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Abstract
In this thesis, we conduct a comparative analysis of how various modern ma-
chine learning techniques perform when employed to asset return prediction on
a relatively small sample. We consider a broad selection of machine learning
methods, including e.g. elastic nets, random forests or recently highly popular-
ized neural networks. We find that these methods fail to outperform a simple
linear model containing only 5 factors and estimated via ordinary least squares.
Our conclusion is that applications of machine learning in finance should be
conducted carefully, because the techniques may not actually be as powerful as
one might think when they are applied under unfavorable circumstances.
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Abstrakt
V této diplomové práci provádíme komparativní analýzu toho, jak moderní
metody strojového učení dokáží predikovat výnosy aktiv při použití malého
množství data. Mezi použitými metodami jsou například elastic nets, náhodné
lesy, nebo neuronové sít’ě. Konstatujeme, že tyto metody nedokáźí prediko-
vat lépe než jednoduchý lineární model obsahující pouze 5 faktorů. Moderní
machine learning metody by se tedy měly aplikovat velmi opatrně, nebot’ ne-
musí bý tak silné, jak by se mohlo zdát, pokud je aplikujeme za nepříznivých
podmínek.
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Chapter 1

Introduction

The field of empirical asset pricing which emerged decades ago has gone through
an exciting period of growth recently. With growing computing capacity and
availability of data, new possibilities open up in the analysis of financial mar-
kets. As companies operating on exchanges intensify their use of algorithmic
trading, information become more accessible and markets become more effi-
cient, arbitrage opportunities slowly disappear and the pressure increases for
quantitative analysts to build more precise models. The need for better models
is also apparent in academia. Recently, we have seen a dynamic advancement
in the asset pricing theory. Narrowing our attention to the field of multifactor
models, great progress has been made from the early contributions of, for ex-
ample, Sharpe (1964) and Lintner (1965a;b) who developed the Capital Asset
Pricing Model (known simply as the CAPM), or Banz (1981) who was the first
to document effects of the size factor.

Since then, researchers have largely focused on shedding light on the be-
havior of financial markets by adding different factors to the returns equation.
A highly valuable body of research follows the work of Fama & French (1993)
who presented a model with three factors (excess return of the market port-
folio, market capitalization and book-to-market ratio). Factor models have
proved to describe prices of assets very well, and they have become widely ac-
cepted among the academic community and also in business. Conventionally,
the authors assumed a linear relationship between asset returns and risk fac-
tors, however, as e.g. Gu et al. (2018) or Feng et al. (2018) have shown, the
links between the variables might actually likely be of a nonlinear form which
the traditional and widely used methods simply can not capture. This was also
suggested by Black et al. (1972) as early as in 1972.



1. Introduction 2

In the area of asset pricing, researchers often add new factors to the returns
equation explaining the behavior of asset returns and then test their relevance.
Another, and recently increasingly pronounced, way to enhance the existing
knowledge in this field is the exploitation of machine learning techniques which
often help uncover the potentially nonlinear nature of the risk-return relation-
ship. A new branch of research in the asset pricing field has emerged which
utilizes various machine learning techniques. After a long period of searching
for (among else) new factors, some economists now begin to search for new
estimation methods instead. Many of these new methods, in comparison with
the previously applied ones, are able to capture the nonlinear and complex
structure of the examined relationships.

Examples of these are Gu et al. (2018) and Krauss et al. (2017) who have
recently shown that the application of deep learning methods like, for example,
neural networks, or tree-based methods like gradient boosting or random forest
can be highly beneficial for the predictive power of asset pricing models. Or
Ban et al. (2016) who applied a highly specialized machine learning algorithm
to portfolio optimization and were able to outperform some of the well-known
Fama and French portfolios.

Most of the successful applications of machine learning in finance have one
thing in common. They utilize enormous datasets compared to what a usual
financial analyst or junior researcher is able to collect. But what happens when
the size of the data is small? Because the modern machine learning techniques
are rarely applied to datasets of limited size and dimension, we believe that
the employment of these highly complex methods on small data should receive
some attention.

In this thesis, we attempt to investigate the consequences of applying ma-
chine learning techniques which have been heavily promoted in the finance
literature lately to a dataset of limited size. We choose the topic of asset pric-
ing, because it has also received much attention in the recent decades. Our
investigation will proceed similarly as a another comparative analysis on this
topic, which is the work of Gu et al. (2018). We will examine the performance
of several models built to make asset return forecasts utilizing a set of com-
monly used factors in the literature. The limitations of our data are two-fold.
First we have gathered a moderate-sized dataset on asset returns of more than
3000 stocks traded in the United States equity market which is however almost
ten times smaller by observation count than that of Gu et al. (2018). Second
we consider only a small set of 19 predictor variables provided by Goyal (2019)
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and French (2019) to which we add the lagged asset returns. Details about the
data we employ can be found in Chapter 4.

When we apply some of the newly developed machine learning algorithms,
we must account for their vulnerability with respect to potential overfit. This
is why regularization techniques need to be employed when using these highly
complex methods. We therefore implement several sample splitting schemes
which allow us to control for the complexity of the given method via tuning
the so-called hyperparameter of the model. The splitting schemes also enhance
the challenging nature of our research by limiting the amount of data fed into
an estimation algorithm or exposing the hyperparameter tuning process to a
limited validation sample size. The sample splitting and hyperparameter tuning
procedures are further detailed in Chapter 3 and Chapter 5.

Let us add a final note about the presentation of our results below. We
always show only the Out Of Sample (OOS) predictive performance of the
methods we apply. We do this in order to provide the reader with a realistic
view of the actual accuracy of predictions. In the past, In Sample (IS) results
showing contribution of many factors have been often presented without con-
sideration of their true predictive ability out of sample. We restrain from this
approach because we find it misleading.

The thesis is structured in the following way. Chapter 2 provides an exten-
sive review of the asset pricing literature and other related works. In Chapter 3,
theoretical framework is laid out and the selected methods used in our analysis
are introduced. Chapter 4 provides description of our dataset. Chapter 5 dis-
cusses the implementation details of our methodology. In Chapter 6, the results
of our analysis are presented to the reader. Finally, Chapter 7 concludes.



Chapter 2

Literature Review

During the past decades, economists have exerted a lot of effort to find pat-
terns according to which assets are priced. Albeit researchers are constantly
developing a better understanding of these patterns, asset returns still haven’t
been explained in a satisfactory way (Fama & French 2015). It would be overly
optimistic to think that this thesis can fully explain how financial instruments
are priced, nevertheless, in this work, we intend to at least help practition-
ers and the academic community understand another piece of the asset-pricing
puzzle. An important first step prior to making any contribution in the field
of asset pricing, and hence prior to the conduct of research on the topic of this
thesis, is to develop a deep understanding of the current state of knowledge in
the field of asset pricing, with special attention paid to multifactor models. It
is this area of research on which our work is based. But first, let us review the
origins of asset pricing in general. Before the beginning of the review, let us
note that while we intend to embody the research in the field of asset pricing in
the whole, most of the work is actually focused on stock pricing. This, however,
does not represent any problem at all because the empirical part of this thesis
will be centered around stock returns anyway.

This chapter contains two important parts. First, Section 2.1 presents
the evolution of the central model in asset pricing, the Capital Asset Pric-
ing Model (CAPM). Second, Section 2.2 builds upon Section 2.1 and introduces
various modifications of CAPM which have appeared in the literature in the
past. Models of this nature are commonly referred to as multifactor models.
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2.1 The Capital Asset Pricing Model and Related
Literature

We begin our survey of literature by examining the early work of Sharpe (1964)
who began to develop the CAPM with his study of the behavior of asset prices
under risk conditions.1 He built a market equilibrium model for asset prices un-
der assumptions about the preferences and possibilities of individual investors
and studied its theoretical properties. A central idea behind the origin of the
CAPM is that there is a negative relationship between the returns which in-
vestors expect for holding an asset and the uncertainty, i.e. risk, connected
to holding this asset. This is reflected in the following statement from Jensen
(1968) who argues that there exist two main tasks of a portfolio manager –
make good predictions of asset prices to increase the portfolio’s returns, and to
minimize the portfolio’s exposure to risk.

Simultaneously to Sharpe, Lintner (1965b) developed essentially the same
model in a more rigorous way and presented additional implications. Fama
(1968) in his short paper compares the models of Sharpe and Lintner and
concludes that there are no practical differences in the models and that both
approaches are equivalent. One year after publishing his paper, Sharpe (1965)
empirically tested his own model under the assumption of market efficiency and
concluded that the data support his model specification. Lintner (1965a) later
elaborated on the model by publishing a similar but more advanced analysis.
In his work he used a different set of assumptions and came to slightly differ-
ent conclusions. Clarification of the previous conclusions was made by Mossin
(1966) who constructed the model with more precision. The joined contribu-
tion of Sharpe, Lintner, and Mossin is often demonstrated by references to the
Sharpe-Lintner-Mossin CAPM which is an expression for the well-known original
version of the Capital Asset Pricing Model. Hirshleifer (1965) presented a valu-
able overview of different approaches in the field of investor decision modelling,
briefly describing, among else, models characterizing production decisions or
the introduction of risk-aversion and its impacts.

Since the times in which the CAPM originated, economists focus on mod-
elling financial market equilibria using expected returns. Hirshleifer (1964)
who appreciated Sharpe’s contribution in the field and followed his work, mod-

1We must not forget to note that it is Jack L. Treynor who seems to be the first to develop
the CAPM, but his work from 1961 has been unpublished for a very long time, see Treynor
(1961) for an edited version of his CAPM manuscript.
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elled investment decisions under time-state preferences which assume complete
knowledge of the investors’ beliefs about the probabilities of each state and
pointed out that securities are of artificial nature, and that to be able to ex-
plain their behavior, researchers must also focus on the process of their creation.
Hamada (1969) studied the propositions made by Modigliani & Miller (1958)
and pointed out that the framework of Hirshleifer (1964) is not very feasible be-
cause it is difficult to be empirically tested due to the nonexistence of markets
for each state.

Many other interesting applications and extensions of the so-called Sharpe-
Lintner-Mossin CAPM model have been introduced in the field. Fama et al.
(1969) built on the CAPM and examined the relationship between stock prices
and the information coming from stock split announcements. They found that
in the period which follows the announcement, markets adjust fast to the new
information, and that they do so through adaptations of expectations regarding
the future dividend payments. Levy & Sarnat (1970) investigated the implica-
tions presented by the interconnections among the world’s financial markets and
concluded that due to restrictions on international capital movements, we still
observe inefficiency among financial markets in the studied developed countries.
Jensen (1969) created a model for evaluating the performance of managed port-
folios. Solnik (1974) built an international model for asset pricing and, among
else, came to an interesting conclusion that forward exchange rates may be
biased estimates of future exchange rates. Fama & French (1998) studied the
influence of the book-to-market ratio in international financial markets.

Fama (1971) developed a micro-based risk-return model for the market equi-
librium without relying on the assumption of riskless borrowing and lending.
Black et al. (1972) presented a two-factor risk-return model and found evidence
that the expected value of the market excess return beta may be evolving in
time, and they also rejected the traditional Sharpe-Lintner-Mossin form of
CAPM. Miller (1977) argued that the basic CAPM was built with the usage
of a faulty assumption that each investor has equivalent estimates of returns
for each security. He developed a model where the estimates can differ across
investors. CAPM with the effect of taxes was introduced by Litzenberger &
Ramaswamy (1979) who also integrated several borrowing restrictions into the
model.

An intertemporal version of CAPM was introduced by Merton (1973a) who
extended the model and observed that the demand for financial assets is sus-
ceptible to changes in the expectations about future investment opportunities.
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He also argued that the expected returns might differ from the riskless interest
rate even under no systematic risk. Galai & Masulis (1976) used a combination
of the option pricing model developed by Black & Scholes (1973) and the clas-
sical CAPM setting to model the behavior of equity prices and the underlying
risks. Merton (1980) investigated the expected market return and its relation
to risk and presented several equilibrium models and asserted that the regres-
sion coefficients of models with realized market returns should be treated with
caution if not being properly adjusted for heteroscedasticity. Hamada (1972)
provides several extensions of the CAPM only by transforming the variables
in the traditional equation to account for the given firm’s capital structure.
Mossin (1968) follows Tobin (1965) and introduces a multiperiod model for
portfolio management and its theoretical characteristics.

On the other hand, economists have not always supported the CAPM, we
will now go through several examples of views in asset pricing contrarian to
the CAPM framework. Friend & Blume (1970) presented an analysis in which
they questioned the traditional approach of Sharpe, Lintner and Jensen and
concluded that CAPM-based estimates of portfolio performance are biased. An-
other work in which the value of the CAPM theory was challenged was Black
et al. (1972) where the traditional Sharpe-Lintner-Mossin form of CAPM was
rejected based on the observation that the expected excess return on a given
security may not be linearly related to its beta. Merton (1973a) showed that
under the absence of systematic risk, the expected returns might differ from
the riskless interest rate, contrary to the CAPM implications. Galai & Ma-
sulis (1976) combined the CAPM with the option pricing formula of Black &
Scholes (1973) and one of their conclusions was that betas may in fact be non-
stationary. Similar remarks can be found in Bachrach & Galai (1979) who find
that cheaper stocks carry more risk than those which are more expensive and
in Gonedes (1973) who also postulates that the market beta could be a func-
tion of the given asset’s price. Fama & Schwert (1977) examined the hedging
nature of several assets and found that e.g. residential real estate was used to
hedge against inflation during the 1953 – 1971 period, hence suggesting that
there are other reasons to hold specific assets than the plausible risk-return
tradeoff. Reinganum (1981) came to a conclusion that markets are either in-
efficient or the CAPM does not hold after observing other factors – firm size
and the earnings-price ratio – to explain asset returns. Another critique of the
CAPM may be found e.g. in Campbell (1996), or in Fama & French (2004) who
provide a concise summary of the documented weak spots of the model.
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Because of the amount of different approaches, methodologies and models
and their countless adaptations and extensions, we suggest the reader to refer
to papers which summarize the evolution in the field, such as Hirshleifer (1965)
with a technical review of related frameworks used in the asset pricing litera-
ture. Another overview of the then-used approaches can be found in Fama &
Malkiel (1970) who present several models along with the relevant empirical
evidence and many different tests of market efficiency of all forms.2

Briefly after the CAPM was constructed, vast amounts of papers began to
deal with the empirical tests of this framework and the relationship between risk
and return has been frequently tested throughout the last couple of decades.
Jensen (1968) empirically evaluated the performance of 115 mutual funds and
concluded that these funds, despite their high expenditures on research, were
not able to outperform a proposed simple trading strategy. He admitted, how-
ever, that he had not considered the contribution of funds in minimizing the
market risk like e.g. Jensen (1969) did. The results of Fama & MacBeth (1973)
who test the risk-return relationship on the New York Stock Exchange (NYSE)
data support the efficient market hypothesis.

A body of research devoted to option pricing emerged during this pioneer-
ing period in the asset pricing field. Black & Scholes (1973) examined the
relationship between risk and return for options and constructed their well-
known option pricing formula. This model was extended by Merton (1973b)
and then further explored by Merton (1976) who investigated the pricing for-
mula under discrete option prices.3 Merton (1974) developed and applied a
model for pricing corporate liabilities and concluded that the model can be
used to price essentially any type of security, the model was built in a similar
way as Black & Scholes (1973) did build their option pricing model. Cox et al.
(1979) constructed a more general option pricing model, special case of which
is the famous Black-Scholes option-pricing equation.

Later on, Merton (1987) made an investigation into different anomalies
caused by incomplete information and concluded that these anomalies might
persist for a longer time even in markets with rational participants. Shleifer &
Vishny (1997) contributed to the topic with their paper on arbitrage where they
advocated that instead of many small market participants, who by exploiting
the arbitrage opportunities push stock prices towards their fundamental values,
the case is rather that a small number of specialized investors make large trades

2These are the weak, semi-strong, and strong forms of market efficiency.
3Black & Scholes (1973) assumed continuous option prices.



2. Literature Review 9

and they documented that under this setting, it is possible for prices to diverge
from their fundamental values. As a response to the critique that the CAPM

is not supported by empirical data, Jagannathan & Wang (1996) developed a
model which allows the betas to be variable in time and concluded that the
model fits the data well. Keim & Stambaugh (1986) studied seasonal effects
in asset pricing. Ferson & Harvey (1991) studied the influence of additional
factors, they found the market risk premium to be the most important factor.
Two years later, Ferson & Harvey (1993) modelled equity market returns using
both country-specific explanatory variables and variables with world-wide influ-
ence to study the risk-return relationship in equity markets on an international
level.

More recently, Lettau & Ludvigson (2001) contributed to the family of
conditional CAPM models and claim that their model performs about as well
as that of Fama & French (1993). Campbell & Vuolteenaho (2004) split the
market excess return beta into two betas to empirically estimate the market
effect in terms of the future expected cash flows and the market discount rates.
Barberis et al. (2015) examine a model which they call the extrapolative CAPM

in which some investors are assumed to build their expectations of future asset
returns based solely on the past returns.

Next, we will present a short overview of the historical evolution of the
strand of literature devoted to multifactor models, i.e. extensions of the classi-
cal CAPM setting for various explanatory variables other than the market excess
return. As we will show, many of these variables, i.e. factors, were found to
significantly contribute to the explanation of variability among individual asset
returns.

2.2 Multifactor Models Literature
Since the early 70’s, when the validity of the original CAPM became to be
questioned, researchers began to use other variables, i.e. factors, to describe
the behavior of asset prices. Firstly, the significance of the newly added factors
was primarily used to demonstrate that the CAPM is not complete and as
such does not hold. Later, when it became widely accepted that the CAPM

is not valid and that other variables than the excess market return influence
the variability in asset returns, economists and financial analysts continued to
add different factors to the risk-return relationship to enhance the accuracy
of their models. This has soon become attractive not just from the academic



2. Literature Review 10

perspective, but also from the business perspective as investors were able to
use the knowledge to increase the performance of their portfolios.

Among the first attempts to include other explanatory variables to the
expected return equation, Arditti (1967) used the debt-equity and dividend-
earnings ratios to explain asset returns. The dividend-earning ratio was found
to be negatively related to returns, and the debt-equity ratio was, counterintu-
itively, found to be negatively related to returns as well. Arditti stated that the
only explanation for the negative coefficients which he could offer was that there
must exist explanatory variables relevant for the relationship but omitted in
his regressions. Explanatory variables other than market excess return which,
contrary to CAPM implications, helped to explain the variation in asset returns
later began to be referred to as anomalies. Reinganum (1981) documented that
the earnings-price ratio helps to explain variation in asset returns, but that its
effect is rather contained in the firm size effect. He also asserted that in view
of these findings, the CAPM is either misspecified, or the central assumption of
market efficiency does not hold. Ferson & Harvey (1991) studied the influence
of several additional factors for both stock and bond returns. Fama & French
(1992) argued that size and book-to-market ratio describe the individual stock
returns well.

A great breakthrough in the multifactor model field came with the work of
Fama & French (1993) who developed the so-called three-factor model which
linked asset returns to three variables – excess return of the market portfolio
(like in the classical Sharpe-Lintner CAPM setting), market capitalization and
book-to-market ratio. Since then, the empirical asset pricing factor literature
has boomed rapidly. Hundreds of factors, among else momentum (Hou et al.
2015), profitability and investment factors, were proposed and tested by re-
searchers, see e.g. Feng et al. (2019) who presented a survey of most of the
factors suggested in the history of asset pricing literature. An interesting ob-
servation was documented by Schwert (2003) where it was claimed that the
described multifactor models were implemented into trading strategies of in-
vestors and that this made several of the previously observed effects disappear.

Jegadeesh & Titman (1993) explored the influence of momentum factors
and asserted that strategies based on momentum promise abnormal profits.
Chan et al. (1996) argued that after inclusion of momentum factors, specifically
lagged returns and lagged earnings, the size and book-to-market factor and
the original market excess return factor do not contribute to the asset pricing
process explanation anymore. A similar conclusion about momentum factors
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and trading volume can be found in Brennan et al. (1998). Trading volume
was also examined in Lee & Swaminathan (2000). Chan et al. (2001) found
that stocks of companies with high ratio of research and development expenses
to equity deliver higher returns. Jegadeesh & Titman (2001) analyzed the
reasons behind the success of momentum strategies. Pástor & Stambaugh
(2003) found their liquidity factor to bring contribution even under the presence
of other factors, including momentum. Francis et al. (2005) suggested the
quality of financial reports to be recognized as another important risk factor.
The role of default risk was analyzed by Vassalou & Xing (2004). Diether
et al. (2002) documented that stocks which have higher dispersion among the
analysts’ forecasts of their earnings earn abnormally low returns, but rejected
the view that the dispersion in the forecasts is a good proxy for risk. Asness
et al. (2013) provided yet another support for the momentum and size factors
after they performed a study on different markets and across different classes
of assets. In their paper from 2009, Fang & Peress (2009) carried out a cross-
sectional analysis of the effects of media coverage in stock returns. They found
that companies with higher media coverage tend to generate lower returns.

But not all new factors bring contribution in presence of the existing ones.
Consider an example of the paper written by Fama & French (1996), where they
claimed that their original three-factor model introduced in Fama & French
(1993) covered most of the effects of several other variables which were previ-
ously found to be significantly contributing to the explanation of asset return
behavior. Campbell (1996) studied the contribution of more than 20 differ-
ent factors, but only few of them were found to be significant. Kothari et al.
(1995) found a weaker relationship between the book-to-market ratio and as-
set returns than Fama & French (1992), and argued that the previous results
describing a strong influence of the book-to-market ratio might suffer from se-
lection bias. Lewellen et al. (2010) criticised the empirical methods used not
just in the multifactor asset pricing literature and argued that many of the
published models actually described the risk-return relationships worse than
presented. MacKinlay (1995) even stated that the inclusion of other factors
did not explain satisfactorily why did asset returns behave differently than
what the CAPM would propose and suggested that the findings of such effects
may be results of data fishing. Fama and French responded to these claims in
Fama & French (1996) and albeit admitting that the presence of bias stemming
from data fishing may not always be averted, they provided several arguments
to defend the multifactor approach to asset pricing. Another evidence against
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data fishing was presented in Jegadeesh & Titman (2001).
Lakonishok et al. (1994) asserted that the reason behind the success of

trading strategies used by value investors was that they were capitalizing on
suboptimal actions of other traders rather than being riskier and thus carrying
higher returns. Gompers et al. (2003) found that traded companies with little
shareholder rights provided lower returns than companies with more share-
holder rights. Baker & Wurgler (2006) examined the role of investor sentiment
in the pricing of securities. Lee & Swaminathan (2000) provided further infor-
mation explaining the contribution of trading volume.

As we have shown, plenty of different anomalies were documented in the
asset pricing literature over the recent decades. For easier orientation, see
e.g. Green et al. (2013) who provided a review of the most important factors
which have appeared in the literature. Similar inspections can be found also
in Lewellen et al. (2015) who examined the performance of a model combining
15 stock-level characteristics, and in Feng et al. (2019) as mentioned above.

Other related papers followed the early accomplishments in the field of
multifactor asset pricing. In 1998, Fama & French (1998) published a paper
examining the role of the book-to-market ratio in international financial mar-
kets. Amihud (2002) proposed that the previously documented size effect may
cover the effects of liquidity on stock returns. Another example of a study on
the effects of liquidity in asset pricing is Acharya & Pedersen (2005) who iden-
tified three different channels for the influence of liquidity risk on asset returns
and presented a form of CAPM adjusted for liquidity. Effects of several addi-
tional factors are examined in Fama & French (2008). Bai (2003) performed
a theoretical study of a multifactor framework with large amount of explana-
tory variables, but low amount of time periods. Fama & French (2012) studied
their multifactor framework on international data from four different regions
of the world, but did not provide strong evidence for the integration of these
markets.



Chapter 3

Theoretical Framework

To achieve the objectives of our research outlined in Chapter 1, i.e. examining
the performance of modern machine learning techniques used to predict asset
returns with limited datasets, we first have to set up clear theoretical grounds on
which we can base our investigation. In this thesis, we perform a comparative
analysis of how well different methods predict asset returns given datasets of
various sizes. For that reason, we introduce the reader to several more or
less advanced estimation techniques which represent the building blocks of our
analysis.

Most of these methods are flexible for uncovering complex relationships in
the data, but also susceptible to overfitting models and providing misleading
results if not used wisely. Their susceptibility to overfit stems from the ability to
encompass complicated nonlinear patterns which the standard linear techniques
often used in asset pricing can not. Hence the feature that makes these methods
so powerful is also the biggest threat for the researcher. To limit the chances of
overfitting as much as possible, it is advisable to utilize regularization routines
which restrict the method’s complexity and make it less prone to fitting noise.
Regularization is applied through the so-called hyperparameter tuning which is
a name for the process of finding the parameters that determine the complexity
of a given estimation method. It is important to emphasize yet again, that
applications of machine learning methods must be performed carefully in the
interest of obtaining reliable results. Therefore, each time we present the given
method in Section 3.4 below, we provide suggestions for wrapping the method
in a suitable regularization procedure.

The conduct of our estimations begins with the choice of a sample splitting
scheme which governs the amount of data used for training our models, the
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amount of data used for selecting the best hyperparameters, and the amount
of data used for testing the model’s predictions. The choice of points on which
a dataset is split into training, validation, and testing sample determines ex-
actly how will every observation be used and hence can severely influence the
outcomes of the whole estimation procedure. Therefore, the subject of sample
splitting must be addressed as well.

In this chapter, we first introduce the notion of hyperparameter tuning in
more detail in Section 3.1. Second, Section 3.2 provides a brief discussion of
sample splitting arrangements. Third, the general framework for predicting
asset returns is laid out in Section 3.3. Section 3.4 contains a review of char-
acteristics of selected machine learning methods later probed in our study.

3.1 Hyperparameter Tuning
When fitting models using highly sophisticated estimation methods, one must
proceed with a certain level of caution. Sometimes, a model can be fitted so
well that it loses its predictive capability. This may happen when the model is
complex enough that it captures the delicate random variations, i.e. noise, in
the specific data it is applied on, instead of capturing the underlying relation-
ship between variables of interest. Such situation is known as model overfitting.
When new data is fed into an overfitted model, the predictions it makes are
then often wrong and misleading. To avoid overfitting, the complexity of the
model can be restricted by regularization, i.e. by choosing such parameters that
induce greater simplicity in the structure of the model. The parameters which
control the model’s complexity are referred to as hyperparameters. Consider
the number of components used in principal components regression, tree depth
in regression trees, or number of hidden layers in neural networks as examples
of such hyperparameters.

The simplest approach to avoid overfit would be to use only a small number
of predictors, fit a gradient boosted tree with only a few boosting iterations,
or train a shallow neural network. However, the most parsimonious models
do not necessary make the best use of our data and hence we need a more
advanced approach for choosing hyperparameters to train our models with. The
procedure of choosing appropriate hyperparameters is termed hyperparameter
tuning.

In time series modelling, the usual way to approach hyperparameter tuning
is to split the data available for building the model into two subsamples - one
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used for training and the other for the so-called validation. The procedure
involves repeatedly fitting the model, each time with different hyperparameter
values, making predictions of the response variable values on the validation
sample, and subsequently choosing the hyperparameter values under which the
model performs best on the validation sample.1 While the validation sample
is in fact not used directly during estimation of the inner parameters of the
model, it can not be perceived as out-of-sample data, because it is still used to
search for optimal values of the hyperparameters.2

Regularization should help the model produce more stable out-of-sample
results. The essential goal of regularization techniques is to cut down on fitting
of the noise without deteriorating the fit of the signal. However, there is one
important issue that comes with tuning our hyperparameters. Hyperparame-
ter tuning can be a highly computationally intensive process and hence very
expensive not only in terms of time. The hyperparameter space, i.e. the set
of possible values that the hyperparameters can take, and the algorithm for
searching the best hyperparameters must both be chosen carefully so that the
computations are efficient, i.e. enough reasonable alternatives are covered, but
the computing capacity is not wasted. For each searched point in the hyperpa-
rameter space, a model has to be fitted from scratch. This can consume a lot of
computing capacity and take a lot of time, especially in the case of tree-based
methods or artificial neural networks where fitting a single model itself can be
very demanding.3

1It is important now to clearly establish the distinction between the hyperparameters
and the inner parameters of the model, such as beta coefficients in regressions. The given
modelling technique, be it e.g. the partial least squares or the random forest algorithm,
always chooses the inner parameters in such a way that they provide the best fit of the
training data under the given hyperparameters, but the hyperparameters must be determined
before fitting the model. The validation data then serves as a reference sample on which the
performance of the model with the already estimated inner parameters is evaluated. Based
on the performance on the validation sample, the most accurate model, i.e. the full model
specification along with the hyperparameter setting, is selected and later used to build out-
of-sample forecasts.

2In contrast to modelling data with temporal ordering, modelling cross-sectional data of-
ten utilizes a different concept known as k-fold cross-validation. Under k-fold cross-validation,
the part of data devoted to training is split into k equally sized subsamples. For a total of k
times, the model is trained on k - 1 of the subsamples, and the remaining kth subsample is
used for validation, each time changing the validation subsample so that each observation,
falling into one of the k subsamples, is used exactly once for the validation purposes. Each
training-validation round produces an estimate of the model parameters, the resulting single
set of parameters is then the average of the k results. The usage of cross-validation in time
series modelling is discussed e.g. in Bergmeir & Benítez (2012).

3In this sense, we could imagine even more costly scenario of running a hyperparameter
optimization over a hyperparameter tuning procedure where we could optimize, for example,
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Few sections below, we find additional details regarding regularization. In-
dividual suggestions of regularization techniques for the selected methods are
described in Section 3.4 below, the specific hyperparameter spaces that we cover
and the choice of algorithm for hyperparameter tuning is depicted in Chapter 5.

3.2 Sample Splitting Schemes
As was stressed out in the previous section, it is very important for the perfor-
mance of all regularized methods to select those hyperparameters under which
the method is the least prone to overfitting the model. To appropriately tune
the hyperparameters, we cannot measure the performance of the given tech-
nique on the same data on which it was fitted. Such approach would likely
directly lead to choosing hyperparameter values which allow the method to fit
as much noise as it can, and thus overfitting the model. Instead, we use data
succeeding the training period which never enter the procedure of estimating
the inner parameters of the underlying model, but which also cannot be used
for making predictions. This part of data is referred to as the validation sample.
After successfully selecting the tuning parameters, we produce predictions of
the model on the held-out testing sample data which did not previously enter
into the process of estimation of hyperparameter tuning.

In time series modelling, the analyst generally has three basic options when
it comes to sample splitting. The first and most straightforward way of splitting
the sample is using the fixed sample splitting scheme. Under the fixed sample
splitting scheme, the whole dataset is divided into three disjoint subsamples,
while respecting the temporal ordering of the data. The first subsample is
the training subsample and the data from it are fed into an algorithm for
estimating the inner parameters of the model. Based on the predictions on the
second, i.e. validation subsample, the hyperparameters of the given algorithm
are optimized. Lastly, predictions on the testing subsample are used to evaluate
the model’s out-of-sample performance. The reason why we cannot evaluate
the performance on the validation subsample as well is that the data are not
truly OOS, despite the fact that they are not directly involved in finding the
inner parameters of the model. They still have to be considered IS, because
they influence the choice of hyperparameters and therefore indirectly alter the
resulting inner parameters estimated on the training subsample.

the dimensions and scope of the hyperparameter space of the lower-level hyperparameter
tuning procedure.
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The fixed sample splitting scheme has the advantage of providing space
only for one round of estimation and hyperparameter tuning, and hence it is
usually fast to employ it. However, the fixed scheme also comes with a few
shortcomings. The first is that it is static, and because enough data must
be used in training and validation, there sometimes is not many observations
dedicated for OOS testing. We may overcome such an issue by limiting the
amount of data in the training and validation samples, but this only leads
to another drawback. When restricting the training and validation samples
and extending the number of observations devoted to testing, we generate a
situation in which the last points in our testing sample are located too far
away from the last points used in estimation. Developing a model which is
able forecast values many periods ahead requires the underlying relationship
between the variables of interest to be very strong and stable.

An alternative to the fixed sample splitting scheme is the recursive scheme.
Under the recursive scheme, we first choose the lengths of the first training
period, the validation period, and the testing period. If we choose the sum of
these lengths equal to the total size of the dataset, we get the fixed scheme
described above as a special case of the recursive sample splitting scheme. But
we rather choose the lengths in such way that some part of the available data is
held aside for later use. We proceed to train and tune our models as usual, and
then use the best performing model to produce OOS forecasts on the prespecified
testing period. However, as opposed to the fixed scheme, the work does not
end here. In the next step, the training sample window size is increased by the
length of the testing period, so that it covers more data than in the previous
phase. Both validation and testing windows are shifted forward by the same
period. The familiar procedure of training, tuning, and testing our model is
then applied again. In the next iterations, we continue to repeat all these steps
and gradually increase the sizes of training samples, while keeping the sizes of
the validation and testing windows constant.

The recursive scheme can hence utilize the same dataset, but compared
to the fixed sample splitting scheme it does not suffer from too long forecast
horizons as the training, validation and testing samples can be rolled forward
until they reach the end of the whole dataset. A disadvantage of using the
recursive scheme is that depending on the testing sample size, the number of
iterations can make the computations run for a long time.

The last category of sample splitting schemes which we cover here is the
rolling scheme. Similarly to the recursive scheme, the utilization of the rolling
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scheme involves shifting the training, validation and testing sample forward
by the length of the testing period. The only exception is that this time,
the training sample does not necessarily contain the oldest observations in the
dataset. Instead, every time the windows are rolled ahead, the last observations
in the previous training sample are dropped and so the size of the training
sample remains fixed. This way, we can exploit the most recent observations
prior to prediction, but the computations can become very expensive as well.

Limiting the size of data used for training and validation via the choice
of a sample splitting scheme is a mechanism for analyzing the performance of
the newly introduced machine learning methods under adverse conditions while
also allowing to capture the potential nonlinear and time-varying patterns in
the data.

Finally, let us note that in order to enhance the performance of our methods,
the data is standardized during every iteration over the given fixed, recursive, or
rolling sample splitting scheme employed, i.e. in the first instance of the scheme
and then each time the samples are rolled forward.4 The standardization is
performed in a usual way, described in Equation 4.1 below.

The sample splitting schemes presented here do not encompass all alterna-
tives available for the researcher. There exist many variations, modifications
and mutations of the above mentioned schemes, but for the sake of brevity, we
only describe those which are employed in our work. Now we briefly describe
the central predictive model of our analysis.

3.3 General Predictive Asset Pricing Model
In general, the predictive models which we will examine in this thesis take the
following form

ri,t = f(xi,t−1) + ϵi,t (3.1)

where r stands for the excess return on the given asset, f is a function of
predictor variables which are represented by a P +1-dimensional vector x, P is
therefore the number of factors employed in the model, the remaining dimension
of x is reserved for the intercept, ϵ is the error term, i ∈ 1, ..., N indexes stocks
(N is the total number of stocks) and t ∈ 2, ..., T is an index of time (T is
the total number of periods in the dataset).5 The specific parameters of the

4There is only one iteration under the fixed sample splitting scheme.
5In our case, t is an index of months.
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function f are estimated using various algorithms depending on the chosen
estimation method. Notice that the factor values are lagged by one period,
this is what creates the predictive nature of the model. The structure of the
function f is usually assumed to be linear (see Section 2.1 and Section 2.2 of
Chapter 2 for examples) as in the following equation

ri,t = θ ∗ x′
i,t−1 + ϵi,t (3.2)

where apart from the familiar variables, θ represents the parameters of the
function f from Equation 3.1, i.e. the inner parameters of the model. Mod-
els represented by Equation 3.2 are then often estimated via Ordinary Least
Squares (OLS). While some of the results of these linear approaches to as-
set pricing are of high quality, many researchers, e.g. Gu et al. (2018), have
expressed their doubts about the linear nature of the estimated risk-return re-
lationship. To allow for the potential nonlinearities, different methods than
OLS must be utilized. We present some of these techniques in the following
section.

3.4 Review of Machine Learning Methods
In what follows, we provide a short overview of machine learning methods which
comprise the building blocks of our analysis. We will be concise by purpose,
because most of the details and technicalities have been described many times in
various scientific materials. For more information about the methods, consult
a similar review in Gu et al. (2018) who provide a handy overview of several
machine learning techniques, focusing on describing the modelling equations,
objective functions, algorithms that efficiently solve them, and algorithms that
also efficiently search for optimal hyperparameters. Alternatively, Hastie et al.
(2009) provides a well-written textbook containing more elaborate definitions,
explanations and examples.

3.4.1 Ordinary Least Squares

The first models we will encounter in our analysis will be linear models linking
the excess stock returns to lagged factors. We begin the introduction of these
methods with Ordinary Least Squares. OLS regression is a well-known method
for quantifying linear relationships. By regressing the dependent variable on
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the independent variables we obtain the model parameters – these are often
referred to as betas. For the purpose of asset return prediction, our model has
the same specification as the one provided in Equation 3.2. OLS algorithm has
an L2 -type objective function specified below

S(θ) =
N∑

i=1

T∑
t=2

(ri,t − θ ∗ x′
i,t−1)2 (3.3)

, i.e. the OLS assigns values to the regression coefficient vector θ such that the
sum of squared residuals of the model is minimized.

A disadvantage of this model is that it simply is not able to capture higher
levels of complexity in the relationships between the variables of interest. An-
other practical drawback of this method is that without regularization, the
method is prone to overfit, especially if the number of independent variables is
high. In what follows, we introduce a handful of methods for estimating linear
relationships, which also provide some degree of protection against fitting the
noise in the data.

3.4.2 Principal Components Regression

The Principal Components Regression is a well-known technique which com-
bines the so-called Principal Components Analysis (PCA) and OLS regression.
It is applied in two steps. First, the PCA is used to construct linear combi-
nations of the predictor variables in such a way that they describe the most
variability in the set of all predictor variables. Hence, it is able to condense a
wide set of independent variables into several artificial factors which still re-
tain most of the variability of the original data. The most important principal
components are then used as regressors in a usual regression problem.

The key hyperparameter here is the number of components on which the
response variable is regressed. It can be tuned using the standard training-
validation procedure described above. The advantage of this method is that
because the number of predictors can decrease substantially, the second-step
regression should be less likely to produce an overfit. However, the choice of
particular principal components may sometimes not be very fortunate, because
the variable which is ultimately predicted does not play any role in the process.
As we will see, also the following Partial Least Squares (PLS) method is based
on a similar idea, but attempts to overcome this issue.
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3.4.3 Partial Least Squares

Another popular dimension reduction technique is the Partial Least Squares.
Similarly to the Principal Components Regression (PCR) described above, PLS

combines the predictor variables into components and offers the researcher the
option to use a chosen number of these components as independent variables in
a regression estimated via OLS. Put simply, it runs simple linear regressions of
the response variable on the predictors, taking the variables one by one. Then,
coefficients from these regression are used to construct weights of the resulting
components. Like with the PCR, the dependent variable can then be regressed
on several of the constructed components and the number of components used
is a possible tuning parameter for this method. As mentioned above, further
details about this algorithm can be found e.g. in Gu et al. (2018).

3.4.4 Elastic Net

As we have established, OLS is highly likely to overfit our models, if we they
include too many predictors. While PCR and PLS aim to reduce the dimension
of the predictor variable set, so that only few components can be entered into
the regression, there also exist a branch of penalization techniques which aim at
reducing the complexity of the model through adjusting the objective function
of the estimation method. The adjustment is pronounced via an inclusion of
a so-called penalization term. The degree of penalization is dependent on the
degree of the model’s complexity. Parsimonious specifications are penalized
less, while complex structures are penalized more. A popular choice of the
penalization is the Elastic Net (EN) penalty which takes the following form

λ ∗ (1 − α) ∗
P∑

p=1
|θp| + λ ∗ α ∗

P∑
p=1

θ2
p (3.4)

where λ ⩽ 0 and α ⊂< 0, 1 > are hyperparameters of the EN method. They
control the form of penalization and can be tuned using the approach described
in Section 3.1. This penalty is simply added to the objective function described
in Equation 3.4 and the coefficients are again chosen so as to minimize this
function.

Least Absolute Shrinkage and Selection Operator (LASSO) and ridge regres-
sion are two popular penalization techniques which are also corner solutions of
the hyperparameter optimization described above. When we choose α equal to
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0, we obtain an L1 -type LASSO penalty. Likewise, if α takes on the value of
1, the elastic net becomes an L2 -type ridge penalty. The consequence of using
EN is that some factor coefficients are set exactly to zero, which is a feature of
the LASSO penalty, or at least shrunken towards zero, which is an effect that
intensifies when the structure of the penalization term approaches the pure
ridge penalty.

A potential drawback of using EN is that it can produce poor results when
it is forced to select between variables showing strong mutual correlation. Of
course, this holds for LASSO and ridge regression as well. In the following
sections, we describe methods that do are not estimated with prior the as-
sumption of linearity between the dependent variable and the predictors or
predictor components.

3.4.5 Random Forest

Random Forest and also the next two algorithms introduced at the end of this
section are modelling techniques which allow the functional form of the model
specified in Equation 3.1 to be nonlinear. The methods also cover potential
interactions among the predictors. Applying a Random Forest begins by grow-
ing a single regression tree. The regression tree is a supervised nonparametric
method which can be also used for classification problems.

A single tree is build by making a series of decisions on how to split the
given data into two parts. Each splitting decision considers only one variable,
i.e. we are looking for an optimal combination of a value cp,k and variable p in
the split k which divides the set of observations into those with p higher than
cp,k and lower than cp,k. Making k - 1 of such decisions results in k terminal
partitions of observations. Before making the splits, it is also important to
determine the maximum depth of our tree. The full model specification under
a regression tree can thus be written as

ri,t =
K∑

k=1
1{xi,t−1∈Lk} ∗ r̄k + ϵi,t (3.5)

where K denotes the number of terminal nodes of a tree, i.e. the number
of subsamples in which the whole training dataset is divided, 1 is a standard
indicator function equal to one if the condition in the lower index is satisfied
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and zero if not, Lk is the set of observations in the kth terminal node, r̄k is the
average of response variable values falling into the kth terminal partition.6

The decisions on splitting the data into partitions are made so that the
impurity which is often an L2 -type measure computed equivalently as the Mean
Squared Error (MSE), i.e. by taking the mean squared difference between the
realized and average values of the response variable r, is minimized. Let us
note that when making predictions based on regression trees, we must always
use the average dependent variable values from the training set.

Growing a whole random forest utilizes a process often referred to as bagging
which is a method intended to make the final predictions more stable. The
bagging routine involves bootstrapping, i.e. drawing [X] different subsamples
of our data. In the next step, we fit a regression tree to each of these subsamples,
and finally we average the forecasts from all of these regression trees. To secure
that the individual tree structures are not alike, which could distort the positive
effects of model averaging, we propose that only a randomly chosen subset of
predictors having a prespecified size is selected prior to each splitting decision.
This way, factors which would otherwise control most of the behavior of a tree,
are forced to have lower influence in the final tree structure.

Single regression trees have several advantages, they are easy to interpret,
they can also be used for classification purposes, they are fairly stable and
can well approximate complex patterns in the data. However, the splitting
decisions are myopic, because they are performed sequentially, and they can
also easily lead to overfit, which requires every analyst to apply them carefully.
Also, they produce forecasts which are not tailored to individual observations,
but rather to a whole group of them. Next, we present the reader to another
related tree-based technique.

3.4.6 Gradient Boosted Regression Tree

Gradient Boosted Regression Tree (GBRT), similarly to Random Forest (RF), is
a very computationally intensive method, since the process of building a single
boosted tree also requires building many individual regression trees. It is also
nonparametric and supervised, but its structure is rather different from RF. It

6The tree structure doesn’t have to be this simple, Breiman (2017) or Hastie et al. (2009)
provide applications of more sophisticated tree methods. We avoid using these because our
intention is to provide a general comparison across methods which posses divergent features
on a basic level without delving deeply into the peculiarities of each of these modelling
approaches.



3. Theoretical Framework 24

too relies on building a series of regression trees, but rather than fitting them
in a parallel way, the algorithm does that sequentially via a technique know
as boosting. Boosting begins with fitting a common regression tree, this tree
should be rather shallow in order for it not to fit the noise in the data. The
residuals from the shallow tree, i.e. the differences between the realized and
fitted values, are then used as a response variable and are fitted via another
shallow tree. The algorithm then continues to iteratively fit residuals left out
by previous regression trees by the same set of predictors.

Finally, when the maximum allowed number of trees in the GBRT model is
reached, the predictions of the individual regression trees are added together.
However, each of them is assigned a weight from the interval (0, 1), so that the
highest relevance is given to the first tree which predicts the actual response
variable, while the other trees in the sequence are given a lower weight because
the further we move from the first iteration, the further the trees are likely
to fit noise instead of estimating the true underlying relationship in the data.
The resulting predictions of boosted trees can be very accurate in-sample, but
the researcher must make sure that this is due to fitting the signal rather than
noise.

3.4.7 Neural Network

Neural Networks (NNs) represent another alternative among methods suitable
for uncovering the potential nonlinear patterns in asset pricing. NNs are heavily
parametrized estimation techniques which attempt to imitate the biological
processes occuring in the human brain, hence the name Neural Network. The
NNs became to be developed by Rosenblatt (1958) who also helped develop the
first computer able to utilize NNs for learning.

Among the simplest and most popular artificial neural network architectures
are the the so-called feed-forward NNs. A feed-forward neural network consists
of neurons, the principal computation units of the network, organized in a
series of layers. The first layer of neurons, or nodes, is the input layer. The
input layer contains several neurons, each corresponding to one of the predictor
variables. What follows are the hidden layer of a NN. Each hidden layer receives
values from the previous layer, assigns each value with a weight, and passes
the weighted sum of values along with an intercept into an activation function.
The activation function of each neuron returns a single value which is then
transferred into all neurons in the subsequent layer. Neurons in the subsequent
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layer again weight the information the receive, and pass on the values of their
activation functions to the next layer in the sequence. The last layer is the
output layer. The output layer weights the values from the previous layer, but
instead of feeding them into an activation function, it returns their weighted
sum as the final fitted value. 7 An important feature of the feed-forward NNs

is, as the name suggests, that the connections between individual layers (be
it any of the input, hidden or output layers) have always the same direction.
Based of their complicated design, it is clear that a big disadvantage of NNs

is that they posses a low level of transparency. Because the structure of a
Neural Network can be quite complex, we follow with a brief discussion of its
individual elements.

Let us begin with the building stones of each NN, the individual nodes. The
nodes are also often referred to as neurons or perceptrons. A single perceptron
can itself be thought of as small NN, consisting only of the input layer and the
output layer. And from another point of view, the whole Neural Network can
be considered as a multilayer perceptron.

Another feature of a common NN is the intercept, i.e. constant term, per-
tinent to the input layer and all hidden layers of the network. Imagine the
constant term in the aggregation step between individual subsequent layers A
and B as being a weight of an additional node in the layer A whose activa-
tion function returns the value 1 for any possible input which is passed to it.
Constant terms are also often referred to as bias nodes.

The activation function must be nonlinear, otherwise the whole artificial NN

becomes a plain linear model with very high costs of estimation. The output
layer usually has no activation function, however, we can also perceive it as a
layer with an activation function in the form of identity.

Finally, let us mention that, Neural Network have been enhanced by re-
searchers with multiple distinctive features in the past, creating various special
types of NNs. Examples of these are multiple output nodes in the output layer,
convolutional networks, or support vector machines. But even the simplest
NN architectures which we consider here are in fact very complex structures.
They also contain several regularization characteristics, the particular choices
of which will be described in Subsection 5.2.7 below.

After establishing the key concepts in the theoretical background of this
7An interesting property of this architecture is that an ordinary linear regression model,

which can be estimated via Ordinary Least Squares, can equivalently be estimated by a
Neural Network with the simplest design, i.e. a NN with only the input and output layers,
but without any hidden layers in between.
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research topic, let us move to the introduction of the empirical framework.
First, Chapter 4 describes the features of our dataset. Then, Chapter 5 presents
the elements of our methodology, such as the specific sample splitting schemes
used, or details about implementations of the given methods.



Chapter 4

Data

In this chapter, we describe the dataset which is later used in estimation.
Generally, the problem of asset pricing is a problem of finding linkages between
various stock-specific or macroeconomic variables, commonly called factors, and
the asset prices or, equivalently (in this context, of course), asset returns. Hence
we divide this chapter into two subsections, Section 4.1 contains description of
data on the response variable, i.e. stock returns and Section 4.2 is dedicated
to details about macroeconomic variables used in the analysis.

Before we move to the characteristics of our data, let us make several impor-
tant notes. First, our dataset could be considered small, compared to datasets
some of the other researchers, e.g. Gu et al. (2018) or Feng et al. (2019), work
with in the field of empirical asset pricing. But this is not necessarily a bad
think. We can think of our dataset as one which does not differ much from a
typical dataset used by an average financial analyst or economist. Not every
practitioner or academician works with enormous datasets gathering of which
can be very costly in terms of time, effort, or money. Hence we perceive our
average-sized data as a good approximation of the reality of other researchers
or entities conducting analyses with financial data and also as a challenge for
the recently introduced machine learning methods which are often applied on
richer datasets.

Second, we never use our data in their raw form without standardization,
not even for the simplest techniques for which the standardization would not
make a big difference. Instead, we standardize our data during every iteration
of every sample splitting scheme that we use. In other words, we perform
standardization on the training and validation data on the first instance of
the given sample splitting scheme and then each time the samples are rolled
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forward.1 Before the predictions are made by any model, the testing data is
transformed as well via the same standardization parameters, i.e. using the
same mean and standard deviation, as the respective training and validation
samples. The same standardization procedure is performed under all fixed,
recursive and rolling schemes employed. The standardization is carried out in
a classical way, described in the following equation

s = x + µX

σX

(4.1)

where x is the original raw value of the variable X, µX and σX are the average
value and the standard deviation of the variable X in the subsample to be
standardized, and s denotes the standardized value.

Third, data on all explanatory variables, i.e. factors, are shifted one period
ahead, thus creating lagged values of these variables. This is important because
we want to examine to predictive capacity of our models, hence, when making
predictions, we always have to work with data that would actually be available
at the time of our prediction. Finding linkages of contemporaneous nature
between factors and excess returns is an interesting task, but it does not tell
us anything about the predictive capabilities of our models.

Fourth, we add lagged excess returns to our dataset. Let us note that
the lagged returns were one of the most important factors in the analysis of
Gu et al. (2018). We further add interactions of this variable with all the
other macroeconomic factors to our set of predictors. Squared value of the
lagged excess stock return is added as well, making the total predictor count
equal to 40. This setting was selected based on the Principal Components
Analysis (PCA) performed on the set of all possible interactions amond our
original variables.

Last, during computations, missing values are skipped rather than being
given any special treatment. However, since the data are quite clean, missing
observations do not pose a big problem. Now we can move to describing the
variables we employ in estimation, we begin with the time series of asset returns.

4.1 Monthly Stock Returns
Stock returns comprise the first important part of our dataset. We managed to
gather a moderate-sized dataset of monthly asset returns computed as simple

1There is only one iteration under the fixed sample splitting scheme.
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returns from month-end closing prices accessed and downloaded via Refinitiv
Eikon.2 After computing the simple monthly returns, the risk-free rate, en-
closed with the five-factor dataset of Fama and French, was used to compute
the monthly excess returns for each stock and month in our dataset.

The excess return data span from December 1997 to November 2017, cov-
ering exactly 20 years, i.e. 240 months, of time. The dataset contains data
on 3219 stocks traded on the largest exchanges in the United States of Amer-
ica, these are National Association of Securities Dealers Automated Quota-
tions (NASDAQ), New York Stock Exchange (NYSE) and Better Alternative
Trading System (BATS). The average count of monthly observations exceeds
1833, i.e. there are, on average, more than 1833 stock returns available for
every month in our dataset. The total amount of observations hence amounts
to over 440 thousand.

4.2 Macroeconomic Factors
The second essential part of our dataset consists of macro-level factors. These
factors were downloaded from two different sources. The first is the notoriously
known Fama and French five-factor dataset collected from Kenneth R. French’s
website (French 2019) which was used in Fama & French (2015). The second
group of factors comes from the personal webpage of Amit Goyal (Goyal 2019)
who gathered valuable data more than 15 variables commonly used as factors
in the asset pricing literature together with Ivo Welch and used it to examine
their empirical performance in asset return prediction (Welch & Goyal 2007).
Datasets from both sources are frequently updated, hence we were able to
accumulate data extending up to December 2017.

What follows is a list of the individual factors used and their brief de-
scription. We begin by the Fama and French factors, the details about the
construction of these factors can be found in Fama & French (2015) or French
(2019). Put simply, the last four of these factors are essentially returns pro-
vided by portfolios diversified via several selected features, while the first one
is an excess return on a non-diversified market-wide stock portfolio. We must
note that these factors are usually used to explain excess returns from the
same time period. However, due to their extensive use in the literature, we

2The author also considered considered using logarithmic returns, but the values, pre-
dictably, did not differ enough to make any notable qualitative or quantitative differences in
our results.
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find those factors to be qualified for testing their predictive abilities and even if
they eventually only add noise to our dataset, the advanced methods presented
in Chapter 3 should be capable to handle these situations.

Market Excess Return Computed as the difference between the average return
of a market portfolio and the 1-month Treasury bill rate.

Small Minus Big Computed as the difference between the average returns earned
on a group of small stock portfolios and a the average return earned on a
group of big stock portfolios. Whether a stock is considered small or big
is governed by its market capitalization.

High Minus Low Computed as the difference between the average returns earned
on a pair of value stock portfolios and a the average return earned on a
pair of growth stock portfolios. The Book to Market Ratio (B/M) is used
to distinguish between value (high B/M) and growth (low B/M) stocks.

Robust Minus Weak Computed as the difference between the average returns
earned on a pair of robust stock portfolios and a the average return earned
on a pair of weak stock portfolios. We distinguish between robust and
weak stocks based on a measure of their operating profitability.

Conservative Minus Aggressive Computed as the difference between the average
returns earned on a pair of conservative stock portfolios and a the average
return earned on a pair of aggressive stock portfolios. The aggressivity
of a stock is determined by how much does the given company invests.

To complete our portfolio of factors, let us briefly present factors provided
by Goyal and Welch. Given that they were collected based on their proclaimed
success in many different papers, these factors come from a variety of areas in
finance and thus form a quite miscellaneous group. But generally speaking, they
represent macroeconomic variables related either to the stock market, the debt
market, or to consumer prices . See Welch & Goyal (2007) for details. Many of
these factors are closely related to those introduced above, but because of the
differences in how these factors are build and hence their actual realizations
differ, we include all of these factors in our analysis, regardless of their similar
nature.

Dividend/Price Ratio Computed as the difference between the natural logarithm
of a yearly sum of dividends paid on the Standard & Poor’s 500 (S&P 500)
index and the natural logarithm of the index.
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Dividend Yield Computed as the difference between the logarithm of the S&P 500

dividends and the logarithm of the lagged index values.

Earnings/Price Ratio Computed as the difference between the log of a yearly
sum of earnings of companies in the S&P 500 index and the log of the
index.

Dividend Payout Ratio Computed as the difference between the logarithm of the
S&P 500 dividends and the logarithm of the S&P 500 earnings.

Stock Variance Computed as the monthly realized volatility (sum of squared
returns made each day of the month on the S&P 500 index).

Book to Market Ratio Computed as the ratio of the book value of companies in
the Dow Jones Industrial Average (DJIA) index to their market value.

Net Equity Expansion Computed as the ratio of the yearly sum of net equity
issued on the NYSE and the market capitalization of stocks traded on
NYSE.

Treasury Bill Rate Simply the rates on the 3-month securities issued by the
United States Treasury.

Long-term Government Bond Yield Yields on the long-term bonds issued by the
government of the United States.

Long-term Government Bond Return Returns on the long-term bonds issued by
the government of the United States.

Term Spread Computed as the difference between the long-term government
bond yields and the Treasury bill rate.

Default Yield Spread Computed as the difference between the corporate bond
yields rated BAA and the corporate bond yields rated AAA.

Default Return Spread Computed as the difference between the long-term cor-
porate bond returns and the long-term government bond returns.

Inflation Rate Reflects changes in the Consumer Price Index.

Now we can move to the next chapter which introduces the reader to our
empirical framework.



Chapter 5

Methodology

In general, the methodology of Gu et al. (2018) will be followed to study the
performance of several newly developed machine learning techniques in com-
parison with those that were traditionally used in the past. To increase the
relevance and validity of the comparisons, all methods will be compared to a
benchmark model represented by a linear regression of excess returns on the five
factors comprising the well-known Fama and French five-factor model (Fama
& French 2015). We will use the Out Of Sample monthly return prediction R2

developed by Gu et al. (2018) to decide which approach performs the best.
The data that we employ in our analysis were described in Chapter 4.

We have gathered a dataset consisting of 19 unique macroeconomic factors1,
these are used to explain the individual excess stock returns in our analysis.
Moreover, the predictor set is extended for the lagged values of the dependent
variable, squares of these values, and another 19 interactions of this variable
with the macroeconomic predictors. All variables enter the models in the form
of lags, we consider only values lagged one period behind, higher lag orders are
ignored. While our dataset cannot be considered large with respect to other
ones used in the literature, we see this as an advantage. The lower relative
size of our dataset allows us to expose the advanced methods to unfavorable
conditions in which we can test their performance.

We adopt a total of 11 sample splitting schemes for our research, details
about them can be found in Section 5.1. In general, we attempt to achieve a
high level of diversity among the schemes, hence we chose then in such way
that each of them possesses unique features with respect to the amount of data

1While the five Fama and French factors included were not originally used to make fore-
casts of asset returns (Fama & French 2015), we feel that it is appropriate to add them
among our regressors because of the proclaimed contribution.
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used in training, validation, or testing. This reminds us to remind the reader of
another important aspect of our estimation procedures, the act of standardizing
training and validation data each time we roll the samples forward. Testing
data are transformed using the same mean value and sample standard deviation
before making predictions. Also, no missing values in the data are imputed,
all of them are skipped instead. We restrain from imputing missing values
because the excess return data is well known to contain a lot of noise and
hence we consider imputing missing values not to be appropriate.

The collection of machine learning techniques applied in our research was
introduced in Section 3.4. Further implementation details are explained in
Section 5.2 below. We suggest the reader to address Section 3.4 of Chapter 3
or Gu et al. (2018) for more information about the techniques used.

In finance, the models are trained on the subsample of data devoted to
training. Many methods then use a so-called validation sample to verify that
the model parameters are not overfitted, i.e. that the performance of the model
doesn’t decrease too much when used on data it was not trained on. In case the
performance on the validation sample drops substantially with respect to the
performance on the optimization sample, the training process can be repeated
with a different setting where some of the model’s hyperparameters (do not
confuse these with the inner parameters of a model such as regression coeffi-
cients or weights in neural networks) are changed in a way that it should be
less simple for the model to result in an overfit. Examples of hyperparameters
could be e.g. the number of variables in a regression or the depth of regression
trees inside a random forest.

The example describes the use of a gradient descent algorithm for searching
the best set of hyperparameter values. Instead of using this algorithm, we
searching for optimal hyperparameters via a technique known as Random Grid
Search (RGS). The algorithm is and adjustment of a standard grid search
approach. Instead of searching the whole parameter space, it randomly selects
a prespecified number of points in the space and chooses the best performing
hyperparameters from this small subset. The advantage of this method is that
it is much faster than the traditional grid search, while keeping a good overall
performance. The procedure is discussed in Bergstra & Bengio (2012). During
the search for optimal parameters, we pick the combination of hyperparameter
values which minimizes the Mean Squared Error (MSE), this is a standard choice
in the financial economics literature, as seen for example in Gu et al. (2018).
The OOS predictions are then obtained by testing the model on OOS data.
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Later, when presenting the results, we completely neglect the IS perfor-
mance of our models, because in the field of asset-pricing, which is notoriously
known for the broad presence of noise, the methods are often found to perform
better in-sample than out-of-sample, and hence we find inclusion of IS results
misleading for the reader.

Below we present further details about the individual methods we consider
in our comparative analysis. The section devoted to OLS is short, because OLS

is the simplest method used and it does not employ any regularization. Other
methods are accompanied by a description of related regularization techniques.
Most of these methods’ hyperparameters are optimized, which is a computa-
tionally expensive process and it takes a lot of time. Because fitting artificial
neural networks is the most computationally demanding technique that we use,
we avoid searching a hyperparameter space to find optimal NN setting. Simi-
larly to Gu et al. (2018), we instead design several neural network architectures
and directly fit the prespecified models. We consider this as a reasonable ap-
proximation of the lengthy hyperparameter tuning process that would otherwise
have to take place. The particular NN specifications that we use are described
in below.

The next section contains the description of our choice of sample splitting
schemes. Nextly, details about how the individual estimation techniques are
depicted in Section 5.2. Section 5.3 concludes with a brief description of how
we compare the performance of the individual methods.

5.1 Sample Splitting Schemes
As mentioned in Section 3.2, we generally have 3 options when it comes to
choosing the appropriate sample splitting scheme – these are the Fixed Sam-
ple Splitting Scheme (FSSS), Recursive Sample Splitting Scheme (ReSSS), and
Rolling Sample Splitting Scheme (RoSSS). Under each sample splitting scheme,
the lengths of training sample windows in months were chosen to avoid situa-
tions where there was a low amount of observations with respect to the number
of predictors. This was, however, not difficult because the total number of ob-
servations available amounts to more than 440,000. Nevertheless, the author
experimented with training the models on very small samples, starting at 1 year
of training data, but the results proved to be very poor and training sample
sizes of less than 60 months were not included in the analysis.

When constructing all recursive and rolling sample splitting scheme, we
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always use the same fixed amount of 12 months in the testing window. The
one-year period was chosen in order to achieve computing efficiency at reason-
able costs of prediction performance. We could simply use testing windows
of size 1 month, i.e. always predict only one period ahead, but this approach
would lead to long-running computations with what we believe is only a small
potential increase in the precision of predictions. We could also set longer test-
ing windows, the length of which could be e.g. 3 years, but that would probably
create conditions too harsh for our methods which could not use data from the
recent years to make predictions. Hence we have settled on a fixed 12 period
size for the testing windows.

The situation is different when considering the fixed schemes, where the
testing sample size directly determines how much data is left for training and
validation. With the fixed scheme, the analyst faces the difficulty of predicting
many periods ahead, without giving the recent observations the chance to influ-
ence the last predictions in the sample. We believe that this might be an issue
especially in the problem of asset pricing, where finding stable and long-lasting
patterns in the data proves to be a challenge.

Now let us describe the particular choices we made about the structure of
splitting schemes used in our examination. Since we use a total of 11 schemes,
we simplify the notation by abbreviating each of them. When we refer to
a particular scheme, we provide the lengths of the training, validation, and
testing windows in parentheses. For example, the following scheme is denoted
by FSSS(5, 5, 10). We consider fixed schemes under two distinct settings, the
first scheme utilizes 5 years of training data, uses the next 5 years for validation,
and tests the results on the remaining 10-year period. Because the conditions
are not very favorable for the methods under the previous scheme, we construct
FSSS(10, 5, 5) as an alternative fixed scheme.

The recursive splitting schemes are chosen in the following specifications
– ReSSS(5, 1, 1), ReSSS(5, 3, 1) and ReSSS(5, 5, 1). The first number in the
brackets denotes the length of the initial training sample. We gradually increase
the validation window sizes up to five years, increasing the demands on the
validation sample performance for the training sample fits. There is no need
to increase the initial training sample size, because the nature of recursive
schemes makes it proceed such specifications anyway. We can hence simply
start with 5-year training samples and add more data each time when the
validation and testing windows move forward. If necessary, we could simulate
the use of a 10-year starting training window by simply neglecting the first
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5 years of predictions of the corresponding scheme with just a 5 years long
starting training window.

The first 3 specifications for the rolling schemes – RoSSS(5, 1, 1), RoSSS(5, 3,
1) and RoSSS(5, 5, 1) – include five-year training window sizes, and the lengths
of the validation windows are gradually increased from one to five years, just
as with the recursive schemes. To give the methods more observations for
training, we also consider the RoSSS(10, 1, 1), RoSSS(10, 3, 1) and RoSSS(10, 5,
1) sample splitting schemes.

Our choice of window sizes for all the sample splitting schemes exposes the
methods to various circumstances. For example, the FSSS(5, 5, 10) scheme
provides our methods with only 60 months of data for training, while the
techniques enjoy a training sample the length of which totals 18 years under
ReSSS(5, 1, 1).

5.2 Implementation of Machine Learning
Methods

This section is devoted to the description of the details regarding our appli-
cation of the methods presented in Section 3.4 of Chapter 3. We now briefly
add some general notes on our methodology. First, whenever it is applicable,
we always choose to fit an intercept when using our methods. This does not
concern the tree-based methods. For optimizing the hyperparameters of our
models, we utilize the random grid search algorithm during which we search
for hyperparameter values which minimize the MSE on the validation sample.
Many various hyperparameters were mentioned during the introduction of the
given methods in Chapter 3. However, these are not the only hyperparame-
ters we can think of. For example, the binary choice of either including an
intercept to a regression or not including it is itself a hyperparameter. The
minimum impurity decrease required for a node to be split in a regression tree
or the choice of activation function in the NN architecture are other examples.
Ultimately, every little detail which has the power to influence the resulting
overall specification of the model even to a minimal extent can be considered
a hyperparameter. Therefore, our specific estimation techniques implementa-
tions could actually be extended by dozens of their variations. Consider our
portfolio of methods only as a representative sample of the whole universe of
advanced machine learning estimation algorithms.
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The implementation details of our approach follow.2

5.2.1 Ordinary Least Squares

We begin the overview of implementation details with Ordinary Least Squares.
The OLS regression is a commonly applied method in the economic literature.
In its simple form, it contains an important drawback, because it does not allow
the analyst to apply it with any form of regularization. We utilize this technique
in two ways. First, an OLS model using only the five factors used in Fama &
French (2015) will be taken as a benchmark for the purpose of comparison
to the performance of the other methods. Second, we will regress the excess
returns on the whole group of 40 independent variables in our dataset, including
the Fama and French 5 benchmark factors.

5.2.2 Elastic Net

Our implementation of the Elastic Net (EN) method is straightforward. The
models are fitted on training samples and then we use the validation samples
to select the best performing combinations of values of the two EN tuning pa-
rameters described in Subsection 3.4.4 of Chapter 3, namely α and λ which
determine the form of penalization used. The hyperparameter spaces consid-
ered for EN are < 0, 1 > for the parameter α and < 0.0001, 0.1 > for λ.

5.2.3 Principal Components Regression

The Principal Components Regression (PCR) is applied as a series of two dis-
tinct steps. First is the choice of principal components based on the values of
predictor variables. The components which explain the most amount of vari-
ance among the predictor data are then fed into a standard OLS regression.
The hyperparameter which we want to optimize here is the number of the lead-
ing components used, i.e. the number of independent variables entering the

2During the conduct of our research, we considered an adapted version of the Fama-
Macbeth regression technique. The original method is not build to provide predictions of
asset prices, it rather allows to describe the contemporaneous relationship between the asset
prices and the betas. Fama-Macbeth regressions have two steps, each of these steps consists
of estimating a linear regression model via OLS, however, the overall nature of the technique
is non-linear, a description of the method can be found in Fama & MacBeth (1973). In
the second step of the adjusted Fama-Macbeth procedure, we took lagged values of betas
as independent variables instead of using their contemporaneous values. The predictions
from this model were however very inaccurate. Because the method was not developed for
prediction purposes, we decided not to include it in our portfolio of methods.
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regression equation. The hyperparameter space for this parameter is simply
any natural number between 1 and the total number of the original predictor
variables, i.e. 40.

5.2.4 Partial Least Squares

Similarly to PCR, the Partial Least Squares (PLS) regression method utilizes
two steps. It first reduces the dimension of the set of predictor variables by
constructing components which keep the highest degree of covariation between
the original predictors and the response variable. What follows is a regression of
excess returns on several of these components. The tuning parameter entering
the estimation process is the number of components used in the regression in the
second stage. Equivalently to the case of PCR, we consider any natural number
between 1 and 40 as a potential value for the optimized hyperparameter.

5.2.5 Random Forest

A brief introduction to the RF algorithm and the underlying regression tree
method was provided in Subsection 3.4.5. In our implementation of Random
Forest, we use the L2 impurity as the splitting criterion. Many regularization
techniques are utilized in the process. Before building each regression tree, the
observations are bootstrapped and only a subset of the full amount of data-
points is used in estimation. When building the individual trees, we control for
their depth, which is a hyperparameter allowed to take integer values between
1 and 4. We also regulate the number of variables randomly sampled before
each splitting decision to be between 3 and 40. Finally, the number of trees in
a forest can either be 100, or 200. All hyperparameter spaces were carefully se-
lected with consideration of their influence on the results, but also with respect
to the computing capacity their application requires.

5.2.6 Gradient Boosted Regression Tree

The Gradient Boosted Regression Tree algorithm utilizes the fitting of a series
of regression trees, which makes it closely related to the RF algorithm described
above. The distinction between the two methods is that while RF uses a bagging
procedure to construct the final specification of the model, GBRT utilizes the
technique of boosting, which starts by fitting a simple regression tree, and than
fits the residuals from the first tree using the same set of predictor variables.
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The predictions made by the second tree are added to the predictions of the first
tree shrunken by the so-called learning rate, which is a hyperparameter and we
consider it to be equal either to 0.01 or 0.1. The procedure then continues by
fitting residuals from the second model by another tree, etc. Regression trees
in the model have a predefined depth, we consider shallow trees of depth 1 or
2. The total number of trees in the overall model is another tuning parameter,
we estimate GBRTs composed of 1 to 100 regression trees.

5.2.7 Neural Network

In our application of the NN estimation technique which is described in ??, there
are many implementation details we have to consider. The most important is
the overall architecture of the applied NNs, i.e. the number of layers which
determine the depth of the network and the number of neurons in each layer.
We find inspiration in Gu et al. (2018) and construct the following four different
NN structures. The first is Neural Network with a single hidden layer consisting
of 8 neurons, the second structure has two hidden layers containing 8 and 6
nodes, respectively. Third architecture extends the depth by one additional
layer with 4 neurons. The last NN design we consider contains four layers,
gradually decreasing the number of neurons in the following order –8, 6, 4, and
2.

We employ an activation function in the form of a Rectified Linear Unit
(ReLU). The ReLU is equivalent to an identity function if its input is nonnega-
tive and returns zero otherwise. For finding optimal values in the complicated
structure of parameter, we utilize the ’Adam’ solver introduced in Kingma &
Ba (2014). The Adam’s learning rate regularization parameter is set 0.001.
Batch normalization introduced in Ioffe & Szegedy (2015) is used to improve
the performance and stability of our NN predictions, the particular batch size
we choose is 1000 observations. We also employ a technique called early stop-
ping. If the prediction errors do not drop by at least 0.1% during the last 5
iterations of the solving algorithm, the estimation is stopped. Finally we al-
ways estimate the network 10 times and average the results to get the ultimate
predictions. Because fitting a whole Neural Network is of random nature, each
of the estimates is different and hence the model averaging makes sense.

The author also tried to apply dozens of other NN architectures, but their
performance tended to be rather worse. For the sake of brevity, only a repre-
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sentative selection of the relatively more successful NN designs is examined in
this text.

5.3 Performance comparison
During the conduct of our research, we will the use the estimation techniques
described in the previous section to predict asset returns. To compare the
performance of individual methods with the performance of other methods, we
use a simple measure of the so-called monthly Out Of Sample R2 developed by
Gu et al. (2018). The monthly OOS R2 can easily provide us with a comparison
of the given technique’s prediction performance against alternative forecasts of
zero excess returns. Not being able to beat a simple forecast of zero, which is
equivalent to naive believes that the future asset price will be equal to the last
observed price, essentially makes the model irrelevant to any rational financial
analyst.3

Now we can move to Chapter 6 where the empirical results of our analysis
are presented.

3See Section 2.8 in Gu et al. (2018) for the explanation of the choice of this metric.
Roughly said, using a sum of squared returns in the denominator is better than using a sum
of squared demeaned returns, because historical mean is a worse estimator of future returns
than a zero constant.
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Results

In this chapter, we present the results obtained by applying the methods out-
lined in Section 3.4 of Chapter 3 and further detailed in Section 5.2 of the
previous chapter. The more advanced nonlinear methods are commonly con-
sidered as being able to outperform the traditionally used linear models. But
because these modern machine learning techniques are most often applied on
rich data, we decided to conduct a comparative analysis to see whether these
considerations hold when the new advanced techniques are challenged with a
relatively small dataset.

A linear regression utilizing only the factors from the famous Fama and
French five-factor model (Fama & French 2015) will be used as a benchmark
model. The Fama and French 5 factors were originally used to explain excess
asset returns realized in the same period, but we must use their lagged values
to allow for making predictions. Although using them in a predictive fashion
may be debatable, we consider their reputation as very successful factors as
a qualification for being included in the analysis. It can turn out that their
lags only add more noise to the underlying true risk-return relationship, but in
that case, the regularization methods employed should be able to guard against
these concerns.

In our study, the OOS performance is the key variable on the basis of which
different approaches will be compared. We find it very important to consider
Out Of Sample performance only and completely neglect the In Sample per-
formance of our models in order not to create false impressions about how
successful any of the methods actually is. Now that we have established the
framework for demonstrating our results, we can move to describe the actual
performance of all methods used in our analysis under all sample splitting
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schemes examined.

6.1 Predictive Performance of Individual Machine
Learning Methods

Table 6.1: Comparison of the Performance of Predictions on All
Stocks via Monthly Out Of Sample R2

B OLS PCR PLS EN GBRT RF NN1 NN2 NN3 NN4
FSSS(5, 5, 10) 0.009 -0.367 -0.003 -0.252 -0.030 -0.001 -0.021 -0.331 -0.404 -0.537 -0.685
FSSS(10, 5, 5) -0.006 -0.014 -0.009 -0.005 0.004 0.006 0.005 -0.035 -0.038 -0.027 -0.033
ReSSS(5, 1, 1) 0.001 -0.201 -0.032 -0.160 -0.051 -0.005 -0.055 -0.258 -0.242 -0.213 -0.164
ReSSS(5, 3, 1) 0.000 -0.208 -0.064 -0.171 -0.051 -0.005 -0.057 -0.268 -0.245 -0.218 -0.165
ReSSS(5, 5, 1) 0.001 -0.209 -0.052 -0.174 -0.052 -0.004 -0.067 -0.275 -0.247 -0.220 -0.167
RoSSS(5, 1, 1) -0.008 -0.352 -0.030 -0.100 -0.040 -0.030 -0.063 -0.490 -0.394 -0.274 -0.165
RoSSS(5, 3, 1) -0.010 -0.151 -0.063 -0.120 -0.043 -0.004 -0.057 -0.247 -0.358 -0.243 -0.174
RoSSS(5, 5, 1) -0.006 -0.208 -0.052 -0.172 -0.054 -0.003 -0.066 -0.256 -0.273 -0.200 -0.168
RoSSS(10, 1, 1) -0.007 -0.081 -0.021 -0.041 -0.029 -0.002 -0.061 -0.162 -0.123 -0.086 -0.027
RoSSS(10, 3, 1) -0.013 -0.010 -0.011 -0.013 0.003 0.005 0.007 -0.032 -0.044 -0.045 -0.026
RoSSS(10, 5, 1) -0.006 -0.014 -0.006 -0.010 0.001 0.001 0.001 -0.005 -0.010 -0.013 -0.010

Values in the table represent the monthly OOS predictive R2 computed based on the predic-
tions made by the given estimation technique on the given sample splitting scheme. Positive
values denote better performance that a naive forecast of 0 excess returns. The upper bound
for the values (the case of perfectly accurate predictions) is 1. The compared estimation
techniques are Benchmark (B), Ordinary Least Squares (OLS), Principal Components Re-
gression (PCR), Partial Least Squares (PLS), Elastic Net (EN), Gradient Boosted Regression
Tree (GBRT), Random Forest (RF), and four different artificial Neural Network (NN) specifi-
cations. The compared sample splitting schemes are denoted by their type – Fixed Sample
Splitting Scheme (FSSS), Recursive Sample Splitting Scheme (ReSSS), or Rolling Sample
Splitting Scheme (RoSSS), and the scheme’s window sizes in years in the parentheses. The
window sizes come in the following order: training, validation, testing. Data for all stocks in
the dataset was used during estimations.

Table 6.1 presents the OOS monthly predictive R2 statistics of our methods,
please refer to Gu et al. (2018) for details about how they are computed. The
values in the table are rounded to 3 decimal places. As can be seen, the
performance of all methods is very poor.1 The most successful of our models
is clearly the benchmark model, i.e. the model including lagged factors from
the Fama and French 5 factor model (Fama & French 2015) estimated via OLS.
The benchmark model dominates the other models on the first Fixed Sample
Splitting Scheme (FSSS) specification with the smaller training period, and also
on all Recursive Sample Splitting Scheme (ReSSS) alternatives.

Under the Rolling Sample Splitting Scheme (RoSSS) modifications with
1Compare these results to a similar table provided in Gu et al. (2018) on page 26.
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smaller training sample sizes and the RoSSS with only a 1-year validation period,
none of the methods considered is able to beat a naive forecast of zero stock
returns. The remaining RoSSS specifications, RoSSS(10, 3, 1) and RoSSS(10, 5,
1), show improved performance over RoSSS(10, 1, 1) or those RoSSSs with small
training windows. We consider this as a sign of how important it is to feed the
models with as much data as possible, and that the regularization is generally
more successful when the validation window size increases.

An interesting observation is that all Neural Network architectures em-
ployed completely fail to produce reliable OOS forecasts.2 This does not, how-
ever, mean that NNs are useless for asset price prediction, it can merely suggest
that perhaps we did not provide them with enough data, or that the selection
of factors we used was insufficient. Nevertheless, the results might be surpris-
ing due to the prominence the NNs achieved in the literature and their widely
accepted qualities.

While the other advanced techniques were arguably more successful in pre-
dicting excess returns, only rarely did they obtain a positive OOS R2. The
bright exceptions share a common feature of having 10 years long training win-
dows and at least 3 years long validation windows. Let us further note that
the dimension reduction techniques, PCR and PLS never pulled their OOS R2

measures from the negative territory.
We have also considered pairwise comparisons of the performance of the

methods on all sample splitting schemes via an adjusted version of the Diebold-
Mariano test (Diebold & Mariano 2002). The adjustment we applied was the
same as e.g. Gu et al. (2018) have performed. Because of the high number
of compared models, we cannot provide the results in a table format. That is
however not an issue because all tests which we have considered failed to provide
evidence that any method overperforms another at the 5% level of statistical
significance, not even when comparing the best performing benchmark method
against the NNs which perform the most poorly.

We can make several conclusions about the main results summarized in
Table 6.1. Generally, all methods enjoy better performance when either the
training sample size increases or similarly when we consider larger validation
windows. While increasing the training sample can produce more stable re-
sults, larger validation window brings higher relevance to the optimal values

2Let us remind the reader that plenty of other NN specifications were considered during
the conduct of this research. But only the most successful NN architectures were included
for the sake of brevity.
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of hyperparameters chosen during the RGSs. Furthermore, the advanced tech-
niques considered in the analysis are not able to save the performance of the
linear methods under the conditions of sample size limited in both the num-
ber of observations and the number of predictors. Because the dataset used
her is relatively smaller, our findings are not directly in contrast with those
of Gu et al. (2018) who assert that the newly developed nonlinear techniques
overperform the predictions of traditional linear models. Our results instead
suggest that a reasonable amount of skepticism should be held with respect to
the advantages of the modern machine learning techniques and with respect to
the value brought to asset pricing by various factors. Our findings also seem
to agree with observations made by Welch & Goyal (2007) that many factors
promoted in the literature actually perform badly as OOS predictors.

In the next section, we inspect the stability of our conclusions under some
challenging circumstances.

6.2 Robustness Checks
In the sections below, we provide several robustness checks of our outcomes.
When performing these checks, we are limited by our dataset and hence cannot
provide complete answers as to why did the selected methods presented in the
overview in Chapter 3 performed so poorly in our analysis. For example, we
cannot fully examine whether the results are unsatisfactory due to the small
amount of observations, or rather because of the limited number of factors
used. However, we can, at minimum, provide several robustness inspections
with which we can support our conclusions.

Firstly, we repeat the estimations above on a subset of the dataset which
only contains stocks from the S&P 500 index. The models we use are usually
more successful when applied on data for the largest, most liquid, and sta-
ble stocks on the market. We will investigate whether the machine learning
methods are able to deliver better results under circumstances more favorable
then in Section 6.1. In the same manner, we then attempt to help the modern
methods by combining their predictions into a one big ensemble. Lastly, the
time-varying performance of the methods is studied, attempting to find periods
of time where these methods perform similarly to what is documented in Gu
et al. (2018).
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6.2.1 Standard & Poor’s 500 Returns Prediction

As a check of robustness of the results presented in Section 6.1, we consider
running the computations only on a specific subset of our data. In this section,
we present the results obtained by performing the same procedure as above,
i.e. using the same methods under the same sample splitting schemes and reg-
ularization techniques, only on stocks in the S&P 500 index. The S&P 500 is a
group of 500 largest stocks traded in United States. Therefore, this subsample
of stocks is highly selected and does not represent a random subsample of the
data. Perhaps because the prices of stocks with greater market capitalization
possess relative stability and enjoy high liquidity, asset pricing models consider-
ing only the largest stocks often show greater precision than those considering
also small stocks. Hence, we believe that testing whether our conclusions hold
if only S&P 500 stocks are included in the dataset is a suitable robustness check
for our analysis.

Table 6.2: Comparison of the Performance of Predictions on the
S&P 500 Stocks via Monthly Out Of Sample R2

B OLS PCR PLS EN GBRT RF NN1 NN2 NN3 NN4
FSSS(5, 5, 10) 0.021 -1.046 0.007 -0.771 -0.088 -0.028 -0.041 -0.932 -1.373 -1.625 -1.704
FSSS(10, 5, 5) 0.015 0.016 0.026 0.011 0.033 0.037 0.035 -0.008 -0.052 -0.071 -0.021
ReSSS(5, 1, 1) 0.015 -0.618 -0.062 -0.508 -0.095 0.004 -0.096 -0.782 -1.057 -1.037 -1.023
ReSSS(5, 3, 1) 0.014 -0.669 -0.053 -0.564 -0.107 0.006 -0.085 -0.843 -1.132 -1.128 -1.092
ReSSS(5, 5, 1) 0.014 -0.727 -0.054 -0.610 -0.117 -0.022 -0.097 -0.912 -1.225 -1.235 -1.199
RoSSS(5, 1, 1) 0.009 -0.708 -0.112 -0.257 -0.069 0.000 -0.080 -0.825 -0.893 -0.699 -0.394
RoSSS(5, 3, 1) -0.014 -0.365 -0.061 -0.429 -0.081 0.006 -0.076 -0.709 -1.118 -0.947 -0.588
RoSSS(5, 5, 1) -0.009 -0.694 -0.058 -0.627 -0.126 -0.019 -0.098 -0.896 -1.135 -1.133 -1.166
RoSSS(10, 1, 1) 0.001 -0.259 -0.065 -0.110 -0.040 0.015 -0.094 -0.342 -0.390 -0.456 -0.117
RoSSS(10, 3, 1) -0.003 0.016 0.024 0.012 0.029 0.016 0.030 -0.028 -0.056 -0.072 -0.035
RoSSS(10, 5, 1) 0.013 0.005 0.019 0.005 0.026 0.024 0.029 0.008 -0.025 -0.019 -0.006

Values in the table represent the monthly OOS predictive R2 computed based on the predic-
tions made by the given estimation technique on the given sample splitting scheme. Positive
values denote better performance that a naive forecast of 0 excess returns. The upper bound
for the values (the case of perfectly accurate predictions) is 1. The compared estimation
techniques are Benchmark (B), Ordinary Least Squares (OLS), Principal Components Re-
gression (PCR), Partial Least Squares (PLS), Elastic Net (EN), Gradient Boosted Regression
Tree (GBRT), Random Forest (RF), and four different artificial Neural Network (NN) specifi-
cations. The compared sample splitting schemes are denoted by their type – Fixed Sample
Splitting Scheme (FSSS), Recursive Sample Splitting Scheme (ReSSS), or Rolling Sample Split-
ting Scheme (RoSSS), and the scheme’s window sizes in years in the parentheses. The window
sizes come in the following order: training, validation, testing. Only data for the S&P 500
stocks was used during estimations.

In Table 6.2, we provide the monthly OOS prediction R2 computed for each
of the methods applied on each of the sample splitting scheme covered. The
difference between these results and those summarized in Table 6.1 is that this
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table contains values of Out Of Sample R2 computed based predictions made
exclusively on the subset of our data containing only stocks from the S&P 500

index.
The immediate observation we make is that the overall prediction accuracy

increased. Compared to Gu et al. (2018), our models are however still under-
performing heavily. Let us also note that Gu et al. (2018) also report higher
accuracy of predictions for the largest stocks on the market. In this context,
the modest increase of performance of our methods on the set of S&P 500 stocks
is not overly satisfactory. Moreover, the NN technique recently heavily pro-
nounced in the literature is once again not able to beat naive forecasts of zero
returns.

Nevertheless, some estimation methods are now able to beat the benchmark
model containing the 5 Fama and French factors on the fixed scheme with
a larger training window as well as on RoSSS(10, 3, 1) and RoSSS(10, 5, 1).
While the Out Of Sample predictive R2 measures of some PCR, EN, or tree-
based models’ specifications are better that those of the benchmark model,
the adapted version of the Diebold-Mariano test statistics does not allow us to
reject the hypothesis of the predictions being equal even on the 15% level of
statistical significance.

6.2.2 Ensemble Forecasts

Quantitative analysts often use ensemble methods to enhance their models.
We have also used ensembling techniques in this analysis, e.g. when growing
random forests from multiple regression trees or when constructing the final
artificial neural network predictions as averages of several independent net-
works. But in this subsection, we consider a broad ensemble consisting of the
final predictions of the individual modelling techniques. Using equal-weighted
ensembles of the individual techniques is suggested e.g. by Krauss et al. (2017)
who achieve better performance with these ensembles than when using the in-
dividual models alone. Additional support for using an ensemble prediction
can be found in Gu et al. (2018). Therefore, we further use an equal-weighted
average of the forecasts to find out whether it can outperform the predictive
Fama and French five-factor benchmark.

?? includes the familiar OOS predictive R2 measures. This time, we consider
the prediction formed by three different ensembles of our methods, each of them
is introduced in the note below the table. We use estimation outputs from
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Table 6.3: Comparison of the Performance of Ensemble Predictions
on the S&P 500 Stocks via Monthly Out Of Sample R2

All All except B PCR & PLS & EN & GBRT & RF

FSSS(5, 5, 10) -0.434 -0.518 -0.108
FSSS(10, 5, 5) 0.027 0.027 0.035
ReSSS(5, 1, 1) -0.326 -0.384 -0.099
ReSSS(5, 3, 1) -0.353 -0.414 -0.105
ReSSS(5, 5, 1) -0.391 -0.458 -0.123
RoSSS(5, 1, 1) -0.226 -0.269 -0.063
RoSSS(5, 3, 1) -0.256 -0.298 -0.079
RoSSS(5, 5, 1) -0.375 -0.438 -0.126
RoSSS(10, 1, 1) -0.109 -0.130 -0.041
RoSSS(10, 3, 1) 0.025 0.024 0.032
RoSSS(10, 5, 1) 0.029 0.028 0.027

Values in the table represent the monthly OOS predictive R2 computed based on the pre-
dictions made by the given ensemble on the given sample splitting scheme. Positive values
denote better performance that a naive forecast of 0 excess returns. The upper bound for
the values (the case of perfectly accurate predictions) is 1. The compared ensembles contain
either all methods All, All methods except the benchmark model (All except B), or an ensem-
ble containing only the PCR, PLS, EN, GBRTand RF models. The compared sample splitting
schemes are denoted by their type – Fixed Sample Splitting Scheme (FSSS), Recursive Sam-
ple Splitting Scheme (ReSSS), or Rolling Sample Splitting Scheme (RoSSS), and the scheme’s
window sizes in years in the parentheses. The window sizes come in the following order:
training, validation, testing. Only data for the S&P 500 stocks was used during estimations.
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the models considering only the S&P 500 stock data presented in the previous
section. The reason why we examine the S&P 500 models instead of the original
ones is that the predictive performance of the techniques is generally higher and
thus we have better chances that some of the ensembles during will produce
exceptional performance.

In the first column, all methods are combined into a single forecasting unit.
The benchmark model is included solely out of curiosity, because it is one of the
more successful models in our repertoire. The second column contains similar
results, because differs from the first one only in that the benchmark model
is absenting from the ensemble. We can see that the forecast accuracy did
not improve much by combining the individual forecasts, this is probably due
to inclusion of techniques which produce severely inferior predictions. In the
third column, we further leave out OLS and NNs because these are the least
accurate methods. The predictions in the last column are on average the best
of the three ensemble alternatives. However, they fail to outperform forecasts
of the individual models, both in terms of the monthly OOS R2 and also when
considering the Diebold-Mariano tests.

6.2.3 Rolling Out Of Sample R2

In this section, we briefly examine how the performance of the estimation tech-
niques evolves in time. For this purpose, we will utilize a simple 1-year rolling
predictive OOS R2 which is simply the ordinary OOS R2 measured on the past
12 predictions. We again consider outputs from the S&P 500 model from ??.
Perhaps we will be able to find specific time periods during which our mod-
els achieve the same, or perhaps even greater performance than the models
of Gu et al. (2018). Alternatively, we can identify months during which our
performance deteriorates and analyze the potential causes of that.

As an example, the 1-year rolling OOS R2 of the EN algorithm under the
RoSSS(10, 3, 1) scheme is plotted in Figure 6.2. As we can see from the chart,
the performance of the EN on the beginning of the testing sample reaches the
value of 0.1 which is fairly close to the value measured in Gu et al. (2018).
But the method fails to keep its high performance throughout the rest of the
sample, which is documented by the large drop of the OOS R2 into the negative
territory around 2016.

Next, we inspect the rolling OOS R2 of the GBRT modelling technique used
under RoSSS(5, 3, 1) to see how its performance evolves in time. Because
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Figure 6.1: 1-Year Rolling Out Of Sample R2 of Elastic Net under
RoSSS(10, 3, 1)

The chart depicts the 1-year rolling OOS predictive R2 measure for the computed on the EN
estimation technique used under the RoSSS(10, 3, 1) scheme. The values of the 1-year rolling
OOS R2 are computed based on the past 12 predictions of the method. The x-axis denotes
time in months and x-axis denotes the OOS R2.

Figure 6.2: 1-Year Rolling Out Of Sample R2 of Gradient Boosted
Regression Tree under RoSSS(5, 3, 1)

The chart depicts the 1-year rolling OOS predictive R2 measure for the computed on the
GBRT estimation technique used under the RoSSS(5, 3, 1) scheme. The values of the 1-year
rolling OOS R2 are computed based on the past 12 predictions of the method. The x-axis
denotes time in months and x-axis denotes the OOS R2.
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RoSSS(5, 3, 1) devotes only 5 years of the data to training, we have the oppor-
tunity, as opposed to the previous example, to uncover its performance prior
to 2012. We notice that the performance drops again around 2016, but there is
also even more significant drop in prediction accuracy timed exactly when the
recent great financial crisis started. While having a decent performance during
the year 2014, the method is not able to achieve these levels on the rest of the
sample and its OOS predictive R2 for the whole period averages at 0.006.

We have intentionally included charts only for well performing techniques
on the given sample splitting schemes, to avoid artificially undermining the
performance of our methods. Charts for other techniques and splitting schemes
are not included for the sake of brevity. But they usually contain a similar
behavior where the performance decreases around years 2015 and 2016. We fail
to conclude what could be the reason for the sudden deterioration of our models
performance. For schemes which are characteristic for their lower period, we
often observe that the performance measure drops around 2009. We believe
that this can be attributed to the recent financial crisis which was accompanied
by increased volatility on the markets and could likely be the cause of this
phenomena. This finding can perhaps be related to the observation of Welch
& Goyal (2007) who find that several factors from their collection suddenly
perform exceptionally well during the 1973 – 1975 Oil Shock. Let us also note
that, with regards to for example NNs as well as the other advanced methods,
in none of the cases examined has the 1-year rolling OOS R2 got anywhere close
to the values obtained by Gu et al. (2018) during the whole testing sample
period. We conclude that the poor performance of the considered techniques
under the selected sample splitting schemes can not be easily explained purely
by the unfortunate location of the testing periods. Moreover, the rolling OOS

R2 on the recursive schemes did not show a clear positive trend, i.e. it did
not suggest that the performance is gradually increasing in time which should
be the case if the low number of observations in the training sample hold the
performance back.

We can now proceed to the concluding remarks.
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Conclusion

In this thesis, we follow the empirical framework of Gu et al. (2018), and at-
tempt to investigate how do some modern machine learning techniques perform
when applied on a dataset of limited size. We have gathered a moderate sized
dataset which we futher split into subsamples under a handful of sample split-
ting schemes considered. This way, each machine learning method employed
has only a limited amount of data available for estimation. We consider the as
a challenge for the newly developed complex nonlinear techniques.

We than compare the performance of these methods against a simple bench-
mark model. The results of our empirical procedure can be found in Chapter 6.
We found that while several methods were able to slightly outperform the
benchmark model containing the 5 factors from the well-known model intro-
duced by Fama & French (2015), the improvement over the benchmark was not
big enough for us to be able to assign it meaningful statistical significance via
Diebold-Mariano tests.

We then proceeded to perform several robustness checks of our findings. By
performing each of these checks, we attempted to undermine our conclusions
from the previous chapter. But eventually, we failed to provide satisfactory
evidence about a significant contribution of the examined machine learning
methods over the traditionally used linear approaches.

Although the results are not promising in general, there are several obser-
vations we can take out after examining them more closely. First, the larger we
set the training and validation windows, the greater results we achieve. While
this can be troublesome for researchers working with small to moderately sized
datasets, this finding promises that when there is an option to increase the
number of observations in our dataset, there is also a chance to improve the
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performance of our models. With increasing number of observations in the
training sample, the fit of the given model to the data improves. On the other
hand, an increased size of the validation dataset is especially important for
methods which must be highly regularized in order to avoid overfit. Large
validation windows give more relevance for the regularization hyperparameters
which enjoy the best performance on the validation sample.

Based on these findings, we allow ourselves to express mild skepticism about
the usefulness of various factors presented in the asset pricing literature in the
past. While these factors are often able to help explain excess returns in a
contemporaneous fashion, they failed in predicting these returns in our analysis.
We however admit that this may also be the feature of the specific data we have
used here. Another important thing to note here is that caution must be applied
when inspecting discoveries which were not documented out-of-sample. Several
of the factors we consider were not originally tested for OOS performance and
still received a lot of attention. Without diminishing their contribution in the
evolution of the finance literature, we maintain that researchers should proceed
with increased scrutiny when declaring high usefulness that their factors bring.

Another consideration we take out from our examination is the practical
versatility of the modern machine learning techniques in asset pricing. These
techniques, represented e.g. by random forests or neural networks, enjoy great
prominence both in the literature and in business. But as we have shown, they
do not magically come to rescue the practitioner if he or she is not able to
collect sufficiently enough data or an adequate number of predictor variables.

The results support the view presented in the paper of Welch & Goyal
(2007), i.e. that the selected macroeconomic factors fail to predict the excess
returns out of sample. Moreover, the conclusions are further strengthened be-
cause in this thesis, we utilized several advanced linear and nonlinear modelling
techniques on top of the simple linear approach taken by Welch & Goyal (2007).

We provide mixed evidence as to whether the number of observations in
the training sample is what limits the prediction performance of the modern
machine learning methods the most. While increasing the training sample
size by a huge leap of 5 years when specifying the sample splitting schemes
proved to have some influence on the prediction accuracy of the methods, closer
investigation via observing the prediction performance in time did not lead to
any similar conclusion.
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