ηS,K +η

∗
S,K
)
. (2.34)

Evidently, η I = ∑K∈Th
η I

K.

The absolute value of |η I
K| can be used as a local error indicator for mesh refine-

ment, namely the setting of the sizes in the new mesh, the elements with too high value
of |η I

K| (or |ηS,K| or |η∗S,K|, if only one kind of the estimates is used) are refined whereas
the element with too small |η I

K| may be coarsened. We note that ηS ̸= ∑K∈Th
|ηS,K|

and the sum of the indicators may strongly overestimate the error J(eh), c.f. Section
1.1.6.

We present two local reconstructions of the discrete solutions applicable for DG of
an arbitrary degree (even hp-variant). Both of these methods do not require any patch-
wise structure of the mesh. This is very favorable since we aim for the combination
of the goal-oriented estimates with the anisotropic mesh generator Dolejšı́ [2000]. We
present the ideas for reconstruction of the discrete solution uh, computation of z+h is
done alike using function zh. Another standard way of obtaining u+h ,z

+
h is to compute

the adjoint problem on a finer mesh and/or with higher polynomial degree as intro-
duced in Section 1.1.5.

2.2.1 Weighted least-square method
First, we employ the method developed in Dolejšı́ and Solin [2016]. For the purpose
of the presented reconstruction we define the space

Sp+1
h := {v ∈ L2(Ω); v

⏐⏐
K ∈ Ppk+1(K)∀K ∈Th.}

Obviously Sp
h ⊂ Sp+1

h ⊂ H2(Ω,Th).

45



Figure 2.2: Examples of patches DK corresponding to interior and boundary elements,
large (left) and small (right) patches.

Let uh ∈ Sp
h be the approximate solution of (2.9). For the reconstruction u+h ∈ Sp+1

h
on element K ∈ Th we use a weighted least square approximation from the elements
sharing at least a vertex with K, see Figure 2.2, left. We denote this patch of elements
DK = {K′ ∈Th; K′∩K ̸= /0}.

We compute the function u+K ∈ PpK+1(DK) by

u+K = argmin
Uh∈PpK+1(DK)

∑
K′∈DK

ωK′ ∥Uh−uh∥2
H1(K′) . (2.35)

Then we assemble the higher-order reconstruction u+h as an element-wise composition
of u+K

⏐⏐
K , i.e., u+h = ∑K∈Th

u+K
⏐⏐
K. In the following we will refer to this method as the LS

reconstruction.
When choosing the values of the weights ωK′ , we distinguish between elements

sharing a face and elements having only a common vertex. We set ωK′ = 1 if K′ = K
or if K,K′ share a face and ωK′ = ε if K,K′ share only a vertex. The parameter ε helps
to stabilize the reconstruction when local polynomial degrees are too varying on DK .
Hence we choose

ε := ε max(0,∆pK−1), where ∆pk = max
K′∈DK

pK′− min
K′∈DK

pK′ (2.36)

where ε := 0.02 was empirically chosen. Consequently, the small patches, see Fig-
ure 2.2 right, are used when ∆pk ≤ 1.

This method is actually independent of the solved problem. This can be viewed as
a disadvantage since approximation tailored specifically for the solved problem may
work more accurately, but on the other hand such specialized technique may not be
available for complex problems.

As shown in Dolejšı́ et al. [2017], this reconstruction can be advantageously used
also to determine the anisotropic hp-adaptation of the mesh. Although we cannot
prove theoretically that ∥u−uh∥ ≈

u+h −uh
, it was numerically verified on several

examples in Dolejšı́ and Solin [2016].

2.2.2 Solving local problems

Another common method for computing a reconstruction u+h in FEM computations is
based on the solution of local problems defined on patches of elements, see Babuska
and Rheinboldt [1978], Bank and Weiser [1985]. For conforming FEM applied to
Poisson problem (L :=−∆) the authors of Babuska and Rheinboldt [1978] suggest to
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solve the auxiliary problems

L u+i = f in Ωi := suppψi, u+i = uh on ∂Ωi, (2.37)

where {ψi}M
i=1 is a partition of unity satisfying ∑

M
i=1 ψ(x) = 1 for all x ∈ Ω and each

ψi ≥ 0.
For solution of (2.37) we propose to employ again the DG method, which includes

the Dirichlet boundary condition only by the penalty terms. Since no inter-element
continuity is required in DG, we can define these problems even element-wise setting
simply ψi := χK, K ∈ Th, where χK is the characteristic function of the element K.
Namely, for each K ∈Th we define the function u+K : Ω→ R such that

(i) u+K |K′ := uh|K′ for all K′ ̸= K,
(ii) u+K |K ∈ PpK+1(K),
(iii) ah(u+K ,ϕh) = ℓh(ϕh) ∀ϕh ∈ PpK+1(K),

(2.38)

where ah is the form given by (2.8). Since evidently u+K ∈ Sp+1
h , we finally define

u+h ∈ Sp+1
h by u+h |K := u+K ∀K ∈Th. In the rest of the paper we will refer to this kind

of reconstruction as the LOC reconstruction.
In the following we show that it is not necessary to assemble and to solve problem

(2.38) for each K explicitly, when we use the residual based approach from Dolejšı́
[2013]. We denote NK = (pK + 1)(pK + 2)/2 the number of degrees of freedom at-
tached to the element K ∈Th and ϕϕϕK = {ϕ i

h,K}
NK
i=1 the basis of the space PpK(K). The

basis of Sp
h , denoted by ϕϕϕ = {ϕ i

h}
Np

h
i=1, Np

h = dimSp
h , can be assembled by the func-

tions from ϕϕϕK for all K ∈ Th extended by zero outside K. Due to the discontinuity
of the functions in Sp

h across the element edges, we can write uh in the element-wise
components uK ∈ RNK corresponding to K ∈Th, i.e.,

uh =
Np

h

∑
i=1

U i
ϕ

i
h = ∑

K∈Th

uK ·ϕϕϕK.

Denoting fK := {ℓh(ϕ
i
h,K)}

NK
i=1, the problem (2.9) can be rewritten in the block-matrix

form (one block-row for each K ∈Th)

AK,KuK +∑K′∈N(K)
AK,K′u

′
K = fK ∀K ∈Th, (2.39)

where AK,K are diagonal blocks (corresponding to ah) of size NK×NK , AK,K′ are the
off-diagonal blocks of size NK×NK′ and N(K) is the set of elements sharing an edge
with K ∈Th.

For each K ∈Th, we can write u+K = uh+ ũK , where uh is the approximate solution
given by (2.9) and ũK ∈ PpK+1(K) can be considered as a local higher order correction.
Obviously, due to condition (i) in (2.38), we have ũK = 0 on all K′ ̸= K, K′ ∈Th.

Let ϕh,K ∈ PpK+1(K). Using the linearity of ah, condition (iii) in (2.38) and (2.27),
we have

ah(ũK,ϕh,K) = ah(u+K ,ϕh,K)−ah(uh,ϕh,K) = ℓh(ϕh,K)−ah(uh,ϕh,K)

= rh(uh)(ϕh,K).
(2.40)
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Hence we have to solve

a(ũK,ϕh,K) = rh(uh)(ϕh,K) ∀ϕh,K ∈ PpK+1(K) (2.41)

for each K ∈Th. We denote N+
K = dimPpK+1(K) = (pK +2)(pK +3)/2 and we choose

a basis ϕ1
h,K, . . . ,ϕ

NK
h,K, . . . ,ϕ

N+
K

h,K of PpK+1 as hierarchical extension of the basis ϕϕϕK . Then
(2.41) can be written in similar form to (2.39), where the off-diagonal terms are van-
ishing since ũK = 0 on all K′ ̸= K, namely

A+
K,KũK = r, (2.42)

where A+
K,K ∈ RN+

K×N+
K is the matrix AK,K enlarged by N+

K −NK rows and columns,

r ∈ RN+
K is the vector with components ri = rh(uh)(ϕ

i
h,K), i = 1, . . . ,N+

K and ũK is the
vector of basis coefficients defining the function ũK on K. Let us note that first NK
components of r are vanishing up to the algebraic errors.

Therefore, in order to find the reconstruction (2.38) for each K ∈ Th, we have
to assemble the block-diagonal block A+

K,K , evaluate the residual (2.27) for all basis
functions of PpK+1\PpK and solve the linear algebraic system (2.42). Finally, we put
u+h = uh +∑K∈Th

ũK .

Remark. This method can be used even for nonlinear problems, but in that case the
computation of the update ũK has to be iterated several times, c.f. Section 4.4.1.

Remark. For the reconstruction based on the solution of the local problems we have
(in exact arithmetics) due to (2.9), (2.16) and (2.40) that

ηS,K = rh(uh)(z+h
⏐⏐
K) = rh(uh)(z̃K) = ah(ũK, z̃K)

= r∗h(zh)(ũK) = r∗h(zh)(u+h
⏐⏐
K) = η

∗
S,K

(2.43)

Hence we get not only the global equivalence corresponding to (2.29), but even the
local error indicators ηS,K and η∗S,K are equivalent for this reconstruction.

On the contrary, the LS reconstruction is not connected with the solved problem
and the error estimates ηS and η∗S may differ both locally and globally.

Remark. We may also solve the ah(u,v) = rh(uh)(v) reconstruction on patches of ele-
ment having one common vertex. This would be connected with the partition of unity
using the piece-wise linear “hat” functions.

2.3 Algebraic errors
As already discussed in the Section 2.3 for a general linear problems, due to algebraic
errors neither the “exact” discrete solution uh of (2.9) nor the solution zh of (2.16) are
available in practical computations. Instead, we compute their approximations u(k)h,A

and z(k)h,A resulting from a finite number of iterations of an algebraic iterative solver.

Considering the algebraically inexact discrete solution u(k)h,A the Galerkin orthogo-
nality (2.11) and (2.26) do not hold anymore. Hence we must add an additional term
measuring the deviation from the Galerkin orthogonality due to algebraic errors. For
the primal error identity (2.27) using the triangle inequality we have

J(u−u(k)h,A) = rh(u
(k)
h,A)(z) = rh(u

(k)
h,A)(z−ϕh)+ rh(u

(k)
h,A)(ϕh) ∀ϕh ∈ Sp

h . (2.44)
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Regarding the revision of adjoint estimate (2.28) we proceed similarly. Using the
definitions of residuals rh and r∗h in (2.27) and (2.28), respectively, and the triangle
inequality, we get

rh(u
(k)
h,A)(z− z(k)h,A) = ah(u−u(k)h,A,z− z(k)h,A)

= ah(u−ψh,z− z(k)h,A)+ah(ψh−u(k)h,A,z− z(k)h,A)

= r∗h(z
(k)
h,A)(u−ψh)+ r∗h(z

(k)
h,A)(ψh−u(k)h,A) ∀ψh ∈ Sp

h .

(2.45)

Then putting ϕh := z(k)h,A in (2.44) and using (2.45), we obtain

J(u−u(k)h,A) = r∗h(z
(k)
h,A)(u−ψh)+ r∗h(z

(k)
h,A)(ψh−u(k)h,A)+ rh(u

(k)
h,A)(z

(k)
h,A) ∀ψh ∈ Sp

h .

(2.46)

The impact of algebraic errors in goal-oriented estimates was studied in Meidner
et al. [2009], where the equivalence (2.29) is mentioned but only the estimates based
on the primal residual are considered. Since this equivalence is not relevant for alge-
braically inexact solutions, we use both of these estimates and compare their accuracy
in concrete computations (see Section 2.4).

The primal and adjoint part of the error identity in (2.27) can be separated, c.f.
(1.43) for general linear problems or later (3.4) for the problem (2.1). Due to this sepa-
ration, tightness of the estimates is strongly dependent on the choice of ϕh. Contrarily,
in (2.27) the choice of ϕh is irrelevant but when those errors are taken into account as in
(2.44), then the choice of ϕh may again influence the computation process. Therefore,
we present three variants of (2.30)

η
(k)
S := rh(u

(k)
h,A)(z

+
h ), η

∗,(k)
S := r∗h(z

(k)
h,A)(u

+
h ), (2.47a)

η̃
(k)
S := rh(u

(k)
h,A)(z

+
h − z(k)h,A), η̃

∗,(k)
S := r∗h(z

(k)
h,A)(u

+
h −u(k)h,A), (2.47b)

η̂
(k)
S := rh(u

(k)
h,A)(z

+
h −Pp

h z+h ), η̂
∗,(k)
S := r∗h(z

(k)
h,A)(u

+
h −Pp

h u+h ). (2.47c)

Here Pp
h denotes the L2-orthogonal projection to Sp

h , i.e., for any v ∈ L2(Ω) it satis-
fies

∫
Ω

Pp
h vϕh dx =

∫
Ω

vϕh dx, ∀ϕh ∈ Sp
h . Furthermore, we introduce the primal and

adjoint algebraic error estimates

η
(k)
A = η̃

(k)
A := rh(u

(k)
h,A)(z

(k)
h,A), η

∗,(k)
A = η̃

∗,(k)
A := r∗h(z

(k)
h,A)(u

(k)
h,A) (2.48a)

η̂
(k)
A := rh(u

(k)
h,A)(P

p
h z+h ), η̂

∗,(k)
A := r∗h(z

(k)
h,A)(P

p
h u+h ). (2.48b)

Since the exact specification is usually not necessary we will talk generally about
η
(k)
A ∈ {η(k)

A , η̃
(k)
A , η̂

(k)
A } and η

∗,(k)
A ∈ {η∗,(k)A , η̃

∗,(k)
A , η̂

∗,(k)
A }. Let us note that if u(k)h,A

and z(k)h,A satisfy the Galerkin orthogonality (2.11) and (2.26), respectively, then

η
(k)
S = η̃

(k)
S = η̂

(k)
S , η

∗,(k)
S = η̃

∗,(k)
S = η̂

∗,(k)
S , η

(k)
A = η

∗,(k)
A = 0.

Remark. We may express the reconstruction of the adjoint solution with respect to an

orthogonal basis of the space Sp+1
h , i.e., z+h = ∑

Np+1
h

j=1 z jφ j where Np+1
h = ∑K∈Th

(pK+d
d

)
.
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Then for ϕh = Pp
h z we get

J(u−u(k)h,A)≈ rh(u
(k)
h,A)((I−Pp

h )z
+
h )+ rh(u

(k)
h,A)(P

p
h z+h )

=
Np+1

h

∑
j=Np

h +1

z jrh(u
(k)
h,A)(φ j)  

discretization error

+
Np

h

∑
j=1

z jrh(u
(k)
h,A)(φ j)  

algebraic error

. (2.49)

Then the second term η
(k)
A measures deviation of u(k)h,A from uh with respect to the

target quantity while the first one η
(k)
S measures the discretization error weighted by

the oscillations of the adjoint solution of degree p+1. The algebraic errors represent
the oscillations of the lower degrees which have more global behavior and hence may
strengthen the oscillations (changing signs) of the global discretization estimate.

The reconstruction of the adjoint solution z+h used in η
(n)
S is affected by algebraic

errors as well. In order to take these into account in practical computations, we monitor
the value of η

∗,(k)
A in error estimates based on the primal error identity (2.44) too.

2.3.1 Adaptive algorithm
We recall the notation eh = u−uh and using the error estimates (2.47) and error indi-
cators (2.33) we propose the following adaptive algorithm.

Algorithm 2: Adaptive algorithm balancing discretization and algebraic errors
1 initialization: set η = 2TOL;
2 while η > TOL do
3 while η

(k)
A >C(1)

A η
(n)
S and η

∗,(k)
A >C(1)

A η
∗,(n)
S do

4 perform GMRES iterations for primal problem (2.9);
5 perform GMRES iterations for adjoint problem (2.16);
6 end
7 if η

(k)
A <C(1)

A η
(n)
S then

8 perform GMRES iterations for adjoint problem until η
∗,(k)
A <C(2)

A η
(n)
S ;

9 use η := η
(n)
S , ηK := η

(n)
S,K;

10 else
11 perform GMRES iterations for primal problem until η

(k)
A <C(2)

A η
∗,(n)
S ;

12 use η := η
∗,(n)
S , ηK := η

∗,(n)
S,K ;

13 end
14 according to error indicators ηK refine Th;
15 end

The purpose of the safety constants C(1)
A ,C(2)

A ≤ 1 is to suppress the impact of the al-
gebraic errors on the discretization estimates since otherwise error indicators ηK would
not produce a reasonable mesh refinement. From the numerical experiments, it seems
that primal error estimate η

(n)
S is more sensitive to algebraic errors in primal prob-

lem (and vice versa for η
∗,(n)
S ), hence we set C(1)

A = 0.01 and C(2)
A = 0.1, but in many

numerical experiments even the value C(2)
A = 1 leads to stable results.
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The refinement of the mesh Th in the step 13 is by done by refining 20% of the
elements with the largest error (HG) in the following experiment (Section 2.4.1). This
refinement leads to meshes with hanging nodes, see Figure 2.4. For standard FEM
method the mesh adaptation with hanging nodes is a bit tricky due to the continuity
of the functions in the discrete function space. Therefore hanging nodes are usually
avoided for triangular meshes in this case. On the contrary, there is no continuity
requirement on function from Sp

h for the DG method and hence its implementation is
pretty straightforward.

A more complex mesh adaptation technique based on the hp-anisotropic mesh re-
finement strategy (AMA) will be introduced in the Chapter 3. This method balances
the element error contributions ηK over the whole mesh and both size and shape of
each element K are optimized. Moreover the local polynomial degrees pK may change
during adaptation cycles.

Remark. It seems temping to select the more promising of the estimates ηS and η∗S (as
early as possible) and stop computing the other one. Unfortunately, having in mind
the curves mapping the size of the residual for GMRES,cf. Greenbaum et al. [1996],
which can be almost constant and then decrease to zero in one iteration, gives us the
clue that it may not be possible.

2.4 Numerical experiments
We illustrate the presented approach by one numerical experiment. We focus on the
two presented techniques for the discrete solution reconstruction introduced in Section
2.2. We compare the performance of the proposed local reconstructions to the globally
higher order adjoint solution. Further, the influence of the algebraic errors is studied.
It is demonstrated how the presented approach based on controlling the ratio between
discretization and algebraic errors helps to obtain the discrete solution reliably and
efficiently. More experiments focusing on the mesh adaptation will be presented at
the end of the next chapter, see Section 3.4, after the hp-anisotropic mesh adaptation
method will be introduced.

2.4.1 Elliptic problem on a “cross” domain
We examine the performance of the reconstructions for linear Poisson equation

−∆u = f in Ω

u = 0 on ∂Ω,
(2.50)

in the cross shaped domain Ω = (−2,2)× (−1,1)∪ (−1,1)× (−2,2). We set

J(u) =
1
|ΩJ|

∫
Ω

jΩ(x)u(x)dx,

where jΩ is the characteristic function of the square ΩJ = [1.2,1.4]× [0.2,0.4], . see
Figure 2.4 The exact value of J(u) is unknown hence we use the reference value
0.407617863684 which was computed in Ainsworth and Rankin [2012] on an adap-
tively refined mesh with more than 15 million triangles.

First we compare the quality of the presented reconstructions – primal and adjoint
estimate based on the LS reconstruction (2.35) denoted ηLS

S and η
∗,LS
S , estimate based
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p = 1

Nh J(eh) η
+
S η loc

S ηLS
S η

∗,LS
S

290 1.24×10−2 1.21×10−2 6.39×10−3 1.01×10−2 9.62×10−3

ieff (0.98) (0.51) (0.81) (0.78)
1160 4.47×10−3 4.36×10−3 2.29×10−3 3.54×10−3 3.45×10−3

ieff (0.97) (0.51) (0.79) (0.77)
4640 1.64×10−3 1.60×10−3 8.31×10−4 1.29×10−3 1.28×10−3

ieff (0.97) (0.51) (0.79) (0.78)
18560 6.18×10−4 5.97×10−4 3.07×10−4 4.82×10−4 4.80×10−4

ieff (0.97) (0.50) (0.78) (0.77)
74240 2.35×10−4 2.19×10−4 1.17×10−4 1.83×10−4 1.83×10−4

ieff (0.93) (0.50) (0.78) (0.78)
p = 2

Nh J(eh) η
+
S η loc

S ηLS
S η

∗,LS
S

290 1.78×10−3 1.27×10−3 8.36×10−4 4.54×10−4 4.99×10−4

ieff (0.71) (0.46) (0.25) (0.28)
1160 7.02×10−4 4.98×10−4 3.27×10−4 1.75×10−4 1.79×10−4

ieff (0.71) (0.47) (0.25) (0.25)
4640 2.80×10−4 1.99×10−4 1.29×10−4 7.03×10−5 7.09×10−5

ieff (0.71) (0.46) (0.25) (0.25)
18560 1.15×10−4 7.49×10−5 5.09×10−5 2.80×10−5 2.82×10−5

ieff (0.65) (0.46) (0.25) (0.25)

Table 2.1: Elliptic problem – error estimates of the target quantity for p = 1,2 on
uniformly refined meshes.
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Figure 2.3: Elliptic problem – decrease of J(eh) and its estimates ηS for p = 2 on
adaptively refined meshes.

on the LOC reconstruction (2.38) (only primal, see (2.43)) denoted η loc
S and lastly the

computation when the adjoint problem is solved with globally increased polynomial
degree p+1 denoted by η

+
S .

In Table 2.1 the actual error measured with respect to the quantity of interest is
compared to the discretization error estimates with effectivity indices measuring the
ratio of ηS/J(eh). We see that although the effectivity indices are bellow one, they
maintain at the same level.

Moreover, the Figure 2.3 shows the decrease of the error J(eh) and estimates ηS
when adaptive refinement is used and the final mesh for η loc

S is shown in Figure 2.4.
It seems that although the estimates based on the local reconstructions underestimate
the true error, the resulting error indicators are not worse than those obtained by global
higher order solution of the adjoint problem. On the contrary, especially for the finer
meshes they perform even better since the algebraic error can be more easily sup-
pressed using the estimates (2.48a).

Further, we focus on the impact of the algebraic errors on the computation. The
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Figure 2.4: Elliptic problem – initial mesh (left) and final mesh (right), containing 14
417 triangles obtained by adaptive refinement based on the LOC reconstruction, with
ΩJ highlighted.

0.11 0.21 0.32

w

0.1 0.21 0.32

w

Figure 2.5: Elliptic problem – algebraically precise adjoint solution zh (left) and its
approximation after 30 GMRES iterations (right).
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solution is computed with piecewise linear approximation on uniformly refined mesh
with 4640 triangles.

Figure 2.5 shows the algebraically precise discrete solution zh (left) and its approx-
imation z(k)h spoiled by algebraic errors obtained by 30 GMRES iterations. The widest

contour line represents the value 10−4 so we see that the adjoint solution z(k)h steadily
equals to zero in the major part of the domain Ω unlike zh.

That is caused by the local character of the quantity of interest. The right-hand
side of the problem is nonzero only for basis functions having support in ΩJ and if we
take z(0)h = 0 then it takes many GMRES iterations to spread the information through
the whole computation domain. Since the local reconstruction of a steady zero would
be again a zero function, the resulting error indicators would lead to refinement only
around ΩJ and not in surroundings of the reentrant corners where the refinement is
deserving due to the irregularity of the primal solution.

In Figure 2.6 the differences in the mesh refinement are exhibited if 20% of the
elements with largest indicators were to refine – blue triangles would be refined due
to algebraic errors while the yellow one should be refined instead. Especially, on very
fine meshes this phenomenon may occur if the algebraic error was not controlled by
(2.48a). A suitable preconditioning may help to overcome this phenomenon.

The dependence of the error estimates on the choice of η
(k)
S ∈ {η(k)

S , η̃
(k)
S , η̂

(k)
S },

cf. (2.47), is documented in Table 2.2 and in Figure 2.7. Table 2.2 shows the number
of differently (incorrectly) refined elements (column #) due to the algebraic errors in
η
(k)
S ,η

∗,(k)
S and Figure 2.7 shows the decrease of the error estimates for the least-square

reconstruction. Each iteration iter corresponds to 50 iterations of GMRES for the
primal problem and 30 iterations for the adjoint problem, respectively.

The estimates η̃
(k)
S , η̂

(k)
S seem to be better for the least squares reconstruction than

η
(k)
S which is very sensitive to algebraic errors. Moreover it can be seen that the primal

estimate η
(k)
S is more sensitive to algebraic errors in primal problem while η

∗,(k)
S is

more sensitive to errors in adjoint problem, which is in agreement with experiments
performed in Dolejšı́ and Roskovec [2016]. Estimates η̃

(k)
S work similarly to η̂

(k)
S for

LS reconstruction and similarly η
(k)
S for LOC reconstruction. The bold zeros in Table

2.2 mark the step where Algorithm 15 would stop. Altogether, estimates η̂
(k)
S and

η̂
∗,(k)
S seem to be the most robust with respect to algebraic errors and can be used

equivalently, cf. Table 2.2.
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Figure 2.6: Elliptic problem – differences in refinement indicators based on η
(k)
S after

30 (left) and 180 (right) GMRES iterations using the LS reconstruction (yellow trian-
gles would be refined instead of the blue ones if the algebraic errors were suppressed).

iter #ηS ηA/ηS η
∗
A/ηS #η

∗
S ηA/η

∗
S η

∗
A/η

∗
S

2 464 3.67 1.76×101 815 2.47×10−1 1.18
4 349 1.32 3.08×101 836 4.56×10−2 1.06
6 45 8.80×10−2 1.25×101 809 7.43×10−3 1.06
8 5 4.22×10−3 3.53 665 1.04×10−3 8.73×10−1

10 2 2.00×10−4 9.47×10−1 414 1.09×10−4 5.13×10−1

12 1 9.37×10−6 2.60×10−1 130 7.51×10−6 2.08×10−1

14 0 3.48×10−7 7.21×10−2 18 3.23×10−7 6.69×10−2

16 0 2.31×10−8 2.16×10−2 4 2.24×10−8 2.10×10−2

18 0 1.91×10−8 5.13×10−3 0 1.88×10−8 5.04×10−3

iter #η̂S η̂A/η̂S η̂∗A/η̂S #η̂∗S η̂A/η̂∗S η̂∗A/η̂∗S
2 132 5.67×101 2.72×102 129 5.53×101 2.65×102

4 38 2.06 4.80×101 35 2.03 4.73×101

6 10 9.03×10−2 1.29×101 11 8.91×10−2 1.27×101

8 4 4.22×10−3 3.53 3 4.17×10−3 3.48
10 2 2.00×10−4 9.47×10−1 1 1.98×10−4 9.34×10−1

12 1 9.37×10−6 2.60×10−1 0 9.24×10−6 2.57×10−1

14 0 3.48×10−7 7.21×10−2 0 3.43×10−7 7.12×10−2

16 0 2.31×10−8 2.16×10−2 0 2.28×10−8 2.13×10−2

18 0 1.91×10−8 5.13×10−3 0 1.88×10−8 5.06×10−3

Table 2.2: Elliptic problem – number of incorrectly marked elements due to algebraic
errors (LS reconstruction).
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Figure 2.7: Elliptic problem – error decrease during GMRES iterations for the esti-
mates based the least-squares reconstruction, η

(k)
S (left), η̂

(k)
S (right).
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3. Anisotropic hp-refinement
In this chapter, we introduce the hp-anisotropic mesh adaptation method for DG solu-
tion of the problem (2.1) using goal-oriented error estimates. We start with the goal-
oriented error estimate (2.32) and we derive its upper bound enabling setting optimal
size, shape and local polynomial approximation degree for element.

The majority ideas presented here adopt the results which we have already pub-
lished in Dolejšı́ et al. [2019] and Bartoš et al. [2019]. In Dolejšı́ et al. [2019], we
derived goal oriented a posteriori error estimates for problem (2.1) taking into account
anisotropy of the elements with arbitrary high (but constant) polynomial approxima-
tion degree p ≥ 1. Later in Bartoš et al. [2019] we extended Dolejšı́ et al. [2019] for
the hp-adaptation method. Additionally, we developed a goal-oriented variant of the
p-decision criterion from Dolejšı́ et al. [2018], where the p-adaptation was based on
the interpolation error estimates.

3.1 Goal-oriented error estimates in residual form
For the purpose of the anisotropic error estimate, we further estimate the residuals
rh(uh)(·) and r∗h(zh)(·) of the primal and adjoint problems given by (2.9) and (2.16),
respectively. In (2.19) we have already prepared the starting point for deriving the
“weighted residual” estimate for the adjoint estimate η∗S . Similarly to (2.19) we may
rewrite the primal discrete problem in the element-wise residual form. After some
manipulation we obtain the identity (cf. Hartmann [2007])

rh(uh)(ϕ) = ∑
K∈Th

∫
K

rK,V(uh)ϕ dx+
∫

∂K
rK,B(uh)ϕ + rK,D(uh)A∇ϕ ·ndx (3.1)

∀ϕ ∈ H2(Ω,Th)

where

rK,V(uh) := f +∇ ·A∇uh−∇ · (buh)− cuh, (3.2)

rK,B(uh) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−δ [[uh]]n ·nK− 1
2 [[A∇uh]] ·n on ∂K+ \∂Ω,

−δ [[uh]]n ·nK− 1
2 [[A∇uh]] ·n+b ·n[[uh]] on ∂K− \∂Ω,

(δ −b ·n)(uD−uh) on ∂K−∩ΓD,

δ (uD−uh) on ∂K+∩ΓD,

gN−A∇uh ·n on ∂K∩ΓN ,

0 on ∂K∩Γ+,

−b ·n(uD−uh) on ∂K∩Γ−,

rK,D(uh) :=

⎧⎪⎨⎪⎩
θ

1
2 [[uh]] on ∂K \∂Ω,

−θ(uD−uh) on ∂K∩ΓD,

0 on ∂K∩ (∂Ω\ΓD).

Obviously, n ·nK = ±1 depending on the orientation of the edge normal vector
n = nγ . The forms rK,V, rK,B and rK,D represent the element residuals. If u ∈ H2(Ω)
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is the weak solution of (2.2) then rK,V(u) = rK,B(u) = rK,D(u) = 0 ∀K ∈ Th imply
rh(uh)(ϕ) = 0 ∀ϕ ∈H2(Ω,Th), which is in agreement with the consistency of the DG
method (2.10).

Finally, we introduce the notation

RK,V :=
rK,V(uh)


K , RK,B :=

rK,B(uh)


∂K , RK,D :=
rK,D(uh)


∂K , K ∈Th.

(3.3)

Then using the Cauchy inequality in (3.1) we obtain the estimate

|rh(uh)(ϕ)| ≤ ∑
K∈Th

RK,V ∥ϕ∥K +RK,B ∥ϕ∥∂K +RK,D ∥A∇ϕ∥
∂K . (3.4)

Similarly, we introduce the following notation for the norms of the adjoint residual
terms given in (2.18)

R∗K,V :=
r∗K,V(zh)


K , R∗K,B :=

r∗K,B(zh)


∂K , R∗K,D :=
r∗K,D(zh)


∂K , K ∈Th.

(3.5)

Now, applying the Cauchy inequality on the adjoint residual form (2.18) we obtain
the estimate of the adjoint residual

|r∗h(zh)(ψ)| ≤ ∑
K∈Th

R∗K,V ∥ψ∥K +R∗K,B ∥ψ∥∂K +R∗K,D ∥A∇ψ∥
∂K . (3.6)

Finally, we insert (3.4) and (3.6) into approximation of the error of the quantity of
interest (2.32). We obtain

|η I| ≤ η
II, η

II := ∑
K∈Th

η
II
K, (3.7)

where

η
II
K :=

1
2
(
RK,V

z+h −Πz+h


K +R∗K,V
u+h −Πu+h


K (3.8)

+RK,B
z+h −Πz+h


∂K +R∗K,B

u+h −Πu+h


∂K

+RK,D
A∇(z+h −Πz+h )


∂K +R∗K,D

A∇(u+h −Πu+h )


∂K

)
,

The terms u+h −Πu+h and z+h −Πz+h measured in the norms appearing in (3.8) are
called the weights and the estimate (3.7) is the so-called dual weighted residual (DWR)
estimate, cf. Becker and Rannacher [2001], Bangerth and Rannacher [2003].

The weighted-residual estimate (3.7) often overestimates the true error J(eh), c.f.
Chapter 1. Hence in our approach it serves only as a auxiliary result for obtaining the
anisotropic error indicators for mesh adaptation and the error of the target functional
is still approximated by η I, which should more closely approximate J(eh).

3.2 Goal-oriented error estimates enabling anisotropic
refinement

In this section, we further estimate the weighting terms from (3.8) in a way convenient
for choosing not only a the proper size of each element but also its shape and orienta-
tion. First, we introduce the anisotropy of triangles K ∈ Th, then we derive estimates
of the interpolation error (w−Πw)|K , w ∈ Pp+1(K), p ∈ N, which take into account
the anisotropy of the element K.
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Figure 3.1: The reference triangle K̂ and reference ellipse E (left) and a general triangle
K with its orientation φK and aspect ratio σK =

lK,1
lK,2

(right).

3.2.1 Anisotropy of mesh elements

Let K̂ be a reference equilateral triangle with vertices (1,0), (−1
2 ,+

√
3

2 ), (−1
2 ,−

√
3

2 ),
see Figure 3.1. Let K ∈ Th be an arbitrary but fixed triangle. There exists an affine
mapping FK : K̂→ K which maps K̂ onto K given by

FK x̂ =MK x̂+ xK x̂ ∈ K̂, (3.9)

where xK ∈ R2 is the barycenter of K, MK is a 2× 2 matrix defining size and shape
of K. Further, the matrix MK may be rewritten using its singular value decomposition
into

MK x̂ =QφKLKQT
ψK

, (3.10)

where the matrices QφK and QψK are the rotation matrices through angles φK and ψK
counterclockwise, respectively, given by

Qφ :=
(

cosφ −sinφ

sinφ cosφ

)
. (3.11)

Furthermore, putting λK :=
√

lK,1lK,2 > 0 and σK :=
√

lK,1/lK,2 ≥ 1, the matrix
LK equals

LK =

(
lK,1 0
0 lK,2

)
= λK

(
σK 0
0 σ

−1
K

)
=: λKSK. (3.12)

We note that the area of K can then be computed as |K| = lK,1lK,2|K̂| = λ 2
K|K̂|, where

|K̂|= 3
√

3/4.

Definition 3.1. Using (3.9), (3.10), (3.12), we can characterize each element K ∈ Th
by the quintet {xK, λK, σK, φK, pK}, where xK ∈ Ω is the barycenter of K, λK > 0 is
called the size of K, σK ≥ 1 is called the aspect ratio of K, the angle φK ∈ [0,2π) is
the orientation of K and pK ∈ N is the local polynomial approximation degree on K.
Moreover, we call the pair {σK, φK} the shape of K and the triplet {λK, σK, φK} the
anisotropy of K.
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For any hp-mesh Th,p = {Th,p} (given by the mesh Th and the set of element
polynomial degrees pK, K ∈ Th) we can evaluate the quintets {xK, λK, σK, φK, pK}
for each element K ∈ Th. On the other hand, there exist algorithms and softwares
(e.g., Dolejšı́ [2000]) which are able to generate the corresponding hp-mesh by the
least square technique, for the given set of quintets {xl, λl, σl, φl, pl}, l = 1, . . . ,r,
(satisfying xl ∈Ω, λl > 0, σl ≥ 1, φl ∈ [0,2π) and pl ∈ N), see Dolejšı́ et al. [2018].

Remark. Let Ê = {x ∈ R2, |x|2 ≤ 1} be the unit ball. Obviously, K̂ ⊂ Ê. Moreover,
applying mapping FK on Ê, we obtain the ellipse EK := MKÊ + xK , whose center is
the barycenter of K, K ⊂ EK , lK,1 and lK,2 are its semimajor and semiminor axes,
respectively, and φK is the orientation of the main axis of EK . Therefore, the triplet
{λK, σK, φK} also denotes the anisotropy of the ellipse EK .

3.2.2 Anisotropy of polynomial functions

Now we introduce the anisotropy of polynomial functions following the approach from
Dolejšı́ [2014].

Definition 3.2. Let x̄ = (x̄1, x̄2) ∈ Ω and q ∈ N be given. We say that a polynomial
function µ : Ω→ R is a q-function located at x̄ if

µ(x) = ∑
q
l=0 αl(x1− x̄1)

l(x2− x̄2)
q−l, x = (x1,x2) ∈Ω, (3.13)

where αl ∈ R, l = 0, . . . ,q.

In other words any q-function is a polynomial function containing only terms of
degree q. Any q-function may be written in the polar coordinates with the origin at x̄
as

µ(r, t) = rq
∑

q
l=0 αi cosl(t)sinq−l(t), r > 0, t ∈ [0,2π). (3.14)

The following result, derived in [Dolejšı́, 2014, Lemma 3.12], is the essential compo-
nent for the error estimates enabling anisotropic refinement.

Lemma 3.3. Let µ : Ω→R be a q-function located at x̄, q≥ 2. Then there exist values
A≥ 0, ρ ≥ 1 and ϕ ∈ [0,2π) such that

|µ(x)| ≤ A
(
(x− x̄)TQϕDq

ρQT
ϕ(x− x̄)

)q/2
∀x ∈Ω, (3.15)

where A > 0, Qϕ is the 2× 2 rotation matrix through angle ϕ counterclockwise, and
Dq

ρ := diag(1,ρ−2/q) (symbol q in Dq
ρ means only the superscript, not the power of D).

Definition 3.4. Let µ : Ω→ R be a q-function located at x̄, q ≥ 2. The values A ≥ 0,
ρ ≥ 1 and ϕ ∈ [0,2π) from (3.15) define the size, the aspect ratio and the orientation of
the q-function µ , respectively. Moreover, the triplet {A, ρ, ϕ} is called the anisotropy
of the q-function µ .
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3.2.3 Estimate of the interpolation error function
Let w∈Pp+1(Ω) with p∈N and x̄= (x̄1, x̄2)∈Ω be given. Using the Taylor expansion
of degree p+1 at x̄, we have

w(x) = Πx̄,pw(x)+wint
x̄,p(x), x ∈Ω, (3.16)

where Πx̄,pw is a p-degree polynomial approximation of w given by

Πx̄,pw(x) :=
p

∑
k=0

1
k!

(
k

∑
l=0

((
k
l

))
∂ kw(x̄)

∂xl
1∂xk−l

2

(x1− x̄1)
l(x2− x̄2)

k−l

)
, x ∈Ω, (3.17)

with (
(k

l

)
) = k!

l !(k−l)! and

w−Πx̄,pw = wint
x̄,p(x) := ∑

p+1
l=0 αl(x1− x̄1)

l(x2− x̄2)
p+1−l, x ∈Ω, (3.18)

where αl =
1

(p+1)!

((p+1
l

))
∂ p+1w(x̄)

∂xl
1∂xp+1−l

2
, l = 0, . . . , p+1.

We call wint
x̄,p the interpolation error function of degree p located at x̄.

Obviously, the function wint
x̄,p is a (p+1)-function in the sense of Definition 3.2 and

therefore, using (3.15) , there exist Aw ≥ 0, ρw ≥ 1 and ϕw ∈ [0,2π) such that

|wint
x̄,p(x)| ≤ Aw

(
(x− x̄)TQϕwD

p+1
ρw QT

ϕw
(x− x̄)

) p+1
2
, x ∈Ω. (3.19)

Remark. Let us note that the value Aw represents the maximal value of the (p̄+ 1)th-
order scaled directional derivative of w at x̄, ϕw is the angle of the direction of the
maximal derivative and ρw corresponds to the ratio between Aw and the (p̄+1)th-order
scaled directional derivative along the perpendicular direction. Further, the value Aw

depends on αl =
1

l!(q−l)!
∂ qw(x)

∂xl
1∂xq−l

2
, l = 0, . . . ,q and can be evaluated numerically in such

a way that estimate (3.19) is sharp, for more details see Dolejšı́ [2014].

Now, we further develop the estimate of wint
x̄,p (3.19) for the barycenter of K, i.e.,

x̄ := xK.

Lemma 3.5. Let K ∈Th be a triangle with the anisotropy {λK, σK, φK} (cf. Definition
3.1), w ∈ Pp+1(K) and wint

x̄,p be the corresponding interpolation error function with the
anisotropy {Aw, ρw, ϕw} given by 3.19. Thenwint

x̄,p

2

K
≤ A2

wλ
2(p+2)
K

1
2p+4

GGG(p+1, p+1,ρw,ϕw;σK,φK), (3.20a)wint
x̄,p

2

∂K
≤ A2

wλ
2p+3
K σK GGG(p+1, p+1,ρw,ϕw;σK,φK), (3.20b)

where

GGG(q1,q2,ρ,ϕ;σ ,φ) =
∫ 2π

0

(
G11 cos2 t +2G12 sin t cos t +G22 sin2 t

)q1 dt, (3.21)

with G11 = σ
2[cos2(φ −ϕ)+ρ

−2/q2 sin2(φ −ϕ)],

G12 =−sin(φ −ϕ)cos(φ −ϕ)(1−ρ
−2/q2),

G22 = σ
−2[sin2(φ −ϕ)+ρ

−2/q2 cos2(φ −ϕ)].
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Proof. Let FK be the affine function (3.9) mapping K̂ onto K and let MK denote the
corresponding Jacobian matrix. Moreover, for any function f (x) : K → R we define
f̂ : K̂→ R by f̂ (x̂) = f (FK x̂). Using the substitution theorem, (3.9), (3.10) and (3.12),
we have ∫

K
f (x)dx =

∫
K̂

f̂ (x̂)|detMK|dx̂ = λ
2
K

∫
K̂

f̂ (x̂)dx̂ (3.22)

Furthermore, we can write

x− xK = λKQφKSKQT
ψK

x̂ ⇒ (x− xK)
T = λK x̂TQψKSKQT

φK
. (3.23)

Using (3.19), (3.22) and (3.23), we obtainwint
x̄,p

2

K
=
∫

K

⏐⏐⏐wint
x̄,p(x)

⏐⏐⏐2 dx≤
∫

K
A2

w

(
(x− xK)

TQϕwD
p+1
ρw QT

ϕw
(x− xK)

)p+1
dx

(3.24)

= A2
wλ

2(p+2)
K

∫
K̂

(
x̂TQψKGQT

ψK
x̂
)p+1

dx̂,

where

G := SKQT
φK
QϕwD

p+1
ρw QT

ϕw
QφKSK. (3.25)

Let Ê = {x̂ ∈ R2 : |x̂| ≤ 1} be the unit ball. Obviously, K̂ ⊂ Ê and then we can
replace the domain of integration in the last integral (3.24) bywint

x̄,p

2

K
≤ A2

wλ
2(p+2)
K

∫
Ê

(
x̂TGx̂

)p+1
dx̂, (3.26)

since QψK is a rotation matrix and hence the transformation x̂→ QT
ψK

x̂ maps Ê onto
itself. Now we evaluate the matrix G from (3.25) and then using it together with the
identity QT

ϕw
QφK =QφK−ϕw =: QτK (i.e., τK := φK−ϕw), we get

G=

⎛⎝ σ2
K(cos2 τK +ρ

− 2
p+1

w sin2
τK) −sinτK cosτK(1−ρ

− 2
p+1

w )

−sinτK cosτK(1−ρ
− 2

p+1
w ) σ

−2
K (sin2

τK +ρ
− 2

p+1
w cos2 τK)

⎞⎠ . (3.27)

Since G is independent of xK , we evaluate the last integral in (3.26) using the polar
coordinates, namelywint

x̄,p

2

K
≤ A2

wλ
2(p+2)
K

∫ 1

0
r2p+3

(∫ 2π

0
g(t)p+1 dt

)
dr, (3.28)

where g(t) = G11 cos2 t + 2G12 sin t cos t +G22 sin2 t. Since g(t) is independent of r,
we change the order of integration and computing

∫ 1
0 r2p+3 dr = 1/(2p+ 4), yields

(3.20a).
In order to prove (3.20b), we proceed similarly. Using path integration, we have∫

∂K
f (x)dS =

∫
∂ K̂

f̂ (x̂)|MK · t|dŜ≤
∫

∂ K̂
f̂ (x̂)∥MK∥2 dŜ, (3.29)
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where t is the unit tangent vector to ∂ K̂, Mk is the matrix from (3.9) and ∥MK∥2 =
r(MT

KMK)
1/2 = λKσK is the matrix Eucledian norm where r(·) denotes the spectral

radius of its argument. Using (3.29) and a similar manipulation as in (3.24), we obtainwint
x̄,p

2

∂K
≤ A2

wλ
2p+3
K σK

∫
∂ K̂

(
x̂TQψKGQT

ψK
x̂
)p+1

dx̂. (3.30)

The integrand of the last integral is an increasing function of |x̂|. Since the x̂E ∈ ∂ Ê
is circumscribed circle of x̂K ∈ ∂ K̂, see Figure 3.1, for each x̂K ∈ ∂ K̂ there exists
x̂E ∈ ∂ Ê, where the value of integrand is higher. Moreover, |∂ K̂| < |∂ Ê| and hence
when we replace the domain of integration in (3.30), we obtainwint

x̄,p

2

∂K
≤ A2

wλ
2p+3
K σK

∫
∂ Ê

(
x̂TQψKGQT

ψK
x̂
)p+1

dx̂. (3.31)

Now, analogously as in (3.28) converting (3.31) to polar coordinates and using∫
∂ Ê

(
x̂TGx̂

)p+1
dx̂ =

∫ 2π

0
g(t)p+1dt.

leads to (3.20b).

In virtue of (3.8), now it only remains to derive the estimate ofA∇(w−Πx̄,pw)


L2(∂K)
=
A∇wint

x̄,p


L2(∂K)

,

where A=A(x), x ∈Ω is the diffusion matrix from (2.1a), x̄ = xK is the barycenter of
K and p = pK is the local polynomial degree.

Let Ā be a constant approximation of A on K, e.g., Ā be the mean value of A. In
the following, we estimate the term

Ā∇wint
x̄,p


L2(∂K)
. The term

(A− Ā)∇wint
x̄,p


L2(∂K)

is neglected since it is a higher order term. If A is constant on K then this term vanishes
completely.

Lemma 3.6. Let wint
x̄,p be the interpolation error function (3.18) and Ā the constant

approximation of the diffusive matrixA. Then |Ā∇wint
x̄,p(x)|2 is a 2p-function (cf. Defi-

nition 3.2) satisfying

|Ā∇wint
x̄,p(x)|2 = ∑

2p
i=0 δi(x1− x̄1)

i(x2− x̄2)
2p−i, (3.32)

where δi, i = 0, . . . ,2p are given by

δi := ∑
i
j=0(β

(1)
j β

(1)
i− j +β

(2)
j β

(2)
i− j), i = 0, . . . , p,

δ2p−i := ∑
i
j=0(β

(1)
p− jβ

(1)
p−(i− j)+β

(2)
p− jβ

(2)
p−(i− j)), i = 0, . . . , p.

β
(1)
l := Ā11(l +1)αl+1 + Ā12(p+1− l)αl, l = 0, . . . , p, (3.33)

β
(2)
l := Ā21(l +1)αl+1 + Ā22(p+1− l)αl, l = 0, . . . , p,

Proof. We evaluate the square of the magnitude of Ā∇wint
x̄,p. Using (3.18) and a direct

manipulation (the detailed procedure can be found in [Dolejšı́, 2015, Section 3.3]), we
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obtain

|Ā∇wint
x̄,p(x)|2 =

2

∑
i=1

( 2

∑
j=1

Āi j
∂

∂x j

p+1

∑
l=0

αl(x1− x̄1)
l(x2− x̄2)

p+1−l
)2

(3.34)

=

( p

∑
l=0

β
(1)
l ξ

l
1ξ

p−l
2

)2

+

( p

∑
l=0

β
(2)
l ξ

l
1ξ

p−l
2

)2

=
2p

∑
i=0

δiξ
i
1ξ

2p−i
2 ,

where ξi = xi− x̄i, i = 1,2

Therefore, in virtue of Lemma 3.3, there exist values Ãw ≥ 0, ρ̃w ≥ 1 and ϕ̃w ∈
[0,2π) such that⏐⏐⏐Ā∇wint

x̄,p(x)
⏐⏐⏐2 ≤ Ãw

(
(x− x̄)TQϕ̃wD

2p
ρ̃w
QT

ϕ̃w
(x− x̄)

)p
∀x ∈Ω, (3.35)

where Qϕ̃w is a rotation matrix and D2p
ρ̃w

= diag(1, ρ̃−1/p
w ). Finally, we extend the

Lemma 3.5 by the following result.

Lemma 3.7. Let K ∈Th be a triangle with the anisotropy {λK, σK, φK} (cf. Definition
3.1), w ∈ Pp+1(K), wint

x̄,p be the corresponding interpolation error function (3.18) and
let |Ā∇wint

x̄,p(x)|2 have the anisotropy {Ãw, ρ̃w, ϕ̃w} given by (3.35). ThenĀ∇wint
x̄,p

2

∂K
≤ Ãwλ

2p+1
K σKGGG(p,2p, ρ̃w, ϕ̃w;σK,φK), (3.36)

where GGG is defined by (3.21).

Proof. Using the definition of the Eucledian norm, we haveĀ∇wint
x̄,p

2

∂K
=
∫

∂K
|Ā∇wint

x̄,p|2 dS. (3.37)

Now, applying the estimate (3.35) on the right-hand side of (3.37) and using an analo-
gous procedure as in the proof of (3.20b), we obtain (3.36).

3.2.4 Anisotropic goal-oriented error estimates
We employ the estimates (3.20) and (3.36) in order to derive estimates of η II

K , K ∈ Th
given by (3.8) which take into account the size and shape of mesh elements. We
consider the operator Π : Sp+1

h → Sp
h given by Π

⏐⏐
K := ΠxK ,p, K ∈ Th, see (3.17), and

we estimate the individual weighting terms (u+h −Πu+h and z+h −Πz+h ) appearing in
(3.8). We recall that u+h ∈ Sp+1

h and z+h ∈ Sp+1
h are the higher-order reconstructions of

the primal and adjoint solutions of (2.9) and (2.23), respectively.
Let K ∈ Th be an arbitrary mesh element and let {λK, σK, φK} denote its

anisotropy. Relation (3.18) implies that (u+h −Πu+h )|K and (z+h −Πz+h )|K are (pK +1)-
functions, cf. Definition 3.2. Similarly, |Ā∇(u+h −Πu+h )|K|

2 and |Ā∇(z+h −Πz+h )|K|
2

are 2pK-functions. Therefore, we apply (3.19) and (3.35) for introducing

{Au, ρu, ϕu} the anisotropy of (u+h −Πu+h )|K, (3.38)

{Ãu, ρ̃u, ϕ̃u} the anisotropy of |Ā∇(u+h −Πu+h )|K|
2,

{Az, ρz, ϕz} the anisotropy of (z+h −Πz+h )|K,
{Ãz, ρ̃z, ϕ̃z} the anisotropy of |Ā∇(z+h −Πz+h )|K|

2,

which depend on (p+1)th-derivatives of u+h and z+h .
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Remark. We note that the second power in the definition of the anisotropy |Ā∇(u+h −
Πu+h )|K|

2 (and |Ā∇(z+h −Πz+h )|K|
2, respectively) is not a mistake, because while

|Ā∇(u+h −Πu+h )|K|
2 is a polynomial of degree 2pK, |Ā∇(u+h −Πu+h )|K| is not even

polynomial function.

Finally, applying (3.20) and (3.36) together with (3.38) gives the anisotropic
weighting terms

u+h −Πu+h


K ≤
(A2

uλ
2(pK+2)
K

2pK +4
GGG(pK +1, pK +1,ρu,ϕu;σK,φK)

)1/2
=: θK,V,

z+h −Πz+h


K ≤
(A2

z λ
2(pK+2)
K

2pK +4
GGG(pK +1, pK +1,ρz,ϕz;σK,φK)

)1/2
=: θ

∗
K,V,u+h −Πu+h


∂K ≤

(
A2

uλ
2pK+3
K σKGGG(pK +1, pK +1,ρu,ϕu;σK,φK)

)1/2
=: θK,B,z+h −Πz+h


∂K ≤

(
A2

z λ
2pK+3
K σKGGG(pK +1, pK +1,ρz,ϕz;σK,φK)

)1/2
=: θ

∗
K,B,Ā∇(u+h −Πu+h )


∂K ≤

(
Ãuλ

2pK+1
K σKGGG(pK,2pK, ρ̃u, ϕ̃u;σK,φK)

)1/2
=: θK,D,Ā∇(z+h −Πz+h )


∂K ≤

(
Ãzλ

2pK+1
K σKGGG(pK,2pK, ρ̃z, ϕ̃z;σK,φK)

)1/2
=: θ

∗
K,D.

(3.39)

Now, applying (3.39) on the terms appearing in (3.8), we get η II
K ≤ η III

K , where

η
III
K :=

1
2
(RK,Vθ

∗
K,V +RK,Bθ

∗
K,B +RK,Dθ

∗
K,D +R∗K,VθK,V +R∗K,BθK,B +R∗K,DθK,D)

(3.40)

with the residuals RK,V, RK,B, RK,D, R∗K,V, R∗K,B, R∗K,D defined by (3.3) and (3.5). Punc-
tually written the estimate η III

K depends on all twelve the anisotropy parameters Au, ρu,
. . . from (3.38) and also on the element anisotropy parameters λK,σK,φK and the poly-
nomial approximation degree pK , but for the sake of clarity this dependence is omitted
in the notation.

The previous derivations can be summarized into the following results.

Theorem 3.8. Let uh and zh be the approximate solutions of the primal and adjoint
problems given by (2.9) and (2.23), respectively. Further, let u+h and z+h be higher-
order approximations of the primal and adjoint solutions u and z reconstructed from
uh and zh, respectively. Finally, let η I ≈ J(eh) be given by (2.32). Then

|J(eh)| ≈ |η I| ≤ η
II ≤ ∑

K∈Th

η
III
K (3.41)

where η II is given by (3.7) and η III
K , K ∈Th are computable quantities given by (3.40).

3.3 Anisotropic hp-mesh adaptation algorithm
Standard mesh adaption algorithms simply split the elements with highest error esti-
mates into several (four in 2D) sub-elements. This procedure is repeated until condition
(3.42) is achieved. On the other hand, the anisotropic mesh adaption technique allows
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to adapt the size of elements continuously, i.e., not only the cutting of elements, but
optimizing size and shape of each element given by the anisotropic parameters given
in Definition 3.1.

Based on the estimates (2.32), (2.32) and (3.41), we now present the goal-oriented
anisotropic hp-mesh adaptation algorithm. First, we starts with its main steps, in or-
der to present it compactly. Later, its individual parts are described in detail in the
subsequents sections.

The goal of the algorithm is to generate iteratively a sequence of hp-meshes T n
h,p,

n = 0, . . . ,N and compute the corresponding approximate primal and adjoint solution
u(n)h and z(n)h of (2.9) and (2.23), respectively, such that

|η I(u(N)
h ,z(N)

h )| ≤ TOL, (3.42)

where η I is the error estimate given by (2.32) and TOL > 0 is the prescribed tolerance.
Obviously, the number of the iterative cycles N is a priori unknown. Moreover, we
require that the number of degrees of freedom of T N

h,p is as small as possible.

Algorithm 3: Goal-oriented anisotropic hp-mesh adaptation algorithm
1 initialization: let TOL > 0 be given, let T 0

h,p be the given initial hp-mesh
(coarse with low polynomial approximation degrees pK)

2 for n = 0,1, . . . do
3 construct the DG spaces Sp

h and Sp+1
h corresponding to T n

h,p = {T (n)
h , pn}

4 solve primal and adjoint solution problems (2.9) and (2.23), respectively, set

u(n)h ∈ Sp
h and z(n)h ∈ Sp

h

5 compute reconstructions u+,(n)
h = R(u(n)h ) ∈ Sp+1

h and

z+,(n)
h = R(z(n)h ) ∈ Sp+1

h

6 evaluate η I(u(n)h ,z(n)h ) and η I
K, K ∈T

(n)
h

7 if η I(u(n)h ,z(n)h )≤ TOL then
8 STOP the mesh adaptation process
9 else

10 foreach K ∈T
(n)

h do
11 set better element size λ̃K

12 set better element shape σ̃K and φ̃K
13 set better polynomial approximation degree p̃K

14 end
15 end
16 from the set of quintets {xK, λ̃K, σ̃K, φ̃K, p̃K}, K ∈T

(n)
h generate a new

hp-mesh T n+1
h,p = {T (n+1)

h , pn+1}
17 end

We introduce the mesh adaptation algorithm in detail in Algorithm 3. The step 5
is based on one of the reconstructions presented in Sections 2.2.1–2.2.2. In step 16,
the in-house code ANGENER Dolejšı́ [2000] is employed. In the following sections,
we describe the steps 11–13 in detail. Let us note that in practice, steps 12 and 13 are
carried out together.
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3.3.1 Element size
There are several possibilities for the optimization of the elements sizes. In Dolejšı́
and Solin [2016], an approach was developed based on the so-called equidistribution
principle (cf. [Dolejšı́ and Solin, 2016, Corollary 5.4]). The size of each element was
adapted such that

|η I
K| ≈

TOL

#T
(n)

h

, (3.43)

where TOL is the tolerance from (3.42) and #T
(n)

h denotes the number of elements of

mesh T
(n)

h . Unfortunately, the increase of the number of degrees of freedom (DoF)
based on the element size adaptation (3.43) is strongly non-monotone and moreover
(3.43) requires defining a security constant which is problem-dependent.

A different approach was developed in Dolejšı́ et al. [2018] for the mesh optimiza-
tion with respect to the interpolation error measured in the Lq-norm (q ∈ [1,∞]). There
the number of DoF was a priori prescribed for each adaptation level of Algorithm 3.

Here, we present another technique developed in Bartoš et al. [2019] which uses
the equidistribution principle from Dolejšı́ and Solin [2016], but (usually) leads to a
monotone increase of DoF and no problem-dependent security constant are required.

For each adaptation level n = 0,1, . . . of Algorithm 3, we prescribe the loop toler-
ance τn > 0 which is successively decreasing. More precisely, we put

τ0 :=
1

10

⏐⏐⏐η I(u(0)h ,u(0)h )
⏐⏐⏐ , τn = τ0ζ

n, n = 1,2, . . . , ζ ∈ (0,1), (3.44)

hence the initial loop tolerance τ0 is set as one tenth of the error estimate of the solution
computed on the initial hp-mesh T 0

h,p and this tolerance is successively decreased in
each loop of Algorithm 3 by a constant factor ζ ∈ (0,1). This constant represents the
rate of increase of number of degrees of freedom (DoF) which is obviously higher for
smaller ζ . Values of ζ close to 1 leads to many cycles of Algorithm 3 necessary for the
achieving the given tolerance TOL. On the other hand, a small value ζ ⪅ 0.05 gives a
final hp-mesh with more DoF. In practical computations, we use ζ = 0.25. However,
values in the range 0.15≤ ζ ≤ 0.5 would lead to similar results. Let us note that there
is not any explicit relation between TOL and τn, n = 0,1, . . . .

Having prescribed the loop tolerance τn for the given level of mesh adaptation n =

0,1, . . . , we set new sizes λ̃K (∼ |K|1/2) of K ∈T
(n)

h using the equidistribution principle
(cf. [Dolejšı́ and Solin, 2016, Corollary 5.4]), i.e., we intend to have approximately the
same size of the error estimate η I

K for each triangle. Since η I(u(n)h ,z(n)h ) = ∑K∈T (n)
h

η I
K

we require

|η I
K| ≈

τn

#T
(n)

h

=: τ̄n = const. ∀K ∈T
(n)

h , (3.45)

where τ̄n can be considered as the tolerance for the local loop following from (3.44).
Obviously, if η I

K > τ̄n then we have to decrease the element size and wise versa. Par-
ticularly, we define a new element size λ̃K by

λ̃K = λKqK, K ∈T
(n)

h (3.46)
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where qK > 0 is the size adaptation factor. Obviously, if η I
K = τ̄n then it is natural to

put qK = 1, for η I
K > τ̄n we have to put qK ∈ (0,1) and for η I

K < τ̄n we set qK > 1.
In Dolejšı́ et al. [2019], where only the h-variant was developed, the element size

adaptation factor was given by

qK =

(
τ̄n

|η I
K|

)1/αK

, K ∈T
(n)

h , (3.47)

where αK > 0 is a suitably chosen value corresponding to the rate of convergence
of the used method. Relation (3.47) follows from the assumed rate of convergence
η I

K = O(λ αK
K ). Based on theoretical results [Georgoulis et al., 2007, Theorem 4.5], in

the context of DWR error estimates αK = 2pK , see Dolejšı́ et al. [2019]. It was shown
in Dolejšı́ et al. [2019] that this setting works relatively well for the h-variant (pK =
const. ∀K ∈ Th). Unfortunately, for varying pK, K ∈ Th, it leads to several repeating
refinements and coarsenings during the mesh adaptation process which lengthens the
computational time, see Figure 3.6, center. This is caused by the fact that qK given by
(3.47) changes rapidly for η I

K ≈ τ̄n, i.e., d
dη I

K
qK(τ̄n) is large, see Figure 3.2, left.

In order to avoid such defective behavior, (3.47) has to be replaced by a different
relation where qK would be almost constant in vicinity of η I

K = τ̄n. Based on the ideas
from [Balan et al., 2016, Section 4.3] an improved definition of qK was introduced in
Bartoš et al. [2019]. First, the maximal and minimal value of the estimator η I

K, K ∈Th
are defined by

η
I
max = max

K∈T (n)
h

|η I
K|, η

I
min = min

K∈T (n)
h

|η I
K|. (3.48)

Further, two user-defined parameters are chosen, namely the maximal refinement fac-
tor rmax ∈ (0,1) and the maximal coarsening factor cmax > 1. Finally, the element size
adaptation factor qK is given by

qK =

⎧⎪⎪⎨⎪⎪⎩
1+(rmax−1)ξ 2

K, ξK := log(|η I
K |)−log(τ̄n)

log(η I
max)−log(τ̄n)

for η I
K ≥ τ̄n,

1+(cmax−1)ξ 2
K, ξK := log(|η I

K |)−log(τ̄n)

log(η I
min)−log(τ̄n)

for η I
K < τ̄n.

(3.49)

Obviously, qK given by (3.49) is almost equal to one in vicinity of η I
K ≈ τ̄n, see Fig-

ure3.2.
The efficiency of the whole algorithm can be still slightly improved, see Bartoš

et al. [2019], by a small modification of (3.49) in such a way that qK is almost constant
in vicinity of the limit values η I

min and η I
max. Namely, we put

qK =

⎧⎪⎪⎨⎪⎪⎩
1
2(1− rmax)(cos(πξK)+1)+ rmax, ξK := log(|η I

K |)−log(τ̄n)

log(η I
max)−log(τ̄n)

if η I
K ≥ τ̄n,

1
2(cmax−1)(cos(π(ξK +1))+1)+1, ξK := log(|η I

K |)−log(τ̄n)

log(η I
min)−log(τ̄n)

if η I
K < τ̄n.

(3.50)

Figure 3.2, left, shows an example of the dependence of the size adapted factor qK on
the error estimate |η I

K| given by (3.47), (3.49) and (3.50). As mentioned above, the
functions given by (3.49) and (3.50) are almost constant for |η I

K| ≈ τ̄n. Therefore the
convergence of the algorithm is much more monotone.
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Moreover, Figure 3.2, right, compares techniques (3.49) and (3.50) for different
values of η I

max and η I
min. The following observation can be made. Let η I

K = 10−10.
If η I

min = 10−10 then qK = 2.5 for both (3.49) and (3.50). However, if η I
min = 10−12

then qK ≈ 1.75 for (3.49) but qK ≈ 2.25 for (3.50) . Therefore, relation (3.50) is less
sensitive to the variation of η I

min than relation (3.49). Similarly, we can observe less
sensitivity of (3.50) with respect to η I

max. Hence, the maximal or minimal value of
η I

K, K ∈ T
(n)

h (achieved on one element) has lower influence on the size modification
of the others elements.

Finally, let us note that only two values rmax and cmax are the user-defined parame-
ters and the algorithm is not too sensitive to their choice. In the standard mesh adaption
algorithms, where the triangles with highest error estimates are split by halving onto
four similar sub-elements, these values corresponds to rmax = 1/2 and cmax = 2. In
[Bartoš et al., 2019, Section 6.1.1.] we investigated the influence of the choice of
the parameters rmax ∈ (0,1) and cmax > 1 from (3.50) on the convergence of the hp-
adaptive method. These experiments have shown that the convergence of the method
changes only slightly for any choice of cmax > 1 and rmax ⪅ 0.1. Based on these ex-
periments, we use the values rmax = 0.1 and cmax = 2.5 in all numerical experiments.

In 3.4, we present several examples comparing the performance of the element size
settings (3.47), (3.49) and (3.50). We will see that the modification (3.49) and (3.50)
indeed improve the converge of the adaptive algorithm compared to (3.47) in some
cases. Moreover, the setting (3.50) is a little more efficient than (3.49).

3.3.2 Element shape
In this section, we describe the optimization of the element shape for the given polyno-
mial approximation degree p̄∈N. In Section 3.3.3 we will use the following technique
for p̄ ∈ {pK−1, pK, pK +1}.

In order to determine a better shaped element, we employ the error estimate (3.41).
We evaluate η III

K and set new aspect ratio and orientation σ̃K and φ̃K for each K ∈T
(n)

h
by minimizing η III

K w.r.t. {σK,φK} ∈ [1,∞)× [0,π]. It means that we set

{σ p̄
K,φ

p̄
K}= argmin

σ≥1,φ∈[0,π)
η

III
K (λK,σ ,φ , p̄), K ∈T

(n)
h , (3.51)

where η III
K is given by (3.40).

Relation (3.21) implies that GGG, and consequently G , are π-periodic with respect to
φ . Furthermore, using a similar technique as in [Dolejšı́, 2014, §3.3.1], we can prove
that GGG→ ∞ for σ → ∞ (and thus G → ∞ for σ → ∞). Hence, the continuity of G with
respect to σ and φ implies the existence of at least one minimum of (3.51).

Although the uniqueness of the minimum is not guaranteed, we carried out hun-
dreds of numerical experiments for different input parameters and we did not observe
an existence of more than one local minimum. The only exception is the case σ = 1
since G (·,1,φ) = const. for any φ ∈ [0,π). However, when the minimum is attained
for σ = 1 then the element is isotropic and its orientation φ is not relevant.

The minimal value of (3.51) is solved numerically. We start with the value {σK,φK}
corresponding to the anisotropy of K ∈T

(n)
h . With the chosen steps ∆σ > 1 and ∆φ ≥

0, we test successively the values of η III
K (λ̃K,σ ,φ ±∆φ , p̄) and η III

K (λ̃K,σ∆σ±1,φ , p̄).
From them we choose the pair σ ,φ giving the smallest value of η III

K and repeat the
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Figure 3.2: The dependence of the size adapted factor qK on |η I
K| for the values τ̄n =

10−5, rmax = 0.25 and cmax = 2.5; s0 – relation (3.47) for αK = 4 and αK = 8, s1 –
relation (3.49) and s2 – relation (3.50); (a) all techniques for η I

max = 1 and η I
min =

10−10; (b) s1 and s2 techniques for η I
max = 1, η I

min = 10−10 and η I
max = 102, η I

min =
10−12.
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search. When we find σ ,φ such that

η
III
K (λK,σ ,φ , p̄)≤ η

III
K (λK,σ ,φ ±∆φ , p̄),

η
III
K (λK,σ ,φ , p̄)≤ η

III
K (λK,σ∆σ

±1,φ , p̄),

we decrease the steps ∆σ :=
√

∆σ and ∆φ := ∆φ/2 and repeat the searching until the
required tolerances ωσ > 0 and ωφ > 0 for the accuracy of σ and φ are achieved.

The decrease of step ∆φ is done arithmetically since it represents an absolute tol-
erance for φ > 0. On the other hand, the decrease of ∆σ > 1 is done geometrically
since the difference σ − 1 represents the relative tolerance for σ . We put the relative
tolerance for σ equal to 1% (ωσ = 1.01) and the absolute tolerance for φ equal to
1◦ (ωφ = π/180). For the initial steps, we use the values ∆σ = 1.5 and ∆φ = π/10.
This technique is illustrated by Figure 3.3. Algorithm 4 describes more precisely the
individual steps of this process.

For the initial levels of the adaptation Algorithm 3 (low n), the shape optimization
Algorithm 4 requires several dozens of loops to achieve to the given accuracy but the
number of elements of T

(n)
h is low. On the other hand, on finer meshes T

(n)
h (higher n),

the initial approximations of σ and φ are already very good (from the previous mesh
adaptation level), and hence only few loops in Algorithm 4 needs to be performed.

Figure 3.3: Illustration of the iterative process seeking the minimum of η III
K .

3.3.3 Element polynomial approximation degree

Now we describe the process of choosing the suitable polynomial degree in the step
13 of Algorithm 3. We adopt the technique from Dolejšı́ et al. [2018]. We exploit
so-called density of degrees of freedom, see Dolejšı́ [2014] or Dolejšı́ et al. [2018] for
details, which represents the the ratio of the number of degrees of freedom DoF and
the volume of the area of K.

In order to determine which polynomial approximation degree should be chosen for
each element K ∈T

(n)
h , we take three candidates for p̃K , namely pK + i, i∈ {−1,0,1}.

Then we set the new element size proposals λ
(pK+i)
K , i ∈ {−1,0,1} such that the corre-
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Algorithm 4: Element shape optimization – minimization of η III
K (λ̃K,σ ,φ , p̄)

1 initialization: let the required tolerances ωσ > 0 and ωφ > 0 be given
2 set initial steps ∆σ > 1 and ∆φ ≥ 0 (multiplies of ωσ and ωφ )
3 let initial pair σ ,φ be given
4 while ∆σ > ωσ or ∆φ > ωφ do
5 for i = 0,1, . . . do
6 g0 := η III

K (λ̃K,σ ,φ , p̄), g+ := η III
K (λ̃K,σ ,φ +∆φ , p̄),

g− := η III
K (λ̃K,σ ,φ −∆φ , p̄)

7 while g0 > min{g+,g−} do
8 if g0 > g+ and g− > g+ then
9 φ := φ +∆φ

10 else
11 φ := φ −∆φ

12 end
13 end
14 g0 := η III

K (λ̃K,σ ,φ , p̄), g+ := η III
K (λ̃K,σ∆σ ,φ , p̄),

g− := η III
K (λ̃K λ̃K,σ/∆σ ,φ , p̄)

15 while g0 > min{g+,g−} do
16 if g0 > g+ and g− > g+ then
17 σ := σ ·∆σ

18 else
19 σ := σ/∆σ

20 end
21 end
22 ∆φ := ∆φ/2; ∆σ :=

√
∆σ

23 end
24 end

sponding density of degrees of freedom is the same, i.e.,

λ
(pK−1)
K = λK

(
pK(pk +1)

(pK +1)(pK +2)

)1/2

, (3.52)

λ
(pK)
K = λK, (3.53)

λ
(pK+1)
K = λK

(
(pK +2)(pk +3)
(pK +1)(pK +2)

)1/2

, (3.54)

where λK corresponds to the size of K ∈T
(n)

h given by Definition 3.1. We remind that
|K|= 3

√
3/4λ 2

K .
Furthermore, for each of the candidates pK + i, i ∈ {−1,0,1}, we find the optimal

shape using the technique described in Section 3.3.2, i.e., we determine σ
(pK+i)
K and

φ
(pK+i)
K , i ∈ {−1,0,1} such that

{σ (pK+i)
K ,φ

(pK+i)
K }= argmin

σ≥1,φ∈[0,π)
η

III
K (λ

(pK+i)
K ,σ ,φ , pK + i), i ∈ {−1,0,1}. (3.55)
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Finally, from the three candidates pK + i, i ∈ {−1,0,1} we choose the one, which
has the minimal value of the estimate, i.e.,

{σ̃K, φ̃K, p̃K}= argmin
i∈{−1,0,1}

η
III
K (λ

(pK+i)
K ,σ

(pK+i)
K ,φ

(pK+i)
K , pK + i). (3.56)

Remark. The evaluation of η III
K (·, ·, ·, pK + i), i ∈ {−1,0,1} requires the approximation

of the partial derivatives of degree pK + i+ 1. For that we employ the least-square
reconstruction technique from Section 2.2.1.

3.4 Numerical experiments
In this section, we present several numerical experiments, which demonstrate the ef-
ficiency, accuracy and robustness of Algorithm 3. We present a comparison with hp-
isotropic mesh adaptation and the h-anisotropic variant of the presented technique.

We deal with three problems:

• purely elliptic problem on a “cross” domain with four corner singularities,

• mixed hyperbolic-elliptic problem,

• convection-diffusion equation with a dominating convection with three different
target functionals.

For each case, we carried out several variants of computations:

• hp-AMA s0: full hp-anisotropic mesh adaptation Algorithm 3 with the element
size setting given by (3.47),

• hp-AMA s1: full hp-anisotropic mesh adaptation Algorithm 3 with the element
size setting given by (3.49),

• hp-AMA s2: full hp-anisotropic mesh adaptation Algorithm 3 with the element
size setting given by (3.50),

• hp-IMA: hp-isotropic mesh adaptation, we apply Algorithm 3 with the element
size setting given by (3.50) and the aspect ratios are fixed σK = 1 for all K ∈
T

(n)
h , n = 0,1,2, . . .

• h-AMA: h-anisotropic mesh adaptation, we apply Algorithm 3 with the element
size setting given by (3.50) and the polynomial approximation degrees are fixed
pK = 3 for all K ∈T

(n)
h , n = 0,1,2, . . .

• hp-ISO: hp-isotropic mesh adaptation where, at each adaptation level, the fixed
per cent q of elements having the highest |η I

K| are either split into 4 similar sub-
triangles or the polynomial approximation degree is increased by 1. Therefore,
the meshes T

(n)
h , n = 0,1, . . . are nested and no re-meshing is performed. In

[Bartoš et al., 2019, Section 6.1.2.] we have examined the sensitivity of the
convergence of the algorithm with respect to the choice of the percentage q of
refined elements. The convergence of the error estimate η I = η I(u(n)h ,z(n)h ) was
compared with respect to DoF and with respect to the computational time for the
values q ∈ {10%, 20%, 30%}. Based on these experiments we choose q = 20%,
which seemed as a reasonable compromise giving the most stable results.
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• hp-ideal: hp-isotropic mesh adaptation the same as the hp-ISO approach above
but a priori knowledge of the regularity of the primal/adjoint solutions is used
for the decision criterion between h- or p-refinement. This technique can be
used only for problems where such information is available, here only the first
example in Section3.4.1.

We compare these adaptive techniques for the problems mentioned above. The
subsequent figures show the decay of the error estimate η I with respect to DoF1/3 in
logarithmic-linear scale. The reason of that is to demonstrate an exponential rate of
convergence with respect to the DoF in the sense of the result from Gui and Babuška
[1986], Demkowicz et al. [2002], Chaillou and Suri [2007]

|J(u)− J(uh)| ≈C exp
(
−bDoF1/3

)
, (3.57)

where C > 0 and b > 0 are constants independent of DoF. Geometrically, the expo-
nential rate of convergence corresponds to a straight line in logarithmic-linear scale.

Moreover, we plot also the decay of the error estimate η I with respect to the com-
putational time. Let us note that the used code is not optimized with respect to the
computational time, hence these figures have only an informative character.

3.4.1 Elliptic problem on a “cross” domain
We revisit the elliptic problem on a “cross” domain from Section 2.4.1. We recall the
Figure 2.4 (left) which shows the computational domain with the initial mesh and the
domain of interest ΩJ . Although there is no anisotropic feature, it serve as a good test
example for hp-adaptation techniques due to the presence of singularities at interior
corners.

Our goal is to compare all adaptive techniques mentioned at the beginning of Sec-
tion 3.4. For the hp-ideal method, we perform the h-refinement if a vertex of a marked
element is the interior corner of Ω, otherwise the p-adaptation is applied.

The differences among the hp-variants are almost negligible since this example has
no anisotropic feature. Even the hp-AMA s0 variant evinces very good convergence,
c.f. Section 3.4.2 where the difference between hp-AMA s0 and hp-AMA s1 or hp-
AMA s2, respectively, in not negligible. A very interesting comparison is that of the
hp-AMA s2 variant with the hp-ideal one. The latter one achieves the given tolerance
with smaller number of DoF (Figure 3.4, left) but the computational time is practically
the same for both techniques (Figure 3.4, center). It is caused by the fact that the
hp-ideal variant needs 18 cycles of adaptations whereas the hp-AMA s2 one only 12
cycles.

Furthermore, Figure 3.4, right shows the comparison of the error estimates η I and
η II with the actual error J(u− uh) for the hp-AMA s2 method. Obviously, the error
is underestimated but both estimates give good approximation of the magnitude of the
error. Therefore, in this case, the estimate (3.7) does not cause an essential increase of
the estimate.

Finally, Figure 3.5 shows the final hp-mesh, total view and its zoom of the corner
singularity at x = (1,1). We observe high polynomial degrees in the major part of Ω,
only in the vicinity of the corner singularity a strong h-refinement with a low polyno-
mial degree is presented. This demonstrates that the p-decision criterion proposed in
Section 3.3.3 is able to detect the solution singularity.
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Figure 3.4: Elliptic problem on a “cross” domain, convergence of the error estimate
η I = η I(u(n)h ,z(n)h ) w. r. t. DoF (left) and w. r. t. the computational time (center) for all
tested adapted strategies. Comparison of the error estimates η I and η II with the actual
error J(u−uh) for the hp-AMA s2 method (right).

Figure 3.5: Elliptic problem on a “cross” domain – the computational domain Ω with
the final hp-mesh obtained by the hp-AMA s2 method, total view (left) and a 1000x
zoom of the corner singularity at x = (1,1) (right).
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3.4.2 Mixed hyperbolic-elliptic problem
In the second example we investigate the performance of the described method for the
discretization of elliptic problem (2.1) from [Harriman et al., 2003, Example 2]. We
set Ω = (0,1)2 and A= εI, where

ε =
δ

2

(
1− tanh

(
(r− 1

4)(r+
1
4)

γ

))
,

r =
√

(x−1/2)2 +(y−1/2)2 and δ > 0,γ > 0 are constants.
Further, we set b = (2y2− 4x+ 1,y+ 1), c = −∇ · b = 3 and f = 0. We choose

δ = 0.01 and γ = 0.05. In this case, the diffusion coefficient ε will be approximately
equal to δ in the circle with center [1/2,1/2] and diameter 1/4. As r increases over
1/4, ε quickly decreases reaching values very close to zero (≈ 10−16) at the boundary.
Therefore, even though the problem is elliptic theoretically, from the computational
view the problem behaves like mixed hyperbolic-elliptic problem, since convection is
dominating in the region where r > 1/4.

The characteristics associated with the convective part of the operator enter the
domain Ω through the horizontal edge along y = 0 and the vertical edges along x = 0
and x = 1. We prescribe the Dirichlet boundary condition on this “inflow” part of the
boundary ΓD = {(x,y) ∈ ∂Ω : x = 0 or x = 1 or y = 0}

uD =

⎧⎪⎨⎪⎩
1 if x = 0 and 0 < y≤ 1,

sin2(πx) if 0≤ x≤ 1 and y = 0,
e−50y4

if x = 1 and 0 < y≤ 1,
(3.58)

which lead to discontinuities in the solution. On the rest of the boundary ∂Ω\ΓD we
prescribe homogeneous Neumann boundary condition. The isocurves of the solution
are pictured in the left panel of Figure 3.7, center.

Finally, we choose the target functional as an integral over part of the Neumann
boundary

J(u) =
∫ 0.625

0.25
u(x,1)dx≈ 0.324026769433. (3.59)

Since the exact solution is unknown we used the reference value J(u) computed by a
strong hp-refinement.

This problem has a middle anisotropic feature around the circle {(x1,x2); (x1−
0.5)2 +(x2− 0.5)2 = 1/16}. Moreover, the adjoint solution has two line singularity
starting at (x1,x2) = (0.25,1) and (x1,x2) = (0.625,1) and going in opposite direction
of the convective field b, see the sketch in Figure 3.7, right (black lines). These lines
are smeared by the diffusion but it is negligible outside of the circle mentioned above.

Remark. We note that due to steep changes of the coefficients A(x),b(x), the evaluation
of the total error (and hence also of the error estimates ηS,η

∗
S ) is polluted by the errors

in numerical integration. The estimate of the quadrature errors are not considered in
the presented approach, hence we used an overkill degree of numerical quadrature to
suppress these errors.

In Table 3.1 the decrease of the error of the target functional J(eh) is listed to-
gether with the effectivity indices (in brackets) on adaptively refined meshes with Nh
elements based on the h-ISO method with fixed p = 1. We compare results where
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η I
K was replaced by ηS,K, c.f. (2.33), with z+h being the solution of the adjoint problem

(2.15) in Sp+1
h (column denoted by η

+
S ), estimate based on the reconstruction technique

based on solving local problems presented in Section 2.2.2 (η loc
S ), and finally weighted

least-square reconstruction from Section 2.2.1 (ηLS
S ) and weighted least-square recon-

struction used for the primal problem, i.e., η I
K was replaced by η∗S,K, (η∗,LS

S ). We
observe that even though all of the methods based on reconstruction of the solution un-
derestimate the true error (effectivity indices ieff < 1), the resulting adaptively refined
meshes lead to very similar approximation of J(uh) as the method based on solving
the adjoint problem in enriched function space Sp+1

h which is computationally much
more demanding. We recall that due to the equivalence (2.43) there is no meaning in
comparing η loc

S with η
∗,loc
S for the reconstruction based on solving local problems.

Further, we compare computations by all adaptive techniques mentioned at the be-
ginning of Section 3.4 except the hp-ideal method since the regularity of the primal
and adjoint solutions are not known. Figure 3.6, left and center show the error decay
of the error estimate η I with respect to DoF1/3 and with respect to the computational
time, respectively. The dominance of the hp-AMA s1 and hp-AMA s2 technique is
obvious, namely from the point of view of the computational time. On the other hand,
the hp-AMA s0 variant shows poor convergence as was discussed in Section 3.3.1.
Additionally, the h-AMA technique has a very fast convergence for η I ≥ 5 ·10−9. This
is caused by the presence of discontinuities where the p-adaptation has not a large im-
pact. However, for lower values of η I, the influence of the smooth part of the solution
is already non-negligible and the techniques allowing hp-adaptation start to dominate.
Furthermore, Figure 3.6, right, shows the comparison of the error estimates η I and
η II with the actual error J(eh) for the hp-AMA s2 method. The corresponding final
hp-mesh and the isolines of the primal and adjoint solutions are plotted in Figure 3.7.

The convergence of the error estimators considerably differs from the elliptic case
in Section 3.4.1. The error estimator η II is much larger than η I and, moreover, the
estimate η II has no tendency to converge. This is caused by the fact that η I is strongly
over-estimated by η II in (3.7), namely the arguments of the scalar product in (3.1)
and (2.18) seem to be locally (almost) orthogonal and hence the use of the Cauchy
inequality in (3.4) and (3.6) leads to rough bounds.

In order to decrease the error estimate η II, it is possible to modify Algorithm 3 by
using η II

K instead of η I
K , K ∈ T

(n)
h when determining the new element size. Figure

3.8 shows the corresponding results. In contrast with the results shown in Figure 3.7,
the mesh is adapted along the left singularity line (coloured in black) of the adjoint
solution shown in Figure 3.7, right. Consequently, this singularity line is well resolved
(compare the isolines plotted in Figure 3.7, right and Figure 3.8, right.) On the other
hand, Figure 3.6, right and Figure 3.8, center, show that using η II

K , K ∈ T
(n)

h for de-

termining the element sizes instead of η I
K , K ∈ T

(n)
h requires a little more DoF for

achieving the same error level. We conclude that the use of η II and η II
K , K ∈ T

(n)
h in

the mesh adaptation algorithm is possible but may not be always efficient.

3.4.3 Convection-dominated problem

Let us now consider problem (2.1) taken from Formaggia et al. [2004], see also Carpio
et al. [2013]. The domain Ω is an L-shaped region given by [0,4]× [0,4]\ [0,2]× [0,2]
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η
+
S η loc

S ηLS
S η

∗,LS
S

Nh J(eh) Nh J(eh) Nh J(eh) Nh J(eh)

128 2.02×10−3 128 2.02×10−3 128 2.02×10−3 128 2.02×10−3

(0.96) (0.26) (0.55) (0.90)
203 9.12×10−4 203 1.12×10−3 203 1.37×10−3 203 1.48×10−3

(1.04) (0.24) (0.31) (0.80)
323 2.99×10−4 350 6.67×10−4 323 4.40×10−4 338 5.75×10−4

(1.11) (0.56) (0.53) (0.91)
536 1.89×10−4 566 2.45×10−4 518 2.20×10−4 560 2.99×10−4

(1.00) (0.16) (0.64) (0.77)
899 9.77×10−5 938 2.14×10−4 839 1.53×10−4 935 1.13×10−4

(1.04) (0.66) (0.50) (0.93)
1460 5.31×10−5 1541 9.49×10−5 1367 7.96×10−5 1541 5.23×10−5

(1.08) (0.20) (0.53) (0.87)
2381 2.17×10−5 2543 5.67×10−5 2198 2.58×10−5 2555 2.42×10−5

(0.99) (0.30) (0.94) (1.12)
3899 1.42×10−5 4157 3.42×10−5 3569 1.65×10−5 4160 8.56×10−6

(1.00) (0.47) (0.94) (1.27)
6305 1.00×10−5 6755 1.87×10−5 5765 1.18×10−5 6758 1.02×10−5

(1.00) (0.26) (0.89) (0.88)
10223 4.59×10−6 10961 1.03×10−5 9272 5.29×10−6 10958 4.52×10−6

(1.00) (0.58) (0.80) (0.93)
16475 3.07×10−6 17723 5.12×10−6 14927 3.61×10−6 17708 3.22×10−6

(1.04) (0.39) (0.90) (0.97)

Table 3.1: Mixed hyperbolic-elliptic problem – decrease of J(eh) and the correspond-
ing effectivity indices (in brackets) for h-ISO method with fixed p = 1.

Figure 3.6: Mixed hyperbolic-elliptic problem – convergence of the error estimate
η I = η I(u(n)h ,z(n)h ) w. r. t. DoF (left) and w. r. t. the computational time (center) for all
tested adapted strategies. Comparison of the error estimates η I and η II with the actual
error J(u−uh) for the hp-AMA s2 method (right).
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Figure 3.7: Mixed hyperbolic-elliptic problem – the final hp-mesh (left), the isolines
of the primal (center) and the adjoint (right) solutions computed in the final grid by the
hp-AMA s2 method. The blue line is the “domain of interest”, the black lines are the
lines of singularity of the adjoint solution.

Figure 3.8: Mixed hyperbolic-elliptic problem – computation by the hp-AMA s2
method with replacing η I

K by η II
K , K ∈ T

(n)
h in Algorithm 3, the final hp-mesh (left),

comparison of the error estimates η I and η II with the actual error J(u− uh) (center)
and the isolines of the adjoint solution (right).
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Figure 3.9: Convection-dominated problem, the solutions of primal problem (left) and
the adjoint problems with JV (second), with JB (third) and with JD (right).

and we solve

−ε∆u+∇ · (bu) = 0 in Ω, (3.60)

where ε = 10−3 and the convection field b = (x2,−x1). We prescribe the Dirichlet and
Neumann boundary conditions

u = 1 on {x1 = 0}, (3.61)
∇u ·n = 0 on Γ1 := {x ∈ ∂Ω;x1 = 4}∪Γ2 := {x ∈ ∂Ω;x2 = 0},

u = 0 elsewhere.

The solution u exhibits boundary layers as well as two circular-shaped internal layers.
We consider three target functionals JV (u), JB(u) and JD(u) defined hereafter to-

gether with the reference values computed by a strong hp-refinement. Let us note that
these values slightly differ from those in Carpio et al. [2013].

JV (u) =
∫

E
u(x)dx≈ 0.20314158±10−8, E := (2.5,3.5)× (2.5,3.5), (3.62)

JB(u) =
∫

GB

b ·nudS≈ 0.07408122±10−8, GB := Γ1,

JD(u) =
∫

GD

b ·nudS≈ 3.9670304±10−7, GD := Γ1∪Γ2,

Figure 3.9 shows the solution of the primal problem (3.60) and the solutions of the
adjoint problems corresponding to the functionals JV (u), JB(u) and JD(u).

We carried out computations for all three target functionals using all adaptive tech-
niques mentioned at the beginning of Section 3.4 except the hp-ideal method since
the regularity of the primal and adjoint solutions are not obvious again. Figure 3.10,
left and center show the error decay of the error estimate η I with respect to DoF1/3

and with respect to the computational time, respectively. Since primal as well as ad-
joint solutions have anisotropic features for all three examples (hp)-anisotropic vari-
ants are dominant. Again the hp-AMA s0 methods gives poor convergence for JV and
JD target functionals. Moreover, the hp-AMA s2 technique is slightly superior to the
hp-AMA s1 but the difference in the convergence is very small, namely for JB and
JD. This is caused probably by that fact that for these examples the distribution of
η I

K, K ∈ T
(n)

h is relatively smooth and then the smaller sensitivity of the hp-AMA s2
technique with respect to η I

max and η I
min does not play an important role.

Furthermore, Figure 3.10, right shows the comparison of the error estimates η I and
η II with the actual error J(eh) for the hp-AMA s2 method. Both estimators give a
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reasonable estimate of the magnitude of the error. Here, unlike the problem in Section
3.4.2, η II gives in fact an upper bound of the error.

Finally, the solutions of the primal problem together with the final hp-meshes are
presented in Figures 3.11, 3.14. For the case with the functional JV , we observe a
strong refinement along the part of the outer circular-shaped interior layer entering
to the domain of interest E := (2.5,3.5)× (2.5,3.5) and also a refinement behind the
square E. It can be surprising since the adjoint solution is (almost) constant in front
of E in the opposite direction of the convection field. Therefore the adjoint residuals
as well as the adjoint weights should be negligible. We suppose that the considered
diffusion ε = 10−3 plays also a role which leads to the refinement mentioned above.
In order to support this argumentation, we carried out the computation of the same
example but with ε = 10−6. The solutions of the primal problem together with the
final hp-meshes are presented in Figure 3.12. Obviously, the refinement is just inside
of E. Moreover, the interior layer is thinner and lower polynomial approximation
degrees are generated.

For the case with the functional JB, we observe a strong anisotropic refinement
along the entire outer circular-shaped interior layer since it attaches the domain of
region GB, cf. (3.62). On the other hand there is almost no refinement along the inner
circular-shaped interior since it does no influence the value of the solution on GB. On
the other hand, for the case with the functional JD, both interior layers act on GD.
However, we do not observe refinement along both interior layers since JD is the mean
value of u over GD and therefore the smeared layer lead to the same values. A strong
refinement is present only in regions where both interior layers begin.
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target functional JV

target functional JB

target functional JD

Figure 3.10: Convection-dominated problem, convergence of the error estimate η I =

η I(u(n)h ,z(n)h ) w. r. t. DoF (left) and w. r. t. the computational time (center) for all tested
adapted strategies. Comparison of the error estimates η I and η II with the actual error
J(u−uh) for the hp-AMA s2 method (right) with the target functionals JV (top row),
JB (middle row) and JD (bottom row).
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Figure 3.11: Convection-dominated problem, isolines of the primal solution (left), the
final hp-mesh (center) and its detail (right) generated by Algorithm 3 with the target
functional JV .

Figure 3.12: Convection-dominated problem with ε = 10−6, isolines of the primal
solution (left), the final hp-mesh (center) and its detail (right) generated by Algorithm
3 with the target functional JV .

Figure 3.13: Convection-dominated problem, isolines of the primal solution (left), the
final hp-mesh (center) and its detail (right) generated by Algorithm 3 with the target
functional JB.
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Figure 3.14: Convection-dominated problem, isolines of the primal solution (left), the
final hp-mesh (center) and its detail (right) generated by Algorithm 3 with the target
functional JD.
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4. Inviscid compressible flow
In this chapter we consider steady compressible inviscid adiabatic flow model known
as the Euler equations. We focus the steady state solutions, even though generally the
Euler equations form a time-dependent problem.

The flow is described by the continuity equations, the Euler equations of motion
and the energy equation which we further extend by the thermodynamical relations.

The solution of the Euler equations may often contain discontinuities. For this rea-
son the finite volume method (FV) using piece-wise constant approximation is widely
used for solving of compressible flow problems. On the other hand, the conforming
finite element method (FEM) is not suitable for numerical solution of such problems
due to the assumption, which is usually made, that the exact solution is sufficiently
regular. Although there are also conforming finite element techniques applicable to
compressible flow, the treatment of discontinuities is rather complicated.

The discontinuous Galerkin method (DG) takes the advantages of both FEM (high
order) and FV (discontinuity) which allows to obtain a stable scheme with high-order
accuracy. We present the DG method applied to the Euler equations. First we formulate
the problem and we describe its DG discretization with emphasis on the definition
of the so-called numerical fluxes which describe the flow through the mesh element
faces. A special attention is paid to the setting of the boundary conditions, since for
hyperbolic problems their treatment is far from obvious and, as it will be shown in
Section 4.3.8, it turns up to to be very important for obtaining the adjoint consistency
of the numerical scheme.

Utilizing the goal-oriented error estimates for nonlinear problems as presented in
Section 1.2 we introduce the goal-oriented error estimation method for Euler equa-
tions. We proceed similarly as in the linear case (Chapter 2) – after introducing the
goal-oriented error relation, we present the computable estimates based on the recon-
structions of the primal and adjoint discrete solutions, and further we derive error in-
dicators enabling the anisotropic hp-adaptation of the mesh based on the approach
presented in Chapter 3. In all steps we stress the modifications which need to be done
compared to the linear problems.

At the end we present several numerical results illustrating the efficiency of the
method.

4.1 Euler equations

We consider the steady state compressible inviscid Euler equations in a domain Ω ⊂
Rd. We restrict ourselves to the case d = 2 in this text, but the the majority of actions
bellow can be easily generalized also to d = 3.

We use the standard notation: ρ - density, p - pressure (symbol p denotes the degree
of polynomial approximation), E - total energy, vs, s = 1, . . . ,d - components of the
velocity vector v = (v1, . . . ,vd)

T in the directions xs, θ - absolute temperature, cv > 0 -
specific heat at constant volume, cp > 0 - specific heat at constant pressure, γ = cp/cv >
1 - Poisson adiabatic constant, R = cp− cv > 0 - gas constant.

The system of governing equations formed by the continuity equation, the Euler
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equations of motion and the energy equation can be written in the form

d

∑
s=1

∂ (ρvs)

∂xs
= 0, (4.1)

d

∑
s=1

∂ (ρvivs +δisp)
∂xs

= 0, i = 1, . . . ,d, (4.2)

d

∑
s=1

∂ ((E +p)vs)

∂xs
= 0. (4.3)

To the above system, we add the thermodynamical relations defining the pressure
p= (γ−1)(E−ρ|v|2/2), and the total energy E = ρ(cvθ + |v|2/2). Further, we define
the speed of sound a and the Mach number M by a =

√
γp/ρ, M = |v|

a .
System (4.1)–(4.3) has m = d +2 equations and it can be rewritten to

∇ ·F (w) =
d

∑
s=1

∂fs(w)

∂xs
= 0, (4.4)

where w = (w1, . . . ,wm)
T = (ρ,ρv1, . . . ,ρvd,E)T ∈ Rm, is the so-called state vector

and F (w) = (f1(w), . . . ,fd(w)),

fs(w) =

⎛⎜⎜⎜⎜⎜⎝
fs,1(w)
fs,2(w)

...
fs,m−1(w)
fs,m(w)

⎞⎟⎟⎟⎟⎟⎠=

⎛⎜⎜⎜⎜⎜⎝
ρvs

ρv1vs +δ1sp
...

ρvdvs +δdsp
(E +p)vs

⎞⎟⎟⎟⎟⎟⎠ (4.5)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

ws+1
w2ws+1

w1
+δ1s(γ−1)

(
wm− 1

2w1
∑

m−1
i=2 w2

i

)
...

wm−1ws+1
w1

+δds(γ−1)
(

wm− 1
2w1

∑
m−1
i=2 w2

i

)
ws+1
w1

(
γwm− γ−1

2w1
∑

m−1
i=2 w2

i

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

is the flux of the quantity w in the direction xs, s = 1, . . . ,d.
It can be easily shown that

vi =wi+1/w1, i = 1, . . . ,d, (4.6)

p =(γ−1)

(
wm−

m−1

∑
i=2

w2
i /(2w1)

)
,

θ =

(
wm/w1−

1
2

m−1

∑
i=2

(wi/w1)
2

)
/cv.

The domain of definition of the vector-valued functions fs, s = 1, . . . ,d, is the open
set D ⊂ Rm of vectors w = (w1, . . . ,wm)

T such that their corresponding density and
pressure are positive, i.e.,

D =
{

w ∈ Rm; w1 = ρ > 0, wm−
m−1

∑
i=2

w2
i /(2w1) = p/(γ−1)> 0

}
. (4.7)
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Obviously, fs ∈ (C1(D))m.
Using the chain rule in (4.4) leads to a first-order quasilinear system of partial

differential equations

d

∑
s=1

As(w)
∂w

∂xs
= 0, (4.8)

where As(w) is the m×m Jacobi matrix of the mapping fs defined for w ∈D :

As(w) := Dfs(w)
Dw =

(
∂ fs,i(w)

∂w j

)m

i, j=1
, s = 1, . . . ,d. (4.9)

The Jacobi matrices As, s = 1,2, have the form

A1(w) =

⎛⎜⎜⎜⎝
0 1 0 0

γ1
2 |v|

2− v2
1 (3− γ)v1 −γ1v2 γ1

−v1v2 v2 v1 0

v1

(
γ1|v|2− γ

E
ρ

)
γ

E
ρ
− γ1v2

1−
γ1
2 |v|

2 −γ1v1v2 γv1

⎞⎟⎟⎟⎠ , (4.10)

A2(w) =

⎛⎜⎜⎜⎝
0 0 1 0
−v1v2 v2 v1 0

γ1
2 |v|

2− v2
2 −γ1v1 (3− γ)v2 γ1

v2

(
γ1|v|2− γ

E
ρ

)
−γ1v1v2 γ

E
ρ
− γ1v2

2−
γ1
2 |v|

2 γv2

⎞⎟⎟⎟⎠ , (4.11)

where γ1 = γ−1.
Let B1 = {n ∈ Rd; |n| = 1} denote the unit sphere in Rd . For w ∈ D and n =

(n1, . . . ,nd)
T ∈ B1 we denote

P (w,n) =
d

∑
s=1

fs(w)ns =

⎛⎜⎜⎜⎜⎜⎝
ρv ·n

ρv1v ·n+pn1
...

ρvdv ·n+pnd
(E +p)v ·n

⎞⎟⎟⎟⎟⎟⎠ (4.12)

which is the physical flux of the quantity w in the direction n. Obviously, the Jacobi
matrix DP (w,n)/Dw can be expressed in the form

P(w,n) :=
DP (w,n)

Dw
=

d

∑
s=1

ns
Dfs(w)

Dw
=

d

∑
s=1

As(w)ns. (4.13)

The matrix P(w,n) has the form

P(w,n) =

⎛⎜⎜⎜⎝
0 n1 n2 0

γ1
2 |v|

2n1− v1v·n −γ2v1n1 +v·n v1n2− γ1v2n1 γ1n1
γ1
2 |v|

2n2− v2v·n v2n1− γ1v1n2 −γ2v2n2 +v·n γ1n2(
γ1|v|2− γE

ρ

)
v·n Gn1− γ1v1v·n Gn2− γ1v2v·n γv·n

⎞⎟⎟⎟⎠ ,

(4.14)

where n = (n1,n2), γ1 = γ−1, γ2 = γ−2 and G = γ
E
ρ
− γ1

2 |v|
2.
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Lemma 4.1. Let us summarize some important properties of the system of the Euler
equations (4.4):

1. The vector-valued functions fs defined by (4.5) are homogeneous mappings of
order 1, i.e., fs(αw) = αfs(w), α > 0. Moreover, we have fs(w) = As(w)w.

2. Similarly, P (αw,n) = αP (w,n), α > 0, P (w,n) = P(w,n)w.

3. The system of the Euler equations is diagonally hyperbolic, i.e., the matrix
P(w,n) has only real eigenvalues λi = λi(w,n), i = 1, . . . ,m, and is diago-
nalizable: there exists a nonsingular matrix T= T(w,n) such that

T−1PT=ΛΛΛ =ΛΛΛ(w,n) = diag(λ1, . . . ,λm) =

⎛⎜⎜⎜⎜⎜⎝
λ1 0 . . . 0 0
0 λ2 0 . . . 0
... . . . ...
0 . . . 0 λm−1 0
0 0 . . . 0 λm

⎞⎟⎟⎟⎟⎟⎠ .

(4.15)

The columns of the matrix T are the eigenvectors of the matrix P and the eigen-
values of the matrix P(w,n), w ∈D , n ∈ B1 have the form

λ1(w,n) =v ·n−a, (4.16)
λ2(w,n) = · · ·= λd+1(w,n) = v ·n,

λm(w,n) =v ·n+a,

where a =
√

γp/ρ is the speed of sound and v is the velocity vector given by
v = (w2/w1, w3/w1, . . . ,wd+1/w1)

T.

4. Further, we may define the “positive” and “negative” part of P by

P± = TΛΛΛ
±T−1, ΛΛΛ

± = diag (λ±1 , . . . ,λ±m ), (4.17)

where λ+ = max(λ ,0) and λ− = min(λ ,0) for λ ∈ R.

5. The system of the Euler equations is rotationally invariant. Namely, for n =
(n1, . . . ,nd) ∈ B1,w ∈D it holds

P (w,n) =
d

∑
s=1

fs(w)ns =Q−1(n)f1(Q(n)w), (4.18)

P(w,n) =
d

∑
s=1

As(w)ns =Q−1(n)A1(Q(n)w)Q(n). (4.19)

Here Q(n) is the m×m matrix corresponding to n ∈ B1 given by

Q(n) =

⎛⎝ 1 0 0
0T Q0(n) 0T

0 0 1

⎞⎠ , (4.20)

where by 0 we denote the vector (0,0) and the d× d rotation matrix Q0(n) is
defined by

Q0(n) =

(
n1 n2
−n2 n1

)
. (4.21)

Proof. See [Feistauer et al., 2003, Lemma 3.1, Lemma 3.3, Theorem 3.4].
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4.1.1 Weak formulation of the primal problem
In order to proceed to goal-oriented error estimates, we have to introduce the weak so-
lution of the Euler equations (4.4). However, the weak formulation is delicate since the
solution of (4.4) may not be regular, e.g., the presence of the shock waves and contact
discontinuities is usual, see Feistauer [1993], Feistauer et al. [2003], LeVeque [1990,
2002]. Further, the solution of (4.4) may be non-unique and thus additional conditions
(e.g., entropy condition) have to be added. The typical structure of solutions containing
discontinuities is treated using the so-called Rangine-Hugoniot conditions, see [Feis-
tauer et al., 2003, Theorem 2.15]. In order to avoid the difficulties, we introduce the
weak formulation only in a formal way and do not deal with the existence of the weak
solution. Let V be a suitable space of functions from Ω to Rm, where the weak solu-
tion is sought. This space should reflect the physical features of the problem, e.g., the
positive density and pressure.

Definition 4.2. We say that a function w ∈ V is the weak solution of the steady com-
pressible inviscid Euler equations, if it satisfies

F(w,ϕϕϕ) = 0 ∀ϕϕϕ ∈ V , (4.22)

where F(w,ϕϕϕ) is the weak form corresponding to ∇ ·F (w), equipped with boundary
conditions, cf. (1.62), formally given by the boundary operator

B(w) = 0 on ∂Ω. (4.23)

We assume that the weak solution exists and that the formulation is consistent, i.e,
if w satisfies (4.4) then it fulfills also (4.22). For more details on the solvability of
Euler equations and the properties of the solutions see, e.g., LeVeque [1990], Feistauer
[1993], Feistauer et al. [2003].

Following the approach presented in Section 1.1.1 for nonconforming discretiza-
tions we need to define a space Wh such that the exact solution is contained in it and
also Sp

h ⊂Wh. For the theoretical analysis of the DG method we add an artificial as-
sumption that if the exact solution possesses some discontinuities, these align with the
faces of the mesh elements. Then it makes sense to define Wh := H1(Ω,Th), where
denotes the broken Sobolev space H1(Ω,Th) := [H1(Ω,Th)]

m.

4.1.2 Boundary conditions
A suitable way of employing the boundary conditions is quite delicate problem in
numerical simulations of hyperbolic problems, since putting simply w =wBC for some
given data wBC would make the system overdetermined.

On one hand, setting of the boundary condition for the fluid flows is mainly a
physical problem. But on the other hand, it has to correspond to the mathematical
formulation of the problem in order to provide a well-posed problem. Basically, we
distinguish two part of the boundary ∂Ω – the impereable walls ΓW and inlet/outlet
ΓIO.

On ΓW ⊂ ∂Ω we prescribe the so-called reflective boundary conditions which sim-
ulate fixed walls. This impermeability condition reads v ·n= 0, where v is the velocity
vector and n denotes the outer unit normal to ∂Ω. This gives for w ∈ Rd+2

B(w) =
d

∑
i=1

niwi+1. (4.24)
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On ΓIO we set the transmissive boundaries which enable replacing unbounded do-
mains by some sufficiently large but bounded computational domains if needed. In
this case the boundary conditions are designed such that they allow passage of waves
through them without any effect.

For the problem (4.4) to be well-posed, the number of prescribed boundary con-
ditions at each point of the boundary has to be equal to the number of the negative
eigenvalues of the matrix P(w,nΓ) defined by (4.13). Here nΓ denotes the unit outer
normal on ∂Ω. One way is to distinguish between the four possible cases (supersonic
inlet and outlet and subsonic inlet and outlet) and define B separately for each of them,
see, e.g., Hartmann and Leicht [2015], or we may set generally

B(w) = P(−)(w,n)(w−wBC). (4.25)

We note that this approach is related to the treatment of boundary conditions for
scalar linear advections problems (b ·∇u = f ), where the boundary condition is pre-
scribed only on the part of the boundary where n ·n < 0.

The numerical treatment of the boundary conditions (4.23) for the DG discretiza-
tion will be studied in Section 4.3.2.

4.2 Quantity of interest and continuous adjoint prob-
lem

The most interesting target quantities in inviscid compressible flows are the aerody-
namic coefficients, namely the drag (cD), lift (cL) and momentum (cM). In this section
we introduce the target functional J representing either of these coefficients in a unified
way.

4.2.1 Quantity of interest
We can define the target functional representing the quantity of interest be the follow-
ing integral

J(w) =
∫

ΓW

j(w) dS =
∫

ΓW

pn ·ϑ dS =
∫

ΓW

pn · ϑ̃ dS (4.26)

where pn = p(0,n1, . . . ,nd,0)T and ϑ̃ = (0,ϑ1, . . . ,ϑd,0)T. Hence j(w) = pn · ϑ̃ on
ΓW . Here, ΓW ⊂ ∂Ω represents a solid profile, n is outer unit normal to the profile
pointing into the profile and p is the pressure geven by (4.6).

Further (for d = 2) ϑ is given for the drag and lift coefficients by

ϑd =
1

C∞

(cos(α),sin(α))T and ϑl =
1

C∞

(−sin(α),cos(α))T, (4.27)

respectively, where α denotes the angle of attack of the flow, C∞ = 1
2ρ∞|v∞|2Lref, ρ∞

and v∞ are the far-field density and velocity, respectively and Lref is the reference
length.

The coefficient of momentum is usually defined+ as

1
1
2ρ∞|v∞|2L2

ref

∫
ΓW

p(x− xref)× (Q(α)n) dS, (4.28)
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where xref ∈Ω is the moment reference point and

Q(α) =

(
cos(α) −sin(α)
sin(α) cos(α)

)
is the rotation matrix of the angle of attack α. For x,y ∈ R2 the notation × stands for
x× y = x1y2− x2y1.

In order to obtain the standartized shape of target functional, we can rewrite (x−
xref)× (Q(α)n) = (x− xref)G(Q(α)n), where G =

(
(0,1)T,(−1,0)T). Hence, in

(4.26) we can choose

ϑm :=
1

C∞Lref
((x− xref)GQ(α))T. (4.29)

For further use in the linearized adjoint problem we also need the Fréchet direc-
tional derivative J′[w](φ) =

∫
ΓW

j′(w)φ dS, c.f. (1.65). Recalling the definition of the
pressure (4.6) we may compute its derivative

Dp
Dw

= (γ−1)

⎛⎜⎜⎜⎝
w2

2+w2
3

2w2
1

−w2
w1
−w3

w1
1

⎞⎟⎟⎟⎠= (γ−1)

⎛⎜⎜⎝
1
2 |v|

2

−v1
−v2

1

⎞⎟⎟⎠ (4.30)

and hence the Jacobi matrix of pn equals

PW (w,n) :=
Dpn

Dw
= (γ−1)

⎛⎜⎜⎜⎜⎜⎝
0 0 . . . 0 0

|v|2 n1/2 −v1n1 . . . −vdn1 n1
...

... . . . ...
...

|v|2 nd/2 −v1nd . . . −vdnd nd
0 0 . . . 0 0

⎞⎟⎟⎟⎟⎟⎠ , (4.31)

where w ∈D , n = (n1, . . . ,nd) ∈ B1, v j = w j+1/w1, j = 1, . . . ,d, are the components
of the velocity vector and |v|2 = v2

1 + · · ·+ v2
d .

Altogether we get j′[w] = PW (w,n)Tϑ̃ and

J′[w](φ) =
∫

∂Ω

ϑ̃
TPW (w,n)φ dS. (4.32)

Let us present several relation between the introduced terms.

Lemma 4.3. Let w,φ ∈D then

• PT
W (w,n)φ = Dp(w)

Dw ((0,n1,n2,0) ·φ) ,

• pn = PW (w,n)w, where pn = pn(w).

• J(w) = J′[w](w).

Proof. The first statement follows directly from the definition of matrix multiplication
if we realize that PT

W (w,n) = Dp(w)
Dw ⊗ (0,n1, . . . ,nd,0), where ⊗ denotes the vector

outer product.
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For the second one, we can write

PW (w,n)w = (γ−1)r(w)(0,n1, . . . ,nd,0)T,

where

r(w) =
|v|2

2
w1−v1w2−v2w3 +w4 (4.33)

=
|v|2

2
ρ−v2

1ρ−v2
2ρ +E = E− |v|

2

2
ρ =

p(w)

(γ−1)
.

The last statement follows from the definition (4.26) of the target functional J, its
derivative (4.32) and the previously proven identity, i.e., pn(w) = PW (w,n)w.

Lemma 4.4. Let w̃,w ∈D satisfy the boundary condition on ΓW (4.24), then it holds

P(w̃,n)w = PW (w̃,n)w on ΓW . (4.34)

Proof. Since it holds v ·n = 0 for w̃, some of the entries of the matrix P(w̃,n) disap-
pear and we may write P(w̃,n) = PW (w̃,n)+RW (w̃,n), where

RW (w,n) :=

⎛⎜⎜⎝
0 n1 n2 0
0 v1n1 v1n2 0
0 v2n1 v2n2 0
0 Gn1 Gn2 0

⎞⎟⎟⎠ , (4.35)

with G = γE
ρ
− γ−1

2 |v|
2 = 1

ρ
(p+E). Then we can see that RW (w̃,n)w = 0 due to the

property v ·n = 0 for w.
Another way of obtaining (4.34) is to rewrite P(w̃,n) = (γ − 1)(0,n1,n2,0)T⊗

( Dp
Dw )T +(1,v1,v2,G)T⊗ (0,n1,n2,0) and utilize the rules for the ⊗−multiplication.

4.2.2 Formulation of the continuous adjoint problem
For the derivation of the continuous adjoint form to (4.4), we follow the approach pre-
sented in Section 1.1.9, which follows the theoretical derivation of the adjoint problem
formulation from Giles and Pierce [1997] and Hartmann [2007].

We multiply the equation (4.4) by z ∈Wh, integrate by parts and finally linearize
it around w which leads to∫

Ω

d

∑
s=1

∂f ′s[w](φ)

∂xs
·z dx =−

∫
Ω

d

∑
s=1

f ′s[w](φ) · ∂z

∂xs
dx (4.36)

+
∫

∂Ω

d

∑
s=1

nsf
′
s[w](φ) ·z dS ∀φ ∈ Ṽ .

Here f ′s[w] denotes the Fréchet derivative (see Definition 1.4) of fs and the direction
φ belongs to the function space of the permissible variations, see Lu [2005], defined
by

Ṽ := {φ ∈ V : v ·n = 0 on ΓW ,P(−)(w,n)φ = 0 on ΓIO}. (4.37)
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Remark. Our definition follows a more general approach from Lu [2005], where

Ṽ := {φ ∈V, B′[w](φ) = 0}

with a small modification that we only approximate B′[w](φ) on ΓIO by its lineariza-
tion P(−)(w,n)φ.

We note that the realization of the Fréchet derivative may be computed by the
Jacobi matrix as f ′s[w](φ) = Dfs(w)

Dw φ = As(w)φ.
Due to (4.9) and (4.13) we have

∫
∂Ω

d

∑
s=1

nsf
′
s[w](φ) ·z dS =

∫
∂Ω

zTP(w,n)φ dS (4.38)

and hence we may define the variational formulation of the continuous adjoint prob-
lem: Find z ∈Wh such that

−
∫

Ω

d

∑
s=1

∂zT

∂xs
As(w)φdx+

∫
∂Ω

zTP(w,n)φ dS = J′[w](φ) ∀φ ∈ Ṽ . (4.39)

This expression may be further rearranged individually on ΓW and ΓIO. On ΓIO we
exploit that φ belongs to Ṽ and hence P(−)(w,n)φ = 0. Then due to (4.13) it holds∫

ΓIO

zTP(w,n)φ dS =
∫

ΓIO

zTP(+)(w,n)φ dS. (4.40)

On ΓW we have n1ϕ2 + n2ϕ3 = 0. Functions w and φ satisfy the assumption of
Lemma 4.4, hence we may use (4.34) which leads to∫

ΓW

zTP(w,n)φ dS =
∫

ΓW

zTPW (w,n)φ dS. (4.41)

Recalling (4.32) and noting that

PT
W (w,n)z =

Dp(w)

Dw
(0,n1,n2,0) ·z, PT

W (w,n)ϑ̃ =
Dp(w)

Dw
n ·ϑ

we obtain a simplified boundary condition

n1z2 +n2z3 = n ·ϑ on ΓW . (4.42)

Therefore, we can write the equation (4.39) in the strong form.

Definition 4.5. We say that function z is the solution of the adjoint problem to (4.4) if
it satisfies

−
d

∑
s=1

(As(w))T ∂z

∂xs
= 0 in Ω, (4.43)

with boundary conditions(
P(+)(w,n)

)T
z = 0 on ∂Ω\ΓW , n1z2 +n2z3 = n ·ϑ on ΓW . (4.44)
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4.3 Discontinuous Galerkin discretization
The discontinuous Galerkin (DG) approximate solution of (4.4) is sought in a finite-
dimensional subspace of H1(Ω,Th) which consists of piecewise polynomial func-
tions. We note that the polynomial degrees may differ among mesh elements and we
recall the notation used in previous chapters. We denote the local polynomial degree
pK ∈ N for each K ∈Th and we introduce p := {pK;K ∈Th}.

Further, over the triangulation Th we define the space of vector-valued discontinu-
ous piecewise polynomial functions

Sp
h = (Sp

h )
m, where Sp

h = {v ∈ L2(Ω);v|K ∈ PpK(K) ∀K ∈Th} (4.45)

and for further use also

Sp+1
h = (Sp+1

h )m, where Sp+1
h = {v ∈ L2(Ω);v|K ∈ PpK+1(K) ∀K ∈Th}. (4.46)

Multiplying (4.4) by φ ∈H1(Ω,Th), integrating over Ω and applying the Green
theorem separately on each element K ∈Th we get

− ∑
K∈Th

∫
K

d

∑
s=1

A(w)w · ∂ϕϕϕ

∂xs
dx+ ∑

K∈Th

∫
∂K

P (w,nK) ·ϕϕϕ dS = 0, (4.47)

where we used the statement of Lemma 4.1 which gives fs(w) = A(w)w.
The crucial point of the DG approximation of conservation laws is the evaluation of

the boundary terms since the numerical solution may be discontinous on the element
interfaces. These integrals are approximated using the numerical flux H : D ×D ×
B1→ Rm ∫

∂K
P (w,n) ·ϕϕϕ dS≈

∫
∂K

H(w(+),w(−),nK) ·ϕϕϕ dS, (4.48)

Here the notation w(+) and w(−) denotes the interior and exterior traces of w, respec-
tively. More precisely if nK denotes the unit outer normal for an edge Γ ∈ ∂K\∂Ω

then w(+) denotes the trace of w in the direction opposite to the direction of nK
(from K) and w(−) denotes the trace in the direction of nK (from the neigbouring
element). The meaning of w(−) on the boundary ∂Ω will be defined later (Section
4.3.2). Here we only briefly note that its determination is based on the value w(+) and
the corresponding boundary condition. Further, we define the mean value of a function
ϕϕϕ ∈H1(Ω,Th) by ⟨ϕϕϕ⟩= ϕϕϕ(+)+ϕϕϕ(−)

2 on interior edges.
The numerical flux has to satisfy some basic conditions:

• continuity: H(w1,w2,n) is locally Lipschitz-continuous with respect to the vari-
ables w1 and w2,

• consistency: H(w,w,n) = P (w,n), w ∈D , n = (n1, . . . ,nd) ∈ B1,

• conservativity: H(w1,w2,n) =−H(w2,w1,−n), w1,w2 ∈D , n ∈ B1.

Definition 4.6. We say that a function wh ∈Sp
h is the discrete DG solution of the Euler

equations (4.4), if

ah(wh,ϕϕϕh) = 0 ∀ϕϕϕh ∈ Sp
h , (4.49)
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where

ah(wh,ϕϕϕ) =− ∑
K∈Th

∫
K

d

∑
s=1

(As(wh)wh) ·
∂ϕϕϕ

∂xs
dx+ ∑

K∈Th

∫
∂K

H(w
(+)
h ,w

(−)
h ,nK) ·ϕϕϕ dS.

(4.50)

We continue with the specification of the interior and boundary numerical fluxes.
The general definition of the numerical flux H may differ on the inner edges and on
the edges laying on the boundary ∂Ω = ΓW ∪ΓIO. Further, the boundary numerical
fluxes differ for various boundary conditions given on separate parts of the bound-
ary ∂Ω. Each of these cases will be discussed separately, since each one requires a
slightly different handling. In the further text we will use the shorter notation H =
H(w(+),w(−),nK) when the arguments are evident from context and on the contrary
H∂Ω = H∂Ω(w

(+),w(−),nK) when we want emphasize the boundary.

4.3.1 Numerical fluxes on the inner edges
From the possible choices of the numerical fluxes we focus the Vijayasundaram flux,
see Vijayasundaram [1986]. Other numerical fluxes usable for the Euler equations
(such as the Lax-Friedrichs or Van Leer numerical fluxes) can be found in Feistauer
et al. [2003]. The definition of the Vijayasundaram numerical flux is based on the
spectral decomposition of the matrix P into P± which was introduced in (4.17).

For any function w ∈H1(Ω,Th) Vijayasundaram numerical flux is given by

HV S(w
(+),w(−),n) = P+ (⟨w⟩ ,n)w(+)+P− (⟨w⟩ ,n)w(−). (4.51)

Lemma 4.7. Vijayasundaram numerical flux HV S = H(w1,w2,n) given by (4.51) is
locally Lipschitz-continuous, consistent and conservative.

Consistency and conservativity follow directly from the definition of the Vijayasun-
daram flux, a detailed proof of the Lipschitz-continuity can be found, e.g., in Feistauer
et al. [2003].

4.3.2 Numerical treatment of the boundary conditions
In the case of first order differential equations, such as the system (4.4), the treatment
of boundary conditions is rather complicated, since it is not explicitly clear how much
information has to set on the boundary in order to obtain a uniquely solvable problem
(not under-determined or over-determined).

The numerical flux H has to be determined on the boundary edges, but the meaning
of w(−) is not so clear there. Since the DG discretization treats the boundary conditions
only in a weak sense, the discrete solution wh generally does not satisfy the boundary
condition B(wh) = 0.

4.3.3 Boundary conditions on impermeable walls
For Γ ∈ ΓW we should interpret in a suitable way the impermeability condition (4.24),
i.e., v ·n = 0, where v is the velocity vector and n the outer unit normal to ∂ΩW . This
condition has to be incorporated in some sense into the expression H∂Ω(w

(+)
h ,w

(−)
h ,n)

appearing in the definition (4.50) of the form ah.
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We describe two possibilities. The first one is based on the direct use of the imper-
meability condition in the physical flux P (w,n) and the second applies the so-called
mirror operator to the state w.

Impermeability condition for the boundary value operator

Since the discrete solution w ∈ Sp
h does not satisfy the boundary condition (4.24),

we introduce the so-called boundary value operator, see Hartmann and Leicht [2015].
uΓ(w) on ∂Ω.

This operator has to chosen such that in contrast to wh, uΓ(wh) satisfies the bound-
ary condition, i.e.B(uΓ(wh)) = 0, and further that uΓ(w) = w for any w such that
B(w) = 0.

In this case, we define uΓ by

uΓ(w) := UΓw =

⎛⎜⎜⎝
1 0 0 0
0 1−n2

1 −n1n2 0
0 −n1n2 1−n2

2 0
0 0 0 1

⎞⎟⎟⎠w on ΓW . (4.52)

Such choice originates in the substracting of the normal component of the velocity, i.e.,
v = (v1,v2) is replaced by v− (n ·v)n. That also obviously guarantees meeting the
boundary condition (4.24).

Then since uΓ(wh) ·n = 0, we can define w
(−)
h = uΓ(w

(+)
h ). The due to (4.12),

the second statement of Lemma 4.1 and (4.34) we obtain

H1
∂Ω,W(w(+),w(−),nΓ) :=

d

∑
s=1

fs(uΓ(w
(+)))ns = p(uΓ(w

(+)))(0, n1, . . . , nd,0)
T

= PW (uΓ(w
(+)),n)uΓ(w

(+)) on ΓW . (4.53)

Inviscid mirror boundary conditions

This approach is based on the definition of the state vector w(−) on Γ⊂ ΓW in the form

w(−) = M (w), (4.54)

where the boundary operator M , called the inviscid mirror operator, is defined in the
following way.

For w ∈D , w = (ρ,ρv,E)T and n ∈ B1 is the outer unit normal to ∂Ω at a point
in consideration lying on ΓW , then we set

v⊥ = v−2(v ·n)n = (I−2nnT)v. (4.55)

The vectors v and v⊥ have the same tangential component but opposite normal com-
ponents.

Then we define M (w) := (ρ,ρv⊥,E)T =MΓw, where

MΓ =

⎛⎜⎜⎝
1 0 0 0
0 1−2n1n1 −2n1n2 0
0 −2n1n2 1−2n2n2 0
0 0 0 1

⎞⎟⎟⎠ .
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We note that employing the boundary value operator (4.52) we can rewrite this as
M (w) = 2uΓ(w)−w.

Now we set the mapping H2
∂Ω,W : D ×B1 → Rm by the same formula as the Vi-

jayasundaram numerical fluxes on the interior edge with w(−) = M (w(+)), i.e.,

H2
∂Ω,W(w(+),w(−),n) := HV S(w

(+),M (w(+)),n), on ΓW , (4.56)

where the expression ⟨w⟩ which appears in the definition of HV S is artificially defined

as ⟨w⟩= w(+)+M (w(+))
2 = uΓ(w

(+)) on ΓW .

Remark. For comparison between H1
∂Ω,W and H2

∂Ω,W we note that H1
∂Ω,W can be

rewritten to

H1
∂Ω,W(w(+),w(−),n) = PW (uΓ(w

(+)))UΓw(+) = P(uΓ(w
(+)))UΓw(+)

= (P(+)(uΓ(w
(+)))+P(−)(uΓ(w

(+)))MΓ)UΓw(+)

= HV S(w
(+),M (w(+)),n)UΓw(+) (4.57)

since MΓUΓ = UΓ.

Lemma 4.8. Both boundary numerical fluxes H1
∂Ω,W and H2

∂Ω,W are consistent.

Proof. From the consistency of the boundary value operator uΓ we have uΓ(w) = w
and hence also H1

∂Ω,W is consistent. Since M (w) = w for the exact solution we
have H2

∂Ω,W(w,n) := H(w,w,n) and consistency of H2
∂Ω,W is a consequence of the

consistency of the numerical flux HV S.

4.3.4 Boundary conditions on the Inlet and Outlet

Setting the boundary value w
(−)
h on the inlet and outlet part of the boundary ΓIO ⊂ ∂Ω

is quite delicate task. For instance when dealing with the flow around an isolated profile
the state vector wBC = w∞ stands for the theoretical free flow in infinite distance from
the profile. Yet, we cannot simply set w

(−)
h := wBC on ΓIO since the system (4.4) is

hyperbolic. We adopt the approach based on the solution of the nonlinear Riemann
problem, described in details in Dolejšı́ and Feistauer [2015], which is derived for the
nonstationary Euler equations given by

∂w

∂ t
+∇F (w) = 0, (4.58)

where w(x, t) : Ω× (0,T )→ Rm.
For the determination of the boundary condition in any given point xΓ on the

boundary ΓIO we introduce a new coordinate system (x̃1, . . . , x̃d) such that the co-
ordinate origin lies at the point xΓ and the axis x̃1 is parallel to the outer normal
nΓ(xΓ), see Figure 4.1. Such transformation of the coordinates is done by the mapping
x̃ = Q0(nΓ)(x− xΓ), where Q0(nΓ) is the rotation matrix by the angle given by the
direction of nΓ. Then we define

q
(+)

Γ =Q(nΓ)w
(+)

Γ , (4.59)

where Q(nΓ) is given by (4.20).
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K

x̃1

x̃2, . . . , x̃d

Γ

∂Ω

w
(L)
Γ

wBCn

Figure 4.1: New coordinate system (x̃1, . . . , x̃d).

Now we expoit the rotational invarience of the Euler equation introduced in (4.18)
and neglect the derivative with respect to x̃2 which gives us

∂q

∂ t
+A1(q)

∂q

∂ x̃1
= 0, (x̃1, t) ∈ (−∞,0)× [0,∞), (4.60)

for the transformed vector-valued function q = Q(nΓ)w. To this system we add the
initial and boundary conditions

q(x̃1,0) = q
(+)
Γ

, x̃1 < 0, (4.61)

q(0, t) = q
(−)
Γ

, t > 0.

Here, q
(+)
Γ

is given by (4.59) and the unknown state vector q
(−)
Γ

should be determined.
In order to define the boundary value q

(−)
Γ

we extend the nonlinear system to

∂q

∂ t
+A1(q)

∂q

∂ x̃1
= 0, (x̃1, t) ∈ (−∞,∞)× [0,∞) (4.62)

equipped with the initial condition

q(x̃1,0) =

{
q
(+)
Γ

, if x̃1 < 0,
qBC, if x̃1 > 0,

(4.63)

where qBC =Q(nΓ)wBC, see Figure 4.2.
Exact solution of the problem (4.62) and (4.63) can be constructed analytically,

see, e.g., Feistauer [1993]. Furthermore, it is a piecewise analytical function which
is constant along the lines x̃1

t = λi, where λi, i = 1, . . . ,m are the eigenvalues of the
matrix A1(q). For a detailed derivation see e.g., [Feistauer, 1993, Paragraph 7.1.102].
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Figure 4.2: Initial-boundary value problem (4.60)–(4.61) (left) and the Riemann prob-
lem (4.62)–(4.63) (right)

On of those lines is also the ray x̃1 = 0, t > 0 and hence we may define the inlet/outlet
boundary operator based on the solution of the nonlinear Riemann problem as

uRP(w
(+)
Γ

,wBC) :=Q−1(nΓ)q(0,ε), (4.64)

where ε > 0 may be arbitrarily small. Finally, we set w
(−)
h := uRP(w

(+)
h ,wBC) and

H∂Ω(w
(+)
h ,w

(−)
h ,n) := HV S(w

(+)
h ,uRP(w

(+)
h ,wBC),n), (4.65)

where we define ⟨w⟩= w(+) for any w ∈H1(Ω,Th) on ΓIO in (4.51).

4.3.5 Primal consistency

In order to derive the primal residuals we define the primal residual of the problem
(4.49) by

rh(wh)(φ) :=−ah(wh,φ). (4.66)

Integrating the form (4.50) by parts on each element and using the first statement
of Lemma 4.1 we get

rh(wh)(φ) :=− ∑
K∈Th

(∫
K

d

∑
s=1

∂fs(wh)

∂xs
·ϕϕϕh dx (4.67)

+
∫

∂K\∂Ω

(
P (w

(+)
h ,n)−H(w

(+)
h ,w

(−)
h ,n)

)
·ϕϕϕh dS

+
∫

∂K∩∂Ω

(
P (w

(+)
h ,n)−H∂Ω(w

(+)
h ,w

(−)
h ,n)

)
·ϕϕϕh dS

)
.

Now we treat separatelly the terms on the inner edges and boundary edges assum-
ing that the Vijayasundaram numerical flux (4.51) is used in the discretization (4.50).
For the inner edges we have∫

∂K\∂Ω

(
(P (w

(+)
h ,n)−P(+)(⟨wh⟩ ,n)w

(+)
h −P(−)(⟨wh⟩ ,n)w

(−)
h )

)
·ϕϕϕh dS (4.68)
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On the impermeable walls we distinguish two cases. If the boundary condition is
treated by (4.53) then due to the second statement of Lemma 4.1 we have∫

∂K∩ΓW

(
P(w(+)

h ,n)w
(+)
h −PW (uΓ(w

(+)
h ),n)uΓ(w

(+)
h )

)
·ϕϕϕh dS. (4.69)

If H∂Ω is set according to (4.56) we get∫
∂K∩ΓW

(
P (w

(+)
h ,n)−HV S(w

(+)
h ,M (w

(+)
h ),n)

)
·ϕϕϕh dS (4.70)

=
∫

∂K∩ΓW

(
(P(w(+)

h ,n)w
(+)
h −P(+)(uΓ(w

(+)
h ),n)w

(+)
h

−P(−)(uΓ(w
(+)
h ),n)M (w

(+)
h ))

)
·ϕϕϕh dS.

Finally, on ΓIO due to (4.65) we have∫
∂K∩ΓIO

(
P (w

(+)
h ,n)−HV S(w

(+)
h ,vh

(−),n)
)
·ϕϕϕh dS (4.71)

=
∫

∂K∩ΓIO

(
P(w(+)

h ,n)w
(+)
h −P(+)(w

(+)
h ,n)w

(+)
h

−P(−)(w
(+)
h ,n)uRP(w

(+)
h ,wBC)

)
·ϕϕϕh dS

=
∫

∂K∩ΓIO

P(−)(w
(+)
h ,n)(w

(+)
h −uRP(w

(+)
h ,wBC)) ·ϕϕϕh dS.

Based on (4.67) we can define for any K ∈Th the element primal residuals

RK(wh) =−
d

∑
s=1

∂

∂xs
fs(wh) =−

d

∑
s=1

As(wh)
∂wh

∂xs
in K, (4.72)

rK(wh) =

⎧⎪⎪⎨⎪⎪⎩
P (w

(+)
h ,n)−H(w

(+)
h ,w

(−)
h ,n) on ∂K\∂Ω,

P(−)(w
(+)
h ,n)

(
w

(+)
h −uRP(w

(+)
h ,wBC)

)
on ∂K∩ΓIO

P (w
(+)
h ,n)−H∂Ω,W(w

(+)
h ,w

(−)
h ,n) on ∂K∩ΓW ,

(4.73)

where the term H∂Ω,W(w
(+)
h ,w

(−)
h ,n) stands for either PW (uΓ(w

(+)
h ),n)uΓ(w

(+)
h ) or

HV S(w
(+)
h ,M (w

(+)
h ),n) depending on whether H1

∂Ω,W or H2
∂Ω,W is used, respectively.

Employing (4.72), (4.73) in (4.67) we obtain the residual form of the problem
(4.49): find wh ∈ Sp

h such that

∑
K∈Th

(∫
K

RK(wh) ·ϕϕϕh dx+
∫

∂K
rK(wh) ·ϕϕϕ

(+)
h dS

)
= 0 ∀ϕϕϕh ∈ Sp

h . (4.74)

We summarize the previous derivation into the following result.

Lemma 4.9. Let assume that the numerical fluxes H and H∂Ω used on inner and
boundary edges are consistent, then the discretization (4.49) is consistent, i.e., if w ∈
H1(Ω,Th) is the exact solution of (4.4) it also nullifies the discrete formulation (4.49),
i.e.,

rh(w)(ϕϕϕ) = 0 ∀ϕϕϕ ∈H1(Ω,Th). (4.75)

100



4.3.6 Newton-like method for solving the discrete primal problem
The discrete problem (4.49) is solved with the aid of the Newton method, as presented
in Section 1.2.4 with several slight changes.

Let Nh,p denote the dimension of the space Sp
h and Bh,p = {ϕϕϕ i(x), i = 1, . . . ,Nh,p}

a basis of Sp
h . We note that it is possible to construct a basis Bh,p as a composition of

local bases constructed separately for each K ∈ Th for the DG method, for details see
[Dolejšı́ and Feistauer, 2015, Section 8.4.8]

We recall isomorphism between wh ∈Sp
h and its algebraic representation ξξξ ∈RNh,p

given by

wh(x) =
Nh,p

∑
j=1

ξ
j
ϕϕϕ j(x) ∈ Sp

h ←→ ξξξ = (ξ j)
Nh,p
j=1 ∈ RNh,p , (4.76)

where ξ j ∈R, j = 1, . . . ,Nh,p are its basis coefficients with respect to Bh,p. Further the
algebraic representation of the systems (4.49) reads: Find ξξξ ∈ RNh,p such that

Fh(ξξξ ) = 0, (4.77)

where

Fh (ξξξ ) = (ah(wh;ϕϕϕ i))
Nh,p
i=1 . (4.78)

The exact evaluation of the Jacobi matrix DFh(ξ̄ξξ )
Dξξξ

in (4.39) needed for the Newton
method, see (1.93), may be costly and moreover the terms corresponding to the numer-
ical Vijayasundaram fluxes are not even continuously differentiable. Therefore we do
not compute the derivative ah

′[uh](·, ·) precisely, but instead we approximate it by the
linearized form

ah
′[wh](·, ·)≈ aL

h (wh; ·, ·). (4.79)

Then we define the Nh,p×Nh,p flux matrix

Ch

(
ξ̄ξξ

)
=
(

aL
h (w̄h,ϕϕϕ j,ϕϕϕ i)

)Nh,p

i, j=1
(4.80)

approximating the Jacobi matrix Ch

(
ξ̄ξξ

)
≈ DFh(ξ̄ξξ )

Dξξξ
.

Finally, the Newton-like method follows directly algorithm presented in Section
1.2.4, only the Jacobi matrix is replaced by Ch

(
ξ̄ξξ

l
)

in (1.93).
In practical computations, we solve the steady state Euler equations as the time

dependent ones where the (pseudo-)time stepping helps to improve the global conver-
gence of the Newton method, similarly as the damping parameter λ l in (1.92).

Authors of Hartmann and Leicht [2015], Hartmann [2005] suggest to approximate
these terms by finite difference method, and in Hartmann [2005] they show that it
should significantly speed up the convergence of the nonlinear solver. Our experience
is, on the other hand, a bit different. We did not observe any significant change of the
convergence when the finite difference members were added or omitted. Furthermore,
later in this chapter we present an analysis of a discrete adjoint problem based on
the linearization aL

h which shows that it represents a reasonable discretization of the
adjoint problem (4.39).
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Remark. Besides solution of the algebraic system (1.93) the most expensive parts
within this process is the composition of the matrix Ch(ξξξ

l). Hence, in order to ac-
celerate the computation, we do not upgrade the matrix Ch(ξξξ

l) in every step of the
Newton-like method (1.92)–(1.93).

4.3.7 Linearization of the form ah

Here, we present this formal linearization of the form ah which we use as an ap-
proximation of the Jacobi matrix. Recalling the form (4.50) from the discrete adjoint
problem

ah(wh,ϕϕϕh) =− ∑
K∈Th

∫
K

d

∑
s=1

(As(wh)wh) ·
∂ϕϕϕh

∂xs
dx (=: ζ1)

+ ∑
K∈Th

∫
∂K\∂Ω

H(w
(+)
h ,w

(−)
h ,n) ·ϕϕϕh dS (=: ζ2)

+ ∑
K∈Th

∫
∂K∩ΓW

Hi
∂Ω,W(w

(+)
h ,w

(−)
h ,n) ·ϕϕϕh dS (=: ζ3)

+ ∑
K∈Th

∫
∂K∩ΓIO

H∂Ω(w
(+)
h ,w

(−)
h ,n) ·ϕϕϕh dS (=: ζ4), (4.81)

we linearize each of the four terms ζ1, . . . ,ζ4.
For the first one we define the linearized form ζ L

1 : Sp
h ×Sp

h ×Sp
h → R by

ζ
L
1 (w̄h,wh,ϕϕϕh) =− ∑

K∈Th

∫
K

d

∑
s=1

As(w̄h)wh ·
∂ϕϕϕ

∂xs
dx. (4.82)

Then employing Lemma 4.1 we have ζ L
1 (wh,wh,ϕϕϕh) = ζ1 and obviously ζ L

1 is linear
with respect to its second and third argument.

For linearization of the term ζ2 we exploit the definition of the Vijayasundaram
numerical fluxes (4.51). Since every inner edge in the triangulation appears twice in
the sum we may reorganize the summation and then exploit the fact that

P− (⟨w̄h⟩Γ ,nK)w
(−)
h =−P+ (⟨w̄h⟩Γ ,−nK)w

(−)
h . (4.83)

So the linearized form ζ L
2 : Sp

h ×Sp
h ×Sp

h → R reads

ζ
L
2 (w̄h,wh,ϕϕϕh) = ∑

K∈Th

∫
∂K\∂Ω

[
P+
(
⟨w̄h⟩Γ ,nK

)
w

(+)
h (4.84)

+P−
(
⟨w̄h⟩Γ ,nK

)
w

(−)
h

]
·ϕϕϕ(+)

h dS

= ∑
K∈Th

∫
∂K\∂Ω

P+ (⟨w̄h⟩Γ ,nK)w
(+)
h · [[ϕϕϕh]]K dS.

Obviously ζ L
2 (wh,wh,ϕϕϕh) = ζ2 and ζ L

2 is linear with respect to its second and third
argument.

Regarding the term ζ3 we have to proceed separately for each of the approaches
Hi

∂Ω,W, i = 1,2.
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Based on the definition (4.53) of H1
∂Ω,W we may introduce its in the following form

H2,L
∂Ω,W(w̄,w,n) = PW (uΓ(w̄),n)UΓw, w̄,w ∈D , n ∈ B1, (4.85)

The linearization H2
∂Ω,W may be introduced similarly to (4.84) and since w+M (w)

2 =

uΓ(w) we get

H3,L
∂Ω,W(w̄,w,n) =

(
P+ (uΓ(w̄),n)+P− (uΓ(w̄),n)MΓ

)
w(+). (4.86)

Employing the linearized forms (4.85) and (4.86) we set

ζ
i,L
3 (w̄h,wh,ϕϕϕh) = ∑

K∈Th

∫
∂K∩ΓW

Hi,L
∂Ω,W(w̄h,wh,n) ·ϕϕϕh dS (4.87)

= ∑
K∈Th

∫
∂K∩ΓW

ϕϕϕ
T
hH

i,L
W (w̄h,n)wh dS,

where i = 1,2 and the matrix Hi,L
W (w̄h,n) corresponds to one of the matrices in (4.85)

and (4.86), i.e.,

H1,L
W (w̄h,n) = PW (uΓ(w̄),n)UΓ, (4.88)

H2,L
W (w̄h,n) = P+ (uΓ(w̄),n)+P− (uΓ(w̄),n)MΓ. (4.89)

By exploring the definitions of Hi,L
∂Ω,W, i = 1,2 we get that both ζ

i,L
3 are linear

with respect to the second and third argument and they meet the favorable property
ζ

i,L
3 (wh,wh,ϕϕϕh) = ζ i

3.
At last, ζ4 is approximated with the aid of the forms

ζ
L
4 (w̄h,wh,ϕϕϕh) = ∑

K∈Th

∫
∂K∩ΓIO

(
P+(w̄

(+)
h ,nK)w

(+)
h

)
·ϕϕϕh dS, (4.90)

and

ãh(w̄h,ϕϕϕh) =− ∑
K∈Th

∫
∂K∩ΓIO

(
P−(w̄(+)

h ,nK)w̄
(−)
h

)
·ϕϕϕh dS, (4.91)

where according to (4.64) function w̄
(−)
h is the solution of the Riemann problem (4.62)

given by uRP(w̄
(+)
h ,wBC) on ΓIO. Let us underline that in the arguments of P± we do

not use the mean value of the state vectors from the left and right side as in (4.51).
Moreover, if suppϕϕϕh∩ (ΓIO) = /0, then ãh(w̄h,ϕϕϕh) = 0.

Obviously, due to (4.91) and (4.90), we have

ζ
L
4 (wh,wh,ϕϕϕh)− ãh(wh,ϕϕϕh) = ζ4. (4.92)

Taking together all the previously defined linearizations, we set

aL
h (w̄h,wh,ϕϕϕh) =

4

∑
i=1

ζ
L
i (w̄h,wh,ϕϕϕh) (4.93)

and we evidently get ah(wh,ϕϕϕh) = aL
h (wh,wh,ϕϕϕh)− ãh(wh,ϕϕϕh).

If we introduce the vector

dh

(
ξ̄ξξ

)
:= (ãh(w̄h,ϕϕϕ i))

Nh,p
i=1 , (4.94)

we obtain algebraic representation of the equality (4.93)

Fh(ξξξ ) = Ch(ξξξ )ξξξ −dh(ξξξ ). (4.95)

103



4.3.8 Discrete adjoint problem and adjoint consistency
In this section we introduce the discrete adjoint problem based on the linearization of
the form ah given by (4.93). Further, the adjoint consistency of the discretization is
studied.

In order to obtain an adjoint consistent scheme, it is necessary to modify the target
functional J defined in (4.26) as generally presented in (1.61). For the functional given
by (4.26) we set

Jh(wh) =
∫

ΓW

Hi
∂Ω,W(w

(+)
h ,w

(−)
h ,n) · ϑ̃ dS. (4.96)

Here Hi
∂Ω,W ∈ {H

1
∂Ω,W,H1

∂Ω,W} and ϑ̃ = (0,ϑ1,ϑ2,0)T on ΓW , where ϑ is chosen
either by (4.27) or (4.29).

For the exact solution of (4.4) it holds due to the consistency of the numerical fluxes
H∂Ω,W that

H∂Ω,W(w(+),w(−),n) · ϑ̃ = p(w)n ·ϑ . (4.97)

Hence by comparison of the definitions (4.26) and (4.96) it can be seen that

Jh(w) = J(w),

i.e., this particular modification Jh is so-called consistent, see Section 1.1.9. Further,
using the linearization of the numerical fluxes (4.85) and (4.86), we introduce the lin-
earization of the discrete functional

JL
h (wh;ϕϕϕh) =

∫
ΓW

Hi,L
∂Ω,W(wh;ϕϕϕh,n) · ϑ̃ dS =

∫
ΓW

ϕϕϕh
THi,L

W (wh
(+),n))T

ϑ̃ dS.

(4.98)

Definition 4.10. Finally we introduce the discrete adjoint problem. We say that zh ∈
Sp

h is the discrete adjoint solution if it satisfies

aL
h (wh;ϕϕϕh,zh) = JL

h (wh;ϕϕϕh) ∀ϕϕϕh ∈ Sp
h , (4.99)

where aL
h is given by (4.93). Further we define the adjoint residual

r∗h(wh,zh)(ϕϕϕh) := JL
h (wh;ϕϕϕh)−aL

h (wh;ϕϕϕh,zh). (4.100)

Theorem 4.11. Let HV S be the Vijayasundaram numerical flux. Let Jh be the modified
target functional defined in (4.96). Then the discretization (4.49) is adjoint consistent,
i.e., the exact solution w of the flow equations (4.4) and its adjoint counter-part z,
solving the continuous adjoint problem (4.39), satisfy

r∗h(w,z)(ϕϕϕ) = 0 ∀ϕϕϕ ∈ Ṽ . (4.101)

Proof. Similarly to (4.74) we introduce the residual formulation of the discrete prob-
lem (4.99)

∑
K∈Th

∫
K

R∗K(wh,zh) ·ϕϕϕh dx+
∫

∂K
r∗K(wh,zh) ·ϕϕϕ

(+)
h dS = 0 ∀ϕϕϕh ∈ Sp

h , (4.102)
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where the volume and edge residual terms are defined by

R∗K(wh,zh) =
d

∑
s=1

AT
s (wh)

∂zh

∂xs
in K, (4.103)

r∗K(wh,zh) =

⎧⎨⎩
−P(+)(⟨wh⟩ ,n)T[[zh]] on ∂K\∂Ω,

−P(+)(wh
(+),n)Tzh on ∂K∩ΓIO,

(Hj,L
W (wh

(+),n))T(ϑ̃ −zh), i ∈ {1,2} on ∂K∩ΓW .

(4.104)

which follows from the definitions of ζ L
i , i = 1, . . . ,4 in (4.82), (4.84), (4.87), (4.90)

and the definition of the linearization of the modified target functional (4.98).
Employing the adjoint residuals (4.103), (4.104), we can rewrite (4.101) to

∑
K∈Th

∫
K

R∗K(w,z) ·ϕϕϕ dx+
∫

∂K
r∗K(w,z) ·ϕϕϕ(+) dS ∀ϕϕϕ ∈ Ṽ . (4.105)

Reminding the strong formulation of the continuous adjoint problem (4.43) we see
that R∗K(w,z) = 0 for any K ∈ Th. Further, due to the assumed smoothness of the
adjoint solution z we also have r∗K(w,z) = 0 on ∂K\∂Ω.

On the boundary we examine separately ΓW and ΓIO. If the numerical flux H1
∂Ω,W

given by (4.53) is used on ΓW , we exploit that uΓ(w
(+)) = w(+) for the exact solution

and uΓ given by (4.52). Hence recalling (4.88) and exploiting the first statement of the
Lemma 4.3 we get

r∗K(w,z) =
(
H1,L

W (w,n)
)T

(ϑ̃ −z) = UT
ΓPT

W (uΓ(w),n)(ϑ̃ −z) (4.106)

=
Dp(w)

Dw
(0,n1,n2,0) ·

(
ϑ̃ −z

)
=

Dp(w)

Dw
(n ·ϑ − (n1z2 +n2z3)) = 0,

since the adjoint solution z satisfies the boundary condition (4.44). Furthermore, we
did not have to use the properties of the space Ṽ and hence this choice of the boundary
numerical flux nullifies the edge residual even for any ϕϕϕh ∈ Sp

h .
If the numerical flux H2

∂Ω,W given by (4.56) is used on ΓW then we have

JL
h (w;ϕϕϕ)−ζ

3,L
3 (w,ϕϕϕ,z) =

∫
∂K∩ΓW

(
ϑ̃ −z

)T (P(+)(uΓ(w),n) (4.107)

+P(−)(uΓ(w),n)MΓ

)
ϕϕϕ dS.

Here, we have to exploit the properties of ϕϕϕ belonging to Ṽ . Since ϕϕϕ ∈ Ṽ , it holds
B′[w](φ) = n1ϕϕϕ2+n2ϕϕϕ3 = 0 and hence MΓϕϕϕ =ϕϕϕ and further since the exact solution
satisfies v ·n = 0 due to (4.34) we obtain that∫

∂K∩ΓW

(
ϑ̃ −z

)T
(P(+)(uΓ(w),n)+P(−)(uΓ(w),n)MΓ)ϕϕϕ dS (4.108)

=
∫

∂K∩ΓW

(ϑ̃ −z)TP(w,n)ϕϕϕ dS =
∫

∂K∩ΓW

(ϑ̃ −z)TPW (w,n)ϕϕϕ dS = 0.

Finally, on ΓIO the function ϑ̃ = 0 and hence r∗K(w,z) = 0 since the residual term in
(4.104) precisely equals to the boundary condition in (4.44).
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Let us shortly speculate on the pertinence of the discretization (4.99) of the adjoint
problem (4.43)–(4.44). The discrete formulation (4.43) is based on linearization rather
than on proper differentiation of the nonlinear discrete problem (4.49) like it is usu-
ally done, cf. Hartmann and Leicht [2015] or Hartmann [2006]. On the other hand,
the omitted terms contain derivatives of the numerical fluxes (4.51) which lack the re-
quired smoothness to be differentiated exactly. In Hartmann [2005] these terms are
approximated by finite differences for Lax-Friedrichs and Vijayasundaram numerical
fluxes. We note that omitting those terms does not cause any source of inconsistency
into the discrete problem and from point of view it nicely corresponds to the contin-
uous formulation of the adjoint problem (4.43), and hence the discretization (4.99)
seems as a quite reasonable DG discretization of the problem (4.43).

Remark (Relation to scalar advection equation). Our reasoning is also motivated by
the article Bezchlebová et al. [2016], where the scalar advective problem

∂tu+b ·∇u = 0 (4.109)

for some prescribed flow b and solution u is studied. Here the advective term b ·∇u is
discretized as

bh(uh,ϕh) = ∑
K∈Th

(∫
K
(b ·∇uh)ϕ dx−

∫
∂K(−)\∂Ω

(b ·n)[[uh]]ϕ dS (4.110)

−
∫

∂K(−)∩∂Ω

(b ·n)uhϕ dS
)
,

where ∂K(−) = {x ∈ ∂K; b ·n < 0}, ∂K(+) = {x ∈ ∂K; b ·n >= 0}.
Assuming that w is given, we can progress in a similar way to Bezchlebová et al.

[2016] for the discretization of the adjoint problem (4.43).
Multiplying (4.43) by a test function ϕϕϕ ∈ H1(Ω,Th) and integrating by parts over

a mesh element K leads to

− ∑
K∈Th

∫
K

ϕϕϕ
TAT

s (w)
∂zh

∂xs
dx = ∑

K∈Th

(∫
K

∂

∂xs
(As(w)ϕϕϕ)Tzh dx (4.111)

−
∫

∂K
(P(+)(w,n)+P(−)(w,n))Tzhϕϕϕ dS

)
.

We replace −P(+)(w,n)Tzh by −P(+)(w,n)Tzh
(−) on inner edges, c.f. (4.83). Then

exploiting the boundary condition P(+)(w,n)Tz = 0 we omit the corresponding term
on ΓIO.

Further, on ΓW we may write P(w,n) = PW (w,n)+RW (w,n) as in the proof
of Lemma 4.4. Employing the boundary condition z2n1 + z3n2 = ϑ ·n and the defi-
nition of the target functional (4.26) and its directional derivative (4.32), we replace
ϕϕϕTPW (w,n)Tzh by −ϕϕϕTPW (w,n)Tϑ̃ in (4.111). Then integrating by parts for the
second time we get (similarly to (4.84) it leads to the jump terms on the inner edges)

− ∑
K∈Th

∫
K
AT

s (w)
∂zh

∂xs
ϕϕϕ dx+

∫
∂K\∂Ω

(P(+)(w,n)T[[zh]]ϕϕϕ dS

+
∫

∂K∩ΓIO

(P(+)(w,n)Tzhϕϕϕ dS+
∫

∂K∩ΓW

(PW (w,n)Tzhϕϕϕ dS = J′[w](ϕϕϕ). (4.112)
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This equals the adjoint formulation (4.99) using the numerical flux H1
∂Ω,W on ΓW if we

would have omitted the boundary operator uΓ.
Comparing (4.110) to (4.112) shows analogies between

b ·∇uh ∼−
d

∑
s=1

AT
s (w)

∂zh

∂xs
, (b ·n)[[uh]]∼−P(+)(w,n)T[[zh]]. (4.113)

4.4 Error estimates
The goal-oriented error estimates were introduced in Section 1.2. We recall the error
identity (1.73)

J(w)− J(wh)≈
1
2

rh(wh)(z−ϕϕϕh)+
1
2

r∗h(wh,zh)(w−ψh)+R
(3)
h (4.114)

∀ϕϕϕh,ψh ∈ Sp
h .

In the formulation of the adjoint problem (4.99), both the derivative of the target
functional J′[wh] and the derivative of the discrete form ah

′[wh] were approximated
by linearizations given by (4.98) and (4.93), respectively. That may lead to additional
errors, but we omit those in the error estimates similarly as the term R

(3)
h is usually

omitted even for exactly differentiated schemes. The numerical experiments, presented
in Section 4.5, indicate that this source of errors does not notably change the estimates
(compared to results published for similar problem, see, e.g., in Hartmann [2007],
Hartmann and Leicht [2015]).

The error identity (1.73) must be replaced by some computable quantities. Hence
we replace the exact solutions w and z in (1.73) by some higher-order reconstruction
denoted here w+

h and z+
h , respectively. Those can be computed either globally – on

a finer mesh and/or using polynomials of higher degree, or with local reconstructions.
Then we take the following approximation of the error of the quantity of interest as a
starting point when deriving the computable error estimates. In particular, we define

J(w)− J(wh)≈ η
I(wh,zh) (4.115)

:=
1
2
(
rh(wh)(z

+
h −Πz+

h )+ r∗h(wh,zh)(w
+
h −Πw+

h )
)
,

where Π : [L2(Ω)]m→ Sp
h denotes an arbitrary projection on Sp

h .

Remark. On the other hand, when we employ only the second order estimate (1.77),
we may include the replacement of ah

′ by aL
h more naturally into the approximation of

the unknown adjoint solution z by z+
h since (1.77) only gives

J(w)− J(wh) = rh(wh)(z−ψψψh)+R
(2)
h ≈ rh(wh)(z

+
h −ψψψh) (4.116)

and the term ah
′ is not explicitly included, but since we follow with the derivation of

the goal-oriented anisotropic error estimates, c.f. Chapter 3 we base our estimates on
(1.73) even though it is more heuristic for (4.99).

Similarly to Section 2.2 we further rewrite the estimate (4.115) element-wise

η
I(wh,zh) = ∑

K∈Th

η
I
K (4.117)
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where

η
I
K = η

I
K(wh,zh) =

1
2
(
rh(wh)((z

+
h −Πz+

h )χK)+ r∗h(wh,zh)((w
+
h −Πz+

h )χK)
)
.

(4.118)

Here, χK denotes the characteristic functions of mesh elements.
Further, we note that the local error indicators which can be used for mesh adapta-

tion may be given by |η I
K| or alternatively by |rh(wh)((z

+
h − Πz+

h )χK)| or
|r∗h(wh,zh)((w

+
h −Πz+

h )χK)|. We note that the absolute values are necessary only for
defining mesh refinement indicators, while we avoid those for estimating of the error
J(w)− J(wh) since that would lead to a needless overestimation of the true error.

Several examples of local reconstruction techniques relevant for the DG method
were introduced in Section 2.2 for linear problems. While the weighted least-squares
reconstruction (Section 2.2.1) can be used in the same way as it is defined for the linear
problems the reconstruction based on the solution of local problems (Section 2.2.2) has
to be adapted to use it for nonlinear problems. That will be the goal of the next section.

4.4.1 Reconstruction based on solving local nonlinear problems

The adjoint discrete solution can reconstructed directly by the algorithm presented in
Section 2.2.2 for linear problems. The situation is a bit different for the reconstruction
of wh due to the nonlinearity of the problem (4.49).

Similarly to (2.38), for each K ∈Th, we prescribe w+
K : Ω→ Rm satisfying:

(i) w+
K |K′ := wh|K′ for all K′ ̸= K,

(ii) w+
K |K ∈ (PpK+1(K))m,

(iii) ah(w
+
K ,ϕh) = 0 ∀ϕh ∈ (PpK+1(K))m,

(4.119)

where ah is the form given by (4.50). Since evidently w+
K ∈ Sp+1

h , we can define
w+

h ∈ Sp+1
h by w+

h |K := w+
K ∀K ∈Th.

Since the problem (4.119) (iii) is nonlinear we calculate the reconstruction w+
K

iteratively using Newton method. We set w+
K,(0) = wh and w+

K,( j+1) = w+
K,( j)+ w̃+

K,( j)
for j = 0,1, . . .

We denote N+
K = dim(PpK+1(K))m = ((pK +2)(pK +3)/2)m and we choose a basis

ϕϕϕK = φ1
h,K, . . . ,φ

NK
h,K, . . . ,φ

N+
K

h,K of (PpK+1)m.

We define the local residual vector RK(w
+
K,( j)) = {r

i
K(w

+
K,( j))}

N+
K

i=1, where

ri
K(w

+
K,( j)) =−ah(w

+
K,( j),φ

i
h,K) = rh(w

+
K,( j))(φ

i
h,K)

and C+
K,K(w

+
K,( j)) ∈ RN+

K×N+
K is the diagonal block of matrix Ch(w

+
K,( j)) from (4.80)

enlarged by N+
K −NK rows and columns. Let W̃

( j)
K be the vector of the basis coefficents

of w̃+
K,( j), i.e., w̃+

K,( j) = W̃
( j)
K ·ϕϕϕK. Then the Newton method for the problem (4.119)
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reads:
Algorithm 5: Newton algorithm for (4.119)
1 Set w+

K,(0) = wh, j = 0 and TOL > 0 ;

2 while
RK(w

+
K,( j))

 > TOL do

3 solve C+
K,K(w

+
K,( j))W̃

( j)
K = RK(w

+
K,( j));

4 set w+
K,( j+1) = w+

K,( j)+ w̃+
K,( j) ;

5 j = j+1 ;
6 end

Lemma 4.12. When the reconstruction based on solving local problems is used for
both primal and adjoint discrete solution and if we perform only one iteration of the
Algorithm 5, i.e.w+

K = w+
K,(1), for the primal reconstruction, then it holds that ηS,K =

η∗S,K for any K ∈Th.

Proof. If we carry out only one iteration of the Algorithm 5, then we have w+
K =

wh + w̃+
K,(0), where w̃+

K,(0) solves

ah
′[wh](w̃

+
K,(0),φh,K) = rh(wh,φh,K) ∀φh,K ∈ (PpK+1(K))m. (4.120)

Further, the adjoint reconstruction z+
K = zh + z̃+

K satisfies

ah
′[wh](φh,K, z̃

+
K ) = r∗h(wh,zh)(φh,K) ∀φh,K ∈ (PpK+1(K))m. (4.121)

Hence, employing consecutively r∗h(wh,zh)(wh|K) = 0, (4.121) and (4.120) we obtain

η
∗
S,K = r∗h(wh,zh)(w

+
K |K) = r∗h(wh,zh)(w̃

+
K,(0)) (4.122)

= ah
′[wh](w̃

+
K,(0), z̃

+
K ) = rh(wh, z̃

+
K ) = rh(wh,z

+
K |K) = ηS,K.

4.4.2 Dual weighted residual error estimate
Similarly to (3.4) and (3.6) we further estimate the residuals rh(wh)(·) and
r∗h(wh,zh)(·) of the primal problem (4.49) and adjoint problem (4.99), respectively.

Employing the integration by parts like in (4.67) and (4.74) the element-wise primal
residual can be further estimated by

rh(wh)(ϕϕϕ) = ∑
K∈Th

(∫
K

RK(wh) ·ϕϕϕ dx+
∫

∂K
rK(wh) ·ϕϕϕ(+) dS

)
(4.123)

≤ ∑
K∈Th

(
m

∑
i=1

Ri
K,V
ϕϕϕ

i
K +Ri

K,B
ϕϕϕ

i
∂K

)
where

Ri
K,V :=

Ri
K(wh)


K , Ri

K,B :=
ri

K(wh)


∂K

and the terms Ri
K(wh) and ri

K(wh) denote the i-th component, i= 1, . . . ,m, of the local
residual terms given by (4.72) and (4.73). Similarly ϕϕϕ i denotes the i-th component of
the vector function ϕϕϕ.
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Similarly, we may proceed for the adjoint residual

r∗h(wh,zh)(ϕϕϕ) = ∑
K∈Th

(∫
K

R∗K(wh,zh) ·ϕϕϕ dx+
∫

∂K
r∗K(wh,zh) ·ϕϕϕ(+) dS

)
(4.124)

≤ ∑
K∈Th

(
m

∑
i=1

R∗,iK,V

ϕϕϕ
i

K +R∗,iK,B

ϕϕϕ
i

∂K

)
(4.125)

where
R∗,iK,V :=

R∗,iK (wh,zh)


K
, R∗,iK,B :=

r∗,iK (wh,zh)


∂K

and the terms R∗,iK (wh,zh) and r∗,iK (wh,zh) are the the i-th components, i = 1, . . . ,m,
of the local residual terms given (4.103) and (4.104).

Altogether, we obtain

|η I(wh,zh)| ≤ η
II(wh,zh), η

II(wh,zh) = ∑
K∈Th

η
II
K(wh,zh), (4.126)

where

η
II
K(wh,zh) =

1
2

(
m

∑
i=1

Ri
K,V
(z+

h −Πz+
h )

i
K +Ri

K,B
(z+

h −Πz+
h )

i
∂K (4.127)

+ R∗,iK,V

(w+
h −Πw+

h )
i

K +R∗,iK,B

(w+
h −Πw+

h )
i

∂K

)
.

We call the terms including z+
h −Πz+

h and w+
h −Πw+

h weights and for that reason
the estimates shaped like (4.126) are usually referred as dual weighted residual error
estimate, cf. Bangerth and Rannacher [2003].

4.4.3 Goal-oriented anisotropic error estimates
In this section we derive goal-oriented error estimates enabling the anisotropic hp-
mesh adaptation for the DG discretization of inviscid compressible flow problems.
We exploit the approach introduced in Chapter 3, which gives an upper bound to the
estimate η II

K on each element K ∈Th.

Let w+
h ∈ Sp+1

h and z+
h ∈ Sp+1

h be the higher-order reconstructions of the primal
and adjoint solutions of (4.49) and (4.99), respectively. Let K ∈ Th be an arbitrary
triangle and {λK, σK, φK} denotes its anisotropy introduced in Definition 3.1.

We recall the estimates of the interpolation function from Section 3.2.3. For any
function w ∈ Pp+1(K) we have

w(x)−Πx̄,pw(x) = wint
x̄,p(x), (4.128)

where Πx̄,pw(x) is the p−degree polynomial approximation based on the Taylor ex-
pansion given by (3.17) and wint

x̄,p is the so-called interpolation error function given by
(3.18). Function wint

x̄,p(x) is a (p+1)-function in the sense of Definition 3.2 and hence
it can be estimated using Lemma (3.3). There exist Aw ≥ 0, ρw ≥ 1 and ϕw ∈ [0,2π)
such that

|wint
x̄,p(x)| ≤ Aw

(
(x− x̄)TQϕwD

p+1
ρw QT

ϕw
(x− x̄)

) p+1
2
, x ∈Ω. (4.129)
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Therefore, in (4.127), we set projection operator Π : Sp+1
h → Sp

h by Π
⏐⏐
K := ΠxK ,p,

K ∈Th, where ΠxK ,p is given by (3.17) and xK is the barycenter of element K.
Relation (4.128) implies that for each K ∈Th functions (w+

h −Πw+
h )

i|K and (z+
h −

Πz+
h )

i|K, i = 1, . . . ,m are the (pK + 1)−functions and hence we may introduce, c.f.
(3.38),

{Awi, ρwi, ϕwi} the anisotropy of (w+
h −Πw+

h )
i|K, i = 1, . . . ,m (4.130)

{Azi, ρzi, ϕzi} the anisotropy of (z+
h −Πz+

h )
i|K, i = 1, . . . ,m

which are given by the estimate (3.15) and depend only on the (p+1)th-derivatives of
w+

h and z+
h , respectively.

Finally, applying the Lemma 3.5 together with (4.130) gives the anisotropic weight-
ing terms

(w+
h −Πw+

h )
i

K ≤
(A2

wiλ
2(pK+2)
K

2pK +4
GGGK,wi

)1/2
=: θ

i
K,V, (4.131)

(z+
h −Πz+

h )
i

K ≤
(A2

ziλ
2(pK+2)
K

2pK +4
GGGK,zi

)1/2
=: θ

∗,i
K,V,(w+

h −Πw+
h )

i
∂K ≤

(
A2

wiλ
2pK+3
K σKGGGK,wi

)1/2
=: θ

i
K,B,(z+

h −Πz+
h )

i
∂K ≤

(
A2

ziλ
2pK+3
K σKGGGK,zi

)1/2
=: θ

∗,i
K,B,

where

GGGK,wi =GGG(pK +1, pK +1,ρwi,ϕwi;σK,φK), (4.132)

GGGK,zi =GGG(pK +1, pK +1,ρzi,ϕzi;σK,φK)

are defined by (3.21).
Then applying (4.131) on the weighting terms in (4.127) we get

η
II
K(wh,zh)≤ η

III
K (wh,zh) (4.133)

where

η
III
K (wh,zh) :=

1
2

(
m

∑
i=1

Ri
K,V θ

∗,i
K,V +Ri

K,Bθ
∗,i
K,B +R∗,iK,V θ

i
K,V +R∗,iK,Bθ

i
K,B

)
. (4.134)

Now, the adaptation may be carried out following the Algorithm 3 as presented in
Section 3.3.

Remark. The optimal shape of each element K is computed using the optimization
technique presented in Section 3.3.1 minimizing (3.51). The error indicator (4.134)
contains sixteen weighting terms, which may possibly have different anisotropic fea-
tures. Therefore, the shape optimization may be simplifies using the error indicator

η̃
III
K (wh,zh) :=

1
2

(
R1

K,V θ
∗,1
K,V +R1

K,Bθ
∗,1
K,B +R∗,1K,V θ

1
K,V +R∗,1K,Bθ

1
K,B

)
(4.135)

which takes into account only the first component (corresponding to density) of the
primal and adjoint solutions.
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4.5 Numerical experiments
In this section we present several experiments which illustrate performance of the goal-
oriented error estimation technique for inviscid compressible flow problems introduced
in this chapter.

4.5.1 Adjoint consistency of the DG discretization
There was spend a lot of space in this chapter to analyze the adjoint consistency of
the DG discretization of the problem (4.4). A special attention was paid to the imper-
meability condition on ΓW (v ·n = 0) in the discrete scheme since ΓW is the support
of the target functional (4.26). We presented two ways how the numerical flux can be
defined on ΓW . Then target functional (4.26) has to be modified properly in order to
provide the adjoint consistency (4.101).

The purpose of this experiment is to investigate how the adjoint consistency of
the DG discretization influences the the smoothness of the discrete adjoint solution
zh. We consider an inviscid flow with Mach number M = 0.5 around the NACA0012
airfoil. The curved shape of the profile, defined by an analytical parametrization, see
e.g. [Dolejšı́ and Feistauer, 2015, Section 8.5.3], is approximated by piece-wise cubic
polynomial functions. The angle of attack is chosen as α = 0◦, so the solution should
be symmetrical along the axis y = 0. Let us note that tanα = v2/v1 , where (v1,v2)

T is
the far- field velocity vector.

The experiment was computed on a fixed mesh, initially refined in the vicinity of
the profile, see Figure 4.3 (right).

Figure 4.4 shows the first two components of the solution of the discrete adjoint
problem (4.99) using the numerical flux H2

∂Ω,W given by (4.56) accompanied with the
modified target functional (4.96) (left) and with the original target functional (4.26)
(right). We see that while the adjoint consistent discretization leads to a smooth so-
lution zh, the inconsistent one contains non-physical oscillations. Furthermore, let us
denote that discretization using the numerical flux H1

∂Ω,W given by (4.53) leads to very
similar results.

We note that our results are in agreement with [Hartmann and Leicht, 2015, Section
6.1] where a similar example is presented, but with proper differentiation of the form
ah.

4.5.2 Subsonic flow
We stay with a laminar flow with a Mach number M = 0.5 around the NACA0012 pro-
file and we test the adaptive h and hp-anisotropic refinement based on the Algorithm 3
in Section 3.3 adapted for the indicators (4.134).

Drag coefficient

First, we focus on the decrease of the error measured with respect to the target func-
tional. Therefore, we set J(w) expressing the drag coefficient according to (4.26) and
the angle of attack α = 0◦. Then the exact value of the drag is cD = 0 (the flow under
consideration is inviscid). Therefore it is easy to plot the decrease of the error of the
target quantity compared to its error estimates η I and η II. In Figure 4.5 we see this de-
crease for the h version of the algorithm with fixed p = 2 (top) and for the hp-version
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Figure 4.3: Subsonic inviscid flow around the NACA 0012 profile (M = 0.5, α = 0◦):
first component of the primal solution wh (left) and the computational mesh in the
vicinity of the profile (right).

(bottom) of the algorithm. It can be observed that both η I and η II approximate the
true error quite accurately although η I underestimates the error slightly. We see that
the hp-version is superior to the h-version with respect to both number of degrees of
freedom (DOF) and computational time.

We note that the computational times depicted on the right side of the figure are
only indicative since our software is not fully optimized for fast computations and
the experiments were computed on a standard laptop, but we observed at least 30%
speedup in the computations when the hp-method was used.

In Figure 4.6 the local refinement indicators η I
K and η II

K for the first, fourth and
seventh (final) mesh are depicted and in Figure 4.7 the corresponding hp-meshes are
drawn. We see that apart the small region around the trailing edge of the profile strong
p− adaptation is performed.

Lift coefficient

For the approximation of the lift coefficient we consider α = 1.25◦. Since the exact
value of J(w) is not a priori known for this setting, we use the reference value of
cref

L = 1.754 ·10−1±10−5 computed on the final mesh with the hp-adaptive algorithm.
Therefore, we present the decrease of the error of the target functional with the

respective error estimates only for the h− adaptive computation, see Figure 4.8. We
see that the error estimates work worse than in the previous case – η I underestimates
the error and, quite the other way, η II overestimates it almost ten times.

This may be caused by the weaker regularity of the adjoint solution for the lift
coefficient. For comparison, we present the results with the same experiment also
for the drag coefficient. We perform several hp-adaptation cycles for both cases and
the final hp-meshes are shown in Figure 4.9 (top). In Figure 4.9 (bottom), the first
component of the adjoint solutions zh is drawn in the vicinity of the profile for the
drag coefficient (left) and for the lift coefficient (right). According to the hp-adaptation
it seems that while the adjoint problem for the drag coefficient is quite smooth (p is
high in the surrounding of the profile), for the lift coefficient the polynomial degree p
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Figure 4.4: Subsonic inviscid flow around the NACA 0012 profile (M = 0.5, α =
0◦): consistent (left) and inconsistent (right) discretization of the target functional
of the drag coefficient. The four components of the discrete adjoint solutions zh =
(z1

h ,z
2
h ,z

3
h ,z

4
h) are consecutively shown.

114



10
-6

10
-5

10
-4

10
-3

 25  30  35  40  45  50

e
rr

o
r 

a
n
d
 i
ts

 e
s
ti
m

a
te

s

DoF
1/3

J(w) - J(wh)

η
II

η
I

10
-6

10
-5

10
-4

10
-3

 0  200  400  600  800  1000  1200  1400  1600  1800

e
rr

o
r 

a
n
d
 i
ts

 e
s
ti
m

a
te

s

comp. time (s)

J(w) - J(wh)

η
II

η
I

10
-6

10
-5

10
-4

10
-3

 22  24  26  28  30  32  34

e
rr

o
r 

a
n
d
 i
ts

 e
s
ti
m

a
te

s

DoF
1/3

J(w) - J(wh)

η
II

η
I

10
-6

10
-5

10
-4

10
-3

 0  100  200  300  400  500  600  700  800

e
rr

o
r 

a
n
d
 i
ts

 e
s
ti
m

a
te

s

comp. time (s)

J(w) - J(wh)

η
II

η
I

Figure 4.5: Subsonic inviscid flow around the NACA 0012 profile (M = 0.5, α = 0◦):
decrease of the error J(w)− J(wh) and the goal-oriented error estimates η I and η II

with respect to the cube root of DOF (left) and the computational time (right) for the
h-refinement using p = 2 DG approximations (top) and the hp-version (bottom).
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Figure 4.6: Subsonic inviscid flow around the NACA 0012 profile (M = 0.5, α =
0◦): refinement indicators in log-scale for the hp-anisotropic adaptation method on the
initial (top), 4th (middle) and 7th (bottom) mesh – η I

K (left) and η II
K (right).
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Figure 4.7: Subsonic inviscid flow around the NACA 0012 profile (M = 0.5, α = 0◦):
local polynomial degrees on the 4th (left) and 7th (right) mesh for the hp-anisotropic
adaptation method, the whole profile (top) and zooms to the leading (middle) and trail-
ing (bottom) edge of the profile.
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Figure 4.8: Subsonic inviscid flow around the NACA 0012 profile (M = 0.5, α =
1.25◦): decrease of the error J(w)− J(wh) and the goal-oriented error estimates η I

and η II with respect to the cube root of DOF (left) and the computational time (right)
for the piecewise quadratic DG approximations.

remains low which may be caused by lower regularity of the adjoint solution.
We remark that in the majority of articles on goal-oriented error estimates for Eu-

ler equations, e.g., Hartmann [2005, 2006, 2007], Hartmann and Leicht [2015], the
numerical experiments are performed only for the drag coefficient. Actually, we have
found only one experiment with the lift coefficient in Sharbatdar and Ollivier-Gooch
[2018] for the transonic flow around the NACA 0012 profile.

4.5.3 Shock capturing

In higher-order numerical methods, applied to the problems with high speed flows
with shock waves and contact discontinuities, we can observe the so-called Gibbs
phenomenon which shapes spurious (nonphysical) oscillations in computed quanti-
ties propagating from discontinuities. These phenomena do not occur in low Mach
number regimes, when the exact solution is regular (previous experiments), but in the
higher-speed flow they cause instabilities in the numerical method.

Even though for DG methods this effect is not as dramatic as for standard FEM,
spurious overshoots and undershoots may appear in the vicinity of discontinuities. In
order to overcome this undesirable feature, we present a stabilization into the DG
scheme based on adding artificial viscosity. Here, we present only the resulting terms
needed for the implementation. We refer to Dolejšı́ and Feistauer [2015], where the
the stabilization method is derived in detail with notes and citations to other possible
methods.

We define the jump indicator

gK(wh) =

∫
∂K\∂Ω

[[w1
h]]

2 dS

|K| ∑Γ⊂∂K\∂Ω hΓ

, K ∈Th, (4.136)

where w1
h is the first component (corresponding to density) of the vector function wh,

|K| denotes the d-dimensional measure of K and hΓ is the diameter of Γ.
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Figure 4.9: Subsonic inviscid flow around the NACA 0012 profile (M = 0.5, α =
1.25◦): the first component of the discrete adjoint solution on the final mesh for the
drag target functional (left) and lift (right), bellow the corresponding hp-meshes are
depicted.
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Further, we set the smoothened discrete jump discontinuity indicator

GK(wh) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if gK(wh)< ξmin,

1
2 sin

(
π

gK(wh)−(ξmax−ξmin)
2(ξmax−ξmin)

)
+ 1

2 , if gK(wh) ∈ [ξmin,ξmax),

1, if gK(wh)≥ ξmax,

(4.137)

where we set ξmin = 0.5 and ξmax = 1.5. It is important to note that since we have
gK(wh) = O(h2p) for K ∈ Th where the solution is smooth and gK(wh) = O(h−2)
near discontinuities, gK→ 0 for h→ 0 in the case when K ∈Th is a element where the
solution is regular. Hence also the indicators GK vanish in regions where the solution is
regular and the artificial viscosity occurs only locally in the vicinity of discontinuities.

Finally, we introduce the artificial viscosity forms βββ h,γγγh : Sp
h ×Sp

h ×Sp
h → R,

defined as

βββ h(w̄h,wh,ϕϕϕh) = ν1 ∑
K∈Th

GK(w̄h)hα1
K

∫
K

∇wh ·∇ϕϕϕh dx, (4.138)

γγγh(w̄h,wh,ϕϕϕh) = ν2 ∑
Γ∈F I

h

1
2
(
G

K(L)
Γ

(w̄h)+G
K(R)

Γ

(w̄h)
)

hα2
Γ

∫
Γ

[[wh]] · [[ϕϕϕh]] dS, (4.139)

where K(L)
Γ

,K(R)
Γ
∈ Th are the elements sharing the inner face Γ ∈F I

h and the param-
eters are set to α1 = 2, α2 = 0.5, ν1 = ν2 = 1. The form γγγh allows strengthening the
influence of neighboring elements and improves the behavior of the method in the case,
when strongly unstructured and/or anisotropic meshes are used.

The artificial viscosity forms βββ h and γγγh are added to the left-hand side of (4.49).
Then the DG method with shock capturing reads: find wh ∈ Sp

h : such that

ah(wh,ϕϕϕh)+βββ h(wh,wh,ϕϕϕh)+γγγh(wh,wh,ϕϕϕh) = 0 ∀ϕϕϕh ∈ Sp
h , (4.140)

and it is solved using the Newton-like method as presented in Section 4.3.6 and the
discrete adjoint problem is also defined using the linearization of this “augmented”
form.

Transonic flow

We consider the far-field Mach number M = 0.8 and the angle of attack α = 1.25◦.
This flow regime leads to two shock waves. The first one, lying on the upper side of
the profile is stronger than the other one on the lower side. We set target functional
J(w) as the lift coefficient, see (4.26), (4.27). We consider the reference value cref

L =
3.39576E − 01 which was computed by the hp-anisotropic adaptation method on a
mesh with approximately 105 degrees of freedom.

In Figure 4.10 the first component of the primal (left) and adjoint (right) discrete
solution are depicted in the vicinity of the profile on the final mesh using the hp-
anisotropic adaptation. Both shock waves in the primal solution are clearly distin-
guishable.

We performed several iterations of the adaptation algorithm for the fixed polyno-
mial degree p = 1 and the for the hp-version of the method. We note that there is no
point in setting globally p > 1 - due to the the low regularity of the exact solution.
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Figure 4.10: Transonic inviscid flow around the NACA 0012 profile (M = 0.8, α =
1.25◦): first component of the primal (left) and adjoint (right) solutions on the final
mesh using the hp-anisotropic adaptation.

Indeed, Figure 4.13 shows the local polynomial degrees on the final mesh obtained by
the hp-adaptation method and the minimal polynomial degree p = 1 is preserved in
surrounding of both shock waves.

In Figure 4.11 the decrease of the error of the target quantity compared to the error
estimates η I and η II is displayed. The estimate η I follows quite accurate the true error,
while the estimate η II overestimates the error by a factor ≈ 10 in both cases. Figure
4.12 pictures the local error indicators η I

K and η II
K on the initial and final mesh. We see

the final mesh is strongly refined in the surrounding of the upper shock wave while the
refinement around the lower one is only slight. Similar performance can be observed
in Figure 4.14 for the hp-adaptation.

We note that the same experiment was carried out in Sharbatdar and Ollivier-Gooch
[2018] with similar results.

4.5.4 Turbine cascade

We consider the transonic inviscid compressible flow of air around the 2D turbine cas-
cade SE1050, for cascade data see Štastný and Šafařı́k [1992], Halama et al. [2011].
The computational domain Ω is by given a circular cut of a 3D turbine and it is pe-
riodically extended in the x2 direction. We choose the Mach number M = 0.32 and
the angle of attack α = 19.3◦. Obviously, the viscous and turbulence effects play an
important role for this problem and therefore the use of inviscid model in not appro-
priate. However, we present this example in order to show abilities (and limits) of our
technique to deal with more challenging test problems.

The quantity of interest is chosen as the lift coefficient cL given by (4.26). We
discretized the problem by the discontinuous Galerkin method with piecewise linear
approximation (p = 1) augmented by the stabilization terms (4.138), (4.139) and we
employed the h− version of the goal-oriented anisotropic adaptation algorithm. Un-
fortunately, the stabilization terms works only partly and after to cycles of the h−
adaptation cycle the algebraic solver is not able to converge.

We note that is a problem of the DG discretization and not the error estimates by
themselves. If we extend the problem (4.4) by the viscous terms, i.e. for the compress-
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Figure 4.11: Transonic inviscid flow around the NACA 0012 profile (M = 0.8,
α = 1.25◦): decrease of the error J(w)− J(wh) and the goal-oriented error estimates
η I and η II for the lift coefficient with respect to the cube root of DOF (left) and the
computational time (right) for the piecewise linear (top) and hp (bottom) DG approxi-
mations.
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Figure 4.13: Transonic inviscid flow around the NACA 0012 profile (M = 0.8, α =
1.25◦): initial (left) and final (right) mesh using the hp-anisotropic refinement.
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1.25◦): refinement indicators in log-scale for the hp-anisotropic adaptation method on
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ible Navier-Stokes equations, then the problem with the algebraic solver disappears
and the DG method works even on finer meshes. The compressible Navier-Stokes
equations are a natural target for further research in this fiels. We add that the goal-
oriented error estimates were introduced for the compressible Navier-Stokes equations
in e.g., Hartmann and Houston [2006b], Hartmann and Leicht [2015].

In Figure 4.15, the first component of the primal (left) and adjoint (right) solutions
is depicted. Several shock wave may be observed on the right side of the profile in the
primal solution as well as in the adjoint one. In Figure 4.16, the decrease of the error
estimates η I and η II is plotted. We omit the true error J(w)− J(wh), since we were
not able to compute the reference value of the drag.

Although the results of our computations are not very convincing, they show the
potential of the goal-oriented estimates as the indicators driving the mesh adaptation
seem to sensibly detect the areas where errors arise, see Figure 4.17.
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Figure 4.15: Transonic inviscid flow around the SE1050 profile (M = 0.32, α = 19.3◦):
first component of the primal (left) and adjoint solution (right) on the final mesh.
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Figure 4.16: Transonic inviscid flow around the SE1050 profile (M = 0.32, α = 19.3◦):
decrease of the goal-oriented error estimates η I and η II for the drag coefficient with
respect to the cube root of DOF (left) and the computational time (right) for the piece-
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Figure 4.17: Transonic inviscid flow around the SE1050 profile (M = 0.32, α = 19.3◦):
refinement indicators in log-scale for the h− anisotropic adaptation method on the final
mesh in the vicinity of the profile (top) and zoom on the trailing edge (bottom), η I

K
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K (right).
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Conclusion
In this thesis we have presented a complex strategy for estimating the computational
errors with respect to some given quantity of interest for numerical solutions of partial
differential equations.

First, the method was introduced generally and its pros and cons were presented
and commented.

Further, the estimates were derived for the scalar linear convection-diffusion equa-
tion. We described an adjoint consistent discontinuous Galerkin discretization of the
problem and we introduced goal-oriented estimates for both discretization and alge-
braic errors. Further, we described the influence of the algebraic errors on the estimates
based on the primal and adjoint residual, respectively, and we introduced a stopping
criterion keeping the algebraic errors controlled by the discretization estimate. In this
way the algebraic system may be solved efficiently with satisfactory accuracy with
respect to the quantity of interest.

Moreover, two kinds of local reconstructions of the DG solution were proposed.
Our method suffers from the common deficiency of DWR approach – due to the ap-
proximation of the adjoint solution z we cannot provide guaranteed upper bound for
the error of the quantity of interest. On the other hand, it provides results comparable
to the approaches based on globally higher order solutions, but due to the local char-
acteristics of the reconstructions it can be computed much faster and straightforwardly
in parallel.

The main advantage of the presented strategy is its application for error indicators
driving adaptive mesh refinement, where it provides very reliable results. We presented
a hp-anisotropic adaptive mesh refinement strategy controlled by goal-oriented error
indicators, which leads to a very efficient adaptive algorithm.

Finally, a more general approach for the goal-oriented error estimation for nonlin-
ear methods was used for the Euler equations modeling inviscid compressible flows.
We introduced the discontinuous Galerkin discretization and the linearized adjoint
problem. A solution strategy was presented and finally we derived goal-oriented error
estimates for the approximation of the drag, lift and momentum coefficients. These
estimates were further modified in order to shape anisotropic error indicators enabling
the hp-anisotropic adaptive mesh refinement.

Obviously, not all achieved results are satisfactory and they should be further de-
veloped. Namely,

• upper bound of the goal-oriented error estimates – one possible approach was
mentioned in Section 1.1.7. However, application of this technique to discontin-
uous Galerkin method is not straightforward.

• control of the algebraic error – results presented in Section 1.1.8 show that it is
difficult to attain an efficient computational process when the primal and adjoint
problems are solved alternatively. A possible remedy is to solve the primal and
adjoint problems simultaneously, e.g., using the bi-conjugate gradient (BiCG)
method.

• control of the algebraic error for nonlinear problems – the technique mentioned
above can be extended to nonlinear problems where the discretized systems are
solved by a Newton(-like) method. Then the approximate adjoint solution would
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be available at each (linear was well as nonlinear) iteration and the linear and
nonlinear algebraic errors could be controlled.

• extension to the compressible Navier-Stokes equations is a natural step, addition-
ally an application to time-dependent problems is highly challenging.
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V. Dolejšı́. Anisotropic hp-adaptive method based on interpolation error estimates in
the Lq-norm. Appl. Numer. Math., 82:80–114, 2014.
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ous Galerkin method for an elliptic problem with nonlinear Newton boundary
conditions in a polygon. IMA Journal of Numerical Analysis, 39(1):423–453,
2017.
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