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1. Abstract 

 

Atmospheric concentration of CO2 is increasing, while its influence on plants is still 

not fully elucidated. Norway spruce (Picea abies L. Karst.) is an abundant conifer tree in 

European temperate and boreal forests, which behave as carbon sink in the global carbon 

cycle. The physiological response to elevated CO2 concentration may be interconnected with 

changes in leaf anatomy and morphology. Needle structure is also determined by other factors 

in addition to CO2 concentration, irradiance being the most important one. Thus, effect of 

irradiance was also included in our studies. 

The effects of elevated CO2 concentration and irradiance on Norway spruce needle 

structure were studied using new applications of well-established quantitative methods and 

novel methods enabling effective and unbiased analysis of needle structural traits. The 

General Procrustes analysis showed to be effective for needle shape on cross section 

comparison and the disector method proved to be suitable for chloroplast number estimates. 

The influence of elevated CO2 concentration and different irradiance on needle 

structure was studied at two hierarchical levels: At the level of needle morphology, irradiance 

was stronger morphogenic factor than elevated CO2 concentration, while at the level of cell 

structure, the chloroplast density was enhanced by CO2 concentration. 

Irradiance microgradient within a shoot caused by needle self-shading was measured 

and shape differences among the needles within the same shoot were observed: Upper 

needles, i.e. needles growing from the upward side of the shoot, resembled sun needles by 

having larger cross-section area and less flat shape. However, the needle length was in 

counteraction as upper needles were rather shorter. Thus, needle volume differed following 

macroscale light gradient – needles from sun shoots had larger volume than needles from 

shade shoots regardless of their orientation on a shoot. 

The main effect of elevated CO2 concentration was stimulation of light-saturated CO2 

assimilation rate causing production of larger amount of starch in sun needles, which was 

accumulated in starch grains in chloroplasts. Larger starch grain area and starch areal density 

on cross section were observed in sun in comparison with those in shade needles in elevated 

CO2 concentration. However, our observations may be influenced by the effect of the season 

on starch areal density under elevated CO2 concentration. 

In conclusion, anatomical studies contributed to integration of findings obtained by 

various types of analyses; thus, quantitative anatomy is inevitably important in the synthesis 

of knowledge how elevated CO2 concentration may affect Norway spruce in the future. 
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2. Abstract in Czech – abstrakt v českém jazyce 

 

Koncentrace CO2 v atmosféře vzrůstá, zatímco její vliv na rostliny stále ještě není 

zcela objasněn. Smrk ztepilý (Picea abies L. Karst.) je hojně rozšířeným jehličnanem 

v evropských severských lesích a lesích mírného pásma, které jsou jedním ze sinků uhlíku 

v jeho globálním cyklu. Fyziologické odpovědi rostlin na zvýšenou koncentraci CO2 mohou 

být vzájemně propojeny s anatomickými a morfologickými změnami listu. Struktura listu je 

také ovlivněna dalšími faktory, přičemž nejvýznamnější z nich je ozářenost, která byla proto 

zařazena do našich studií. 

Vlivy zvýšené koncentrace CO2 a ozářenosti na strukturu jehlic smrku ztepilého byly 

studovány pomocí nově uzpůsobených zavedených efektivních metod kvantitativní analýzy, 

které poskytují nevychýlené odhady daných parametrů. Metoda všeobecné Prokrustovy 

analýzy byla efektivní pro porovnání tvarů jehlic na příčném řezu a metoda disektoru 

umožnila přesný odhad počtu chloroplastů ve smrkových jehlicích. 

Vliv zvýšené koncentrace CO2 a ozářenosti na strukturu jehlic byl zkoumán na dvou 

hierarchických úrovních: Na úrovni morfologie jehlice byla ozářenost silnějším morfogenním 

faktorem než zvýšená koncentrace CO2, zatímco na úrovni buněčné struktury vlivem zvýšené 

koncentrace CO2 narostla hustota chloroplastů. 

V rámci výhonu byla naměřena rozdílná ozářenost způsobená vzájemným stíněním 

jehlic. Plocha a tvar příčného řezu středem jehlice závisely na orientaci jehlice na výhonu. 

Horní jehlice připomínaly slunné jehlice tím, že jejich řezy měly větší plochu a byly méně 

zploštělé. Naproti tomu však byly kratší a tudíž objem jehlic závisel na rozdílné ozářenosti 

v rámci stromu – jehlice slunných výhonů byly objemnější než jehlice výhonů stinných 

nezávisle na jejich orientaci na výhonu. 

Efekt zvýšené koncentrace CO2 se projevil hlavně zvýšením maximální rychlosti 

světlem saturované asimilace CO2, které způsobilo tvorbu většího množství škrobu ve 

slunných jehlicích. Ten se nahromadil ve škrobových zrnech v chloroplastech. Škrobová zrna 

měla na řezu větší plochu ve slunných než ve stinných jehlicích ve zvýšené koncentraci CO2. 

Nicméně naše pozorování může být ovlivněno sezónními změnami v poměrném zastoupení 

škrobu na řezu chloroplastem. 

Anatomické studie přispěly k propojení poznatků z jiných typů analýz a jsou tudíž 

nevyhnutelně důležitou součástí syntézy vědomostí o budoucím působení zvýšené 

koncentrace CO2 na smrk ztepilý. 
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3. Abbreviations 

 

AC  ambient air CO2 concentration 

Amax  light-saturated CO2 assimilation rate 

AQE  apparent quantum efficiency 

EC  elevated air CO2 concentration 

GPA   Generalized Procrustes analysis 

LMA   leaf mass per area 

PPFD  photosynthetic photon flux density 

ppm  pars per million 

PSII  photosystem II 

RD  dark respiration rate 

Rubisco ribulose1,5bisphosphate carboxylase/oxygenase  

RuBP  ribulose1,5bisphosphate  

STARmax maximum ratio of shoot silhouette area to total needle surface area 

SUR  systematic uniform random 
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4. Introduction 

 

The ever increasing atmospheric concentration of CO2, which is occurring in many 

last decades (Etheridge et al., 1998; ESLR, 2019), affects plant physiological processes and 

anatomical structure (e.g. Körner, 2006; Leakey et al., 2009; Domec et al., 2017; Kurepin et 

al., 2018). To reveal its influence on plants, changes at all hierarchical levels should be 

analysed – from the ecosystem and population, through the individual plant characteristics 

and the organ anatomy to the subcellular structure level. The findings from all these levels 

and their synthesis will enable to understand the complex response of plants to elevated CO2 

concentration. 

Temperate and boreal forests play an important role in the global carbon cycle 

(Calfapietra et al., 2010). Forests act as a carbon sink (Goodale et al., 2002; Luyssaert et al., 

2008; Pan et al., 2011), evapotranspirate and create surface roughness (Bonan, 2016) and the 

increased leaf area index (occurring i.e. due to afforestation) contributes to mitigation of the 

increase in global land-surface air temperature (Zeng et al., 2017). On the other hand, forests 

decrease surface albedo and therefore may contribute to local warming, thus their role is 

complex and their research demands interdisciplinary approach (Bonan, 2016). 

Norway spruce (Picea abies L. Karst.) is an abundant conifer tree species in European 

temperate and boreal forests. It belongs to the most important timber tree species and thus it is 

plentifully planted even outside its original biotope (Spiecker, 2000). Because of its 

abundance, Norway spruce was chosen as the model plant species in this study. 

Leaf anatomy and morphology are interconnected with the ability of plants to absorb 

light and CO2 and tree leaves usually adapt their anatomy to surrounding environmental 

conditions to enable more efficient photosynthesis (Terashima et al., 2011). Therefore it is 

necessary to study not only the physiological response to elevated CO2, but also the changes 

in leaf anatomy in plants growing under elevated CO2 together with irradiance effect to reveal 

their adaptations to these conditions. The presented studies mainly focused on adjusting 

methods to unbiasedly evaluate needle anatomy to complement the physiological studies. 

Concerning leaf anatomy, an important morphogenic factor is irradiance (Stahl, 1883; 

Gaba and Black, 1983; Niinemets, 2007). Sun needles are longer, thicker, wider, heavier and 

denser than shade needles as it was noticed in mature Scots pine (Pinus sylvestris L.) 

(Gebauer et al., 2015a). Norway spruce sun needles are wider and have higher dry weight per 

area (Niinemets and Kull, 1995), larger volume and internal mesophyll surface (Lhotáková et 

al., 2012) and larger tracheid lumen area (Gebauer et al., 2012) than shade needles. 
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Besides irradiance, turgor pressure may influence needle morphology. In crowns of 

very tall conifers (above 90 m height), Pseudotsuga menziesii (Mirb.) Franco, Picea 

sitchensis (Bong.) Carrière and Sequoia sempervirens (D.Don) Endl., the needle length 

decreased with height due to turgor pressure limitation of cell expansion and leaf mass per 

area (LMA) increased with height probably due to smaller intercellular space (Chin and Sillet, 

2019). Moreover, Yáñez et al. (2017) claim that the differences in needle morphological 

parameters even within a crown of young and up to 4,5 meter tall Pinus taeda L. trees may 

not be driven solely by light and that the height of the tree where needles are sampled may 

play a role, too. They observed seasonal differences in morphological parameters between 

crown positions and thus supposed that other factors may contribute such as soil moisture, 

nutrients availability and light quality (Yáñez et al., 2017). Variability in foliage morphology 

was also observed in connection with geographic elevation, where the shoots in Norway 

spruce crowns in higher elevation were shorter, the crowns were more transparent and needles 

had lower dry mass than in lower elevation (Gottardini et al., 2016). 

To study the influence of elevated CO2 concentration (EC) on plants, different 

experimental designs were established, while the common approach is to compare plants 

growing under ambient atmosphere with plants growing in atmosphere with elevated CO2 

concentration. One issue complicating the synthesis of results from different studies is that the 

ambient CO2 concentration (AC) in the atmosphere is continually increasing and thus this 

value is increasing in the conducted experiments during the years, too. Moreover, the CO2 

concentration elevation in the experiment may be in different extent. Therefore, ambient 

CO2 concentration was considered e.g. as 350 ppm and elevated as 750 ppm (Lin et al., 2001), 

while in later studies, the concentrations may be e.g. 384–466 and 524–605 ppm (Klein et al., 

2016), respectively. Material for the publications presented as a part of this thesis was 

sampled in the adjustable glass domes with controlled atmosphere at the Bílý Kříž 

experimental site in the Beskid Mountains, Czech Republic, where the EC was always kept 

700 ppm regardless the changes in the ambient one (Urban et al., 2001). 

Another fact to consider when comparing different experiments aimed on elevated 

CO2 concentration is duration of the experiment, because buds and needles developing in 

previous years may be influenced by the then atmosphere. The season of the year when the 

measurements are done should be also considered, as some parameters (e.g. chloroplast 

ultrastructure) seasonally change (Sutinen, 1987, Senser et al., 1975). The tree age may have 

influence on leaf anatomical parameters and, thus, has to be considered too, because seedlings 

may respond differently, such as in Pinus sylvestris L., where the needles of 7yearold trees 
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after 4 years of treatment were thicker in EC than in AC (Lin et al., 2001), while no effect of 

EC on needle thickness was observed in 20yearold trees after 3 years of treatment (Luomala 

et al., 2005). Needle age may also influence the anatomical parameters, as current needles had 

larger internal mesophyll volume area than 3yearold needles (Lhotáková et al., 2012). When 

the needle length was influenced in EC, it was significantly higher only in the three youngest 

age classes (Pokorný et al., 2011). 

Changes of needle anatomy under elevated CO2 have been studied and observed in 

various conifer species (Lin et al., 2001; Eguchi et al., 2004; Kurepin et al., 2018) and the 

response to EC may be species specific (Kurepin et al., 2018). 

The conditions, in which the parent plants grow influence the progeny. Pinus 

yunnanensis, Franch. and Pinus sylvestris L. seedlings planted from seeds taken from 

different locations in China and Northern Europe respectively, and grown at experimental site 

had needles with some anatomical characteristics corresponding to the climatic conditions, in 

which the parent trees lived (Huang et al., 2016; Jankowski et al., 2017). However, the adult 

trees were adapted to the new site (Jankowski et al., 2017). Thus, the needle anatomy is 

probably genetically based, but it is phenotypically plastic and can adapt during ontogenesis. 

Similarly, Mašková et al. (2017) found great intraspecific differences in starch 

accumulation and soluble carbohydrate levels in Norway spruce needles of trees grown both 

in AC in EC, thus there may be a genetically based variability in other than anatomical 

parameters. In our studies, we used samples from a mix of genetically different trees and we 

supposed that the intraspecific differences within the groups were overcome by the influence 

of the environment. 

In most of the past needle anatomy studies on Norway spruce (e.g. Niinemets and 

Kull, 1995; Gebauer et al., 2012; Homolová et al., 2013; Gebauer et al., 2015b), the possible 

heterogeneity of structural parameters was usually considered mostly in sun versus shade 

shoots or needles and it was not always taken into account that heterogeneity may occur even 

within the same shoot or needle. In order to fully understand the effect of irradiance and 

elevated CO2 concentration on needle morphology and anatomy, it is essential to be aware of 

the possible heterogeneity or gradients of measured parameters within the plant organs, and 

thus to apply proper sampling and use precise methods of measurement. 

The anatomical parameters should be evaluated precisely. The fundamental 

stereological studies presented the methods for unbiased sampling and estimation of particle 

number in 3D space (Sterio, 1984; Mayhew and Gundersen, 1996). In the field of plant 

anatomy, the unbiased sampling and stereological methods are still rarely applied 
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(Kubínová et al., 2017). Despite the fact that the stereological methods enabling estimation of 

mesophyll anatomical characteristics had been established (Kubínová and Janáček, 1998; 

Albrechtová et al., 2007; Lhotáková et al., 2008; Albrechtová et al., 2014 ), they were further 

used by only a few other plant biology researchers, i.e. by Bandaru et al. (2010). 

This study should help to elucidate how elevated CO2 concentration influence sun and 

shade needle structure of Norway spruce. The response of needle anatomy could then be 

related to responses of physiological characteristics revealed in previous studies at the same 

experimental stand and the synthesis of knowledge will help to predict the future reaction of 

Norway spruce on expected elevated CO2 concentration. 
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5. Norway spruce tree aboveground morphology and needle anatomy 

 

In this chapter, Norway spruce morphology and anatomy is summarised to explain the 

terms used later in the text. The presented studies were done on three different hierarchical 

levels: a) on the level of a needle (Kubínová et al., 2014, 2018, 2019), b) on the level of 

a mesophyll cell (Kubínová et al., 2014, 2019) and c) on the level of a chloroplast (Kubínová 

et al., 2019). 

In Norway spruce trees, shoots are accruing from buds set during the previous season. 

During one vegetative season, new regular buds are set and remain dormant until the next 

vegetative season, when new primary shoots are flushed and elongated (Polák et al., 2006). 

Apart from these regular buds, dormant buds with remaining growth potential and aborted 

buds may be also present (Polák et al., 2006). Shoots form whorls, while new whorl accrues 

from the buds formed on the stem every year. Whorls are numbered from the top, thus 

the first whorl is the youngest one. Branches in the whorl consist of shoots, which accrue 

every year from the buds located at the previous year terminal shoot and to some extent also 

from the side shoots (Fig. 1a). Needles are growing all around the shoot (Fig. 1b). 

Norway spruce needle (Fig. 2a) has a central cylinder (comprising vascular bundle and 

transfusion tissue) bordered by endodermis and surrounded by mesophyll tissue. Plates of 

mesophyll cells and intercellular spaces between them are visible on needle longitudinal cross 

section (Fig. 2b). Mesophyll cells contain chloroplasts and form several layers. In our studies, 

the first mesophyll layer is defined as the outermost layer (Fig. 2a). Mesophyll is surrounded 

by sclerified hypodermis and the outermost needle tissue is one-cell-layer epidermis. Stomata 

are pores formed by guard cells in epidermis connecting intercellular space with the outside; 

hypodermis is not present under them. Resin ducts (if present) are located under the epidermis 

(Fig. 2a). 
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Fig. 1 Simplified schemes of Norway spruce tree and shoot. a – whorls, whorl numbers, 

branches and shoots; b – scheme of a shoot protruding towards the viewer showing that 

needles are growing all around the twig (white circle). Orientation of needles on a shoot: 

Upper needles grow from the upward facing side of the twig, lower needles grow from the 

downward facing side of the twig and side needles grow from sides of the twig.  

 
Fig. 2 Norway spruce needle. a – transverse cross section with contoured first mesophyll layer 

(white line); b – longitudinal cross section. Maximum projection of a stack of cross sections 

acquired by a Leica SP2 AOBS confocal laser-scanning microscope (Leica Microsystems, 

Wetzlar, Germany) with Ar laser excitation of 488 nm. Red - chlorophyll autofluorescence in 

chloroplasts detected in the red channel (emission 625–710 nm), green – phenolics 

autofluorescence detected in the green channel (emission 494–577 nm). The bars correspond 

to 100 µm. 
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6. Objectives and hypotheses 

 

The main objectives of this thesis were 1) to study the effects of elevated CO2 

concentration and irradiance on Norway spruce needle structure and 2) to use unbiased 

methods to quantify the studied needle parameters because that was necessary to fulfil the 

first objective. These methods included both well-established and novel quantitative methods 

for needle characteristics evaluation.  

The influence of elevated CO2 concentration and different irradiance on Norway 

spruce needle structure was studied at three hierarchical levels: a) the whole needle (needle 

crosssection shape), b) mesophyll (number of chloroplasts) and c) chloroplast ultrastructure 

(chloroplast area, starch grain area, and starch areal density). 

Firstly, the effects of elevated CO2 concentration, irradiance and needle spatial 

orientation on a shoot were studied. The hypotheses were that (H1) a microscale gradient in 

irradiance caused by needle self-shading exists within a shoot, and therefore needle spatial 

orientation on a shoot determines (H2) needle size and (H3) needle cross section shape 

similarly to sun and shade needle ecotypes differentiation; and (H4) irradiance is stronger 

morphogenic factor than elevated CO2 concentration. 

Additionally, the effects of elevated CO2 concentration and irradiance on chloroplast 

number and chloroplast ultrastructure within a needle mesophyll were studied. Plants under 

elevated CO2 concentration may invest into building more chloroplasts, as was reported 

previously. Thus the hypothesis was that (H5) the chloroplast density is enhanced by elevated 

CO2 concentration. Photosynthesis is often stimulated under elevated CO2 concentration, thus 

the hypotheses were that (H6) starch grain area and (H7) starch areal density are larger and 

lead to (H8) larger chloroplast area under elevated CO2 concentration. 

Finally, the effects of elevated CO2 concentration, irradiance and spatial variability of 

structural parameters within needle mesophyll were studied. The hypotheses were that (H9) 

the first mesophyll layer is representative for the whole needle cross section regarding 

chloroplast density in mesophyll and that the first mesophyll layer is representative for 

the whole needle cross section regarding (H10) starch grain area, (H11) starch areal density 

and (H12) chloroplast area in the cross section. 
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7. Critical review of results  

 

7. 1 Critical review of methods used for anatomical characteristics quantification 

 

The sampling method is an important part of the plant anatomical analysis. After 

sampling, methods for evaluation of the selected characteristics, such as shape analysis and 

methods for estimation of particle number and area are applied. Strengths and weaknesses of 

the aforementioned methods are discussed in this section. 

 

 

7.1.1 Sampling 

 

In order to fully understand the effect of irradiance and elevated CO2 concentration on 

needle morphology and anatomy, the possible heterogeneity or gradients of measured 

parameters within the plant organs have to be taken into account, thus the suitable unbiased 

sampling and precise methods of measurement should be used. 

The unbiased sampling may be done using the methods of simple random sampling, 

proportionator (Gardi et al., 2008) or systematic uniform random sampling (Sterio, 1984). 

The systematic uniform random sampling (SUR) ensures that all selected particles have 

the same probability to be sampled (Sterio, 1984). In Norway spruce needle anatomy 

research, the SUR sampling have already been used in previous studies of our team 

(Albrechtová et al., 2007; Lhotáková et al., 2008) and showed to be effective and suitable for 

plant anatomy analysis. Therefore, it was used in the current studies. 

One of the SUR methods, the optical disector (Sterio, 1984; Gundersen, 1986) enables 

unbiased estimation of particle number within 3D object. That is important, because gradients 

of many anatomic characteristics exist within plant organs (Pazourek, 1966). We have used 

the disector method implemented in a special plug-in module developed in the Ellipse 

software environment (Tomori et al., 2001) to count chloroplasts in a stack of serial optical 

sections using virtual 3D probe. This method was applied in our study of chloroplast number 

within a needle (Kubínová et al., 2014) and in the study of heterogeneity of chloroplast 

characteristics within the needle (Kubínová et al., 2019). The use of disector for chloroplast 

number estimation is further discussed in section 7.1.3. 

Sampling effectivity in the field was enhanced by formation and usage of a special belt 

for microtubes (Fig. 3). Belt was made from straps undid from a worn rucksack and a new 
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elastic, which were hand sewed together by a polyester thread. It was important to determine 

the right size of the loop, so that the microtube is both fixed enough not to fall from the belt 

and loose enough to be easily pulled out. Spaces between the loops need to be wide enough to 

enable the microtubes to fit next to each other without mutual pushing out. It was proven that 

the belt is useful. 

 
Fig. 3 Field belt for microtubes. a – detail of a person wearing the belt at the experimental 

site; b – detail showing spaces between the loops with microtubes for needle samples.  

 

 

7.1.2 Analysis of the needle cross section shape 

 

The main morphological characteristics of the needle cross section can be described by 

the ratio of needle thickness to needle width, which is used in the majority of studies (Sellin, 

2001; Apple et al., 2002; Palmroth et al., 2002; Homolová et al., 2013; Gebauer et al., 

2015b). However, this ratio may not cover the complex information about the shape, such as 

the lateral and or adaxial/abaxial asymmetry of the needle cross section (Fig. 4 A in 

Kubínová et al., 2018). These parameters may differ, while the ratio of needle thickness to 

needle width may remain the same. 

For precise cross section shape description, we applied the geometric morphometric 

method of Generalized Procrustes analysis (GPA) and it showed to be effective to estimate 

and compare the needle cross section shape (Kubínová et al., 2018). Nevertheless, the major 

parameter responding to the irradiance gradient observed in our study was the needle flatness, 

which may be also described by the ratio of needle thickness to needle width. Therefore, it 

seems plausible that the traditional method enables to recognize the main morphological traits 

of Norway spruce needles and their response to studied environmental factors. On the other 

hand, the GPA provides comparison of the complex shape and may reveal subtle changes, 
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such as the size and shape of flower parts in Iris pumila L. (Tucić et al., 2018), conceivably 

omitted or hardly detectable by the simple analysis.  

 

 

7.1.3 Chloroplast number estimation 

 

 Previously used methods of chloroplast number estimation include methods applied in 

two-dimensional space, such as (a) macerating and flattening the cells, which reduces the risk 

of overlap of the chloroplasts during observation under the microscope and enables to count 

the chloroplasts in one layer, and (b) cutting the leaf and counting profiles of chloroplasts on 

the cross section. Newly introduced method for chloroplast counting is the optical disector 

method. 

When considering the method to be used for chloroplast number estimation, it is 

important to choose a proper method, which is unbiased, that means that all counted particles 

(in this case chloroplasts) have the same probability to be sampled (Sterio, 1984). 

The chloroplast counting in flattened mesophyll cells of herbaceous plants was 

described by Possingham and Saurer (1969) on Spinacia oleracea L. leaves: At first, 

the leaves were fixed, then macerated to separate the mesophyll cells, which were then 

flattened by a cover slip while making microscopic slide. That enabled the chloroplasts to 

appear in a single plane of focus so that their counting under an optical microscope was 

feasible. This method was further developed for other herbaceous plants. Regarding 

unbiasedness, as far as proper sampling of mesophyll cells is ensured, the maceration method 

provides unbiased results. It may be applied under the condition that it is possible to separate 

individual mesophyll cells, which may not be possible in coniferous needles with lignified 

cell walls (Kubínová et al., 2014). 

The chloroplast number per mesophyll cell is often estimated as the number of 

chloroplast profiles in leaf cross section using light or transmission electron microscopy 

(Boffey et al., 1979; Wang et al., 2004; Jin et al., 2011; Du et al., 2019). This method is based 

on the assumption that the number of chloroplast profiles on a 2D cross section corresponds 

with the real chloroplast number in the entire 3D cell. However, we claim that the chloroplasts 

are spread in cytoplasm of the cell and that it is not likely that chloroplast profiles on a single 

optical section would unbiasedly represent the total chloroplast number per cell – for 

illustration see our 3D model of a mesophyll cell and its cross sections (Fig. 5 in Kubínová et 

al., 2014). A comparison of counted profiles of chloroplasts and chloroplasts counted in 
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a whole single isolated cell could be made from the data in the study of Stata et al. (2014): 

From the diagram in the Supplementary figure S6 could be deducted that C3 and C4 plant 

species in the study had approximately 46 and 20 chloroplasts per cell, respectively. However, 

in the same study in Table 1. the “chloroplast number per planar cell per area 1000 µm2ˮ, 

which may correspond to a single cell cross section, were 17.4±2.7 and 8.1±1.6 for C3 and C4 

plant species, respectively. 

In contrary to the above mentioned methods, the optical disector method based on 3D 

unbiased sampling probe enables unbiased estimation of the number of particles in 3D (Sterio, 

1984; Gundersen, 1986). It has already been used for estimation of mesophyll cell number 

(Albrechtová and Kubínová, 1991; Kubínová, 1991, 1993, 1994; Kubínová et al., 2002; 

Albrechtová et al., 2007) and we have adapted it and used it for chloroplast number 

estimation (Kubínová et al., 2014). 

We conclude that the disector method of counting chloroplasts in 3D showed to be 

more accurate than the frequently used profile counting in 2D cell cross sections when the 

number of chloroplasts is immensely underestimated (Kubínová et al., 2014). 

 

 

7.1.4 Chloroplast area, starch grain area, and starch areal density estimation 

 

In ultrastructural studies on TEM images, the area measurement of organelles or 

structures within them may be tedious as they cannot be automatically segmented. Starch 

grain area was previously measured using the point counting method (Kutík et al., 2004; 

Kubínová and Kutík, 2007). Another method is the interactive segmentation method based on 

drawing a line along the borders of the object under study. Glanc (2016) compared these 

methods and found out that both methods provide comparable results and claimed 

the interactive segmentation method as faster and more suitable for compact structures, thus it 

was used to determine the chloroplast area, starch grain cross-section size and starch areal 

density (Kubínová et al., 2019). 
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7.2 Critical review of measured characteristics 

 

To reveal the effect of elevated CO2 concentration and irradiance, the following 

assumptions support the selection of studied characteristics. 

The thicker is the needle, the larger is its internal mesophyll area and the easier is 

the CO2 diffusion into chloroplasts (Terashima et al., 2006). Therefore we measured 

the needle volume to discover whether it is influenced by either CO2 concentration or 

irradiance. 

Shade needles of Norway spruce were reported to be shorter than sun needles 

(Gebauer et al., 2012), hence we included needle length measurement in our study. 

Elevated CO2 enhances photosynthetic carbon gain (Leakey et al., 2009). That may be 

caused by a higher rate of CO2 assimilation. The course of photosynthesis is influenced by 

structural parameters within needle mesophyll (Terashima et al., 2006), therefore we 

measured the needle outer surface area and chloroplast number per cell. 

In order to reveal whether the supposed microscale irradiance gradient within 

the shoot exists, the relative light penetration was measured and subsequently the potential 

spatial variability of needles within a shoot was evaluated by determining the needle size and 

cross-section shape parameters. 

Finally, number of chloroplasts in the first mesophyll layer was compared with 

the number within the whole needle cross section to determine whether the measurement in 

the first layer may be representative for the whole cross section. That is important for 

sampling. However, technical feasibility and time consumption of the method have to be 

considered too. 

 

 

7.2.1 Effect of elevated CO2 concentration and irradiance on needle structure  

  

In this section, the effects of the studied factors on needle structure are discussed. 

They may affect the needle morphology, needle anatomy and even chloroplast ultrastructure. 

Chloroplast ultrastructure is thoroughly discussed in section 7.2.5 together with results of 

physiological measurements. 
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7.2.1.1 At the level of whole needle, irradiance was stronger morphogenic factor than 

elevated CO2 concentration 

 

In a previous study, needle volume was significantly influenced by irradiance – it was 

larger in sun than in shade needles, while it was not affected by elevated CO2 (Lhotáková et 

al., 2012). In accordance with that, we observed that sun needles had larger volume than 

shade needles no matter the CO2 concentration (Kubínová et al., 2018). However, we 

observed that the EC sun needles had larger volume than AC sun, while the EC shade needles 

had lower volume than AC shade (Kubínová et al., 2018). In our study, needle volume was 

estimated using needle length and needle cross-section area, thus those two parameters are 

discussed below. 

Regarding needle length, main differences were that sun needles were longer than 

shade needles and EC sun needles were longer than AC sun needles (Kubínová et al., 2018). 

Shorter shade than sun needles have been already recorded (e.g. Gebauer et al., 2012) and sun 

needle length decreased with canopy depth (Pokorný et al., 2011). Pokorný et al. (2011) 

compared only sun needles and observed significantly longer EC than AC needles only in 

the year when more drought periods occurred and only in the three youngest needle age 

classes. However, needle length may be influenced not only by light, but also by nitrogen and 

soilwater availability, and temperature (Roberntz, 1999, Pokorný et al., 2011). In EC, the 

trees were better adapted to drought due to larger total surface area of fine-absorbing roots 

(Pokorný et al., 2011). Thus, AC trees may be more affected by water stress. However, their 

needles’ relative water content was not significantly different from that of EC needles 

(Pokorný et al., 2011). Therefore, shorter needles in AC may be caused by different water 

relations and adaptations in AC and EC trees. 

Regarding needle cross-section area, the sun needles’ cross-section area was generally 

larger in EC, with the exception of middle and tip cross sections of side needles (Fig. 4), 

while shade needles’ cross-section area was smaller in EC as compared to AC (Kubínová et 

al., 2018). Our results on sun needles were confirmed by the results of Kurepin et al. (2018), 

who observed larger cross-section area in Norway spruce sun needles under EC than under 

AC. That study was conducted on seedlings and our study on juvenile trees, thus it seems that 

this difference is not limited to seedlings. 

As the irradiance had consistent influence on needle volume and thickness, while the 

effect of CO2 was not detected or ambiguous, the hypothesis (H4) that irradiance is stronger 

morphogenic factor than elevated CO2 concentration was accepted (Kubínová et al., 2018).  
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Fig. 4 Cross section positions along the needle termed base, middle and tip cross section. 

 

 

7.2.1.2 At the level of mesophyll, chloroplast number was higher under elevated CO2 

 

In general, the chloroplast number per plant cell varies due to both environmental and 

internal factors. The environmental factors enhancing chloroplast number include increased 

light intensity (Possingham and Smith, 1972), specific light quality (red and blue light) 

(Possingham, 1973), and elevated CO2 concentration (Wang et al., 2004; Teng et al., 2006). 

On the other hand, chloroplast number may decrease for example under nitrogen deficiency 

(Antal et al., 2010), manganese deficiency (Henriques, 2004), water deficiency (Wang and 

Zhang, 2002), and elevated temperature (Kivimäenpää et al., 2014). 

The internal factors enhancing chloroplast number per cell include higher ploidy 

(Mochizuki and Sueoka, 1955), larger cell size (Tymms et al., 1983) and chloroplast number 

may be also influenced by signalling compounds such as sugars (Butterfass, 1979, 

Van Digenen et al., 2016). Cole (2016) claims that there may exist an optimal organelle 

number per cell determined by the ratio of nuclear- and organelle-producted subunits forming 

organellar complexes. In my opinion, the translation of these subunits will probably depend 

on external factors and may change with time. 

Higher number of chloroplasts per mesophyll cell in EC was previously observed in 

herbaceous plants and attributed to stimulated chloroplast biogenesis (Wang et al., 2004; 

Teng et al., 2006). To my knowledge, no such studies for conifers exist, neither about 

influence of EC on chloroplast number, nor about the mechanisms how EC is affecting 

chloroplast number. In our study, the chloroplast number per mesophyll volume based on 

SUR measurement was significantly higher in needles growing in EC in comparison to 

needles growing in AC. However, it was not significantly different between sun and shade 

needles (Kubínová et al., 2019). Thus the hypothesis (H5) that the chloroplast density is 

enhanced by CO2 concentration was accepted.  
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7.2.2 The first mesophyll layer was not representative for the whole needle cross section 

regarding chloroplast density, starch grain area and starch areal density  

 

The chloroplast number measured in SUR sampled locations on the needle cross 

section showed significant influence by the level of CO2 concentration, while the same 

parameter measured from the same needle cross sections from locations sampled solely in the 

first mesophyll layer showed no significant difference between AC and EC (Kubínová et al., 

2019). Therefore, the hypothesis (H9) that the first mesophyll layer is representative for the 

whole needle cross section regarding chloroplast density in mesophyll was rejected. 

Sampling approach considering possible differences in anatomy was applied in a study 

of the impact of ozone on Norway spruce needles (Kivimäenpää et al., 2004), where the 

needle cross section was divided into five regions to perform an anatomical study. The first 

mesophyll layer on the sky-facing side of the needle was most affected by the air pollution 

(Kivimäenpää et al., 2004). In such kind of studies, it may be advantageous to analyse just 

the most affected part of the mesophyll providing that the purpose of the study is to assess the 

scale of air pollution damage. However, in studies focused on overall reaction of needle 

anatomy to some factor, the possible heterogeneity of structural characteristics within the 

needle should be considered. For example, light penetration may differ within the needle. 

The starch grain area and starch areal density of sun needles in AC were significantly 

larger in SUR locations than in the first layer of mesophyll (Kubínová et al., 2019). Therefore, 

the hypotheses (H10) that the first mesophyll layer is representative for the whole needle 

cross section regarding starch grain area and (H11) regarding starch areal density were 

rejected. The hypothesis (H12) that the chloroplast area in the cross section in the first 

mesophyll layer is representative for the whole needle cross section regarding starch grain 

area was not clearly rejected (Kubínová et al., 2019). However, in SUR there was a trend to 

larger chloroplast area in shade than in sun AC needles, while that was not the case in the first 

mesophyll layer (Kubínová et al., 2019), thus I would not consider the first mesophyll layer as 

representative for the chloroplast area. 

In conclusion, the SUR sampling is recommended to apply in anatomical studies. 

However, regarding the TEM measurement, the technical aspects of sample preparation must 

be taken in account. In some cases, such as when the contrast on TEM sample in deeper layers 

of mesophyll is so low that it is not possible to recognise the structures of interest, the SUR 

sampling is not feasible to perform (Kubínová et al., 2019). 
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7.2.3 Needle self-shading caused irradiance microscale gradient within a shoot 

 

Vertical irradiance gradient within a canopy and within an individual tree caused by 

shoots and needles overlapping is taken into account in ecophysiological studies. This 

gradient is often pronounced: up to only one third of the photosynthetic photon flux density 

(PPFD) present at the top was present at the bottom of Norway spruce tree crown (Reiter et 

al., 2005) and similarly, only a few percent of the value of PPFD at the fully exposed 

locations were present at the lowest branches of selected conifers (Wyka et al., 2012). 

These distinct differences in light availability influence the conifer shoot architecture. 

That may be described by the parameter STARmax (maximum ratio of shoot silhouette area to 

total needle surface area, measured when the shoot axis is perpendicular to the direction of 

irradiance; Carter and Smith, 1985; Stenberg, 1996). On a sun shoot, the needles appear all 

around the shoot axis, while on a shade shoot the needles grow prevalently in the horizontal 

direction (Stenberg, 1996; Cescatti and Zorer, 2003; Ishii et al., 2012; Fig. 3 in Kubínová et 

al., 2018). Higher STARmax of shade than sun shoots was noticed in Picea engelmannii Parry 

ex Engelm. (Carter and Smith, 1985), it was probably caused by less needles growing around 

the shade shoot and thus lower needle surface area of shade shoots, which act as 

a denominator in the STARmax formula.  

Despite the fact that the conifer shoot architecture is commonly examined and thus 

irradiance gradient is taken into account at the tree level (Stenberg et al., 1998; Suzaki et al., 

2003; Gebauer et al., 2019), to our knowledge, the probable irradiance gradient within an 

individual shoot and its possible effect on needles within the same shoot have not yet been 

examined. 

In our study, we have measured the relative light penetration under artificial laboratory 

conditions and found such within-shoot gradient in Norway spruce sun and shade shoots. 

Lower needles (i.e. growing on the bottom of the shoot) received 34.29% ± 0.19 and 

53.76% ± 0.20 of the light received by upper needles on the same shoot in sun and shade 

shoots, respectively (Kubínová et al., 2018). Thus, we concluded that needle self-shading 

caused irradiance microscale gradient within a shoot and accepted H1 hypothesis. 
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7.2.4 Microscale gradient in irradiance caused needle morphology differentiation 

around the shoot 

 

In species with dorsiventral leaves, sun and shade leaves develop under the irradiance 

gradient (Stahl, 1883; Wylie, 1949). Similarly in conifers, differences in needle structural 

parameters between sun and shade needles were observed: Sun needles were thicker than 

shade ones (Korstian, 1925; Niinemets, 2007). 

We have studied parameters of individual Norway spruce needles within a shoot and 

revealed that needle orientation on a shoot had significant influence on needle cross-section 

area (Tables 1 and 2 in Kubínová et al., 2018). Upper needles had larger cross-section areas 

than did side needles, and side needles had larger cross-section areas than did lower needles 

(Kubínová et al., 2018). Sun needle cross-section areas were larger than shade needle 

crosssection areas, thus upper needles’ areas corresponded to sun needles’ ones regardless of 

the shoot position. However, mean needle length was significantly greater and needle volume 

larger in sun needles as compared to shade needles, while upper needles were shorter than 

needles in other orientations and thus needle volume was not dependent on needle orientation 

(Kubínová et al., 2018).  

Therefore, the hypothesis (H2) that needle spatial orientation on a shoot determines 

needle size similar to sun and shade needle ecotypes differentiation was rejected: The needle 

spatial orientation around the shoot determined the cross-section area similarly to sun and 

shade needle ecotypes, while the needle length was in counteraction, thus the needle volume 

corresponded to the shoot position. 

 In the middle cross section of the needle, the sun needles were significantly less flat 

than shade needles. Similarly, upper needles were significantly less flat than needles from 

other orientations in both CO2 experimental conditions, irrespective of irradiance. Therefore, 

the hypothesis (H3) that needle spatial orientation on a shoot determines needle cross-section 

shape similar to sun and shade needle ecotypes differentiation was accepted. 

In conclusion, there are differences between needles not only within the canopy and 

within the individual tree, but even within the shoot. Therefore, the individual position of the 

needle on a shoot may have impact on its analysed parameters in anatomical studies and 

should to be taken into account. 
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7.2.5 Elevated CO2 concentration enhanced the light-saturated CO2 assimilation rate 

and lead into higher amount of starch and thus larger starch grain cross-section 

area in sun needles 

 

In this section, the chloroplast ultrastructure is discussed together with the 

photosynthetic parameters measured on the trees from the same experimental site. 

Firstly, the hypothesis (H8) that chloroplast cross section area is larger under elevated 

CO2 concentration was rejected in our study on needles sampled in October (Kubínová et al., 

2019). Similarly, needles of Pinus palustris P. Mill. sampled in autumn had no significant 

differences in chloroplast area in the cross section between AC and EC treatments (Pritchard 

et al., 1997). However, EC needles sampled in spring in the same study had in most cases 

larger chloroplast area in the cross section than AC needles, probably due to larger starch 

grains’ area (Pritchard et al., 1997). Senser et al. (1975) observed seasonal differences and 

noticed largest chloroplast area in Picea abies in AC in winter. Thus the effect of season 

probably mitigated the difference between AC and EC chloroplast area in our study. 

Larger starch grain area and starch areal density were observed in sun EC needles in 

comparison with sun AC needles, however, in shade needles, no significant difference was 

observed; needles were sampled in October (Kubínová et al., 2019). Therefore, the 

hypotheses that (H6) starch grain area and (H7) starch areal density are larger under elevated 

CO2 concentration were rejected. In agreement with our anatomical analysis results, higher 

amounts of starch in EC needles were detected biochemically for sun shoots of the same trees 

in August two years before our sampling (Mašková et al., 2017). The increased amount of 

starch may be a result of increased light-saturated CO2 assimilation rate (Amax) and it is 

discussed later. However, proportion of starch in chloroplast and number of starch grains in 

cross sections in EC were not different from AC and chloroplast cross section area was not 

significantly different between AC and EC (Mašková et al., 2017). Measurements conducted 

on the same trees after next two years of treatment revealed generally more starch in July than 

in October in AC needles, while in EC needles the amount of starch remained similar until 

October, probably due to postponed winter hardening in EC (Holá et al., manuscript in 

preparation). Thus, the increased amount of starch may be a result of increased Amax but it 

may be also a result of other processes. The proportion of starch in chloroplast cross sections 

depended on the season and thus the month of sampling has to be considered. 

The Amax values of following current sun and shade Norway spruce shoots of trees of 

different age, month of measurement and EC experiment duration from the Bílý Kříž 
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experimental site are discussed further: Shoots of 12yearold spruces being under EC for 

7 years, measured in September (Kubínová et al., 2018), shoots of 12yearold spruces being 

under EC for 4 years, measured in September (Urban et al., 2012a) and finally, shoots of 

18yearold spruces being under EC for 8 years, measured in August (Lhotáková et al., 2012). 

Amax in current sun EC shoots was about 47% higher than in current sun AC shoots 

(Kubínová et al., 2018). However, Urban et al. (2012) measured approximately 70% increase 

of Amax and Lhotáková et al. (2012) measured approximately 100% increase of Amax in 

current sun shoots being under EC than in current sun shoots under AC. In current shade 

shoots, Amax in EC was about 97% higher than Amax of the corresponding AC shoots 

(Kubínová et al., 2018). However, Lhotáková et al. (2012) measured approximately only 50% 

increase of Amax in EC. Generally, Amax is increased in EC (Stinziano and Way, 2014; 

Dusenge et al., 2019). Thus, the result that Amax was higher in EC was in accordance with 

previous studies, but the magnitude of the enhancement differed. Other factors included in 

determining Amax besides irradiance and elevated CO2 treatment duration may be e.g. nutrient 

availability and sink strength (Dusenge et al., 2019). Regarding the role of irradiance, diurnal 

changes in Amax occurred (Bader et al., 2016) and the photosynthesis was enhanced under 

cloudy conditions (Urban et al., 2012b). The photosynthesis regulation is very complex and 

sensitive. The factors such as preceding weather condition during the season may play 

an important role. Therefore, further studies should be performed to determine the 

relationship between the factors studied so far. 

In the above mentioned studies, Amax was higher in EC than in AC. The selected 

results from the studies were done on current shoots. However, acclimation (decreasing Amax 

after longterm EC) may occur in older shoots (Marek et al., 2002; Holišová et al., 2012). 

Lamba et al. (2017) observed that mature trees in EC were affected by acclimation. However, 

her study was done on one-year-old shoots, thus the effects of tree and shoot age may be hard 

to distinguish. Additionally, in oneyearold shoots Amax was also higher in EC than in AC 

(Urban et al., 2012a). Thus, the relationship between Amax, EC and tree and shoot age remains 

to be explained by further studies.  

The higher Amax occurred in current year needles in EC in spite of lower increase in 

Rubisco content and in oneyearold needles in spite of the steeper decrease of Rubisco 

content in EC than in AC during the vegetation season, because higher proportion of 

Rubisco active form was present in EC at the end of the vegetation season (Urban et al., 

2012a). In EC, the dark respiration rate (RD) and apparent quantum efficiency (AQE) were 

lower than in AC (Lhotáková et al., 2012). In July, the quantum yield of photosystem II 
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(PSII) photochemistry (the proportion of light absorbed by PSII chlorophyll) was higher in 

EC samples than in AC samples when measured in EC (Holá et al., manuscript in 

preparation). However, no significant differences were observed when measured in AC and 

under any conditions in current needles in October in 11yearold spruces being under EC for 

6 years. Moreover, not only season, but also needle age plays role in response to EC (Holá et 

al., manuscript in preparation). 

In general, photorespiration (i.e. the consequence of oxygenase activity of Rubisco) 

may be lower due to higher proportion of CO2 leading to increased probability that Rubisco 

will fix CO2 and that its oxygenase activity will be reduced (Dusenge et al., 2019). However, 

in EC the ratio of leaf internal to atmospheric CO2 concentration may not significantly differ 

from AC as it was observed e.g. in Eucalyptus (Gimeno et al., 2016). 

Stimulation of photosynthesis in EC possibly enhanced growth of needles, while the 

number of needles per unit shoot length was not affected in 17 to 19yearold spruces grown 

in the domes for 6–8 years (Pokorný et al., 2011). Thus, trends to longer sun needles, larger 

projected sun needle area and larger leaf mass per sun needle projected area in EC than in AC 

were noticed, while these parameters differed significantly only in the youngest needles in the 

year when drought periods occurred (Pokorný et al., 2011). Similarly, we found current sun 

EC needles longer than sun AC needles (Kubínová et al., 2018). It may be caused by the fact 

that spruces in EC had higher absorbing root area and thus enhanced root to conductive stem 

area proportions, which, accompanied by early seasonal stimulation of photosynthesis, lead to 

advanced needle development (Pokorný et al., 2011). Moreover, EC induced higher growth of 

the leading shoot and longer 6th whorl branches (Lhotáková et al., 2012). In accordance with 

that, Mašková et al. (2017) found out that total soluble carbohydrate levels and composition 

did not differ between the AC and EC treatments despite of the increased CO2 assimilation 

rate with no increase in dark respiration in EC current shoots observed by Holišová et al. 

(2012). Both studies were conducted on the same 9yearold spruces grown 4 years in the 

domes. Mašková et al. (2017) supposed that the surplus carbohydrates were used to support 

growth and sink organs development. This assumption based on the results of biochemical 

analysis and physiological measurements was supported by anatomical studies.  

In conclusion, the synthesis of knowledge from different types of analyses may enable 

deeper insight into complex processes, such as the reaction of Norway spruce on elevated CO2 

concentration. 
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8. Summary  

 

The main results of this thesis are that 1) Norway spruce needle morphological and 

anatomical parameters are influenced not only by macroscale irradiance gradient, but also by 

microscale irradiance gradient around the single shoot (H1 and H3 were accepted) and that 

2) the anatomical characteristics are not homogenous even within an individual needle (H9–

H11 were rejected; however, H12 was not clearly rejected). Therefore, systematic uniform 

random sampling and precise analytical methods, which were presented in the enclosed 

publications, should be used to obtain unbiased results. The presented methods are universal 

and can be used in other anatomical studies. 

In the studies presented in this thesis, irradiance was stronger morphogenic factor than 

elevated CO2 concentration (H4 was accepted). Shape differences among the middle needle 

cross sections within the same shoot were observed (H3 was accepted). Upper needles, i.e. 

needles growing from the upward side of the shoot, were significantly less flat than side 

needles, while lower needles were significantly flatter than side needles. Similarly, the 

needles from shade shoots were flatter than needles from sun shoots. The needle spatial 

orientation determined the cross-section area similarly to sun and shade needle ecotypes, 

while upper needles were shorter than needles of other orientations. Thus the needle volume 

did not depend on needle orientation (H2 was rejected). 

 Regarding the effect of elevated CO2 concentration, light-saturated CO2 assimilation 

rate was stimulated and photosynthetic acclimation was not observed. However, we measured 

the current shoots and the acclimation probably occurs mostly in older shoots.  

The chloroplast density was found to be enhanced by EC (H5 was accepted). Larger 

starch grain area and starch areal density on chloroplast cross section in EC, significant in sun 

needles only (H6–H8 were rejected), were probably caused by stimulated light-saturated CO2 

assimilation rate. However, our observation may be influenced by the seasonal dynamics of 

starch areal density in EC. 

In conclusion, the response of needle quantitative parameters to elevated CO2 

concentration and irradiance was related to responses of physiological characteristics and 

revealed that the changes in anatomy were interconnected with physiological changes. Thus it 

was proven that the anatomical studies help in the synthesis of knowledge and may support 

the findings made from other types of analyses. Moreover, the presented methods enable to 

capture even subtle changes in the needle morphology and anatomy and thus may stimulate 

new research questions, which may not arise from merely physiological research.  
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9. Summary in Czech – Závěry práce v českém jazyce 

 

Hlavním výsledkem disertační práce jsou poznatky, že 1) morfologické a anatomické 

vlastnosti jehlic smrku ztepilého jsou ovlivňovány ozářeností nejen ve větším měřítku, ale 

i v malém měřítku v případě rozdílné ozářenosti v rámci výhonu (H1 a H3 byly přijaty) a že 

2) anatomické vlastnosti nejsou homogenní ani v rámci jedné jehlice (H9–H11 byly 

zamítnuty; nicméně H12 nebyla jednoznačně zamítnuta). Z toho vyplývá, že k získání 

nevychýlených výsledků je potřeba používat systematicky rovnoměrně náhodné vzorkování a 

přesné metody analýzy obrazu, které byly prezentovány v přiložených publikacích. Uvedené 

metody jsou univerzální a mohou být použity i v jiných anatomických studiích. 

V předložených publikacích působila ozářenost jako morfogenní faktor silněji než 

zvýšená koncentrace CO2 (H4 byla přijata). U jehlic z téhož výhonu byly pozorovány rozdíly 

v jejich tvaru na prostředním řezu (H3 byla přijata). Horní jehlice, tj. jehlice vyrůstající 

z horní části výhonu, byly méně zploštělé než postranní jehlice, zatímco spodní jehlice byly 

významně více zploštělé než postranní jehlice. Obdobně jehlice ze stinných výhonů byly více 

zploštělé než jehlice z výhonů slunných. Orientace jehlice na výhonu ovlivnila plochu řezu 

podobně jako u slunných a stinných jehlic, zatímco horní jehlice byly kratší než ostatní 

jehlice. Objem jehlice proto nezávisel na její orientaci na výhonu (H2 byla zamítnuta). 

 Efekt zvýšené koncentrace CO2 se projevil hlavně zvýšením maximální rychlosti 

světlem saturované asimilace CO2, přičemž fotosyntetická aklimace nebyla pozorována, což 

mohlo být proto, že byly výhony narostlé v roce měření.  

 Hustota chloroplastů byla zvýšena při zvýšené koncentraci CO2 (H5 byla potvrzena). 

Větší plocha škrobových zrn a její poměrné zastoupení na řezu chloroplastem při zvýšené 

koncentraci CO2, signifikantní pouze u slunných jehlic (H6–H8 byly zamítnuty), byly 

pravděpodobně způsobeny zvýšenou maximální rychlostí světlem saturované asimilace CO2. 

Nicméně naše pozorování může být ovlivněno sezónními změnami v poměrném zastoupení 

škrobu na řezu chloroplastem v EC. 

 Změny v kvantitativních parametrech jehlic v reakci na zvýšenou koncentraci CO2 

a ozářenost odpovídaly změnám fyziologických parametrů a odhalily propojení anatomických 

změn s fyziologickými. Bylo tak prokázáno, že anatomické studie pomáhají v syntéze znalostí 

a mohou podpořit poznatky z jiných typů analýz. Předložené metody navíc umožňují zachytit 

i méně patrné změny v morfologii a anatomii jehlic, čímž mohou podnítit nové výzkumné 

otázky, které by nemusely vyvstat z čistě fyziologického výzkumu. 



34 

 

10. List of publications 

 

Following publications are presented as part of the thesis. Their full texts are in the 

appendix, which is not publicly available online. However, the full texts may be available 

under the hypertext links below each citation. 

The participation of the thesis author, Zuzana Kubínová (ZK), on each publication is 

described below. 

 

10.1 Kubínová Z, Janáček J, Lhotáková Z, Kubínová L, Albrechtová J. 2014. Unbiased 

estimation of chloroplast number in mesophyll cells: advantage of a genuine three-

dimensional approach. Journal of Experimental Botany 65, 609–620. 

https://doi.org/10.1093/jxb/ert407 

ZK participated in establishing the design of the study, acquired and analysed the 

confocal microscopic data and contributed to the manuscript writing, figures processing 

and final editing. 

 

10.2 Kubínová Z, Janáček J, Lhotáková Z, Šprtová M, Kubínová L, Albrechtová J. 

2018. Norway spruce needle size and cross section shape variability induced by 

irradiance on a macro- and microscale and CO2 concentration. Trees 32(1), 231–

244. 

https://doi.org/10.1007/s00468-017-1626-3 

ZK had the idea to evaluate Norway spruce needle shapes, participated in material 

collection, processed the needles, acquired the microscopic data, placed the landmarks, 

finalised the figures and contributed to writing and final editing of the manuscript. 

 

10.3 Kubínová Z, Glanc N, Radochová B, Lhotáková Z, Janáček J, Kubínová L, 

Albrechtová J. 2019. Unbiased estimation of Norway spruce (Picea abies L. Karst.) 

chloroplast structure: Heterogeneity within needle mesophyll under different 

irradiance and [CO2]. Image Analysis & Stereology 38(1), 83–94.  

https://doi.org/10.5566/ias.2005 

ZK participated in establishing the design of the study, participated in material 

collection, acquired and analysed the confocal microscopic data and contributed to the 

manuscript writing, figures processing and final editing. 

 

https://doi.org/10.1093/jxb/ert407
https://doi.org/10.1007/s00468-017-1626-3
https://doi.org/10.5566/ias.2005


35 

 

10.4 Kubínová L, Radochová B, Lhotáková Z, Kubínová Z, Albrechtová J. 2017. 

Stereology, an unbiased methodological approach to study plant anatomy and 

cytology: past, present and future. Image Analysis & Stereology 36(3), 187–205. 

https://doi.org/10.5566/ias.1848 

ZK contributed to chloroplast counting part, participated in editing and did final 

references processing. 

  

https://doi.org/10.5566/ias.1848


36 

 

11. References 

Albrechtová J, Janáček J, Lhotáková Z, Radochová B, Kubínová L. 2007. Novel efficient methods for 

measuring mesophyll anatomical characteristics from fresh thick sections using stereology and confocal 

microscopy: application on acid rain-treated Norway spruce needles. Journal of Experimental Botany 58, 1451–

1461. 

Albrechtová J, Kubínová L. 1991. Quantitative analysis of the structure of etiolated barley leaf using 

stereological methods. Journal of Experimental Botany 42, 1311–1314. 

Albrechtová J, Kubínová Z, Soukup A, Janáček J. 2014. Image analysis: basic procedures for description of 

plant structures. In Plant Cell Morphogenesis (pp. 67–76). Humana Press, Totowa, NJ. 

Antal T, Mattila H, Hakala-Yatkin M, Tyystjärvi T, Tyystjärvi E. 2010. Acclimation of photosynthesis to 

nitrogen deficiency in Phaseolus vulgaris. Planta 232(4), 887–898. 

Apple M, Tiekotter K, Snow M, Young J, Soeldner A, Phillips D, Tingey D, Bond BJ. 2002. Needle 

anatomy changes with increasing tree age in Douglas-fir. Tree Physiology 22, 129–136. 

Bandaru V, Hansen DJ, Codling EE, Daughtry CS, White-Hansen S, Green CE. 2010. Quantifying arsenic-

induced morphological changes in spinach leaves: implications for remote sensing. International Journal of 

Remote Sensing 31(15), 4163–4177. 

Bader MKF, Mildner M, Baumann C, Leuzinger S, Körner C. 2016. Photosynthetic enhancement and 

diurnal stem and soil carbon fluxes in a mature Norway spruce stand under elevated CO2. Environmental and 

experimental botany 124, 110–119. 

Bonan GB. 2016. Forests, climate, and public policy: A 500-year interdisciplinary odyssey. Annual Review of 

Ecology, Evolution, and Systematics 47, 97–121. 

Boffey SA, Ellis JR, Sellden G, Leech RM. 1979. Chloroplast division and DNA synthesis in light-grown 

wheat leaves. Plant Physiology 64, 502–505. 

Butterfass T. 1979. Patterns of chloroplast reproduction: a developmental approach to protoplasmic plant 

anatomy. Springer-Verlag Wien. 205 p. 

Calfapietra C, Ainsworth EA, Beier C, De Angelis P, Ellsworth DS, Godbold DL, Hendrey GR, Hickler T, 

Hoosbeek MR, Karnosky DF, King J, Korner C, Leakey ADB, Lewin KF, Liberloo M, Long SP, Lukac M, 

Matyssek R, Miglietta F, Nagy J, Norby RJ, Oren R, Percy KE, Rogers A, Mugnozza GS, Stitt M, Taylor 

G, Ceulemans R, Grp ES-FF. 2010. Challenges in elevated CO2 experiments on forests. Trends in Plant 

Science 15, 5–10. 

Carter GA, Smith WK. 1985. Influence of shoot structure on light interception and photosynthesis in conifers. 

Plant Physiology 79, 1038–1043. 

Cescatti A, Zorer R. 2003. Structural acclimation and radiation regime of Silver fir (Abies alba Mill.) Shoots 

along a light gradient. Plant, Cell & Environment 26(3), 429–442 

Chin ARO, Sillett SC. 2019. Within-crown plasticity in leaf traits among the tallest conifers. American Journal 

of Botany 106(2), 174–186. 

Cole LW. 2016. The evolution of per-cell organelle number. Frontiers in cell and developmental biology 4, 85. 

Domec JC, Smith DD, McCulloh KA. 2017. A synthesis of the effects of atmospheric carbon dioxide 

enrichment on plant hydraulics: implications for whole‐plant water use efficiency and resistance to drought. 

Plant, Cell & Environment 40(6), 921–937. 

Du Q, Zhao XH, Xia L, Jiang CJ, Wang XG, Han Y, Wang J, Yu HQ. 2019. Effects of potassium deficiency 

on photosynthesis, chloroplast ultrastructure, ROS, and antioxidant activities in maize (Zea mays L.). Journal of 

Integrative Agriculture 18(2), 395–406. 

Dusenge ME, Duarte AG, Way DA. 2019. Plant carbon metabolism and climate change: elevated CO2 and 

temperature impacts on photosynthesis, photorespiration and respiration. New Phytologist 221(1), 32–49. 

Eguchi N, Fukatsu E, Funada R, Tobita H, Kitao M, Maruyama Y, Koike T. 2004. Changes in morphology, 

anatomy, and photosynthetic capacity of needles of Japanese larch (Larix kaempferi) seedlings grown in high 

CO2 concentrations. Photosynthetica 42, 173–178. 



37 

 

ESLR, Earth System Research Laboratory, National Oceanic & Atmospheric Administration, US Dept. of 

Commerce. 2019. Trends in Atmospheric Carbon Dioxide [online]. NOAA/ESRL, June 2019. 

http://www.esrl.noaa.gov/gmd/ccgg/trends/ 

Etheridge DM, Steele LP, Langenfelds RL, Francey RJ, Barnola J-M, Morgan VI. 1998. Historical CO2 

records from the Law Dome DE08, DE08-2, and DSS ice cores. In Trends: A Compendium of Data on Global 

Change [online]. CDIAC, ORNL, June 1998. <http://cdiac.ornl.gov/trends/co2/lawdome.html>. 

Gaba V, Black M. 1983. The Control of Cell Growth by Light. In: Shropshire W, Mohr H. (eds) 

Photomorphogenesis. Encyclopedia of Plant Physiology (New Series), vol 16. Springer, Berlin, Heidelberg 

Gardi JE, Nyengard JR, Gundersen HJG. 2008. Automatic sampling for unbiased and efficient stereological 

estimation using the proportionator in biological studies, Journal of Microscopy 230(1), 108–120. 

Gebauer R, Volařík D, Urban J, Børja I, Nagy NE, Eldhuset TD, Krokene P. 2012. Effects of different light 

conditions on the xylem structure of Norway spruce needles. Trees 26(4), 1079–1089. 

Gebauer R, Čermák J, Plichta R, Špinlerová Z, Urban J, Volařík D, Ceulemans R. 2015a. Within-canopy 

variation in needle morphology and anatomy of vascular tissues in a sparse Scots pine forest. Trees 29(5), 1447–

1457. 

Gebauer R, Volařík D, Urban J, Børja I, Nagy NE, Eldhuset TD, Krokene P. 2015b. Effects of prolonged 

drought on the anatomy of sun and shade needles in young Norway spruce trees. Ecology and evolution 5(21), 

4989–4998. 

Gebauer R, Volařík D, Urban J, Børja I, Nagy NE, Eldhuset TD, Krokene P. 2019. Effects of mild drought 

on the morphology of sun and shade needles in 20-year-old Norway spruce trees. iForest-Biogeosciences and 

Forestry 12(1), 27. 

Gimeno TE, Crous KY, Cooke J, O'Grady AP, Ósvaldsson A, Medlyn BE, Ellsworth DS. 2016. Conserved 

stomatal behaviour under elevated CO2 and varying water availability in a mature woodland. Functional Ecology 

30(5), 700–709. 

Glanc N. 2016. Ultrastruktura chloroplastů smrku ztepilého - heterogenita v rámci jehlice. Diploma thesis, 

Univerzita Karlova v Praze. 

Goodale CL, Apps MJ, Birdsey RA, Field CB, Heath LS, Houghton RA, Jenkins CJ, Kohlmaier GH, Kurz 

W, Liu S, Nabuurs GJ, Nilsson S, Shvidenko AZ. 2002. Forest carbon sinks in the Northern Hemisphere. 

Ecological Applications 12(3), 891–899. 

Gottardini E, Cristofolini F, Cristofori A, Camin F, Calderisi M, Ferretti M. 2016. Consistent response of 

crown transparency, shoot growth and leaf traits on Norway spruce (Picea abies (L.) H. Karst.) trees along an 

elevation gradient in northern Italy. Ecological Indicators 60, 1041–1044. 

Gundersen HJG. 1986. Stereology of arbitrary particles—a review of unbiased number and size estimators and 

the presentation of some new ones, in memory of Thompson, William, R. Journal of Microscopy 143, 3–45. 

Henriques FS. 2004. Reduction in chloroplast number accounts for the decrease in the photosynthetic capacity 

of Mn-deficient pecan leaves. Plant science 166(4), 1051–1055. 

Holá D, Radochová B, Lhotáková Z, Kočová M, Rothová O, Šprtová M, Kubásek J, Janáček J, Čapek M, 

Urban O, Albrechtová J. Manuscript in preparation. The different response of sun-exposed and shaded leaves 

of Norway spruce to elevated CO2: the analysis of chloroplast ultrastructure and primary photochemistry. 

Holišová P, Zitová M, Klem K, Urban O. 2012. Effect of elevated carbon dioxide concentration on carbon 

assimilation under fluctuating light. Journal of environmental quality 41(6), 1931–1938. 

Homolová L, Lukeš P, Malenovský Z, Lhotáková Z, Kaplan V, Hanuš J. 2013. Measurement methods and 

variability assessment of the Norway spruce total leaf area: implications for remote sensing. Trees 27(1), 111–

121.  

Huang Y, Mao J, Chen Z, Meng J, Xu Y, Duan A, Li Y. 2016. Genetic structure of needle morphological and 

anatomical traits of Pinus yunnanensis. Journal of Forestry Research 27(1), 13–25. 

Ishii H, Hamada Y, Utsugi H. 2012. Variation in light-intercepting area and photosynthetic rate of sun and 

shade shoots of two Picea species in relation to the angle of incoming light. Tree Physiology 32, 1227–1236.  

https://en.wikipedia.org/wiki/H.J.G._Gundersen
https://en.wikipedia.org/wiki/Journal_of_Microscopy


38 

 

Jankowski A, Wyka TP, Żytkowiak R, Nihlgård B, Reich PB, Oleksyn J. 2017. Cold adaptation drives 

variability in needle structure and anatomy in Pinus sylvestris L. along a 1,900 km temperate–boreal transect. 

Functional ecology 31(12), 2212–2223. 

Jin B, Wang L, Wang J, Jiang KZ, Wang Y, Jiang XX, Ni CY, Wang YL, Teng NJ. 2011. The effect of 

experimental warming on leaf functional traits, leaf structure and leaf biochemistry in Arabidopsis thaliana. 

BMC Plant Biology 11, 10. 

Kivimäenpää M, Jönsson AM, Stjernquist I, Selldén G, Sutinen, S. 2004. The use of light and electron 

microscopy to assess the impact of ozone on Norway spruce needles. Environmental Pollution 127(3), 441–453. 

Kivimäenpää M, Riikonen J, Sutinen S, Holopainen T. 2014. Cell structural changes in the mesophyll of 

Norway spruce needles by elevated ozone and elevated temperature in open-field exposure during cold 

acclimation. Tree Physiology 34(4), 389–403. 

Klein T, Bader MKF, Leuzinger S, Mildner M, Schleppi P, Siegwolf RT, Körner C. 2016. Growth and 

carbon relations of mature Picea abies trees under 5 years of free‐air CO2 enrichment. Journal of Ecology 

104(6), 1720–1733. 

Körner C. 2006. Plant CO2 responses: an issue of definition, time and resource supply. New Phytologist 172, 

393–411. 

Korstian CF. 1925. Some ecological effects of shading coniferous nursery stock. Ecology 6(1), 48–51.  

Kubínová L. 1991. Stomata and mesophyll characteristics of barley leaf as affected by light—stereological 

analysis. Journal of Experimental Botany 42, 995–1001. 

Kubínová L. 1993. Recent stereological methods for the measurement of leaf anatomical characteristics: 

estimation of volume density, volume and surface area. Journal of Experimental Botany 44, 165–173. 

Kubínová L. 1994. Recent stereological methods for measuring leaf anatomical characteristics: estimation of the 

number and sizes of stomata and mesophyll cells. Journal of Experimental Botany 45, 119–127. 

Kubínová L, Janáček J. 1998. Estimating surface area by the isotropic fakir method from thick slices cut in an 

arbitrary direction. Journal of Microscopy 191, 201–211. 

Kubínová L, Janáček J, Krekule I. 2002. Stereological methods for estimating geometrical parameters of 

microscopical structure studied by three-dimensional microscopical techniques. In: Diaspro A, ed. Confocal and 

two-photon microscopy, New York: Wiley-Liss. 

Kubínová L, Radochová B, Lhotáková Z, Kubínová Z, Albrechtová J. 2017. Stereology, an unbiased 

methodological approach to study plant anatomy and cytology: past, present and future. Image Analysis & 

Stereology 35, 187–205. 

Kubínová Z, Janáček J, Lhotáková Z, Šprtová M, Kubínová L, Albrechtová J. 2018. Norway spruce needle 

size and cross section shape variability induced by irradiance on a macro- and microscale and CO2 concentration. 

Trees 32(1), 231–244. 

Kubínová Z, Janáček J, Lhotáková Z, Kubínová L, Albrechtová J. 2014. Unbiased estimation of chloroplast 

number in mesophyll cells: advantage of a genuine three-dimensional approach. Journal of Experimental Botany 

65, 609–620. 

Kubínová Z, Glanc N, Radochová B, Lhotáková Z, Janáček J, Kubínová L, Albrechtová J. 2019. Unbiased 

estimation of Norway spruce (Picea abies L. Karst.) chloroplast structure: Heterogeneity within needle 

mesophyll under different irradiance and [CO2]. Image Analysis & Stereology 38(1), 83–94.  

Kubínová L, Kutík J. 2007. Surface density and volume density measurements of chloroplast thylakoids in 

maize (Zea mays L.) under chilling conditions. Photosynthetica 45, 481–488.  

Kurepin LV, Stangl ZR, Ivanov AG, Bui V, Mema M, Hüner NPA Öquist G, Way D, Hurry V. 2018. 

Contrasting acclimation abilities of two dominant boreal conifers to elevated CO2 and temperature. Plant, Cell & 

Environment 41(6), 1331–1345. 

Kutík J, Holá D, Kočová M, Rothová O, Haisel D, Wilhelmová N, Tichá I. 2004. Ultrastructure and 

dimensions of chloroplasts in leaves of three maize (Zea mays L.) inbred lines and their F1 hybrids grown under 

moderate chilling stress. Photosynthetica 42, 447–455. 



39 

 

Lamba S, Hall M, Räntfors M, Chaudhary N, Linder S, Way D, Uddling J, Wallin G. 2018. Physiological 

acclimation dampens initial effects of elevated temperature and atmospheric CO2 concentration in mature boreal 

Norway spruce. Plant, Cell & Environment 41(2), 300–313. 

Leakey ADB, Ainsworth EA, Bernacchi CJ, Rogers A, Long SP, Ort DR. 2009. Elevated CO2 effects on 

plant carbon, nitrogen, and water relations: six important lessons from FACE. Journal of Experimental Botany 

60, 2859–2876. 

Lhotáková Z, Albrechtová J, Janáček J, Kubínová L. 2008. Advantages and pitfalls of using free-hand 

sections of frozen needles for three-dimensional analysis of mesophyll by stereology and confocal microscopy. 

Journal of Microscopy 232, 56–63. 

Lhotáková Z, Urban O, Dubánková M, Cvikrová M, Tomášková I, Kubínová L, Zvára K, Marek MV, 

Albrechtová J. 2012. The impact of long-term CO2 enrichment on sun and shade needles of Norway spruce 

(Picea abies): Photosynthetic performance, needle anatomy and phenolics accumulation. Plant Science 188–189, 

60–70.  

Lin JX, Jach ME, Ceulemans R. 2001. Stomatal density and needle anatomy of Scots pine (Pinus sylvestris) 

are affected by elevated CO2. New Phytologist 150, 665–674. 

Luomala E-M, Laitinen K, Sutinen S, Kellomäki S, Vapaavuori E. 2005. Stomatal density, anatomy and 

nutrient concentrations of Scots pine needles are affected by elevated CO2 and temperature. Plant, cell and 

envinronment 28, 733–749. 

Luyssaert S, Schulze ED, Börner A, Knohl A, Hessenmöller D, Law BE, Ciais P, Grace J. 2008. Old-

growth forests as global carbon sinks. Nature 455(7210), 213.  

Marek MV, Urban O, Šprtová M, Pokorný R, Rosová Z, Kulhavý J. 2002. Photosynthetic assimilation of 

sun versus shade Norway spruce [Picea abies (L.) Karst] needles under the long-term impact of elevated CO2 

concentration. Photosynthetica 40(2), 259–267. 

Mašková P, Radochová B, Lhotáková Z, Michálek J, Lipavská H. 2017. Nonstructural carbohydrate-balance 

response to long-term elevated CO2 exposure in European beech and Norway spruce mixed cultures: 

biochemical and ultrastructural responses. Canadian Journal of Forest Research 47, 1488–94. 

Mayhew TM, Gundersen HJ. 1996. 'If you assume, you can make an ass out of u and me': a decade of the 

disector for stereological counting of particles in 3D space. Journal of anatomy 188(Pt 1): 1. 

Mochizuki A, Sueoka N. 1955. Genetic studies on the number of plastid in stomata. I. Effect of autopolyploidy 

in sugar beets. Cytologia 20, 358–366. 

Niinemets Ü. 2007. Photosynthesis and resource distribution through plant canopies. Plant, Cell & Environment 

30, 1052–1071. 

Niinemets Ü, Kull O. 1995. Effects of light availability and tree size on the architecture of assimilative surface 

in the canopy of Picea abies: variation in needle morphology. Tree Physiology 15(5), 307–315. 

Palmroth S, Stenberg P, Smolander S, Voipio P, Smolander H. 2002. Fertilization has little effect on light-

interception efficiency of Picea abies shoots. Tree Physiology 22, 1185–1192. 

Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, 

Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D. 
2011. A large and persistent carbon sink in the world’s forests. Science 333(6045), 988–993. 

Pazourek J. 1966. Anatomical gradients. Acta Universitatis Carolinae—Biologica, Suppl. 1/2, 19-25. 

Pokorný R., Tomášková I, Marek MV. 2011. The effects of elevated atmospheric [CO2] on Norway spruce 

needle parameters. Acta physiologiae plantarum 33(6), 2269-2277. 

Polák T, Albrechtová J, Rock BN. 2006. Bud development types as a new macroscopic marker of Norway 

spruce decline and recovery processes along a mountainous pollution gradient. Forestry 79(4), 425–437. 

Possingham JV. 1973. Effect of Light Quality on Chloroplast Replication in Spinach, Journal of 

Experimental Botany 24(6), 1247–1257. 

Possingham JV, Saurer W. 1969. Changes in chloroplast number per cell during leaf development in spinach 

(Spinacea oleracea). Planta 86, 186–194. 

Possingham JV, Smith JW. 1972. Factors affecting chloroplast replication in spinach. Journal of Experimental 

Botany 23, 1050–1059. 



40 

 

Pritchard SG, Peterson CM, Prior SA, Rogers HH. 1997. Elevated atmospheric CO2 differentially affects 

needle chloroplast ultrastructure and phloem anatomy in Pinus palustris: Interactions with soil resource 

availability. Plant, Cell & Environment 20, 461–471. 

Reiter IM, Häberle K-H, Nunn AJ, Heerdt C, Reitmayer H, Grote R, Matyssek R. 2005. Competitive 

strategies in adult beech and spruce: space-related foliar carbon investment versus carbon gain. Oecologia 146, 

337–349. 

Roberntz, P. 1999. Effects of long-term CO2 enrichment and nutrient availability in Norway spruce. I. 

Phenology and morphology of branches. Trees 13(4), 188–198. 

Sellin A. 2001. Morphological and stomatal responses of Norway spruce foliage to irradiance within a canopy 

depending on shoot age. Environmental and Experimental Botany 45, 115–131. 

Senser M, Schotz F, Beck E. 1975. Seasonal changes in structure and function of spruce chloroplasts. Planta 

126, 1–10. 

Spiecker H. 2000. Growth of Norway Spruce (Picea abies (L.) Karst.) under changing environmental conditions 

in Europe. Spruce Monocultures in Central Europe: Problems and Prospects (Klimo E, Hager H, Kulhavy J 

eds). European Forest Institute. European Forest Institute Proceedings 33, 11–26. 

Stahl E. 1883. Über den Einfluss des sonnigen oder schättigen Standortes auf die Ausbildung der Laubbläter. 

Gustav Fischer, Jena. 

Stata M, Sage TL, Rennie TD, Khoshravesh R, Sultmanis S, Khaikin Y, Ludwig M, Sage RF. 2014. 

Mesophyll cells of C4 plants have fewer chloroplasts than those of closely related C3 plants. Plant, Cell & 

Environment 37(11), 2587–2600. 

Stenberg P. 1996. Simulations of the effects of shoot structure and orientation on vertical gradients in 

intercepted light by conifer canopies. Tree Physiology 16, 99–108.  

Stenberg P, Smolander H, Sprugel D, Smolander S. 1998. Shoot structure, light interception, and distribution 

of nitrogen in an Abies amabilis canopy. Tree Physiology 18, 759–767. 

Stinziano JR, Way DA. 2014. Combined effects of rising [CO2] and temperature on boreal forests: growth, 

physiology and limitations. Botany 92(6), 425–436.  

Sterio DC. 1984. The unbiased estimation of number and sizes of arbitrary particles using the disector. Journal 

of Microscopy 134, 127–136. 

Sutinen, S. 1987. Cytology of Norway spruce needles: I. Changes during ageing. European Journal of Forest 

Pathology 17(2), 65–73. 

Suzaki T, Kume A, Ino Y. 2003. Evaluation of direct and diffuse radiation densities under forest canopies and 

validation of the light diffusion effect. Journal of Forest Research 8, 283–290. 

Teng NJ, Wang J, Chen T, Wu XQ, Wang YH, Lin JX. 2006. Elevated CO2 induces physiological, 

biochemical and structural changes in leaves of Arabidopsis thaliana. New Phytologist 172, 92–103. 

Terashima I, Hanba YT, Tazoe Y, Vyas P, Yano S. 2006. Irradiance and phenotype: comparative eco-

development of sun and shade leaves in relation to photosynthetic CO2 diffusion. Journal of Experimental 

Botany 57(2), 343–354. 

Terashima I, Hanba YT, Tholen D, Niinemets Ü. 2011. Leaf functional anatomy in relation to photosynthesis. 

Plant physiology 155(1), 108–116. 

Tomori Z, Krekule I, Kubínová L. 2001. DISECTOR program for unbiased estimation of particle number, 

numerical density and mean volume. Image Analysis & Stereology 20, 119–130. 

Tucić B, Budečević S, Manitašević Jovanović S, Vuleta A, Klingenberg CP. 2018. Phenotypic plasticity in 

response to environmental heterogeneity contributes to fluctuating asymmetry in plants: first empirical evidence. 

Journal of evolutionary biology 31(2), 197–210. 

Tymms MJ, Scott NS, Possingham JV. 1983. DNA content of Beta vulgaris chloroplasts during leaf cell 

expansion. Plant Physiology 71(4), 785–788. 

Urban O, Janouš D, Pokorný R, Marková I, Pavelka M, Fojtík Z, Šprtová M, Kalina J, Marek MV. 2001. 

Glass domes with adjustable windows: A novel technique for exposing juvenile forest stands to elevated CO2 

concentration. Photosynthetica 39(3), 395–401. 



41 

 

Urban O, Hrstka M, Zitová M, Holišová P, Šprtová M, Klem K, Calfapietra C, De Angelis P, Marek MV.  
2012a. Effect of season, needle age and elevated CO2 concentration on photosynthesis and Rubisco acclimation 

in Picea abies. Plant physiology and biochemistry 58, 135–141. 

Urban O, Klem K, Ač A, Havránková K, Holišová P, Navrátil M, Zitová M, Kozlová K, Pokorny R, 

Šprtová M, Tomášková, I. Špunda V, Grace J. 2012b. Impact of clear and cloudy sky conditions on the 

vertical distribution of photosynthetic CO2 uptake within a spruce canopy. Functional Ecology 26(1), 46–55.  

Van Dingenen J, De Milde L, Vermeersch M, Maleux K, De Rycke R, De Bruyne M, Storme V, Gonzalez 

N, Dhondt S, Inzé D. 2016. Chloroplasts are central players in sugar-induced leaf growth. Plant physiology 

171(1), 590–605. 

Wang S, Zhang F. 2002. Effect of different water treatments on photosynthesis characteristics and leaf 

ultrastructure of cucumber growing in solar greenhouse. In XXVI International Horticultural Congress: 

Protected Cultivation 2002: In Search of Structures, Systems and Plant Materials for Sustainable Greenhouse 

Production 633 (pp. 397–401). 

Wang XZ, Anderson OR, Griffin KL. 2004. Chloroplast numbers, mitochondrion numbers and carbon 

assimilation physiology of Nicotiana sylvestris as affected by CO2 concentration. Environmental and 

Experimental Botany 51, 21–31. 

Wyka TP, Oleksyn J, Żytkowiak R, Karolewski P, Jagodziński AM, Reich PB. 2012. Responses of leaf 

structure and photosynthetic properties to intra-canopy light gradients: a common garden test with four broadleaf 

deciduous angiosperm and seven evergreen conifer tree species. Oecologia 170(1), 11–24.  

Wylie R. 1949. Differences in foliar organization among leaves from four locations in the crown of an isolated 

tree (Acer platanoides). Proceedings of the Iowa Academy of Science 189–198. 

Yáñez MA, Fox TR, Seiler JR, Guerra F, Baettig RM, Zamudio F, Gyenge JE. 2017. Within-crown 

acclimation of leaf-level physiological and morphological parameters in young loblolly pine stands. Trees 31(6), 

1849–1857. 

Zeng, Z, Piao S, Li LZX, Zhou L, Ciais P, Wang T, Li Y, Lian X, Wood EF, Friedlingstein P, Mao J, Estes 

LD, Myneni RB, Peng S, Shi X, Seneviratne SI, Wang Y. 2017. Climate mitigation from vegetation 

biophysical feedbacks during the past three decades. Nature Climate Change 7(6), 432. 


