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Abstract

Cell reprogramming requires efficient delivery of reprogramming transcription factors into

the cell nucleus. Here, we compared the robustness and workload of two protein delivery

methods that avoid the risk of genomic integration. The first method is based on fusion of

the protein of interest to a protein transduction domain (PTD) for delivery across the mem-

branes of target cells. The second method relies on de novo synthesis of the protein of

interest inside the target cells utilizing synthetic mRNA (syn-mRNA) as a template. We

established a Cre/lox reporter system in three different cell types derived from human

(PANC-1, HEK293) and rat (BRIN-BD11) tissues and used Cre recombinase to model a pro-

tein of interest. The system allowed constitutive expression of red fluorescence protein

(RFP), while green fluorescence protein (GFP) was expressed only after the genomic action

of Cre recombinase. The efficiency of protein delivery into cell nuclei was quantified as the

frequency of GFP+ cells in the total cell number. The PTD method showed good efficiency

only in BRIN-BD11 cells (68%), whereas it failed in PANC-1 and HEK293 cells. By contrast,

the syn-mRNA method was highly effective in all three cell types (29–71%). We conclude

that using synthetic mRNA is a more robust and less labor-intensive approach than using

the PTD-fusion alternative.

Introduction

Cell reprogramming is an emerging approach for treating an increasing number of human dis-

eases [1]. Reprogramming factors, such as transcription factors, need to be delivered effectively

into target cell nuclei. Delivery methods based on viral vectors or transposon systems are

highly effective [2,3]. However, they carry inherent risks of unpredictable modifications of the
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target cell genome by random and irreversible integrations of exogenous DNA, which can

cause insertional mutagenesis and carcinogenesis. Therefore, such approaches are not suitable

for eventual clinical applications [4,5].

To avoid this limitation, alternative integration-free strategies have been developed. Direct

application of recombinant proteins to cells is generally not feasible because most proteins do

not cross cellular membranes. However, specialized protein domains that naturally facilitate

transmembrane transport of polypeptides have been discovered [6] and harnessed as a novel

protein delivery tool [7]. Dohoon et al. [8] successfully used a protein-based protocol to gener-

ate induced pluripotent stem cells (iPS), albeit with a lower efficiency in comparison to virus-

based protocols [9]. Another promising strategy relies on the de novo synthesis of cargo pro-

teins inside the target cell, where the structural information is provided by synthetic mRNA

[10,11]. Warren et al. used this approach to successfully reprogram somatic cells into iPS, and

subsequently to terminally differentiated myogenic cells [12]. To the best of our knowledge,

although a number of delivery methods have been compared [13], a direct comparison

between the two integration-free methods utilizing either the protein transduction domain

(PTD) or synthetic mRNA has not been performed.

The aim of the present study was to provide such a comparison using diverse cell lines. The

focus of our laboratory is the reprogramming of cells of pancreatic origin [14]. We selected

the human pancreatic cancer cell line PANC-1 [15], which was previously used for cell fate

manipulation and reprogramming using other methods [16], and the rat insulinoma cell line

BRIN-BD11 [17], which represents terminally differentiated cells with regulated secretory

pathways. Additionally, we chose the human embryonic kidney cell line HEK293 [18], which

is of neuronal origin [19] and has been used extensively for producing exogenous proteins in

research and industry [20]. Cre recombinase is an enzyme not normally present in mammalian

cells. It has the capacity to specifically rearrange nuclear DNA in conjunction with the target-

ing sequence loxP [21]. The delivery of Cre recombinase to cell nuclei can be unequivocally

detected by monitoring phenotypic effects of the irreversible, site-specific recombination of

genomic DNA, such as small deletions [22, 23]. Using Cre recombinase as a model of the

cargo protein, we designed and prepared PTD- and mRNA-based Cre recombinase constructs.

We engineered three Cre-sensitive cell lines utilizing green fluorescent (GFP) and red fluores-

cent proteins (RFP) as the reporter system. Using this model, we compared the efficiency, reli-

ability, and the workload of the two respective methods.

Materials and methods

Experimental design

Three cell lines were genetically modified using a DNA expression cassette that encoded red

and green fluorescent proteins placed downstream of a strong constitutive promoter (Fig 1A).

Coding sequences of RFP and GFP were separated by two stop codons flanked by two parallel

recognition sites for Cre recombinase (Fig 1A, S1 Fig). Constitutively expressed RFP was used

to prepare Cre-responsive cell clones. Cre recombinase-sensitive expression of GFP was used

to detect the activity of the recombinase delivered into the cell nuclei. 2A self-cleaving peptide

was employed to separate RFP and GFP from a bicistronic product (Supplementary informa-

tion 1) [24]. Two delivery methods were tested: the purified recombinant fusion protein

(PTD-Cre, Fig 1B) and the synthetic mRNA construct (syn-mRNA-Cre, Fig 1C). The effi-

ciency of the Cre protein delivery was quantified using flow cytometry (Fig 1D). The amount

of intracellular Cre protein was compared by western blot (Fig 1E).
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Fig 1. Experimental design. (A) RFP/GFP expression cassette inserted randomly into the genomes of the

target cells. In these Cre-sensitive cells, the GFP expression was dependent on the delivery of functional Cre

protein into cell nuclei. Scissors, parallel loxP sequences; Cre, Cre recombinase; stop, two stop codons. (B)

The PTD-fusion proteins were produced in bacteria and purified in three steps. (C) The syn-mRNA (cap-

NLS-T7-Cre) was synthesized in vitro. aa, number of amino acids; NLS, Nuclear localization signal (9 aa);

Cre, Cre recombinase (343 aa); PTD, Protein transduction domain of HIV TAT (11 aa); T7, T7-tag (11 aa).

Time frames of the flow cytometry (D) and western blot (E) analyses. Black arrows, cell seeding; white arrows,

administration of Cre recombinase; dashed white arrow, second administration of Cre recombinase; grey

triangles, harvesting of cells for analysis.

https://doi.org/10.1371/journal.pone.0182497.g001
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Generation and culture of Cre-responsive cell lines

An expression cassette was designed (Fig 1A, S1 Fig) consisting of an RFP-loxP-stop-loxP-GFP

sequence under the EF1a promoter and the hygromycin resistance selection marker. This was

cloned into the piggyBac vector pD557-RA (DNA2.0, Menlo Park, CA) between the restriction

sites BmtI and BamHI. A total of 3 μg of the piggyBac construct was combined with Tran-

sIT-X2 (Mirus, Madison, WI) at a 1:2 ratio and added to the respective cell lines PANC-1,

BRIN-BD11 and HEK293 (all from Sigma-Aldrich, St. Louis, MO). After 14 days, cells were

detached with 0.63% trypsin (Sigma-Aldrich). Clonal populations of the genetically modified

cells were obtained by the sorting of single-cell suspensions to one cell per well, based on the

RFP fluorescence signal using a BD Influx Cell sorter (Becton Dickinson, Franklin Lakes, NJ).

The Cre-responsive cells were given the names fl-PANC, fl-BRIN and fl-HEK.

Cells were cultured in ventilated flasks (Corning, Corning, NY) at 37˚C, atmospheric O2

and 5% CO2. The PANC-1 cells were cultured in Dulbecco’s modified Eagle’s medium

(Sigma-Aldrich) supplemented with 10% fetal bovine serum (FBS), 25 U/ml penicillin, 25 μg/

ml streptomycin, 1 mM L-glutamine, and 1% Glutamax. The BRIN-BD11 cells were cultured

in RPMI-1640 medium (Sigma-Aldrich) supplemented with 10% FBS, 25 U/ml penicillin,

25 μg/ml streptomycin, 1 mM L-glutamine, and 1% Glutamax. HEK293 cells were cultured in

MEM medium supplemented with 10% FBS (both from Sigma-Aldrich), 25 U/ml penicillin,

25 μg/ml streptomycin, 1 mM L-glutamine, 1% Glutamax, and 1% non-essential amino acids

solution (all from Thermo Fisher Scientific, Waltham, MA).

Production of PTD-Cre recombinase protein

Two variants of PTD-Cre protein were prepared in a native state (Fig 1B). Correct folding of

Cre recombinase was ensured by its fusion to the maltose binding protein (MBP), which func-

tioned as a molecular chaperone [25]. MBP was subsequently cleaved off by TEV protease and

removed by purification. The design of PTD-Cre1 (S2 Fig) was based on AAV-pgk-Cre, a kind

gift from Patrick Aebischer (Addgene plasmid # 24593). The design of PTD-Cre2 (S3 Fig) was

based on pTAT-Cre [26] (Addgene plasmid # 35619). The respective DNA constructs were

cloned into the pMALc5x plasmid (New England Biolabs, Ipswitch, MA) between the restric-

tion sites SacI and BamHI using the In-fusion HD Cloning Kit (Clontech, Mountain View,

CA). NEB express competent E. coli (New England Biolabs) were transformed with the plas-

mids and cultured in LB medium (Carl Roth, Karlsruhe, DE) with 2% glucose (Sigma-Aldrich)

and 50 μg/ml ampicillin (Serva, Heidelberg, DE) at 37˚C, and agitated at 260 rpm. Protein

expression was induced by 0.17 mM IPTG (Sigma-Aldrich) for 4 hours at 30˚C, after which

the bacterial cells were sonicated in a MBP-binding buffer containing 50 μg/ml DNase (Roche,

Rotkreuz, CH) and 1 mg/ml lysozyme (Serva). The supernatant was placed on a MBPTrapHP

column (GE Healthcare Life Science, Little Chalfont, UK) with MBP-specific affinity, and the

purified MBP-PTD-Cre-T7 protein was eluted. Next, the MBP was cleaved off by the addition

of TEV protease and separated from PTD-Cre-T7 by a second round of the MBPTrapHP col-

umn purification. Finally, PTD-Cre-T7 protein was quantified using the BCA protein assay

(Thermo Fisher Scientific) and transferred to the fresh culture media using a 10 kDa Amicon

filter (Merck Millipore, Darmstadt, DE). The PTD-Cre protein aliquots (53 μM) were stored at

-20˚C for one month.

Production of syn-mRNA-Cre

The syn-mRNA-Cre construct (Fig 1C) was synthesized in vitro using the T7 mScript Standard

mRNA Production System (CELLSCRIPT, Madison, WI) and 2 μg of purified DNA template.

The template DNA was designed (S4 Fig) and synthesized using AAV-pgk-Cre, a kind gift
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from Patrick Aebischer (Addgene plasmid # 24593). A custom ribonucleotide blend com-

prised of 30-0-Me-m7G(50)ppp(50)G ARCA cap analog, pseudouridine triphosphate, 5-methyl-

cytidine triphosphate (TriLink Biotechnologies, San Diego, CA), ATP, and GTP (New

England Biolabs) was prepared. The final reaction mixture (20 μL), containing 6 mM ARCA

cap analog, 3.0 mM ATP, and 1.5 mM of each of the other nucleotides, was incubated for 1

hour at 37˚C. The DNA template was then degraded by Turbo DNase (Life Technologies,

Grand Island, NY), which was removed by ammonium acetate precipitation. The residual 50-

triphosphates were degraded by 2 hour incubation at 37˚C with Antarctic phosphatase (New

England Biolabs), which was removed by ammonium acetate precipitation. After a 2 hour

treatment at 37˚C with yeast Poly(A) Polymerase (Affymetrix, Santa Clara, CA), the polyade-

nylated synthetic mRNA was finally repurified with a MEGAclear Transcription Clean-Up

Kit, diluted with RNAsecure Resuspension Solution and quantified with a Qubit fluorometer

(all from Thermo Fisher Scientific).

Administration of PTD-Cre and syn-mRNA-Cre

The Cre-responsive cell lines were grown for several days in their respective culture media,

which were changed at various degrees of confluence (to account for subsequent growth) prior

to the addition of PTD-Cre or syn-mRNA-Cre. The purified PTD-Cre protein, originally dis-

solved in the respective culture media, was added directly to the cells at three final serial dilu-

tions (15, 7.5 and 3.75 μM). The syn-mRNA-Cre was added at three final decimal dilutions

(2.1, 0.21, and 0.021 nM) in Lipofectamine/Opti-MEM transfection reagent. Lipofectamine

messenger MAX transfection reagent was first diluted with Opti-MEM medium at a 1:33 vol-

ume ratio. Then, syn-mRNA-Cre diluted in Opti-MEM (all from Thermo Fisher Scientific)

was added at a 1:1 volume ratio. In several experiments the administration of the protein or

the ribonucleic acid was repeated after 24 hours (Fig 1D). A full description of these protocols

can be found here: dx.doi.org/10.17504/protocols.io.h7jb9kn

Western blot

Western blot analysis was performed on fully-confluent Cre-responsive cell lines harvested

from 24-well plates 6 or 22 hours after the single administration of PTD-Cre (15 nM) or syn-

mRNA-Cre (2.1 nM). The cells were lysed using RIPA buffer composed of 150 mM NaCl, 1%

IGEPAL CA-630, 0.5% sodium deoxycholate, 0.1% SDS, and 50 mM Tris, pH 8.0 [27]. Cell

lysates (14 μg total protein per well) were mixed with 4x Laemmli loading buffer containing

8% SDS, 40% glycerol, 0.02% bromophenol blue, 250 mM Tris, and 20% 2-mercaptoethanol

(all from Sigma-Aldrich), pH 6.8, heated at 95˚C for 3 min, and run on a 15% polyacrylamide

gel and transferred to PVDF membranes (Merck Millipore) using a Pierce G2 electroblotter

(Thermo Fisher Scientific). The membranes were blocked with 3% BSA (Sigma-Aldrich).

Primary antibodies included a rabbit anti-T7 antibody (Abcam, Cambridge, UK) for detecting

Cre recombinase (1:2000 dilution) and a mouse anti-beta-actin antibody (Sigma-Aldrich)

as a loading control (1:7500 dilution). The secondary antibodies included goat anti-rabbit

IgG-HRP (Merck Millipore) and rabbit anti-Mouse IgG-HRP (Thermo Fisher Scientific), each

diluted 1:50000. Chemiluminescent SuperSignal West Dura Extended Duration Substrate

(Thermo Fisher Scientific) was used for detection. The signals were acquired using a G:BOX

Chemi XR5 (Syngene, Cambridge, UK).

Fluorescence microscopy

Fluorescence microscopy was performed on Cre-responsive cell lines six days after a single

administration of PTD-Cre (15 nM) or syn-mRNA-Cre (2.1 nM) to 10% confluent culture.
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The cells were cultured on untreated glass coverslips in 48-well culture plates (Sigma-Aldrich)

and then fixed with 4% formaldehyde (Polysciences, Warrington, PA). The cell nuclei were

counterstained with 4’,6-diamidine-2’-phenylindole dihydrochloride (DAPI) (Thermo Fisher

Scientific). Stained cover slips were mounted on slides with Mowiol mounting medium.

Cell samples were imaged using an EVOS FL Auto Cell Imaging System (Thermo Fisher

Scientific).

Flow cytometry

Cre-responsive cell lines at 10% confluence were treated with a single and double administra-

tion of PTD-Cre or syn-mRNA-Cre using the three above-mentioned concentrations. Six days

later, the cells were detached from the flat bottoms of 48-well plates (area 0.95 cm2) using

0.63% trypsin (both from Sigma-Aldrich). Single-cell suspensions were washed and stored at

4˚C in PBS buffer for up to 2 hours and analyzed using a BD LSRII analyzer (Becton Dickin-

son). A total of 5000–10000 events were counted for each sample. The respective untreated

cells were used as negative controls for gating.

Data evaluation and statistics

All experiments were carried out independently in triplicate, and the results are expressed as

the mean ± standard deviation (SD). GraphPad Prism 5 was used to construct asymmetrical

(five-parameter) dose-response curves and to calculate two-tailed unpaired Student’s t-tests.

P-values <0.05 were considered statistically significant.

Results and discussion

Cre-responsive cell lines

Cre-responsive cell lines were created from the original cell lines PANC-1, BRIN-BD11 and

HEK293 by the genomic insertion of the expression cassette shown in Fig 1A and specified in

S1 Fig, followed by single-cell sorting to produce clonal populations. After the sorting, approx-

imately 20–30 of the 96 wells contained RFP-positive cells, depending on the original cell lines.

For each cell line, three clones were expanded and preserved. A single clone of each line was

then used throughout the study. After expansion, the presence of the construct was verified

using fluorescence microscopy (RFP positivity). Theoretically possible inadvertent GFP

expression in the absence of Cre recombinase (leakage) was excluded by the absence of a green

fluorescence signal in any of the clones (Fig 2).

Detection of active Cre recombinase delivery into cell nuclei

Correct folding of the PTD-Cre fusion protein was assured by the chaperone action of the

Maltose-Binding protein [28], which was encoded by the expression vector. There are a variety

of PTD sequences [29], but predicting the best one for a particular cell type is not possible.

Our preliminary experiments using TAT3-GFP and TAT8-GFP constructs suggested that the

latter penetrated into PANC-1 cells better, and it was therefore used throughout the study.

Cre-responsive cells grown on glass coverslips were treated with a single administration of

PTD-Cre1 (15 μM) or syn-mRNA-Cre (2.1 nM) for 24 hours. Successful delivery of a func-

tional Cre protein into the cell nuclei was verified microscopically by detecting the Cre-medi-

ated synthesis of GFP in the cytoplasm of individual cells. The GFP signal became visible three

days after treatment, irrespective of the cell type (fl-PANC, fl-BRIN, fl-HEK) or the delivery

method. The signal reached a maximum around day 6 and maintained an apparently

unchanged level for another 7 days (data not shown). The number of positive cells clearly
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differed between the two delivery strategies and among the cell types. While approximately

half of the syn-mRNA-treated cells from each cell line produced GFP, only a small fraction of

cells was GFP-positive after treatment with PTD-Cre1. The best result quantified by flow

cytometry was 0.123±0.067% (n = 3) of GFP+ cells in fl-BRIN cells (data not shown). This fail-

ure occurred despite the presence of the nuclear localization sequence (NLS) in the PTD-Cre1

protein (S2 Fig). Spontaneous entry of Cre recombinase into the cell nucleus has been previ-

ously reported [30]. We modified our original construct accordingly by changing the domain

Fig 2. Verification of engineered clones after their expansion. No leaky GFP expression was observed.

https://doi.org/10.1371/journal.pone.0182497.g002
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order and removing the NLS (Fig 1B, S3 Fig). Using this PTD-Cre2 construct at the highest

concentration (15 μM), the number of GFP-positive fl-BRIN cells increased, but there was no

substantial change among the fl-PANC and fl-HEK cells (Fig 3). PTD-Cre2 was used in subse-

quent experiments.

Fig 3. Detection of Cre recombinase activity in cell nuclei of the target cells after administration of PTD-Cre (15 μM) or syn-

mRNA-Cre (2.1 nM). Bar 200 μm.

https://doi.org/10.1371/journal.pone.0182497.g003
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Efficiency of Cre protein delivery into the cell nuclei

The Cre-responsive cells were grown on plastic dishes (area 0.95 cm2) and treated with either

PTD-Cre2 or syn-mRNA-Cre at low (10%) confluence to account for their expansion over a

period of one week. Six days after the first administration (Fig 1D), the cells were harvested in

a single-cell suspension and the GFP+ cells were quantified using flow cytometry. Fig 4 depicts

representative scatter plots obtained from each cell type after administration of either

PTD-Cre2 (15 μM) or syn-mRNA-Cre (2.1 nM).

Direct comparison of the methods employing substances of different classes (protein vs.

mRNA) was realized by calculating the individual doses relative to the maximum dose achiev-

able for each substance. Protein precipitation limited the maximum protein concentration of

PTD-Cre2 to 15 μM. It was practical to further increase the dose by repeated administration of

this concentration (no toxicity was observed). The dose of syn-mRNA-Cre turned out to be

limited by cell toxicity. After the double administration of 2.1 nM of syn-mRNA-Cre, dead

cells appeared in the medium and the growth of the remaining attached cells was reduced.

Double administration of lower concentrations had no visible toxic effects (data not shown).

To prevent this innate cell toxicity, we used modified nucleotides [31, 32]. However, our syn-

mRNA was not HPLC-purified. Such purification would reduce cytotoxic byproducts of the in
vitro mRNA synthesis and might potentially allow for the use of even higher concentrations of

syn mRNA-Cre [33].

Fig 4. Flow cytometry scatter plots obtained on day 7 after single administration of 15 μM PTD-Cre (a-c) or 2.1 nM syn-mRNA-Cre

(d-f) in fl-PANC (a,d), fl-BRIN (b,e), and fl-HEK (c,f) cells.

https://doi.org/10.1371/journal.pone.0182497.g004
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The frequencies of successful delivery of Cre recombinase protein into cell nuclei by day

seven after treatment with either PTD-Cre2 protein or syn-mRNA are summarized in Fig 5 for

three independent experiments in the Cre-responsive cell lines. PTD-Cre2 mediated an appre-

ciable delivery of an active Cre recombinase protein only in the nuclei of fl-BRIN cells (Fig 5A).

Syn-mRNA-Cre was successful in all three cell types (Fig 5B). In the fl-PANC and fl-HEK cells

(but not in fl-BRIN cells), the highest (toxic) dose was observed at the plateau of the dose-

response curve (Fig 5B). Half maximum effective doses (EC50) were calculated as non-toxic

doses at which the efficiencies of both delivery methods could be directly compared across the

cell types. Table 1 demonstrates that PTD-Cre2 failed to deliver functional Cre recombinase

into the nuclei of two out of three cell types, while the robustness of syn-mRNA-Cre was dem-

onstrated by its substantial efficacy irrespective of cell type.

The two tested methods deliver the cargo protein inside the cells by different means. There-

fore, differential robustness of the two methods could potentially be explained by different

amounts of the Cre protein entering the treated cells. To determine the amounts of Cre protein

that entered the cells, the Cre-responsive cells were treated with either PTD-Cre2 or syn-

mRNA-Cre (single administration of the maximum concentrations) and harvested 6 or 22

hours later for western blot analysis. Fig 6 shows at each time point that the relative amount of

Cre protein in cell homogenates was 4–19-fold higher in the syn-mRNA-treated cells than in

the PTD-Cre2-treated cells. It is noteworthy, however, that the Cre protein in the PTD-treated

fl-BRIN cells was 3–7 times lower than in the fl-HEK cells (p-values were 0.016 and 0.049

after 6 and 22 hr incubations, respectively), although the Cre-mediated recombination was

Fig 5. Frequency of GFP+ cells after the treatment of Cre-responsive cells with either PTD-Cre2 (A) or syn-mRNA-Cre (B). Analysis

of flow cytometry data from three independent experiments. X-axis: relative dose on the logarithmic scale, (1 is the maximum dose);

Asterisk, double administration; Y-axis: efficiency of the delivery of Cre recombinase into nuclei of fl-PANC (red triangles), fl-BRIN (blue

squares), fl-HEK (green circles) cells; Error bars: mean±SD, n = 3; GraphPad was used to construct asymmetrical (five-parameter) dose-

response curves and to calculate the approximate logEC50.

https://doi.org/10.1371/journal.pone.0182497.g005

Table 1. Comparison of PTD-fusion and syn-mRNA. Half maximum effective doses (EC50) and half maximum efficiency in three cell types.

Half Effective dose (EC50) Half maximum efficiency

PTD-Cre (nmol/cm2) syn-mRNA-Cre (pmol/cm2) PTD-Cre (%) syn-mRNA-Cre (%)

PANC failed 0.047 failed 0.39

BRIN 2.71 0.205 0.38 0.24

HEK failed 0.058 failed 0.37

https://doi.org/10.1371/journal.pone.0182497.t001
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successful in the former and failed in the latter. Using the PTD-Cre in fl-HEK cells, we

obtained results similar to those previously published [27]. Further clarification of the observa-

tion that the intracellular level of the cargo protein did not correspond with its nuclear effect is

beyond the scope of this manuscript.

Workload

Starting from the transformed bacteria, the preparation of the PTD-Cre protein was labor-

intensive (Materials and methods) and took two full working days, yielding a total of 2–3 mg of

protein from 1 L of culture. The treatment of cells in one well (0.95 cm2) with the highest con-

centration required 0.1 mg of protein. Starting with the ready-made DNA template, the prepa-

ration of syn-mRNA-Cre took up to 8 h, yielding approximately 60 μg of the syn-mRNA-Cre.

The treatment of cells in one well (area 0.95 cm2) with the highest concentration required

0.2 μg of synthetic syn-mRNA-Cre. The in vitro synthesis of a specific synthetic mRNA

required less time and effort than the multistep preparation of a purified recombinant protein.

Conclusion

We conclude that in comparison to the PTD fusion-based protocol, the synthetic mRNA-

based method is less cell type-dependent, less work-intensive, and more efficacious for protein

delivery into cell nuclei. We recommend synthetic mRNA as a first-line approach, particularly

when the cell type of interest has not been previously tested.
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The Effect of Epigenetic Factors on Differentiation of Pancreatic
Progenitor Cells Into Insulin-Producing Cells

I. Leontovyč, T. Koblas, L. Pektorova, K. Zacharovova, Z. Berkova, and F. Saudek

ABSTRACT

Differentiation of pancreatic progenitors into insulin-producing b cells is regulated by
various transcription factors. To be expressed the genes coding these transcription factors
need to be in accessible DNA. Whether a particular gene is present in a form of active
euchromatin structure with accessible DNA or in an inactive heterochromatin structure
with inaccessible DNA is determined by various epigenetic modifications. We studied the
effect of epigenetic modifiers on differentiation of human nonendocrine cells into
insulin-producing cells with the aim to evaluate the effect of epigenetic modifications in
that process. Within 3 days of cultivation nonendocrine cells form isletlike cell clusters
(ILCCs) containing mainly cytokeratin-19-positive cells. After cultivation with epigenetic
modifiers and further differentiation, the highest number of C-peptide-positive cells
(10.3% 6 2.9%) as well as glucagon-positive cells (7.2% 6 2.8%) was observed in a sample
supplemented with a combination of 5-Aza-2=-deoxycytidine modifiers, BIX01294 and
MC1568. In response to glucose stimulation (5 vs 20 mmol/L) these ILCCs secreted
increased amounts of C-peptide (0.45 vs 1.05 pmol C-peptide/mg DNA). Control samples
treated without any epigenetic modifiers showed significantly lower numbers of C-peptide-
positive cells (3.5% 6 1.6%). These results showed that a combination of epigenetic
modifiers 5-Aza-2=-deoxycytidine (BIX01294 and MC1568) significantly improved repro-
ducible differentiation of nonendocrine pancreatic cells into insulin-producing cells.

THE APPLICATION OF insulin-producing tissue de-
rived from alternative sources is a promising idea to

treat diabetes mellitus. However, the efficiency of differen-
tiation of various cell sources into insulin-producing cells is
still relatively low despite progress in differentiation proto-
cols. One of the key obstacles in this goal could be the DNA
structure of genes coding key proteins involved in differen-
tiation and function of mature b cells.1 The expression of
genes requires a less compact, accessible DNA in the form
of an active euchromatin structure. In contrast, genes that
are present in condensed DNA structures called heterochro-
matin are silenced and inactive. The condensation of chro-
matin is regulated by DNA methylation as well as by various
modifications of histone proteins that encircle DNA. Gen-
erally, the modifications that determine the state of chro-
matin structure are termed epigenetic modifications. Re-
cently published studies have shown that the epigenetic
modifications have significant effects on the differentiation
of pancreatic endocrine cells. Treatment of fetal pancreata
with Trichostatin A (TSA), a nonspecific inhibitor of his-
tone deacetylases, increased the number of differentiated

endocrine cells including b cells.2 Similar results were
achieved with the application of 5-Aza-2=-deoxycytidine
(5Aza), an inhibitor of DNA methyl transferase. 5Aza
stimulated the expression of transcription factors involved
in the differentiation of pancreatic endocrine cells and
improved the differentiation of a ductal cell line into a and
d cells.3 Therefore, we decided to evaluate the effect of
various epigenetic modifiers on the differentiation of non-
endocrine pancreatic cells into insulin-producing b cells.
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METHODS
Tissue Preparation

Human nonendocrine pancreatic cells were obtained from the
pancreatic acinar tissue remaining after islet isolation. The
isolation and transplantation program for human pancreatic
islets was approved by our Ethics Committee. Human islets and
pancreatic tissue were isolated according to the previously
described methods.4 Briefly, islets were isolated from pancreata
obtained from five donors of mean age 46 6 20 years. The
pancreatic duct was perfused with a cold enzyme mixture
containing Collagenase NB 1 Premium Grade and Neutral
Protease NB (Serva, Heidelberg, Germany). Tissue was then
transferred to a modified Ricordi chamber for separation by
gentle mechanical agitation and enzymatic digestion at 37°C.
Islets were purified with continuous gradients of Biocoll (Bio-
chrom, Berlin, Germany) in an apheresis system Code model
2991 (Gambro, Prague, Czech Republic). The densities of the
continuous gradient ranged from 1.065 to 1.092 g/mL. During
centrifugation, islets migrated to the interface between 1.070
and 1.080 g/mL. The remaining cellular suspension from the
denser layer was pooled and further digested in Accutase
solution (Sigma-Aldrich, Steinheim, Germany) for 20 minutes at
37°C. The single-cell suspension obtained after a filtration
through 11-mm cell strainer was purified with a Biocoll contin-
uous gradient in an apheresis system. The cell suspensions
obtained from 1.050 to 1.080 g/mL interfaces were pooled and
washed in Hanks solution (Sigma-Aldrich) for further process-
ing.

Cell Culture Studies

Nonendocrine cells were cultured for 4 days (stage 1) in Dulbecco’s
Modified Eagle Medium (DMEM) medium containing 10%
KnockOut serum replacement, 1% insulin-transferrin-selenium, 25
U/mL penicillin, 25 mg/mL streptomycin, 1 mmol/L L-glutamine,
1% nonessential amino acids, 0.1 mmol1L 2- mercaptoethanol (all
from Invitrogen, Paisley, UK), 10 ng/mL basic fibroblast growth
factor (bFGF), 20 ng/mL epidermal growth factor (EGF) (both
from Peprotech, Rocky Hill, NJ, USA) and conditioned medium
derived from neonatal fibroblasts cell line Hs68 (LGC Promochem,
Teddington, UK). During stage 1, cells were divided into 13 groups
for supplementation with epigenetic modifiers according to Table 1
The epigenetic modifiers included: 1 mmol/L 5Aza, a DNA meth-
yltransferase inhibitor; 1 mmol/L Scriptaid, an inhibitor of class I 1
II histone deacetylases; 500 mmol/L sodium butyrate, an inhibitor of
class I 1 II histone deacetylases; 5 mmol/L MC1568, an inhibitor of
class II histone deacetylases; and 2 mmol/L BIX01294, an inhibitor
of G9a histone H3K9 methyltransferase (all from Sigma-Aldrich).
Afterward, cells were cultured for 3 days (stage 2) in CMRL medium
containing 5% FCS, 10 mmol/L SP600125, 10 mmol/L SB 216763,

10 mmol/L forskolin, 5 mg/mL fibronectin, 10 mmol/L nicotinamide, 40
ng/mL Exendin-4 (all from Sigma-Aldrich), and 100 ng/mL IGF
(Peprotech). Within the first 3 days cells formed clusters, further
referred to as isletlike cell clusters (ILCC).

Reverse Transcriptase Polymerase Chain Reaction

Total RNA from approximatelly 106 cells was isolated using the
Rneasy Plus Mini Kit (Qiagen, Hilden, Germany) for treatment
with DNAse using the RNase-Free DNase Set (Qiagen). Isolated
RNA (1 mg) was reverse transcribed with an Omniscript RT Kit
(Qiagen) according to the manufacturer’s instructions. cDNA was
amplified using HotStarTaq Master Mix Kit (Qiagen). Total RNA
from the islet fraction was used as the positive control. Gene-
specific primer pairs, annealing temperatures, and product size
were performed as previously described.5 Separated polymerase
chain reaction (PCR) products were visualized on 2% agarose gel
using ethidium bromide.

Immunocytochemistry

ILCC washed with phosphate-buffered saline (PBS) were fixed for
60 minutes in Bouin’s solution (Sigma-Aldrich), rinsed with PBS,
suspended in a 2% agarose-PBS solution, and centrifuged at 100g
for 3 minutes to form compact pellets. After overnight submersion
in 30% sucrose, ILCC were embedded in optimal cutting temper-
ature mounting medium TissueTek (Bayer Corp, Pittsburgh, Pa,
USA), frozen in liquid nitrogen, and stored at 280°C.

After several washes in PBS, 8-mm sections of frozen ILCC
were incubated in blocking solution containing 10% normal goat
serum (Jackson Immunoresearch Laboratories, West Grove, Pa,
USA) in 0.2% Triton X-100, 0.1 mol/L glycine (Sigma-Aldrich),
and PBS for 1 hour at room temperature to prevent nonspecific
binding. Incubation with primary antibodies in appropriate
dilution was performed in a blocking solution for 1 hour at 37°C.
The following primary antibodies were used at a 1:100 dilution:
mouse anti-cytokeratin 19, mouse anti-C-peptide (both from
Exbio, Czech Republic) and rabbit anti-glucagon (Cell Signal-
ing, Danvers, Mass, USA). After intensive washing with PBS,
sections were incubated with the specific secondary antibody
diluted in the blocking solution for 1 hour at 37°C. The
secondary antibodies were Alexa Fluor 555 donkey anti-mouse
immunoglobulin G (IgG) and Alexa Fluor 488 donkey anti-
rabbit IgG (Invitrogen). 4,6-Diamidino-2-phenylindole (Sigma-
Aldrich) at a concentration 5 mg/mL was used to label the nuclei
for 10 minutes at 37°C. After rinsing with PBS, sections mounted
with antifade solution were examined using a fluorescence
microscope Olympus BX41 (Olympus, Tokyo, Japan).

Table 1. Combinations of Epigenetic Modifiers Used in the Study

Group

1 2 3 4 5 6 7 8 9 10 11 12 13

5Aza A A A A A A
Sodium butyrate SB SB SB SB
Scriptaid S S S S
MC1568 M M M M
BIX01294 B B B B B B

Combinations of epigenetic modifiers used in the study. Cell samples were divided into 12 groups with various combinations of 5Aza (A), sodium butyrate (SB),
Scriptaid (S), MC1568 (M), and BIX01294 (B). Control sample was treated without any of epigenetic modifiers. 5Aza, 5-Aza-deoxycitidine.

EPIGENETIC FACTORS 3213



C-Peptide Cell Content and Glucose-Stimulated Secretion
C-peptide release was measured by incubating 100 ILCC in 1 mL
of Krebs-Ringer solution containing 5 mmol/L glucose for 1
hour and then in 20 mmol/L glucose solution for another hour.

Cells were lysed in RIPA buffer (Sigma-Aldrich) and human
C-peptide determined using a C-peptide immunoradiometric kit
(Beckman Coulter, Fullerton, Calif, USA) according to the
manufacturer’s instructions.

Fig 1. Cytokeratin-19 immunofluorescence staining of isletlike cell clusters (ILCCs). Immunoflourescence staining of cytokeratin-19
(orange): ILCCs treated with a combination of 5-Aza-2=-deoxycitidine (5Aza), MC1568, and BIX01294 (A), control ILCCs treated
without any of the epigenetic modifiers (B), ILCCs treated with a combination of 5Aza and MC1568 (C). ,6-Diamidino-2-phenylindole
(blue) stain was performed as counter stain (magnification 1003).

Fig 2. C-peptide and glucagon immunofluorescence staining of isletlike cell clusters (ILCCs). Immunoflourescence staining of
C-peptide (orange) and glucagon (green): ILCCs treated with a combination of 5-Aza-2=-deoxycitidine (5Aza), MC1568, and BIX01294
(A), control ILCCs treated without any of the epigenetic modifiers (B), ILCCs treated with a combination of 5Aza and MC1568 (C).
4,6-Diamidino-2-phenylindole (blue) stain was performed as counter stain (magnification 1003).
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Statistical Analysis

Statistical analysis was performed using Student t test. All data are
presented as mean values 6 standard deviations. P values , .05
were deemed to be significant.

RESULTS

Single-cell suspensions of nonendocrine pancreatic cells
formed clusters (ILCC) resembling the islets of Langerhans
within 3 days of culture in serum-free neonatal fibroblast-
conditioned medium. ILCC were formed mainly by
cytokeratin-19-positive cells with the exception of 5Aza-
and MC1568-treated ILCC that contained only rare
cytokeratin-19-positive cells after 7 days of cultivation (Fig
1). The highest number of C-peptide-positive cells (10.3% 6
2.9%) was observed in samples treated with a combination
of 5Aza, BIX01294, and MC1568. There was also a high
number of glucagon-positive cells (7.2% 6 2.8%) in sam-
ples treated with this combination of epigenetic modifiers.
Control samples treated without any epigenetic modifier
contained only 3.5% 6 1.6% C-peptide-positive cells. Sam-
ples treated with 5Aza 1 MC1568 displayed the smallest
number of C-peptide-positive cells (1.8% 6 0.9%), while
the number of glucagon-positive cells (8.1% 6 1.4%) was
the greatest in all samples (Fig 2). Analysis of C-peptide
protein content agreed with the results from the immuno-
fluorescence staining. The highest C-peptide content was
detected in samples treated with 5Aza, BIX01294, and
MC1568(10.2 6 3.2 pmol C-peptide/mg DNA), while the
C-peptide content in control samples was significantly lower
(5.1 6 2.2 pmol C-peptide/mg DNA; Fig 3). Insulin secre-
tory capacity of differentiated ILCCs was confirmed by
glucose-stimulated C-peptide secretion. In response to glu-
cose stimulation (3 vs 20 mmol/L), ILCCs treated with
5Aza, BIX01294, and MC1568 secreted 0.45 versus 1.05
pmol C-peptide/mg DNA (Fig 3).

Results from immunofluorescence staining were also
consistent with results from reverse transcriptase PCR
analysis (Fig 3). The highest insulin gene expression was
observed among ILCCs treated with 5Aza, BIX01294, and
MC1568. The expression of the glucagon gene was also high
in samples treated with 5Aza, BIX01294, and MC1568
compared with most other samples.

Treatment of pancreatic cells with epigenetic modifiers
also affected the expression of key transcription factors of
endocrine cell differentiation. The expression of pancreatic
and duodenal homeobox 1 (PDX-1) transcription factor
was significantly higher in samples treated with BIX01294,

Fig 3. Gene expression and C-peptide secretion capacity and
content of differentiated isletlike cell clusters (ILCCs). Reverse
transcriptase polymerase chain reaction analysis of gene ex-
pression in treated isletlike cell clusters (ILCCs). A negative
control (without reverse transcription) and a positive control
(human islets). (A). Glucose stimulated C-peptide secretion of
differentiated ILCCs as determined by IRMA (B). C-peptide
content of differentiated ILCCs as determined by IRMA (C).
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while treatment with 5Aza stimulated the expression of
neurogenin-3 transcription factor.

DISCUSSION

Our knowledge about basic principles of epigenetic modi-
fications that significantly affect cell differentiation has
improved during the last decade. However, there is still
little known about epigenetic modifications that regulate
differentiation of pancreatic b cells.

Our results showed that epigenetic factors significantly
affect differentiation of human nonendocrine pancreatic
cells into insulin-producing cells. Our findings are consis-
tent with a recent study that showed a positive effect of the
histone deacetylase inhibitor TSA on differentiation of
mouse fetal pancreatic cells into b cells.2 In another study,
treatment of a human ductal cell line with the DNA
methyltransferase inhibitor 5Aza stimulated differentiation
into a and d cells as well as the expression of neurogenin-3,
an important transcription factor for differentiation of
pancreatic endocrine cells.3

Therefore, we decided to evaluate the effect of various
combinations of epigenetic modifiers that have already
been shown to be effective in the differentiation of pancre-
atic endocrine cells as well as of other cell types. We
observed that the combination of 5Aza (DNA methyltrans-
ferase inhibitor), MC1568 (specific inhibitor of class II
histone deacetylases), and BIX01294 (specific inhibitor of
G9a histone H3K9 methyl transferase) improved differen-
tiation of human pancreatic nonendocrine cells. The posi-
tive effects of that combination of epigenetic modifiers may
be due to complex changes in DNA methylation and
histone modifications. While 5Aza decreases methylation of
DNA, MC1568 blocks enzymes responsible for deacetyla-
tion of histones and BIX01294 inhibits methylation of lysine
9 on histone 3. All of these modifiers are supposed to
stimulate a change of DNA structure into the euchromatin
state necessary for gene expression. Indeed, in our study
various combinations of epigenetic modifiers stimulated
differentiation into endocrine cells; however, with signifi-
cantly different results. The combination of 5Aza and
MC1568 deteriorated differentiation into b cells, while it
increased differentiation into a cells compared with control
samples. In contrast, the combination of 5Aza, MC1568,
and BIX01294 significantly stimulated differentiation into b
cells. Therefore, addition of BIX01294 played a key role in
directing differentiation of pancreatic cells into the b-cell
phenotype.

However, we were not able to achieve the same level of
differentiation into b-cell phenotype with the combination
of only BIX01294 and MC1568. Therefore, the addition of
5Aza seemed to be beneficial for differentiation of ILCCs
cells into the b-cell phenotype. In our study, we confirmed
previous results that 5Aza stimulates the expression of
neurogenin-3, a key transcription factor for differentiation
of pancreatic endocrine cells. While 5AZA could trigger the
endocrine differentiation process by stimulating the expres-
sion of neurogenin-3, the addition of BIX01294 further
stimulated differentiation into a b-cell phenotype by induc-
ing PDX-1 expression.

In addition to their effects on endocrine cell differentia-
tion, we also observed actions of epigenetic modifiers on the
number of cytokeratin-19-positive cells. For example, treat-
ment with 5Aza and MC1568 significantly decreased the
number of cytokeratin-19-positive cells in comparison with
control samples. However, since epigenetic modifiers af-
fected the structure of the whole genome of DNA and not
only a small group of genes, effects on other cell types are
not surprising.

In conclusion, our study demonstrated that application
of various epigenetic modifiers stimulated differentiation
of human nonendocrine pancreatic elements into insulin-
producing cells with expression of key transcription
factors of endocrine cell differentiation. The combination
of these modifiers with other agents that stimulate dif-
ferentiation of pancreatic nonendocrine cells may im-
prove the yield of differentiated beta cells allowing this
potential source of insulin-producing tissue to join the
clinical treatment of diabetes.
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Introduction

Reports of whole pancreas transplantations and trans-
plantations of isolated pancreatic islets demonstrate that 
replacement of insulin-producing tissue can potentially cure 
insulin-dependent diabetes.1 However, use of this therapeutic 
approach is limited by a lack of suitable organ donors and 
the need for permanent immunosuppression. Thus, there 
remains a need for a safe and plentiful source of insulin-
producing cells. One of the most promising methods is the 
differentiation of embryonic stem cells and induced pluripo-
tent stem cells into insulin-producing cells, mainly due to its 
high efficiency and the high quality of derived cells.2,3 How-
ever, the clinical application of this method may be limited 
by the potential risk of transformation into malignant cells.4,5

Cell reprogramming has recently emerged as another 
promising means of generating insulin-producing cells. A ter-
minally differentiated cell can be directly reprogrammed into 
the desired cell type via temporal expression of transcription 
factors that activate the transdifferentiation program. Specific 
transcription factor combinations can induce reprogramming 
of fibroblasts into neurons,6 cardiomyocytes,7 hepatocytes,8 
and induced pluripotent stem cells.9,10 Similarly, pancreatic 
exocrine cells and liver bile duct epithelial cells can be trans-
differentiated into insulin-producing cells through induced 
expression of the transcription factors Pdx1, Neurogenin3, 
and MafA, which participate in the natural differentiation of 

pancreatic β-cells.11–13 Insulin-producing cells derived from 
exocrine or liver cells by in vivo reprogramming reportedly 
normalize blood glucose levels in diabetic mice, demonstrat-
ing their therapeutic potential.14,15

Viral vectors are often used to introduce specific tran-
scription factors into cells for reprogramming. However, 
highly efficient lentiviral and retroviral vectors can lead to 
the integration of viral DNA sequences into chromosomal 
DNA, potentially causing tumorigenic transformation.16,17 
Likewise, adenoviral vectors that are considered to be 
nonintegrating, tend to integrate viral DNA into the host 
genome, although at a low frequency.18,19 Therefore, a truly 
integration-free reprogramming method could substantially 
improve the safety of the derived cells for eventual clini-
cal application. Several integration-free techniques, utiliz-
ing episomal plasmids,20 recombinant proteins,21 Sendai 
RNA virus,22 miRNA,23 and synthetic mRNA have been 
recently reported.24 While each of these methods has both 
advantages and disadvantages, the most efficient method 
appears to be cell reprogramming using synthetic mRNAs 
encoding reprogramming factors.25

The present study aimed to develop a safe and integra-
tion-free method of reprogramming pancreatic exocrine 
cells into insulin-producing cells. For this purpose, we 
chose the AR42J cell line. AR42J is a rat pancreatic exo-
crine cell line derived from a chemically induced pancreatic 
tumor.26 It has been previously used as a model cell line for 
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the analysis of pancreatic exocrine cells transdifferentia-
tion into insulin-producing cells induced by adenoviral vec-
tors encoding Pdx1, Neurogenin3, and MafA transcription 
factors.11,12 Unlike primary exocrine cells, AR42J cells pos-
sess both exocrine and neuroendocrine properties as evi-
denced by the expression of the neuroendocrine-specific 
vesicle proteins synaptophysin and S.V.2 (ref. 27). Mixed 
exocrine-neuroendocrine character of these cells is further 
evidenced by the considerable amounts of neurotransmit-
ters glycine, glutamine, and γ-aminobutyric acid. However, 
AR42J cells do not express any of the islet hormones 
under the standard culture conditions.28 Moreover, AR42J 
cells have a stable phenotype upon in vitro culture and 
do not tend to undergo a ductal transdifferentiation under 
adherent culture conditions, like primary pancreatic exo-
crine cells do.11

Reprogramming factors were delivered into the exocrine 
cells in a form of synthetic mRNAs encoding the pancreatic 
transcription factors Pdx1, Neurogenin3, and MafA. Tempo-
rary expression of these reprogramming factors activated 
transdifferentiation of pancreatic exocrine cells into insulin-
producing cells that expressed characteristic pancreatic β-cell 
markers and could process proinsulin into mature insulin and 
its byproduct C-peptide. The reprogrammed cells responded 
to glucose stimulation with limited insulin secretion, similar to 
that of immature β-cells.29 Our results represent the first proof 
that it is feasible to generate insulin-producing cells through 
the transdifferentiation of exocrine pancreatic cells using an 
integration-free protocol based on synthetic mRNAs.

Results
Induced expression of reprogramming factors upon 
intracellular delivery of synthetic modified mRNAs
Cell reprogramming relies on ectopic expression of repro-
gramming transcription factors. Therefore, we first evaluated 
the efficiencies of transfection of each individual synthetic 
mRNA and expression of the encoded pancreatic transcrip-
tion factors Pdx1, Neurogenin3, and MafA by the pancre-
atic exocrine cell line AR42J. Immunofluorescence staining 
revealed that transcription factor expressions were dose-
dependent, with maximal expression rates achieved at a 
concentration exceeding 1−2 µg mRNA/ml media 20 hours 
post-transfection (Figure  1b,c). At a dose of 1 µg mRNA/
ml media, Pdx1 was efficiently expressed by most cells 
(72.1 ± 7.4%, n  =  5) while the expression rates of MafA 
(66.7 ± 11.3%, n = 5) and Neurogenin3 (36.9 ± 10.9%, n = 5) 
were lower and more variable as revealed by immunofluo-
rescence staining (Figure  1b,c). Even at a higher mRNA 
concentration of 2 µg/ml media, variable expression was still 
detected, mainly for Neurogenin3 and MafA (Figure 1b,c).

Since mRNA stability is one of the key parameters deter-
mining the gene expression rate, we also evaluated the post-
transfection stability of the synthetic mRNAs. Within 4 hours, 
synthetic mRNA was detected in cells. The highest level of 
synthetic mRNA was detected between 12–16 hours post-
transfection. The level of synthetic mRNA in cells substan-
tially decreased by 24 hours post-transfection (Figure 2a), 
although some synthetic mRNA was detected even at 36 
hours post-transfection.

Figure 1  Scheme of DNA template construct production, in vitro transcription, and determination of efficiencies of transfection 
and expressions of synthetic mRNAs of the transcription factors Pdx1, Neurogenin3, and MafA by the pancreatic exocrine cell 
line AR42J. (a) Production of DNA template constructs and subsequent mRNA synthesis: (1) homologous recombination of transcription 
factor cDNA and linearized vector containing the T7 promoter, the 5′UTR (untranslated region) of the rat β-globin gene, and the 3′UTR of 
the human β-globin gene; (2) PCR amplification of DNA template; (3) in vitro transcription; and (4) polyadenylation of synthetic mRNA. (b, 
c) Dose-dependent expressions of Pdx1, Neurogenin3, and MafA upon transfection of AR42J cells with synthetic mRNAs at doses of 0, 
250, 500, 1,000, and 2,000 ng/ml media as determined by immunofluorescence staining 20 hours post-transfection. Cell nuclei are stained 
blue with 2-(4-Amidinophenyl)-6-indolecarbamidine dihydrochloride (DNA). Scale bars = 200 µm. Values are shown as mean ± standard 
deviation (n = 5).
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At the protein level, expression of the encoded pancreatic 
transcription factors was most intense at 20 hours after trans-
fection of cells with synthetic mRNAs at a dose of 1 µg mRNA/
ml media (Figure 2b,c). Positive staining was detected even 
40 hours post-transfection, although the staining intensity 
and the number of positive cells significantly declined. All 
positive cells disappeared within 60 hours post-transfection.

Simultaneous coexpression of reprogramming 
transcription factors upon intracellular delivery of 
synthetic modified mRNAs
Efficient cell reprogramming requires simultaneous expres-
sion of transcription factors. Therefore, we evaluated the 
coexpression of the reprogramming transcription factors 
upon simultaneous transfection of cells with all three synthetic 
mRNAs (Pdx1, Neurogenin3, and MafA) at a dose of 500 ng 
of each mRNA/ml media (Figure  3a). Transcription factor 
coexpression was mainly limited by the expression rates of 
Neurogenin3 and MafA, since Pdx1 was expressed by most 
of the Neurogenin3- and MafA-positive cells. The rates of 
double-positive cells were 16.1 ± 3.8% (n = 4) for Pdx1 and 
MafA, 13.3 ± 2.8% (n  =  4) for Pdx1 and Neurogenin3, and 
11.7 ± 3.6% (n = 4) for MafA and Neurogenin3 (Figure 3b).

Supplementation with vaccinia virus-derived type I 
interferon receptor B18R prevents cell death during 
repeated transfection of synthetic modified mRNAs
Efficient cell reprogramming also requires that transcrip-
tion factor expression continue over a sufficient time period. 
Therefore, synthetic mRNA was delivered in the form of 
lipid complexes, allowing repeated transfection. However, 
repeated daily transfection with synthetic mRNAs at a dose 
exceeding 1 µg/ml led to the induction of apoptosis and 
substantial cell loss over the 3-day period (Supplementary 
Figure  S1). This may have been due to activation of the 

cellular innate immune response, which serves as an anti-
viral defense mechanism against DNA and RNA viruses30 
and is characterized by inflammatory cytokine production, 
protein synthesis inhibition, and apoptosis induction.31 Innate 
immune response activation by exogenous mRNA can be 
limited by incorporating modified nucleotide bases into the 
synthetic mRNA24,30,32 and by dephosphorylation of 5′ tri-
phosphates via phosphatase treatment.24,33 However, using 
the modified nucleotides pseudouridine and 5-methylcytidine 
in our mRNA synthesis and phosphatase treatment were not 
sufficient to prevent cell loss caused by the repeated transfec-
tion. Therefore, we further tested the use of the recombinant 
protein B18R—a soluble receptor of type I interferons—
which has previously been used during the highly efficient 
synthetic mRNA-induced reprogramming of skin fibroblasts 
into induced pluripotent stem cells.24

Supplementation of culture media with B18R, signifi-
cantly improved cell survival and attenuated the cell apop-
tosis induced by repeated transfection of synthetic mRNAs 
(Supplementary Figure S1). Therefore, in our further exper-
iments, we used B18R supplementation with repeated daily 
transfection. This addition allowed us to achieve prolonged 
expressions of Pdx1, Neurogenin3, and MafA for at least 
10 days (Supplementary Figure S2a). However, in order to 
limit the potential activation of innate immune response by 
the increased amount of synthetic mRNA exceeding 2 µg/
ml, we used only 500 ng/ml of each mRNA (1,500 ng/ml of all 
three mRNAs) for repeated daily cotransfection, during the 
10-day reprogramming period.

The coexpression of Pdx1, Neurogenin3, and MafA tran-
scription factors was slightly increased following 10 days 
repeated daily cotransfection of all three synthetic mRNAs, 
in comparison with a single simultaneous transfection 
(Supplementary Figure  S2). The rates of double-positive 
cells following 10 days repeated daily cotransfection were 

Figure 2  Stability of synthetic mRNAs of the transcription factors Pdx1, Neurogenin3, and MafA. (a) Stability of synthetic mRNAs for 
Pdx1, Neurogenin3, and MafA upon their transfection into AR42J cells as revealed by quantitative reverse transcription polymerase chain 
reaction (n = 3). (b, c) Immunofluorescence staining results showing the stability of Pdx1, Neurogenin3, and MafA at 20, 40, and 60 hours after 
transfection of AR42J cells with the corresponding synthetic mRNAs at a dose of 1 µg mRNA/ml media. Cell nuclei (DNA) are stained blue 
by 2-(4-Amidinophenyl)-6-indolecarbamidine dihydrochloride. Scale bars = 200 µm. Values are shown as mean ± standard deviation (n = 5).
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20.5 ± 3.2% (n = 4) for Pdx1 and MafA, 17.8 ± 3.4% (n = 4) for 
Pdx1 and Neurogenin3, and 15.1 ± 5.1% (n = 4) for MafA and 
Neurogenin3 (Supplementary Figure S2b).

Reprogramming of pancreatic exocrine cells into 
insulin-producing cells using synthetic modified mRNAs 
encoding Pdx1, Neurogenin3, and MafA
We next investigated the potential of the synthetic modified 
mRNAs encoding Pdx1, Neurogenin3, and MafA for repro-
gramming pancreatic exocrine cells into insulin-producing 
cells. AR42J cells were transfected daily for 10 days with a 
combination of all three synthetic mRNAs, at doses of 500 ng/
ml each, and cultured in serum-containing medium (denoted 
as a treatment group A) (Figure 4a). During the reprogram-
ming period, cells began to express pancreatic hormones 
insulin and glucagon. However, the reprogramming efficiency 

was very low, with immunofluorescence staining showing only 
3.5 ± 0.9% (n = 4) insulin-positive cells (Figure 4b). While the 
insulin expression was detected at the mRNA and protein 
levels, the expression of glucagon was detectable only at the 
mRNA level (Figure  5). The results of quantitative reverse 
transcription polymerase chain reaction further showed that 
repeated daily transfection with the synthetic mRNAs led to 
upregulation or induction of genes important for pancreatic 
β-cell differentiation (Pax4 and Nkx2.2) and function (Kir6.2, 
Sur1, Pcsk1, Pcsk2, and Glp1r) (Figure 5). However, some 
transcription factors (Isl1, Ngn3, Nkx6.1, and Pax6) and 
genes important for proper function (Glut2 and ZnT8) were 
upregulated only slightly or not at all (Figure 5). Detection 
of C-peptide by immunofluorescence staining (Figure  6a) 
revealed proper processing of prohormone peptide proinsulin 
into mature insulin and its byproduct C-peptide by the neuro-
endocrine endoproteases Pcsk1 and Pcsk2.

Serum exclusion from culture medium enhances 
reprogramming efficiency
We next attempted to improve the reprogramming efficiency 
by optimizing the culture conditions. It has previously been 
shown that exclusion of serum from culture medium can sig-
nificantly improve reprogramming efficiency.34 Indeed, our 
results showed that replacing fetal bovine serum with human 
serum albumin (denoted as a treatment group B) (Figure 4a) 
led to more efficient reprogramming, characterized by 
a greater proportion of insulin-positive cells (9.5 ± 1.7%, 
n = 4) and a higher insulin and C-peptide expression rates 
(Figures  4b and 6a). These results were confirmed by 
quantitative reverse transcription polymerase chain reac-
tion (Figure 5), which revealed further upregulation of genes 
important for a proper pancreatic β-cell function, including 
Glut2, Kir6.2, Pcsk1, and Pcsk2. However, the reprogrammed 
cells were not glucose-responsive as detected by inefficient 
glucose-stimulated insulin secretion (88 ± 12 versus 101 ± 15 
pg insulin/µg DNA/ml) (n = 5) upon exposure to high glucose 
concentration (2.5 versus 20 mmol/l glucose) (Figure 6b).

Effect of DNA demethylation on cell reprogramming
Cell reprogramming efficiency depends on both the ecto-
pic expression of reprogramming factors and the induc-
tion of endogenous genes. Thus, we further evaluated the 
effect of 5-Aza-2′-deoxycytidine on cell reprogramming and 
endogenous transcription factor expression. The chroma-
tin-modifying agent 5-Aza-2′-deoxycytidine inhibits DNA 
methyltransferase activity, resulting in DNA demethylation, 
chromatin structure remodeling, and subsequently increased 
accessibility of genes for transcription factors—which is a 
necessary condition for gene expression activation.

Pretreatment of cells with 5-Aza-2′-deoxycytidine, followed 
by transfection with the synthetic mRNAs (denoted as a treat-
ment group C) (Figure  4a) further improved reprogramming 
efficiency, as revealed by the increased proportion of insulin-
producing cells (14.3 ± 1.9%, n = 4, Figure 4b); greater insulin 
gene expression; and upregulation of the functional genes Glut2 
and Pcsk1, the transcription factors NeuroD and Pax6, and the 
maturation marker Urocortin3 (Figure 5).35 Moreover, only the 
reprogramming protocol that included 5-Aza-2′-deoxycytidine 
pretreatment induced glucose-responsive reprogrammed cells, 

Figure 3  Transcription factors coexpression. (a, b) Immuno
fluorescence staining results showing coexpression of the 
transcription factors Pdx1, Neurogenin3 (Ngn3), and MafA 
following simultaneous transfection of AR42J cells with all three 
synthetic mRNAs at a dose of 500 ng of each mRNA/ml media. 
Double-positive cells are indicated by yellow color in the upper 
row. Cell nuclei (DNA) are stained blue with 2-(4-Amidinophenyl)-
6-indolecarbamidine dihydrochloride. Scale bars = 200 µm. Values 
are shown as mean ± standard deviation (n = 4).
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and led to glucose-stimulated insulin secretion (842 ± 72 ver-
sus 1,157 ± 58 pg insulin/µg DNA/ml) (n = 5) upon exposure 
to high glucose concentration (2.5 vs. 20 mmol/l glucose) 
(Figure 6b). Insulin release under the basal glucose level (2.5 

mmol/l glucose) was also induced by depolarizing agent potas-
sium chloride (863 ± 78 versus 1,025 ± 66 pg insulin/µg DNA/
ml) (n = 5), albeit at a lower extent than by high glucose con-
centration (Figure 6b).

Figure 4  Scheme of the experimental design and evaluation of reprogramming efficiency. (a) Overview of the reprogramming 
protocol and subsequent analyses. Cell samples were divided into five groups based on culture conditions and the administration of all three 
reprogramming transcription factors (Pdx1, Neurogenin3, and MafA) for 10 days in the form of synthetic mRNAs at a dose of 500 ng of each 
mRNA/ml media. Cells were either cultured in serum-containing medium with mRNA transfection (treatment group A), cultured in serum-
free medium with mRNA transfection (treatment group B), or pretreated for 3 days with 5-Aza-2′-deoxycytidine and cultured in serum-free 
medium with mRNA transfection (treatment group C). The expression profiles were compared with those of non-transfected AR42J cells 
that were either cultured in serum-containing medium (control group D), or pretreated for 3 days with 5-Aza-2′-deoxycytidine and cultured 
in serum-free medium (control group E) and of native rat pancreatic islets (control group RI). (b, c) Evaluation of reprogramming efficiency 
by immunofluorescence staining for the β-cell marker insulin (Ins) and the α-cell marker glucagon (Gcg). Insulin and glucagon expression 
was compared with non-transfected AR42J cells that were pretreated for 3 days with 5-Aza-2′-deoxycytidine and cultured in serum-free 
medium (control group E) and native rat pancreatic islet cells (control group RI). Cell nuclei (DNA) are stained blue with 2-(4-Amidinophenyl)- 
6-indolecarbamidine dihydrochloride. Scale bars = 200 μm. Values are shown as mean ± standard deviation (n = 4). n.d., not detected.
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However, in spite of improved reprogramming efficiency 
promoted by DNA demethylation, incomplete reprogram-
ming of AR42J exocrine cells was also revealed by sig-
nificantly lower insulin content (9.3 ± 1.3 ng insulin/µg 
DNA) (n  =  5) in comparison with rat pancreatic islets 
(1,460.7 ± 268.1 ng insulin/µg DNA) (Figure 6b). Moreover, 
endogenous expression of Pdx1, Neurogenin3 and MafA 
transcription factors at protein level was not detected at the 

end of reprogramming period (day 14) (Supplementary 
Figure S3).

Discussion

Here, we report that pancreatic cells of exocrine origin can be 
transdifferentiated into insulin-producing cells using synthetic 
mRNAs encoding key transcription regulators of β-cell differ-
entiation. To our knowledge, this is the first demonstration of 

Figure 5  Gene expression profiles of reprogrammed cells were analyzed by quantitative reverse transcription polymerase chain 
reaction at the end of reprogramming (day 10—blue bars) and at 4 days after the last transfection with synthetic mRNAs (day 
14—green bars). AR42J cells were treated with all three synthetic mRNAs (Pdx1, Neurogenin3, and MafA) for 10 days at a dose of 500 ng of 
each mRNA/ml media. Cells were either cultured in serum-containing medium with mRNA transfection (treatment group A), cultured in serum-
free medium with mRNA transfection (treatment group B), or pretreated for 3 days with 5-Aza-2′-deoxycytidine and cultured in serum-free 
medium with mRNA transfection (treatment group C). The gene expression profiles were compared with those of native rat pancreatic islets 
(control group RI) and of nontransfected AR42J cells that were either cultured in serum-containing medium (control group D), or pretreated 
for 3 days with 5-Aza-2′-deoxycytidine and cultured in serum-free medium (control group E). Endogenous expressions of Pdx1, Neurogenin3, 
and MafA genes were determined using reverse primers specific for the 3′UTR (untranslated region) of each particular gene, which were 
not specific for synthetic mRNAs. The expression levels are presented relative to gene expression of rat pancreatic islets (normalized to 1). 
Values are shown as mean ± standard deviation (n = 5). Statistical analysis was performed using a two-tailed unpaired Student’s t-test with 
Holm–Bonferroni correction. Samples were compared with nontransfected AR42J cells cultured in serum-containing medium (control group 
D). Asterisks indicate statistical significance: *P < 0.05, **P < 0.01, ***P < 0.001.
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direct reprogramming of pancreatic exocrine cells into insu-
lin-producing cells using a nonintegrative approach involving 
intracellular delivery of synthetic mRNAs. Although the repro-
grammed cells were not fully equivalent to primary β-cells, 
they shared important similarities. The reprogrammed cells 
produced mature insulin and its byproduct C-peptide by 

using the neuroendocrine endoproteases Pcsk1 and Pcsk2 
that process the prohormone peptide proinsulin. Moreover, 
the reprogrammed cells expressed key elements of glucose-
sensing mechanisms—including the glycolytic enzyme 
glucokinase, glucose transporter isoform-2 (Glut2), and 
the ATP-sensitive potassium channel subunits Sur1 and 

Figure 6  Reprogramming efficiency and determination of insulin secretion capacity and insulin content. (a) Reprogramming efficiency 
was evaluated by immunofluorescence staining for the exocrine marker amylase (Amy) and the β-cell marker C-peptide (C-pep). Cell nuclei 
(DNA) are stained blue with 2-(4-Amidinophenyl)-6-indolecarbamidine dihydrochloride. Scale bars = 200 μm. (b) Glucose-stimulated insulin 
secretion of cell samples was determined by sequential 60-minute incubations at low (2.5 mmol/l) and high (20 mmol/l) glucose concentrations. 
The effect of depolarizing agent KCl on insulin secretion was determined by sequential 60-minute incubations at low (2.5 mmol/l) glucose 
concentration followed by low (2.5 mmol/l) glucose concentration with 30 mmol/l KCl. Insulin content in cell lysates was determined following 
KCl stimulated insulin secretion capacity test. Values are shown as mean ± standard deviation (n = 5). n.d., not detected. Statistical analysis 
was performed using a two-tailed unpaired Student’s t-test. Asterisks indicate statistical significance: *P < 0.05, **P < 0.01.
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Kir6.2—which are required to properly sense blood glu-
cose level and for subsequent insulin secretion. Finally, the 
reprogrammed cells responded to glucose challenge with 
increased insulin secretion, although at a lower rate than 
the primary β-cells. However, the reprogrammed cells were 
not fully equivalent to primary β-cells, as shown by the low 
stimulatory index and the inability to increase insulin secre-
tion upon membrane depolarization by KCl. Moreover, insulin 
content of reprogrammed cells was significantly lower in com-
parison with rat pancreatic islets. The immature phenotype of 
reprogrammed cells can be explained by insufficient expres-
sion of the transcription factors and of the genes responsible 
for the complex β-cell-specific expression program.

Cell transdifferentiation is characterized by suppression 
of the original expression program and induction of a newly 
acquired one,36 which requires the expression of key regu-
latory transcription factors. Thus, reprogramming efficiency 
could potentially be improved by inducing the expressions of 
additional transcription factors. We propose that the transcrip-
tion factors Nkx6.1, Pax6, and Isl1 are the most promising 
candidates for improving reprogramming efficiency, since their 
expressions were greatly limited or absent in our transdifferen-
tiated cells. Each of these three transcription factors is active 
during the later phase of β-cell differentiation, and in mature 
β-cells.37–39 Nkx6.1, Pax6, and Isl1 reportedly have positive 
effects on expressions of the insulin gene itself and of several 
key regulators of glucose-stimulated insulin secretion.40–42

Induction of the Nkx6.1 transcription factor may have been 
limited by possible repression by the exocrine cell-specific 
transcription factors Ptf1a and RbpJ.43,44 Although, we only 
rarely observed amylase and C-peptide double-positive cells, 
we cannot exclude that the reprogrammed cells may have per-
sistently expressed Ptf1a and RbpJ. On the other hand, Pax6 
and Isl1, are downstream targets of the Neurogenin3 transcrip-
tion factor.39,45 Thus, it seems that the ectopic Neurogenin3 
expression by reprogrammed cells was insufficient to induce 
endogenous expressions of Pax6 and Isl1. The limited Pax6 
expression by our reprogrammed cells is in agreement with 
previous findings in insulin-secreting cells derived from human 
pancreatic ductal cells.46 That study also revealed insufficient 
induction of endogenous Pax6 expression upon reprogram-
ming induced by Pdx1, Neurogenin3, and MafA, and reported 
that ectopic Pax6 expression was required to enhance the 
expressions of insulin and other β-cell functional genes.

The epigenetic status of the transdifferentiated cells may 
have also influenced the induction of endogenous gene 
expression. Activation of gene expression during cellular dif-
ferentiation requires remodeling of the gene-specific DNA 
chromatin structure from transcriptionally inactive hetero-
chromatin into active euchromatin.47 Thus, inappropriate 
chromatin remodeling can lead to insufficient induction of 
endogenous gene expression. Our results showed that the 
chromatin modifying agent 5-Aza-2′-deoxycytidine positively 
impacted cellular reprogramming and upregulation of gene 
expression. However, 5-Aza-2′-deoxycytidine only modulates 
DNA methylation status, not any other possible epigenetic 
modifications.

Gene expression can also be limited by repressive modi-
fications of histone proteins that substantially impact chro-
matin structure. For example, the trimethylation of lysine 

27 at histone H3 (H3K27) induces formation of an inactive 
heterochromatin structure.47,48 A recent study comparing 
histone modifications between pancreatic exocrine cells 
and β-cells demonstrated one such H3K27 repressive 
modification of the Nkx6.1, Pax6, and Isl1 genes in pan-
creatic exocrine cells.48 Furthermore, this same repressive 
H3K27 modification was detected in genes important for 
β-cell function following the in vitro differentiation of embry-
onic stem cells into insulin-producing cells.49 The Glp1r 
and Urocortin3 genes were among those marked with a 
repressive modification, and were also inefficiently induced 
in our reprogrammed cells. The same previous work dem-
onstrated the importance of proper chromatin modifications 
on gene expression, by showing the effect of an in vivo ter-
minal differentiation in embryonic stem cell-derived cells. 
The in vitro terminally differentiated insulin-producing cells 
were associated with repressive histone modifications and 
with insufficient induction of genes important for β-cell 
function. On the other hand, in vivo terminal differentiation 
of embryonic stem cell-derived cells into insulin-producing 
cells induced permissive histone modifications and signifi-
cantly higher expressions of the β-cell functional genes.49

Our reprogrammed insulin-producing cells did not resemble 
the so-called polyhormonal cells that produce insulin along 
with the other pancreatic hormones glucagon and soma-
tostatin.29 Therefore, we assume that our reprogramming 
protocol induced transdifferentiation directly to the β-like cell 
phenotype. During reprogramming, we observed substantial 
induction of the Pax4 transcription factor, which is transiently 
overexpressed during the early phase of pancreatic endo-
crine cells differentiation.50 Pax4 restricts endocrine cell dif-
ferentiation into the β- and δ-cell lineages via repression of 
the α-cell-specific transcription factor Arx.51 Moreover, Pax4 
and the transcription factor Nkx2.2 further specify the differ-
entiation of endocrine progenitors into the β-cell phenotype.52 
While the endogenous expression of Pax4 transcription fac-
tor was induced following the reprogramming period, Nkx2.2 
is naturally expressed by AR42J cells, and its expression was 
only slightly upregulated by the reprogramming factors. Fur-
ther specification of AR42J cells into β-like cell phenotype 
could be promoted by the Pdx1 transcription factor that acti-
vates genes essential for β-cell identity and represses those 
associated with α-cell identity. Therefore, the ectopic over-
expression of Pdx1 transcription factor, that is also naturally 
expressed by AR42J cells, can further stimulate the repro-
gramming of AR42J cells into β-like cell lineage. In addition to 
the transcription factors that are active during the early phase 
of β-cell differentiation, we also observed slight induction of 
the β-cell maturation marker Urocortin3 (ref. 35) at the end 
of the reprogramming period. Therefore, we assume that our 
reprogrammed insulin-producing cells resemble partially dif-
ferentiated immature β-cells. This immature phenotype could 
be caused by insufficient induction of additional transcrip-
tion factors such as MafA, that are responsible for the final 
maturation and proper function of pancreatic β-cells. Limited 
endogenous expression of MafA, which was significantly 
under-expressed in comparison with the native β-cells, can 
be explained by insufficient induction of Nkx6.1, Pax6, and 
Isl1 transcription factors that all positively regulate the MafA 
expression.33,36–38
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Previous studies have reported the reprogramming of exo-
crine cells into insulin-producing cells using adenoviral vec-
tors.11–15,36 Although adenoviral vectors are highly efficient in 
the delivery and expression of introduced genes, the applica-
tion of this process is limited by the potential for insertional 
mutagenesis,18,19 and by the prolonged persistence in infected 
cells that does not allow modulation of the reprogramming 
process.46 The presently described mRNA-based repro-
gramming resolves all of these issues. The mRNA chemi-
cal structure eliminates the risk of insertional mutagenesis 
or any other effect on cellular DNA. Moreover, the intracel-
lular stability of mRNA is limited by permanent endogenous 
degradation, such that synthetic mRNA establishes only 
transient expression of the encoded gene. The use of syn-
thetic mRNAs to induce temporal and sequential expression 
of different combinations of reprogramming factors allows to 
mimic the natural cellular differentiation process, in which 
some transcription factors are expressed only transiently 
while others are expressed over longer period of time.39,44,45 
Moreover, appropriate transcription factor stoichiometry can 
be achieved at different stages of cellular reprogramming.

On the other hand, disadvantages of mRNA-based repro-
gramming may include the need for repeated transfection and 
the potential cytotoxic effects of the synthetic mRNA. However, 
these issues could potentially be overcome by mRNA sequence 
optimization to improve the stability and translation efficiency, 
consequently reducing the required dose of mRNA.53 Elimina-
tion of the cytotoxic effects of synthetic mRNA may also be 
promoted by high-performance liquid chromatography purifi-
cation. These cytotoxic effects are mainly caused by aberrant 
byproducts formed during in vitro mRNA synthesis.54,55 Highly 
efficient high-performance liquid chromatography purification 
can substantially reduce the amount of such byproducts in 
the final mRNA preparation, consequently eliminating cyto-
toxic effects and activation of the innate immune response 
by transfected cells.55 It is worth noting that we did not test 
any of these possible improvements of synthetic mRNA in our 
present study. We only used the vaccinia virus B18R recep-
tor of type I interferons to eliminate innate immune response 
activation. B18R application allowed us to achieve long-term 
repeated transfection of synthetic mRNA and to eliminate its 
cytotoxic effects. However, the addition of sequence optimiza-
tion and high-performance liquid chromatography purification 
to our protocol would likely further improve the reprogramming 
efficiency and reduce the negative side effects.

Our present results demonstrate that using synthetic 
mRNAs encoding pancreatic transcription factors to repro-
gram pancreatic exocrine cells into insulin-producing cells, 
could represent a safe and promising approach for cell-based 
diabetes therapy. However, there remains a need for further 
optimization of the synthetic mRNAs, the culture conditions, 
and the combination of transcription factors to achieve effi-
cient reprogramming into insulin-producing cells that are 
functionally equivalent to the native β-cells.

Materials and Methods

Construction of DNA Templates. Figure  1a shows the 
scheme for the production of DNA template constructs 
and subsequent RNA synthesis. All oligonucleotides were 

synthesized by Integrated DNA Technologies (IDT, Coralville, 
IA). The Supplementary Note S1 includes the oligonucle-
otide sequences used for DNA template construction. The 
Pdx1, Neurogenin3, and MafA coding regions were derived 
by reverse transcription of mRNA isolated from primary rat 
pancreatic islet cells, using gene-specific primers (Supple-
mentary Table S1) and the AccuScript High-Fidelity 1st 
Strand cDNA Synthesis Kit (Agilent, Santa Clara, CA), follow-
ing the manufacturer’s instructions. Polymerase chain reac-
tion (PCR) amplification of cDNA was performed using the 
same gene-specific primers and Q5 High-Fidelity DNA Poly-
merase (New England Biolabs, Ipswich, MA), following the 
manufacturer’s instructions. DNA template constructs were 
prepared using the pAcGFP1-N3 vector (Clontech, Mountain 
View, CA) along with the gBlock gene fragment (IDT) that 
contains sequences encoding the T7 RNA polymerase pro-
moter site, the 5′ untranslated region (UTR) of the rat β-globin 
gene, two PstI cloning sites, and the 3′UTR of the human 
β-globin gene. The gBlock gene fragment was inserted into 
the BamHI and NheI (New England Biolabs) sites of the 
linearized pAcGFP1-N3 vector by homologous recombina-
tion, using the In-Fusion PCR cloning kit (Clontech), follow-
ing the manufacturer’s instructions. Then, the pAcGFP1-N3 
vector with the integrated gBlock gene fragment was further 
linearized using the PstI restriction enzyme (New England 
Biolabs). The In-Fusion PCR cloning kit was then used to 
insert cDNA of each transcription factor coding region into 
the PstI-linearized vector. To verify the DNA sequence of the 
prepared vectors, we used the BigDye Terminator v3.1 Cycle 
Sequencing Kit with a 3130 Genetic Analyzer (Life Technolo-
gies, Grand Island, NY).

The NheI restriction enzyme (New England Biolabs) was 
used to excise a DNA template encoding the T7 RNA poly-
merase promoter site, the 5′UTR of the rat β-globin gene, the 
transcription factor open reading frame, and the 3′UTR of the 
human β-globin gene from the vector. This excised fragment 
was purified by agarose gel electrophoresis and the QIAquick 
Gel Extraction Kit (QIAGEN, Valencia, CA). Isolated DNA 
fragment was PCR amplified with DNA template-specific 
primers (Supplementary Table S2) and Q5 High-Fidelity 
DNA Polymerase (New England Biolabs), following the man-
ufacturer’s instructions. The final PCR product was purified 
as described above and quantified by Qubit fluorometer (Life 
Technologies).

Synthesis of mRNA. RNA was synthesized using a T7 
mScript Standard mRNA Production System (CELLSCRIPT, 
Madison, WI), with 20-μl reactions containing 2 μg of puri-
fied DNA template. We used a custom ribonucleotide blend 
comprising 3′-0-Me-m7G(5′)ppp(5′)G ARCA cap analog, 
pseudouridine triphosphate, 5-methylcytidine triphosphate 
(TriLink Biotechnologies, San Diego, CA), adenosine triphos-
phate, and guanosine triphosphate (New England Biolabs). 
The final reaction mixture contained 6 mmol/l ARCA cap 
analog, 3.0 mmol/l adenosine triphosphate, and 1.5 mmol/l 
of each the other nucleotides. Reactions were incubated for 
1 hour at 37 °C and treated with DNase following the manu-
facturer’s instructions. Next, RNA was purified via ammonium 
acetate precipitation, and treated with Antarctic phosphatase 
(New England Biolabs) for 2 hours at 37 °C to remove residual 
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5′-triphosphates. Treated RNA was again purified by ammo-
nium acetate precipitation and polyadenylated for 2 hours at 
37 °C using the Poly(A) Polymerase, Yeast (Affymetrix, Santa 
Clara, CA) according to the manufacturer’s instructions. 
Finally, the polyadenylated RNA was purified with the MEGA-
clear Transcription Clean-Up Kit (Life Technologies), diluted 
with RNAsecure Resuspension Solution (Life Technologies), 
and quantified by Qubit fluorometer. Synthetic mRNA quality 
was assessed using the Agilent RNA 6000 Nano Kit with an 
Agilent 2100 Bioanalyzer (Agilent).

Cell culture. The rat pancreatic exocrine cell line AR42J 
(Sigma-Aldrich) was cultured in Ham’s F-12K medium (Life 
Technologies) containing 15% fetal bovine serum (Sigma-
Aldrich) and 1% GlutaMAX supplement (Life Technologies). 
Cells were plated at 1 × 104 cells per well in 96-well-culture 
tissue dishes (Greiner Bio-One, Frickenhausen, Germany) 
on an extracellular matrix derived from the human bladder 
carcinoma cell line HTB-9, which was prepared as previously 
reported with a slight modification:

HTB-9 cells (American Type Culture Collection, Manas-
sas, VA) were cultured in 96-well plates with Roswell Park 
Memorial Institute medium (Sigma-Aldrich) containing 10% 
fetal bovine serum and 1% GlutaMAX supplement. Cells 
were grown to confluence and cultured for an additional 3 
days to allow extracellular matrix deposition. To decellularize 
the culture wells while leaving the intact extracellular matrix 
attached to the well surface, media was aspirated and each 
well was incubated for 5 minutes at 37 °C with 100 μl distilled 
water containing 20 mmol/l NH4OH and 0.1% Triton X-100 
(Sigma-Aldrich). The NH4OH solution was then triturated four 
times and aspirated. Plates were inspected under micro-
scope to ensure cell removal, and were washed five times 
with 37 °C phosphate-buffered saline (PBS) prior to seeding 
of AR42J cells.

During cell reprogramming, the AR42J cells were cul-
tured in either serum-containing or serum-free Ham’s F-12K 
medium (Figure 4a). Serum-free Ham’s F-12K medium was 
supplemented with 0.5% human serum albumin, 1% insulin-
transferrin-selenium, 1% Eagle’s Minimum Essential Medium 
(MEM) nonessential amino acids (Life Technologies), 50 ng/ml 
epidermal growth factor, 10 ng/ml fibroblast growth factor 2, and 
80 ng/ml insulin-like growth factor (PeproTech, Rocky Hill, NJ). 
Cell samples pretreated with 5-Aza-2′-deoxycytidine were cul-
tured in serum-containing Ham’s F-12K medium supplemented 
with 500 nmol/l 5-Aza-2′-deoxycytidine diluted in dimethyl sulf-
oxide (Sigma-Aldrich) for 3 days prior to reprogramming.

RNA transfection. RNA transfection was carried out using 
Lipofectamine MessengerMAX mRNA Transfection Reagent 
(Life Technologies). With Opti-MEM basal media (Life Tech-
nologies), synthetic mRNA was diluted to a concentra-
tion of 20 ng/μl and Lipofectamine MessengerMAX mRNA 
Transfection Reagent was diluted 33×. Diluted mRNA and 
transfection reagent were pooled 1:1 and incubated at room 
temperature for 5 minutes before being dispensed to the 
culture media. RNA transfections were performed in either 
serum-containing or serum-free Ham’s F-12K medium, both 
supplemented with 200 ng/ml B18R interferon inhibitor (eBio-
science, San Diego, CA).

Immunostaining. Cells were washed in Hank’s Balanced 
Salt Solution (Sigma-Aldrich) and fixed in 4% paraformalde-
hyde for 15 minutes. Fixed cells were washed with PBS and 
blocked/permeabilized by a 30-minute incubation at room 
temperature with PBS containing 5% donkey serum (Sigma-
Aldrich) and 0.3% Triton X-100 (Sigma-Aldrich). The cells 
were then stained in blocking buffer with primary antibodies 
for 30 minutes at 37 °C, washed, and then stained with sec-
ondary antibodies for 30 minutes at 37 °C with protection from 
light. Cell nuclei were stained for 15 minutes at room temper-
ature with NucBlue Fixed Cell ReadyProbes Reagent (Life 
Technologies) diluted 1:10 in PBS. The following primary anti-
bodies were used: rabbit anti-Pdx1 (1:200), rabbit anti-MafA 
(1:200), rabbit anti-insulin (1:300), mouse anti-C-peptide 
(1:100), mouse anti-glucagon (1:200) (Abcam, Cambridge, 
United Kingdom), mouse anti-Neurogenin3 (1:800), mouse 
anti-Pdx1 (1:400) (Developmental Studies Hybridoma Bank, 
Iowa City, IA), and rabbit anti-α-amylase (1:200) (Sigma-
Aldrich). The secondary antibodies were donkey anti-mouse 
or donkey anti-rabbit IgG Alexa Fluor 555 and/or Alexa Fluor 
647 (Life Technologies) at a 1:400 dilution. Images were 
acquired with the EVOS FL Auto Cell Imaging System (Life 
Technologies). Positive cells was quantified from at least ten 
visual fields (with 100× magnification) using the EVOS FL 
automatic cell counting tool.

Gene expression analysis. Total RNA was isolated using 
the RNeasy Mini Plus kit (Qiagen, Valencia, CA). The RNA 
was then treated for 1 hour at 37 °C with Turbo DNase (Life 
Technologies), repurified using RNA Clean & Concentrator-5 
(Zymo Research, Irvine, CA), and quantitated using a Qubit 
fluorometer. Next, 500 ng of isolated RNA was reverse-tran-
scribed at 50 °C for 60 minutes with random hexamer and 
anchored oligo dT primers (5:1 ratio) using the Transcriptor 
First Strand cDNA Synthesis Kit (Roche, Rotkreuz, Switzer-
land) following the manufacturer’s instructions. The gener-
ated cDNAs were analyzed by PCR using FastStart Universal 
SYBR Green Master Rox (Roche) with gene-specific prim-
ers (Integrated DNA Technologies) for each detected mRNA 
(Supplementary Table S3). PCR started with 10 minutes at 
95 °C, which was followed by 40 cycles of 15 seconds at 95 
°C (denaturation) and 1 minute at 62 °C (annealing/exten-
sion). Reactions and data analysis were carried out using 
a ViiA 7 Real-Time PCR System (Life Technologies). All 
samples were assayed in triplicates. Fold-changes in gene 
expression were determined using the ΔΔCT method, with 
normalization to β-actin expression.

Apoptosis assay. To test the synthetic mRNA for cytotoxic 
effects we used CellEvent Caspase-3/7 Green ReadyProbes 
Reagent (Life Technologies), following the manufacturer’s 
instructions. AR42J cells were cultured in a 96-well plate, and 
transfected twice for 2 days with a mixture of Pdx1, Ngn3, and 
MafA synthetic mRNAs (1:1:1 ratio) at a total dose of 1–2 μg/ml.  
On the third day, we analyzed induction of apoptosis by the 
synthetic mRNA. CellEvent Caspase-3/7 Green Reagent 
and NucBlue Live ReadyProbes Reagent (Life Technologies) 
were added to each well and incubated at 37 °C for 30 min-
utes in a CO

2 incubator. Next, the cell samples were washed 
three times with PBS, and images were acquired using an 
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EVOS FL Auto Cell Imaging System (Life Technologies). The 
number of apoptotic cells and total cell number were deter-
mined from at least 10 visual fields (at 100× magnification) 
using the EVOS FL automatic cell counting tool.

Glucose-stimulated insulin secretion assay. Cell samples 
were cultured in 24-well plates and then washed three times 
with 0.5 ml Krebs solution (128 mmol/l NaCl, 5 mmol/l KCl, 
2.7 mmol/l CaCl2, 1.2 mmol/l MgCl2, 1 mmol/l Na2HPO4, 
1.2 mmol/l KH2PO4, 5 mmol/l NaHCO3, and 10 mmol/l 4-(2- 
hydroxyethyl)-1-piperazineethanesulfonic acid) containing 
0.1% human serum albumin and 2.5 mmol/l glucose (low-glu-
cose solution). To normalize insulin secretion, the cell sam-
ples were then preincubated for 1 hour in the low-glucose 
solution. Then the low-glucose solution was refreshed and 
the cell samples were again incubated for 1 hour. A 250-µl 
sample of the low-glucose solution supernatant was aspired, 
centrifuged at 10,000 g for 5 minutes at 4 °C, and then imme-
diately frozen and stored at −80 °C until analysis. The cell 
samples were washed three times with 0.5 ml of Krebs-Ringer 
solution containing 20 mmol/l glucose (high-glucose solution) 
or 2.5 mmol/l glucose and 30 mmol/l KCl (high KCl solution), 
and incubated for an additional hour. A 250-µl sample of the 
high-glucose solution or high KCl solution supernatant was 
aspired, centrifuged at 10,000 g for 5 minutes at 4 °C, and 
immediately frozen and stored at −80 °C until analysis.

For analysis, the cells were lysed in 0.3 ml RIPA buffer 
(Sigma-Aldrich) and DNA content was determined using a 
Qubit fluorometer. In samples from the glucose-stimulated 
insulin secretion assay and cell lysates, insulin content was 
determined using the Insulin 125I RIA kit (MP Biomedicals, 
Orangeburg, NY) according to the manufacturer’s instruc-
tions. All incubation steps were performed at 37 °C in a CO

2 
incubator, and all solutions were equilibrated to 37 °C prior 
to use.

Statistical analysis. Statistical analyses were performed 
using a two-tailed unpaired Student’s t-test with Holm–
Bonferroni correction using GraphPad software. P values 
of <0.05 were considered to indicate statistically significant 
differences. The numbers of independent experiments per-
formed are indicated in the text. Mean values are presented 
with standard deviations in the format (mean ± standard 
deviation).

Supplementary material

Figure S1. Evaluation of the effect of recombinant B18R in-
terferon inhibitor on prevention of apoptosis upon repeated 
transfection of exocrine cells with synthetic mRNAs.
Figure S2. Transcription factors co-expression after repeated 
daily transfections.
Figure S3. Endogenous transcription factors co-expression 
after repeated daily transfections.
Table S1. Primers used for reverse-transcription and PCR 
amplification of transcription factors cDNAs and PCR amplifi-
cation of DNA templates used for in vitro transcription.
Table S2. Primers used for PCR amplification of DNA tem-
plates for in vitro transcription.

Table S3. Primers used for qRT-PCR gene expression analy-
sis.
Note S1. Oligonucleotide sequences of DNA constructs and 
templates used for in vitro transcription.
Supplementary Information

Acknowledgments T.K. managed the project, designed the 
experiments, executed the experiments, analyzed and inter-
preted the data, and wrote the paper. I.L. and S.L. executed 
the experiments and analyzed the data. L.K. executed the 
experiments. F.S. interpreted the data and wrote the paper. 
This work was supported by an IGA grant (project reference 
number NT12190-5/2011) from the Ministry of Health, Czech 
Republic. We thank Milan Jirsa for discussions and critical 
reading of this manuscript and Jan Kriz for providing samples 
of rat pancreatic islets. The authors declare no conflict of 
interest.

	 1.	 Shapiro, AM, Ricordi, C, Hering, BJ, Auchincloss, H, Lindblad, R, Robertson, RP et al. 
(2006). International trial of the Edmonton protocol for islet transplantation. N Engl J Med 
355: 1318–1330.

	 2.	 Kroon, E, Martinson, LA, Kadoya, K, Bang, AG, Kelly, OG, Eliazer, S et al. (2008). 
Pancreatic endoderm derived from human embryonic stem cells generates glucose-
responsive insulin-secreting cells in vivo. Nat Biotechnol 26: 443–452.

	 3.	 Pagliuca, FW, Millman, JR, Gürtler, M, Segel, M, Van Dervort, A, Ryu, JH et al. (2014). 
Generation of functional human pancreatic β cells in vitro. Cell 159: 428–439.

	 4.	 Ben-David, U, Arad, G, Weissbein, U, Mandefro, B, Maimon, A, Golan-Lev, T et al. (2014). 
Aneuploidy induces profound changes in gene expression, proliferation and tumorigenicity 
of human pluripotent stem cells. Nat Commun 5: 4825.

	 5.	 Peterson, SE and Loring, JF (2014). Genomic instability in pluripotent stem cells: 
implications for clinical applications. J Biol Chem 289: 4578–4584.

	 6.	 Vierbuchen, T, Ostermeier, A, Pang, ZP, Kokubu, Y, Südhof, TC and Wernig, M (2010). 
Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463: 
1035–1041.

	 7.	 Song, K, Nam, YJ, Luo, X, Qi, X, Tan, W, Huang, GN et al. (2012). Heart repair by 
reprogramming non-myocytes with cardiac transcription factors. Nature 485: 599–604.

	 8.	 Sekiya, S and Suzuki, A (2011). Direct conversion of mouse fibroblasts to hepatocyte-like 
cells by defined factors. Nature 475: 390–393.

	 9.	 Takahashi, K, Tanabe, K, Ohnuki, M, Narita, M, Ichisaka, T, Tomoda, K et al. (2007). 
Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 
131: 861–872.

	10.	 Takahashi, K and Yamanaka, S (2006). Induction of pluripotent stem cells from mouse 
embryonic and adult fibroblast cultures by defined factors. Cell 126: 663–676.

	11.	 Akinci, E, Banga, A, Greder, LV, Dutton, JR and Slack, JM (2012). Reprogramming of 
pancreatic exocrine cells towards a beta (β) cell character using Pdx1, Ngn3 and MafA. 
Biochem J 442: 539–550.

	12.	 Lima, MJ, Docherty, HM, Chen, Y and Docherty, K (2012). Efficient differentiation of AR42J 
cells towards insulin-producing cells using pancreatic transcription factors in combination 
with growth factors. Mol Cell Endocrinol 358: 69–80.

	13.	 Banga, A, Akinci, E, Greder, LV, Dutton, JR and Slack, JM (2012). In vivo reprogramming 
of Sox9+ cells in the liver to insulin-secreting ducts. Proc Natl Acad Sci USA 109: 
15336–15341.

	14.	 Zhou, Q, Brown, J, Kanarek, A, Rajagopal, J and Melton, DA (2008). In vivo 
reprogramming of adult pancreatic exocrine cells to beta-cells. Nature 455: 627–632.

	15.	 Banga, A, Greder, LV, Dutton, JR and Slack, JM (2014). Stable insulin-secreting ducts 
formed by reprogramming of cells in the liver using a three-gene cocktail and a PPAR 
agonist. Gene Ther 21: 19–27.

	16.	 Cavazzana-Calvo, M, Payen, E, Negre, O, Wang, G, Hehir, K, Fusil, F et al. (2010). 
Transfusion independence and HMGA2 activation after gene therapy of human β-
thalassaemia. Nature 467: 318–322.

	17.	 Hacein-Bey-Abina, S, Von Kalle, C, Schmidt, M, McCormack, MP, Wulffraat, N, Leboulch, P 
et al. (2003). LMO2-associated clonal T cell proliferation in two patients after gene therapy 
for SCID-X1. Science 302: 415–419.

	18.	 Stephen, SL, Montini, E, Sivanandam, VG, Al-Dhalimy, M, Kestler, HA, Finegold, M et al. 
(2010). Chromosomal integration of adenoviral vector DNA in vivo. J Virol 84: 9987–9994.

	19.	 Stephen, SL, Sivanandam, VG and Kochanek, S (2008). Homologous and heterologous 
recombination between adenovirus vector DNA and chromosomal DNA. J Gene Med 10: 
1176–1189.

	20.	 Yu, J, Hu, K, Smuga-Otto, K, Tian, S, Stewart, R, Slukvin, II et al. (2009). Human induced 
pluripotent stem cells free of vector and transgene sequences. Science 324: 797–801.

	21.	 Zhou, H, Wu, S, Joo, JY, Zhu, S, Han, DW, Lin, T et al. (2009). Generation of induced 
pluripotent stem cells using recombinant proteins. Cell Stem Cell 4: 381–384.



Molecular Therapy—Nucleic Acids

Reprogramming Into Insulin-producing Cells
Koblas et al.

12

	22.	 Seki, T, Yuasa, S, Oda, M, Egashira, T, Yae, K, Kusumoto, D et al. (2010). Generation of 
induced pluripotent stem cells from human terminally differentiated circulating T cells. Cell 
Stem Cell 7: 11–14.

	23.	 Miyoshi, N, Ishii, H, Nagano, H, Haraguchi, N, Dewi, DL, Kano, Y et al. (2011). 
Reprogramming of mouse and human cells to pluripotency using mature microRNAs. Cell 
Stem Cell 8: 633–638.

	24.	 Warren, L, Manos, PD, Ahfeldt, T, Loh, YH, Li, H, Lau, F et al. (2010). Highly efficient 
reprogramming to pluripotency and directed differentiation of human cells with synthetic 
modified mRNA. Cell Stem Cell 7: 618–630.

	25.	 Schlaeger, TM, Daheron, L, Brickler, TR, Entwisle, S, Chan, K, Cianci, A et al. (2015). A 
comparison of non-integrating reprogramming methods. Nat Biotechnol 33: 58–63.

	26.	 Longnecker, DS, Lilja, HS, French, J, Kuhlmann, E and Noll, W (1979). 
Transplantation of azaserine-induced carcinomas of pancreas in rats. Cancer Lett 7: 
197–202.

	27.	 Rosewicz, S, Riecken, EO and Wiedenmann, B (1992). The amphicrine pancreatic cell line 
AR42J: a model system for combined studies on exocrine and endocrine secretion. Clin 
Investig 70: 205–209.

	28.	 Zhou, J, Wang, X, Pineyro, MA and Egan, JM (1999). Glucagon-like peptide 1 and 
exendin-4 convert pancreatic AR42J cells into glucagon- and insulin-producing cells. 
Diabetes 48: 2358–2366.

	29.	 Bruin, JE, Erener, S, Vela, J, Hu, X, Johnson, JD, Kurata, HT et al. (2014). Characterization 
of polyhormonal insulin-producing cells derived in vitro from human embryonic stem cells. 
Stem Cell Res 12: 194–208.

	30.	 Karikó, K and Weissman, D (2007). Naturally occurring nucleoside modifications suppress 
the immunostimulatory activity of RNA: implication for therapeutic RNA development. Curr 
Opin Drug Discov Devel 10: 523–532.

	31.	 Barber, GN (2001). Host defense, viruses and apoptosis. Cell Death Differ 8: 113–126.
	32.	 Kormann, MS, Hasenpusch, G, Aneja, MK, Nica, G, Flemmer, AW, Herber-Jonat, S et al. 

(2011). Expression of therapeutic proteins after delivery of chemically modified mRNA in 
mice. Nat Biotechnol 29: 154–157.

	33.	 Nallagatla, SR, Toroney, R and Bevilacqua, PC (2008). A brilliant disguise for self RNA: 
5’-end and internal modifications of primary transcripts suppress elements of innate 
immunity. RNA Biol 5: 140–144.

	34.	 Lima, MJ, Muir, KR, Docherty, HM, Drummond, R, McGowan, NW, Forbes, S et al. (2013). 
Suppression of epithelial-to-mesenchymal transitioning enhances ex vivo reprogramming 
of human exocrine pancreatic tissue toward functional insulin-producing β-like cells. 
Diabetes 62: 2821–2833.

	35.	 Blum, B, Hrvatin, SS, Schuetz, C, Bonal, C, Rezania, A and Melton, DA (2012). Functional 
beta-cell maturation is marked by an increased glucose threshold and by expression of 
urocortin 3. Nat Biotechnol 30: 261–264.

	36.	 Li, W, Nakanishi, M, Zumsteg, A, Shear, M, Wright, C, Melton, DA et al. (2014). In vivo 
reprogramming of pancreatic acinar cells to three islet endocrine subtypes. Elife 3:  
e01846.

	37.	 Schaffer, AE, Taylor, BL, Benthuysen, JR, Liu, J, Thorel, F, Yuan, W et al. (2013). Nkx6.1 
controls a gene regulatory network required for establishing and maintaining pancreatic 
Beta cell identity. PLoS Genet 9: e1003274.

	38.	 Sander, M, Neubüser, A, Kalamaras, J, Ee, HC, Martin, GR and German, MS (1997). 
Genetic analysis reveals that PAX6 is required for normal transcription of pancreatic 
hormone genes and islet development. Genes Dev 11: 1662–1673.

	39.	 Schwitzgebel, VM, Scheel, DW, Conners, JR, Kalamaras, J, Lee, JE, Anderson, DJ et 
al. (2000). Expression of neurogenin3 reveals an islet cell precursor population in the 
pancreas. Development 127: 3533–3542.

	40.	 Taylor, BL, Liu, FF and Sander, M (2013). Nkx6.1 is essential for maintaining the functional 
state of pancreatic beta cells. Cell Rep 4: 1262–1275.

	41.	 Gosmain, Y, Katz, LS, Masson, MH, Cheyssac, C, Poisson, C and Philippe, J (2012). Pax6 
is crucial for β-cell function, insulin biosynthesis, and glucose-induced insulin secretion. 
Mol Endocrinol 26: 696–709.

	42.	 Ediger, BN, Du, A, Liu, J, Hunter, CS, Walp, ER, Schug, J et al. (2014). Islet-1 Is essential 
for pancreatic β-cell function. Diabetes 63: 4206–4217.

	43.	 Schaffer, AE, Freude, KK, Nelson, SB and Sander, M (2010). Nkx6 transcription factors 
and Ptf1a function as antagonistic lineage determinants in multipotent pancreatic 
progenitors. Dev Cell 18: 1022–1029.

	44.	 Arda, HE, Benitez, CM and Kim, SK (2013). Gene regulatory networks governing 
pancreas development. Dev Cell 25: 5–13.

	45.	 White, P, May, CL, Lamounier, RN, Brestelli, JE and Kaestner, KH (2008). Defining 
pancreatic endocrine precursors and their descendants. Diabetes 57: 654–668.

	46.	 Lee, J, Sugiyama, T, Liu, Y, Wang, J, Gu, X, Lei, J et al. (2013). Expansion and conversion 
of human pancreatic ductal cells into insulin-secreting endocrine cells. Elife 2: e00940.

	47.	 Chen, T and Dent, SY (2014). Chromatin modifiers and remodellers: regulators of cellular 
differentiation. Nat Rev Genet 15: 93–106.

	48.	 van Arensbergen, J, García-Hurtado, J, Moran, I, Maestro, MA, Xu, X, Van de Casteele, M 
et al. (2010). Derepression of Polycomb targets during pancreatic organogenesis allows 
insulin-producing beta-cells to adopt a neural gene activity program. Genome Res 20: 
722–732.

	49.	 Xie, R, Everett, LJ, Lim, HW, Patel, NA, Schug, J, Kroon, E et al. (2013). Dynamic 
chromatin remodeling mediated by polycomb proteins orchestrates pancreatic 
differentiation of human embryonic stem cells. Cell Stem Cell 12: 224–237.

	50.	 Sosa-Pineda, B, Chowdhury, K, Torres, M, Oliver, G and Gruss, P (1997). The Pax4 gene 
is essential for differentiation of insulin-producing beta cells in the mammalian pancreas. 
Nature 386: 399–402.

	51.	 Collombat, P, Mansouri, A, Hecksher-Sorensen, J, Serup, P, Krull, J, Gradwohl, G et al. 
(2003). Opposing actions of Arx and Pax4 in endocrine pancreas development. Genes Dev 
17: 2591–2603.

	52.	 Wang, J, Elghazi, L, Parker, SE, Kizilocak, H, Asano, M, Sussel, L et al. (2004). The 
concerted activities of Pax4 and Nkx2.2 are essential to initiate pancreatic beta-cell 
differentiation. Dev Biol 266: 178–189.

	53.	 Thess, A, Grund, S, Mui, BL, Hope, MJ, Baumhof, P, Fotin-Mleczek, M et al. (2015). 
Sequence-engineered mRNA Without Chemical Nucleoside Modifications Enables an 
Effective Protein Therapy in Large Animals. Mol Ther 23: 1456–1464.

	54.	 Triana-Alonso, FJ, Dabrowski, M, Wadzack, J and Nierhaus, KH (1995). Self-coded 
3’-extension of run-off transcripts produces aberrant products during in vitro transcription 
with T7 RNA polymerase. J Biol Chem 270: 6298–6307.

	55.	 Karikó, K, Muramatsu, H, Ludwig, J and Weissman, D (2011). Generating the optimal 
mRNA for therapy: HPLC purification eliminates immune activation and improves 
translation of nucleoside-modified, protein-encoding mRNA. Nucleic Acids Res 39: e142.

This work is licensed under a Creative Commons 
Attribution-NonCommercial-ShareAlike 4.0 International 

License. The images or other third party material in this article are 
included in the article’s Creative Commons license, unless indicated 
otherwise in the credit line; if the material is not included under the 
Creative Commons license, users will need to obtain permission from 
the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/

© T Koblas et al. (2016)

Supplementary Information accompanies this paper on the Molecular Therapy–Nucleic Acids website (http://www.nature.com/mtna)



Folia Biologica (Praha) 58, 98-105 (2012)

Original Article

Activation of the Jak/Stat Signalling Pathway by Leukaemia 
Inhibitory Factor Stimulates Trans-differentiation of Human 
Non-Endocrine Pancreatic Cells into Insulin-Producing Cells
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differentiation / Notch / Jak/Stat)

T. KOBLAS, I. LEONTOVYČ, K. ZACHAROVOVÁ, Z. BERKOVá, J. Kříž, 
P. GIRMAN, F. SAUDEK

Institute for Clinical and Experimental Medicine, Prague, Czech Republic 

Abstract. Differentiation of pancreatic β-cells is reg-
ulated by a wide range of signalling pathways. The 
aim of our current work was to evaluate the effect of 
the Jak/Stat signalling pathway on the differentia-
tion of human non-endocrine pancreatic cells into 
insulin-producing cells. Activation of the Jak/Stat 
signalling pathway by leukaemia inhibitory factor 
(LIF) stimulated differentiation of C-peptide-ne
gative human non-endocrine pancreatic cells into 
insulin-producing cells in 6.3 ± 2.0 % cells (N = 5) 
and  induced  expression of pro-endocrine transcrip-
tion factor neurogenin 3, Notch signalling pathway 
suppressor HES6 and stimulator of β-cell neogenesis 
REG3A. The expression of the REG3A gene and in-
creased rate of differentiation into insulin-producing 
cells (10.2 ± 2.1 %) were further stimulated by a 
combination of LIF with nicotinamide and dexa-
methasone. Glucose-stimulated (5 vs. 20 mM) C-pep
tide secretion confirmed proper insulin secretory 
function of trans-differentiated insulin-producing 
cells (0.51 vs. 2.03 pmol C-peptide/μg DNA, P < 0.05). 
Our results indicate that Jak/Stat signalling critical-
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ly contributes to trans-differentiation of non-endo-
crine pancreatic cells into functional insulin-produc-
ing cells. The positive effect of the Jak/Stat signalling 
pathway on trans-differentiation is mediated by the 
key genes that activate differentiation of pancreatic 
β-cells. 

Introduction
Cell-based therapy of diabetes mellitus is an attrac-

tive approach to efficient treatment of all diabetic pa-
tients. In spite of the advances achieved in the field of 
regenerative medicine, a plentiful source of insulin-pro-
ducing tissue is still unavailable. Adult pancreatic non-
endocrine cells represent one of the potential alternative 
sources of newly formed insulin-producing cells appli-
cable to the cell-based treatment of diabetes. Potentially, 
the non-endocrine pancreatic cells sharing a similar em-
bryological origin and being easily available could be 
differentiated into β-like cells either in vitro or in vivo. 
However, the differentiation of pancreatic β-cells is reg-
ulated by a complex interplay of a wide range of growth 
factors, transcription factors and signalling pathways 
which is not fully understood so far. Transforming 
growth factor b (TGF-β), Notch and Hedgehog signal-
ling pathways have been shown to play key roles in the 
development of pancreatic tissue and β-cell differentia-
tion (Apelqvist et al., 1999; Hebrok et al., 2000; Goto et 
al., 2007). They not only transduce the external signals 
activated by different growth factors, but also regulate 
the expression and activity of key transcription factors 
of β-cell differentiation (Kim and Hebrok, 2001).

Another signalling pathway that has recently been 
identified as having an important role in β-cell differen-
tiation is the Jak/Stat signalling pathway (Baeyens and 
Bouwens, 2008). Its activation induces expression of 
islet neogenesis-associated protein (INGAP) (Taylor-
Fishwick et al., 2006). INGAP has been shown to stimu-
late generation of new islet cells in vitro as well as in 
adult animal models (Rosenberg et al. 2004).  In other 
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experiments, the Jak/Stat signalling pathway had a posi-
tive effect on β-cell differentiation (Baeyens et al., 
2005). Stimulation of the Jak/Stat pathway by a combi-
nation of leukaemia inhibitory factor (LIF) and epider-
mal growth factor (EGF) led to transient expression of 
neurogenin 3, a key transcription factor required for 
pancreatic endocrine cell differentiation (Baeyens et al., 
2006).

During the isolation of human pancreatic islets only 
approximately 2 % of the pancreatic tissue representing 
the islets of Langerhans is finally used for clinical trans-
plantation. Currently the remaining pancreatic tissue is 
discarded. Based on these encouraging reports in animal 
research, we decided to evaluate the effect of the Jak/
Stat signalling pathway stimulation on β-cell differenti-
ation using the human non-endocrine pancreatic tissue. 
Should the experimental results be confirmed, exocrine 
pancreatic tissue could represent a promising and avail-
able cell source for diabetes treatment.  

Material and Methods

Tissue preparation

Human non-endocrine pancreatic cells were obtained 
from the remaining pancreatic tissue after islet isolation. 
The programme of isolation and transplantation of hu-
man pancreatic islets was approved by the Ethics 
Committee of the Institute for Clinical and Experimental 
Medicine and Thomayer Teaching Hospital. Human is-
lets and pancreatic tissue were isolated according to the 
previously described method (Linetsky et al., 1997). 
Briefly, islets were isolated from pancreata obtained 
from cadaveric donors (N = 5; mean age 43 ± 16 years). 
The pancreatic duct was perfused with a cold enzyme 
mixture containing Collagenase NB 1 Premium Grade 
and Neutral Protease NB (Serva, Heidelberg, Germany). 
Perfused pancreatic tissue was transferred to a modified 
Ricordi chamber and dissociated by gentle mechanical 
agitation and enzymatic digestion at 37 °C. Islets were 
purified with the use of continuous gradients of Biocoll 
(Biochrom, Berlin, Germany) in an aphaeresis system 
Cobe model 2991 (Gambro Czech Republic, Přerov, 
Czech Republic). The densities of the continuous gradi-
ent ranged from 1.065 to 1.090 g/ml. During centrifuga-
tion, islets migrated to the interface between 1.070–
1.080 g/ml. The remaining cellular material from the 
islet-depleted fractions was pooled and further digested 
in Accutase solution (Sigma-Aldrich, Steinheim, Ger
many) for 20 min at 37 °C. Single-cell suspension was 
obtained after filtration through an 11-μm cell strainer 
and purification with the use of Biocoll continuous gra-
dient in an aphaeresis system Cobe model 2991. The 
densities of the continuous gradient ranged from 1.030 
to 1.100 g/ml. Cell suspension purified from the 1.050–
1.080 g/ml interface was pooled, washed in Hank’s so-
lution (Sigma-Aldrich) and further processed.

Cell culture studies

Pancreatic cells isolated from islet-depleted pancre-
atic tissue were cultured for the first three days (stage 1) 
in DMEM medium containing 10% (v/v) KnockOut 
Serum Replacement, 1% (v/v) Insulin-Transferrin-
Selenium A Supplement (ITS), 100 units/ml penicillin, 
100 µg/ml streptomycin, 1 mM L-glutamine, 1% (v/v) 
nonessential amino acids, 0.1 mM 2-mercaptoethanol 
(all from Invitrogen, Paisley, UK), 10 ng/ml bFGF, 20 
ng/ml EGF (both from Peprotech, Rocky Hill, NJ) and 
conditioned medium derived from neonatal fibroblast 
cell line Hs68 (LGC Promochem, Teddington, UK). 
Samples were divided into three groups based on the 
addition of LIF, nicotinamide and dexamethasone. 
Group 1 was supplemented only with human recombi-
nant LIF (40 ng/ml) (Peprotech), group 2 was supple-
mented with human recombinant LIF (40 ng/ml) 
(Peprotech), nicotinamide 10 mM (Sigma-Aldrich) and 
dexamethasone (100 nM) (Sigma-Aldrich), group 3 
served as a control group without any of the supple-
ments. Culture medium was replenished daily during 
the first three days. Within the first three days the cells 
formed a cellular cluster further referred to as islet-like 
cell cluster (ILCC).

Afterwards, cells were cultured for another three days 
(stage 2) in CMRL medium containing 1% FCS, 10 µM 
SP600125, 10 µM SB 216763, 10 µM forskolin, 5 µg/
ml fibronectin, 10 mM nicotinamide, 40 ng/ml Exendin-4 
(all from Sigma-Aldrich) and 100 ng/ml IGF (Peprotech). 
Culture medium was replenished on the 2nd day of stage 
2 culture period.

Reverse transcriptase polymerase chain 
reaction

Total RNA (from approximately 106 cells) was iso-
lated by Rneasy Plus Mini Kit (Qiagen, Hilden, 
Germany) and treated with DNAse using RNase-Free 
DNase Set (Qiagen). Isolated RNA (1 μg) was reverse 
transcribed with Omniscript RT Kit (Qiagen) according 
to the manufacturer instructions. cDNA was amplified 
using HotStarTaq Master Mix Kit (Qiagen) and gene-
specific primers. Annealing temperatures, number of 
cycles and product sizes are shown in Table 1. Total 
RNA from the islet fraction was used as positive control. 
PCR products were separated and visualized on 1% aga-
rose gel containing ethidium bromide.

Immunocytochemistry
ILCCs collected at the end of the experiment were 

washed with PBS, fixed for 60 min in Bouin’s solution 
(Sigma-Aldrich), rinsed with PBS, suspended in 2% aga-
rose-PBS solution and centrifuged at 100 g for 3 min to 
form compact pellets. After overnight submersion in 
30% sucrose (Sigma-Aldrich), ILCCs were embedded in 
OCT mounting medium TissueTek (Bayer Corp, Pitts
burgh, PA), frozen in liquid nitrogen, and stored at -80 °C.

LIF-Stimulated Trans-differentiation into Insulin-Producing Cells
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After several washes in PBS, 8 μm sections of frozen 
ILCC slides were incubated in blocking solution con-
taining 10% (v/v) normal goat serum (Jackson Immu
noresearch Laboratories, West Grove, PA) in 0.2% (v/v)
Triton X-100, 0.1 M glycine (Sigma-Aldrich) and PBS 
for 1 h at room temperature to prevent unspecific bind-
ing. Incubation with primary antibodies in appropriate 
dilution was performed in a blocking solution for 1 h at 
37 °C. The following primary antibodies were used at 
the 1 : 100 dilution: mouse anti-cytokeratin 19, mouse 
anti-C-peptide (both from Exbio, Vestec, Czech Repub
lic) and rabbit anti-C-peptide (Cell Signaling, Danvers, 
MA). After intensive washing with PBS, sections were 
incubated with the specific secondary antibody diluted 
in the blocking solution for 1 h at 37 °C. The secondary 
antibodies were Alexa Fluor 555 donkey anti-mouse IgG 
and Alexa Fluor 488 donkey anti-rabbit IgG (Invitrogen). 
4,6-Diamidino-2-phenylindole (DAPI) (Sigma-Aldrich) 
at a concentration of 5 μg/ml was used to label the nu-
clei for 10 min at 37 °C. After rinsing with PBS, sections 
were mounted with antifade solution and examined 
with fluorescent microscope Olympus BX41 (Olympus, 
Tokyo, Japan).

C-peptide cell content and glucose-stimulated 
secretion

C-peptide release was measured by incubating 100 
ILCCs in 1 ml of Krebs-Ringer solution containing 
5 mM glucose for 1 h and then in 20 mM glucose solu-
tion for another 1 h. Cells were lysed in RIPA buffer 
(Sigma-Aldrich) and human C-peptide was determined 
using a C-peptide IRMA kit (Beckman Coulter, Ful
lerton, CA) according to the manufacturer’s instruc-
tions.

Statistical analysis
Statistical analysis was performed using Student’s 

t-test. All data are presented as means ± SD. P values 
< 0.05 were considered significant. Evaluated null hy-
pothesis was that LIF does not have a positive effect on 
differentiation of non-endocrine pancreatic cells into 
insulin-producing cells.

Results

In order to evaluate the possible contamination of 
non-endocrine pancreatic cell samples by insulin-posi-
tive β-cells we determined the ratio of insulin-positive 
β-cells in islet-depleted cell suspension. Samples of 
non-endocrine pancreatic cells contained 0.24 ± 0.07 % 
of pancreatic β-cells based on the dithizone (diphenyl
thiocarbozone) staining (Fig. 1) and immunofluores-
cence staining of C-peptide-positive cells (data not 
shown). Slight contamination of samples by β-cells was 
also confirmed by RT-PCR (Fig. 2). Although samples 
contained some β-cells, these cells did not proliferate 
during the stage 1 culture period. The number of β-cells 
even decreased within the first three days under all test-
ed conditions to the ratio of 0.19 ± 0.06 % in the LIF- 
-treated sample, 0.21 ± 0.04 % in the LIF-, nicotina-
mide- and dexamethasone-treated sample and 0.22 ± 
0.06 % in the control sample. 

Most of the cells from the initial cell suspension ag-
gregated into ILCCs resembling islets of Langerhans 
within three days of the culture period in serum-free 
neonatal fibroblast-conditioned medium. Under all test-
ed conditions ILCCs were formed mainly by cytokera
tin-19-positive cells with the exception of the LIF-, ni
cotinamide- and dexamethasone-treated sample. The 
number of cytokeratin-19-positive cells was significant-
ly lower in the LIF-, nicotinamide- and dexamethasone-
treated sample (42.8 ± 3.7) in comparison with the LIF-
treated (61.3 ± 5.2) and control (64.1 ± 4.9) samples 
(data not shown). 
The expression of transcription factors that are in-

volved in pancreatic endocrine cell differentiation 
(PDX1, neurogenin 3, HNF6 and MAFA genes) and 
Notch signalling pathway (HES1 and HES6 genes) was 
also different between LIF-treated and control samples 
after three days of cultivation. In comparison with con-
trol samples, the expression of PDX1, HNF6 and neuro-
genin 3 genes was significantly higher in the samples 
treated either with LIF alone or with LIF in combination 
with nicotinamide and dexamethasone. The level of the 
HES6 gene expression was also significantly higher in 
the case of cultures treated with LIF alone or LIF-, nico-
tinamide- and dexamethasone-treated samples than in 
the control samples, while expression of the HES1 gene 

Table 1. Sequences of gene-specific primers and product size of cDNA products

Gene	 Forward primer	 Reverse primer	 Number of cycles	 Product size (bp)
Insulin	 ccatcaagcacatcactgtcc	 ccatctctctcggtgcagg	 28	 414
Glucagon	 gcgagatttcccagaagagg	 agcaggtgatgttgtgaagatg	 28	 198 
PDX1	 gcaccttcaccaccacctc	 cttgttctcctccggctcc	 30	 202 
Neurogenin 3	 tctattcttttgcgccggtag	 agtgccaactcgctcttagg	 32	 256 
MAFA	 ccaaagagcgggacctgta	 cctggtgtccacgtcctgta	 30	 253 
REG3A	 cctggtgaagagcattggtaac	 ttgggggaattaagcgaata	 28	 364 
HES1	 ctaccccagccagtgtcaac	 atgtccgccttctccagc	 30	 193 
HES6	 tgaggatgaggacggctg	 cgagcagatggttcaggag	 30	 350 
HNF6	 cgcaggtcagcaatggaag	 gatgagttgcctgaattggag	 30	 535 
GAPDH	 ggagtcaacggatttggtcg	 catgggtggaatcatattggaac	 23	 142
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was similar between all samples. The expression of the 
REG3A gene, a human analogue of hamster INGAP pro-
tein, was also significantly higher in the samples treated 
with LIF than in the control samples. The highest rate of 
REG3A expression was detected in the samples treated 

with a combination of LIF, nicotinamide and dexameth-
asone. 
While the expression of insulin gene was almost un-

detectable, a minimal rate of the glucagon gene expres-
sion was detected in all samples with the highest rate in 

Fig. 1. Dithizone staining of cell suspension derived from dissociated islet-depleted pancreatic tissue. Red dithizone-stai
ned insulin-positive cells (arrows).

Fig. 2. Reverse transcriptase polymerase chain reaction analysis of gene expression during differentiation of pancreatic 
non-endocrine cells. RNA isolated from human pancreatic islets was used as a positive control. RNA isolated from human 
pancreatic islets without reverse transcription was used as a negative control.
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the LIF-treated samples after three days of cultivation 
(Fig. 2).
Within the next three days during stage 2 of the dif-

ferentiation protocol the cells differentiated into insulin-

producing cells. The highest number of C-peptide-po
sitive cells was detected in a sample previously treated 
with LIF, nicotinamide and dexamethasone (10.2 ± 2.1) 
(Fig. 3A), while LIF-treated (6.3 ± 2.0) (Fig. 3B) and 

Fig. 3A. Immunofluorescence staining of cytokeratin-19 (orange) and C-peptide (green) in ILCCs treated with a combina-
tion of LIF, nicotinamide and dexamethasone during the first three days of the culture period. DAPI (blue) stain was 
performed as counter stain (magnification 100×).

Fig. 3B. Immunofluorescence staining of cytokeratin-19 (orange) and C-peptide (green) in ILCCs treated with LIF during 
the first three days of the culture period. DAPI (blue) stain was performed as counter stain (magnification 100×).

T. Koblas et al.
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control samples (3.5 ± 1.3) (Fig. 3C) had a lower num-
ber of C-peptide-positive cells based on the immuno-
fluorescence staining. The higher rate of β-cell differen-
tiation in samples treated with a combination of LIF, 
nicotinamide and dexamethasone was confirmed by 
RT-PCR (Fig. 2). The expression of the PDX1 transcrip-
tion factor gene in samples treated with LIF was still 
significantly higher in comparison with control samples, 
while the expression of transcription factor neurogenin 
3, HES6 and REG3A genes that were induced in 
LIF-treated samples declined during stage 2. The ex-
pression of REG3A also declined after withdrawal of 
either LIF alone or a combination of LIF, nicotinamide 
and dexamethasone during the last three days of the cul-
ture period. 

Differentiation of islet-depleted non-endocrine pan-
creatic cells into insulin-producing β-cells was addition-
ally confirmed by analysis of the C-peptide cell content 
and glucose-stimulated secretion (Fig. 4). The highest 
C-peptide content was detected in samples treated with 
LIF, nicotinamide and dexamethasone (23.4 ± 4.6 pmol 
C-peptide/µg DNA) followed by the LIF-treated sample 
(13.8 ± 3.2 pmol C-peptide/μg DNA). In the control 
sample, the C-peptide content was significantly lower 
(6.2 ± 2.3 pmol C-peptide/μg DNA) (Fig. 4). The insulin 
secretory capacity of differentiated ILCC cells was con-
firmed by the glucose-stimulated C-peptide secretion 
test. In response to glucose stimulation (5 vs. 20 mM) 
ILCCs treated with a combination of LIF, nicotina-
mide and dexamethasone secreted 0.51 vs. 2.03 pmol 
C-peptide/μg DNA.

Discussion 

In our current report we have shown that LIF stimu-
lates differentiation of human non-endocrine pancreatic 
cells into insulin-producing cells. The positive effect of 

Fig. 4. C-peptide content of non-endocrine pancreatic cells 
treated with LIF or with a combination of LIF, nicotina-
mide and dexamethasone and control sample as determined 
by IRMA.

Fig. 3C. Immunofluorescence staining of cytokeratin-19 (orange) and C-peptide (green) in ILCC control sample un-
treated with any of the tested compounds during the first three days of the culture period. DAPI (blue) stain was performed 
as counter stain (magnification 100×).

LIF-Stimulated Trans-differentiation into Insulin-Producing Cells



104	 Vol. 58

LIF treatment on β-cell differentiation was further en-
hanced by co-treatment with nicotinamide and dexa-
methasone. Although we were not able to determine the 
underlying mechanism of LIF-stimulated β-cell differ-
entiation, we assume that such a positive effect is at 
least partially mediated by the induction of the regener-
ating islet-derived 3 α protein (REG3A) expression. 
REG3A and its hamster analogue INGAP belong to a 
superfamily of Reg genes, which are associated with 
β-cell proliferation and regeneration (Fleming and 
Rosenberg, 2007). While members of the Reg1 family 
stimulate β-cell proliferation (Watanabe et al., 1994), 
members of the Reg3 family are associated with β-cell 
regeneration and trans-differentiation (Jamal et al., 
2005; Pittenger et al., 2007). We observed induction of 
the REG3A gene expression in samples of non-endo-
crine pancreatic cells upon treatment with LIF. Co-
administration of LIF with nicotinamide and dexameth-
asone even further increased expression of the REG3A 
gene. This is in an agreement with previous reports that 
showed positive effect of the LIF/IL-6 cytokine family 
on the expression of REG3A and INGAP proteins (Nata 
et al., 2004; Taylor-Fishwick et al., 2006). The positive 
effect of REG3A/INGAP proteins on β-cell differentia-
tion can be explained by a stimulatory effect of these 
proteins on the expression of PDX1 transcription factor 
(Rosenberg et al., 2004). PDX1 is not only involved in 
β-cell differentiation, but also stimulates insulin gene 
expression (Shao et al., 2009). In our study, induction of 
REG3A expression was followed by stimulation of 
PDX1 expression. In contrast, expression of the PDX1 
gene was significantly lower in control cells not treated 
with LIF. The lower expression of PDX1 may be attrib-
uted to the absence of REG3A expression in control 
samples.

Treatment of pancreatic non-endocrine cells with LIF 
not only induced expression of the REG3A protein and 
transcription factor PDX1, but also stimulated expres-
sion of neurogenin 3, one of the key transcription factors 
of pancreatic endocrine cell differentiation. This result 
is also in accordance with the previous report showing 
that treatment of dedifferentiated pancreatic exocrine 
cells with LIF and EGF induces transient expression of 
neurogenin 3 and its upstream activator hepatocyte nu-
clear factor 6 (HNF6) (Baeyens et al., 2006). The au-
thors assume that the up-regulation of HNF6 transcrip-
tion factor upon treatment with LIF and EGF leads to 
the expression of the neurogenin 3 gene. However, in 
our study we have revealed that the expression of neuro-
genin 3 induced by LIF may also be attributed to the 
effect of LIF on the Notch signalling pathway. The ex-
pression of neurogenin 3 is known to be repressed by 
activation of the Notch signaling pathway (Murtaugh et 
al., 2003). The inhibitory effect of the Notch signalling 
pathway is mediated by the HES1 transcription factor, a 
downstream effector of the Notch pathway (Kageyama 
et al., 2007). Promoter of the neurogenin 3 gene con-

tains multiple binding sites for HES1, which acts as a 
repressor of neurogenin 3 expression (Lee et al., 2001). 
Therefore, activation of the HES1 gene expression by 
the Notch signalling pathway leads to the inhibition of 
neurogenin 3 gene expression.
In our study, we detected stable expression of the 

HES1 gene in all samples during the entire differentia-
tion period. HES1 was also expressed by the non-endo-
crine pancreatic cell population obtained from islet-de-
pleted pancreatic tissue prior to differentiation. In 
addition to the HES1 gene expression we also evaluated 
expression of the HES6 gene. HES6 acts as a suppressor 
of the Notch signalling pathway by inhibiting the inter-
action of HES1 with its transcriptional co-repressor 
Gro/TLE. Moreover, HES6 also promotes proteolytic 
degradation of HES1 (Gratton et al., 2003). In our study, 
we detected significantly higher expression of the HES6 
gene in the samples treated with LIF than in the control 
sample. Upon removal of LIF and further differentiation 
the level of HES6 expression decreased; however, it was 
still higher in samples previously treated with LIF than 
in the control cells. Based on these results we assume 
that the positive effect of LIF on neurogenin 3 expres-
sion may be explained by two mechanisms. Firstly, LIF 
stimulates the expression of HNF6, an upstream activa-
tor of neurogenin 3 expression (Zhang et al., 2009). In 
addition, the induction of HES6 expression by LIF fur-
ther stimulates neurogenin 3 expression by repressing 
the inhibitory effect of HES1. 

In conclusion, we report here that activation of the 
Jak/Stat signalling pathway stimulates differentiation of 
human non-endocrine pancreatic cells into insulin-pro-
ducing β-cells. The positive effect of LIF treatment on 
β-cell differentiation may be attributed to the activation 
of PDX1 and neurogenin 3 expression, two of the key 
transcription factors of β-cell differentiation. The stimu-
latory effect of LIF is most likely indirect. In the case of 
neurogenin 3 gene expression the stimulatory effect of 
LIF seems to be mediated by the transcription factor 
HNF6 and the suppressor of Notch signalling pathway 
HES6, while the positive effect of LIF on PDX1 up-
regulation seems to be promoted by induction of the 
REG3A gene expression.  
The Jak/Stat signalling pathway plays an important 

role in differentiation of neural precursor cells during 
embryonic development and postnatal life. Pancreatic 
endocrine cells and neurons share a lot of common tran-
scription factors and regulatory mechanisms that control 
their differentiation (Atouf et al., 1997; Apelqvist et al., 
1999; van Arensbergen et al., 2010). It is therefore not 
surprising that the Jak/Stat signalling pathway also 
plays an important role in differentiation of neurons as 
well as pancreatic β-cells. Our results support previous 
reports about the positive effect of the Jak/Stat signal-
ling pathway activation on trans-differentiation of insu-
lin-producing cells and uncover underlying interactions 
between the Jak/Stat and Notch signalling pathways.
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Abstract. In our study we confirmed the potential of 

human umbilical cord blood cells to differentiate 

into insulin-producing cells following transplanta-

tion into immunocompromised mice. The average 

number of C-peptide-positive human cells per ani-

mal was 18 ± 13 as assessed by immunofluorescence 

staining and fluorescence in situ hybridization specif-

ic for human ALU sequence. Differentiation into 

 insulin-producing cells was further confirmed by re-

verse transcription-polymerase chain reaction spe-

cific for human insulin mRNA. Successful differen-

tiation required sublethal irradiation of xenogeneic 

recipient at least at a dose of 3 Gy. However, trans-

plantation of human umbilical cord blood cells did 

not improve hyperglycaemia in diabetic animals. 

The results of our study show that human umbilical 

cord blood may be considered as a potential source 

of stem cells for treatment of diabetes mellitus.

Introduction

Despite advances in the treatment of diabetic patients, 
diabetes remains one of the most serious health care 

problems of our civilization. Clinical islets or pancreas 
transplantations are the only available therapies able to 
establish insulin independence and long-lasting normo-
glycaemia (Shapiro et al., 2000; White et al., 2009). 
However, the lack of donors limits the application of 
this therapy for all type 1 diabetic patients in need. 

The discovery of stem cells and their successful dif-
ferentiation into insulin-producing β cells gave a new 
hope to all diabetic patients. Within last few years vari-
ous types of stem cells able to give rise to the pancreatic 
β cells have been identified. They include embryonic 
and foetal stem cells (Zhang et al., 2005; D’Amour et 
al., 2006) as well as adult stem cells derived from pan-
creas, liver, bone marrow and central nervous system 
(Bonner-Weir et al., 2000; Yang et al., 2002; Ianus et al., 
2003).

In addition to these “traditional” sources of adult stem 
cells, umbilical cord blood-derived stem cells have 
emerged as a new potential source for cell-based thera-
pies. The main advantages of human umbilical cord 
blood (HUCB) include plentiful availability, safe and 
non-invasive procedure of collection, possible expan-
sion and modification of cells in vitro and an existing 
network of umbilical cord blood banks, a large-scale 
source of cells that allows matching the donor and host 
human leukocyte antigen (HLA) systems. HUCB, high-
ly enriched for haematopoietic stem cells, has already 
been successfully applied for the treatment of various 
blood diseases (Roche et al., 2000; Laughlin et al., 
2004). Moreover, several recent reports have shown that 
some of the HUCB cells are able to differentiate into 
multiple cell types of non-haematopoietic origin (Ko-
gler et al., 2004; McGuckin et al., 2005). These findings 
suggest that umbilical cord blood contains multipotent 
stem cells or primitive progenitors that might have the 
potential to differentiate into cells of non-haematopoi-
etic phenotype, including pancreatic β cells. 

Denner as the first demonstrated successful in vitro 
differentiation of HUCB stem cells into insulin- and 
C-peptide-producing cells (Denner et al., 2007). Two 
other groups lately reported similar results using differ-

Folia Biologica (Praha) 55, 224-232 (2009)

Original Article

In Vivo Differentiation of Human Umbilical Cord 
Blood-Derived Cells into Insulin-Producing β Cells

(diabetes mellitus / insulin / pancreas / β cell / islets / stem cells / umbilical cord blood / differentiation / 
in vivo / radiation/transplantation)

T. KOBLAS1, K. ZACHAROVOVÁ1, Z. BERKOVÁ1, I. LEONTOVIČ1, 
E. DOVOLILOVÁ1, L. ZÁMEČNÍK2, F. SAUDEK1

1Institute for Clinical and Experimental Medicine, Prague, Czech Republic
2Thomayer University Hospital with Polyclinic, Prague, Czech Republic

Received  October 9, 2009. Accepted October 28, 2009.

This work was supported by research grant NR/9060-4/2006 
from the Internal Grant Agency of the Ministry of Health, Czech 
Republic.

Corresponding author: František Saudek, Diabetes Center, Insti-
tute for Clinical and Experimental Medicine, Vídeňská 1958/9, 
140 21 Prague 4, Czech Republic. Phone: (+420) 261 364 107; 
e-mail: frsa@medicon.cz

Abbreviations: DAPI – 4,6-diamidino-2-phenylindole, EBSS – 
Earle’s balanced salt solution, FISH – fluorescence in situ hy-
bridization, HLA – human leukocyte antigen, HUCB – human 
umbilical cord blood, GAPDH – glyceraldehyde-3-phosphate de-
hydrogenase, MNCs – mononuclear cells, NK – natural killer, 
NOD/SCID – non-obese diabetic/severe combined immunodefi-
cient/β

2
-microglobulin null mice, PCR – polymerase chain reac-

tion, RT-PCR – reverse transcriptase polymerase chain reaction.



Vol. 55 225

ent approaches (Sun et al., 2007; Gao et al., 2008). Sun’s 
group used a specific subpopulation of HUCB cells ex-
pressing embryonic markers Oct-4 and SSEA-4. These 
cells were differentiated by a protocol using only nicotin-
amide and extracellular matrix proteins laminin and fi-
bronectin. Gao’s group worked with HUCB-derived 
mesenchymal stem cells and employed a more compli-
cated protocol including retinoic acid, nicotinamide, ex-
endin-4 and extracellular matrix proteins. In spite of 
successful differentiation into insulin-producing cells, 
the secretion of insulin in response to increased glucose 
levels was not significantly higher than that at basal con-
ditions. This phenomenon is quite common in case of in 
vitro derived β cells and may be explained by immatu-
rity of this cell type (D’Amour et al., 2006).

In vivo differentiation of HUCB cells into the pancre-
atic β cells has so far been demonstrated only by Yoshi-
da et al. The presence of human insulin-producing cells 
in mouse pancreatic tissue after transplantation of 
T cell-depleted HUCB mononuclear cells (MNCs) into 
newborn non-obese diabetic/severe combined immuno-
deficient mice have been reported by the authors. How-
ever, the average number of HUCB-derived insulin-pro-
ducing cells per total number of islet cells was only 
0.65 %. The low rate of human β cells within mouse 
pancreas could be explained by a non-diabetic status of 
the animals (Yoshida et al., 2005). Under diabetic condi-
tions, the demand for neogenesis of insulin-producing 
cells might be increased and the higher rate of HUCB 
cell differentiation might represent a compensatory ef-
fect in face to a decreased β-cell mass.

In light of these results we decided to investigate the 
conditions that stimulate in vivo differentiation of HUCB 
mononuclear cells into insulin-producing cells. Surviv-
al, homing and differentiation of HUCB cells were stud-
ied in athymic nude mice, which do not reject xenografts 
and thus represent a suitable model for transplantation 
of human cells. We tested the effect of the whole body 
irradiation, which had been shown to increase homing 
and engraftment of human cells in transplanted mice 
(Becker et al., 2002). Finally, we also examined the pos-
sibility to treat the streptozotocin-induced diabetes by 
transplantation and possible differentiation of HUCB 
cells into insulin-producing cells. 

Here we report that HUCB-derived mononuclear 
cells convincingly do have the potential to differentiate 
into a β cell-like phenotype, though, with the use of cur-
rent protocols, only at a very low rate that still does not 
reach a therapeutic significance.

Material and Methods

Study design
For the purpose of our study mice were divided into 

the groups based on the applied radiation dose and even-
tual induction of diabetes (Table 1). All animals with the 
exception of the control group were injected with 107 
unpurified HUCB mononuclear cells into the tail vein. 
Mice in groups 2, 3, 5 and 6 underwent total body irra-
diation one day prior to the application of HUCB cells at 
the dose of 1 (groups 2 and 5) or 3 Gy (groups 3 and 6). 
In groups 4, 5 and 6 diabetes was induced by streptozo-
tocin three days prior to the application of HUCB cells. 
In diabetic animals, fed blood glucose was monitored at 
weekly intervals during the experiment. Animals were 
sacrificed at the end of 4th week and tissue samples were 
collected for further analysis. 

Isolation of HUCB Cells
Samples of HUCB (40–120 ml) were obtained at the 

end of physiological delivery. At the admission to hos-
pital, all donors signed an informed consent approved 
by the Institutional Ethical Committee of the Institute 
for Clinical and Experimental Medicine and Thomayer 
Teaching Hospital. Samples of HUCB were collected 
into standard blood donor bags containing 15 ml of ci-
trate phosphate dextrose (Baxter Healthcare, Deerfield, 
IL). HUCB was diluted in a ratio 1 : 2 with Earle’s bal-
anced salt solution (EBSS) (Sigma-Aldrich, Steinheim, 
Germany) and centrifuged at 400 g for 20 min at 4 °C 
on a layer of Ficoll-Hypaque 1.077 (Sigma-Aldrich). 
Mo nonuclear cells (MNCs) at the interface of superna-
tant were washed twice with EBSS. Viability was de-
termined by the trypan blue dye exclusion method. 
MNCs were resuspended in Iscove’s modified Dul-
becco’s medium (Sigma-Aldrich) containing 20% foe-
tal bovine serum (Biochrom, Berlin, Germany) and 
cryopreserved with 10% (vol/vol) DMSO (Sigma-
Aldrich).

Mice
Female nude athymic mice (Crl:CD1-nu strain, An-

Lab, Prague, Czech Republic) were maintained under 
defined flora with irradiated food and sterile water in 
sterile cages at the animal facility. All experiments were 
approved by the Committee for Animal Ethical Treat-
ment of the Institute for Clinical and Experimental Med-
icine. 

Differentiation of Umbilical Cord Blood Cells into β Cells

Table 1. Groups of animals based on the radiation dose and diabetes induction

 Radiation dose (Gy) Induction of diabetes HUCB transplantation

Group 1 0 No Yes
Group 2 1 No Yes
Group 3 3 No Yes
Group 4 0 Yes Yes
Group 5 1 Yes Yes
Group 6 3 Yes Yes
Group 7 (control group) 0 No No
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Induction of diabetes

Athymic mice aged 6–8 weeks were treated with a 
single intravenous dose of 250 mg/kg streptozotocin 
(Sigma-Aldrich) freshly dissolved in citrate buffer 
(0.05 mM, pH 4.5). Mice were considered as diabetic 
when non-fasting blood glucose levels were > 16 mmol/l 
on three consecutive days.

HUCB Transplantation
Prior to transplantation, cryopreserved HUCB MNCs 

were thawed, counted and tested for viability by the 
trypan blue dye exclusion method. The amount of 107 
MNCs was injected intravenously into the tail vein of 
non-diabetic or diabetic mice (8 weeks old). Two groups 
of diabetic and two groups of non-diabetic mice were 
conditioned with 1 or 3 Gy of total body irradiation one 
day prior to the transplantation. 

Pancreatic Islet Isolation
Mouse pancreatic islets from the HUCB cell recipi-

ents and control animals were isolated using the colla-
genase digestion method as previously described (Berk-
ova et al., 2005). The pancreases were injected with 
1 ml of collagenase at a concentration of 2 mg/ml 
(Sevapharma, Prague, Czech Republic) and incubated at 
37 °C for 15 min in a total of 10 ml of digestion solution 
under constant shaking. Islets were subsequently washed 
three times in Hank’s balanced salt solution (HBSS) 
(Biochrom) with bovine serum albumin (BSA) (5 mg/
ml) and purified with the use of discontinuous gradients 
of Ficoll-diatrizoic acid (Sigma-Aldrich). The solution 
densities of discontinuous Ficoll gradient ranged from 
1.034 to 1.1162 g/ml with the densest solution at the 
bottom of density gradient. During centrifugation, islets 
migrated to the interface between 1.070 and 1.080 g/ml. 
The remaining cellular material from the denser layer 
was also pooled and further processed for gene expres-
sion analysis. 

FISH and Immunofluorescence Analysis
After the pancreatic tissues were harvested from the 

recipient mice, the tissues were fixed with Bouin’s solu-
tion (Sigma-Aldrich) for 2 h at room temperature. The 
tissues were rinsed with PBS, embedded in OCT mount-
ing medium (Bayer Corp, Pittsburgh, PA), frozen in liq-
uid nitrogen, and stored at -80 °C.

After several washes in PBS, 8-μm sections of frozen 
tissue were incubated in a solution containing 0.5% Tri-
ton X-100 (Sigma-Aldrich) in PBS for 20 min. Antigen 
retrieval method for immunofluorescence staining was 
performed prior to fluorescence in situ hybridization 
(FISH). Slides were heated twice in 0.01 M sodium cit-
rate (Sigma-Aldrich), pH 6.0, in a microwave oven for 
periods of 4 min at the maximal power setting (900 W) 
with 120–140 s of boiling. Slides were incubated in 
blocking solution containing 5% normal goat serum 
(Jackson Immunoresearch Laboratories, West Grove, 
PA). After dehydratation in 70%, 90% and 100% etha-
nol for 2 min each, slides were incubated in 50% 
formamide/2× SSC denaturing solution for 5 min at 
75 °C. After denaturation, the slides were incubated 
overnight at 37 °C with Alexa555-conjugated ALU-spe-
cies-specific probe diluted in hybridization buffer 
(50 ng/100 ul). An Alu-specific probe binds the ALU-
sequence that is present only in primate genomes. Alu 
sequences are about 300 base pairs long and form about 
10 % of the human genome. The sequence of the Alu-
specific probe is given in Table 2. 

After the hybridization, slides were washed three 
times in 50% formamide/2× SSC for 5 min each at 
42 °C. For immunofluorescence co-staining, slides were 
blocked in 5% donkey serum (Jackson Immunoresearch 
Laboratories) diluted in 0.2% Triton X-100, 0.1 M gly-
cine (Sigma-Aldrich) and PBS for 1 h at room tempera-
ture to prevent unspecific binding. Incubation with rab-
bit anti-human C-peptide antibody (Linco-Research, St. 
Charles, MO) diluted 1 : 200 was performed in the same 
blocking solution for 1 h at 37 °C. After intensive wash-
ing with PBS, slides were incubated with the secondary 
antibody Alexa Fluor 488 donkey anti-rabbit IgG (Mo-
lecular Probe, Eugene, OR) diluted in the blocking solu-
tion for 1 h at 37 °C. 4,6-Diamidino-2-phenylindole 
(DAPI) (Sigma-Aldrich) at a concentration 5 µg/ml was 
used to label the nuclei for 10 min at 37 °C. After rinsing 
with PBS, sections were mounted with antifade solution 
and examined with a fluorescence microscope (BX 41, 
Olympus, Tokyo, Japan).

Reverse Transcription-Polymerase Chain 
Reaction

RNA was isolated from pancreatic islets and remain-
ing pancreatic tissue of the recipient mice using Rneasy 
Plus Mini Kit (Qiagen, Hilden, Germany). Isolated RNA 
was treated with DNAse using RNase-Free DNase Set 
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Table 2. Primers and Alu-specific probe sequences used for the RT-PCR and FISH analysis

Primer sequence product size (bp) annealing temp. (°C) cycle number

human insulin forward agccgcagcctttgtgaac 141 63 45
human insulin reverse agctccacctgccccac 141 63 45
mouse insulin forward ctataatcagagaccatcagcaagc 344 60 35
mouse insulin reverse gtagagggagcagatgctgg 344 60 35
human GAPDH forward gagtcaacggatttggtcg 141 59 40
human GAPDH reverse catgggtggaatcatattgg 141 59 40
Alu-specific probe cctgtaatcccagctactcgggagg
 ctgaggcaggagaatcgcttgaacc  37
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(Qiagen) and 1 μg of RNA was reverse transcribed with 
Omniscript RT Kit (Qiagen) according to the manufac-
turer’s instructions. cDNA was amplified using HotStar-
Taq Master Mix Kit (Qiagen). Gene-specific primer 
pairs, annealing temperatures, and product sizes are list-
ed in Table 2. All of the primers span at least one of the 
introns to prevent false-positive results. PCR products 
were separated and visualized on 2% agarose gel con-
taining ethidium bromide.

Results

Successful HUCB transplantation was confirmed by 
detection of human glyceraldehyde-3-phosphate dehy-
drogenase (GAPDH) mRNA in samples isolated from 
mouse blood MNCs 4 h after the transplantation (Fig. 1). 
Further detection of human cells within mouse tissues 
was performed four weeks after the application of 
HUCB cells using the primers specific for human 
GAPDH. The expression of human GAPDH was de-
tected only in samples derived from mice exposed to 
both 1 and 3 Gy radiation doses. Human GAPDH was 
detected in all of the examined tissues (spleen, bone-

marrow, blood MNCs and pancreatic tissue). No expres-
sion of human GAPDH was detected in tissue samples 
from mice that had not been subjected to total body ir-
radiation (Table 3, Fig. 1).

In order to evaluate the potential of HUCB-derived 
cells to differentiate into human insulin-producing cells 
we performed RT-PCR analysis of human insulin gene 
expression. We used RNA isolated from fresh pancreatic 
tissue and Langerhans islets of the recipient mice. The 
expression of human insulin mRNA was observed 
 exclusively in pancreatic tissue derived from mice irra-
diated with 3 Gy. We did not detect any expression of 
human insulin gene either in the isolated islets or pan-
creatic tissue derived from mice irradiated with only 
1 Gy or in samples from unirradiated mice. For the de-
tection of human insulin mRNA, we designed the for-
ward and reverse primers that specifically amplified hu-
man but not mouse insulin cDNA or human gDNA. The 
amplified products derived from the recipients’ pancrea-
ta were clearly seen on agarose gel (Fig. 1). The product 
size corresponded to the expected size of PCR reaction 
product amplified by specific primers. These results in-
dicate that human insulin was produced by donor 
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Table 3. Detection of human cells within examined mouse tissues in the study groups

Tissue Blood Spleen Bone Marrow Pancreas Islets Human β cells

Group 1 - - - - - -
Group 2 + + + + - -
Group 3 + + + + + +
Group 4 - - - - - -
Group 5 N/A N/A N/A N/A N/A N/A
Group 6 N/A N/A N/A N/A N/A N/A
Group 7  - - - - - -

Fig. 1. RT-PCR analysis of gene expression in mouse tissues. Transcripts of human GAPDH (a) and insulin (d) were anal-
ysed and compared with trancripts of mouse GAPDH (c) and insulin genes (f). The products of PCR reaction without 
reverse transcription served as a negative control (b, e). Human islet RNA was used as a positive control.
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HUCB-derived cells in the recipient pancreas at the 
RNA level. Insulin-specific cDNA in the tissue obvi-
ously did not originate from passenger haematopoietic 
cells as this reaction was negative in all starting MNC 
samples. 

The presence of human cells within pancreatic tissue 
was further confirmed by the fluorescence in situ hy-
bridization specific for the human ALU sequence. Rare 
human cells were detected within the acinar tissue, islets 
and also in the pancreatic ducts of recipient mice (Fig. 2 
and Fig. 3). 

In the next step we performed immunofluorescence 
labelling of human C-peptide in combination with hu-
man ALU sequence-specific FISH to confirm the ex-
pression of human insulin at the protein level. C-pep-
tide-positive human cells were clearly demonstrated 
within the pancreatic islets of mice irradiated with 3 Gy, 
although only in a low number (Fig. 3). The average 
number of C-peptide-positive human cells per animal 
was 18 ± 13. The whole pancreata were cut into 10-µm 
sections and the investigation was performed in all of 
them.

Transplantation of HUCB into severely diabetic ani-
mals did not lead to metabolic improvement. All seven 
animals progressively wasted and died before the end of 

the study period. Therefore, the presence of human cells 
within their tissues could not be studied.

Discussion

For their availability and easy storage, umbilical cord 
stem or precursor cells have been regarded as a promis-
ing source for cellular therapy of diabetes, though the 
scientific and practical reasons for this hope have still 
been lacking. The ability to differentiate into the β-cell 
phenotype undoubtedly depends on selection of the right 
cell type, on its culture conditions and last but not least, 
on the post-transplant care of the recipient. Cure or sig-
nificant improvement of experimental diabetes by 
HUBC transplantation has not been achieved in any 
study so far. However, the results of our study demon-
strated that the potential of HUCB mononuclear cells to 
engraft in the host pancreas and to differentiate into in-
sulin-producing cells does exist. The origin of the trans-
planted cells was confirmed not only by fluorescence in 
situ hybridization staining for specific human DNA se-
quence in combination with immunofluorescence stain-
ing for human insulin in transplanted immunocom-
promised mice, but also by highly sensitive RT-PCR 
detection of human insulin mRNA. 
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Fig. 2. FISH and immunofluorescence staining of mouse pancreatic tissue four weeks after the irradiation with 1 Gy. (A) 
FISH for human ALU sequence (red), (B) DAPI staining of nuclei (blue), (C) C-peptide immunofluorescence staining 
(green) and (D) merged images A–C. HUCB-derived ALU sequence-positive cell is shown (arrowhead).
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Our results are in agreement with those published by 
Yoshida’s group (Yoshida et al., 2005). They also ob-
served the presence of human insulin-producing cells in 
pancreatic tissue after the transplantation of HUCB 
mononuclear cells into the normoglycaemic mice. In 
their experiment, the rate of differentiation was signifi-
cantly higher in comparison with our study. The differ-
ence between the numbers of differentiated human 
β cells may be due to different mouse strains used in the 
studies as well as the type and number of transplanted 
cells. Yoshida et al. (2005) used non-obese diabetic/se-
vere combined immunodeficient/β

2
-microglobulin null 

mice (NOD/SCID/β2m null), which lack mature T as 
well as B cells and show extremely low activity of natu-
ral killer (NK) cells. This profound immunological in-
competence obviously enables high engraftment rates of 
human cells in NOD/SCID/β

2
m null mice (Ishikawa et 

al., 2002). In our study we used the CD-1-nu/nu nude 
mouse strain, which lacks only mature T lymphocytes 
but still shows functional antibody-producing B and NK 
cells. The nude mouse strain may provide a lower en-
graftment potential for xenografts in comparison with 
the NOD/SCID strain as demonstrated by transplanta-

tion of foetal porcine pancreatic tissue into the NOD/
SCID and nude mice (Tuch et al., 1999).

We have therefore decided to use whole-body irradia-
tion in the effort to increase engraftment efficiency of 
human cells. Without irradiation pretreatment we found 
neither any human insulin-producing cells nor any hu-
man cells in pancreatic or any other examined tissues. 
Conversely, after a 1 Gy total body irradiation we de-
tected expression of human GAPDH in haematopoietic 
organs such as spleen, blood and bone marrow using 
PCR detection. Nevertheless, we did not detect any ex-
pression of human insulin gene in pancreatic tissue. Fur-
ther increase of the radiation dose up to 3 Gy led not 
only to the engraftment of human cells in pancreatic tis-
sue but also allowed differentiation of human cells into 
insulin-producing cells. While most of the human cells 
within the host pancreatic tissue were insulin-negative, 
we convincingly detected a few insulin-positive human 
cells in the pancreatic islets. Noteworthy is also the 
presence of human cells in pancreatic ducts. Since islet 
cell neogenesis is thought to occur in pancreatic ducts 
(Slack, 1995), it could be speculated that human cells 
present in pancreatic ducts may undergo differentiation 
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Fig. 3. FISH and immunofluorescence staining of mouse pancreatic tissue four weeks after the irradiation with 3 Gy. (A) 
FISH for human ALU sequence (red), (B) DAPI staining of nuclei (blue), (C) C-peptide immunofluorescence staining 
(green) and (D) merged images A–C. HUCB-derived ALU sequence and C-peptide-positive cell in pancreatic islet is 
shown (arrowhead) and HUCB-derived ALU sequence-positive cell in pancreatic duct is shown (star).
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into the endocrine cells under the influence of pancreatic 
ductal niche.

In contrast to the paper of Yoshida et al. (2005), the 
presence of human insulin-producing cells in the host 
pancreas and in isolated pancreatic islets was undoubt-
edly confirmed by specific PCR detection of human in-
sulin mRNA. The lower number of human insulin-posi-
tive cells in our study may also be explained by the 
lower number of transplanted cells. Isolation of HUCB 
cells from one donor enabled transplantation of 107 
MNC into 5–10 mouse recipients. Yoshida et al. report-
ed application of 107 CD3+, CD4+ and CD8+-depleted 
MNCs, which represents approximately 35 % of all 
HUCB MNCs (Pranke et al., 2001). Therefore, we as-
sume that for one mouse recipient they had to use a 
higher amount of HUCB than we used. 

The explanation for successful engraftment and dif-
ferentiation of HUCB cells in pancreatic tissue after the 
radiation treatment is not evident from our results. One 
could speculate that the tissue damage caused by radia-
tion stimulates migration and engraftment of human 
stem cells into the injured organs. For example, deple-
tion of the host immune system and haematopoietic 
stem cell pool by radiation-mediated myeloablation led 
to successful engraftment of donor stem cells in haemat-
opoietic organs (Stewart et al., 1998). The positive ef-

fect of radiation on the engraftment of stem cells and 
tissue regeneration is not characteristic only for haemat-
opoietic tissue, but also for neural (Marshall et al., 2005) 
and hepatic tissues (Guha et al., 2001).

Another condition which could have allowed engraft-
ment of human cells is the radiation-mediated myeloab-
lation of the mouse immune system. Depletion of host 
immune cells caused by myeloablation may have im-
paired xenograft rejection mediated by the remaining B 
and NK cells (Yoshino et al., 2000). Although we have 
no direct evidence how severe the depletion of the 
mouse immune system caused by irradiation was, we 
suppose that increasing doses of radiation allowed high-
er engraftment rate of HUCB cells into haematopoietic 
tissue with consequent restoration of the impaired im-
mune system. A rather high prevalence of GAPDH-pos-
itive cells that we found in the peripheral blood and bone 
marrow supports this assumption.

An important stimulus for stem cell differentiation 
into insulin-producing cells might be the diabetes-relat-
ed hyperglycaemia (Wang et al., 2005). In our study, 
HUCB administration did not cure or improve strepto-
zotocin-induced experimental diabetes. Previous study 
conducted by Ende et al. has shown improvement in 
glycaemia and survival of diabetic mice after the trans-
plantation of HUCB cells (Ende et al., 2004). However, 

Fig. 4. FISH and immunofluorescence staining of human pancreatic tissue. (A) FISH for human ALU sequence (red), (B) 
DAPI staining of nuclei (blue), (C) C-peptide immunofluorescence staining (green) and (D) merged images A–C.
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in their study the dose of HUCB cells was 200 × 106, 
20-fold higher than in our study. In this paper, however, 
no investigation of insulin-positive human cells had 
been performed. For further study, a longer time period 
and milder hyperglycaemia enabling survival will be 
necessary. 

In conclusion, our study confirmed the possibility of 
human umbilical cord blood mononuclear cells to dif-
ferentiate into human insulin-producing cells in vivo. 
However, successful differentiation occurred at a rather 
low rate and required preceding irradiation of the im-
munodeficient mouse recipient. Further investigation 
should focus on other potential conditions that might 
stimulate β-cell differentiation in vivo such as hypergly-
caemia, administration of incretins, and on identifica-
tion of the appropriate umbilical cord blood cell type 
suitable for transplantation.
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