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Abstract:

On vessel wall injury the complex process of blood coagulation is set off. It
is composed of vasoconstriction, primary hemostasis, secondary hemostasis and
fibrinolysis. This work enriches current model of primary hemostasis of [1]. The
previous model used ALE formalism for tracing of development of platelet plug.
The phase field method is used for tracing of the development of interface blood-
thrombus. The primary hemostasis model [1] was extended to capture the fact, that
the platelets can be activated in the blood flow in the area of reactive surface not
only by influence of chemical agents like thromboxane, ADP and thrombin but also
by their exposure to elevated values of shear stress. In our first approach we deal
the emerging thrombus as a fluid with very high viscosity. In the second approach
it was assumed, that platelet plug develops as a viscoelastic material according to
constitutive equations of clot introduced in [2]. In this manner platelet clot matures
into blood clot. In both approaches the blood is represented as a non-Newtonian
fluid. The framework of the phase field method was applied also to the model of
high shear rate thrombosis of [3]. The original model of Weller [3] took advantage of
the cylindrical symmetry of computational domains for its computations, hence the
computations were actually two dimensional. Computations in three dimensions
were performed using the finite element library deal.ii [4]. It was used its ability
to distribute computations across large number of cores/nodes using the MPI
interface. A scalability study was done for the model [3]. The results of the final
model, where the clot was taken as a viscoelastic material, are compared with the
in vivo experiment of Falati [5].
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Abstrakt:

V předložené práci se věnujeme studiu procesu koagulace krve z
hlediska matematického modelování. Koagulace krve sestává z vazoskonstrikce,
primární a sekundární hemostáze a fibrinolýzy. V práci je modifikován model
primární hemostáze [1] nahrazením ALE formulace phase-field metodou pro
sledování rozhraní mezi sraženinou a tekoucí krví. Model [1] je obohacen přidáním
možnosti aktivace krevních destiček vyššími hodnotami smykového napětí
kromě aktivace krevních destiček chemickými sloučeninami - tromboxanem,
ADP nebo trombinem. Na rozdíl od [1] je použit také nenewtonovský model
krve. Používáme dva přístupy pro modelování sraženiny. V prvním přístupu
je sraženina modelována jako newtonovská tekutina s vysokou viskozitou. V
druhém přístupu se předpokládá, že sraženina je viskoelastický material, jehož
reologické vlastnosti procházejí vývojem dle modelu vyvinutého v [2]. Phase-field
metoda byla také aplikována na model hemostáze vyvolané vysokými hodnotami
smykového napětí [3]. Weller využil cylindrické symetrie výpočetních oblastí,
čímž výpočty redukoval na dvourozměrné problémy. V této práci byly provedeny
výpočty na trojrozměrných výpočetních oblastech za použítí knihovny deal.ii [4].
Je plně využita její schopnost distribuovat výpočty na větší počty výpočetních
jednotek (jádra/nody). Práce obsahuje studii škálovatelnosti kódu pro modifikaci
Wellerova modelu. Výsledky výpočtů na základě modelu, kdy je sraženina
popsána jako viskoelastický materiál, jsou porovnány s experimentem [5].

Klíčová slova: Koagulace krve, metoda konečných prvků, mechanika biotekutin,
tok krve, phase-field formulace.
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1. Introduction
Blood coagulation is a natural process, whose purpose is to seal an injury to
the blood vessel. During this process it is important both the rheology and the
biochemistry.
The rheology of the coagulation process is affected by non-Newtonian features of
both the blood and the emerging clot. Namely the blood posesses such features
like viscoelasticity, shear-thinning and thixotropy.
The biochemistry of the blood coagulation process is quite complicated, as it can
be said, that tens of chemical species take part in the blood coagulation process.
Last but no least, we should not forget the influence of the vessel walls on the
blood coagulation. On the one hand the walls constrict on injury to prevent loss
of blood, the process is called vasoconstriction. On the other hand the damage
to the wall causes unveiling of some species present in the vessel wall. They then
interact with the species flowing in the blood flow. Therefore it can be said, that
the wall species trigger the whole coagulation process.
As the whole process is rather complicated it is hard to be approached from the
side of mathematical modelling and computer simulation. The situation of latter is
however improving, as we are witnessing for quite a long time significant increase
of performance of high performance computers. Hence we can nowadays solve
much bigger system of equations originating from even more computationally
demanding mathematical models than it was several years ago.
One must however note, that the area of modelling of blood coagulation process
is vast, as we have different types of clots, different flow conditions at which the
clot arises. Therefore it is not possible to formulate all embracing model of blood
coagulation. Rather we must decide in advance, which type of blood coagulation
we want to take into account. Only after such a choice, we should formulate a
mathematical model of blood coagulation.
The proces of blood coagulation has one goal - to stop leakage of blood on the
blood vessel injury. It is also called hemostasis or haemostasis. The process is
roughly composed of four mechanisms

• Vasoconstriction

• Platelet plug formation -Primary hemostasis

• Blood lot formation -Secondary hemostasis

• Fybrinolysis

It must be however stressed, that the first three mechanisms happen more or less
concurrently. We can only be quite sure, that the process of decomposition of clot,
i.e. fybrinolysis, happens as the last one.

1.1 Motivation
It can be generally said, that disorders of the blood coagulation process have
negative impact on human life.
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Chapter 1 - Introduction
We will firstly review the case, when the blood coagulation is not strong enough
to seal the vessel wall injuries. The most known patologies of this kind are the
hemophilias. We know three types of hemophilias - hemophilia A, hemophilia B
and hemophilia C. The ilness are caused by deficiencies of one of the clotting
factors - factor VII, factor IX and factor XI, respectively.
In order to prevent hemmorhage of patients suffering from the hemophilias it is
necessary to supply the missing factors to the body of the patients. It is also
possible to treat the hemophilias by other medicines - so called coagulants.
We review shortly the opposite case, when the inreased rate of coagulation causes
problems in human body. The process can be started even in the absence of the
vessel wall injury. Stasis of the flow downstream of a stenosis or in aneurysms can
lead to emergence of thrombi, which are then released into blood flow. The emboli
can then cause the stroke or the heart attack.
Another cause of occurence of thrombi is the artificial surface of implants, one of
the big achievements of modern medicine.
The above mentioned processes are quite well qualitatively described. However
what is lacking is a feasible quantitative mathematical model, which could help
the physicians or engineers in the field of medicine with the design of the implants
and prosthetic devices. The newly designed artificial parts of human body would
then initiate the coagulation process with lower probability. We are also highly
motivated to develop the model also by the possibility of delivering new insights
into the proper design of drugs curing coagulation disorders. Such drugs can not
only be more effective in treatment of the coagulation related diseases, but they
could reduce the number of their side effects.
We mention yet another field of application for mathematical modelling of blood
coagulation process. Current medicine can detect aneurysms, which can lead on
rupture to severe life complications for patients or even to their death. However on
finding the aneurysm it is not always necessary to operate on the patient as the
operation itself can represent non-negligible risk for the patient. Some criterion
would be welcome, which could help with making the decision, whether it should
be operated on patient or not. We are able to see the aneurysm using modern
imaging methods. What would be interesting for us is the distribution of stress
on the walls of aneurytic vessel. The stress is incurred either by the flowing blood
in the aneurysm or the clot, which appeared in the aneurysm.
Hence the ideal solution for the neurosurgeons would be to get the image of the
aneurysm. The image would be then given as input to the mathematician, which
would adjust the model of blood flow in the aneurysm and the model of creation
and development of the clot in the aneurysm. The models would be patient specific,
i.e. they would reflect each patient individually. The output of simulations using
the models would then be the stress distribution in aneurysm, which would help
the neurosurgeons in the final decision, whether to operate or not.

1.2 Objectives
The thesis has the following main objectives

• Use of the phase-field method for modelling of the blood coagulation process
- application on:
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1.3 - Research results
(A) simpler model already capturing shear rate dependent platelet activa-

tion, the blood is taken as a Newtonian fluid
(B) model of platelet clot growth, wherein platelet clot is taken as a fluid

with high viscosity, blood is taken as a non-Newtonian fluid
(C) model of platelet clot growth, followed by the platelet clot development

into blood clot, blood is taken as a non-Newtonian fluid

• Implementation of all three submodels in (C) - in one codebase, i.e. the
viscoelastic blood model, the model of primary hemostasis, the model of
secondary hemostasis.

• Study of scaling of our code, for the simpler model of blood coagulation (A).

• Identification of the key features of the new model (C) in the results of
simulation. Comparison with the in-vivo experiment [5].

1.3 Research results
When we model simultaneous development of the flowing blood and developing clot,
we combine equations describing fluid with the equations capturing development
of clot. We need to discern two areas in the (injured) vessel - the area of flowing
blood and the area of the developing thrombus. For that purpose we use as a
tracing function the phase-field function, which obeys Cahn-Hilliard equation. We
must stress, that the phase-field does not have any thermodynamic significance
for us, i.e. it is only a marker function.
The main novelty of our approach, from the modelling point of view, is twofold.
Firstly we introduce into our model rheological activation of unactivated, i.e.
resting, platelets by exposure of platelets to high values of shear stresses. Secondly
we extend model of primary hemostasis so, that the formed platelet plug starts to
mature into blood clot during the process of secondary hemostasis.
The main result from the point of the development of efficient numerical solvers lies
in our implementation of solution procedure of large system of equations, which
are intrinsically coupled. We solve the systems as decoupled, splitted. Therefore
recoupling is necessary. The formulated equations describe physical processes with
different characteristic scales. Hence adaptive-time stepping scheme is employed for
equations corresponding to the specific processes. The scheme supplies a timestep
for each equation, which is solved. The resulting timestep is then chosen as a
minimum of proposed timesteps.

The following list summarizes the major contributions of this work:

• Extension of existing models of blood coagulation into a model, which
encompasses both primary hemostasis and secondary hemostasis.

• Codebase was developed, which enables to run the proposed models on
arbitrary 3D domain and which can be distributed to large number of
computing units.

• Numerical study as well as scaling study of our implementation of modified
model of Weller, [6, 3].
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Chapter 1 - Introduction
• The relevance of our proposed model is shown by comparison with the in-vivo

experiment of Falati, [5].

• The codebase is written in modular way using all advanced object oriented
features of C++ language, therefore further development of the model and
the code is possible, e.g. change of constitutive equations for the clot, adding
new populations of platelets and/or new chemical species.

1.4 Outline
In Chapter 2 we decribe the relevant blood biology for the blood coagulation
process. We introduce the main components of blood, which are most relevant
for our modelling. Further we provide a short list of most important actors in
the blood coagulation process. Afterwards we show the original model of blood
coagulation, so called Virchow’s triad, and compare it with more recent, alternative,
description of coagulation, so called high shear rate thrombosis.

In Chapter 3 we review relevant fluid rheology for blood flow and possible
models of blood coagulation process. We concentrate on the model of blood as
a Newtonian fluid, which is valid in larger vessels, and on viscoelastic model of
Owens [7]. We propose a new model of the blood coagulation process, where the
clot is either represented as a fluid with large viscosity or as a viscoelastic material
undergoing change of rheological properties. The change captures the development
of clot from platelet clot, which developed according to model of Storti [8] to blood
clot. The aging of the platelet clot according to model of [2] reflects creation of
fibrin strands in the platelet clot.

Chapter 4 presents the numerical treatment of the equations of proposed
models. We split Navier-Stokes system using IPCS method. We perform adaptive
timestepping. As the systems of equations are solved as splitted, recoupling
is needed. For the computation of Kempen relevant numerics a rather specific
numerical treatment is necessary.

Finally Chapter 5 shows the results of simulations. We show results of compu-
tations of the modified Weller’s model, where we used phase field as the marker
interface. We used two geometries for the computations - cylinder and perfusion
chamber geometry. We performed numerical study of our implementation of the
modified Weller’s model. We checked numerical properties of recoupling scheme.
We studied also scaling properties of our code, both from the point of view of
weak and strong scaling.
In Section 5.3 we present results originating from Storti’s modified model, where
the clot is taken as a high viscosity Newtonian fluid.
In Section 5.4 we show results of computations of our complete model merging all
three models, i.e. viscoelastic model of blood, Storti’s model of primary hemostasis
and Kempen’s model of secondary hemostasis. We compare the results with the
results from Section 5.3. In Section 5.4.3 we perform visual comparison of the
complete model with an in-vivo experiment of Falati [5].
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2. Biology of the blood
Blood is a fluid in the body, which serves several vitally important purposes. First
of all, it is responsible for transport of substances like gases, i.e. oxygen and carbon
dioxide, between lungs and the rest of the body. It transports heat to the skin,
which has thermoregulatory function. It delivers nutrients from the digestive tract
and places of storage to the rest of the body. It also transports waste products
from the body to kidneys or to the liver, where they are detoxified or removed.
Blood has also protective function, as the leukocytes defend the body against
malicious microorganisms and cancer cells. It also contains antibodies and other
proteins, that eliminate pathogenic substances in the body. Blood can also stop
blood loss by the process of blood coagulation, about which we will speak in the
following sections.

2.1 Main blood components
Blood is composed of an extracellular fluid - blood plasma and formed elements.
Formed elements are elements contained in a cell membrane and they have a
definite shape and structure. Except platelets formed elements are cells. Platelets
are small fragments of bone marrow cells.
We will now describe erythrocytes (red blood cells - RBCs), leukocytes (white
blood cells - WBCs) and blood plasma. Platelets will be treated in Section 2.2.1,
as they are one of the components of the blood coagulation process.

Red blood cells A red blood cell has a biconcave discoid shape with surface area
approximately 130 µm2, diameter 6-8 µm and volume 98 µm3. As erythrocytes
are highly flexible, the sizes of them can change very easily.
Red blood cells are functioning as carriers of oxygen from lungs to the rest of body.
They transport carbon dioxide from the body to lungs as well. They accomplish
this using the protein hemoglobin (or haemoglobin). Their membrane is filled with
a solution of hemoglobin in water, which lends erythrocytes their red color [9].
Red blood cells are the most numerous of the formed elements in blood (about
98%), so they have the largest impact on the mechanical properties of blood [10],
as will be discussed in chapter 3.2.

White blood cells Leukocytes are blood cells with a spherical shape, with
diameters between 7 and 22 µm. As they are not so numerous in blood as red
blood cells (about 1%), they influence the rheological properties of blood only a
little.
They are further divided into granulocytes (neutrophile, eosinophils, basophils)
and agranulocytes (lymphocytes, monocytes). Their primary function is to fight
against infection originating from bacteria or viruses by their destruction or by
the creation of antibodies [9].

Plasma Plasma is an aqueous solution of water (90-92% by weight), plasma
proteins and organic substances. Among plasma proteins are albumins, globulins
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Chapter 2 - Biology of the blood
and fibrinogen. Fibrinogen is a vital part of the blood coagulation process, so we
will focus on it in Section 2.2.1. Globulins include high density lipoproteins (HDL)
and low density lipoproteins (LDL). These two proteins are key elements of fat
transport to cells. Their imbalance is the cause of arteriosclerosis or atherosclerosis,
one of the lifestyle diseases [9], [11], [12].

2.2 Blood coagulation
Blood coagulation is a natural process, whose aim is to stop blood loss in the case
of the vessel injury. It is so potent, that it saves life not only in the case of the
minor vessel injury but also during serious injuries in the larger arteries.
However this process can be triggered because of other circumstances in the
human body as well. The most well known condition of blood coagulation is the
stasis of blood in the vessel. It is one of the key elements of Virchow’s triad,
which is known since 19th century. This state is mostly present in the smaller
vessels [9] . For a long time the Virchow’s triad was accepted as the only possible
way of creation of thrombi in the blood flow [13].
Nevertheless the current research shows, that thrombosis can happen even under
conditions, where the stasis is by far not present. To be precise, the thrombosis
may appear under conditions of high shear rate in the blood flow in the rather
larger arteries [13], [14].
We will try to explain this seeming discrepancy in the comprehension of the
process of blood clotting in Section 2.2.3. First of all we will introduce the key
components of the blood coagulation process.

2.2.1 The protagonists of hemostasis
Platelets (thrombocytes) Platelets are bone marrow born cells without nu-
cleus. They are discoids with a diameter 2-4 µm. They exhibit such a shape
only under normal conditions, whereas during the clotting process they undergo
substantial morphological changes. They develop into sticky spheres with so called
pseuodopodia, which enables them to adhere to other elements forming the clot.
The process is called platelet activation [15], [9].
In their membrane there are receptors, which have an important role in clotting.
Platelets contain also corpuscles, which are called α granules and dense (or δ)
granules. The former are responsible for production of important species for blood
coagulation, namely fibrinogen and von Willebrand Factor (vWF). The latter
possess ADP (adenosinediphosphate), serotonin and calcium. They also produce
thromboxane A2 and other platelet activators [9], [16].

The numbered factor pairs We can see in well-known schemes of blood
coagulation components which are described by Roman numbers (see e.g. Figure
2.1).
The order of the numbering corresponds to the chronological order of their discovery.
We observe, that the factors are present in pairs, i.e. they have an inactive and
an active form. The former is called zymogen. The zymogen becomes an enzyme
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2.2 - Blood coagulation
(protease).
It can be generally said, that only zymogens are present in a blood vessel under
normal conditions. There is an exception - we can encounter both factor FVII
and FVIIa in the blood flow. However we must concede that the concentration of
FVIIa is minimal, under normal flow conditions, and that its activity is mostly
visible in the presence of the tissue factor [9].
Some factors have its own name, for instance FII - prothrombin, FIIa - thrombin, FI
- fibrinogen, FIa - fibrin. The key role of thrombin is to initiate the polymerization
of fibrinogen into fibrin, which then creates a network forming the initial clot [9].

von Willebrand Factor(vWF) vWF is a multimer present in variable lengths
both in a blood vessel and in subendothelium of blood vessels wall. The former is
associated in a complex with FVIII in which it is not active. Its reactivity depends
on shear stress - the stretched molecules are more active [14], [13].
Its main role is during the primary hemostasis and during the main phase of
clotting. The high activity in these phases occurs under conditions of a sufficiently
high shear stress.
The majority of vWF is expressed in the endothelial cells, a smaller part is hidden
in cytoplasmic granules of many cells. It is for instance released after the activation
of platelets. The circulating FVIII-vWF complex breaks into the factors during
the fastest phase of the coagulation process [9], [16].
vWF is also very important during the high shear rate thrombus formation, as
will be explained in Section 2.2.3.

Tissue factor Tissue factor is also called thromboplastin or FIII. It is produced
by cells, which do not have contact with blood. It is also released by monocytes
as an effect of inflammatory processes [9].
It is a widely acknowledged fact that the exposure of TF on the injury site triggers
off clot formation [16].

Complexes in the blood coagulation process The pure factors are not the
only participants in blood clotting. The crucial role is also played by so called
complexes, which are composed of factors. Besides FVIII-vWF, let us mention
important complexes for clotting

• FVIIa-TF

• FVa-FXa (prothrombinase)

• FVIIIa-FIXa-Ca++(tenase)

Inhibitors of blood coagulation There is a specific group of chemical species
which terminate (or prevent from) coagulation [15]

• TFPI - tissue factor pathway inhibitor

• AT-III - antithrombin III

• PC - Protein C

9



Chapter 2 - Biology of the blood
2.2.2 Short overview of hemostasis
As was said in Introduction,i.e. Section 1, blood coagulation consists of four
phases - vasoconstriction, platelet plug formation (primary hemostasis), blood
clot formation (secondary hemostasis) and fybrinolysis. The first three phases do
not have to proceed consecutively. On the contrary, they can happen more or less
concurrently.
In the following three sections we will describe shortly each of the three phases.

Vasoconstriction

When the blood vessel wall is injured, vascular smooth muscle cells contract. Hence
the damaged vessel constrict, which leads to lower loss of blood. The activated
platelets release cytoplasmic granules containing thromboxane A2, ADP and
serotonin. Vasoconstriction becomes more pronounced by effect of these chemicals.

Primary hemostasis - platelet plug formation

In blood flow platelets are circulating. In case of the blood vessel wall injury the
platelets come in contact with injured endothelium. This contact causes change
of shape of platelets, release of granules from platelets, increase of stickiness of
platelets. In the granules there is serotonin, thromboxane A2 and ADP. Serotonin is
a vasoconstrictor, thromboxane takes part in platelet aggregation, vasoconstriction
and degranulation, ADP draws other platelets to the site of the platelet clot [9].

Secondary hemostasis - clot formation

The following model of blood coagulation is the mostly acknowledged model in
recent literature. It is known since 1964. We will sketch the model for completeness.
The main feature of the model is, that two branches of the coagulation convene in
a final stage. The two branches are called an intrinsic and extrinsic pathway. The
final stage is called a common pathway, see Fig. 2.1
If a vessel is injured the hemostatic system is triggered. It happens because
the subendothelial cells, which are unveiled during the injury, release specific
procoagulant species. The chemical reagents then set off the whole system of
reactions. This system results in coagulation, platelet aggregation and fybrinolysis.
We have to emphasize that the reactions are not to be taken in isolation from
blood flow conditions. The flow is actually transporting incessantly the chemical
species taking part in blood clotting. It not only delivers new reagents to the place
of the injury, but it also regulates the removal of activated species from the region
of the vessel wall injury.
The proper setting of the blood coagulation system can suffer from deviations to
either persistent bleeding and hemorrhage, or thrombosis. The both conditions
could be lethal for the human body.
The healthy vessel walls have upper part composed of single layer of endothelial
cells. Under normal physiological conditions the layer does not react with the
flowing blood.
Situation changes on the vessel wall disruption, when the specific membrane
protein - tissue factor (TF) - is exposed. This event sparks off the above mentioned
extrinsic pathway. The protein plays an important role in the activation of clotting
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2.2 - Blood coagulation
factor VII (FVII). The activated complex TF:FVIIa is crucial for activation of
other two coagulation factors FIX and FX, [15].
During the injury blood platelets may bind, become activated, to collagen in
subendothelium. Platelets are small discoid cell fragments approximately 6 µm3

in volume under normal physiological conditions. However they undergo a series
of chemical and morphological changes during the binding. An activated platelet
is a sticky spiny sphere. This is not the only one way of activation of platelets,
they can be actually activated via interaction with adhesive glycoproteins in the
vessel wall, or due to interaction with thrombin or adenosine diphosphate (ADP)
flowing in blood, [9].
The activated platelets have an important role in the clotting system, as they
secrete chemical reagents which partially activate neighbouring platelets. They
expose receptors bound to their surface as well. The receptors are then the place
of reactions of reagents.
Up to now we talked only about activation of the protein VII (FVII) into the active
complex TF:FVIIa. This form of reactions is typical for the blood coagulation
system, namely conversion of unactivated form of a species into activated with
use of species from previous steps of the coagulation cascade. The activated form
plays then the role of a catalyst of conversion of another unactivated species into
activated species, see Fig. 2.1.
The system of reactions is about to end with the conversion of prothrombin to
thrombin. Thrombin is then necessary not only for the conversion of fibrinogen
to fibrin but also for the conversion of unactivated platelets into activated. This
positive feedback has an immense influence on activation of platelets. To be more
precise - the rate of activation of blood platelet due to thrombin related system
is much larger than that due to the contact with TF and adhesive glycoproteins
in the vessel wall and that due to the contact with ADP from already activated
platelets.
Till now we have talked about so called extrinsic pathway followed by so called
common pathway. There could be another entrance into the common pathway -
so called intrinsic coagulation pathway, which begins with activation of factor XII
(FXII) to factor XIIa (FXIIa) during a contact with a negatively charged surface.
Cofactors of the reaction are kininogen and kallikrein. This initial reaction fires a
whole system of reactions of already mentioned type, which ends in the end in the
common pathway, [16], [9].

2.2.3 High shear rate thrombus formation

We have seen in the previous section, that one type of startup of coagulation
process requires flow stasis, one of the components of the famous Virchow’s triad.
We can however observe from experiments, that thrombi in the larger arteries are
platelet-rich, in contrast with the thrombi in the smaller vessels [13], [18].
Recent studies have provided an explanation for this fact [13], [14]. The main
precondition of both types of clotting is the same - reactive surface. This throm-
bogenic surface can be subendothelial collagen exposed by the injury or artificial
material of prosthetic devices like polyester or stainless steel. On the surface are
caught platelets and adhesive proteins like fibrinogen and von Willebrand factor
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Chapter 2 - Biology of the blood

Figure 2.1: Coagulation cascade, [17]

(vWF). It is obvious, that the coverage of the surface by these is determined by
the concentration of platelets and proteins in the vicinity of the thrombogenic
surface.
Concentration of platelets and proteins in the blood under static conditions is
minute. However, once the blood is under shear, red blood cells are pushing the
other blood species outside of the center of the vessel. The increased diffusivity
causes margination of platelets and proteins. Therefore they are at reactive surface
disposal in increased concentration [19].
Although vWF is in the blood present in low concentration, its chemical com-
position makes it the key actor in the high shear type of blood coagulation. It
is contained in blood plasma, platelet α-granules and the extracellular matrix
of blood vessels. It creates chemical bonds mainly with itself, fibrillar collagen,
platelet receptor glycoprotein (GP) Ib, and platelet integrin αIIbβ3 (GPIIb/IIIa).
The molecule of vWF has vWF-A1 binding sites on its surface. The availability of
the sites depends on the conformation of the molecule of vWF. Namely, in the
globular form some part of these sites is hidden from the surrounding environment.
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2.2 - Blood coagulation
On the other hand, on the transition of vWF into stretched conformation the
binding sites are more exposed. The changeover from the globular to the elongated
form is caused by the increase of shear rate in the blood flow and it is reversible,
[20], [13] . The stretched molecules of vWF form a network, in which majority of
platelets in the vicinity of the vessel wall get caught. What is more, even the fast
moving platelets are captured by the net.
It is important to note that the platelets do not need to be activated to be captured.
Namely, vWF-A1 binding sites associate with GPIb receptors on the surface of
platelets, which are always prepared to bind, [13].
We can prove the prevalence of this process in the high shear rate thrombogenesis
by the fact that the time of passing of platelets through stenosis is too short for
platelets to activate. So, as the platelets actually bind, we can conclude, that the
overwhelming factor of the capture of platelets into the thrombus is the affinity of
the A1 binding sites of vWF and the GPIb receptors of platelets in the blood flow.
Followingly captured mural platelets activate due to the exposition to high shear
rates for longer time. The time necessary for adsorption and activation of platelet
is called the lagtime. It depends on the shear rate - it decreases with higher shear
rate. This dependence could have two reasons. Firstly, proteins and platelets are
marginated in elevated measure due to high shear rate, as noted above. Secondly,
high shear rate reduces the time of mural platelet activation.
The newly activated platelets set free platelet granule stores of vWF and other
procoagulant species, which either stabilize the thrombus (such as platelet integrin
αIIbβ3 ) or are carried away by the flow. The newly released vWF is captured into
already existing nets and enhances further platelet capture. This positive feedback
leads to tremendous growth of thrombus, [21] .
The growing thrombus changes rheological conditions in the blood vessel, as its
diameter is narrowing. This causes increase of shear rate, which again stimulates
the growth of the thrombus, [14].
The initially captured platelets do not need to be stable, which can lead to oc-
curence of rotating platelet aggregates at high shear rates, which do not have
to be activated. Either platelet integrin αIIbβ3 irreversibly bounded to vWF or
fibrinogen converted to fibrin can stabilize the high shear rate thrombus. If the
bound between platelet integrin αIIbβ3 and vWF is too weak, the high shear stress
can tear off parts of thrombus and form emboli, [21].
The high shear rate thrombus (white clot ) can be seen as a precursor of red clot,
under certain circumstances. Namely, the stasis condition created by the white
clot is necessary for the set up of red clot (one of conditions of the Virchow’s
triad), [14]. This situation is depicted in Figure 2.3.
The process of high shear thrombus formation is summed up in Table 2.1. In
Figure 2.2 there is graphical representation of catching of platelets (red ones) into
the vWF nets (green ones). See [22] for details.
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Chapter 2 - Biology of the blood

Table 2.1: Process of high shear rate thrombus formation

1. In the stenosed region high values of wall shear rate appear.

2. To walls composed of collagen or artificial surface molecules of vWF
bind, due to the high values of wall shear rate they uncoil.

3. Blood platelets are marginated to the walls due to the shear enhanced
diffusivity caused by pushing red blood cells in the center of the vessel.

4. Unactivated platelets near the wall are caught by the vWF, which is
already bound to the vessel wall.

5. Already bound platelets release in large amounts vWF, which activate
αIIbβ3 on the platelets. This causes firm adhesion.

6. Due to the capture of platelets nets created from vWF are created on
the surface of the emerging thrombus.

7. The networks of vWF catch quickly lot of platelets, which create a large
thrombus. The clot can either occlude the vessel or embolize.

Figure 2.2: vWF collective networks interactions from globular to stretched to
aggregation transition, [22]
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2.2 - Blood coagulation

Figure 2.3: Two kinds of thrombus generated at stenotic lesion, [14]
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3. Mathematical modelling

3.1 Overview of rheology
We will now outline basics of the fluid rheology, namely the conservation laws and
the short note on the Newtonian fluids, similarly to [23]. Afterwards we delve into
the topic of non-Newtonian fluids. We review the properties of non-Newtonian
fluids, which blood exhibits under certain conditions.

3.1.1 Conservation laws

Conservation of mass

The mass conservation dictates, that for any volume V (t) closed to all transfers
of matter and energy the mass of the volume must remain constant over time:

d

dt

∫
V (t)

ρdV = 0, (3.1)

where ρ is density. From the previous equation it could be derived using Reynolds
transport theorem the continuity equation:

Dρ

Dt
+ div u = 0, (3.2)

where D
Dt

= ∂
∂t

+ u · ∇ is the material derivative and u is the fluid velocity. On
assumption of incompressibility Dρ

Dt
= 0 we obtain the condition of soledoinality

for the velocity field:
div u = 0. (3.3)

Conservation of linear momentum

The momentum of fluid in the material volume V (t) is given as∫
V (t)

ρudV. (3.4)

From the principle of linear momentum, i.e. statement that the rate of change of
momentum is equal to the applied force for any closed system,

d

dt

∫
V (t)

ρudV =
∫

∂V (t)
sn̄(x, t)dS +

∫
V (t)

ρbdV, (3.5)

it can be derived using Reynolds transport theorem and the continuity equation
(3.2) the equation of balance of linear momentum:∫

V (t)
ρ
Du
Dt

dV =
∫

∂V (t)
sn̄(x, t)dS +

∫
V (t)

ρbdV, (3.6)

where sn̄ is the stress vector, b is the body force per unit mass and ∂V is the
surface of volume of fluid V .
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Chapter 3 - Mathematical modelling
Conservation of angular momentum

This principle states, that the change of angular momentum of control volume
V (t) is only due to the stress sn̄ and the body force b:

D

Dt

∫
V (t)

(x × ρu) dV =
∫

∂V (t)
(x × sn̄) dS +

∫
V (t)

(x × ρb) dV. (3.7)

We can again employ Reynolds transport theorem and the continuity equation
(3.2) to derive the following equation:

∫
V (t)

(
x × ρ

Du
Dt

)
dV =

∫
∂V (t)

(x × sn̄) dS +
∫

V (t)
(x × ρb) dV. (3.8)

We can prove using (3.5) and (3.8) existency and symmetry of the stress tensor T
fullfilling the relation

sn̄(x, t) = n̄ · T, (3.9)

where n̄ outward unit normal vector to the surface of volume V (t).
(3.5) can then be reformulated in the differential form

ρ
Du
Dt

= divT + ρb. (3.10)

3.1.2 Newtonian fluids
We set the components of T as

Tij = −pδij + Sij, (3.11)

where the pressure p is defined as:

p = −1
3Tii. (3.12)

The extra-stress tensor S is taken here as a linear function of the velocity gradient
∇u. In the following we will use the rate-of-strain (or rate-of-deformation) tensor
D given as

D = 1
2
(
∇u + (∇u)T

)
. (3.13)

We assume further, that the fluid is isotropic and incompressible. We then get
the following relation

Tij = −pδij + ηDij, (3.14)

where η is the dynamic viscosity. On substitution of (3.14) into (3.10) we obtain
Navier-Stokes equations for an incompressible fluid:

ρ
Du
Dt

= −∇p+ η∆u + ρb. (3.15)
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3.1 - Overview of rheology
3.1.3 Non-Newtonian fluids

Nonlinear viscous fluids

We assume the following constitutive equation for an incompressible viscous fluid

T = −pI + S(L), (3.16)

where S is now generally nonlinear tensor function of the velocity gradient
L = ∇u. On application of the material frame indifference principle and the
representation theorem for symmetric isotropic tensor functions (3.16) can be
written as

S = ϕ0(IID, IIID)I + ϕ1(IID, IIID)D + ϕ2(IID, IIID)D2, (3.17)

where
IID = 1

2((tr D)2 − tr D2) and IIID = detD (3.18)

are the second and third principal invariant of the tensor D, respectively.
Reiner-Rivlin fluids are all incompressible fluids, whose constitutive equation can
be formulated as

T = −pI + ϕ1(IID, IIID)D + ϕ2(IID, IIID)D2. (3.19)

If we compute the viscometric functions for the Reiner-Rivlin fluids in simple shear
flow and compare them with behaviour of real fluids we arrive at the following
incompressible constitutive equation

T = −pI + 2η(IID, IIID)D, (3.20)

where η(IID, IIID) is a function of IID and IIID. In the literature it is common
to neglect the functional dependence of η on IIID. IID is not a positive quantity
in isochoric motions, therefore a positive measure of the rate of deformation, the
shear rate γ̇, is introduced:

γ̇ ≡
√

2 tr(D2) =
√

−4IID. (3.21)

Hence (3.20) can be rewritten as

T = −pI + 2η(γ̇)D. (3.22)

This fluid, i.e. the fluid with shear rate dependent viscosity, is called incompressible
generalized Newtonian fluid.
One of the simpler examples of shear rate dependent viscosity functions is the
power-law model:

η(γ̇) = Kγ̇n−1, (3.23)
which for n = 1 gives Newtonian fluid, whereas for n > 1 and n < 1 shear thinning
viscosity and shear thickening viscosity, respectively. The shear thinning model,
which is often used for the blood, has the disadvantage, that it predicts infinite
viscosity for zero shear rate and it goes to zero as shear rate approaches infinity.
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Chapter 3 - Mathematical modelling
Yield stress fluids

Some fluids have the specific behaviour that they start to flow only after a critical
stress level is achieved. Some researchers assume existence of a material property
- yield value or yield stress, SY . This topic is however still controversial in the
specialist community [24], [25].
We have to select a metric of the stress tensor. In simple shear flow we have only
two nonzero components of the extra stress tensor and they are equal - S12 = S21.
The metric is then simply |S12| and the yield criterion becomes |S12| = SY . If
|S12| < SY the material behaves rigidly(without deformation) or it exhibits non-
rigid behaviour(e.g. deforms elastically). For |S12| > SY the materials starts to
flow.
The previous criterion is however well grounded only for simple shear flow. In
general flow it is necessary to take a general function of the extra stress tensor f(S).
The most general yield criterion of this form fulfilling the principle of material
invariance gets the following shape

f(IS, IIS, IIIS) = SY , (3.24)

where

IS = trS, IIS = 1
2((trS)2 − trS2). IIIS = detS. (3.25)

If we want to retain consistency of the yield function with simple shear flow
criterion from above, we take

f(IS, IIS, IIIS) =
√

|IIS|, (3.26)

hence the yield criterion gets the following form
√

|IIS| = SY . (3.27)

Bingham model This material behaves rigidly until certain value of extra
stress, the yield criterion, is reached. After this criterion is reached it behaves like
an incompressible Newtonian fluid. The material behaves according the following
equations

|S12| < SY =⇒ γ̇ = 0,
|S12| ≥ SY =⇒ S12 = SY + µγ̇,

(3.28)

where µ is the constant viscosity. The generalization to three dimensions of 3.28
has the following form

√
|IIτ | < SY =⇒ Dij = 0,√
|IIτ | ≥ SY =⇒ Sij = 2

⎛⎝µ+ SY

2
√

|IID|

⎞⎠Dij.
(3.29)

20



3.1 - Overview of rheology
Herschel–Bulkley model Like in the Bingham model the material behaves
rigidly, until a critical value is reached. The previous model however assumed linear
dependence of viscosity on shear rate. The current model introduces a power-law
viscosity after the startup of flow:

|S12| < SY =⇒ γ̇ = 0,
|S12| ≥ SY =⇒ S12 = SY +Kγ̇n.

(3.30)

The generalization to three dimensions of 3.30 has the following form√
|IIτ | < SY =⇒ Dij = 0,√
|IIτ | ≥ SY =⇒ Sij = 2

⎛⎝Kγ̇n−1 + SY

2
√

|IID|

⎞⎠Dij.
(3.31)

Casson model In this model the material behaves after reaching the critical
yield stress like shear thinning fluid [26]:

|S12| < SY =⇒ γ̇ = 0,

|S12| ≥ SY =⇒ S
1
2
12 = S

1
2
Y + (µγ̇ 1

2 ).
(3.32)

The generalization to three dimensions of 3.32 has the following form:√
|IIτ | < SY =⇒ Dij = 0,

√
|IIτ | ≥ SY =⇒ Sij = 2

⎛⎝√
µ+

√
SY

4
√

4|IID|

⎞⎠2

Dij.
(3.33)

Viscoelastic fluids

Truesdell and Noll [27] introduced the following categorization of viscoelastic
models:

• differential type - the extra stress tensor can be expressed as an explicit
function of finite number of temporal derivatives of suitable strain measures
at the current time

• integral type - simple fluids whose history integral is composed of one or
more integrals

• rate type- these models contain on or more time derivatives of the extra
stress tensor

Some model can be expressed both as a rate type and as an integral type model,
e.g. Maxwell B model.

In [28], [27], [29] and [30] constitutive equations are developed from general
principles. Yet another approach provides the thermodynamic framework outlined
and used in [31],[32].
In the following Section we show an elementary way, how to develop viscoelastic
constitutive equations. Afterwards we compare one of the results of this elementary
modelling with the microstructure-based derivation of the same constitutive
equations, namely Oldroyd-B constitutive equations.
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Viscoelastic models obtained by generalization from 1D analogs to 3D
Viscoelastic models originate in this approach from combination of two basic ma-
terials: a Newtonian viscous fluid and a linear elastic material. The corresponding
mechanical analogs are a linear dashpot and a Hookean spring, respectively.
From the analogs a more complex elements are composed. Serial connection of
the spring and dashpot analog is called Maxwell element, whereas their parallel
connection is called Kelvin-Voigt element.
So called Oldroyd element is a connection of linear dashpot and a Maxwell element
in parallel. Because of the geometric setting the strain of the dashpot is equal to
the strain of the Maxwell element, whereas the stress of the whole element equals
to the sum of stresses in the dashpot and in the Maxwell element.
After some manipulation a 1D constitutive equation of Oldroyd material can be
written:

T (t) = ηN γ̇ + τ, (3.34)

τ + λτ̇ = ηP γ̇, (3.35)

where γ̇ is the rate of deformation, T is the stress, λ is the relaxation time of the
spring, ηP is the viscosity of dashpot in the Maxwell element, whereas ηN is the
viscosity of linear dashpot connected in parallel with the Maxwell element.
The model is generalized to three dimensions by substituting tensor S for τ and
strain rate tensor D for γ̇. In the equation (3.35) a time derivative of stress appears,
which can not be uniquelly generalized to three dimensions.
A lot of nonlinear viscoelastic constitutive equations can be taken as special cases
of quasi-linear rate-type viscoelastic model, Maxwell model see [33]. This
general model shows a structural similarity with the 1-D constitutive equation
(3.35). They have the following form:

S + λ
DS
Dt

= 2ηD. (3.36)

There are several definitions of the operator D
Dt

, which are not introduced arbitrarily,
but they have to take into account the requirement of objectivity and symmetry
of the resulting second-order tensor. Some of them are:
Upper convective derivative

▽
S= DS

Dt
− L · S − S · LT , (3.37)

Lower convective derivative

△
S= DS

Dt
+ S · L + LT · S, (3.38)

Co-rotational derivative

S̊ = 1
2(

▽
S +

△
S). (3.39)
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Johnson-Segalman model We can superpose objective operators as we get
again an objective operator. One frequently chosen operator is

□
S= (1 − ι

2)
▽
S + ι

2
△
S . (3.40)

After substitution into (3.36), adding a constant viscosity η2 of inelastic contribu-
tion (solvent contribution), defining η1 as a constant viscosity of the viscoelastic
element, we obtain the four constant Johnson-Segalman model [34]:

S = S(1) + S(2), (3.41)

where
S(1) + λ

□
S

(1)
= 2η1D (3.42)

and
S(2) = 2η2D. (3.43)

Convected Maxwell models Taking η2 = 0 in (3.43), ι = 2 or ι = 0 in (3.41)
we obtain lower convected (LCM) Maxwell or upper convected Maxwell (UCM)
models, respectively:

LCM
S + λ

△
S= 2ηD (3.44)

UCM
S + λ

▽
S= 2ηD (3.45)

Oldroyd-A and Oldroyd-B models Taking ι = 2 or ι = 0 we obtain Oldroyd-
A and Oldroyd-B models, respectively. We concentrate on Oldroyd-B model, as
no real fluid has been shown till now to exhibit Oldroyd-A behaviour. Oldroyd-B
model reads as

S = S(1) + S(2), (3.46)
where

S(1) + λ
▽
S

(1)
= 2η1D (3.47)

and
S(2) = 2η2D (3.48)

Alternative derivation of Oldroyd-B model Above we arrived at Oldroyd-
B model by a phenomenological approach. In this part we derive the Oldroyd-B
model using microstructure based modelling in order to show the relevance of this
type of modelling. In the Section 3.2.3 we will derive microstructure based model
of blood using the similar reasoning as here.
Microstructure based modelling has one great advantage over phenomenological
modelling - the parameters that we discover in constitutive equations have clear
physical interpretation. These parameters are namely related to the microstructure
properties of fluid, which are measurable.
The Oldroyd-B model derivation is based on a simplification of basic microstructure
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Figure 3.1: Elastic dumbbell, [35]

in fluid flow - the elastic dumbbell model, see Fig. 3.1. The elastic dumbbell is an
idealization consisting of two identical beads connected by a massless spring. The
derivation of the constitutive model begins with postulation of the force balance
for each of the beads:

F(f)
i + F(c)

i + F(b)
i = 0 i = 1, 2, (3.49)

where F(f)
i is a friction force, F(c)

i a spring force, F(b)
i a Brownian force. As we are

dealing with the Brownian force, which is a stochastic process, we have to solve
the following stochastic differential equations for q - the end to end-vector-of a
dumbbell.

dq
dt

= ∇u · q − 2K
ζ

q −
√

4kBT

ζ
dW(t), (3.50)

where ζ is so-called friction coefficient,W (t) is a multidimensional Wiener process,
K is a spring constant, kB is Boltzmann constant, T is the temperature. A
viable possibility how to solve the equation is to transform it to Fokker-Planck or
diffusion equation

∂

∂t
ψ(q, t) = − ∂

∂q
·
[(

∇u · q − 2K
ζ

q
)
ψ(q, t) + 2kBT

ζ

∂

∂q
ψ(q, t)

]
, (3.51)

where ψ(q, t) is the probability density function for the end-to-end vector q at time
t. Having the probability density function ψ(q, t) we can define the expectation
of a function of q, g(q), as

⟨⟨g(q)⟩⟩ =
∫
g(q)ψ(q, t)dq. (3.52)

From equation (3.51) we can derive the equation of change of << g(q) >>

d

dt
<< g(q) >>=

⟨⟨
(∇u · q) ∂

∂q
g(q)

⟩⟩
+ 2kBT

ζ

⟨⟨
∂

∂q
· ∂

∂q
g(q)

⟩⟩

− 2K
ζ

⟨⟨
q · ∂

∂q
g(q)

⟩⟩
.

(3.53)

The equation for g(q) = ⟨⟨qq⟩⟩ takes the following form:

∂

∂t
⟨⟨qq⟩⟩ − ∇u ⟨⟨qq⟩⟩ − ⟨⟨qq⟩⟩ ∇uT = 4kBT

ζ
I − 4K

ζ
⟨⟨qq⟩⟩ . (3.54)
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Let us suppose the following decomposition of the total stress tensor T into the
part corresponding to the solvent TS and to the polymer TP :

T = TS + TP = (−pSI + SS) + (−pP I + SP ) = −pI + S, (3.55)

where p = pS +pP and S = SS +SP = 2ηND+SP . Kramers performed elementary
physical derivation of SP . He got in the end so called Kramers expression for the
extra-stress tensor

S = SS + SP = 2ηND + ncH << qq >> −nckBT I, (3.56)

where nc is the number density of dumbbells. On substitution of (3.54) in the
previous equation we arrive at Giesekus expression

S = 2ηND − ncζ

4
▽

<< qq >> . (3.57)

We define the relaxation time
λ = ζ

4K , (3.58)

the polymeric viscosity

ηP = nckBTζ

4K = nckBTλ, (3.59)

the total viscosity η0 = ηN + ηP , the characteristic relaxation time

λr = ηN

η0
λ. (3.60)

Then we can write the equation for the total extra stress tensor

S + λ
▽
S= 2η0(D + λr

▽
D), (3.61)

which is the Oldroyd-B model. We can write it in the split form of the Oldroyd-B
model:

S = 2ηND + SP , (3.62)

SP + λ
▽
SP = 2ηP D, (3.63)

in which the model originating from 1-D analogs, i.e. (3.47) and (3.48), can be
identified.

Thixotropic fluids

There is a lot of definitions of thixotropy, one of them is:

“When a reduction in magnitude of rheological properties of a system, such as
elastic modulus, yield stress, and viscosity, for example, occurs reversibly and
isothermally with a distinct time dependence on application of shear strain, the
system is described as thixotropic [36].”

If a liquid has some kind of microstructure it is a candidate for
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thixotropic behavior. In our specific case, blood, the microstructure is the
rouleaux, i.e. stack of red blood cells, which form under specific flow conditions.
Usually it takes some time for microstructure to form and break, which causes
time dependence of the material properties mentioned in the citation above.
There are many theories, which capture thixotropy. Barnes [37] divided them into
three categories:

• indirect microstructural theories, where a scalar parameter is introduced
to capture the level of microstructure. An evolution equation is then intro-
duced to trace the rate of change of this parameter due to aggregation and
disaggregation of microstructures.

• direct structural theories, where an approximate physical model is introduced.

• more phenomenological theories

3.2 Modelling blood flow

3.2.1 Blood as a non-Newtonian fluid
It is widely acknowledged, that the blood plasma is a Newtonian fluid. What
makes blood a non-Newtonian fluid is the presence of red blood cells, erythrocytes.
It must be however noted, that in order to treat blood as a non-Newtonian
fluid, the continuum hypothesis must be valid. In medium size vessels, where the
erythrocytes are much smaller than the size of the vessel blood is flowing in, the
hypothesis holds. Should we describe behaviour of blood in yet smaller vessels, in
so called microcirculation, we have to use an another approach.

Viscosity of blood Erythrocytes tend to form columnar aggregates, so called
rouleaux, under low shear rate conditions, [38]. If the rouleuax are exposed to
high shear rate, they disaggregate. If the shear rate achieves certain critical value,
the rouleaux break up completely. In such a flow only individual red blood cells
are present.

It was observed, that the aggregates are not created, if the plasma proteins,
fibrinogen and globulins, are missing. Hence blood behaves as Newtonian fluid in
the absence of fibrinogen and globulins, see [39], [40].

Non-Newtonian behaviour of red blood cells in plasma was observed. Namely
the buildup of rouleaux in low shear rate flow leads to increased viscosity, whereas
as rouleuax split up down to individual cells under high shear rate conditions,
viscosity decreases,[41]. Therefore blood exhibits the shear-thinning viscosity. A
possibility how to capture shear-thinning viscosity of a fluid using a power-law
model was introduced in Section 3.1.3.
It must be however noted that such conditions of low shear rate are mostly apparent
in the venous system and in some places, where a recirculation is present, like in
aneurysms or downstream stenoses, [42], [43], [44], [45].
In the majority of arterial system blood behaves as a Newtonian fluid, because of
the higher shear rates or because of the speed of the flow, which do not allow the
buildup of rouleaux.
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Size of the aggregates does not depend only on shear rate, it is dependent also
on cell shape, plasma composition and haematocrit, see [40] and [46]. Therefore
viscosity of blood depends also on cell shape, plasma composition and haematocrit.
Viscosity is also a function of temperature, see [47], [46], [48].

Viscoelasticity of blood Blood as a viscoelastic fluid has the ability to store
and release energy [49]. The viscoelasticity of blood originates from the reversible
deformation of red blood cells. They are elastic because of the elastic properties of
the membrane of red blood cells. The buildup of rouleuax increases the viscoelastic
properties of blood [50], [51]. It was observed, that viscoelasticity of blood is
most apparent at low shear rate (up to 10s−1). Some approaches, how to model
viscoelastic fluids were shown or referenced in Section 3.1.3.

Thixotropy of bloood Thixotropy of blood is mostly attributed to the finite
time, which is required for the aggregation-disaggregation process of rouleaux.
Thixotropic fluids were shortly reviewed in Section 3.1.3.

Yield stress of blood There is a discussion on the existence of yield stress of
blood, see [24], [52]. Its value ranges from 0.002 to 0.40 dynes/cm2, [53]. Different
studies come with a wide range of possible values for yield stress, see [54]. We
have mentioned several approaches to modelling yield stress of fluids in Section
3.1.3.

3.2.2 Review of models of blood flow
The simplest solution for capturing the shear thinning viscosity of blood in a
model is using of a power-law model for viscosity. It suffers however from the
drawback of power-law models - zero shear rate viscosity is unbounded, whereas
large shear rate viscosity tends to zero. Because of this the power law model for
blood is applicable only to limited range of shear rates.
There are however other models of shear thinning viscosity of blood like Cross,
Carreau [55], which cope with the mentioned disadvantages of the power-law
model.
The generalised Newtonian models outlined in Section 3.1.3 do not capture the
viscoelasticity of blood. The model [56] captures the shear-thinning of blood over
a wide interval of shear rates. However its relaxation times do not depend on shear
rate, which is not in agreement with experiments.
We will now shortly review models capturing viscoelasticity of blood. In [57] was
developed a viscoelastic model in the thermodynamic framework of [58].
Yet another approach to blood constitutive modelling present works of Quemada
[59], [60], [61], Williams [62] and De Kee [63], [64]. They all end in a generalised
Maxwell-like equation, see Section 3.1.3. In their models there is a structure
variable, number fraction of red blood cells (aggregated particles) ([59], [60], [61]
and [63], [64]) or of aggregated cell faces [62]. The viscosity and the relaxation
time then depend on this structure variable.
In this paper we will use the model of Owens, [65], [66], which also traces the
number density of red blood cells. The model is the microstructure based one, as
will be apparent. So the derivation is philosophically similar to the microstructure
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based derivation of Oldroyd-B model in Section 3.1.3. We will advocate this model,
because it seems to us, that such a kind of model is most appropriate for the
proposed aim of realistic blood coagulation process modelling. The used model is
based on an assumption of nonhomogeneous flow, whereas a simplification of the
model presented in [67] assumes homogeneous flow. The latter model is however
not able to capture the spatially and temporally nonconstant distribution of red
blood cells, i.e. hematocrit as a function of time and space, across the blood vessel.

3.2.3 A non-homogeneous model of blood

Model derivation

Owens [65], [66] uses for the derivation of his model results from polymer kinetic
theory, see [68] for details. We have shown the microstructure based derivation
of Oldroyd-B fluid model in Section 3.1.3. Suppose we have a solution of non-
interacting dumbbells in a viscous solvent. If we assume, that the characteristic
size of dumbbell in equilibrium l0 is tiny in comparison with the tube radius, we
can arrive at the following equation for the density of dumbbells N

DN

Dt
= Dtr∆N − 1

2ζ∇∇ : τ , (3.64)

where Dtr = kBT
2ζ

is the translational diffusivity, kB is the Boltzmann constant, T
the temperature, ζ is a friction factor, τ the elastic part of extra stress tensor.
We need to clarify the symbol ∇∇, it is the Hessian matrix, i.e. outer product of
two nabla operators.
Tensor quantity qq, where q is end-to-end dumbbell vector, develops under as-
sumption ||∇v|| << λ−1

H according to the following equation
∇

< qq >= Dtr∆ < qq > +4NkBT

ζ
I − 4K

ζ
< qq >, (3.65)

where I is the identity tensor. λH is the relaxation time of an isolated dumbbell
and it is interrelated with the friction factor ζ and the spring constant K by the
following equation

λH = ζ

4K . (3.66)

General quantity in our framework related to a dumbbell is a function of the
position vector of the center of mass rc, the end-to-end vector q, the momentum
vector related to the center of mass p and the momentum vector related to the
internal degrees of freedom P, B = B(rc,q,p,P). In the equation (3.65) an
ensemble average is used, which is defined as

< B >:=
∫

Q

∫
P1

∫
P2
BfdpdPdq , (3.67)

where Q, P1 and P2 is configuration space, momentum space related to p and
momentum space related to P, respectively.

In Owens’ model it is assumed, that a rouleau can either disaggregate or aggregate
with another rouleau. Rouleaux are in the model represented as Hookean elastic
dumbbells. If a rouleau is composed of k red blood cells it is said, that it is a k-mer.
We introduce the following notation for relevant quantities of Owens’ model.
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• number density of k-mers

Nk (3.68)

• the scaled number density of RBCs

N0 =
∞∑

k=1
kNk (3.69)

• the scaled number density of rouleaux

M =
∞∑

k=1
Nk (3.70)

• the average rouleau size

n = n(N0,M) = N0

M
(3.71)

Reversible polymer network theory assumes that aggregation is a Brownian process
proportional to the equilibrium number density Nk,0. Owens supposed also that
disaggregation of k-mers is proportional to Nk. We write down an equation, which
corresponds to (3.64)

DNk

Dt
= Dtr,k∆Nk − 1

2ζk

∇∇ : τk + hkNk,0 − gkNk, (3.72)

where hk and gk are aggregation and fragmentation rate coefficients, ζk is the
k-dependent friction factor and

Dtr,k = (kBT +κ)k

2ζk
is translational (thermal and convective) diffusivity for k-mers.

As k-mer consists of k cells Owens chose

(kBT + κ)k = k(kBT + κ) and ζk = kζ, (3.73)

where the term kBT corresponds to small Brownian contribution and the constants
κ takes into account collisions with other cells.

Hence we can replace Dtr,k with

Dtr = kBT + κ

2ζ . (3.74)

The equations corresponding to (3.65) for orientation tensor of k-mers

∇
< qq >k=Dtr,k∆ < qq >k +(4kBT + κ)kNk

ζ
I − 4K

ζ
< qq >k

+ hk < qq >k,0 −gk < qq >k .

(3.75)

If we use the Kramers equation

τk = K < qq > −kNk(kBT + κ)I, (3.76)

29



Chapter 3 - Mathematical modelling
we get from (3.72) and (3.75) using (3.76) the following equation for the stress
tensor of k-mer τk

τk + µk
∇
τk −Dtrµk(∆τk + (∇∇ : τk))I = kNk(kBT + κ)µkD, (3.77)

where we defined the relaxation time of k-mer

µk = kλH

1 + gkkλH

. (3.78)

In the previous work of Owens [7] it was chosen

gkNk = 1
2

k−1∑
i=1

Fi,k−iNk +
∞∑

j=1
Kk,jNkNj (3.79)

and
hkNk,0 = 1

2

k−1∑
i=1

Ki,k−iNiNk−i +
∞∑

j=1
Fk,jNk+j, (3.80)

where Ki,j is an aggregation kernel representing the rate at which i-mer and
j-mer coalesce to form (i+j)-mer. On the other hand Fi,j is a fragmentation kernel
standing for the rate an i-mer and an j-mer is created by breaking up of (i+j)-mer.
We choose the kernels to be functions of shear rate only, i.e. a(γ̇), b(γ̇). The next
simplifying assumption concerns the position of reaction sites on a k-mer. They
interact only at the end points of the rouleaux. The fragmentation coefficient
equation (3.79) then becomes

gk = b(γ̇)(k − 1)
2 + a(γ̇)

∞∑
j=1

Nj, (3.81)

whereas the aggregation coefficient equation (3.80) is modified to

hk = a(γ̇)
2Nk,0

k−1∑
i=1

NiNk−i + b(γ̇)
Nk,0

∞∑
j=1

Nk+j. (3.82)

Just now we have an immense number of constitutive equations (3.77) for each
k-mer. Instead of computing with this multi-mode model, we choose an average
relaxation time, i.e. the relaxation time of an average rouleaux n: µ̄ := µn (See
(3.71) and (3.78)). After we performed this simplification, we can convert our
equations to the simplified form in the following way.
By multiplying (3.72) with k, summing from k = 1 to ∞ we get

DN0

Dt
= Dtr∆N0 − Dtr

(kBT + κ)∇∇ : τ . (3.83)

By summing (3.77) from k = 1 to ∞ we get

τ + µ̄
∇
τ −Dtrµ̄(∆τ + (∇∇ : τ ))I = N0(kBT + κ)µ̄D, (3.84)

where
τ =

∞∑
k=1
τk. (3.85)
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The evolution equation for number density of aggregates is reached by summing

(3.72) from k = 1 to ∞

DM

Dt
= Dtr∆M − Dtr

(kBT + κ)∇∇ : σ − a(
.
γ)
2 M2 + b(

.
γ)
2 (N0 −M), (3.86)

where
σ =

∞∑
k=1

σk

k
, (3.87)

is a tensor quantity, which satisfies

σ + µ̄
∇
σ −Dtrµ̄(∆σ + (∇∇ : σ))I = M(kBT + κ)µ̄D. (3.88)

We have to close the system of equations for (u, p, N0, M , σ, τ ). We do so by
adding the equations for linear momentum conservation and for conservation of
mass:

ρ
Du
Dt

= −∇p+ ηN∆u + div τ , (3.89)

div u = 0, (3.90)
where p is the pressure, ρ is the blood density and ηN is the constant plasma
viscosity.

Non-dimensionalization of the nonhomogeneous model

We perform non-dimensionalization of equations (3.83), (3.86), (3.84),(3.88), (3.89)
and (3.90) using the following rescaling of variables similarly to [69]

N̂0 = N0

Nav

, M̂ = M

Nav

, x̂ = x
L

, û = u
U

, (3.91)

t̂ = tU

L
, τ̂ = τL

ηtU
, p̂ = pL

ηtU
, (3.92)

where U is the characteristic velocity, L is the characteristic length, Nav is the
average number density of cells, ηt is the characteristic value of the total blood
viscosity:

ηt = Nav(kBT + κ)λH + ηp, (3.93)
where the first term is the characteristic value for the RBC viscosity, whereas the
second term is the characteristic value of plasma viscosity.

We introduce the following dimensionless numbers

• The Reynolds number
Re = ρUL

ηt

(3.94)

• The Deborah number
De = λHU

L
(3.95)
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• The Peclet number

Pe = UL

Dtr

(3.96)

• The ratio of plasma to total viscosity

β = ηp

ηt

(3.97)

After introducing the rescaling and identifying the characteristic nondimensional
numbers, we arrive, after dropping of hats above scaled variables, at the following
set of equations:

Re
∂u
∂t

+Reu · ∇u = −∇p+ div τ + β∆u, (3.98)

div u = 0, (3.99)

∂N0

∂t
+ u · ∇N0 = 1

Pe
∆N0 − 1

1 − β

De

Pe
∇∇ : τ , (3.100)

∂M

∂t
+ u · ∇M = 1

Pe
∆M − 1

1 − β

De

Pe
∇∇ : σ− 0.5α(γ̇)N0

n
M + 0.5b(γ̇)(N0 −M),

(3.101)

τ +Deµ̄(γ̇, N0,M) ▽
τ −De

Pe
µ̄(γ̇, N0,M)(∆τ + (∇∇ : τ )I) =

(1 − β)µ̄(γ̇, N0,M)N0D,
(3.102)

σ +Deµ̄(γ̇, N0,M) ▽
σ −De

Pe
µ̄(γ̇, N0,M)(∆σ + (∇∇ : σ)I) =

(1 − β)µ̄(γ̇, N0,M)MD.
(3.103)

In the next course of the work we will drop the bar over µ, i.e. µ̄ becomes µ.

3.3 Modelling blood coagulation

3.3.1 Review of models of blood coagulation
As was said in the Section 2.2 the whole process of blood coagulation consists of
four phases - vasoconstriction, primary haemostasis, secondary haemostasis and
fybrinolysis.
Correspondingly the models of blood coagulation could be divided into platelet
plug formation models, blood clot formation models, fybrinolysis models. We
are mostly interested in the modelling of primary haemostasis, i.e. platelet plug
formation, as it is the focus of this work. We will however describe the models
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3.3 - Modelling blood coagulation
of blood clot formation. We are doing so not only for completeness, but also
because the fact, that primary haemostasis happens (almost) concurrently with
secondary hemostasis. This concurrency is often taken into account in models of
blood coagulation, where both processes are captured in one model. We will also
describe the stabilization of the clot during the blood coagulation process in this
work. For that purpose we use the model of [70] and [2].
Yet another categorization is elaborated in [71]. We will stick to this review in
the following. First classification in [71] is based on the spatial scales of processes,
which a model is able to capture. Second classification groups together models,
which are able to describe specific physical processes of the blood coagulation
process.

Classification of models based on scales of processes, which they
describe In [71] the categorization according to scale is started with
sub-microscale models, which have characteristic dimensions at sub-cellular
scale, i.e. to order of 0.1 µm. At this level the interactions among proteins and
macromolecules are captured.
Higher level of description of the coagulation process provide miscroscale models
with characteristic dimensions 1-10µm. These models describe behaviour of
platelets, erythrocytes and other microparticles in great detail. This can be
useful for description of blood coagulation in microvessels, where the continuum
hypothesis does not hold.

Macroscale Models In [71] are macroscale models identified by validity of
the continuum hypothesis. Characteristic scales are above 100µm. The blood is
no longer comprehended at a particulate level. Instead macroscopic variables and
parameters are enough representative for description of the blood flow.
We have already made a remark in Section 3.2.2 on the comprehensive model of
blood coagulation of [72], [57]. Both blood and clot are modeled as viscoelastic
materials, whose constitutive equations were developed using the thermodynamic
framework of [58], [32], [31]. The model of coagulation of [57] comprises of
concentrations of 23 chemical species obeying convection-diffusion-reaction
equations. The reaction kinetics is captured using reaction terms in the bulk of
flow and flux boundary conditions defined on the site of injury for subset of the
species. The set of reactions ends with creation of fibrin, which causes steep
increase of clot viscosity. In this way the coupling flow-chemistry is introduced.
In [72] and [57] the activation of platelets can proceed in two ways -
biochemical and rheological. The rheological activation depends on so
called activation number, which is assigned to each platelet. The activa-
tion number depends on the length of exposure of a platelet to elevated shear stress.

Classification of models based on features, which they describe This
grouping of models relies on different physical phenomena captured in the models.
In [71] the following groups are described

• Biochemistry (Only) Models
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• Biochemistry and Flow Models

• Biochemistry and Flow and Structure Models

In [73] a similar splitting of models is introduced. There are two basic categories -
ODE’s models and PDE’s models. The biochemistry (only) models category from
[71] is almost identical with ODE’s models of [73].
A coagulation process model begins to be more complicated with introduction
of flow as new chemical species and platelets are carried to the site of injury, on
the one hand. On the other hand the blood flow carries away the agents of the
coagulation process. What is more, this carrying away is very important during
the process of fibrinolysis.
The third item in the list Biochemistry and Flow an Structure Models represents
models, which try to capture the mechanical properties of clot or influence of clot
on the blood flow. One of the models in this category is the model of [6], [74] and
[3], which we will treat in the next section in detail. Afterwards we review the
model of Storti [1]. We review the constitutive model for blood clot of Kempen
[2]t as well. We will modify or extend all three models in the further course of
this thesis.

Models of coagulation used in our work

We propose three new coagulation models witch could be seen as extensions of
already developed models. We use namely

• Weller’s model of blood coagulation, [3], [6]

• Storti’s model of primary hemostasis, [8], [1]

• Kempen’s model of secondary hemostasis, [2]

In the next paragraphs we review the models in order to be able to formulate the
extensions in further course of this work.

Weller’s model of clot growth Let us introduce the basic setting of the free
boundary problem, see Fig. 3.2.

In this picture we have the time independent parts, namely inflow I, non-
reactive wall Σ and outflow O. The blood flowing from the inflow I carries new
platelets, some of which get incorporated on the moving boundary Γt into the
developing thrombus Ωs. As the thrombus grows the area of flowing blood Ωt

reduces. Hence the growing clot affects the flow.
Firstly we define the domains, T is the end time of simulation:

• inflow boundary: IT := I × (0, T ]

• outflow boundary: OT := O × (0, T ]

• non-reactive wall ΣT := Σ × (0, T ]

• time dependent area of blod flow: ΩT := ⋃
0<t≤T Ωt × {t}

• moving boundary: ΓT := ⋃
0<t≤T Γt × {t}
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Figure 3.2: Computational domain of Weller’s model

Relevant equations are then formulated in these domains. The model contains
Navier-Stokes equations for the blood, as blood is taken as a Newtonian fluid with
the constant kinematic viscosity ν. In the blood are distributed blood platelets,
which obey a transport equation.
The free boundary model then reads, the Navier-Stokes part:

∂u
∂t

− ν∆u + u · ∇u + ∇p = b in ΩT , (3.104)

∇ · u = 0 in ΩT ,

u = 0 on ΓT ∪ ΣT ,

u = uD on IT ,

ν
∂u
∂o

= p · o on OT ,

u(t = 0) = u0 in Ω0,

where u it the velocity of blood, p is the pressure, b is the body force field, like
gravity, o is the unit outer normal to the outflow boundary O. uD is the Dirichlet
boundary condition imposed on velocity on the inflow I, u0 is the initial condition
on velocity.
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The transport equation for platelet concentration w looks in the following manner:

∂w

∂t
−D∆w + u · ∇w = 0 in ΩT , (3.105)

D
∂w

∂n
= kw on ΓT , (3.106)

∂w

∂n
= 0 on ΣT ∪OT ,

w = wD on IT ,

w(t = 0) = w0 in Ω0,

where D is the constant diffusivity, u is the velocity field obtained from the solution
of the Navier-Stokes equations, n it the unit outer normal to the reactive interface
ΓT . wD is the Dirichlet boundary condition on platelets, w0 is the initial condition
on platelets.
r is the adhesion rate, which depends on shear stress s, to be defined later on:

r := κ1 + κ2s. (3.107)

The growth velocity ui is supposed to be antiparallel to platelet gradient, i.e.
the proportionality constant α is chosen as positive:

ui = α∇w on ΓT . (3.108)

We use now the main idea of the level set method (for details see [75] and [76])
- the moving interface ΓT can be represented implicitly as the zero level set of
a function ϕ, whose sign can serve to distinguish the domains of fluid blood
Ωf (t) := Ωt and emerging thrombus Ωs(t). To be more specific, the different parts
of the domain are constituted by

Ωf (t) = {x ∈ Ω∗ : ϕ(x, t) > 0} , Γt(t) = {x ∈ Ω∗ : ϕ(x, t) = 0} , (3.109)

Ωs(t) = {x ∈ Ω∗ : ϕ(x, t) < 0} ,
where Ω∗ = Ωf (t) ∪ Γt(t) ∪ Ωs(t). It follows from the definition of ϕ, that the

transport equation
∂ϕ

∂t
+ ui · ∇ϕ = 0 on ΓT . (3.110)

has to be fulfilled along the moving interface. The natural extension to the whole
domain Ω∗ can be formulated as

∂ϕ

∂t
+ αkD−1w |∇ϕ| = 0 in Ω∗. (3.111)

At time t = 0, the level set function is initialized to the signed distance function,
that is

ϕ(x, 0) :=

⎧⎨⎩ dist(x,Γ0) x ∈ Ωt ∪ Γ0,

−dist(x,Γ0) x ∈ Ωs(0).
(3.112)

Weller substituted the following term obtained by integration by parts over the
interface Γt ∫

Γt

(
−ν ∂u

∂n
+ pn

)
·ψdS (3.113)
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Figure 3.3: Problem settings

ΓΩ

ΩF

by the following expression

β(h)
∫

Γt

u ·ψdS, (3.114)

where β is a function depending on the cell size h so that β(h) → ∞ as h → 0. ψ
is a vector test function. The velocity field is extended to Ωs to fullfill u = 0 in
Ωs, which leads to the additional term

∫
Ωs

u ·ψdx. The pressure is harmonically
extended into the solid. On the part of boundary ∂Ωs(t) \ Γt is imposed the
homogeneous Dirichlet boundary condition on u.

Storti’s model of clot growth

Chemistry part of the model Let us now imagine the situation in the
Figure 3.3, where ΩF , Ω and Γ represent the flowing blood domain, the clot domain
and the interface domain, respectively.
The model of Storti is based on the model of [77] and [78]. Before we dive into

the biochemical and rheological model of Storti presented in [1], [8] and [79] we
shortly describe the rough idea of the model.
Simply said, in the model several biochemical species appear together with two
populations of blood platelets - activated and unactivated. On the occurence
of the wall injury it is triggered the system of biochemical reactions in which
participate both flowing chemical species and blood platelets. The unactivated
platelets become activated by influence of some of the chemical species and other
already activated platelets. The activated platelets form a flux which causes the
growth of the area filled with the activated platelets, the clot. Let us now formalize
these ideas.
We trace seven species in the blood flow, it is a continuum model therefore we are
interested in their concentrations:

1. Unactivated platelets cup(PLT/ml),

2. Activated platelets cap(PLT/ml),

3. Adenosine diphosphate cadp (µM),

4. Thromboxane ctx (µM),

5. Prothrombin cpt (µM),

6. Thrombin cth (µM),

7. Antithrombin cat (µM),
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where PLT is the number of platelets and µM = nmol/ml.
Convection, diffusion and reaction of all species can be expressed in this generic
equation

∂c
∂t

+ (u · ∇)c = D∆c + S(c) in ΩF , (3.115)

where c is the vector of all seven species, i.e. c = (cup, cap, cadp, ctx, cpt, cth, cat),
D is the diagonal matrix with diffusivities of each species on diagonal, i.e. D =
diag(Dup, Dap, Dadp, Dtx, Dpt, Dth, Dat). S(c) is the vector of reaction terms of all
seven species,
i.e. S(c) = (Sup(c), Sap(c), Sadp(c), Stx(c), Spt(c), Sth(c), Sat(c)). u is the blood
flow velocity. A summary of source terms in S(c) for each species, which will be
described below, is given in Table 3.1.
In the coagulation model of [1],[8] and [79] the velocity field u is obtained by

solution of Navier-Stokes equations in ΩF .
The reaction terms for the unactivated and activated platelets look simple

Sup = −kpacup (3.116)

and
Sap = kpacup, (3.117)

where the first order reaction rate kpa is defined in the following manner

kpa =

⎧⎨⎩0 if fact < 1,
fact

τpa
if fact ≥ 1,

(3.118)

where τpa is a characteristic time constant and fact is a function defined by

fact = cadp

cadp,crit

+ ctx

ctx,crit

+ cth

cth,crit

, (3.119)

where cadp,crit, ctx,crit and cth,crit are the critical values of ADP, thromboxane and
thrombin. Their values are in Table 5.9. The ADP, thromboxane and thrombin
are responsible for the activation of resting platelets. If their concentration is high
enough, the function (3.118) becomes positive and the process of activation of
resting platelets is set off. Therefore this function is responsible for the activation
of resting platelets by the activating chemicals.
The reaction terms for ADP and thromboxane are taken as

Sadp = λadpkpacup (3.120)

and
Stx = spjcap − k1jctx, (3.121)

where λadp is the quantity of ADP produced from one activated platelet, spj stands
for rate of the creation of thromboxane by activated platelets, k1j is the rate of
inhibition of thromboxane.
The reaction terms of the thrombin system are given by

Spt = −γcpt(ϕacap + ϕucup) (3.122)

for prothrombin,
Sth = γcpt(ϕacap + ϕucup) − k2jcatcth (3.123)
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for thrombin and

Sat = −k2jcatcth (3.124)
for antithrombin, where ϕa and ϕu stand for rate of synthesis of thrombin from
prothrombin at the surface of activated and resting platelets, respectively.

β is a conversion factor, k2j is the rate at which creation of thrombin is inhibited
by antithrombin.

D
∂c
∂n

= R(c, f) on Γ, (3.125)

where R(c, f) is the vector of adhesion or release term for each species, i.e.

R(c, f) = (Rup(c, f), Rap(c, f), Radp(c, f), Rtx(c, f), Rpt(c, f), Rth(c, f)) (3.126)

where f is the vector of the surface quantities, which undergo development, i.e.
f = (fs,Mas,Mr,Mat). The components of vector f are specified below. The
summary of flux terms for all species in c is given in Table 3.2.

The boundary condition for unactivated platelets stands for attachment of the
platelets to the injured wall

Dup
∂cup

∂n
= fskrscup on Γ, (3.127)

where fs is a saturation function of the reacting surface, which will be described
below. krs is the reaction constant capturing adherence of unactivated platelets to
the reactive surface.

The boundary condition for activated platelets takes into account both at-
tachment to the injured wall and adherence of activated platelets to each other

Dap
∂cap

∂n
= fskascap + Mas

M∞
kaacap on Γ, (3.128)

where kas and kaa is the adherence constant of activated platelets to the damaged
wall and to each other, respectively. Mas is the portion of the surface occupied by
activated platelets, to be specified below. M∞ is the total capacity of the surface
for platelets. It is the maximal number of platelets that can bind to a certain area.

In the boundary conditions the possibility is taken into account, that the wall
is saturated with platelets. In such a case only attachment of activated platelets
to each other can happen. It is done by introduction of the function fs = fs(x, t),
which is developing according to the following equation⎧⎨⎩

∂fs

∂t
= −

(
krs

M∞
cup + kas

M∞
cap

)
fs on Γ,

fs|t=0 = 1 on Γ.
(3.129)

As was said, the boundary condition (3.128) depends on the portion of the
total surface coverage occupied by activated platelets Mas. It develops according⎧⎨⎩

∂Mas

∂t
= θfskrscup + kasfscap + kpaMr on Γ,

Mas|t=0 = 0 on Γ,
(3.130)
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where θ is the fraction of adhering resting platelets, which get activated on contact
with the reactive surface. In the equation (3.130) the portion of the total surface
coverage occupied by unactivated platelets Mr appears. It obeys the following
equation ⎧⎨⎩

∂Mr

∂t
= (1 − θ)fskrscup − kpaMr on Γ,

Mr|t=0 = 0 on Γ.
(3.131)

The activated platelets release ADP and thromboxane, which means, that we have
an influx of these chemicals into the area around the clot.
The boundary condition on ADP is

Dadp
∂cadp

∂n
= −λadp(θfskrscup + kpaMr) on Γ, (3.132)

whereas the boundary condition on thromboxane is

Dtx
∂ctx

∂n
= −spjMat on Γ, (3.133)

which stipulates, that thromboxane is generated because of the total amount of
activated platelets participating in the clot Mat. Mat contains both activated
platelets adhered to the injury and activated platelets bound to each other. Its
development is described by the following equation⎧⎨⎩Mat = θfskrscup + fskascap + kaa

M∞
Mascap + kpaMr on Γ,

Mat|t=0 = 0 on Γ.
(3.134)

The thrombin cycle on the injury site does not contain antithrombin, i.e. we have

Dpt
∂cpt

∂n
= γ(ϕaMat + ϕrMr)cpt on Γ, (3.135)

and
Dth

∂cth

∂n
= −γ(ϕaMat + ϕrMr)cpt on Γ. (3.136)

Table 3.1: Overview of elements of reaction terms vector S(c) depending on
concentrations in c

Species name conc. conc. units formula for the reaction term S
Resting platelets cup PLTml−1 −kpacup

Activated platelets cap PLTml−1 +kpacup

ADP cadp µM λjkpacup

Thromboxane ctx µM spjcap − k1jctx

Prothrombin cpt µM −βcpt(ϕacap + ϕucup)
Thrombin cth µM βcpt(ϕacap + ϕucup) − k2jcatcth

Antithrombin cat µM −βk2jcatcth
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Table 3.2: Overview of flux terms in R(c, f)

Species name concentration formula for the Robin condition R
Resting platelets cup fskrscup

Activated platelets cap fskascap + Mas

M∞
kaacap

ADP cadp −λj(θfskrscup + kpaMr)
Thromboxane ctx −spjMat

Prothrombin cpt β(ϕaMat + ϕrMr)cpt

Thrombin cth −β(ϕaMat + ϕrMr)cpt

Antithrombin cat 0

Plug growth influences the rheology model In [1], [8] and [79] Storti
imposes the Poiseuille profile as the boundary condition on the velocity field. The
flow is governed by the ALE-reformulated Navier-Stokes equations, which will be
shown later.
For the ALE formulation it is necessary to know the velocity of the grid, which is
determined by the velocity of the clot growth. For that purpose Storti defined the
flux of deposited bounded platelets jbp as

jbp = −∂cbp

∂t
, (3.137)

where cbp is defined as the quantity of deposited bounded platelets on the surface
of clot. Its development can be obtained from the Robin boundary conditions
(3.127) and (3.128) getting

∂cbp

∂t
= fskrscup +

(
fskas + Mas

M∞
kaa

)
cap. (3.138)

Using this equation and the definition (3.137) we arrive at the following equation

jbp = −fskrscup −
(
fskas + Mas

M∞
kaa

)
cap. (3.139)

We define similarly to [1, 8] and [79] the displacement of the interface d as

d

dt
d = ui = jbpVp n, (3.140)

where ui is the velocity of the growth, Vp is the volume of a single platelet and
n is the normal vector to the clot interface. Storti introduces the parameter αV ,
which takes into account, that among the platelets in the clot there is some space.
Hence we modify (3.140) followingly

d

dt
d = ui = jbp(1 + αV )Vp n. (3.141)

ALE framework for the clot growth We define moving curvilinear co-
ordinates ζ̃ which are related to the spatial coordinates x by the function x̂

x = x̂(ζ̃, t). (3.142)
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The function c = c(x, t) can be then expressed with respect to the moving

coordinate system as

c(x, t) = ĉ(x̂(ζ̃, t)) ≡ c̄(ζ̃, t). (3.143)

We define the grid time derivative

δc
δt

= ∂c
∂t

|ζ̃=const = ∂c̄
∂t

, (3.144)

which by the chain rule becomes

δc
δt

= ∂ĉ
∂t

+ ∂x̂
∂t

· ∇ĉ. (3.145)

Realising that ∂ĉ
∂t

is the local time derivative ∂c
∂t

and defining the grid velocity as

w = ∂x̂
∂t

(3.146)

we reformulate (3.145) in the following manner

δc
δt

= ∂c
∂t

+ w · ∇ĉ , (3.147)

which in the Eulerian formulation, where the grid is fixed, i.e. w = 0 reduces to

δc
δt

= ∂c
∂t

. (3.148)

On the other hand we have the following equation for the Lagrangian formulation,
where w = u, i.e. the grid velocity equals to the fluid velocity:

δc
δt

= ∂c
∂t

+ u · ∇ĉ , (3.149)

From the equations (3.147) and (3.149) we get

ċ = δc
δt

+ (u − w) · ∇c. (3.150)

Our generic convection-diffusion-reaction equations (3.115) can then be reformu-
lated as follows

∂c
∂t

+ ((u − w) · ∇)c = D∆c + S(c). (3.151)

Taking into account the growth model the following Navier-Stokes equations are
to be solved ⎧⎨⎩ρ

∂u
∂t

+ ρ((u − w) · ∇)u = −∇p+ η∆u,
div u = 0,

(3.152)

where u and p are the blood velocity and pressure, respectively. ρ and η the
density and the viscosity of blood, respectively. Looking at the equation for the
displacement of the clot surface (3.141) we deduce the specific form of the grid
velocity:

w = jbp(1 + αV )Vpn, (3.153)
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3.3 - Modelling blood coagulation
where the flux jbp is given by (3.139).
In [8] was assumed, that the emerging clot is a rigid solid. The plug clot poses an
obstacle to the blood flow, so the blood can not flow through the area of clot.
Another approach was chosen in [79], where the clot was taken as an elastic solid
with neo-Neookean constitutive relation. Namely in the area of clot the following
momentum and mass balance equations were assumed:

divT = 0 in Ω, (3.154)

J − 1 = 0 in Ω, (3.155)
where the Cauchy stress tensor T for the incompressible material (as we have
(3.155)) takes the following form:

T = −pI + S. (3.156)

J is defined as
J = det(F), (3.157)

i.e. it captures change of volume of reference configuration into the current
configuration . The neo-Hookean constituve relations then reads as

S = G (B − I) , (3.158)

where G is the shear modulus and B = FFT , where F is the deformation gradient
tensor.

The interaction between the blood and the clot is two-fold:

• fluid-solid coupling
the blood effects the clot by the traction force computed from the total
stress tensor of the viscous fluid TF :

tF = TF n, (3.159)

where TF = −pI + 2ηD.

• solid-fluid coupling
based on the traction force of the fluid (3.159) one computes using the
equations for the solid the displacement of the solid δx. The clot is moved
accordingly, which causes the change of fluid domain.

Kempen’s constitutive model of clot
Kempen developed a nonlinear viscoelastic constitutive equation for blood clot.

It captures rheological properties of several types of clots - whole blood clot,
platelet rich plasma clot and platelet poor plasma. However it remains on the
phenomenological level of description, where the different rheological behaviour of
the mentioned types of clot is described by change of seven fit parameters.
The model was fitted against clots in experimental cone-plate rheometer. It is
based on the idea of in parallel connected elements - an elastic spring, a viscous
dashpot and two Maxwell elements, see Fig. 3.5.
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Figure 3.4: Scheme of configurations

Kinematics Assume we have a solid material. Then its changes of shape
and volume are described using the deformation gradient tensor F. The deformed
line element dx is related to the underformed state dX in the following manner:

dx = FdX. (3.160)

We split the the deformation gradient F into an inelastic part Fp and an elastic
part Fe, see Figure 3.4,

F = FeFp. (3.161)
The inelastic part Fp deforms the undeformed state to a relaxed stress-free state.

This is a state, at which we would arrrive, when we removed all loads from the
material line element. The elastic part Fe transforms the stress-free state into the
deformed state.
We define the Finger tensor B followingly:

B = FFT . (3.162)

We define the Finger tensor Be for the elastic deformation:

B = FeFT
e (3.163)

We define the velocity gradient tensor L

L = ḞF−1, (3.164)

which can be additively decomposed into the elastic part Le and the inelastic part
Lp:

L = Le + Lp, (3.165)
where

Le = ḞeF−1
e (3.166)

and
Lp = ḞeḞpF−1

p F−1
e (3.167)
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Figure 3.5: Schema of rheological model of Kempen

We decompose both parts of the velocity gradient, i.e. Le, Lp, followingly

Le = De + Ωe, (3.168)

Lp = Dp + Ωp (3.169)
where De and Dp are the symmetric rate of deformation tensor for the elastic
part of deformation and for the viscous part of deformation, respectively. The
symbol Ωe and Ωp represent the skew-symmetric spin tensor for the elastic part
of deformation and for the viscous part of deformation, respectively.

In order to have a unique stress free state, it is assumed, that the inelastic
deformation happens spin free:

Ωp = 0 (3.170)
and all rotations are contained in the elastic part of deformation

Ω = Ωe. (3.171)

Constitutive model The connection of the viscos dashpot, elastic spring
and two Maxwell elements, see Figure 3.5, is described by the following equation

τclot = τv + τe +
2∑

i=1
τve,i, (3.172)

where τv, τe and τve,i are the contributions from the viscous dashpot, elastic spring
and Maxwell elements, respectively. Model captures change of the clot behaviour
from viscoelastic fluid-like to viscoelastic solid-like.
The viscous element reads as

τv = 2 (ηN + fv(t)fvi(IB)η00) D, (3.173)

where ηN is the plasma viscosity, IB = trB, η00 is the value of viscosity η0 of the
mature clot, which was obtained from the experiment in [2] and the function fv(t)
is changing with time according to

fv(t) =

⎧⎪⎨⎪⎩
0 if t ≤ t0,(

1 − e− (t−t0)
tc

)
if t > t0,

(3.174)
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where t0 is a delay period needed for formation of fibrin network and tc is a time
constant. In (3.173) the function fvi captures nonlinear viscous dissipation

fvi(IB) = 1 + k2(IB − 3), (3.175)

i.e. it is a growing function of the deformation. k2 is a fit parameter.
The elastic spring element contribution in (3.172) reads as

τe = fe(t)x0fss(IB)G00(B − I), (3.176)

where G00 is the value of the modulus G0 at the end of formation of the blood clot,
obtained from the experiment in [2], and the function fe(t) is a growing function
of time:

fe(t) = fv(t)2. (3.177)
Function fss(IB) in (3.176) causes, that the model is able take into account the

fact, that clot stiffness increases with the strain.

fss(IB) = (1 + k1(IB − 3))n1 , (3.178)

where n1 is a fit parameter. The contribution from viscoelastic, Maxwell, modes
in (3.172) reads as

τ e
ve,i = xiGi(Be,i − I), i = 1, 2 , (3.179)

where Gi are fitting parameters. xi are state parameters undergoing time develop-
ment depending on the history of deformation according to the following equation

ẋi =

⎧⎨⎩−cx(xi − xi,∞) if xi > xi,∞,

0 if xi ≤ xi,∞,
(3.180)

where
xi,∞ = e−a

√
IBe,i

− 3 (3.181)
is the value of xi corresponding to certain strain and cx and a are fit parameters.

Hence we assume, that the elastic behaviour of the viscoelastic modes is neo-
Hookean-like, whereas the inelastic behaviour is described by the following equation
for the inelastic rate of deformation:

τ v
ve,i = 2ηiDp,i, i = 1, 2. (3.182)

Using the fact τve,i = τ e
ve,i = τ v

ve,i we get the classical Maxwell relations for these
two modes.

3.3.2 Weller’s model using diffuse interface method
The sharp interface method, the level-set method, introduced in the paragraph on
the original model of Weller provides an elegant solution, how to compute useful
quantities, like the normal vector to the interface, the characteristic function of
the interface, the Heaviside function of the flow domain. These quantities are
needed for numerical computations.
For the numerical computations it is however required smearing out, approximation,
of the level-set function by a smoothed function. We have tried to circumvent this
issue by using the phase-field method, because the phase-field is already implicitly
smooth.
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Interface tracking using the phase-field method The most important ad-
vantages of the phase-field approach in comparison with the level-set method
are:

• no necessity of artificial smearing of the characteristic and Heaviside function
for numerical computations as the phase field is implicitly smeared by the
phase field equation to be specified below

• the phase-field function does not require the reinitalization procedure, which
is necessary for the signed distance function of the level-set method

At the heart of our phase-field formulation are the following Cahn-Hilliard
equations

∂c

∂t
+ u · ∇c− divM∇µ = 0 in Ω∗, (3.183)

µ− 1
ϵ2W

′(c) + ∆c = 0 in Ω∗, (3.184)

where c is the phase field, with values between -1 and 1, µ is the chemical potential,
W ′(c) is derivative of the double-well potential W (c), M is the mobility, ϵ is the
interface thickness.

Therefore we solve a system of two equations, which is by one more than in the
case of the level set method.
The Cahn-Hilliard equations are to be solved in the whole computational domain
Ω∗. The velocity u is given as the sum of the external part ue, originating from
flow of the fluid, and internal component ui, stemming from the growth of interface
due to the influx of platelets, i.e. u = ue + ui.

We take the growth velocity as in (3.108)

ui = α∇w. (3.185)

We rewrite the Robin boundary condition (3.106) on the platelet field w followingly

D
∂w

∂n
= kw = Dn · ∇w, (3.186)

as we will need this form in the derivation of modified phase-field equation.
We release the term ue, as we neglect mechanical influence of blood flow on the
growing thrombus, i.e. u = ui. We manipulate the equation (3.183) in the following
manner

∂c

∂t
+ ui · ∇c− divM∇µ = ∂c

∂t
+ ui · ∇c− divM∇µ

= ∂c

∂t
+ α∇w · ∇c− divM∇µ = ∂c

∂t
+ α∇w · ∇c

|∇c|
|∇c| − divM∇µ

= ∂c

∂t
+ α∇w · n|∇c| − divM∇µ = ∂c

∂t
+ αD−1kw|∇c| − divM∇µ = 0,

(3.187)

where we used the fact, that the following relation holds for the phase-field function
c

n = ∇c
|∇c|

. (3.188)
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The term |∇c| is due to its delta function like behaviour substituted by a different
expression described below. Finally we get this equation:

∂c

∂t
− ∇ · M∇µ = αD−1kw|∇φε(c)| in Ω∗, (3.189)

µ− 1
ϵ2W

′(c) + ∆c = 0 in Ω∗, (3.190)

where |∇φε| = (φε)2

ε
ec/ε features delta function behaviour, as φϵ(c) = 1

1+ec/ε , where
ε is a constant regularization parameter, r is the adhesion rate:

r = κ1 + κ2s, (3.191)

where the shear stress s is given as

s = ∥ττ ∥l2 = ∥τ − τn∥l2 = ∥2νDn − τn∥l2 , (3.192)

where τn = (τ · n)n and n is the normal to the interface given by (3.188).

Transport of platelets using phase-field framework

We have two areas in our computational domain, which have to be described by
the transport equation of platelets. It is the fluid area Ωt and the solid area Ωs of
the clot, see Figure 3.2. For simplicity we do not track the further development of
the platelets, which are incorporated into the solid, the thrombus. Therefore we
suppose, that the density of platelets in the solid does not have meaning for us.
On the interface between the solid Ωs and the fluid Ωt we impose the Neumann-
boundary condition using the specific procedure developed in [80].
We will briefly outline the framework and then we use it in our case. Our starting
point is the transport equation formulated by Weller, i.e. equation (3.105).
Let us have the following equation

∆u = f in Ωt (3.193)

equipped with the Robin boundary condition

∇u · n = k(u− g) on Γt, (3.194)

where g is a function g : Γt → R and k ∈ R. Li et al. in [80] developed the following
approximation for this problem using the phase field method (for details see [80]
section 2.5, Approximation 2)

div(ϕ∇u) + 1
ϵ
B(ϕ)k(u− g) = ϕf in Ω∗, (3.195)

where B(ϕ) = ϕ2(1 − ϕ)2. The variable ϕ is interrelated with our phase-field
variable c from above using the following formula

ϕ(c) = c+ 1
2

⎧⎨⎩ 1 c = 1,
0 c = −1.

(3.196)
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In [80] it is analyzed the behaviour of the approximation (3.195) in detail. In

the work [80] it is introduced the possibility of application of this treatment of
boundary conditions to other types of equations.
We will hence reformulate the transport equation (3.105) with the boundary
equation (3.106) in the following manner

∂(ϕw)
∂t

−D div(ϕ∇w) + div(ϕwu) + 1
ϵ
B(ϕ)kw = 0 in Ω∗. (3.197)

3.3.3 A modification of the model of Storti
As was said in section 3.2.1 blood does behave under certain conditions as a
non-Newtonian fluid. Storti assumed in his model, that blood is a Newtonian fluid,
hence Navier-Stokes equation described its behaviour.
We aspire to capture on the one hand the platelet plug development, on the other
hand we do not want to neglect the non-Newtonian features of blood.
In the next sections we develop a phase-field model of platelet plug evolution, next
we introduce the non-homogeneous model of blood. Afterwards we modify the
activation criterion of platelets (3.118).

The phase-field method in the model of Storti

Convection, diffusion and reaction of each species can be expressed using the generic
equation (3.115), which is supplemented with Robin-type boundary condition
(3.125). The equation is to be solved in the area of flowing blood ΩF , the boundary
condition is imposed on the moving interface Γ, see Figure 3.3.
In the model shown in section 3.3.1 we had to solve the evolution equations
defined only on the the moving interface Γ, (3.129), (3.130), (3.131) and (3.134).
We abstract from their specific forms and formulate a generic equation as

∂f
∂t

= P(c, f) on Γ, (3.198)

where f is the vector of the surface quantities, which undergo development, i.e.
f = (fs,Mas,Mr,Mat).

At the beginning of the wound healing process the interface Γ lies in the injured
part of the vessel wall, but as the clot grows the interface Γ moves correspondingly.
Let us now rephrase the model with use of techniques taken from diffuse interface
modelling. We define the Heaviside function in the following manner

H =

⎧⎨⎩1 in ΩF ,

0 in Ω.
(3.199)

We will however use in our computations an order parameter ϕ obtained from the
phase field using (3.196). The order parameter now attains the values 0, 1 as the
Heaviside function (3.199), the transition from one value to another is however
smooth, not abrupt.

Using it we rewrite the generic equation of our model (3.115) as

∂(ϕc)
∂t

+ ϕu · ∇c = D div(ϕ∇c) + ϕS(c) in ΩF ∪ Ω. (3.200)
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Similarly we can rewrite specific 2-D equations defined only on the interface Γ
(3.198) as

∂f
∂t

= δΓP(c, f), in ΩF ∪ Ω, (3.201)

where δΓ is the regularized delta function of the interface Γ fulfilling∫
Γ
fdΓ =

∫
Ω∪ΩF

fδΓdΩ. (3.202)

We face now the question, how to incorporate the Robin boundary conditions
into the framework described in the previous chapter. We try to use the ideas
outlined by Lowengrub et al. [80]. Lowengrub provides several approximations of
Dirichlet, Neumann and Robin boundary values for the following problem

−∆u = f on ΩF (3.203)

equipped with the Robin boundary condition

∇u · n = k(u− g) on ∂Γ, (3.204)

where k is a constant, g is a function defined on the interface Γ.
The system is then approximated on ΩF ∪ Ω in the following manner

div(ϕ∇u) + ϵk(u− g)|∇ϕ|2 = ϕf on ΩF ∪ Ω, (3.205)

where the order parameter ϕ varies smoothly between 0 (for the domain Ω) and 1
(for the domain ΩF ). In [80] is this procedure used for parabolic equations as well.
The Robin conditions in our model are characteristic for each species’ equation. It
is therefore necessary to write down specific equations for each concentration.
For the initial smooth approximation of the order field ϕ we use the formula

ϕ(x, t) = 1
2

[
1 + tanh

(
r(x, t)
2
√

2ϵ

)]
, (3.206)

where r(x, t) is the signed distance function to Γ set to be positive in ΩF .
The interface can be defined as set Γ(t) = {x ∈ Ω ∪ ΩF |ϕ(x, t) = 1/2}. We will
follow the development in [81] by developing the phase-field function c using an
advective Cahn-Hilliard equation

∂c

∂t
+ u · ∇c = div(M∇µ), (3.207)

where µ is a chemical potential

µ = W ′(c) − ϵ∇2c. (3.208)

In [81] W (c) is defined as W (c) = 1
4(1 + c)2(1 − c)2, i.e. as the double well

potential. The mobility M is supposed to be constant. We didn’t address till now
the evolution of the clot, i.e. the interface Γ. The velocity of growth of the clot is
derived in the same way as in case of (3.141)

ui = jbp(1 + αV )Vpn. (3.209)
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Let us now turn back to the equation (3.207). We must make sense of the velocity
u. Actually we suppose, that velocity is composed of fluid flow component ue and
interfacial growth component ui, for which the relation (3.209) was derived. We
postulate therefore, that

u = ue + ui. (3.210)

We will now exemplify the use of the decomposition (3.210) by reformulation of
the equation (3.207), namely

∂c

∂t
+ u · ∇c = ∂c

∂t
+ jbp(1 + αV )Vp|∇c| + uf · ∇c = div(M∇µ), (3.211)

where we used the fact, that the normal to the interface n can be expressed as

n = ∇c
|∇c|

. (3.212)

The term |∇c| is due to its delta function like behaviour substituted by a different
expression

|∇φε| = (φε)2

ε
ec/ε, (3.213)

where
φε(c) = 1

1 + ec/ε
, (3.214)

where ε is a constant regulatization parameter. Finally we get this equation:
∂c

∂t
+ uf · ∇c− ∇ · M∇µ = −jbp(1 + αV )Vp|φε(c)| in ΩF ∪ Ω. (3.215)

We will now assume, that the velocity field ue is identical with the velocity of
blood computed from Navier-Stokes equations u, i.e. ue = u.

Shear stress dependent activation criterion

As was explained in section 2.2.3 blood coagulation could be triggered on reactive
surface by elevated shear rate values only. We have seen, that model of Storti
assumes, that blood platelets could be activated only by chemicals like thromboxane,
ADP and thrombin. Storti introduced a threshold like activation function (3.119),
which causes the activation to start if there is high enough concentration of
mentioned chemical species.
We will however assume, that blood platelets are activated not only by the chemicals,
but also by elevated values of shear stress. Hence we modify the activation function
(3.119) followingly:

fact = cadp

cadp,crit

+ ctx

ctx,crit

+ cth

cth,crit

+ s

scrit

, (3.216)

where the shear stress is defined in (3.192) in section 3.3.2. The value of scrit, i.e.
the critical value of shear stress, is to be specified. Use of (3.216) in the expression
for the reaction rate kpa is standard

kpa =

⎧⎨⎩0 if fact < 1,
fact

τpa
if fact ≥ 1.

(3.217)
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3.3.4 Adaptation of Kempen’s model for our case

Introduction of clot time

The constitutive model in the section 3.3.1 describes development of rheological
properties of the blood clot. The properties change since the clot is formed, they
are time-dependent.
Output of model of Storti is a platelet plug. We will assume, that after some
time after formation of the plug, the fibrin network starts to evolve. This leads to
tremendous change in rheological properties of the clot. The development of the
properties is described by the Kempen’s model, [2], [70].
The key component of Kempen’s model [2], [70] is its dependence on time since
the creation of the clot. We introduce into model of platelet plug development a
time like variable tclot, so called clot time. The variable measures the time which
passed since the creation of platelet plug in the current location in the platelet
clot.
The clot time variable is initialized to zero in the whole computation domain
Ω ∪ ΩF , see Figure 3.3. Once the plug is present in the current area we let the
clot time develop according to the following equation:

∂tclot

∂t
= C in Ω, (3.218)

where C is a properly chosen constant. In order to extend this equation to the
whole computational domain Ω∪ΩF we need to discern the area of the clot Ω from
the area of flowing blood ΩF . For that purpose we have the Heaviside function H:

∂tclot

∂t
= (1 −H)C in Ω ∪ ΩF , (3.219)

i.e. the clot time tclot will increase only in the area, where the Heaviside function
H attains nontrivial values.
We reformulate this equation using the variable ϕ, defined in (3.196):

∂tclot

∂t
= (1 − ϕ)C in Ω ∪ ΩF . (3.220)

Eulerian description of development of the deformation gradient tensor

For the computations of rheological properties using the model of Kempen, we
need the values of deformation gradient in the area of the thrombus. We need
to reformulate standard definition of the deformation gradient in the Eulerian
description.
We start with standard definition of the deformation gradient F

F = ∂x
∂X

, (3.221)

which on time derivation and application of the chain rule results into Eulerian
formulation:

Ḟ = ∂

∂t

∂x
∂X

(X, t) = ∂u
∂X

(X, t) = ∂u
∂x

(x, t) ∂x
∂X

(X, t), (3.222)
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which can be written as

∂F
∂t

+ u · ∇F = ∇uF. (3.223)

We will solve this equation in the whole area of computation, i.e. in the area of
blood flow and in the area of thrombus. The values of the deformation gradient in
the area of blood flow are not of interest for us, hence we can define their initial
and boundary values quite arbitrarily.
Namely we take as the initial condition in the whole domain the undeformed
state, i.e. F|0 = I. The boundary condition on inflow to the domain is again the
undeformed state, i.e. Fin = I.

3.4 Problem formulation
In the followings sections we sum up the equations to be solved for three cases:

• modified Weller’s model, blood as a Newtonian fluid

• modified Storti’s model, clot as a Newtonian fluid with high viscosity, blood
as a non-Newtonian fluid

• modified Storti’s model, clot as a viscoelastic material, blood as a non-
Newtonian fluid

3.4.1 Governing equations of modified Weller’s model

The whole system of equations

Our system contains the equations of conservation of linear momentum and mass
for the fluid

∂u
∂t

+ u · ∇u = −∇p+ div(νD(u)) + f in Ω∗, (3.224)

div u = 0 in Ω∗,

it contains the Cahn-Hilliard system of equations, which traces the development
of the interface fluid-solid(clot)

∂c

∂t
− ∇ · M∇µ = αD−1kw|gradφε| in Ω∗, (3.225)

µ− 1
ϵ2W

′(c) + ∆c = 0 in Ω∗

and it contains the transport equation for the platelets

∂(ϕw)
∂t

−D div(ϕ∇w) + div(ϕwu) + 1
ϵ
B(ϕ)kw = 0 in Ω∗, (3.226)

where ϕ is related to the phase field c using (3.196).
To make the equation (3.226) solvable, we need to add some value to platelets

field in the area of solid. Therefore we decide to equip the last equation with
the additional term −(1 − ϕ)∆w, i.e. an harmonic extension of the platelets field
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in the area of the growing thrombus. The equation (3.226) will then have the
following form

∂w

∂t
−D div(ϕ∇w)+div(ϕwu)+ 1

ϵ
B(ϕ)kw −(1 − ϕ)∆w = 0 in Ω∗, (3.227)

where the newly added harmonic term is highlighted with the yellow color.

3.4.2 Governing equations of modified Storti’s model

Non-homogeneous blood model - flowing blood domain

In Section 3.2.3 we introduced the non-homogeneous model of Owens, which we
will use in the following. This model is however applicable for our use case only in
the areas of flowing blood. The parts taken up by the the clot will require rather
specific treatment.
Let us review the governing equations of the model, which are to be fullfilled in
the flowing area (i.e. in the area ΩF in Fig. 3.3).

Re
∂u
∂t

+Reu · ∇u = −∇p+ div τ + ηN∆u in ΩF , (3.228)

div u = 0 in ΩF , (3.229)

∂N0

∂t
+ u · ∇N0 = 1

Pe
∆N0 − 1

1 − β

De

Pe
∇∇ : τ in ΩF , (3.230)

∂M

∂t
+ u · ∇M = 1

Pe
∆M − 1

1 − β

De

Pe
∇∇ : σ

−0.5α(γ̇)N0

n
M + 0.5b(γ̇)(N0 −M) in ΩF ,

(3.231)

τ +Deµ(γ̇, N0,M) ▽
τ −De

Pe
µ(γ̇, N0,M)(∆τ + (∇∇ : τ )I) =

(1 − β)µ(γ̇, N0,M)ND in ΩF ,
(3.232)

σ +Deµ(γ̇, N0,M) ▽
σ −De

Pe
µ(γ̇, N0,M)(∆σ + (∇∇ : σ)I) =

(1 − β)µ(γ̇, N0,M)MD in ΩF ,
(3.233)

where we refer to the section 3.2.3 for the explanation of the meaning of the
equations.

Non-homogeneous blood model - extension to the whole domain

We have to adjust the non-homogeneous model so, that it can be solved in the whole
domain ΩF ∪ Ω. For that purpose we employ the order parameter ϕ introduced by
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3.4 - Problem formulation
(3.196). The non-homogeneous model from the previous section is to be solved in
the area ΩF ∪ Ω:

Re
∂u
∂t

+Reu · ∇u = −∇p+ ∇ · S + ηN∆u in ΩF ∪ Ω, (3.234)

∇ · u = 0 in ΩF ∪ Ω, (3.235)

∂(ϕN0)
∂t

+ ϕu · ∇N0 = ϕ
1
Pe

∆N0 − ϕ
1

1 − β

De

Pe
∇∇ : τ in ΩF ∪ Ω, (3.236)

∂(ϕM)
∂t

+ ϕu · ∇M = ϕ
1
Pe

∆M − ϕ
1

1 − β

De

Pe
∇∇ : σ

− 0.5ϕα(γ̇)N0

n
M + 0.5ϕb(γ̇)(N0 −M) in ΩF ∪ Ω,

(3.237)

τ + ϕDeµ(γ̇, N0,M) ▽
τ −ϕDe

Pe
µ(γ̇, N0,M)(∆τ + (∇∇ : τ )I) =

ϕ(1 − β)µ(γ̇, N0,M)N0D in ΩF ∪ Ω,
(3.238)

σ + ϕDeµ(γ̇, N0,M) ▽
σ −ϕDe

Pe
µ(γ̇, N0,M)(∆σ + (∇∇ : σ)I) =

ϕ(1 − β)µ(γ̇, N0,M)MD in ΩF ∪ Ω,
(3.239)

where
S = ϕτ + (1 − ϕ)τc in ΩF ∪ Ω, (3.240)

where τc is the extra stress tensor of the clot, which we take simply as

τc = 2νbigD, (3.241)

where νbig is the constant viscosity. In this model we assume, that the clot is a
Newtonian fluid with large viscosity.
To make equations (3.236) and (3.237) solvable, we need to add some values the
fields N0 and M . Therefore we decide to equip the equation for N0 and M with
the additional term − div((1 − ϕ)∇N0) and − div((1 − ϕ)∇M), respectively. The
equation (3.236) will then have the following form:
∂N0

∂t
+ϕu·∇N0 − div((1 − ϕ)∇N0) = ϕ

1
Pe

∆N0−ϕ
1

1 − β

De

Pe
∇∇ : τ in ΩF ∪Ω,

(3.242)
whereas the equation (3.237) looks in the following way:

∂M

∂t
+ ϕu · ∇M − div((1 − ϕ)∇M) = ϕ

1
Pe

∆M

−ϕ 1
1 − β

De

Pe
∇∇ : σ − 0.5ϕα(γ̇)N0

n
M + 0.5ϕb(γ̇)(N0 −M) in ΩF ∪ Ω.

(3.243)

The newly added harmonic terms in (3.242) and (3.243) are highlighted with
the yellow color.
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Coagulation related quantities

We will now remind reader of equations derived in section 3.3.3. We adapted the
generic transport equation for platelets or chemical species ci (3.115) equipped
with the Robin boundary condition (3.125) in the following manner

∂(ϕc)
∂t

+ ϕ(u · ∇c) = D div(ϕ∇c) + ϕS(c) in ΩF ∪ Ω. (3.244)

Again we have to assign some value to the fields in c in the area of clot. Therefore
we add the harmonic term as it was done in previous section. Hence the final form
of equation to be solved reads as

∂c
∂t

+ ϕ(u · ∇)c − div((1 − ϕ)∇c) = D div(ϕ∇c) + ϕS(c) in ΩF ∪ Ω,
(3.245)

where the newly added harmonic term is highlighted with the yellow color.
Similarly we have adjusted specific 2-D equations for quantities in f defined only
on interface (3.129),(3.130),(3.131) and (3.134) as

∂f
∂t

= δΓP(c, f) in ΩF ∪ Ω. (3.246)

Movement of the interface

We solve in the following equations in the whole domain ΩF ∪ Ω the Cahn-Hilliard
system of equations

∂c

∂t
+ u · ∇c− ∇ · M∇µ = −jbp(1 + αV )Vp|φε(c)| in ΩF ∪ Ω. (3.247)

µ = W ′(c) − ϵ∆c in ΩF ∪ Ω. (3.248)
The equation were derived in the section 3.3.3.
Summary of equations to be solved in each timestep:
We solve the following equations in each timestep: (3.234), (3.235), (3.242), (3.243),
(3.238), (3.239), (3.245), (3.246), (3.247) (3.248).
In equation (3.234) we use the constitutive equations given by (3.240).

3.4.3 Modified Storti’s model with the viscoelastic consti-
tutive equation for the clot

A substantial part of the model similar to the model summed up in Section
3.4.2. Hence we just refer the reader for some parts of the current model to the
corresponding equations in the Section 3.4.2.
Concerning the coagulation related quantities we solve the same set of equations as
in 3.4.2. Movement of the interface is described using the equations from Section
3.4.2.
Concerning the non-homogeneous blood model in the flowing blood model we refer
to Section 3.4.2 for the equations to be solved. Concerning the non-homogeneous
blood model in the extended domain, i.e. in the union of the flowing domain and
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the domain with the emerging clot, we solve in the extended domain the system
of equations (3.234)-(3.239). However we apply the constitutive equation for the
clot originating from the model of Kempen, see Section 3.3.1 and 3.3.4.
The extra stress tensor reads then as

S = ϕτ + (1 − ϕ)τc in ΩF ∪ Ω, (3.249)

where τc is given by (3.172).
Completely new for this model is the viscoelastic model of the blood clot, which
is summed in the following section.

Blood clot rheological properties

The whole extra stress tensor for the blood clot is defined on the whole domain
ΩF ∪ Ω, although we will use this quantity only in the linear momentum equations
only for the area of clot Ω. Similar holds for the other quantities leading to
computation of the extra stress tensor of the clot below.

τclot = τv + τe +
2∑

i=1
τve,i in ΩF ∪ Ω.

The viscous element reads as

τv = 2 (ηp + fv(tclot)fvi(IB)η00) D in ΩF ∪ Ω. (3.250)

where ηp is the plasma viscosity and the function fv(t) is changing with time
according to

fv(tclot) =

⎧⎪⎨⎪⎩
0 if t ≤ t0,(

1 − e− (tclot−t0)
tc

)
if t > t0,

where t0 is a delay period needed for formation of fibrin network and tc is a time
constant. In (3.250) the function fvi captures nonlinear viscous dissipation

fvi(IB) = 1 + k2(IB − 3) in ΩF ∪ Ω,

i.e. it is a growing function of the deformation. k2 is a fit parameter.
The elastic spring element contribution in (3.4.3) reads as

τe = fe(tclot)x0fss(IB)G00(B − I) in ΩF ∪ Ω, (3.251)

where the function fe(tclot) is a growing function of time:

fe(tclot) = fv(tclot)2 in ΩF ∪ Ω.

Function fss(IB) in (3.251) causes, that the model is able take into account the
fact, that clot stiffness increases with the strain.

fss(IB) = (1 + k1(IB − 3))n1 in ΩF ∪ Ω.

The contribution from viscoelastic, Maxwell, modes in (3.4.3) reads as

τve,i = xiGi(Be,i − I), i = 1, 2 in ΩF ∪ Ω, (3.252)
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where Gi are fitting parameters. xi are state parameters undergoing time devel-
opment dependending on the history of deformation accroding to the following
equation

ẋi =

⎧⎨⎩−cx(xi − xi,∞), if xi > xi,∞

0, if xi ≤ xi,∞

xi,∞ = e−a
√
IB,i − 3

We need to trace the development of deformation gradient tensor:

∂F
∂t

+ u · ∇F = ∇uF in ΩF ∪ Ω. (3.253)

The clot time is developed according to the following equation.

∂tclot

∂t
= (1 − ϕ)C in ΩF ∪ Ω. (3.254)

Summary of equations to be solved in each timestep:
We solve the following equations in each timestep: (3.234), (3.235), (3.242), (3.243),
(3.238), (3.239), (3.245), (3.246), (3.247), (3.248), (3.250), (3.251), (3.252), (3.253),
(3.254).
In equation (3.234) we use the constitutive equations given by (3.249). For the
sake of computation of relevant values of Kempen model we need to perform
auxiliary precomputations of both tensor and scalar auxiliary quantities. This
procedure is rather an implementation problem, hence we explain the procedure
of their computation in the part of this work treating numerical methods, see
Section 4.5.

3.5 Summary of the main features of described
models

3.5.1 The model originating from Weller
The model is summed up in Section 3.4.1. We have used this model, however we
approached the implementation differently. Namely, instead of a sharp interface
method, i.e. the level-set method we used a diffuse interface method, i.e. the phase
field method.
The advantages of the new approach were mentioned in Section 3.3.2.

3.5.2 The model originating from Storti
The model is summed up in Section 3.4.2. We have used the model of Storti,
however we again approached the implementation differently. In this modification
we assumed that the platelet clot behaves as a Newtonian fluid with large
viscosity. The areas of blood and the emerging clot are discerned by the phase
field method. The next difference lies in in substitution of the rheological model
for blood. Namely we used the nonhomogeneous model of blood instead of the
Newtonian fluid, which was used in the original Storti model.
The phase-field function develops as a result the equations described in Section
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3.3.3. The activation function of platelets from Section 3.3.1, (3.119), is modified.
In Section 2.2.3 the possibility of activation of platelets by elevated values of
shear stress was mentioned.
Hence we modified the function (3.119) so that the activation of platelets can be
boosted by elevated values of shear stress, (3.216).

3.5.3 The model originating from Storti and employing
Kempen

The model is summed up in Section 3.4.3. We have used the model of Storti and
modified it by introducing of the phase field method. The phase-field function
develops in the way described in Section 3.3.3, wherein the activation function is
modified, see Section 3.5.2.
What is completely new is the introduction of the model of Kempen, see Section
3.3.1. We had to modify the model for our computations, see Section 3.3.4.
The platelet clot is undergoing a development, not only as it is growing, but also
by the fact, that its rheological properties change with time. This corresponds to
the changeover of the clot from the platelet clot into the blood clot with developed
fibrin strands.
The blood in which the coagulation process happens is again captured using a
non-homogeneous blood model.
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4. Numerical methods

4.1 Numerical methods common to all models
We will now review numerical methods common to all three models, i.e. modified
Weller’s model, modified Storti’s model with the clot as a high viscosity fluid and
modified Storti’s model with the viscoelastic model of the clot originating from
Kempen:

• splitting method

• adaptive timestepping

• resolution of different timescales, recoupling

4.1.1 A splitting method for Navier-Stokes equations
The incompressible Navier-Stokes equations are a saddle point problem. After
discretization by finite element method the corresponding matrix to be solved by
linear solvers is indefinite.
One of the ways how to tackle this problem is a projection method.
The system is splitted into convection-diffusion equations for the velocity and
the Poisson problem for the pressure. There are several ways how to split the
Navier-Stokes equations, however we have decided to use the incremental pressure
correction scheme (IPCS), [82].
This scheme can be described as follows:
Having the velocity uk and pressure pk from the previous time step we solve firstly
for the so called tentative velocity uk+1

∗ :

uk+1
∗ − uk

∆t +N(uk+1
∗ ) + ∇pk − L(uk+1

∗ ) = 0. (4.1)

Afterwards we solve for the new pressure pk+1:

∆(pk+1 − pk) = 1
∆t div uk+1

∗ . (4.2)

Then we perform the correction of the velocity uk+1
∗ :

uk+1 = uk+1
∗ − ∆t(∇pk+1 − ∇pk). (4.3)

In these equations we have used the following notation:

L(u) = 2 div(νD) = div
(
ν(∇u + (∇u)T )

)
(4.4)

and
N(u) = u · ∇u.
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4.1.2 An heuristic adaptive time stepping method
Suppose that we are about to solve dynamic equations, such as Navier-Stokes
equations or transport equations of some species. We will now assume, for instance,
that we have a transport equation for quantity u.
We refer to the work of [83] and [84], for further details on the shown procedure.
In the following u denotes the unknown precise solution of the equations, whereas
u∆t denotes approximate solution obtained using time step size ∆t. We want to
reach some prescribed tolerance TOL in the solution process:

∥u− u∆t∥ ≈ TOL. (4.5)

For that purpose we perform an expansion to obtain the local truncation error
after one step ∆t and one step of length m∆t, where m is an appropriately chosen
integer number.
We will assume, that the error of solution e(u) is independent of the time step
size. Then the expansions look followingly:

u∆t = u+ ∆t2e(u) + O(∆t4) (4.6)

and
um∆t = u+m2∆t2e(u) + O(∆t4). (4.7)

From the previous two expresions we derive the equation for the error:

e(u) ≈ um∆t − u∆t

∆t2(m2 − 1) . (4.8)

Suppose now, that we want to get an estimation of the error after one properly
chosen timestep ∆t∗.
We have

u∆t∗ = u+ ∆t2∗e(u) + O(∆t4). (4.9)
We obtain from this equation on rearrangement and substitution from (4.8) the
following approximate identity:

∥u− u∆t∗∥ ≈
(

∆t∗
∆t

)2 ∥u∆t − um∆t∥
m2 − 1 = TOL. (4.10)

The estimator of the adaptive time step is then

∆t2∗ = TOL
∆t2(m2 − 1)
∥u∆t − um∆t∥

. (4.11)

We sum up the usage of the estimator in the algorithm scheme 1.

Remark

We don’t set the newly obtained timestep to ∆t∗, as we want to avoid instability
problems. Instead if

• ∆t∗ << ∆t then ∆tnew = ∆t/N,

• ∆t∗ >> ∆t then ∆tnew = ∆t ∗N ,

where N is some appropriately chosen integer number.
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4.2 - Weller’s model
Algorithm: Adaptive time step
Data: un

Result: un+1

Given the old solution un do:

begin
1. Make m small timesteps of size ∆t to compute u∆t.

2. Make one large step of size of size m∆t to compute um∆t.

3. Evaluate the relative solution changes ∥u∆t − um∆t∥ .

4. Calculate the ’optimal’ value ∆t∗ using (4.11) for the next time step.

5. If ∆t∗ << ∆t, reset the solution and go back to step 1, using ∆t∗ as

new timestep.

6. Set un+1 = u∆t.

end
Algorithm 1: Algorithm for one adaptive time step

4.1.3 Resolution of different time scales, recoupling
We model processes with different time scales. Hence we should expect, that the
timesteps obtained using the previous adaptive timestepping algorithm will be
different for each process.
After computation of each time iteration using the previous algorithm we take the
minimum of all proposed timesteps from (4.11), i.e. for the case of our modification
of Weller’s model 3.4.1

∆t∗F UT URE = min{∆t∗NAV IERST OKES,∆t∗P HASE,∆t∗P LAT }, (4.12)

whereas for our first modification of model of Storti the expression takes the
following form

∆t∗F UT URE = min{∆t∗NAV IERST OKES,∆t∗P HASE,∆t∗N0 ,∆t∗M ,∆t∗τ , t∗σ,
∆t∗c,∆t∗f },

(4.13)

whereas the future timestep for the second modification of the model of Storti
reads as

∆t∗F UT URE = min{∆t∗NAV IERST OKES,∆t∗P HASE,∆t∗N0 ,∆t∗M ,∆t∗τ , t∗σ,
∆t∗c,∆t∗f ,∆t∗F,∆ttclot

}.
(4.14)

The equations for modelled processes are solved as decoupled. However actually
they are coupled.
We will reintroduce the coupling into our system of equations by subiteration. The
ending criterion of the subiteration is based on the size of difference of solutions
originating from last two subiterations.
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4.2 Weller’s model
We will now go through the adjustment of the splitting method from Section 4.1.1,
afterwards we perform the discretization in space.

4.2.1 The splitting method for the model of Weller
The currently introduced splitting scheme must be adapted for our system which we
want to solve. We want to enforce low values of velocity in the area of thrombus.
For that purpose we enlarge viscosity in the area of thrombus and we add a
Brinkman-like term for the area of thrombus. We set the velocity field to zero in
the velocity correction step as well.
Hence we solve the following form of the transport equation for the velocity field

uk+1
∗ − uk

∆t +N(uk+1
∗ ) + ∇pk − Lϕ(uk+1

∗ ) +(1 − ϕ)uk+1
∗ = 0, (4.15)

where
Lϕ(u) = div(2ν(ϕ)D) = div

(
ν(ϕ)(∇u + (∇u)T )

)
, (4.16)

i.e. the viscosity is dependent on the value of ϕ defined by (3.196). The newly
added Brinkman term is highlighted with the yellow color.
We perform the mentioned setting of the velocity field to zero in the thrombus

area by the modification of the correction velocity step (4.3) in the following
manner:

uk+1 = ϕ
(
uk+1

∗ − ∆t(∇pk+1 − ∇pk)
)
, (4.17)

which could be seen as a projection of the velocity on the space of velocity with
trivial values in the area of thrombus.

4.2.2 Discretization in space

Weak formulation of equations for velocity and pressure

We obtain the weak formulations by formally multiplying the equations by a vector
test function v or scalar function q from appropriate spaces defined later.
We will define the following notation for the inner products of tensor, vector and
scalar functions:

(A,B =
∫

Ω∗
A : Bdx, (u,v) =

∫
Ω∗

u · vdx, (p, q) =
∫

Ω∗
pqdx. (4.18)

We multiply (4.15) by the vector function v obtaining
(

uk+1
∗ − uk

∆t + unonlin∇uk+1
∗ + (1 − ϕ)uk+1

∗ ,v
)

+
(
∇pk,v

)
−
(
div

(
2ν(ϕ)D(uk+1

∗ )
)
,v
)

= 0, (4.19)

where unonlin is the velocity solution from the previous Picard iteration. As
stopping criterion of the Picard iteration we have chosen norm of residual.
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In order to redistribute derivatives evenly between solution and test functions we

perform formally integration by parts on diffusion and pressure terms. This leads
to(

uk+1
∗ − uk

∆t + unonlin∇uk+1
∗ + (1 − ϕ)uk+1

∗ ,v
)

−
(
pk, div v

)
+ (pkn,v)Γ

+
(
2ν(ϕ)D(uk+1

∗ ),∇v
)

−
(
2ν(ϕ)D(uk+1

∗ )n,v
)

Γ
= 0, (4.20)

where (., .)Γ stands for integral over boundary Γ, defined simarly to (4.18). We
have v equal to zero on Γin and Γwall, therefore the boundary integrals on these
parts of boundary vanish. We have to handle the boundary terms on Γouflow.
We set on outflow

2ν(ϕ)D(uk+1
∗ )n = 0 on Γouflow, (4.21)

therefore in the equation (4.20) only the boundary integral with pressure corre-
sponding to the ouflow part of boundary Γouflow remains.
We will now turn our attention to the Poisson problem for pressure (4.2). We
multiply the equation by a test function q and integrate formally by parts, getting

−
(
∇(pk+1 − pk),∇q

)
+
(
∇(pk+1 − pk) · n, q

)
∂Ω

= 1
∆t

(
div uk+1

∗ , q
)
. (4.22)

In this case we have to deal with implicit use of a boundary condition. The
application of homogeneous Neuman condition ∂p

∂n = 0 leads to singular matrix to
be solved by linear solver. One of workarounds to tackle this issue is to prescribe
additional boundary condition on pressure p = 0 on Γout.
We supply now the definition of the relevant function spaces for tentative velocity
and pressure.
Test space for tentative velocity:

V′ = H1
0 =

{
v ∈

[
H1(Ω∗)

]3
,v|Γin∪Γwall

= 0
}
. (4.23)

Trial space for tentative velocity:

V = H1
D(Ω∗) =

{
v ∈

[
H1(Ω∗)

]3
,v|Γin∪Γwall

= uD

}
, (4.24)

where uD on inflow is the prescribed parabolic profile, whereas we impose no-
slip condition on walls, i.e. uD|wall = 0. The test and trial space for the weak
formulation (4.22) of Poisson problem (4.2) are identical:

Q =
{
q ∈ H1(Ω), q|Γout = 0

}
. (4.25)

We have chosen the finite element spaces for the velocity and pressure in the
following manner:

V′
h =

{
v ∈

[
H1(Ω∗)

]3
,v|K ∈ [Q2(K)]3 ,v|Γin∪Γwall

= 0
}
, (4.26)

Vh =
{

v ∈
[
H1(Ω∗)

]3
,v|K ∈ [Q2(K)]3 ,v|Γin∪Γwall

= uD

}
, (4.27)
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and

Qh =
{
q ∈ H1(Ω∗), q|K ∈ Q1(K), q|Γout = 0

}
(4.28)

In the case of the velocity correction we only multiply the equation (4.17) by
test function. Integration by parts is not performed and it is not necessary to
discuss boundary conditions.

Weak formulation of the equations for phase-field and chemical poten-
tial

We multiply (3.225) by a tuple (ψc, ψµ) from the appropriate test spaces to be
specified later:(

ck+1 − ck

∆t , ψc

)
−
(
divM∇µk+1, ψc

)
=
(
αD−1kw|∇φϵ|, ψc

)
,(

µk+1 − 1
ϵ2W

′(ck+1) + ∆ck+1, ψµ

)
=0.

(4.29)

We impose the following boundary conditions on the system

M∇µk+1 · n = 0 on Γ (4.30)

and
∇ck+1 · n = 0 on Γwall ∪ Γout, (4.31)

where Γ is boundary of the computational domain. This leads to zero boundary
terms after performing formal integration by parts of equations 4.29:(

ck+1 − ck

∆t , ψc

)
+
(
M∇µk+1,∇ψc

)
=
(
αD−1kw|∇φε|, ψc

)
,(

µk+1 − 1
ϵ2W

′(ck+1), ψµ

)
−
(
∇ck+1,∇ψµ

)
=0.

(4.32)

Test and trial space for the phase field c:

Ψc =
{
c ∈ H1(Ω∗), c|Γin

= cD

}
(4.33)

Ψ′
c =

{
c ∈ H1(Ω∗), c|Γin

= 0
}

(4.34)
Test and trial space for the chemical potential µ

Ψ′
µ = Ψµ = H1(Ω∗). (4.35)

We have chosen the finite element spaces in the following manner:

Ψ′
ch =

{
c ∈ H1(Ω∗), c|K ∈ Q1(K), c|Γin

= 0
}

(4.36)

and
Ψch =

{
c ∈ H1(Ω∗), c|K ∈ Q1(K), c|Γin

= cD

}
(4.37)

for the phase field and

Ψµh = Ψ′
µh =

{
µ ∈ H1(Ω∗), µ|K ∈ Q1(K)

}
(4.38)

for the chemical potential.
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Weak formulation of the transport equation for platelets

We multiply (3.227) by the test function Ψw from the appropriate space to be
specified later:(

wk+1 − wk

∆t −Ddiv(ϕ∇wk+1) + div(ϕwk+1u),Ψw

)

+
(1
ϵ
B(ϕ)kwk+1 − (1 − ϕ)∆wk+1,Ψw

)
= 0 in Ω∗.

(4.39)

After integration by parts and application of no-flux boundary condition we
obtain the following weak formulation.(

wk+1 − wk

∆t + div(ϕwk+1u) + 1
ϵ
B(ϕ)kwk+1,Ψw

)
+(

(1 − ϕ)∇wk+1,∇Ψw

)
−
(
(1 − ϕ)∇wk+1 · n,Ψw

)
Γoutflow

+D
(
ϕ∇wk+1,∇Ψw

)
−D

(
ϕ∇wk+1 · n,Ψw

)
Γoutflow

= 0 in Ω∗

(4.40)

Test space for the platelets field w:

Ψ′
w =

{
w ∈ H1(Ω∗), w|Γin

= 0
}
. (4.41)

Trial space for the platelets field w:

Ψw =
{
w ∈ H1(Ω∗), w|Γin

= wD

}
. (4.42)

We have chosen the finite element spaces in the following manner:

Ψ′
wh =

{
w ∈ H1(Ω∗), w|K ∈ Q1(K), w|Γin

= 0
}

(4.43)

and
Ψwh =

{
w ∈ H1(Ω∗), w|K ∈ Q1(K), w|Γin

= wD

}
. (4.44)

4.3 Viscoelastic model of blood flow
We have introduced a splitting method for the Navier-Stokes equations in Section
4.1.1. Our system of equations (3.228) contains however additional elastic stress
tensor term. In order to successfully solve the viscoelastic problem, we use the
DEVSS framework. Hence we will have to treat the new terms originating from
DEVSS method.

4.3.1 DEVSS
In order to increase convergence in viscoelastic flow simulations one can increase
coercivity of the elliptic operator in the momentum equation (3.228). An auxiliary
variable d is added to the system of equations to retain consistency of it:

Re
∂u
∂t

+Reu · ∇u + ∇p− div τ − (ηN + ω) div D(u) = −ω div d, (4.45)
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d = D(u), (4.46)
where ω is properly chosen constant.

In [23] this approach is discussed in comparison with other methods, like EVSS.
We reformulate (4.45) for our splitting method:

uk+1
∗ − uk

∆t +N(uk+1
∗ ) + ∇pk − LDEV SS(uk+1

∗ ) − div τ k = −ω div dk, (4.47)

where
LDEV SS(u) = div((ηN + ω))(∇u + (∇u)T ). (4.48)

The nonlinear term needs special treatment. There is possibility to use an
extrapolation from the previous time step for linearization, however we have
decided to linearize the convective term using Picard iteration. We have chosen
the norm of residual as the termination criterion of the iteration.

4.3.2 Note on boundary conditions
We have to deal with boundary conditions in the nonhomogeneous model, i.e.
boundary conditions for N0, M , τ and σ in equations (3.230), (3.231), (3.232)
and (3.233), respectively. Generally, we set a Dirichlet boundary condition on the
inflow and a no-flux condition on the solid walls for each of the variables. We now
iterate over the variables in order to show, which values we set on the inflow and
wall boundaries. At inflow we set Dirichlet boundary condition for N0 and M .
Further we assume, that if we define fluxes

JN0 = 1
Pe

∇N0 − 1
1 − β

De

Pe
div τ (4.49)

and
JM = 1

Pe
∇M − 1

1 − β

De

Pe
divσ, (4.50)

then we assume no-flux boundary conditions on the walls, i.e. it holds

JN0 · ñ = 0 (4.51)

and
JM · ñ = 0, (4.52)

where ñ is the unit outer normal to the wall.
The situation is not so simple in for the case of tensor quantities τ and σ. At

inflow we impose the following Dirichlet boundary conditions

τD = 1 − β

De
N0Q0tt − 1 − β

De
N0I (4.53)

and
σD = 1 − β

De
MQ0tt − 1 − β

De
MI, (4.54)

where t is the tangent vector to the flow on the inflow. N0 and M are the prescribed
values at inflow defined above. Q0 is length of a Hookean dumbbell. The expressions
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4.3 - Viscoelastic model of blood flow
(4.53) and (4.53) originate from well known Kramers expression, also mentioned
in section 3.2.3.

We have to deal with the values of the tensor quantities τ and σ on the walls
as well. We define corresponding fluxes

Jτ = De

Pe
µ(γ̇, N0,M)(∇τ + (div τ )I) (4.55)

and
Jσ = De

Pe
µ(γ̇, N0,M)(∇σ + (divσ)I) (4.56)

then we assume no-flux boundary condition on the walls, i.e. it holds

Jτ ñ = 0 (4.57)

and
Jσñ = 0, (4.58)

i.e. product of flux, which is tensor of third order with outer normal vector. Hence
the result is the tensor of second order.

4.3.3 Discretization in space - flowing blood domain
We use the finite element method for the spatial discretization of our partial
differential equations.
We present firstly the variational formulation of our problem. We use splitting
methods for both rheological and biochemical part of our model. We will treat
them separately.

Weak formulation of the equations for velocity and pressure

We multiply (4.47) by the vector function v obtaining(
uk+1

∗ − uk

∆t + unonlin∇uk+1
∗ ,v

)
+
(
∇pk,v

)
−
(
div(2(ηN + ω)Duk+1

∗ ),v
)

=
(
div τ k,v

)
−
(
ω div dk,v

) (4.59)

In order to redistribute derivatives evenly between trial and test functions we
perform formally integration by parts on diffusion and pressure terms. This leads
to(

uk+1
∗ − uk

∆t + u∇uk+1
∗ ,v

)
−
(
pk, div v

)
+ (pkn,v)Γ +

(
2(ηN + ω)D(uk+1

∗ ),∇v
)

−
(
2(ηN + ω)D(uk+1

∗ )n,v)
)

Γ
=
(
div τ k,v

)
+
(
ωdk,∇v

)
,

(4.60)
where (., .)Γ stands for integral over boundary Γ. We have v equal to zero on Γin

and Γwall, therefore the boundary integrals on these parts of boundary vanish. We
have to handle the boundary terms on Γouflow.
We set on outflow

2(ηN + ω)D(uk+1
∗ )n = 0 on Γouflow, (4.61)
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therefore in the equation (4.60) only the boundary integral with pressure corre-
sponding to the ouflow part of boundary Γouflow remains.
We will now turn our attention to the Poisson problem for pressure (4.2). We
multiply the equation by a test function q and integrate formally by parts, getting

−
(
∇(pk+1 − pk),∇q

)
+
(
∇(pk+1 − pk) · n, q

)
Γ

= 1
∆t

(
div uk+1

∗ , q
)
. (4.62)

In this case we have to deal with implicit use of a boundary condition. The
application of the homogeneous Neuman condition ∂p

∂n = 0 leads to singular matrix
to be solved by linear solver. One of workarounds to tackle this issue is to prescribe
additional boundary condition on pressure p = 0 on Γout.
We now supply the definition of the relevant function spaces for tentative velocity
and pressure.
Test space for tentative velocity:

V′ = H1
0 =

{
v ∈

[
H1(Ω)

]3
,v|Γin∪Γwall

= 0
}
. (4.63)

Trial space for tentative velocity:

V = H1
D(Ω) =

{
v ∈

[
H1(Ω)

]3
,v|Γin∪Γwall

= uD

}
. (4.64)

The test and trial space for the weak formulation (4.62) of Poisson problem (4.2)
are identical:

Q =
{
q ∈ H1(Ω), q|Γout = 0

}
. (4.65)

In the case of the velocity correction we only multiply the equation (4.17) by test
function. Integration by parts is not performed and it is not necessary to discuss
boundary conditions.
We chose the following finite element spaces:

V′
h =

{
v ∈

[
H1(Ω)

]3
,v|K ∈ [Q2(K)]3 ,v|Γin∪Γwall

= 0
}
, (4.66)

Vh =
{

v ∈
[
H1(Ω)

]3
,v|K ∈ [Q2(K)]3 ,v|Γin∪Γwall

= uD

}
, (4.67)

and
Qh =

{
q ∈ H1(Ω), q|K ∈ Q1(K), q|Γout = 0

}
(4.68)

Weak formulation of the equations for red blood cell stress tensor

We multiply (3.232)by a tensor test function χ from the proper space and integrate
formally by parts:(

τ +Deµ(γ̇, N0,M) ▽
τ ,χ

)
+
(
De

Pe
(∇τ + (div τ )I) ,∇(µ(γ̇, N0,M)χ)

)
−
(
De

Pe
µ(γ̇, N0,M)(∇τ + (div τ )I)n,χ

)
Γoutflow

= ((1 − β)N0D,χ)

(4.69)
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4.3 - Viscoelastic model of blood flow
Test space for the red blood cell stress field τ :

Ψ′
τ =

{
τ ∈

[
H1(ΩF )

]3×3
, τ |Γin

= 0
}
. (4.70)

Trial space for the red blood cell stress field τ :

Ψτ =
{
τ ∈

[
H1(ΩF )

]3×3
, τ |Γin

= τD

}
, (4.71)

where τD is defined by (4.53).
We chose the following finite element spaces:

Ψ′
τh =

{
τ ∈

[
H1(ΩF )

]3×3
, τ |K ∈ [Q1(K)]3×3 , τ |Γin

= 0
}

(4.72)

and

Ψτh =
{
τ ∈

[
H1(ΩF )

]3×3
, τ |K ∈ [Q1(K)]3×3 , τ |Γin

= τD

}
. (4.73)

Weak formulation of the equations for aggregate stress tensor

We multiply (3.233)by a tensor test function χ from the proper space and integrate
formally by parts:
(
σ +Deµ(γ̇, N0,M) ▽

σ,χ
)

+
(
De

Pe
(∇σ + (divσ)I) ,∇(µ(γ̇, N0,M)χ)

)
−
(
De

Pe
µ(γ̇, N0,M)(∇σ + (divσ)I)n,χ

)
Γoutflow

= ((1 − β)MD,χ)
(4.74)

Test space for the aggregate stress field σ:

Ψ′
σ =

{
σ ∈

[
H1(ΩF )

]3×3
,σ|Γin

= 0
}
. (4.75)

Trial space for the aggregate stress field σ:

Ψσ =
{
σ ∈

[
H1(ΩF )

]3×3
,σ|Γin

= σD

}
, (4.76)

where σD is defined by (4.54).

We have chosen the finite element spaces in the following manner:

Ψ′
σh =

{
σ ∈

[
H1(ΩF )

]3×3
,σ|K ∈ [Q1(K)]3×3 ,σ|Γin

= 0
}

(4.77)

and

Ψσh =
{
σ ∈

[
H1(ΩF )

]3×3
,σ|K ∈ [Q1(K)]3×3 ,σ|Γin

= σD

}
. (4.78)
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Weak formulation of the equation for the red blood cells field

We multiply (3.230) by a test ψN0 function from the proper space and integrate
formally by parts:(

∂N0

∂t
+ u · ∇N0, ψN0

)
+ 1
Pe

(∇N0,∇ψN0) − 1
Pe

(∇N0 · n, ψN0)Γoutflow
=

1
1 − β

De

Pe
(div τ ,∇ψN0) − 1

1 − β

De

Pe
((div τ ) · n, ψN0)Γoutflow

.

(4.79)

Test space for the red blood cells field N0:

Ψ′
N0 =

{
N0 ∈ H1(ΩF ), N0|Γin

= 0
}
. (4.80)

Trial space for the red blood cells field N0:

ΨN0 =
{
N0 ∈ H1(ΩF ), N0|Γin

= ND

}
. (4.81)

We have chosen the finite element spaces in the following manner:

Ψ′
N0h =

{
N0 ∈ H1(ΩF ), N0|K ∈ Q1(K), N0|Γin

= 0
}

(4.82)

and
ΨN0h =

{
N0 ∈ H1(ΩF ), N0|K ∈ Q1(K), N0|Γin

= ND

}
. (4.83)

Weak formulation of the equation for the aggregates/rouleaux field

We multiply (3.231) by a test ψM function from the proper space and integrate
formally by parts:(

∂M

∂t
+ u · ∇M,ψM

)
+ 1
Pe

(∇M,∇ψM) − 1
Pe

(∇M · n, ψM)Γoutflow
+(

0.5α(γ̇)M2, ψM)
)

+ (0.5b(γ̇)M,ψM)) =
1

1 − β

De

Pe
(divσ,∇ψM) − 1

1 − β

De

Pe
((divσ) · n, ψM)Γoutflow

+ (0.5b(γ̇)M,ψM) .

(4.84)

Test space for the aggregates field M :

Ψ′
M =

{
M ∈ H1(ΩF ),M |Γin

= 0
}
. (4.85)

Trial space for the aggregates field M :

ΨM =
{
M ∈ H1(ΩF ),M |Γin

= MD

}
. (4.86)

We have chosen the finite element spaces in the following manner:

Ψ′
Mh =

{
M ∈ H1(ΩF ),M |K ∈ Q1(K),M |Γin

= 0
}

(4.87)

and
ΨMh =

{
M ∈ H1(ΩF ),M |K ∈ Q1(K),M |Γin

= MD

}
. (4.88)
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4.3.4 Discretization in space - extension to the whole do-

main

Weak formulation of the equations for red blood cell stress tensor

We multiply (3.238) by a tensor test function χ from the proper space and integrate
formally by parts:(

τ +Deϕµ(γ̇, N0,M) ▽
τ ,χ

)
+
(
De

Pe
(∇τ + (div τ )I) ,∇(ϕµ(γ̇, N0,M)χ)

)
−
(
De

Pe
ϕµ(γ̇, N0,M)(∇τ + (div τ )I)n,χ

)
Γoutflow

= (ϕ(1 − β)N0D,χ)

(4.89)

Test space for the red blood cell stress field τ :

Ψ′
τ =

{
τ ∈

[
H1(ΩF ∪ Ω)

]3×3
, τ |Γin

= 0
}
. (4.90)

Trial space for the red blood cell stress field τ :

Ψτ =
{
τ ∈

[
H1(ΩF ∪ Ω)

]3×3
, τ |Γin

= τD

}
, (4.91)

where τD is defined by (4.53).
We chose the following finite element spaces:

Ψ′
τh =

{
τ ∈

[
H1(ΩF ∪ Ω)

]3×3
, τ |K ∈ [Q1(K)]3×3 , τ |Γin

= 0
}

(4.92)

and

Ψτh =
{
τ ∈

[
H1(ΩF ∪ Ω)

]3×3
, τ |K ∈ [Q1(K)]3×3 , τ |Γin

= τD

}
. (4.93)

Weak formulation of the equations for aggregate stress tensor

We multiply (3.239)by a tensor test function χ from the proper space and integrate
formally by parts:(

σ +Deϕµ(γ̇, N0,M) ▽
σ,χ

)
+
(
De

Pe
(∇σ + (divσ)I) ,∇(ϕµ(γ̇, N0,M)χ)

)
−
(
De

Pe
ϕµ(γ̇, N0,M)(∇σ + (divσ)I)n,χ

)
Γoutflow

= (ϕ(1 − β)MD,χ)

(4.94)

Test space for the aggregate stress field σ:

Ψ′
σ =

{
σ ∈

[
H1(ΩF ∪ Ω)

]3×3
,σ|Γin

= 0
}
. (4.95)

Trial space for the aggregate stress field σ:

Ψσ =
{
σ ∈

[
H1(ΩF ∪ Ω)

]3×3
,σ|Γin

= σD

}
, (4.96)
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where σD is defined by (4.54).

We have chosen the finite element spaces in the following manner:

Ψ′
σh =

{
σ ∈

[
H1(ΩF ∪ Ω)

]3×3
,σ|K ∈ [Q1(K)]3×3 ,σ|Γin

= 0
}

(4.97)

and

Ψσh =
{
σ ∈

[
H1(ΩF ∪ Ω)

]3×3
,σ|K ∈ [Q1(K)]3×3 ,σ|Γin

= σD

}
. (4.98)

Weak formulation of the convection-diffusion equation for the red blood
cells field

We multiply (3.242) by a test ψN0 function from the proper space and integrate
formally by parts:(

∂N0

∂t
+ ϕu · ∇N0, ψN0

)
+ (∇N0,∇((1 − ϕ)ψN0))

+ 1
Pe

(∇N0,∇(ϕψN0)) − 1
Pe

(ϕ∇N0 · n, ψN0)Γoutflow

= 1
1 − β

De

Pe
(div τ ,∇(ϕψN0)) − 1

1 − β

De

Pe
((ϕ div τ ) · n, ψN0)Γoutflow

(4.99)

Test space for the red blood cells field N0:

Ψ′
N0 =

{
N0 ∈ H1(ΩF ∪ Ω), N0|Γin

= 0
}
. (4.100)

Trial space for the red blood cells field N0:

ΨN0 =
{
N0 ∈ H1(ΩF ∪ Ω), N0|Γin

= ND

}
. (4.101)

We have chosen the finite element spaces in the following manner:

Ψ′
N0h =

{
N0 ∈ H1(ΩF ∪ Ω), N0|K ∈ Q1(K), N0|Γin

= 0
}

(4.102)

and

ΨN0h =
{
N0 ∈ H1(ΩF ∪ Ω), N0|K ∈ Q1(K), N0|Γin

= ND

}
. (4.103)

Weak formulation of the equation for the aggregates/rouleaux field

We multiply (3.243) by a test ψM function from the proper space and integrate
formally by parts:(

∂M

∂t
+ ϕu · ∇M,ψM

)
+ (ϕ∇M,∇(ψM(1 − ϕ))) + 1

Pe
(ϕ∇M,∇(ψM(1 − ϕ))

− 1
Pe

(ϕ∇M · n, ψM)Γoutflow
+
(
0.5ϕα(γ̇)M2, ψM)

)
+ (0.5ϕb(γ̇)M,ψM)) =

1
1 − β

De

Pe
(divσ,∇(ϕψM)) − ϕ

1
1 − β

De

Pe
((divσ) · n, ψM)Γoutflow

+ (0.5ϕb(γ̇)M,ψM) .

(4.104)
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4.4 - Coagulation related quantities equations and phase field
Test space for the aggregates field M :

Ψ′
M =

{
M ∈ H1(ΩF ∪ Ω),M |Γin

= 0
}
. (4.105)

Trial space for the aggregates field M :

ΨM =
{
M ∈ H1(ΩF ∪ Ω),M |Γin

= MD

}
. (4.106)

We have chosen the finite element spaces in the following manner:

Ψ′
Mh =

{
M ∈ H1(ΩF ∪ Ω),M |K ∈ Q1(K),M |Γin

= 0
}
. (4.107)

and

ΨMh =
{
M ∈ H1(ΩF ∪ Ω),M |K ∈ Q1(K),M |Γin

= MD

}
. (4.108)

4.3.5 SUPG stabilization
Convection dominated problems require special numerical treatment as their
Galerkin formulation suffers from spurious oscillations not present in their true
solution.
The first possibility is to introduce into the system artificial diffusion in all direction.
It can however lead to the blurring of sharp layers and non–physical increase of
the concentration in some regions.
The SUPG approach which is more physically accurate was therefore proposed. Its
crux lies in the introduction of artificial diffusion in streamline upwind direction.
Mathematically, the introduction of artificial diffusion can be formulated as a
modification of the test function of the convective term. On this basis is developed
the SUPG stabilization method for finite element method, but for consistency, the
modified test function is applied to all terms of the weak form. In that case, the
exact solution of the problem satisfies the weak form.
In our case, the test function ϕτ for the polymeric part of the stress tensor is
modified in the following manner:

ψτ → ψτ + αSU
h u · ∇ψτ , (4.109)

where αSU
h is a stabilisation parameter, which we take as

αSU
h = h√

1 + u2
, (4.110)

where h is the cell diameter.
The test function for aggregate tensor field is modified similarly:

ψχ → ψχ + αSU
h u · ∇ψχ. (4.111)

The test function for the number concentration of RBCs field N0 is modified
accordingly:

ψN0 → ψN0 + αSU
h u · ∇ψN0 . (4.112)

The test function for the number concentration of rouleaux field M is modified in
similar vein:

ψM → ψM + αSU
h u · ∇ψM . (4.113)

We do not write the modified test function in the system of equations for simplicity.
We will implicitly treat them as modified in the described manner.
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4.4 Coagulation related quantities equations

and phase field

4.4.1 Discretization in space

Weak formulation of coagulation related quantities - flowing blood do-
main

We multiply (3.115) by a test ψc function from the proper space and integrate
formally by parts:(
∂c
∂t

+ u · ∇c, ψc

)
+D (∇c,∇ψc)−D (∇cn, ψc)Γoutflow

−(R(c, f), ψc)Γ = (S(c), ψc) ,

(4.114)
where R(c, f) is the Robin boundary condition (3.125) and S(c) is the generic
source term introduced in section 3.3.1. Test space for the field c:

Ψ′
c =

{
c ∈

[
H1(ΩF )

]7
, c|Γin

= 0
}
. (4.115)

Trial space for the aggregates field c:

Ψc =
{

c ∈
[
H1(ΩF )

]7
, c|Γin

= cD

}
. (4.116)

We have chosen the finite element spaces in the following manner:

Ψ′
ch =

{
c ∈

[
H1(ΩF )

]7
, c|K ∈ [Q1(K)]7 , c|Γin

= 0
}

(4.117)

and
Ψch =

{
c ∈

[
H1(ΩF )

]7
, c|K ∈ [Q1(K)]7 , c|Γin

= cD

}
. (4.118)

Weak formulation of coagulation related quantities - extension to the
whole domain

We multiply (3.244) by a test function ψc from the proper space and integrate
formally by parts, under assumption of no flux on walls:(

∂c
∂t

+ ϕu · ∇c, ψc

)
+ ((1 − ϕ)∇c,∇ψc) + D (ϕ∇c,∇ψc)

−D (ϕ∇c · n, ψc)Γoutflow
+ D (R(c, f)approx, ψc) = (ϕS(c), ψc) ,

(4.119)

where R(c, f)approx is a term originating from approximation of the Robin boundary
condition R(c, f) (3.125) using the framework [80], see equations (3.193)-(3.195).

S(c) is the generic source term introduced in section 3.3.1.
Test space for the field c:

Ψ′
c =

{
c ∈

[
H1(ΩF ∪ Ω)

]7
, c|Γin

= 0
}
. (4.120)
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4.4 - Coagulation related quantities equations and phase field
Trial space for the aggregates field c:

Ψc =
{

c ∈
[
H1(ΩF ∪ Ω)

]7
, c|Γin

= cD

}
. (4.121)

We have chosen the finite element spaces in the following manner:

Ψ′
ch =

{
c ∈

[
H1(ΩF ∪ Ω)

]7
, c|K ∈ [Q1(K)]7 , c|Γin

= 0
}

(4.122)

and

Ψch =
{

c ∈
[
H1(ΩF ∪ Ω)

]7
, c|K ∈ [Q1(K)]7 , c|Γin

= cD

}
. (4.123)

Surface coagulation quantities

We multiply (3.246) by a test function ψf getting(
∂f
∂t
, ψf

)
= (δΓP(c, f), ψf ) (4.124)

Test and trial space for the field f :

Ψf = Ψ′

f =
[
H1(ΩF ∪ Ω)

]4
(4.125)

We have chosen the finite element spaces in the following manner:

Ψfh = Ψ′

fh =
{

f ∈
[
H1(ΩF ∪ Ω)

]4
, f |K ∈ [Q1(K)]4

}
(4.126)

Weak formulation of equations of the movement of the interface

We multiply (3.247) by a tuple (ψc, ψµ) from the appropriate test spaces:(
ck+1 − ck

∆t , ψc

)
−
(
divM∇µk+1, ψc

)
= (−(1 + αV )jbpVp|φε(c)|, ψc) , (4.127)

(
µk+1 − 1

ϵ2W
′(ck+1) + ∆ck+1, ψµ

)
= 0.

We impose the following boundary conditions on the system

M∇µk+1 · n = 0 on Γ (4.128)

and
∇ck+1 · n = 0 on Γwall ∪ Γout, (4.129)

where Γ is boundary of the computational domain. This leads to zero boundary
terms after performing formal integration by parts of equations (4.29):(

ck+1 − ck

∆t , ψc

)
+
(
M∇µk+1,∇ψc

)
= (−jbp(1 + αV )Vp|φϵ(c)|, ψc) , (4.130)

(
µk+1 − 1

ϵ2W
′(ck+1), ψµ

)
−
(
∇ck+1,∇ψµ

)
= 0.
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Test and trial space for the phase field c:

Ψc =
{
c ∈ H1(ΩF ∪ Ω), c|Γin

= cD

}
(4.131)

Ψ′
c =

{
c ∈ H1(ΩF ∪ Ω), c|Γin

= 0
}

(4.132)
Test and trial space for the chemical potential µ

Ψ′
µ = Ψµ = H1(ΩF ∪ Ω). (4.133)

We have chosen the finite element spaces in the following manner:

Ψ′
ch =

{
c ∈ H1(ΩF ∪ Ω)), c|K ∈ Q1(K), c|Γin

= 0
}

(4.134)

and
Ψch =

{
c ∈ H1(ΩF ∪ Ω)), c|K ∈ Q1(K), c|Γin

= cD

}
(4.135)

for the phase field and

Ψµh = Ψ′
µh =

{
µ ∈ H1(ΩF ∪ Ω)), µ|K ∈ Q1(K)

}
. (4.136)

for the chemical potential.

4.5 Numerical methods for the viscoelastic
model of blood clot

4.5.1 The algorithm for computation of quantities related
the model of Kempen

For the numerical computations of the model introduced in Section 3.3.1 and
Section 3.3.4 we need to evaluate the time derivative of inelastic right Cauchy-
Green tensor of each mode Cp,i, i = 1, 2:

Cp,i = FT
p Fp = FT

p B−1
e,i F. (4.137)

We perform the time derivative of the previous equations and using the assumption
of the spin-free inelastic deformation we arrrive at the following expression:

Ċp,i = 2Cp,iF−1Dp,iF, i = 1, 2. (4.138)

We need to get values for all terms in the constitutive equation (3.4.3). In
order to evaluate τv and τe we need to update the clot time tclot and the Finger
tensor B. Hence we solve in eat timestep the following equations:

∂tclot

∂t
= (1 − ϕ)C in ΩF ∪ Ω (4.139)

and
∂F
∂t

+ u · ∇F = ∇uF in ΩF ∪ Ω, (4.140)

the Finger tensor is then given as B = FFT . We insert then the corresponding
values into the equations (3.250) and (3.251).
We need to evaluate in (3.4.3) the terms τve,i, i = 1, 2, as well. For that purpose
we use the following iteration scheme, see [85] for more general settings:
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4.5 - Numerical methods for the viscoelastic model of blood clot
1. Get values from the previous timestep Fk, Ck

p,i, τ k
ve,i, xk

i , i = 1, 2, current
value Fk+1 is obtained from the solution of (4.140).

2. Compute intelastic deformation rates

Dk
p,i =

τ k
p,i

2ηi

, i = 1, 2 (4.141)

3. Compute time derivatives of inelastic right Cauchy-Green tensors

Ċk
p,i = 2Ck

p,i(Fk)−1Dk
p,iFk, i = 1, 2 (4.142)

4. Compute Ck+1
p,i , i = 1, 2 using

Ck+1
p,i = Ck

p,i + Ċk
p,i∆t (4.143)

5. Compute Bk+1
e,i , i = 1, 2 using

Bk+1
e,i = Fk+1(Ck+1

p,i )−1(Fk+1)T (4.144)

6. Compute xk+1
i , i = 1, 2 using

ẋi =

⎧⎨⎩−cx(xi − xi,∞) if xi > xi,∞

0 if xi ≤ xi,∞
(4.145)

xi,∞ = e−a
√
IBk+1

e,i
− 3 (4.146)

7. Compute τ k+1
ve,i , i = 1, 2 using

τ k+1
ve,i = xk+1

i Gi

(
Bk+1

e,i − I
)

(4.147)

8. Save Ck+1
p,i and τ k+1

ve,i for i = 1, 2 to be used in the next time step

4.5.2 Discretization in space

Weak formulation of the equation for clot time

We multiply (4.139) by a test function ψtclot
obtaining(

tk+1
clot − tkclot

∆t , ψtclot

)
= ((1 − ϕ)C,ψtclot

) . (4.148)

Test and trial spaces for the scalar clot time were chosen followingly.

Ψtclot
= Ψ′

tclot
= H1(Ω ∪ ΩF ). (4.149)

Ψtcloth = Ψ′

tcloth =
{
tclot ∈ H1(Ω ∪ ΩF ), tclot|K ∈ Q1(K)

}
(4.150)
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Weak formulation of the equations for deformation gradient

We multiply (4.140) by a test function Υ getting(
F k+1 − F k

∆t + u · ∇F k+1 − ∇uF k+1,Υ
)

= 0. (4.151)

Test and trial spaces were chosen followingly.

ΨF =
{
F ∈

[
H1(Ω ∪ ΩF )

]3×3
,F |Γin

= Fd

}
. (4.152)

Ψ′

F =
{
F ∈

[
H1(Ω ∪ ΩF )

]3×3
,F |Γin

= 0
}
. (4.153)

ΨFh =
{
F ∈

[
H1(Ω ∪ ΩF )

]3×3
,F |K ∈

[
Q1(K)

]3×3
,F |Γin

= Fd

}
. (4.154)

Ψ′

Fh =
{
F ∈

[
H1(Ω ∪ ΩF )

]3×3
,F |K ∈

[
Q1(K)

]3×3
,F |Γin

= 0
}
. (4.155)

Weak formulation of the equations for left cauchy green tensors

We multiply (4.143) by a test function Γ obtaining(
Ck+1

p,i ,Γ
)

=
(
Ck

p,i + Ċk
p,i∆t,Γ

)
. (4.156)

Test and trial spaces were chosen followingly.

ΨC = Ψ′

C =
[
H1(Ω ∪ ΩF )

]3×3
. (4.157)

ΨCh = Ψ′
Ch =

{
C ∈

[
H1(Ω ∪ ΩF )

]3×3
,C|K ∈ [Q1(K)]3×3

}
(4.158)

Weak formulation of the equation for state parameters

We multiply (4.145) by a test function α getting
(
xk+1

i − xk
i

∆t ,Ψxi

)
=

⎧⎨⎩
(
−cx(xk

i − xi,∞),Ψxi

)
if xk

i > xi,∞

0 if xi ≤ xi,∞
(4.159)

Test and trial spaces for the state parameters xi, i = 1, 2 are chosen as

Ψxi
= Ψ′

xi
= H1(Ω ∪ ΩF ). (4.160)

Ψxih = Ψ′

xih
=
{
xi ∈ H1(Ω ∪ ΩF ), tclot|K ∈ Q1(K)

}
(4.161)
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5. Computational simulations

5.1 Weller’s model of clot growth

We performed computations of the model formulated in Section 3.4.1 on two
geometries - the perfusion chamber and the cylinder geometry. Afterwards we
present a numerical and scaling study of computations of modified Weller’s model.

5.1.1 Perfusion chamber geometry
In our first simulation we have chosen one of the configurations used in [3], [74]
and [6]. This configuration originates from the experimental setting of Affeld [86].
In this experiment platelet-rich plasma with pre-activated platelets flows from
the inflow of perfusion chamber onto a glass plane. The glass plane is orthogonal
to the flow direction at the inflow. The key result of the experiment is, that the
deposition of platelets is minute at the point of stagnation point on the glass
plane, whereas the site with greatest concentration of deposited platelets shows to
be at the place of elevated shear rate. This location appeared to be downstream
of the axis of symmetry of the perfusion chamber, i.e. considerably far away from
the stagnation point. We solved our model on three differently refined meshes.
The coarsest mesh has 26422 cells, the finer mesh has 208786 cells, whereas the
finest mesh has 1497304 cells.
You can see the computational meshes of both refinements in Fig. 5.1. Initial
values of phase field are rendered in 2D cut of the computational domain for the
coarse mesh in Fig. 5.2a, for the finer mesh in Fig. 5.2b and for the finest mesth
in Fig. 5.2c.
We have performed computations on all three meshes and we achieved correspond-
ing results on all levels of refinement. In Fig. 5.2d and 5.3d it could be seen, that
the clot has grown in the area of clot, which experiences the biggest shear stress.
The same behaviour can be observed for the finer mesh, see the Fig. 5.2e and 5.3e.
The clot behaves in the same way even for the finest mesh, see Fig. 5.2f and 5.3f.
In the pictures of computations on the finer and finest mesh it is apparent, that
the shape of emerging clot is smoother, which corresponds to the better resolution
of phase field due smaller mesh cells. The location of the most intense growth of
clot is also shifted, which could be attributed to the coarseness of the first mesh.
We have mentioned, that the clot grows mostly in the area of high shear stress.
This statement can be proven by a look in Fig. 5.3d for coarse mesh, in Fig. 5.3e
for the finer mesh and in Fig. 5.3f for the finest mesh. In the pictures in Fig. 5.3
are rendered values of velocity field, both as colour on the slice and arrows on the
slice. However the most interesting for us is the isosurface of phase field of zero
value. We have colored the contour by values of the shear stress field. It is therefore
apparent, that the clot grows preferably in the area of high shear stress. This is
in accordance with the assumptions of high shear stress thrombosis outlined in
Section 2.2.3 .
We have reached similar location of growth of the clot as in [6]. We must however
admit, that our results are considerably not so fine as in [6]. Namely, the interface
between blood and the clot is rather blurred. This originates from the very basic
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Chapter 5 - Computational simulations
assumption of the phase-field - the interface is represented by a no-sharp function.
The another reason for the not so sharp location of the interface is the fact, that
we computed the problem in fully three dimensional setting. In [3], [74] and [6]
was used the cylindrical symmetry of the problem, i.e. Weller solved actually
two dimensional problem, for which he could afford different levels of refinement.
Saying this, we however aspire to be able to compute similar problems with similar
granularity of computational mesh, as was presented [3], [74] and [6]. In the section
on scaling of our fully three dimensional implementation of the model we will
discuss the possibility of scaling up of our code to rather larger number of cells.

(a) 2D cut of the computa-
tional mesh - coarse mesh

(b) 2D cut of the computa-
tional mesh - fine mesh

(c) 2D cut of the computa-
tional mesh - finest mesh

(d) 3D view - coarse grid (e) 3D view - fine grid (f) 3D view - finest grid

Figure 5.1: Overview of computational meshes - perfusion chamber

82



5.1 - Weller’s model of clot growth

(a) Initial phase field setting
- coarse mesh

(b) Initial phase field setting
- finer mesh

(c) Initial phase field setting
- finest mesh

(d) Final state of the phase
field - coarse grid

(e) Final state of the phase
field - finer grid

(f) Final state of the phase
field - finest grid

Figure 5.2: Initial and final state of phase field - perfusion chamber
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(a) Velocity glyphs and zero
phase field isosurface - coarse
grid

(b) Velocity glyphs and zero
phase field isosurface - finer
grid

(c) Velocity glyphs and zero
phase field isosurface - finest
grid

(d) Velocity with shear rate
on zero phase field isosurface
- coarse grid

(e) Velocity with shear rate
on zero phase field isosurface
- finer grid

(f) Velocity with shear rate
on zero phase field isosurface
- finest grid

Figure 5.3: 3D view of the velocity field and shear rate on zero phase field isosurface
- perfusion chamber
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5.1 - Weller’s model of clot growth
5.1.2 Cylinder geometry
In our second simulation we solved our system in the cylinder geometry, where
the reactive zone is located in the middle symmetrically at the walls . The use
case for this geometry could be stented artery as the artificial surface of the stent
is reactive.
We solved our model on two differently refined meshed. The coarser one has 20480
cells, whereas the finer mesh has 163840 cells. You can see the computational
mesh for the coarse grid and the fine grid in Fig. 5.4.
Initial values of phase field are shown in Fig. 5.5a for the coarse mesh and in Fig.
5.5b for the fine mesh.
We have performed computations on both meshes and we achieved corresponding
results on both levels of refinement. In figures 5.5c, 5.6a, 5.6c and 5.6e it could be
seen, that the clot has grown in the area of clot, which experiences the biggest
shear stress. The same behaviour can be observed for the fine mesh, see figures
5.5d, 5.6b, 5.6d. and 5.6f. In the pictures of computations on the finer mesh it is
apparent, that the shape of emerging clot is smoother, which corresponds to the
better resolution of phase field due smaller mesh cells.
We have mentioned, that the clot grows mostly in the area of high shear stress.
This statement can be proven by a look in Fig. 5.6c. for the coarse mesh and Fig.
5.6d for the finer mesh. In the figures 5.6e and 5.6f are rendered values of velocity
field as arrows flowing through the artery narrowed by the clot. However the most
interesting for us is the 3D contour of phase field of zero value, see figures 5.6c and
5.6d. We have colored the contour by values of the shear stress field. It is therefore
apparent, that the clot grows preferably in the area of high shear stress. This is in
accordance with the assumptions of high shear stress thrombosis mentioned in
Section 2.2.3.
We would like also comment on the dependence of thrombus growth not only on
shear stress, but also on supply of blood platelets. Blood platelets, thrombocytes,
are namely an integral part of the high shear rate thrombus.
We take into account the dependence of growth rate on shear rate and thrombocytes
inflow by the Robin boundary equation for the platelet field (3.106). The boundary
condition depends linearly on the concentration of platelets and the adhesion
rate, which grows linearly with shear stress. Therefore we should expect, that
the growth of the thrombus starts only after the arrival of thrombocytes on the
location of thrombus interface. We can witness this development in the series of
steps 1-6 in Fig. 5.7.
We would like to add a note about the results of simulations in the Fig. 5.7. It could
seem, that the development of the platelet field does not couple correctly with
the development of the phase field (green colour in Fig. 5.7), i.e. the simulation
results in nonzero values for platelet field in the area of the developing thrombus.
We must however remind the reader, that we have used harmonical extension of
the platelet field in the area of thrombus, see the equation (3.227).
Therefore it could be said, that in the area of the thrombus the values of the
platelet field are irrelevant to us, as its values are there only supplied for the better
solvability of our problem. Hence we do not assign any physical interpretation to
the platelet field in the area of the developing thrombus.
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(a) 2D cut of the computational mesh -
coarse mesh

(b) 2D cut of the computational mesh -
fine mesh

(c) 3D view - coarse grid (d) 3D view - fine grid

Figure 5.4: Overview of computational meshes - cylinder

(a) Initial phase field setting - coarse
mesh

(b) Initial phase field setting - fine mesh

(c) Final state of the phase field - coarse
grid

(d) Final state of the phase field - fine
grid

Figure 5.5: Initial and final state of the clot - cylinder
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(a) Final state of clot with velocity
glyphs - coarse grid

(b) Final state of clot with velocity
glyphs - fine grid

(c) 3D view of emerging thrombus col-
ored by shear rate - coarse grid

(d) 3D view of emerging thrombus col-
ored by shear rate - fine grid

(e) 3D view of emerging thrombus with
velocity glyphs - coarse grid

(f) 3D view of emerging thrombus with
velocity glyphs - fine grid

Figure 5.6: 2D and 3D views of the clot, the velocity field, shear rate field- cylinder
geometry
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(a) Step 1

(b) Step 2

(c) Step 3

(d) Step 4

(e) Step 5

(f) Step 6

Figure 5.7: Development of the phase field and platelet s - cylinder
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5.2 - Weller’s model - scaling, recoupling properties
5.2 Weller’s model - scaling, recoupling proper-

ties
In the following two sections we want to show numerical and scaling properties of
our implementation of the model.

5.2.1 Recoupling of the decoupled equations
We have mentioned in Section 4.1.3, that recoupling iterations are needed for
achievement of proper results. The norm of difference of subsequent solutions
played the role of the terminating criterion of recoupling subiterations.
We could naturally expect that if we decrease the initial timestep, than the norm
of difference of solutions from different recoupling iterations would decrease faster.
We performed a simple numerical experiment, which confirms this expectation. We
chose the cylindrical geometry with 5120 cells as our computational domain. We
performed computations using our adaptive timestepping method until we arrived
at fixed time. The number of recoupling iterations in each timestep was now fixed.
We denote the solution obtained using n iterations as un for velocity and wn for
platelets. We persisted the solution for n = 4 to hard disk in order to be able
to compare it with solutions for n = 1, 2, 3. The results of the computations are
given in the tables 5.1, 5.2, 5.3 and 5.4. From the tables it can be seen, that the
convergence to the finest solution is quicker for the smaller initial timestep 0.05
and that the convergence slows down for the larger timesteps 0.1 and 0.2 (see
table 5.2 and 5.3). In the case of convergence in Table 5.4 we can see, that it is by
several orders smaller than in Table 5.1 for the platelet field. The differences in
the velocity field in Table 5.4 decrease at the same pace as in 5.1, but the order
of magnitude of the differences is approximately two orders lower. It is however
questionable, whether the solution with n = 4 for timestep 0.5, see Table 5.4, is
a good candidate for comparing convergence of the solution n = 1, 2, 3, because
it appears, that the convergence in the platelet field w is very slow. Hence it we
could doubt about finished convergence for solution w4.

Table 5.1: ∥u4 − un∥ , ∥w4 − wn∥, ∆t = 0.05

NO. of couplings-n velocity-u platelets-w
1 1.08 · 10−4 3.59 · 10−8

2 3.59 · 10−8 2.11 · 10−10

3 4.85 · 10−13 1.06 · 10−10

Table 5.2: ∥u4 − un∥ , ∥w4 − wn∥, ∆t = 0.1

NO. of couplings-n velocity-u platelets-w
1 2.23 · 10−2 1.12 · 10−4

2 1.72 · 10−8 1.72 · 10−8

3 1.28 · 10−13 4.15 · 10−13

89



Chapter 5 - Computational simulations
Table 5.3: ∥u4 − un∥ , ∥w4 − wn∥, ∆t = 0.2

NO. of couplings-n velocity-u platelets-w
1 0.24 9.89 · 10−2

2 2.08 · 10−8 2.04 · 10−10

3 2.30 · 10−13 6.72 · 10−14

Table 5.4: ∥u4 − un∥ , ∥w4 − wn∥, ∆t = 0.5

NO. of couplings-n velocity-u platelets-w
1 0.1 0.21
2 1.03 · 10−6 0.11
3 5.86 · 10−11 9.87 · 10−2

5.2.2 Scaling of linear solvers

We have experimented with different combinations of linear solvers and precondi-
tioners. The most demanding processing of linear systems were performed for the
solution of the tentative velocity step (4.15) and for the solution of the projection
step (4.2). The solution of the projection step results into linear system with
symmetric positive definitive matrix. We chose conjugate gradient solver with
either ILU or algebraic multigrid as preconditioner. We tried to increase the
number of cores, which were used for the solution of the system originating from
cylindrical geometry with 5120 cells.

Table 5.5: Solution times in seconds for CG with different preconditioners for the
projection step (4.2)

Preconditioner 24 Cores 48 Cores 96 Cores 192 Cores
ILU 0.229 0.411 0.904 1.49

AMG 0.581 0.994 1.53 2.98

We can observe in Table 5.5, that the duration of solution of the projection step
increases as we add more cores for solution of the system. This could be attributed
to the fact, that the system is quite small and communication prevails with in-
creasing of number of cores.
Discretization of the tentative velocity step does not end with symmetric matrix.
Therefore we have to use a more robust solver for the solution of the linear sys-
tem. We chose GMRES solver equipped with ILU, SOR or algebraic multigrid as
preconditioners.

For almost all preconditioners we can observe in Table 5.6 decrease of time of
solution with increasing number of cores. The linear system is namely larger than
pressure system, hence the scaling up is working. We can however see that for the
algebraic multigrid there is a plateaux in the solution time for 96 and 192 cores.
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5.2 - Weller’s model - scaling, recoupling properties
Table 5.6: Solution times in seconds for GMRES with different preconditioners for
the tentative velocity step (4.15)

Preconditioner 24 Cores 48 Cores 96 Cores 192 Cores
SOR 67.4 45 24.1 12
ILU 55.7 32.2 17.7 9.7

AMG 81.7 61 43.7 43.8

5.2.3 Strong scaling of our implementation
We have performed series of computations on the cylinder or on the chamber mesh
for two different levels of refinement. We were computing until we reached a fixed
time limit. We were increasing the number of cores by factor 2 from 24 cores to
768 cores.
We have achieved considerable level of scaling of our computations, however we
reached a plateaux and the duration of computations of the problem started to
grow (see Table 5.7 and the chart in Figure 5.8) . This could be attributed to the
fact, that the communication overhead might start to dominate. That was the
case of both refinement levels of chamber grid and of the cylinder geometry.

Table 5.7: Strong scaling - solution times in seconds

Chamber geometry Chamber geometry
Number of Cores 1504 cells 75954 cells 5120 cells 40960 cells

24 3,430 71,000 1,560
48 1,670 31,700 822
96 1,020 16,400 456 10,700
192 742 8,820 304 4,710
384 506 4,070 156 459
768 424 7,710 258 2,460

5.2.4 Weak scaling of our implementation
In the case of weak scaling performance tests we started with low number of cells
solved on not many cores. We increased then the number of cells and cores by
factor 2 in each step in order to allocate to a core fixed amount of work. In Table
5.8 and in the chart in the Figure 5.9 we can see, that with increasing number of
cells and cores we do not witness constant level of solution time of our problem.
Well scaling code would exhibit here constant function like behaviour. As the
solution time almost monotonously growing with number of cells/cores and the
jumps to one order higher value for the largest number of cells/processors, we
suppose, that the communication of our distributed code is becoming dominant.
To improve this behaviour it would be necessary to refactor our current codebase.
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Figure 5.8: Strong scaling

Table 5.8: Weak scaling - solution times in seconds

NO. of cells NO. of cores time [s]
640 24 73.3

1,280 48 104
2,560 96 165
5,120 192 204
10,240 384 158
20,480 768 1,310
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Figure 5.9: Weak scaling
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5.3 - Modified Storti’s model
5.3 Modified Storti’s model
In the following we show results of computations based on the model from Section
3.4.2. We perform our simulation in the configuration similar to the original
configuration of [1]. We have however implemented the model in fully three
dimensional setting, therefore the simulation settings can not be fully imitated.
As our computational domain we have chosen the cylinder geometry with 20480
cells, whereas the finer mesh has 163840 cells, see figures 5.10a, 5.10c for the coarse
mesh and 5.10b, 5.10d for the fine mesh. For numerical issues with start-up of our
splitting method we were increasing the boundary condition on velocity gradually.
We have let the simulation start and only after a certain time we set off the process
of platelet plug formation. Namely we have let the velocity field develop. The plug
is formed on the reactive surface, which is represented as the isosurface of zero
phase field value. At the beginning of our simulations the isosurface looks like in
figures 5.11a, 5.11c for the coarse mesh and 5.11b, 5.11d for the fine mesh.
After setup of phase field, which could be seen in figures 5.11a, 5.10c and 5.11b,
5.10d, the phase field has direct influence on the flow field. Namely, as it develops,
it narrows down the lumen of the vessel. This leads to increase of velocity in the
narrowed part of vessel in comparison with the rest of the vessel, where no stenosis
is present. You can see the stenosed vessel in figures 5.12a, 5.12c, 5.12e for the
coarse grid and the vessel stenosis for fine grid in figures 5.12b, 5.12d, 5.12f. Due
to the fact, that the grid is still quite coarse, numerical artefacts can be seen in
figures 5.12a, 5.12c in the velocity field. The situation improves once we use the
finer grid, see figures 5.12b, 5.12d.
In the figures it can be seen, that the clot starts to develop after the activated
platelets arrive or after they were activated from resting platelets at the site of
injury, i.e. in the vicinity of zero phase field isosurface.
More plastic view of the flow around the obstacle - clot can be obtained from
figures 5.13a, 5.13c and 5.13b, 5.13d. In these pictures it can be seen, that some
kind of recirculation zone could be present in the vicinity upstream of the clot.
We have used however uniform refinement of the grid, so we were not able to
render the velocity field (here glyphs) in more detail. We have experimented with
local refinement in these areas using the tools provided by the library deal.ii [4],
see Appendix A for details. We tried different local refinements, however as we
use iterative solvers we were not able to solve the corresponding linear system.

(a) 2D cut of the computational mesh -
coarse mesh

(b) 2D cut of the computational mesh -
fine mesh

(c) 3D view - coarse grid (d) 3D view - fine grid

Figure 5.10: Overview of computational meshes
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(a) 2D cut of the initial thrombus -
coarse mesh

(b) 2D cut of the initial thrombus - fine
mesh

(c) 3D view of initial clot - coarse mesh (d) 3D view of initial clot - fine mesh

Figure 5.11: Initial state of clot for both meshes

Table 5.9: Initial values of all species and critical values of the activating species

Species name concentration Initial conc. units critical values
Resting platelets cup 0.7 × 108 PLTml−1

Activated platelets cap 0.05cup PLTml−1

ADP cadp 0.0 µM 2.0
Thromboxane ctx 0.0 µM 0.60
Prothrombin cpt 1.1 µM
Thrombin cth 0.0 µM 9.11 × 10−4

Antithrombin cat 2.844 µM

(a) 2D cut of the final thrombus with
velocity field - coarse mesh

(b) 2D cut of the final thrombus with
velocity field - fine mesh

(c) 2D view of final velocity field - coarse
mesh

(d) 2D view of final velocity field - fine
mesh

(e) 3D view of final clot and velocity
field on clip - coarse mesh

(f) 3D view of final clot and velocity field
on clip - fine mesh

Figure 5.12: 2D and 3D views of clot with velocity field
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(a) 3D view of velocity glyphs and final
clot - coarse mesh

(b) 3D view of velocity glyphs and final
clot - fine mesh

(c) 3D view from side of velocity glyphs
and final clot - coarse mesh

(d) 3D view from side of velocity glyphs
and final clot - fine grid

Figure 5.13: Final clot and glyphs of velocity field
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5.4 Modified Storti’s model and Kempen’s

model for blood clot
In the following we show results of computations based on the model from Section
3.4.3. In the following we try to compare the results from [79] and [1] with the
results from our more complete model. We cannot however fully compare one-to-
one the results.
Firstly results of Storti were computed using the neo-Hookean elastic constitutive
equations for the platelet clot. However we employ a viscoelastic model for the
platelet clot, which develops into the blood clot.
Secondly we perform computations in fully three dimensional settings, in contrast
with [79] and [1], where only two dimensional computations were performed.
Thirdly due to the computational expense we run simulations on quite coarse grid,
in comparison with two dimensional meshes of [79] and [1].

5.4.1 Influence of blood flow on the shape of clot
We performed two sets of computations for different values of velocity Dirichlet
boundary conditions on inflow. In contrast to Storti we can not experiment with
tweaking of only one parameter in the constitutive equation (in Storti it was the
shear modulus G in (3.158)). Namely the model of Kempen [2] contains seven fit
parameters, which we take over from the article.
We are again turning on the velocity field gradually. The plug is formed on the
reactive surface, which is represented as the isosurface of zero phase field value.
The initial reactive surface is present only after the velocity field establishes.
In the first case we imposed low velocity on the inflow. After certain time the
blood clot develops and the narrowed area of blood vessel causes local increase
of velocity values. The 2D snapshot of the phase field is in Figure 5.14a, in
Figure 5.14a we can see the influence of the clot on the blood flow. The same
visualization is shown for the finer grid 5.15a.
3D views of developing thrombus and the velocity field are in figures 5.14b and
5.14c. We can see, that the blood flows around the obstacle, around the clot.
Similar behaviour can be observed for the fine grid in figures 5.15b and 5.15c.
In the second case we imposed large velocity on the inflow. After certain time the
blood clot develops and the narrowed area of blood vessel causes local increase of
velocity values. The 2D snapshot of the phase field is in Figure 5.16a, in Figure
5.16a we can see the influence of the clot on the blood flow. The blood is flowing
around the clot even in the case of fine grid, see Fig. 5.17a.
3D views of developing thrombus and the velocity field are in figures 5.16b and
5.16c. We can see, that the blood flows around the obstacle, around the clot.
If we compare the first case with the second case we can see, that the magnitute
of inflow velocity has some impact on the shape of the developing clot, this is
well to be seen in Figure 5.14a and Figure 5.16a. Change of shape can also be
observed on 3D view in Figure 5.14c and Figure 5.16c. On the finer grid the
dependence of shape can be mainly observed on 2D views in figures 5.15a and 5.17a.

In the work [79],[8] and [1] clot is thicker at lower velocity at the proximal part,
whereas at higher velocity it is thicker at the distal part. Similar behaviour can
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5.4 - Modified Storti’s model and Kempen’s model for blood clot
be seen in Figure 5.14a and Figure 5.16a. The similar observation can be made
from the figures 5.14c and 5.16c. In finer grid this behaviour is not so apparent,
see figures 5.15a, 5.15b, 5.15c for the low velocity and figures 5.17a, 5.17b, 5.17c
for the high velocity.

We will now compare the shapes of the emerging thrombus in this section with
the shapes of clots obtained in Section 5.3. It is visible in figures 5.12b and 5.12d,
that the clot is rather smoothed. This phenomenon is to be attributed to the very
assumption of the modified Storti model - the clot is taken as a Newtonian fluid
with high viscosity. If we now look in the figures referenced in this section, e.g.
figures 5.15a, 5.15b, 5.15c for the low velocity and figures 5.17a, 5.17b, 5.17c for
the high velocity, we can see, that the viscoelastic material of the clot is able to
withstand the drag imposed on the surface of the clot from the flowing blood.

5.4.2 Modified activation criterion for platelets

In Section 3.3.3 we adjusted the activation criterion of platelets to depend not
only on concentration of chemical species, but also on the value of the shear stress.
We can see in the Figure 5.18a that although already at the beginning time of
clotting the shear stress at the surface of the clot is elevated, clotting does not
start. This can be visible even at the more advanced time in the Figure 5.18b.
This is caused by the fact, that it lasts for certain time until blood platelets, either
activated or unactivated, arrive at the place of reactive surface.
Once they arrive the clot starts to develop, see Figure 5.18c. From figures 5.18c,
5.18d and 5.18e it is apparent, that there the distal parts of clot develop more, the
clot is thicker there, than the proximal parts of clot. The distal parts experience
larger shear stresses, therefore the activation function achieves there larger values,
which leads to the speedup of coagulation. On the other hand the proximal part
of the clot experiences high shear stresses as well, but the clot is relatively thin
there. Part of the platelets which are activated there are carried away to the other
areas of surface of the clot, where they can bind in elevated measure.

We can see in Figure 5.19a that although already at the beginning time of
clotting the shear stress at the surface of the clot is elevated, clotting does not
start. This can be visible even at the more advanced time in Figure 5.19b. This
is caused by the fact, that it lasts for certain time until blood platelets, either
activated or unactivated, arrive at the place of reactive surface.
Once they arrive the clot starts to develop, see figures 5.19c, 5.19d and 5.19e. In
figures 5.19d and 5.19e it is apparent, that there the proximal parts of clot develop
more, the clot is thicker there, than the distal parts of clot. The parts experience
larger shear stresses, therefore the activation function achieves there larger values,
which leads to the speedup of coagulation. On the other hand the distal part of
the clot experiences high shear stresses as well, but the clot is relatively thin there.
We could not however use one scale, as in the previous case, as the values of shear
stress at the beginning of simulation are minute. In Figures 5.20a, 5.20b, 5.20c,
5.20d and 5.20e is rendered the development of the clot with values of shear stress
on its surface for the higher velocity.
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5.4.3 Comparison with an in-vivo experiment
In [5] an in-vivo experiment was performed on a living mouse. A blood vessel was
injured by a laser. Followingly the concentration of platelets, fibrin and tissue
factor was tracked using confocal fluorescence imaging.
Although we do not work with the concentration of platelets, fibrin and tissue
factor in our model of the clot, we can get an idea, what the shape of the clot should
be. We took three pictures from the article [5] so, that our reader can compare
the results from the in-vivo experiment and the results from the simulations of
our mathematical model.
During the experiments in [5] the target vessels were of size 20-60 µm. We are
mostly interested in the bright-field microscopy results. Characteristic size of our
computations, i.e. the width of the channel is 0.003cm, which equals to 0.03mm or
30 µm. Therefore we can compare at least roughly results of the in-vivo experiment
with outputs of our computational simulations.
In the original work [5] several experiments were done with the same settings. But
should we compare the resulting clots, there are some discrepancies originating
from some hidden experimental parameters. The parameters are not under control
of the experimenter.
We picked two results of in-vivo experiments, focusing on the bright-field microscopy.
We compare the results of the experiment with the two settings of our simulations,
namely with the slow flow and with fast flow of blood.
We can discern some similarity in the shape of clots, see figures in 5.21 for the
fast flow and figures in 5.22 for the slow flow, for the case of coarse grid
In the set of figures in 5.21 we are trying to identify a clot from the in-vivo
experiment from the subfigure 5.21a with the results of simulations with faster
inlet velocity of blood, see figures 5.21b, 5.21c.
In the set of figures in 5.22 we are trying to identify a clot from the in-vivo
experiment from the subfigure 5.22a with computational results originating from
imposition of slower inlet velocity, see figures 5.22b, 5.22c.
We can find that the similarity even for the case of slow and fast flow of blood in
the fine grid, see figures in 5.24 for the slow flow and figures in 5.23 for the fast
flow.
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(a) velocity - large scale

(b) velocity field as arrows

(c) velocity field on 2D cut

Figure 5.14: Developed clot and velocity field at low blood inflow velocity - coarse
grid
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(a) velocity - large scale

(b) velocity field as arrows

(c) velocity field on 2D cut

Figure 5.15: Developed clot and velocity field at low blood inflow velocity - fine
grid
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(a) velocity field

(b) velocity field as arrows velocity

(c) velocity field on 2D cut

Figure 5.16: Developed clot and velocity field at large blood inflow velocity - coarse
grid
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(a) velocity field

(b) velocity field as arrows velocity

(c) velocity field on 2D cut

Figure 5.17: Developed clot and velocity field at large blood inflow velocity - fine
grid

102



5.4 - Modified Storti’s model and Kempen’s model for blood clot

(a) t = 1 (b) t = 2 (c) t = 3

(d) t = 4 (e) t = 5

Figure 5.18: Phase field isosurface and values of shear stress at different times of
the evolution - coarse grid

(a) t = 1 (b) t = 2 (c) t = 3

(d) t = 4 (e) t = 5

Figure 5.19: Phase field isosurface and values of shear stress at different times of
the evolution at low velocity - fine grid
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(a) t = 1 (b) t = 2 (c) t = 3

(d) t = 4 (e) t = 5

Figure 5.20: Phase field isosurface and values of shear stress at different times of
the evolution at high velocity - fine grid

(a) Bright-field microscopy from [5] (b) 2D view of computation

(c) 3D view of computation (d) 3D view of computation

Figure 5.21: Results from bright-field microscopy in [5], comparison with fast flow
simulations - coarse grid
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(a) bright-field microscopy from [5] (b) 2D view of computation

(c) 3D view of computation (d) 3D view of computation

Figure 5.22: Results from bright-field microscopy in [5], comparison with slow flow
simulations - coarse grid

(a) bright-field microscopy from [5] (b) 2D view of computation

(c) 3D view of computation

Figure 5.23: Results from bright-field microscopy in [5], comparison with fast flow
simulations - fine grid
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(a) bright-field microscopy from [5] (b) 2D view of computation

(c) 3D view of computation

Figure 5.24: Results from bright-field microscopy in [5], comparison with slow flow
simulations - fine grid
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6. Conclusion

6.1 Development of blood coagulation models
In this work we presented our research in the blood coagulation modelling field.
As we noted in Introduction we limited ourselves only to two of the phases of
blood coagulation, i.e. primary hemostasis and secondary hemostasis. We have
used three available models of the blood coagulation process in our computations:

• Weller’s model of coagulation, [3, 6]

• Storti’s model of primary hemostasis, [8, 1]

• Kempen’s model of secondary hemostasis, [2]

The blood itself was taken either as a Newtonian fluid or as a viscoelastic fluid
using the non-homogeneous model of Owens [7, 65, 66].
The dissertation thesis of Weller [3] has title Modeling, Analysis, and Simulation
of Thrombosis and Hemostasis. However author admits, that he is modelling only
the initial stage of platelet aggregation. Hence the work of Weller could be taken
as an important contribution to research of primary hemostasis.
We want to draw a line between the model of Weller and Storti [1], studied in
this work, and more comprehensive models of blood coagulation such as Anand’s
model [57] and as Gregg’s model [87]. Anand in [57] treats blood and clot as
viscoelastic fluids, whereas in [87] the clot is captured in the model via a Brinkman
term depending on density of platelets. The term is added to the Navier-Stokes
equations.
We implemented the model of Weller using a novel approach, the phase field
method. The phase field serves us only as a marker function, i.e. it does not have
any thermodynamic meaning. We compared the phase field approach and the
original sharp interface method, level-set, method. What we appreciate on the
phase field framework is its avoidance of artificial smearing of useful quantities for
numerical computations, i.e. the Heaviside function and the delta function. The
phase field is namely implicitly smoothed.
We have applied the phase field method to the model of Storti [1] as well. We have
however added another three new features in our first model, see Section 3.4.2.
Firstly we treat blood in the model as viscoelastic fluid, whose constitutive equa-
tions come from the nonhomogeneous model of Owens [7], [65].
Secondly we have modified the activation function for platelets so, that the resting
platelets get activated, if they are exposed to high enough shear stress values.
Thirdly the clot is modelled as a Newtonian fluid with high viscosity.
The ALE implementation of the original model [1] requires remeshing, which has to
be done after the movement of the interface platelet clot-blood. This brings several
problems with itself. The problem is even more pronounced in three dimensional
computations. Using the phase field method we avoid the necessity of remeshing.
What is new in this work, i.e. in the second model from Section 3.4.3, is the ability
of our model to describe maturing of the platelet clot into blood clot. For that
purpose we used the model of blood clot of [2]. The model takes the clot as a
viscoelastic material with time dependent rheological properties.
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We had to adjust both the formulation of the problem, i.e. the original equations,
and the numerical treatment of the arising problem to suit our requirements. To
sum up, our proposed model has the following features.
Firstly we treat blood in the model as viscoelastic fluid, whose constitutive equa-
tions comes from the nonhomogeneous model of Owens [7], [65].
Secondly we have modified the activation function for platelets so, that the resting
platelets get activated, if they are exposed to high enough shear stress values, see
Section 3.3.3.
Thirdly the platelet clot matures into blood clot. This was achieved by incorpora-
tion of the model [2] using the adjustments outlined in 3.3.4.
The model [2] was fitted against an experiment in cone-plate rheometer using
seven fitting parameters. The question naturally arises, whether our generalization
of Kempen’s model of blood clot development is valid.

6.2 Development of numerical solvers
Our systems of equations outlined in sections 3.4.1, 3.4.2 and 3.4.3 are large. The
equations of the models are intrinsically coupled. However in the solver process
we solve each group separately and we reintroduce the coupling by subiterations
in each timestep. The stopping criterion of the subiteration is based on the size of
difference of solutions originating from last two subiterations. This is combined
with a simple adaptive timestepping based on the truncation error estimation
outlined in Section 4.1.2. Since the submodels can have different time scales, after
computation of each time iteration using the previous algorithm we take the
minimum of all proposed timesteps, see Section 4.1.3
The flow subproblem is solved by the incremental pressure correction scheme (IPCS)
[82]. All nonlinearities in the equations were treated using the Picard subiteration.
The norm of residual was taken as the termination criterion. The linearization of
the double well potential in the Cahn-Hilliard equation was performed similarly
to [88]. The procedure outlined in [88] results in (semi)-implicit expression for the
double well potential derivative discretization. All the implementation is done in
the open source finite element library deal.ii [4] with Trilinos [89] as the linear
algebra backend, see Appendix A

6.3 Comments on results of simulations
We achieved comparable results with Weller simulations for the case of the
perfusion chamber geometry, see Section 5.1.1 . We reached physically reasonable
results for the cylinder geometry as well, see Section 5.1.2. In comparison with
Weller we were limited a little bit, because we could not achieve such high levels
of mesh refinement. In [3] the cylindrical symmetry of the perfusion chamber was
used to reduce the problem to two-dimensional computation reducing by that the
computational cost.
Our implementation is based on the finite element library deal.ii [4], [90] which
enables dimension independent distributed computing.
We have performed a scaling study, which has shown, that our code is not ideally
scalable, both weakly and strongly, see Section 5.2. Further refactoring of our
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code would be needed in order to arrive at better performance results. There is
however always trade-off between performance of the code and its modifiability,
maintainability and extensibility.

We have performed simulations of modified Storti’s model formulated in
Section 3.4.2. The results are shown in Section 5.3.

We have performed simulations of our proposed model from Section 3.4.3 , see
Section 5.4.

Besides the study of results of simulations themselves and the comparison
of the results with the results from 5.3, we performed a rather simplified visual
comparison of our simulations with the results of in-vivo experiment from [5]. Our
computations are however simplified in comparison with the settings in [5]. Main
differences lie in

• our computational domains and meshes are quite coarse

• the results of [5] took into account the whole process of blood coagulation,
whereas we used the biochemistry model of blood coagulation, which relies
only on several blood species

• the results of [5] provide different several outputs (see e.g. figures 5.24a, 5.23a,
5.22a, 5.21a) which shows, that in the in-vivo experiment there are some
variables, which were not taken into account, i.e. they are not controllable
by the setting of the experiment.

• the process of blood clot formation is captured in our model at continuum
level. We do not trace the quantities of interest from the experiment in [5]
in the area of clot, i.e. fibrin concentration, platelets concentration, tissue
factor concentration. The fibrin concentration, which has direct impact on
rheological properties of blood clot is taken into account by developing
rheological parameters of modified Kempen’s model, see 3.4.3

6.4 Final remarks and further research
We implemented our model using the finite element library deal.ii [4] in such a way,
that adding new chemical species, new population types of platelets or another
constitutive equation for blood or platelet clot should be relatively easy.
In the approach from Section 3.4.2 we have taken the clot as a fluid with high
viscosity. However the clot can more likely behave like a viscoelastic material. In
the approach from Section 3.4.3 we have used a specific constitutive equation
for viscoelastic material of the blood clot, whose rheological parameters undergo
development. Our model is however amenable to changing the extra stress tensor
of the clot relatively easily.
The platelet plug which forms in model of [1],[8] and [79] can mature in the
process of secondary hemostasis into blood clot. That is, what was done using
the inclusion of model [2] into our system of equations. The model [2] is rather
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phenomenological, i.e. low-level behaviour of clot is hidden in the fit parameters.
There are however models, which contain the much more complete biochemistry
of both primary and secondary hemostasis, e.g. [57]. One of the main outputs of
the model [57] is the concentration of fibrin, which is the key component of the
blood clot.
The next step in the modelling of development of the blood clot could be then
dependence of the parameters of the constitutive equations of clot on the concen-
tration of the relevant chemical species, which could either circulate in the blood
flow or can be present or perfuse in the clot, e.g. fibrin.
The nonhomogeneous model of Owens is able to describe Fahraeus effect in a
narrow blood vessel. The zone of the blood vessel, which is depleted of red blood
cells, should, according to Aarts [19], be populated in elevated measures with
blood platelets.
There are already some studies, which take into account margination of platelets
by red blood cells, see [91], [92], [93], [94] or [95]. Future model could however
achieve the required distribution of platelets, if it has the correct profile of red
blood cells distribution, hematocrit, in the blood vessel. The model presented in
this work seems to us as promising first step in this direction.

110



Bibliography
[1] F. Storti. “A continuum model for platelet plug formation, growth, and

deformation”. English. Proefschrift. PhD thesis. Department of Biomedical
Engineering, 2014. doi: 10.6100/IR782334.

[2] T. H. S. van Kempen et al. “A constitutive model for developing blood clots
with various compositions and their nonlinear viscoelastic behavior”. In:
Biomechanics and Modeling in Mechanobiology 15.2 (2015), pp. 279–291.
doi: 10.1007/s10237-015-0686-9.

[3] F. F. Weller. “Modeling, Analysis, and Simulation of Thrombosis and
Hemostasis”. PhD thesis. Ruprecht-Karls-Universität Heidelberg, 2008.

[4] G. Alzetta et al. “The deal.II Library, Version 9.0”. In: Journal of Numerical
Mathematics 26.4 (2018), pp. 173–183. doi: 10.1515/jnma-2018-0054.

[5] S. Falati et al. “Real-time in vivo imaging of platelets, tissue factor and fibrin
during arterial thrombus formation in the mouse”. In: Nature Medicine
8.10 (2002), pp. 1175–1180. doi: 10.1038/nm782.

[6] F. F. Weller. “A free boundary problem modeling thrombus growth”. In:
Journal of Mathematical Biology 61.6 (2010), pp. 805–818. doi: 10.1007/

s00285-009-0324-1.
[7] R. G. Owens. “A new microstructure-based constitutive model for human

blood”. In: Journal of Non-Newtonian Fluid Mechanics 140.1-3 (2006),
pp. 57–70. doi: 10.1016/j.jnnfm.2006.01.015.

[8] F. Storti et al. “A continuum model for platelet plug formation and growth”.
In: International Journal for Numerical Methods in Biomedical Engineering
30.6 (2014), pp. 634–658. doi: 10.1002/cnm.2623.

[9] H. M. Lazarus and A. H. Schmaier, eds. Concise Guide to Hematology.
Springer International Publishing, 2019. doi: 10.1007/978-3-319-97873-4.

[10] A. Fasano and A. Sequeira. “Hemorheology and Hemodynamics”. In: Hemo-
math. Springer International Publishing, 2017, pp. 1–77. doi: 10.1007/978-3-

319-60513-5_1.
[11] J. M. Tarbell. “Mass Transport in Arteries and the Localization of

Atherosclerosis”. In: Annual Review of Biomedical Engineering 5.1 (2003),
pp. 79–118. doi: 10.1146/annurev.bioeng.5.040202.121529.

[12] N. S. Key et al., eds. Practical Hemostasis and Thrombosis. John Wiley &
Sons, Ltd, 2017. doi: 10.1002/9781118344729.

[13] L. D. Casa et al. “Role of high shear rate in thrombosis”. In: Journal of
Vascular Surgery 61.4 (2015), pp. 1068–1080. doi: 10.1016/j.jvs.2014.12.050.

[14] K. S. Sakariassen et al. “The impact of blood shear rate on arterial thrombus
formation”. In: Future Science OA 1.4 (2015). doi: 10.4155/fso.15.28.

[15] A. V. Hoffbrand et al., eds. Color Atlas of Clinical Hematology: Molecular
and Cellular Basis of Disease. Wiley-Blackwell, 2019.

111

https://doi.org/10.6100/IR782334
https://doi.org/10.1007/s10237-015-0686-9
https://doi.org/10.1515/jnma-2018-0054
https://doi.org/10.1038/nm782
https://doi.org/10.1007/s00285-009-0324-1
https://doi.org/10.1007/s00285-009-0324-1
https://doi.org/10.1016/j.jnnfm.2006.01.015
https://doi.org/10.1002/cnm.2623
https://doi.org/10.1007/978-3-319-97873-4
https://doi.org/10.1007/978-3-319-60513-5_1
https://doi.org/10.1007/978-3-319-60513-5_1
https://doi.org/10.1146/annurev.bioeng.5.040202.121529
https://doi.org/10.1002/9781118344729
https://doi.org/10.1016/j.jvs.2014.12.050
https://doi.org/10.4155/fso.15.28


[16] G. A. Nuttall. “Hemostasis and Thrombosis: Basic Principles and Clinical
Practice, 5th ed.” In: Anesthesia & Analgesia 104.5 (2007), p. 1317. doi:
10.1213/01.ane.0000263681.99710.0b.

[17] AnaesthesiaUK. Coagulation- classical model. 2005. url: http://www.frca.

co.uk/article.aspx?articleid=100096.
[18] M. Tamagawa. “Observation of Thrombus Formation Process by High Shear

Rate on Various Flows and CFD Based Prediction Method for Thrombus
Formation Rate”. In: Volume 3: Biomedical and Biotechnology Engineering.
ASME, 2014. doi: 10.1115/imece2014-38002.

[19] P. A. Aarts et al. “Blood platelets are concentrated near the wall and red
blood cells, in the center in flowing blood.” In: Arteriosclerosis: An Official
Journal of the American Heart Association, Inc. 8.6 (1988), pp. 819–824.
doi: 10.1161/01.atv.8.6.819.

[20] K. Zlobina and G. T. Guria. “Platelet activation risk index as a prognostic
thrombosis indicator”. In: Scientific reports 6 (2016), p. 30508. doi: 10.

1038/srep30508.
[21] L. D. Casa and D. N. Ku. “Thrombus Formation at High Shear Rates”. In:

Annual Review of Biomedical Engineering 19.1 (2017). PMID: 28441034,
pp. 415–433. doi: 10.1146/annurev-bioeng-071516-044539.

[22] Huck. 2008. url: http://www.shenc.de/A2-Huck-res.htm.
[23] R. G. Owens and T. N. Phillips. Computational Rheology. World Scientific

Publishing Company, 2002. doi: 10.1142/9781860949425.
[24] H. A. Barnes. “The yield stress—a review or ‘παντα ρει’—everything flows?”

In: Journal of Non-Newtonian Fluid Mechanics 81.1 (1999), pp. 133–178.
doi: 10.1016/S0377-0257(98)00094-9.

[25] P. Moller et al. “Yield stress and thixotropy: on the difficulty of measuring
yield stresses in practice”. eng. In: Soft matter 2.4 (2006), pp. 274–283.

[26] C. N. “A Flow Equation for Pigment-Oil Suspensions of the Printing Ink
Type”. In: Rheology of Disperse Systems (1959), pp. 84–104.

[27] J. R. A. Pearson. “The Non-linear Field Theories of Mechanics (Vol. III,
part 3, of Encyclopaedia of Physics). By C. TRUESDELL and W. NOLL.
Springer, 1965. 602 pp. DM. 198.” In: Journal of Fluid Mechanics 25.3
(1966), pp. 638–640. doi: 10.1017/S0022112066210302.

[28] W. Noll. “A Mathematical Theory of the Mechanical Behavior of Continuous
Media”. In: Archive for Rational Mechanics and Analysis 2 (1958), pp. 197–
226. doi: 10.1007/BF00277929.

[29] B. D. Coleman and W. Noll. “An approximation theorem for function-
als, with applications in continuum mechanics”. In: Archive for Rational
Mechanics and Analysis 6.1 (1960), pp. 355–370. doi: 10.1007/BF00276168.

[30] B. T. y. s. Coleman and W. Noll. “Foundations of Linear Viscoelasticity”.
In: Rev. Mod. Phys. 33 (2 1961), pp. 239–249. doi: 10.1103/RevModPhys.33.239.

112

https://doi.org/10.1213/01.ane.0000263681.99710.0b
http://www.frca.co.uk/article.aspx?articleid=100096
http://www.frca.co.uk/article.aspx?articleid=100096
https://doi.org/10.1115/imece2014-38002
https://doi.org/10.1161/01.atv.8.6.819
https://doi.org/10.1038/srep30508
https://doi.org/10.1038/srep30508
https://doi.org/10.1146/annurev-bioeng-071516-044539
http://www.shenc.de/A2-Huck-res.htm
https://doi.org/10.1142/9781860949425
https://doi.org/10.1016/S0377-0257(98)00094-9
https://doi.org/10.1017/S0022112066210302
https://doi.org/10.1007/BF00277929
https://doi.org/10.1007/BF00276168
https://doi.org/10.1103/RevModPhys.33.239


[31] K. R. Rajagopal and A. R. Srinivasa. “On thermomechanical restrictions of
continua”. In: Proceedings of the Royal Society A: Mathematical, Physical
and Engineering Sciences 460.2042 (2004), pp. 631–651. doi: 10.1098/rspa.

2002.1111.
[32] K. R. Rajagopal and A. R. Srinivasa. “On the thermomechanics of materials

that have multiple natural configurations Part I: Viscoelasticity and classical
plasticity”. In: Zeitschrift für angewandte Mathematik und Physik ZAMP
55.5 (2004), pp. 861–893. doi: 10.1007/s00033-004-4019-6.

[33] J. R. A. Pearson. “Fluid Dynamics of Viscoelastic Liquids”. In: Journal of
Fluid Mechanics 266 (1994), pp. 373–376. doi: 10.1017/S0022112094221055.

[34] M. Johnson and D. Segalman. “A model for viscoelastic fluid behavior
which allows non-affine deformation”. In: Journal of Non-Newtonian Fluid
Mechanics 2.3 (1977), pp. 255–270. doi: 10.1016/0377-0257(77)80003-7.

[35] S. Claus. “Numerische Simulation von instationären dreidimensionalen
viskoelastischen Oldroyd-B- und Phan-Thien Tanner-Strömungen”. MA the-
sis. Germany: Mathematisch-Naturwissenschaftlichen Fakultät der Rheinis-
chen Friedrich-Wilhelms-Universität Bonn, 2008.

[36] W. H. Bauer and E. A. Collins. “THIXOTROPY AND DILATANCY”. In:
Rheology. Elsevier, 1967, pp. 423–459. doi: 10.1016/b978-1-4832-2941-6.50014-

3.
[37] H. A. Barnes. “Thixotropy—a review”. In: Journal of Non-Newtonian

Fluid Mechanics 70.1 (1997), pp. 1–33. doi: 10.1016/S0377-0257(97)00004-9.
[38] H. Schmid-Schönbein and R. Wells. “Rheological properties of human

erythrocytes and their influence upon the "anomalous" viscosity of blood”.
In: Ergebnisse der Physiologie, biologischen Chemie und experimentellen
Pharmakologie 63 (1971), pp. 146–219.

[39] R. E. Wells et al. “Influence of fibrinogen on flow properties of erythrocyte
suspensions”. In: American Journal of Physiology-Legacy Content 207.5
(1964). PMID: 14237445, pp. 1035–1040. doi: 10.1152/ajplegacy.1964.207.5.

1035.
[40] E. W. Merrill et al. “Non-newtonian Rheology of Human Blood–effect of

Fibrinogen Deduced by "subtraction".” In: Circulation research 13 (1963),
pp. 48–55.

[41] S. Chien. “Shear dependence of effective cell volume as a determinant of
blood viscosity.” In: Science 168 3934 (1970), pp. 977–9.

[42] J. J. Bishop et al. “Rheological effects of red blood cell aggregation in the
venous network: A review of recent studies”. In: Biorheology 38 (2001),
pp. 263–274.

[43] J. Goldstone et al. “The rheology of red blood cell aggregates”. In: Microvas-
cular Research 2.3 (1970), pp. 273–286. doi: 10.1016/0026-2862(70)90018-X.

[44] A. S. Popel and P. C. Johnson. “Microcirculation and hemorheology”. In:
Annual Review of Fluid Mechanics 37.1 (2005), pp. 43–69. doi: 10.1146/

annurev.fluid.37.042604.133933.
[45] J.-F. Stoltz et al. Hemorheology in Practice. IOS Press, 1999.

113

https://doi.org/10.1098/rspa.2002.1111
https://doi.org/10.1098/rspa.2002.1111
https://doi.org/10.1007/s00033-004-4019-6
https://doi.org/10.1017/S0022112094221055
https://doi.org/10.1016/0377-0257(77)80003-7
https://doi.org/10.1016/b978-1-4832-2941-6.50014-3
https://doi.org/10.1016/b978-1-4832-2941-6.50014-3
https://doi.org/10.1016/S0377-0257(97)00004-9
https://doi.org/10.1152/ajplegacy.1964.207.5.1035
https://doi.org/10.1152/ajplegacy.1964.207.5.1035
https://doi.org/10.1016/0026-2862(70)90018-X
https://doi.org/10.1146/annurev.fluid.37.042604.133933
https://doi.org/10.1146/annurev.fluid.37.042604.133933


[46] E. Merrill et al. “Rheology of Human Blood, near and at Zero Flow: Effects
of Temperature and Hematocrit Level”. In: Biophysical Journal 3.3 (1963),
pp. 199–213. doi: 10.1016/S0006-3495(63)86816-2.

[47] D. M. Eckmann et al. “Hematocrit, Volume Expander, Temperature, and
Shear Rate Effects on Blood Viscosity”. In: Anesthesia & Analgesia 91.3
(2000), pp. 539–545. doi: 10.1213/00000539-200009000-00007.

[48] P. W. Rand et al. “Viscosity of normal human blood under normothermic
and hypothermic conditions”. In: Journal of Applied Physiology 19.1 (1964).
PMID: 14104265, pp. 117–122. doi: 10.1152/jappl.1964.19.1.117.

[49] G. Thurston. “Viscoelasticity of Human Blood”. In: Biophysical Journal
12.9 (1972), pp. 1205–1217. doi: 10.1016/S0006-3495(72)86156-3.

[50] S. Chien et al. “Viscoelastic Properties of Human Blood and Red Cell
Suspensions”. In: Biorheology 12 (1975), pp. 341–6. doi: 10.3233/BIR-1975-

12603.
[51] H. Chmiel et al. “The determination of blood viscoelasticity in clinical

hemorheology”. In: Biorheology 27 (1990), pp. 883–94.
[52] H. A. Barnes and K. Walters. “The yield stress myth?” In: Rheologica Acta

24.4 (1985), pp. 323–326. doi: 10.1007/BF01333960.
[53] L. Dintenfass. Blood Microrheology: Viscosity Factors in Blood Flow, Is-

chaemia and Thrombosis. Butterworth & Co Publishers Ltd., 1971.
[54] C. Picart et al. “Human blood shear yield stress and its hematocrit depen-

dence”. In: Journal of Rheology 42.1 (1998), pp. 1–12. doi: 10.1122/1.550883.
[55] R. B. Bird et al. Dynamics of polymeric liquids, second edition, volume

1: Fluid mechanics, , Wiley-Interscience, New York, 1987, 649 pp. Price:
$69.95. Wiley-Interscience, 1987.

[56] K. Yeleswarapu et al. “The flow of blood in tubes: theory and experiment”.
In: Mechanics Research Communications 25.3 (1998), pp. 257–262. doi:
10.1016/S0093-6413(98)00036-6.

[57] A. Mohan. “Modeling the growth and dissolution of clots in flowing blood”.
PhD thesis. Texas A&M University, 2005.

[58] K. Rajagopal and A. Srinivasa. “A thermodynamic frame work for rate
type fluid models”. In: Journal of Non-Newtonian Fluid Mechanics 88.3
(2000), pp. 207–227. doi: 10.1016/s0377-0257(99)00023-3.

[59] D. Quemada. “A non-linear Maxwell model of biofluids: Application to
normal blood”. In: Biorheology 30.3-4 (1993), pp. 253–265. doi: 10.3233/BIR-
1993-303-410.

[60] D. Quemada. “Rheological modelling of complex fluids. I. The concept of
effective volume fraction revisited”. In: The European Physical Journal
Applied Physics 1.1 (1998), pp. 119–127. doi: 10.1051/epjap:1998125.

[61] D. Quemada. “Rheological modelling of complex fluids: IV: Thixotropic
and "thixoelastic? behaviour. Start-up and stress relaxation, creep tests
and hysteresis cycles”. In: The European Physical Journal Applied Physics
5.2 (1999), pp. 191–207. doi: 10.1051/epjap:1999128.

114

https://doi.org/10.1016/S0006-3495(63)86816-2
https://doi.org/10.1213/00000539-200009000-00007
https://doi.org/10.1152/jappl.1964.19.1.117
https://doi.org/10.1016/S0006-3495(72)86156-3
https://doi.org/10.3233/BIR-1975-12603
https://doi.org/10.3233/BIR-1975-12603
https://doi.org/10.1007/BF01333960
https://doi.org/10.1122/1.550883
https://doi.org/10.1016/S0093-6413(98)00036-6
https://doi.org/10.1016/s0377-0257(99)00023-3
https://doi.org/10.3233/BIR-1993-303-410
https://doi.org/10.3233/BIR-1993-303-410
https://doi.org/10.1051/epjap:1998125
https://doi.org/10.1051/epjap:1999128


[62] M. C. Williams et al. “Theory of Blood Rheology Based on a Statistical
Mechanics Treatment of Rouleaux, and Comparisons with Data”. In: In-
ternational Journal of Polymeric Materials and Polymeric Biomaterials
21.1-2 (1993), pp. 57–63. doi: 10.1080/00914039308048512.

[63] N. S. And and D. De Kee. “Simple shear, hysteresis and yield stress in
biofluids”. In: The Canadian Journal of Chemical Engineering 79.1 (2009),
pp. 36–41. doi: 10.1002/cjce.5450790107.

[64] D. De Kee and C. F. Chan Man Fong. “Rheological properties of structured
fluids”. In: Polymer Engineering & Science 34.5 (1994), pp. 438–445. doi:
10.1002/pen.760340510.

[65] M. Moyers-Gonzalez et al. “A non-homogeneous constitutive model for
human blood. Part 1. Model derivation and steady flow”. In: Journal of
Fluid Mechanics 617 (2008), pp. 327–354. doi: 10.1017/S002211200800428X.

[66] M. A. Moyers-Gonzalez et al. “A non-homogeneous constitutive model for
human blood: Part III. Oscillatory flow”. In: Journal of Non-Newtonian
Fluid Mechanics 155.3 (2008), pp. 161–173. doi: 10.1016/j.jnnfm.2008.04.001.

[67] A. Iolov et al. “A finite element method for a microstructure-based model
of blood”. In: International Journal for Numerical Methods in Biomedical
Engineering 27.9 (2011), pp. 1321–1349. doi: 10.1002/cnm.1427.

[68] R. B. Bird et al. Dynamics of polymeric liquids, volume 2: Kinetic theory.
Wiley-Interscience, 1987.

[69] Y. Dimakopoulos et al. “Hemodynamics in stenotic vessels of small diameter
under steady state conditions: Effect of viscoelasticity and migration of red
blood cells”. In: Biorheology 52.3 (2015), pp. 183–210. doi: 10.3233/BIR-14033.

[70] T. H. S. van Kempen et al. “A constitutive model for the time-dependent,
nonlinear stress response of fibrin networks”. In: Biomechanics and Modeling
in Mechanobiology 14.5 (2015), pp. 995–1006. doi: 10.1007/s10237-015-0649-1.

[71] T. Bodnár et al. “Mathematical Models for Blood Coagulation”. In: Fluid-
Structure Interaction and Biomedical Applications. Ed. by T. Bodnár et al.
Birkhäuser, Basel, 2014, pp. 483–569.

[72] M. Anand et al. “A model incorporating some of the mechanical and
biochemical factors underlying clot formation and dissolution in flowing
blood”. English. In: Computational and Mathematical Methods in Medicine
5.3-4 (2003), pp. 183–218. doi: 10.1080/10273660412331317415.

[73] A. Fasano and A. Sequeira. “Blood Coagulation”. In: Hemomath. Springer
International Publishing, 2017, pp. 79–158. doi: 10.1007/978-3-319-60513-5_2.

[74] F. F. Weller. “Platelet deposition in non-parallel flow. Influence of shear
stress and changes in surface reactivity”. In: Journal of Mathematical
Biology 57.3 (2008), pp. 333–359. doi: 10.1007/s00285-008-0163-5.

[75] J. A. Sethian. Level Set Methods and Fast Marching Methods. Second
Edition. Cambridge University Press, 1999.

[76] S. Osher and R. Fedkiw. Level Set Methods and Dynamic Implicit Surfaces.
Springer Verlag, 2003.

115

https://doi.org/10.1080/00914039308048512
https://doi.org/10.1002/cjce.5450790107
https://doi.org/10.1002/pen.760340510
https://doi.org/10.1017/S002211200800428X
https://doi.org/10.1016/j.jnnfm.2008.04.001
https://doi.org/10.1002/cnm.1427
https://doi.org/10.3233/BIR-14033
https://doi.org/10.1007/s10237-015-0649-1
https://doi.org/10.1080/10273660412331317415
https://doi.org/10.1007/978-3-319-60513-5_2
https://doi.org/10.1007/s00285-008-0163-5


[77] E. N. Sorensen et al. “Computational Simulation of Platelet Deposition
and Activation: I. Model Development and Properties”. In: Annals of
Biomedical Engineering 27.4 (1999), pp. 436–448. doi: 10.1114/1.200.

[78] E. N. Sorensen et al. “Computational Simulation of Platelet Deposition
and Activation: II. Results for Poiseuille Flow over Collagen”. In: Annals
of Biomedical Engineering 27.4 (1999), pp. 449–458. doi: 10.1114/1.201.

[79] F. Storti and F. N. Vosse. “A continuum model for platelet plug formation,
growth and deformation”. In: International Journal for Numerical Methods
in Biomedical Engineering 30.12 (2014), pp. 1541–1557. doi: 10.1002/cnm.

2688.
[80] X. Li et al. “Solving pdes in complex geometries: A diffuse domain ap-

proach”. In: Commun. Math. Sci. 7 (2009), pp. 81–107.
[81] K. E. Teigen et al. “A Diffuse-interface Approach for Modeling Trans-

port, Diffusion and Adsorption/desorption of Material Quantities on a
Deformable Interface.” In: Communications in mathematical sciences 4 7
(2009), pp. 1009–1037.

[82] J. Guermond et al. “An overview of projection methods for incompressible
flows”. In: Computer Methods in Applied Mechanics and Engineering 195.44
(2006), pp. 6011–6045. doi: 10.1016/j.cma.2005.10.010.

[83] S. Turek. Efficient Solvers for Incompressible Flow Problems: An Algorith-
mic Approach and Computational Approach. 1998.

[84] D. Kuzmin. 2000. url: http : / / www . mathematik . uni - dortmund . de / ~kuzmin /

cfdintro/lecture8.pdf.
[85] D. Brands. “Predicting brain mechanics during closed head impact : nu-

merical and constitutive aspects”. English. PhD thesis. Department of
Mechanical Engineering, 2002. doi: 10.6100/IR552152.

[86] K. Affeld et al. “Fluid Mechanics of the Stagnation Point Flow Chamber
and Its Platelet Deposition”. In: Artificial Organs 19.7 (1995), pp. 597–602.
doi: 10.1111/j.1525-1594.1995.tb02387.x.

[87] K. L. Gregg. “A mathematical model of blood coagulation and platelet
deposition under flow”. PhD thesis. The University of Utah, 2010.

[88] S. Aland and A. Voigt. “Benchmark computations of diffuse interface
models for two-dimensional bubble dynamics”. In: International Journal for
Numerical Methods in Fluids 69.3 (2011), pp. 747–761. doi: 10.1002/fld.2611.

[89] M. Heroux et al. An Overview of Trilinos. Tech. rep. SAND2003-2927.
Sandia National Laboratories, 2003.

[90] W. Bangerth et al. “deal.II – a General Purpose Object Oriented Finite
Element Library”. In: ACM Trans. Math. Softw. 33.4 (2007), pp. 24/1–
24/27.

[91] A. Tokarev et al. “Continuous mathematical model of platelet thrombus
formation in blood flow”. In: Russian Journal of Numerical Analysis and
Mathematical Modelling 27.2 (2012). doi: 10.1515/rnam-2012-0011.

116

https://doi.org/10.1114/1.200
https://doi.org/10.1114/1.201
https://doi.org/10.1002/cnm.2688
https://doi.org/10.1002/cnm.2688
https://doi.org/10.1016/j.cma.2005.10.010
http://www.mathematik.uni-dortmund.de/~kuzmin/cfdintro/lecture8.pdf
http://www.mathematik.uni-dortmund.de/~kuzmin/cfdintro/lecture8.pdf
https://doi.org/10.6100/IR552152
https://doi.org/10.1111/j.1525-1594.1995.tb02387.x
https://doi.org/10.1002/fld.2611
https://doi.org/10.1515/rnam-2012-0011


[92] A. Tokarev et al. “Segregation of Flowing Blood: Mathematical
Description”. In: Mathematical Modelling of Natural Phenomena 6.5
(2011), pp. 281–319. doi: 10.1051/mmnp/20116511.

[93] A. Tokarev et al. “Finite Platelet Size Could Be Responsible for Platelet
Margination Effect”. In: Biophysical Journal 101.8 (2011), pp. 1835–1843.
doi: 10.1016/j.bpj.2011.08.031.

[94] S. J. Hund and J. F. Antaki. “An extended convection diffusion model
for red blood cell-enhanced transport of thrombocytes and leukocytes”.
In: Physics in Medicine and Biology 54.20 (2009), pp. 6415–6435. doi:
10.1088/0031-9155/54/20/024.

[95] W.-T. Wu et al. “Transport of platelets induced by red blood cells based
on mixture theory”. In: International Journal of Engineering Science 118
(2017), pp. 16–27. doi: 10.1016/j.ijengsci.2017.05.002.

[96] M. Dubash. Moore’s Law is dead, says Gordon Moore. 2006.
[97] G. Barlas. Multicore and GPU Programming: An Integrated Approach. San

Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2015.
[98] The Message Passing Interface (MPI) standard. 2018. url: https://www.mcs.

anl.gov/research/projects/mpi/.
[99] MPI Implementations. 2018. url: https://www.mcs.anl.gov/research/projects/

mpi/implementations.html.
[100] P. Pacheco. An Introduction to Parallel Programming. 1st. San Francisco,

CA, USA: Morgan Kaufmann Publishers Inc., 2011.
[101] J. Reinders. Intel threading building blocks - outfitting C++ for multi-core

processor parallelism. O’Reilly, 2007.
[102] S. Balay et al. PETSc Web page. 2018. url: http://www.mcs.anl.gov/petsc.
[103] S. Balay et al. PETSc Users Manual. Tech. rep. ANL-95/11 - Revision

3.11. Argonne National Laboratory, 2019.
[104] G. Karypis and V. Kumar. MeTis: Unstructured Graph Partitioning and

Sparse Matrix Ordering System, Version 4.0. http://www.cs.umn.edu/~metis.
University of Minnesota, Minneapolis, MN, 2009.

[105] C. Burstedde et al. “p4est: Scalable Algorithms for Parallel Adaptive Mesh
Refinement on Forests of Octrees”. In: SIAM Journal on Scientific Com-
puting 33.3 (2011), pp. 1103–1133. doi: 10.1137/100791634.

[106] The HDF Group. Hierarchical data format version 5. 2010-2019. url:
http://www.hdfgroup.org/HDF5.

[107] Y. Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial
and Applied Mathematics, 2003. doi: 10.1137/1.9780898718003.

117

https://doi.org/10.1051/mmnp/20116511
https://doi.org/10.1016/j.bpj.2011.08.031
https://doi.org/10.1088/0031-9155/54/20/024
https://doi.org/10.1016/j.ijengsci.2017.05.002
https://www.mcs.anl.gov/research/projects/mpi/
https://www.mcs.anl.gov/research/projects/mpi/
https://www.mcs.anl.gov/research/projects/mpi/implementations.html
https://www.mcs.anl.gov/research/projects/mpi/implementations.html
http://www.mcs.anl.gov/petsc
http://www.cs.umn.edu/~metis
https://doi.org/10.1137/100791634
http://www.hdfgroup.org/HDF5
https://doi.org/10.1137/1.9780898718003


118



List of Figures

2.1 Coagulation cascade, [17] . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 vWF collective networks interactions from globular to stretched to

aggregation transition . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Two kinds of thrombus generated at stenotic lesion . . . . . . . . 15

3.1 Elastic dumbbell, [35] . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Computational domain of Weller’s model . . . . . . . . . . . . . . 35
3.3 Scheme of computation domain for Storti’s model . . . . . . . . . 37
3.4 Scheme of configurations . . . . . . . . . . . . . . . . . . . . . . . 44
3.5 Schema of rheological model of Kempen . . . . . . . . . . . . . . 45

5.1 Overview of computational meshes - perfusion chamber . . . . . . 82
5.2 Initial and final state of phase field-perfusion chamber . . . . . . . 83
5.3 3D view of the velocity field and shear rate on zero phase field

isosurface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.4 Overview of computational meshes - cylinder geometry . . . . . . 86
5.5 Initial and final state of phase field-cylinder geometry . . . . . . . 86
5.6 2D and 3D views of the clot,the velocity field, shear rate field-

cylinder geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.7 Development of the phase field and platelets - cylinder geometry . 88
5.8 Strong scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.9 Weak scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.10 Overview of computational meshes - cylinder geometry . . . . . . 93
5.11 Initial state of clot for both meshes . . . . . . . . . . . . . . . . . 94
5.12 2D and 3D views of clot with velocity field . . . . . . . . . . . . . 94
5.13 Final clot and glyphs of velocity field . . . . . . . . . . . . . . . . 95
5.14 Developed clot and velocity field at low blood inflow velocity - coarse

grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.15 Developed clot and velocity field at low blood inflow velocity - fine

grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.16 Developed clot and velocity field at large blood inflow velocity -

coarse grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.17 Developed clot and velocity field at large blood inflow velocity -

fine grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.18 Phase field isosurface and values of shear stress at different times

of the evolution - coarse grid . . . . . . . . . . . . . . . . . . . . . 103
5.19 Phase field isosurface and values of shear stress at different times

of the evolution at low velocity - fine grid . . . . . . . . . . . . . . 103
5.20 Phase field isosurface and values of shear stress at different times

of the evolution at high velocity - fine grid . . . . . . . . . . . . . 104
5.21 Results from bright-field microscopy in [5], comparison with fast

flow simulations - coarse grid . . . . . . . . . . . . . . . . . . . . . 104
5.22 Results from bright-field microscopy in [5], comparison with slow

flow simulations - coarse grid . . . . . . . . . . . . . . . . . . . . . 105

119



5.23 Results from bright-field microscopy in [5], comparison with fast
flow simulations - fine grid . . . . . . . . . . . . . . . . . . . . . . 105

5.24 Results from bright-field microscopy in [5], comparison with slow
flow simulations - fine grid . . . . . . . . . . . . . . . . . . . . . . 106

120



List of Tables

2.1 Process of high shear rate thrombus formation . . . . . . . . . . . 14

3.1 Overview of elements of reaction terms vector S(c) depending on
concentrations in c . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Overview of flux terms in R(c, f) . . . . . . . . . . . . . . . . . . 41

5.1 Recoupling study -∆t = 0.05 . . . . . . . . . . . . . . . . . . . . . 89
5.2 Recoupling study -∆t = 0.1 . . . . . . . . . . . . . . . . . . . . . 89
5.3 Recoupling study -∆t = 0.2 . . . . . . . . . . . . . . . . . . . . . 90
5.4 Recoupling study -∆t = 0.5 . . . . . . . . . . . . . . . . . . . . . 90
5.5 Solution times in seconds for CG with different preconditioners for

the projection step (4.2) . . . . . . . . . . . . . . . . . . . . . . . 90
5.6 Solution times in seconds for GMRES with different preconditioners

for the tentative velocity step (4.15) . . . . . . . . . . . . . . . . . 91
5.7 Strong scaling - solution times in seconds . . . . . . . . . . . . . . 91
5.8 Weak scaling - solution times in seconds . . . . . . . . . . . . . . 92
5.9 Initial values of all species and critical values of the activating species 94

121



122



List of Publications
Marek Čapek, Overview of Mathematical Models for Blood Flow and Coagula-
tion Process, Week of doctoral students 2011, Proceedings of contributed papers,
Charles University, ISBN 978-80-7378-186-6
Marek Čapek, A Phase-field method applied to interface tracking for blood clot
formation, Applications of Mathematics, submitted
Marek Čapek, Jaroslav Hron, Thrombus development model capturing primary
and secondary hemostasis in the flowing blood, Biomechanics and Modeling in
Mechanobiology, submitted
Marek Čapek, A non-Newtonian Model of Blood Capturing Segregation of Ery-
throcytes– First Step to Proper Modelling of the Blood Coagulation Process, Su-
percomputing in Science and Engineering, 2017, VŠB - Technical University of
Ostrava, ISBN 978-80-248-4037-6

123



124



A. Used software and hardware

A.1 Introduction

A.1.1 Different programming paradigms in scientific com-
puting

Current development of new hardware has shown, that it is not possible to scale-up,
scale vertically, the performance of computational units for scientific computations.
It is the well known fact, that the number of transistors on a chip is limited due
to the spacial requirements and the requirements of cooling of processors with
billions of transistors.
In 1965 Gordon Moore formulated the so called Moore’s Law, which stated, that
the quantitity of transistors on a chip would double every year. However the
validity of this extrapolation is valid only until certain time in the future, as the
smallest transistor can have dimensions of an atomic particle, not smaller, [96].
On the other hand the need for more computational power is emerging not only
in different areas of science, but also in engineering and commercial areas, e.g. in
current finance industry.
It was therefore necessary to tackle the problem of the limits of vertical scaling.
The solution is now not to increase performance by adding more computational
power to CPU or by adding more RAM to the computer. Current development in
the high-performance computing steps forward either by putting more cores in
one CPU or by connection of multiple computers into the network of computers
working on one assigned task, [97].
We will refer to the first solution as parallel computing, whereas the second solution
we will call distributed computing.
We meet parallel computers every day, as multicore processors appear in PCs,
notebooks, smart devices etc. The fact typical for them is that cores communicate
with one another using shared memory. The shared memory is accessible to all
cores in the computer or in the node.
Distributed computers are now used in computational centers in industry, they are
also known as clusters. Each computing node of the cluster owns its own memory
and it communicates with other nodes by exchange of messages. It is apparent,
that exchange of messages brings some overhead in comparison with exchange of
information using shared memory in parallel computers. The speed of messaging
is also limited by the speed of the network connecting the nodes.
The number of nodes fitting into one CPU is however also limited, whereas the
number of computers connected by a network in a cluster is theoretically unlimited.
It must however be said, that an hybrid approach is possible as well: the threads of
execution on each core communicate in a process running on a node containing the
cores. The advantages and disadvantages of the hybrid approach are the following:
On the one hand one gets the performance gain by using of shared memory for all
cores of a node, on the other hand one can connect multiple such nodes together,
which will communicate by messages. One drawback of such approach is however
the complexity of development in comparison with development of purely parallel
or distributed code.
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In our outline we stick to the distributed model of high performance computing,
as it is used for computations of problems outlined in this work. We will start by
the description of MPI, an message passing standard for scientific computations.

A.1.2 Message Pasing Interface - MPI
MPI [98] is a message passing portable standard. There are several implementations
of MPI in, even the open source ones, [99].
The key concept of MPI is the communicator. Communicators are objects which
group together processes in the MPI session. Each process in a communicator
obtains an independent identifier. Based on the type of computation we do not
have to let every process communicate with every other process. Instead we can
define a topology, which reflects the type of computation.
Should we have computation in 2D, e.g. Laplace equation discretized using finite
elements or finite difference method, then is is natural to assume, that processes
behave as if they were in two-dimensional grid and they communicate with top,
bottom, left, right, neighbours.
MPI provides two types of communication [100], [97]. The first one is the point-
to-point communication, which enables exchange of messages between two specific
processes identified by their unique identifiers in the corresponding communicator.
The second type of communication is the collective one. The communication
occurs among all processes in the communicator. The basic types of collective
communication are synchronization, data movement and collective computation
(reduction).
On synchronization all processes wait until all members of communicator reach
some synchronization point. Under data movement type belong broadcast, all to
all, scatter, gather operations. The reduction is performing an operation on data
obtained from the other members of communicator.

Finite element library deal.ii
The finite element library deal.ii, [4], [90] is an open source library developed in
C++. It uses features of C++ to allow mathematicians rapid finite element code
development. It features wrapping of general parts of finite element codes such as
grid creation and refinement, processing of degrees of freedom, output of results
into different graphics formats, output of meshes. For that purpose deal.ii leverages
the object orientation of C++, which allows to write highly modular code. Writing
of modular code is a must, when one starts to develop a large project.
Another feature of C++ used in deal.ii library design is the support of generic
programming, i.e. template (meta-)programming. One great example of using
templates in deal.ii, is so called dimension independent programming. It allows
to change the spatial dimension of the solved problem from one to two or three
spatial dimensional withour principially great effort.
Deal.ii library supports different kinds of refinement - h- , p-, hp-. The refinement
criterion is based on the on local errror indicator or error estimator. In deal.ii
refinement functions are implemented, which take the indicator or estimator object
as an argument. The function then refines, either in h-, p-, hp-, manner, based on
the current numerical solution and the object of indicator or estimator.
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Deal.ii library allows to use the computational sources of multiple cores on one
node or use multiple nodes in a network. The first case is implemented using the
library Threading Building Blocks, [101], i.e. it uses a threading technology. The
latter one is the communication among nodes in a network implemented using
the commucation framework of MPI, which was mentioned above.
In deal.ii the backend for linear algebra operations is implemented. It contains
support for sparse matrices, vectors, Krylov subspace methods, direct solvers,
blocked matrices.
Deal.ii provides rich interface with well established numerical packages Petsc [102],
[103] and Trilinos [89], which are to be used mainly in the cases of computations
distributed across multiple nodes in the cluster.
Deal.ii library needs to solve the problem of partitioning of complicated large
computational domains into small chunks, in the case of parallel or distributed
computations. For that purpose it uses the libraries METIS [104] and p4est [105].
Above we said, that deal.ii library supports multiple graphics formats. For the
distributed computations used in our case we output the solution into hdf5/xdmf
format supporting persistence of large data. For that purpose deal.ii interfaces
with HDF5 library [106].

Key concepts of distributed linear algebra
We used in our computations Krylov methods for solution of the following problem

Ax = b, (A.1)
where x ∈ Rn is the vector of unknowns, A ∈ Rn×n is square and regular matrix
and b ∈ Rn is the right hand side.
Krylov methods search for the solution in the subspace x0 + Km of the whole
solution space Rn, where we define the Krylov space Km of order m for the vector
v and the matrix A in the following way:

Km(A, v) = span
{
v,Av,A2v, . . . ,Am−1v

}
(A.2)

The Krylov methods work only with matrix-vector products, scalar products and
linear combinations of vectors, there is no necessity of accessing the elements of
matrix A. We use the finite element method, which produces sparse matrices. As
the matrix-vector product computational price is determined by the quantity of
non-zero entries per row, the Krylov methods appear good for the finite element
method codes [107].
We will now go through the all above mentioned key matrix and vector operations
necessary for the Krylov subspace methods. The simplest one are the linear
combinations of vector, as there is no necessity of internode communication.
The scalar product can be more expensive than the matrix vector product, as
after quite fast local computations it is necessary to perform a global reduction
operation.
The matrix vector product can be better scalable than the scalar product
computation, as it contains a larger number of local computations. In this step it is
necessary to get values of solution, which are not local. However due to sparsity of
matrix, the number of imported values is relatively low. It is necessary to perform
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MPI scatter operation on the values of solution. In the meantime it is however
possible to compute the necessary local computation for the matrix vector product.

A.2 Distributed solvers
One of the main reasons for using the parallel solvers based on Krylov subspace
methods is their scalability. This scalability is hardly to be reached with parallel
direct solvers, which limits their field of application to problems of rather smaller
dimension.
Deal.ii distributes the rows of linear system originating from the assemble row-
wise, i.e. each machine, process, CPU has only specific number of rows from the
whole linar system. The Krylov subspace methods can then be implemented in
distributed manner using the above discussed key operations - linear combinations
of vectors, scalar products of vectors and matrix vector products. In this way we
can paralellize the solvers like GMRES, CG, BiCGStab.

A.3 Key parts of computations with deal.ii
In this section we will show the way deal.ii library is used to solve the finite
element problems.
Firstly we show and comment on setting up of the computation, on assembling
of linear system and on the solution procedure of the linear system. We limit
ourselves in this sketch to Laplace equation, we show however the computation
in the fully distributed setting. Secondly we present our way of approaching of
solution of linear systems originating from the models formulated in this work.
We call it fallback strategy.

A.3.1 Setup and assemble for Laplace problem
Deal.ii library relies on C++, therefore each simulation is represented by a C++
class, here it is class LaplaceProblem:

template <int dim>

class LaplaceProblem

{

public:

LaplaceProblem ();

~LaplaceProblem ();

void run ();

private:

void setup_system ();

void assemble_system ();

void solve ();

MPI_Comm mpi_communicator;

parallel::distributed::Triangulation<dim> triangulation;

DoFHandler<dim> dof_handler;
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FE_Q<dim> fe;

IndexSet locally_owned_dofs;

IndexSet locally_relevant_dofs;

ConstraintMatrix constraints;

LA::MPI::SparseMatrix system_matrix;

LA::MPI::Vector locally_relevant_solution;

LA::MPI::Vector system_rhs;

In constructor of LaplaceProblem MPI communicator, distribute triangulation,
degree of freedom handler and used finite element (here quadratic) are initialized:

template <int dim>

LaplaceProblem<dim>::LaplaceProblem ()

:

mpi_communicator (MPI_COMM_WORLD),

triangulation (mpi_communicator),

dof_handler (triangulation),

fe (2)

{}

The code is run on each node. In setup method the fundamental data structures
are initialized locally relevant degrees of freedom, locally owned degrees of freedom,
constraint matrix (takes care of hanging nodes and boundary conditions), sparsity
pattern of the global matrix and the global matrix.

template <int dim>

void LaplaceProblem<dim>::setup_system ()

{

dof_handler.distribute_dofs (fe);

locally_owned_dofs = dof_handler.locally_owned_dofs ();

DoFTools::extract_locally_relevant_dofs (dof_handler,

locally_relevant_dofs);

locally_relevant_solution.reinit (locally_owned_dofs,

locally_relevant_dofs, mpi_communicator);

system_rhs.reinit (locally_owned_dofs, mpi_communicator);

constraints.clear ();

constraints.reinit (locally_relevant_dofs);

DoFTools::make_hanging_node_constraints (dof_handler, constraints);

VectorTools::interpolate_boundary_values (dof_handler,

0,Functions::ZeroFunction<dim>(), constraints);

constraints.close ();

DynamicSparsityPattern dsp (locally_relevant_dofs);

DoFTools::make_sparsity_pattern (dof_handler, dsp,

constraints, false);

SparsityTools::distribute_sparsity_pattern (dsp,

dof_handler.n_locally_owned_dofs_per_processor(),

mpi_communicator,

locally_relevant_dofs);

system_matrix.reinit (locally_owned_dofs,

locally_owned_dofs,

dsp,
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mpi_communicator);

}

In the code for the assembling of linear system we iterate over all cells of the mesh,
which the current node owns. On each of these cells we assemble contributions to
local full matrix and to local right hand side vector.

template <int dim>

void LaplaceProblem<dim>::assemble_system ()

{

const QGauss<dim> quadrature_formula(3);

FEValues<dim> fe_values (fe, quadrature_formula,

update_values | update_gradients |

update_quadrature_points |

update_JxW_values);

const unsigned int dofs_per_cell = fe.dofs_per_cell;

const unsigned int n_q_points = quadrature_formula.size();

FullMatrix<double> cell_matrix (dofs_per_cell, dofs_per_cell);

Vector<double> cell_rhs (dofs_per_cell);

std::vector<types::global_dof_index> local_dof_indices (dofs_per_cell);

typename DoFHandler<dim>::active_cell_iterator

cell = dof_handler.begin_active(),

endc = dof_handler.end();

for (; cell!=endc; ++cell)

if (cell->is_locally_owned())

{

cell_matrix = 0;

cell_rhs = 0;

fe_values.reinit (cell);

for (unsigned int q_point=0; q_point<n_q_points; ++q_point)

{

const double rhs_value= 1.;

for (unsigned int i=0; i<dofs_per_cell; ++i)

{

for (unsigned int j=0; j<dofs_per_cell; ++j)

cell_matrix(i,j) += (fe_values.shape_grad(i,q_point) *

fe_values.shape_grad(j,q_point) *

fe_values.JxW(q_point));

cell_rhs(i) += (rhs_value *

fe_values.shape_value(i,q_point) *

fe_values.JxW(q_point));

}

}

cell->get_dof_indices (local_dof_indices);

constraints.distribute_local_to_global (cell_matrix,

cell_rhs,

local_dof_indices,

system_matrix,

system_rhs);

}

system_matrix.compress (VectorOperation::add);
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system_rhs.compress (VectorOperation::add);

}

In the solve method we can choose among different distribute solvers from the
stack of Trilinos or PETSC:

template <int dim>

void LaplaceProblem<dim>::solve ()

{

LA::MPI::Vector

completely_distributed_solution (locally_owned_dofs, mpi_communicator);

SolverControl solver_control (dof_handler.n_dofs(), 1e-12);

#ifdef USE_PETSC_LA

LA::SolverCG solver(solver_control, mpi_communicator);

#else

LA::SolverCG solver(solver_control);

#endif

LA::MPI::PreconditionAMG preconditioner;

LA::MPI::PreconditionAMG::AdditionalData data;

#ifdef USE_PETSC_LA

data.symmetric_operator = true;

#else

#endif

preconditioner.initialize(system_matrix, data);

solver.solve (system_matrix, completely_distributed_solution, system_rhs,

preconditioner);

constraints.distribute (completely_distributed_solution);

locally_relevant_solution = completely_distributed_solution;

}

In the run method we call the above defined methods consecutively.

template <int dim>

void LaplaceProblem<dim>::run ()

{

const unsigned int n_cycles = 8;

GridGenerator::hyper_cube (triangulation);

triangulation.refine_global (5);

setup_system ();

assemble_system ();

solve ();

}

A.3.2 Fallback strategy use of linear solvers in deal.ii
Frequently we use in our code the fallback strategy. We use the mechanics of
exceptions in C++ to capture the case, when one not so robust but effective solver
is not successful. Then other not so effective, but more robust solver, has a try.
We will show this workaround on the example of the solution of the tentative
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velocity step from the splitting method.
Firstly we try GMRES solver with SOR preconditioner. If we are not successfull,
than we resort to GMRES solver with ILU preconditioner. Should we again be
unsuccessful we end with GMRES with algebraic multigrid preconditioner. The
computation will only crash, if all solvers are unsuccessful.
LA::MPI::Vector completely_distributed_solution(locally_owned_dofs_vel,

MPI_COMM_WORLD);

LA::SolverGMRES::AdditionalData add_data_solver(true);

try {

SolverControl solver_control(500, 1e-8);

LA::SolverGMRES solver(solver_control, add_data_solver);

TrilinosWrappers::PreconditionSOR::AdditionalData add_data_prec_sor;

TrilinosWrappers::PreconditionSOR prec_sor;

prec_sor.initialize(system_matrix_vel, add_data_prec_sor);

solver.solve(system_matrix_vel, completely_distributed_solution,

system_rhs_vel, prec_sor);

this->pcout << " Error: " << solver_control.initial_value()

<< " -> " << solver_control.last_value() << " in "

<< solver_control.last_step() << " SOR+ Gmres iterations."

<< std::endl;

} catch (...) \{

this->pcout

<< "Catching in solve_tentative_velocity_step-trying ILU + GMRES solver"

<< std::endl;

try {

SolverControl solver_control(500, 1e-7);

LA::SolverGMRES solver(solver_control, add_data_solver);

TrilinosWrappers::PreconditionILU::AdditionalData add_data_prec_ilu;

TrilinosWrappers::PreconditionILU prec_ilu;

prec_ilu.initialize(system_matrix_vel, add_data_prec_ilu);

solver.solve(system_matrix_vel, completely_distributed_solution,

system_rhs_vel, prec_ilu);

this->pcout << " Error: " << solver_control.initial_value()

<< " -> " << solver_control.last_value() << " in "

<< solver_control.last_step() << " ILU + Gmres iterations."

<< std::endl;

} catch (...) {

this->pcout

<< "Catching in solve_tentative_velocity_step-trying AMG + GMRES solver"

<< std::endl;

try {

TrilinosWrappers::PreconditionAMG::AdditionalData add_data_prec_amg(

false, true, 2, true);
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TrilinosWrappers::PreconditionAMG prec_amg;

{

std::vector<std::vector<bool> > constant_modes;

DoFTools::extract_constant_modes(dof_handler_vel,

ComponentMask(), constant_modes);

TrilinosWrappers::PreconditionAMG::AdditionalData add_data_prec_amg;

add_data_prec_amg.constant_modes = constant_modes;

add_data_prec_amg.higher_order_elements = true;

add_data_prec_amg.elliptic = false;

add_data_prec_amg.n_cycles = 2;

add_data_prec_amg.w_cycle = true;

add_data_prec_amg.output_details = false;

add_data_prec_amg.smoother_sweeps = 2;

add_data_prec_amg.aggregation_threshold = 1e-6;

prec_amg.initialize(system_matrix_vel, add_data_prec_amg);

}

SolverControl solver_control(500, 1e-7);

LA::SolverGMRES solver(solver_control, add_data_solver);

solver.solve(system_matrix_vel, completely_distributed_solution,

system_rhs_vel, prec_amg);

this->pcout << " Error: "

<< solver_control.initial_value() << " -> "

<< solver_control.last_value() << " in "

<< solver_control.last_step()

<< " AMG + Gmres iterations." << std::endl;

} catch (...) {

this->pcout << "Catching in solve_tentative_velocity_step

- failure of AMG +GMRES << std::endl;

throw;

}

}

constraint_matrix_vel_all.distribute(completely_distributed_solution);

A.4 Used harware
We have used hardware facilities on three clusters. Initial computations were
performed on cluster Snehurka, Karlin computational cluster.
More complicated and demanding computations were performed on the clusters
Anselm and Salomon under OPEN acces calls competion provided by IT4ICZ.
The computational part of this work was supported by The Ministry of Education,
Youth and Sports from the Large Infrastructures for Research, Experimental
Development and Innovations project „IT4Innovations National Supercomputing
Center – LM2015070“.
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