
MASTER THESIS

Martin Jurček

Numerical modeling of compressible
flow using spectral element method

Mathematical Institute of Charles University

Supervisor of the master thesis: prof. RNDr. Vı́t Doleǰśı, Ph.D., DSc.
Study programme: Physics

Study branch: Mathematical and Computational
Modelling in Physics

Prague 2019

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of
this work as a school work pursuant to Section 60 subsection 1 of the Copyright
Act.

In Prague date signature of the author

i

I would like to express my thank to RNDr. Jan Pech, Ph.D. who has a principal
role in the leading of the thesis, namely for the topic suggestion and assistance
with the software. I am also very grateful to my supervisor prof. RNDr. Vı́t
Doleǰśı, Ph.D., DSc. for consulting the mathematical background.

ii

Title: Numerical modeling of compressible flow using spectral element method

Author: Martin Jurček

Institute: Mathematical Institute of Charles University

Supervisor: prof. RNDr. Vı́t Doleǰśı, Ph.D., DSc., Department of Numerical
Mathematics

Abstract: The development of computational fluid dynamics has given us a very
powerful tool for investigation of fluid dynamics. However, in order to maintain
the progress, it is necessary to improve the numerical algorithms. Nowadays,
the high-order methods based on the discontinuous projection seem to have the
largest potential for the future. In the work, we used open-source framework
Nektar++, which provides the high-order discretization method. We tested the
abilities of the framework for computing the compressible sonic and transonic
flow. We successfully obtained simulations of the viscous and inviscid flow. We
computed the lift and the drag coefficients and showed that for a higher poly-
nomial order we can obtain the same accuracy with less degrees of freedom and
lower computational time. Also, we tested the shock capturing method for the
computation of the inviscid transonic flow and confirmed the potential of the high
order methods.

Keywords: Compressible Navier Stokes equations, Discontinuous Galerkin, Nek-
tar++

iii

Contents

1 Introduction 3

2 Governing equations of the compressible flow 5
2.1 Euler equations . 5

2.1.1 Mach number . 6
2.2 Navier-Stokes equations . 6

3 Discontinuous Galerkin 8
3.1 Mesh partition . 8
3.2 Discontinuous finite element spaces 9
3.3 Discretizaton of the Euler equations 9
3.4 Advection numerical flux . 10

3.4.1 Exact Toro . 11
3.4.2 Roe flux . 12
3.4.3 HLL . 12
3.4.4 HLLC . 12

3.5 Discretization of the Navier Stokes eqautions 13
3.6 Diffusion numerical flux . 14
3.7 Boundary conditions . 15

3.7.1 Far-field boundary conditions 15
3.7.2 Full slip boundary conditions 15
3.7.3 No slip boundary conditions 16

3.8 Formulation of the approximative solution 17
3.9 Shock capturing . 18

4 Expansion bases 20
4.1 1D expansion basis . 20
4.2 Multidimensional expansion basis 21
4.3 Local element operations . 21

4.3.1 Integration over a reference element 22
4.3.2 Integration over a general element 23
4.3.3 Differentiation in the reference element 23
4.3.4 Differentiation in a general element 24

5 Matrix formulation 25
5.1 Basic notation and backward transformation 25
5.2 Differentiation matrix . 26
5.3 Matrix form of the approximative solution 26

6 Time integration 28
6.1 Runge-Kutta method . 28
6.2 Application in the discretization 28

7 Nektar++ 30

1

8 Numerical experiments 31
8.1 High order mesh generation . 31
8.2 Inviscid flow, M = 0.5 α = 2◦ . 32
8.3 Inviscid flow, M = 0.85 . 33
8.4 Viscous flow, M = 0.5, Re = 500, α = 2◦ 36
8.5 Viscous flow, M = 0.5, Re = 2000, α = 2◦ 37
8.6 Unsteady flow . 37

Conclusion 49

Bibliography 51

List of Figures 52

List of Tables 54

A Attachments 55
A.1 Jacobi polynomials . 55

2

1. Introduction
Fluid dynamics is a physical discipline that studies the flow of fluids. Fluid dy-
namics is important mainly because a wide range of application including aerody-
namics, geodynamics, meteorology, medicine, hydrology as well as car industry,
aviation and astronautics. This wide range includes both academic and industrial
applications.

Before the progress of computer technology, more than sixty years ago, the
image of the flow was obtained mainly by physics experiments. Nowadays, these
experiments are conducted in wind tubes. Although these experiments have still
a significant role in the research of fluid dynamics, the computer technology
provides us an another approach to obtain an image of the flow. This technological
progress led to a development of numerical mathematics. The field that uses
numerical mathematics to simulate the flow of the fluid is called computational
fluid dynamics (CFD). The development of CFD had a significant impact on
the wide range of applications as mentioned above and the CFD has become
widespread.

However, the real world problems are complex and simulating can be a very
challenging task. A mathematical simulation consists of a couple of parts. At
first a physical model that describes the phenomenon must be derived (in the
case of fluid dynamics the Euler and Navier-Stokes equations) and described
mathematically usually using partial differential equations. Then the numerics
is applied, firstly by transformating the problem into a system of algebraic equa-
tions. This process is called the numerical discretization. The resulting system
of algebraic equations can be solved by an appropriate numerical method, for ex-
ample, Newton(-like) method for nonlinear problems conjugate gradient method
for symmetric linear problems or GMRES method for non-symmetric linear prob-
lems.

In the thesis we deal with the simulation of the compressible flow. The nature
of the equations has a fundamental impact on the method used for the discretiza-
tion of the problem.

The first investigated discretization methods for the compressible flow were
the finite difference method (FDM) and the finite volume method (FVM), for
more information see Feistauer et al. [2003]. While the finite difference method
has rather a historical importance and is used only in special cases today, the
finite volume method is still the most popular in the industry research. However,
it has several drawbacks. The basic scheme has only the first order of accuracy
which requires the use of high number of degrees of freedom in order to achieve the
required accuracy. Additional drawback of the low order schemes is the occurrence
of a high amount the numerical viscosity which can dominate the physical one.
There exist also high-order finite volume schemes but their theoretical justification
is questionable.

Another approach represents the finite element method (FEM). However, this
scheme is not suitable for equations with a dominating convection term because of
the Gibbs phenomenon, which leads to spurious oscillations in the solution. This
holds for the compressible Navier-Stokes and Euler equations and the simple use
of the finite element method is not suitable. The attempt to solve this problem

3

leads to the streamline diffusion method by adding an artificial diffusion in the
equations.

However, a more natural approach is the discontinuous Galerkin method
(DG), which was firstly introduced by Reed and R. Hill [1973]. It is based on
the discontinuous projection and weak formulation, and combines both the finite
volume method and finite element method. Unlike the finite volume method, the
discontinuous Galerkin method is suitable for using a higher order of the poly-
nomial expansion, see [Doleǰśı and Feistauer, 2015]. There are several options
how to define the discontinuous Galerkin scheme. In the work we use the local
discontinuous Galerkin method, for details see Cockburn and Shu [1998]. The
methods that use higher order polynomial expansions on multi element grids are
called the high-order spectral/hp element methods.

The high-order spectral element methods have many advantages. The usage
of a high polynomial degree reduces the numerical diffusion. Using higher poly-
nomial order, we can achieve the same accuracy with a coarser mesh and less
degrees of freedom. We can also use high order meshes with curved elements for
better description of more complex geometries.

In September 2006, 22 university organizationals and industry research or-
ganizations from more than 10 European countries joined forces in ADIGMA
project. The main goal of the project was the development and improvement of
high-order methods for the compressible flow as well as deepen the knowledge of
the whole field. The project has finished in 2009 and shown a big potential of
high-order methods both in academia and industry. More information and result
can be found in Norbert et al. [2010].

In the work, we use open-source framework Nektar++, which is designed to
provide the spectral/hp element discretization. The compressible flow solver ap-
plies the discontinuous Galerkin discretization using a high polynomial expansion.

The goal of the work is to summarize the numerical discretization implemented
in Nektar++, create suitable high order meshes for NACA0012 airfoil and test the
compressible flow solver in the two-dimensional case using Nektar++ for various
types of flow regimes around NACA0012 airfoil, which is often used in simulations.
This may be done by simulating both the viscous and inviscid flow for different
Mach and Reynolds numbers and computing the lift and the drag coefficients
for different meshes and polynomial expansions or studying the isolines of the
solution. In the case of the transonic flow we would like to investigate the creation
of the shock wave, which is typical for this type of flow.

4

2. Governing equations of the
compressible flow
In computational fluid dynamics, we distinguish two key concepts of describing a
flow of the fluid: the compressible and the incompressible flow. The incompress-
ible flow refers to the case where the density in an infinitesimally small domain
moving with the flow is constant. If the change of the density is no more negligi-
ble it is necessary to work with the concept of the compressible flow, where the
incompressibility is no more assumed.

In this chapter, the fundamental concepts and equations for the description
of the compressible flow are summarized. We present the basic concepts of the
inviscid and viscous flow and formulate the Euler and the Navier-Stokes equations.
Although, we do not cover the whole process of a derivation we introduce the key
concepts. A detail description can be found in Feistauer et al. [2003].

2.1 Euler equations
In fluid dynamics, the Euler equations are hyperbolic partial differential equations
describing the inviscid flow. The equations can be derived using the balance of
mass, linear momentum and energy, assuming that the we do not take into ac-
count the effects of viscosity and heat conductivity. The Euler equations represent
conservation law and in two dimensions they can be expressed in the following
form:

∂w

∂t
+ ∇ · f(w) = 0, (2.1)

where f(w) = (f1,f2) represents the inviscid fluxes and w represents the state
vector of conservative variables: density ρ, linear momentum in x and y direction
ρv1, ρv2, respectively, and total energy E:

w =

⎡⎢⎢⎢⎣
ρ
ρv1
ρv2
E

⎤⎥⎥⎥⎦ , f1 =

⎡⎢⎢⎢⎣
ρv1

p+ ρv2
1

ρv1v2
v1(E + p)

⎤⎥⎥⎥⎦ , f2 =

⎡⎢⎢⎢⎣
ρv2
ρv1v2
p+ ρv2

2
v2(E + p)

⎤⎥⎥⎥⎦ , (2.2)

where p stands for the pressure. In the work we are concerned with the flow of a
perfect gas. The corresponding equation of state is given by:

p = RρT, (2.3)

where R is the gas constant and T is the temperature. The total energy is equal
to the sum of the internal and the kinetic part:

E = ρ

(
cvT + |v|2

2

)
, (2.4)

where v, v = (v1, v2) is the vector of the velocity and cv denotes the specific heat
at constant volume. Using relations γ = cp/cv and R = cp − cv, where γ is the

5

Poisson adiabatic constant and cp the specific heat at a constant pressure, we can
rewrite (2.4) in the following form:

E = p

γ − 1 + 1
2ρ |v|2 . (2.5)

2.1.1 Mach number
An important quantity which characterize the flow is the Mach number. It is
defined as a ratio of the absolute value of flow velocity v to local speed of sound
a:

M = |v|
a
, (2.6)

where local speed of sound a is equal to:

a =
√
γ
p

ρ
. (2.7)

We distinguish various types of the flow depending on the value of the Mach
number. The flow at point x and time t is said to be:

• subsonic if M(x, t) < 1,

• sonic if M(x, t) = 1,

• supersonic if M(x, t) > 1.

If there is a subset of our computational domain where the flow is subsonic and
subset where the flow is supersonic, we call this flow transonic. For details, see
Feistauer et al. [2003].

In the work, we aim to simulate a subsonic flow and transonic flow. The
compressibility can not be neglected for these flows and we can not use the in-
compressible flow approach.

2.2 Navier-Stokes equations
The Navier-Stokes equations describe a viscid flow. Unlike the Euler equations,
the Navier-Stokes equations contain spatial derivative of viscid fluxes R

∂w

∂t
+ ∇ · f(w) = ∇ ·R(w,∇w). (2.8)

In this case R(w,∇w) = (R1,R2)

R1 =

⎡⎢⎢⎢⎢⎢⎢⎣
0
τxx

τyx

uτxx + vτyx + k ∂T
∂x

⎤⎥⎥⎥⎥⎥⎥⎦ ,R2 =

⎡⎢⎢⎢⎢⎢⎢⎣
0
τxy

τyy

uτxy + vτyy + k ∂T
∂y

⎤⎥⎥⎥⎥⎥⎥⎦ ,

6

where T and k denote temperature and thermal conductivity, respectively. The
elements of Cauchy stress tensor τ are equal to:

τxx = 2µ
(
∂v1

∂x
− 1

3(∂v1

∂x
+ ∂v2

∂y
)
)
, τyy = 2µ

(
∂v2

∂y
− 1

3(∂v1

∂x
+ ∂v2

∂y
)
)
,

τxy = τyx = µ

(
∂v1

∂y
+ ∂v2

∂x

)
,

where µ stands for dynamic viscosity.
In the work we use the dimensionless form of the equations which we obtain

by rescaling (2.8) by several characteristic quantities, namely the reference den-
sity ρ∗, velocity v∗, and length L∗, for details see Feistauer et al. [2003]. Then
the important quantities characterizing the flow are the Reynolds and Prandtl
numbers given by

Re = ρ∗v∗L∗

µ
, (2.9)

and
Pr = cpµ

k
, (2.10)

respectively, where µ denotes the dynamic viscosity, and k denotes reference
thermal conductivity.

7

3. Discontinuous Galerkin
The goal of a spatial discretization is to transform the physical problem into alge-
braic one. Having formulated the governing equations, we proceed to formulate
the numerical discretization for both the Euler and the Navier-Stokes equations.
In this chapter we describe the discontinuous Galerkin method. The discontin-
uous Galerkin method is based on the discontinuous projection and the weak
formulation and can be seen, in a sense, as a combination of the finite volume
and finite element method.

At first, we divide the mesh into K nonoverlaping elements. This is explained
in Section 3.1. As we mentioned above, the discontinuous Galerkin uses the
discontinuous projection. This means that we use a finite dimensional space of
piecewise discontinuous functions to approximate the test and solution functions.
The appropriate finite elements spaces are defined in Section 3.2.

To obtain the spatial discretization of the Euler equations, we begin with writ-
ing the weak formulation of the Euler equations, see Section 3.3. Unlike the finite
element method, the functions are generally discontinuous and the information
between elements is propagated via the numerical flux. We define the appropriate
advection numerical fluxes and discuss the connection with the Riemann problem
in Section 3.4 and we present one exact and three approximative Riemann solvers
used in the work.

Further, in Section 3.5, we focus on the discretization of the Navier-Stokes
equations, which contain the viscid fluxes. We introduce the mixed formulation
and the local discontinuous Galerkin method and discuss the choice of the numer-
ical fluxes. Finally, the final spatial discretization for the Navier-Stokes equations
is formulated.

The implementation of the boundary conditions is discussed in Section 3.7.
We summarize the implementation of far-field, full slip and no slip boundary
conditions.

In Section 3.8, we define our approximative solution. Finally, we discuss
the shock capturing method. We note, that we use the Einstein summation
convention in the work.

3.1 Mesh partition
In the work, the computational domain is Ω×(0, T), where Ω ∈ R2 is a nonempty
subset of the two dimensional space and T > 0. Our spatial computational
domain Ω is divided into a finite number of nonoverlaping closed elements Ωi,
i = 1, · · · , K, such that:

Ω ⊆
K⋃

i=1
Ωi, Ωi

⋂
i ̸=j

Ωj = ∅. (3.1)

We denote the boundary of Ωi as ∂Ωi, i = 1, · · · , K. We denote the set of all
one dimensional edges of all elements Ωi as Γ. We denote the set of all interface
edges as ΓI , the set of all edges where we set the wall (slip or on-slip) boundary
condition as ΓW and the set of edges where we set the far-field boundary condition
as ΓF .

8

3.2 Discontinuous finite element spaces
Having divided our space computational domain Ω into nonoverlaping elements
Ωj we can define the finite dimensional space. The natural choice is to use a
polynomial function on each element. As mentioned above, there is no restriction
on the continuity of the functions between elements. Our discontinuous finite
dimensional space Sp is defined as follows:

Sp ≡ {v; v ∈ L2(Ω), v|Ωi
∈ Pp(Ωi) ∀i = 1, . . . , K}, (3.2)

where Pp(Ωi) denotes the space of polynomials defined on Ωi of degree at most p.
Since we work with system of equations, we define the spaces for vector functions
as:

Sp ≡ Sp × Sp × Sp × Sp, (3.3)

Tp ≡ Sp × Sp × Sp, (3.4)
and

Np ≡ Sp × Sp. (3.5)

3.3 Discretizaton of the Euler equations
Let us formulate the spatial discretization of the Euler equations. At first, we
formulate the weak form by multiplying equation (2.1) by test function ϕ from
a suitable space of test functions and integrating the equation over volume Ωj,
j = 1, . . . , K. Applying Gauss’s divergence theorem and using the Einstein sum-
mation convention, we obtain∫

Ωj

∂w

∂t
· ϕ dx +

∫
∂Ωj

fi(w)ni · ϕ dS −
∫

Ωj

fi(w) · ∂ϕ

∂xi

= 0. (3.6)

At this point, we use discontinuous finite element space Sp to find functions
to approximate w and ϕ. Let wδ(t) be the approximate solution function on Ω
satisfying wδ(t)(x) = wδ(x, t) and wδ(t) ∈ Sp for ∀t ∈ (0, T) and ϕδ ∈ Sp the
test function.

Summing equation (3.6) over all elements, we obtain:

K∑
j=1

∫
Ωj

∂wδ(t)
∂t

· ϕδ dx +
K∑

j=1

∫
∂Ωj

fi(wδ(t))ni · ϕδ dS (3.7)

−
K∑

j=1

∫
Ωj

fi(wδ(t)) · ∂ϕδ

∂xi

= 0.

Further, we have to give a meaning to the boundary integrals in (3.7) since
functions wδ and ϕδ are discontinuous on ∂Ωj. In order to allow the information
to propagate between the elements, we approximate the values of the fluxes by:

fi(wδ)ni · ϕδ

⏐⏐⏐⏐⏐
∂Ωj

≈ H(wδ
L,w

δ
R,n) · ϕδ|∂Ωj

, (3.8)

9

where H(wδ
L,w

δ
R,n) represents the numerical flux. Subscript L stands for the

left state and subscript R stands for the right state. In the work, we consider the
left state to be the interior state and the right state to be the exterior to Ωj.

In the next chapter we summarize the properties of the numerical flux and
explain the computation of the numerical flux using the Riemann solver.

3.4 Advection numerical flux
There are several possibilities how to define the numerical flux. Usually, we
assume that numerical flux H satisfies the following properties:

• H(u,v,n) is defined and continuous on D × D × S, where D represents
the domain, where the fluxes are defined and S the unit sphere in R2

• H is consistent: H(u,u,n) = fi(u)ni, ∀u ∈ D, ∀n ∈ S

• H is conservative:

H(u,v,n) = −H(v,u,−n), ∀v,u ∈ D, ∀n ∈ S

For more information see Feistauer et al. [2003]
In the work, the advective numerical flux is computed via the Riemann solver.

In the case of 2D domain, the system is locally rotated in the normal direction
with respect to the interface and the following 1D Riemann problem is solved for
a given point

∂w̃

∂t
+ ∂f1(w̃)

∂x̃1
= 0, (x̃1, t) ∈ R × (0,∞), (3.9)

w̃(x̃1, 0) = w̃0(x̃1) =

⎧⎨⎩Q(n)wL, if x̃1 < 0,
Q(n)wR, if x̃1 > 0,

(3.10)

where the coordinate x̃1 is oriented in the direction of the normal vector n and

w̃ = Q(n)w, (3.11)

and Q(n) is the rotation matrix through angle α (n = (cosα, sinα)).
Having solved the Riemann problem, we rotate the system back to the Carte-

sian system:

H(wL,wR,n) = Q−1(n)gR(Q(n)wR,Q(n)wL), (3.12)

where gR is the solution of the 1D Riemann problem.
In order to solve the 1D Riemann problem we make use of an exact or approx-

imate Riemann solver. In the next chapter, we briefly summarize the Riemann
solvers used in the work. For more information, see Toro [2009].

10

Figure 3.1: A scheme of the Riemann problem for the Euler equations (see Men-
galdo et al. [2014]).

Figure 3.2: Possible wave patterns for the Riemann problem for the Euler equa-
tions (see Mengaldo et al. [2014]).

3.4.1 Exact Toro
Based on the analysis of the spectrum of the Euler problem, the solution of the
Riemann problem consists of three waves. The left and right are either the rar-
efaction wave or the shock wave and the middle wave is the contact discontinuity.
The general solution consists of four domains denoted as q+, q∗+, q∗−, q−, see
Figure 3.1. The first step in order to obtain the solution at a given point, is to
evaluate the velocity and pressure between the first and third wave u∗ and p∗
respectively. These quantities are constant across the contact discontinuity (only
density changes). The values u∗ and p∗ can be obtained by solving a nonlinear
algebraic equation using an iterative process. The second step consists of deter-
mining the wave pattern, see Figure 3.2. The final relations are given in Toro
[2009].

11

3.4.2 Roe flux
The exact solver provides the most precise solution of the Riemann problem.
However, the iterative process for finding the solution can be numerically costly.
Therefore, a couple of approximate solver were introduced. One of the popular
approximate Riemann solver is the Roe scheme. It is based on replacing a given
nonlinear Jacobian matrix in the Riemann problem by a constant matrix with
suitable properties. The approximation matrix is chosen that its eigenvalues λ̂
and eigenvectors r̂n correspond are equal to eigenvalues λ and eigenvectors rn of
the original matrix with the Roe averaged values defined as:√

ρ̂ = 1
2(√ρL + √

ρR),

v̂1 =
√
ρLv1L + √

ρRv1R√
ρL + √

ρR

,

v̂2 =
√
ρLv2L + √

ρRv2R√
ρL + √

ρR

,

Ĥ =
√
ρLHL + √

ρRHR√
ρL + √

ρR

,

(3.13)

Finally, the flux is given by:

gRoe = 1
2(f(wL) + f(wR)) − 1

2

m∑
n=1

γn

⏐⏐⏐λ̂n

⏐⏐⏐ r̂n, (3.14)

where coefficient γn can be easily derived, see Toro [2009]. Subscripts L and R
stand for the left and right state, respectively.

3.4.3 HLL
Another approach was presented by Harten, Lax and van Lear. The key idea is to
use a two wave instead of three wave configuration. These waves are responsible
for three possible states, which are chosen based on wave speeds SL and SR

defined as:
SL = min{v1L − aL, v1R − aR},
SR = max{v1L − aL, v1R − aR}.

(3.15)

Finally, the flux is given by:

gHLL =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
f(wL) if 0 ≤ SL,

SRf(wL) − SLf(wR) + SRSL(wR − wL)
SR − SL

if SL ≤ 0 ≤ SR,

f(wR) if 0 ≥ SR.

(3.16)

3.4.4 HLLC
HLLC Riemman solver uses a three wave configuration. There are four states
chosen by wave speeds SL, SR defined as above and S∗ defined as:

S∗ = pR − pL + ρLv1L(SL − v1L) − ρRv1R(SR − v1R)
ρL(SL − v1L) − ρR(SR − v1R) , (3.17)

12

and

w∗K = ρK

(
SK − v1K

SK − S∗

)⎡⎢⎢⎢⎢⎣
1
S∗
v2K

EK

ρK
+ (S∗ − v1K)

[
S∗ + pK

ρK(SK−v1K)

]
⎤⎥⎥⎥⎥⎦ , (3.18)

Where K = {L,R}. The final flux is then given by:

gHLL =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

f(wL) if 0 ≤ SL

f(wL) − SL(w∗L − wL) if SL ≤ 0 ≤ S∗

f(wR) − SR(w∗R − wR) if S∗ ≤ 0 ≤ SR

f(wR) if 0 ≥ SR

(3.19)

3.5 Discretization of the Navier Stokes eqau-
tions

The Navier-Stokes equations take into account the effects of the fluid viscosity
and the transfer of the heat. Apart from inviscid fluxes fi(w), i = 1, 2, which
are treated the same as in the case of the Euler equations (see Section 3.3) with
the given Riemann solver for the computation of the advective numerical flux, we
have to deal with the discretization of viscous fluxes Ri(w,∇w), i = 1, 2.

We can see that the viscous fluxes depend on the values of the derivatives of
the velocity and the temperature, see (2.8). In order to obtain these values, we
use the mixed formulation which introduces auxiliary vector W = [W1,W2,W3] =
[v1, v2, T]. We can write W = P (w), where P : R4 → R3 is defined as:

⎡⎢⎣v1
v2
T

⎤⎥⎦ =

⎡⎢⎢⎣
ρv1/ρ
ρv2/ρ

1
cvρ

[
E − (ρv1)2+(ρv1)2

2ρ

]
.

⎤⎥⎥⎦ (3.20)

We solve the following problem:

g = ∇W , (3.21)

where g = (g1, g2, g3), gi ∈ Np ∀i = 1, 2, 3 and W ∈ Tp. For the definition of
spaces Np and Tp see Section 3.2. Then we should write: Ri(w,∇w) = R̃i(w, g),
i = 1, 2, but for, simplicity, we keep the same notation for Ri. Then (2.8) takes
the form:

∂w

∂t
+ ∇ · f(w) = ∇ ·R(w, g), (3.22)

We proceed as above, we multiply both equations by test functions Θδ and ϕδ,
integrate both equations over Ωj, apply Gauss’s divergence theorem and sum over
the partition. Then, we obtain the following formulas:

K∑
j=1

∫
Ωj

gδ
i ·Θδ dx =

K∑
j=1

∫
∂Ωj

W δ
i n·Θδ dS−

K∑
j=1

∫
Ωj

W δ
i

∂Θδ
l

∂xl

dx, ∀i = 1, 2, 3, (3.23)

13

K∑
j=1

∫
Ωj

∂wδ

∂t
· ϕδ dx +

K∑
j=1

∫
∂Ωj

fi(wδ)ni · ϕδ dS −
K∑

j=1

∫
Ωj

fi(wδ) · ∂ϕδ

∂xi

dx =

K∑
j=1

∫
∂Ωj

Ri(wδ, gδ)ni · ϕδ dS −
K∑

j=1

∫
Ωj

Ri(wδ, gδ) · ∂ϕδ

∂xi

dx.

(3.24)

At this point, in order to give a meaning of the boundary integrals, we ap-
proximate the following terms by a diffusive numerical flux:

W δ
i n · ϕδ

⏐⏐⏐⏐⏐
∂Ωj

≈ Ŵ δ
i n · ϕδ|∂Ωj

, ∀i = 1, 2, 3, (3.25)

Ri(wδ, gδ) · ϕδ

⏐⏐⏐⏐⏐
∂Ωj

≈ R̂i(wδ, gδ) · ϕδ|∂Ωj
∀i = 1, 2, 3, (3.26)

where Ŵ δ
i and R̂i represent the diffusion numerical flux specified below.

3.6 Diffusion numerical flux
As mentioned earlier, we used the local discontinuous Galerkin method (LDG) in
the work. We begin with a little more general formula:

Ŵ δ
i = 1

2(W δL
i +W δR

i) − β(W δL
i −W δR

i), ∀i = 1, 2, 3, (3.27)

R̂i(wδ, gδ) = 1
2[Ri(wδL, gδL) + Ri(wδR, gδR)] + β[Ri(wδL, gδL)−

Ri(wδR, gδR)] − (η/h)(W δL
i −W δR

i)n, ∀i = 1, 2, 3,
(3.28)

where subscripts L and R denote the internal and external values, respectively,
η is the stabilization parameter and h is the typical scale of the problem.

At this moment we can recover various schemes depending on the choice of
β. In our case (LDG) we set β = 1

2 and η = 0. We note, that we could obtain
the central flux (CF) or the second Bassi-Rebay method (BR2) for the different
choice of β.

Having set parameters β and η, we obtain the exterior value for the numerical
flux of auxiliary variable Wi.

Ŵ δ
i = W δR

i , ∀i = 1, 2, 3, (3.29)

the internal values for viscous flux Ri:

R̂i(wδ, gδ) = Ri(wδL, gδL), ∀i = 1, 2. (3.30)

14

3.7 Boundary conditions
One of the factors that influences the convergence of the solution is the method
how the boundary conditions are implemented. It seems that it is more advanta-
geous to impose the boundary condition via modifying the numerical flux, instead
of modifying the boundary solution directly at the points. We call this approach
the weak boundary conditions. It is shown that the usage of the weak boundary
conditions may improve the convergence of the solution.

In following section, we summarize the boundary conditions used in the work
and briefly present the implementation. For additional information, see Mengaldo
et al. [2014]

3.7.1 Far-field boundary conditions
In mathematical simulations, we are limited to the finite computational domain.
For this reason, we must define the far-field boundary conditions on the boundary
of computational domain Ω.

At first we consider advection terms. In this case we have to give a meaning
to state wR for ∀T ∈ ΓF . We call this state a ghost state, since it has to be
prescribed. We write

wR =

⎡⎢⎢⎢⎣
ρ∞

ρ∞v1∞
ρ∞v2∞
E∞

⎤⎥⎥⎥⎦ , (3.31)

where ρ∞, v1∞, v2∞, E∞ represent the free-stream density, velocity in x and y
direction and total energy, respectively. This state is used to compute advection
numerical flux H(wL,wR,n) using the exact or approximate Riemann solver for
∀T ∈ ΓF .

Further we consider the diffusion term in the Navier-Stokes equations. The
diffusion numerical flux Ŵ δ

i takes the external values and R̂i the internal values.
For this reason we have to set only Ŵ δ

i , i = 1, 2, 3. We set:

W δW =

⎡⎢⎢⎣Ŵ
δ
1

Ŵ δ
2

Ŵ δ
3

⎤⎥⎥⎦ =

⎡⎢⎣v1L

v2L
pL

ρLR

⎤⎥⎦ ∀T ∈ ΓF . (3.32)

3.7.2 Full slip boundary conditions
The boundary conditions for the Euler equations prevent the fluid to get through
obstacle (e.q. NACA profile). Without any assumptions on the viscosity of the
fluid, we require only the normal component of the velocity on the boundary to
be zero:

v · n = 0 on ∂ΩW (3.33)

where ∂ΩW is the boundary of the obstacle and n is the normal vector, with
respect to the boundary.

15

The right (ghost) state for computing the numerical flux for ∀T ∈ ΓW is
equal to:

wR =

⎡⎢⎢⎢⎣
ρL

ρLv1L − 2(vL · n)n1
ρLv2L − 2(vL · n)n2

EL

⎤⎥⎥⎥⎦ (3.34)

where subscript L denotes the inner state.

3.7.3 No slip boundary conditions
Because of the viscosity, the Navier-Stokes equations require the velocity to be
zero on the boundary

v = 0 on ∂ΩW (3.35)

Further, we require the boundary condition for the temperature. We distinguish
two cases:

• Isothermal wall

• Adiabatic wall

In case of the isothermal wall, we prescribe the temperature on the boundary

T = TB, (3.36)

and in case of the adiabatic wall, we set the thermal flux to be zero:

k∇T · n = 0. (3.37)

The right (ghost) state for the advection numerical flux for ∀T ∈ ΓW is the
same for both the isothermal and adiabatic wall and is equal to:

wR =

⎡⎢⎢⎢⎣
ρL

−ρLv1L

−ρLv2L

EL

⎤⎥⎥⎥⎦ . (3.38)

Further, we consider diffusion terms. In case of the isothermal wall, we set:

W δN =

⎡⎢⎣ 0
0
TB

⎤⎥⎦ ∀T ∈ ΓW . (3.39)

Finally, the boundary condition for the adiabatic wall is of the form:

W δW =

⎡⎢⎣ 0
0
TL

⎤⎥⎦ ∀T ∈ ΓW , (3.40)

where TL is the inner temperature. These values are directly used as the numerical
flux for auxiliary variable W , see Section 3.5.

16

3.8 Formulation of the approximative solution
In this section we summarize the approximative solutions for both the Euler and
the Navier-Stokes equations. Firstly we introduce the following notation. We
introduce two inner products: (·, ·)δS: Sp × Sp → R as:

(u,w)δS =
K∑

j=1

∫
Ωj

u · w dx ∀u,w ∈ Sp, (3.41)

and (·, ·)δN : Np × Np → R as:

(u,w)δN =
K∑

j=1

∫
Ωj

u · w dx ∀u,w ∈ Np. (3.42)

Further we define the following forms: bδ : Sp × Sp → R as:

bδ(wδ,ϕδ) =
∑
T ∈Γ

∫
T

H(wδ
L,w

δ
R,n) · ϕδ dS −

K∑
j=1

∫
Ωj

fi(wδ(t)) · ∂ϕδ

∂xi

dx, (3.43)

aδ : Sp × (Np × Np × Np) × Sp → R as:

aδ(wδ, gδ,ϕδ) =
K∑

j=1

∫
∂Ωj

Ri(wδL, gδL)ni · ϕδ dS −
K∑

j=1

∫
Ωj

Ri(wδ, gδ) · ∂ϕδ

∂xi

dx,

(3.44)
and ci

δ : Tp × Np → R as:

ci
δ(W δ,Θδ) =

∑
T ∈ΓI

∫
T
Ŵ δR

i n · Θδ dS +
∑

T ∈ΓF

∫
T
Ŵ δF

i n · Θδ dS+ (3.45)

∑
T ∈ΓW

∫
T
Ŵ δW

i n · Θδ dS −
K∑

j=1

∫
Ωj

W δ
i

∂Θδ
l

∂xl

dx ∀i = 1, 2, 3.

Definition 1. We call wδ ∈ C1(0, T ;Sp) a semi-discrete solution of the Euler
equations if:(

∂wδ(t)
∂t

,ϕδ

)
δS

+ bδ(wδ,ϕδ) = 0 ∀ϕδ ∈ Sp, ∀t ∈ (0, T),

wδ(0) = wδ0 (3.46)
where wδ0 is the Sp approximation of w0, which is an initial condition, and the
meaning of wR for ∀T ∈ ΓW , ∀T ∈ ΓF was explained in Section 3.7.
Definition 2. We call (gδ,wδ), gδ = (gδ

1, g
δ
2, g

δ
3) where gδ

i ∈ C1(0, T ;Np),∀i =
1, 2, 3 and wδ ∈ C1(0, T ;Sp) a semi-discrete solution of the Navier-Stokes equa-
tions if:(

gδ
i (t),Θδ

)
δN

= ci
δ(W δ,Θδ), ∀i = 1, 2, 3, ∀Θδ ∈ Np ∀t ∈ (0, T), (3.47)(

∂wδ(t)
∂t

,ϕδ

)
δS

+ bδ(wδ,ϕδ) = aδ(wδ, gδ,ϕδ) ∀ϕδ ∈ Sp, ∀t ∈ (0, T),

wδ(0) = wδ0 (3.48)
where wδ0 is the Sp approximation of w0, which is an initial condition, and the
meaning of wR for ∀T ∈ ΓW , ∀T ∈ ΓF was explained in Section 3.7. The
relation between W δ and wδ is given by (3.20):

W δ = P (wδ). (3.49)

17

3.9 Shock capturing
One of the difficulties while solving hyperbolic partial differential equations may
be the presence of shock waves, which are characterized by abrupt change of the
state variables. This shock waves are typical a for transonic flow, as we will see
in Section 8.3. This fact leads to numerical instabilities. The basic idea how to
prevent this fact is to add a suitable diffusion term to the governing equations.
However, adding the diffusion term makes sense only at the elements where the
shock waves are present. There are several possibilities how to detect and capture
the elements, where the shock waves occurs. For this purpose, we use a sensor
variable se defined as:

se = log10

(
∥ρp

e − ρp−1
e ∥L2

∥ρp
e∥L2

)
, (3.50)

where ρp
e is the actual average solution at the element e and ρp−1

e is the average
solution on the element e reduced to the polynomial of degree p − 1. Having
the method to capture the discontinuities we can define the term that actually
influences the solution (for more information see Persson and Peraire [2006]). For
this purpose, we add term ∇· (ε∇w) to the right side of the governing equations,
where ε is defined as:

ϵ = ϵ0

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if se < sκ − κ,

0.5
(

1 + sin π(se − sκ)
2κ

)
if sκ − κ < se < sκ + κ,

1 if se > sκ + κ,

(3.51)

where κ is chosen empirically to obtain a sharp but smooth function and

ϵ0 = c1h/p, sκ = c2/p
4, (3.52)

where h is the element size, p is the polynomial expansion degree and c1 and c2
are constants. In our case, we set c1 = 10 and c2 = 1.

This definition also ensures that the diffusion is added locally. We note, that
we used the shock capturing only for the Euler equations. The Navier-Stokes
equations contain a diffusive term and adding another was not necessary. The
Euler equations then take the following form:

∂w

∂t
+ ∇ · f(w) = ∇ · (ε∇w). (3.53)

We use a similar discretization method based on the mixed formulation

g = ∇w, (3.54)

where g = (g1, g2, g3, g4), gi ∈ Np ∀i = 1, 2, 3, 4 and the local discontinuous
Galerkin approach. Proceeding the same as above we obtain:

K∑
j=1

∫
Ωj

gδ
i ·Θδ dx =

K∑
j=1

∫
∂Ωj

ŵδ
i n·Θδ dS−

K∑
j=1

∫
Ωj

wδ
i

∂Θδ
l

∂xl

dx, ∀i = 1, 2, 3, 4 (3.55)

18

K∑
j=1

∫
Ωj

∂wδ

∂t
· ϕδ dx +

∑
T ∈Γ

∫
T

H(wδ
L,w

δ
R,n) · ϕδ dS −

K∑
j=1

∫
Ωj

fi(wδ) · ∂ϕδ

∂xi

dx =

K∑
j=1

∫
∂Ωj

ϵ(ĝδ
i · n)ϕδ

i dS −
K∑

j=1

∫
Ωj

ϵ[gδ
i]j
∂ϕδ

i

∂xj

dx.

(3.56)

We use the same numerical flux, presented in Section 3.6. Then we obtain the
exterior values for the variable:

ŵδ
i = wδR

i , ∀i = 1, 2, 3, 4, (3.57)

and the internal values for:
ĝδ = gδL. (3.58)

We use internal values for the boundary conditions for variable ŵδ
i for ∀i =

1, 2, 3, 4,. We define the following forms: di
δ : Sp × Np → R ∀i = 1, 2, 3, 4,

di
δ(wδ,Θδ) =

K∑
j=1

∫
∂Ωj

wδR
i n · Θδ dS −

K∑
j=1

∫
Ωj

wδ
i

∂Θδ
l

∂xl

dx, ∀i = 1, 2, 3, 4, (3.59)

sδ : (Np × Np × Np × Np) × Sp → R,

sδ(gδ,ϕδ) =
K∑

j=1

∫
∂Ωj

ϵ(gδL
i · n)ϕδ

i dS −
K∑

j=1

∫
Ωj

ϵ[gδ
i]j
∂ϕδ

i

∂xj

dx. (3.60)

Definition 3. We call (gδ,wδ), gδ = (gδ
1, g

δ
2, g

δ
3, g

δ
4), where gδ

i ∈ C1(0, T ;Np) ∀i =
1, 2, 3, 4 and wδ ∈ C1(0, T ;Sp) a semi-discrete solution of the Euler equations with
the shock capturing if:(

gδ
i (t),Θδ

)
δN

= di
δ(wδ,Θδ), ∀i = 1, 2, 3, 4, ∀Θδ ∈ Np ∀t ∈ (0, T),

(
∂wδ(t)
∂t

,ϕδ

)
δS

+ bδ(wδ,ϕδ) = sδ(gδ(t),ϕδ) ∀ϕδ ∈ Sp, ∀t ∈ (0, T),

wδ(0) = wδ0, (3.61)

where wδ0 is the Sp approximation of w0, which is an initial condition.

19

4. Expansion bases
In the previous chapter, we formulated the discontinuous Galerkin method. We
summarized the discretization of the Euler and the Navier-Stokes equations and
introduced the numerical flux for the advection and diffusion terms to propagate
the information between elements of the mesh. So far, we defined finite dimen-
sional spaces Sp for scalar and Sp for vector functions (see Section 3.2) but we
did not actually construct the basis of the spaces. In this chapter, we focus on a
decomposition of the solution and test function into an expansion basis. There
are several possibilities how to choose the appropriate basis. The main factor is
a computational efficiency.

In Section 4.1, the expansion basis in 1D using the Jacobi polynomial is defined
and is expanded into higher dimension in Section 4.2. Further, we define the
integration and differentiation both on a reference and general element.

4.1 1D expansion basis
Firstly, we consider 1D expansion basis, since it can be easily extended on quadri-
lateral elements using the tensor product. Let P > 0 be the given polynomial
approximation degree. Let −1 ≤ ξ ≤ 1, than we define the following expansion
basis functions ψp, p = 0, . . . , P :

ψp(ξ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − ξ

2 if p = 0,(
1 − ξ

2

)(
1 + ξ

2

)
P 1,1

p−1(ξ) if 0 < p < P,

1 + ξ

2 if p = P,

(4.1)

where P 1,1
p−1(ξ) denotes the Jacobi polynomial. For more information about the

Figure 4.1: Example of expansion basis in 1D for P = 5 (see Karniadakis and
Sherwin [2005])

Jacobi polynomials see Appendix A. The first six nodes of the basis is shown in
Figure 4.1.

20

Since only the first and the last modes have values on the boundary we can
easily distinguish between interior and boundary modes. This property seems to
be very efficient when computing with the boundary terms. On the other hand,
we lose the complete orthogonality of the basis. However, the computation is still
efficient, because the majority of the basis elements are orthogonal.

Term
(

1−ξ
2

) (
1+ξ

2

)
corresponds to weight function for the orthogonal relation-

ship of P 1,1
p−1(ξ).

4.2 Multidimensional expansion basis
Having defined the 1D expansion basis, we proceed to formulate the basis for two
dimensions. At first, we introduce two reference elements in the two dimensional
space: a quadrilateral and triangular.

Reference quadrilateral element Ωq and reference triangular elements Ωt are
defined by the following relations:

Ωq = {(ξ1, ξ2) : −1 ≤ ξ1, ξ2 ≤ 1}, (4.2)

Ωt = {(ξ1, ξ2) : −1 ≤ ξ1, ξ2, ξ1 + ξ2 ≤ 1}. (4.3)
A suitable coordinate system should have independent constant limits. This is
the reason for defining the collapsed coordinate system as followings:

η1 = 21 + ξ1

1 − ξ2
− 1,

η2 = ξ2.

(4.4)

Then Ωt can be written in more appropriate form:

Ωt = {(η1, η2) : −1 ≤ η1, η2 ≤ 1}. (4.5)

Having defined the reference elements in the two dimensional space, we can
define the expansion bases which is, for quadrilateral elements , nothing that the
tensor product of one dimensional bases in x and y direction. In Figure 4.3, we
can see the example of a basis

ϕpq(ξ1, ξ2) = ϕp(ξ1)ϕq(ξ2) 0 ≤ p, q ≤ P. (4.6)
The collapsed coordinate system is used for the triangular elements, for details
see Karniadakis and Sherwin [2005].

4.3 Local element operations
Having defined the polynomial expansions and the reference elements for the two
dimensional space, we formulate basic operations such as the integration and
differentiation in order to evaluate the terms in (3.46), (3.47), (3.61). The prob-
lematics is the simplest in the case of the reference quadrilateral element. The
collapsed coordinate system, defined by (4.4), is used for the reference triangu-
lar element. This transfers the problem to the previous case. Finally, we use
transformation relations to get on the general element.

21

Figure 4.2: The reference elements: (a) quadrilateral, (b) triangular, see Karni-
adakis and Sherwin [2005].

Figure 4.3: Example of an expansion basis on the reference quadrilateral element,
see Karniadakis and Sherwin [2005]

4.3.1 Integration over a reference element
Let us have continuous function û(ξ1, ξ2) defined on reference element Ωq. We
use the Fubini theorem and a numerical quadrature of a given order to obtain a
relation for the numerical integration:

∫
Ωq

û(ξ1, ξ2) dξ1 dξ2 =
∫ 1

−1

∫ 1

−1
û(ξ1, ξ2) dξ1 dξ2 ≈

Q−1∑
i=0

wi

Q−1∑
j=0

wjû(ξij), (4.7)

where wi and wj are the weights of the numerical quadrature, ξij are the discrete
quadrature points ξij = (ξ(1)

ij , ξ
(2)
ij) and Q is the numbers of the quadrature points.

Inverting relation (4.4) we can transform the triangular system into quadrilateral.

ξ1 = (1 + η1)(1 − η2)
2 − 1, (4.8)

ξ2 = η2. (4.9)

22

Then we proceed the same as in the previous case. The only difference is the
occurrence of the Jacobian of the transformation, which is easy to evaluate.

∫
Ωt

û(ξ1, ξ2) dξ1 dξ2 =
∫ 1

−1

∫ 1

−1
u(η1, η2)

⏐⏐⏐⏐⏐ ∂(ξ1, ξ2)
∂(η1, η2)

⏐⏐⏐⏐⏐ dη1 dη2

=
∫ 1

−1

∫ 1

−1
u(η1, η2)

1 − η2

2 dη1 dη2 ≈
Q−1∑
i=0

wi

Q−1∑
j=0

wju(ηij)
1 − η

(2)
ij

2 ,

(4.10)

where ηij = (η(1)
ij , η

(2)
ij) represent the quadrature points.

4.3.2 Integration over a general element
Let us assume the mapping from the reference element into general element Ωk:
χk = (χk

1, χ
k
2): Ωq → Ωk for any k. This mapping is given by the following

formula:
xi = χk

i (ξ1, ξ2) i = 1, 2. (4.11)

We denote the Jacobi matrix of the mapping as:

DΩk
=
{
∂χk

i

∂ξj

}2

i,j=1
, (4.12)

and the determinant:
JΩk

= detDΩk
. (4.13)

Using the substitution theorem, we can easily transform from the general into
reference element. The integral over the element Ωk is given by:∫

Ωk

u(x1, x2) dx1 dx2 =
∫

Ωq

û(ξ1, ξ2)JΩk
(ξ1, ξ2) dξ1 dξ2. (4.14)

The same method is used for the triangular elements.

4.3.3 Differentiation in the reference element
In order to derive a discrete matrix form of the discretization of the Euler and
the Navier-Stokes equations, one has to deal with the derivative in the advective
and the diffusive terms.

Having the finite dimensional basis, we assume the restriction of ûδ on element
to be a linear combination of ϕpq, 0 ≤ p, q ≤ P using the coefficients ûpq ∈ R. We
can make equivalent decomposition using Lagrangian polynomials hp(ξ1), hq(ξ2)
where the vales ûδ

pq equal to values of ûδ at the quadrature points.

ûδ(ξ1, ξ2) =
P∑

p=0

P∑
q=0

ûpqϕpq(ξ1, ξ2) =
Q−1∑
p=0

Q−1∑
q=0

ûδ
pqhp(ξ1)hq(ξ2), (4.15)

where
ûδ

pq = ûδ(ξpq) ∀p, q : 0 ≤ p, q ≤ Q− 1, Q > P. (4.16)

23

The value of Q depends on the numerical quadrature. Differentiating this relation
with respect to ξ1, we obtain:

∂ûδ

∂ξ1
(ξ1, ξ2) =

P∑
p=0

P∑
q=0

ûδ
pq

dhp(ξ1)
dξ1

hq(ξ2). (4.17)

The previous relation holds at every point ξ1, ξ2. Using discrete quadrature set of
points, we can use properties of the Lagrangian polynomial to obtain the reduced
form:

∂ûδ

∂ξ1
(ξij) =

P∑
p=0

ûδ
pj

dhp(ξ1)
dξ1

⏐⏐⏐⏐⏐
ξ

(1)
ij

. (4.18)

This holds for the quadrilateral element. Again, the formula (4.4) is used to
obtain the relation for the triangular elements. The final relation follows from
application of the chain rule. For more information see Karniadakis and Sherwin
[2005].

4.3.4 Differentiation in a general element
Finally, we have to transform from the general into the reference element. For
this purpose, we use the chain rule:

∂uδ

∂x1
(x1, x2) = ∂ξ1

∂x1

∂ûδ

∂ξ1
+ ∂ξ2

∂x1

∂ûδ

∂ξ2
,

∂uδ

∂x2
(x1, x2) = ∂ξ1

∂x2

∂ûδ

∂ξ1
+ ∂ξ2

∂x2

∂ûδ

∂ξ2
.

(4.19)

The derivation with the respect of ξ1 and ξ2 was introduced above. The geometric
factors ∂ξ1

∂x1
, ∂ξ1

∂x2
, ∂ξ2

∂x1
and ∂ξ2

∂x2
can be easily evaluated, for more information see Kar-

niadakis and Sherwin [2005]. We note that we can use an equivalent formulation:

∇uδ = DT
Ωk

∇̂ûδ, (4.20)

where ∇̂ denotes the derivatives with respect to ξ1 and ξ2.
The operations presented above are used to evaluate integrals of the following

form
∫

Ωk

∂u
∂xi
wi dx,

∫
Ωk

∂u
∂xi

∂w
∂xi

dx, used in the discretizations. Then, we can write:∫
Ωk

∂u

∂xi

wi dx =
∫

Ωq

(DT
Ωk

∇̂ûδ)iŵ
δ
i JΩk

(ξ1, ξ2) dξ1 dξ2, (4.21)

∫
Ωk

∂u

∂xi

∂w

∂xi

dx =
∫

Ωq

(DT
Ωk

∇̂ûδ)i(DT
Ωk

∇̂ŵδ)iJΩk
(ξ1, ξ2) dξ1 dξ2. (4.22)

24

5. Matrix formulation
In this chapter, the matrix form of the discretization of the Euler and Navier-
Stokes equations is briefly summarized.

5.1 Basic notation and backward transforma-
tion

In the previous chapter, we defined basis ϕpq. Then, the restriction of the solution
on element Ωk is of the following form:

ûδ(ξ1, ξ2) =
P∑

p=0

P∑
q=0

ûpqϕpq(ξ1, ξ2). (5.1)

Further, instead of working with two indices p and q, we will use global index n,
(n = 0, · · · , (P + 1)2 − 1) defined as:

n(p, q) = q + (P + 1)p. (5.2)

Using this notation we obtain:

ûδ(ξ1, ξ2) =
Nn−1∑
n=0

ûnϕn(ξ1, ξ2), (5.3)

where Nn = (P + 1)2. At this point, we define one more global set of indices m
(m = 0, · · · , Q2 − 1) as:

m(i, j) = i+ j ·Q. (5.4)
Let us introduce two vectors: ûδ and û. Let ûδ be defined as the values of ûδ

evaluated at quadrature of points ξm = (ξij), m = 0, · · · , Q2 − 1:

um = uδ(ξm) = uδ(ξij), m = 0, · · · , Q2 − 1 (5.5)

We represent the components of the expansion coefficient vector û:

ûn = ûpq, n = 0, · · · , (P + 1)2 − 1, (5.6)

using the formula (5.3). We define matrix B = {Bmn}Q2−1,(P +1)2−1
m,n=0 , which provides

the backward transformation from the coefficient space to physical space:

Bmn = ϕn(ξm) = ϕpq(ξij), m = 0, · · · , Q2 − 1, (5.7)
n = 0, · · · , (P + 1)2 − 1,

then:
ûδ = Bû. (5.8)

Finally, we define weight matrix W = {Wmn}Q2−1,(P +1)2−1
m,n=0 , containing the quadra-

ture weights multiplied by the Jacobian at the quadrature points.

Wmn = Jijwiwjδmn, m = 0, · · · , Q2 − 1, (5.9)
n = 0, · · · , (P + 1)2 − 1,

25

5.2 Differentiation matrix
We recall:

∂ûδ

∂ξ1
(ξ1, ξ2) =

Q1∑
p=0

Q2∑
q=0

ûδ
pq

dhp(ξ1)
dξ1

hq(ξ2). (5.10)

Then we define differentiation matrix Dξi
= {[Dξi

]mm′}Q2−1
m,m′=0 , i = 1, 2 as:

∂ûδ

∂ξi

= Dξi
ûδ i = 1, 2. (5.11)

where the elements satisfy:

[Dξ1]mm′ = dhr(ξ1)
dξ1

⏐⏐⏐⏐⏐
ξ

(1)
mm′

hs(ξ(2)
mm′), (5.12)

where
m′(r, s) = r + s ·Q, r, s = 0, · · · , Q. (5.13)

We introduce auxiliary matrix function Λ(f) which evaluates arbitrary function
f at quadrature points:

[Λ(f(ξ1, ξ2))]mn = f(ξ(1)
ij , ξ

(2)
ij)δmn. (5.14)

Using the chain rule, we can write the differentiation in the discrete matrix form:

∂uδ

∂xi

=
[
Λ
(
∂ξ1

∂xi

)
Dξ1 + Λ

(
∂ξ2

∂xi

)
Dξ2

]
ûδ := Dxi

ûδ i = 1, 2. (5.15)

5.3 Matrix form of the approximative solution
In this section, we formulate the discontinuous Galerkin matrix form of the Euler
and Navier-Stokes equations. Elemental mass matrix M consists of scalar prod-
ucts of test functions. Using a numerical quadrature, the mass matrix can be
written as:

M = BTWB. (5.16)
Having defined all operations in discrete a matrix formalism, we can formulate

the discrete form of the discretization of the governing equations. Firstly, we
consider the Euler equations. The inner product of the test functions and the basis
functions is responsible for the presence of mass matrix M. This matrix needs to
be inverted in oder to obtain the demanded initial value problem. The derivatives
of the test functions are performed using (5.15). Terms b, b̂ and b̃ are responsible
for the evaluation of the surface integral using corresponding numerical flux, for
more information see Karniadakis and Sherwin [2005].

dŵ

dt = M−1[(Dx1B)TWΛ(f1(ŵδ)) + (Dx2B)TWΛ(f2(ŵδ)))] − M−1b. (5.17)

Further, we formulate the matrix formulation of the discretization of the
Navier-Stokes equations.

dĝ

dt = M−1[(Dx1B)TWΛ(Ŵ δ)) + (Dx2B)TWΛ(Ŵ δ))] − M−1b̂, (5.18)

26

dŵ

dt = M−1[(Dx1B)TWΛ(f1(ŵδ))) + (Dx2B)TWΛ(f2(ŵδ)))] − M−1b+

M−1[(Dx1B)TWΛ(R1(ŵδ, ĝδ))) + (Dx2B)TWΛ(R2(ŵδ, ĝδ)))] − M−1b̃.
(5.19)

27

6. Time integration
In this chapter we deal with the solution of a time integration problem. As we
have shown (see (3.46), (3.47)), the discretization of the Euler and Navier-Stokes
equation leads to a problem, which can be formally written as:

dy

dt
= f(t,y),

y(t0) = y0.
(6.1)

There are two approaches how to solve the problem: an explicit and implicit
method. The advantage of explicit methods is the ability of a parallelization and
the absence of solving an implicit problem. However, unlike implicit methods,
explicit methods require very small time step. In our case the time integration is
performed by the explicit Runge-Kutta method.

6.1 Runge-Kutta method
Let us have a partition of time interval [0, T]:

0 = t0 < t1 < t2 < · · · < tR = T, (6.2)

satisfying:
tk = tk−1 + ∆t. (6.3)

where ∆t is the time step. We denote yn as an approximation of the solution in
time tn:

yn ≈ y(tn). (6.4)
Let s be the stage of the method with coefficients aij, bi, ci, i, j = 1, · · · , s, then:

yn+1 = yn + ∆t
s∑

i=i

biκi, (6.5)

where
κi = f(tn + ci∆t,yn + ∆t

s∑
j=1

aijκj), i = 1, · · · , s. (6.6)

In the work we used the 4th-order Runge Kutta method given by the following
Butcher table:

0 0 0 0 0
1/2 1/2 0 0 0
1/2 0 1/2 0 0
1 0 0 1 0

1/6 1/3 1/3 1/6

. (6.7)

6.2 Application in the discretization
Having defined approximative discrete solutions, we show the application of the
time integration. The situation is straightforward for the Euler equations. We
obtain the solution in the next time step using see (3.46). In the case of the
Navier-Stokes equations the process is as follows:

28

• Having solution wδ
k in tk we evaluate W δ

k using (3.49).

• Using W δ
k and (3.47) we compute gδ

i,k, ∀i = 1, 2, 3.

• Using gδ
i,k and (3.48) we obtain wδ

k+1.

In the work we used a fixed time step short enough not to let a solution diverge.
We had to use a smaller time step for parallel computations.

29

7. Nektar++
In the work, we used open-source cross platform framework Nektar++. Nek-
tar++ is designed to provide the spectral/hp element discretization. The software
is mainly developed by members of the SherwinLab at Imperial College London
and Kirby’s group at the University of Utah.

Nektar++ contains various solvers. Except for the compressible flow solver,
it provides, for example, an incompressible solver or linear elasticity solver. It
supports only the discontinuous projection for the compressible flow solver, but
supports both the continuous and discontinuous for other (e.q. incompressible
flow solver). One, two and three dimensional problems are supported.

The computation requires two source files: a mesh file and a session file, both
in XML file format. The mesh file specifies vertices, edges, elements, curved
edges, a computational domain and a polynomial expansion. In the session file,
we specify all other parameters, including solver informations, boundary and
initial conditions.

Apart from the final solution file in fld format, Nektar++ can generate chk
files to check the current solution. These files can be converted in vtu files, using
Nektar++ utility FieldConvert, in order to display the results. For this purpose,
we used open source software Paraview.

Nektar++ framework is developed in C++ language, which combines the
high performance speed and the objected oriented programming concepts. The
architecture is build on six libraries, four of them are responsible for the numerical
discretization and function representation:

• StdRegions - Represents the reference element and basic operations on it.

• SpatialDomains - Represents the mapping between the element of the mesh
and the reference element.

• LocalRegions - Local representation and operations on each element.

• GlobalRegions - Global representation.

LibUtils library contains the basic building blocks and SolverUtils library contains
a solver representation.

For more information, see Cantwell et al. [2015] and for the documentation,
see Nek [2017].

Nektar++ allows parallel computing, which is very useful when carrying out
the computation on a cluster and we have multiple cores available. We performed
parallel computations on Karlin computational cluster Snehurka.

Figure 7.1: Nektar++, see Nek [2017]

30

8. Numerical experiments
One of the standard test case is the simulation of the flow around NACA airfoil.
In the work, we used NACA0012 airfoil, because it is one of the most common
and there are many results available, for example see Norbert et al. [2010].

This chapter is organized as follows. In Section 8.1, we cover the process of the
mesh generation. Further, we present the results of the numerical simulations.
At first, we study the inviscid subsonic flow (see Section 8.2), the values of the lift
and drag coefficients, and the quality of the solution, depending on the mesh and
polynomial expansion. The results of the simulations of the inviscid transonic flow
are presented in Section 8.3. We discuss the shock capturing method and show
the impact on the solution. Further, in Sections 8.4 and 8.5, the viscous subsonic
flow is studied. We discuss the simulations of the boundary layer with respect to
the polynomial degree expansion and the size of boundary layer elements. Finally,
we present the results for an unsteady flow for both the subsonic and transonic
velocity, see Section 8.6.

8.1 High order mesh generation
A coarseness of the mesh plays a crucial role in the finite volume schemes, because
we approximate the solution function by a constant function on each element. If
we aim to obtain an accurate solution we need to use a sufficiently fine mesh. In
the case of higher order methods, the situation is slightly different. Even with a
coarse mesh we can obtain a good solution providing that we use a sufficiently
high polynomial order expansion. However, if we use high order methods it is
convenient to use a high order curvilinear mesh with curved boundaries. This
may be challenging for more complex geometries, especially in industry, where
geometries can be very complex.

The creation of the mesh was done as follows: Firstly, we generated mesh
points for 2D domain with NACA0012 profile, using software E2D2, see Feistauer
et al. [1992], and created a simple linear mesh. In the second step, we enhanced
the mesh by creating curved boundaries. This was done by finding boundary
points that divide the length of the corresponding curved side in the ratio that
corresponds to the zero points of GLL quadrature, see Figure 8.1. The Gibbs
phenomenon is eliminated for this choice of points. This is done by dividing the

Figure 8.1: The creation of a high order mesh

linear mesh in a corresponding ratio and then finding the closest point on the
profile, for each point. Then we had to transform the points into the XML file,
which is suitable for Nektar++.

31

The last step was to make a boundary layer. For this purpose, Nektar++
provides utility NekMesh, which allows us to create the boundary layer. We had
also split the elements behind the profile, in order to obtain a structured mesh,
see Figure 8.2. For this purpose, we had to slightly modify the source code of
utility NekMesh in Nektar++. This utility was also used for additional local
refinements of the mesh (e.g. in the area of the shock wave, see Figure 8.8).

Figure 8.2: A basic mesh (left), a mesh with a boundary layer (right)

8.2 Inviscid flow, M = 0.5 α = 2◦

The first test case was the inviscid subsonic flow with Mach number M = 0.5
and angle of attack α = 2◦. We tested various meshes denoted as M1, M2, M3,
M4 with the number of elements equals N = 420, N = 918, N = 1540, N = 2915,
respectively. Since no boundary layer is occurring for the inviscid flow, we did
not have to create a thin boundary layer in the mesh and we used thin elements
only in the top of the airfoil. For this reason, the time step could be larger than
for the viscous flow and we were able to compute the steady solution for high
polynomial order expansion. The aforementioned meshes are displayed in Figure
8.3. We used the polynomial expansion up to the sixth degree and computed the
lift and the drag coefficients (cl and cd, respectively) according to the following
relation: (

cl

cd

)
= 1

1
2ρ∞ |v∞|2 L

∫
ΓW

(pI − T)n dS, (8.1)

where ρ∞ is the far-field density, v∞ is the far-field velocity and L is the reference
length, ΓW is the boundary of the profile, p is the pressure, I is the identity
matrix, T is the Cauchy stress tensor and n is the normal vector with respect
to the boundary. We implemented this relation in Nektar++ as a part of the
postprocessig. We used the exact Riemann solver for the computation of the
advective numerical flux (for details see Section 3.4.1)

We carried out the computations and compared the convergence of the solu-
tion with respect to the mesh refinement and polynomial order expansion. The
results, summarized in Table 8.1 and Graph 8.4, show that the values of the lift
and drag coefficients converge to values:

cd ≈ 0.0018,

cl ≈ 0.247.

32

We can see that the value of coefficient cd is very small. This is what we expected,
since we work with the inviscid flow.

In Figure 8.5, we can see the isolines of the Mach number of the solution. On
the left, we used mesh M1 and the third polynomial degree and on the right we
used the first polynomial degree and mesh M3. From the figure, we can see that
even though the number of degrees of freedom is similar, the result for the third
degree expansion is better and much smoother. This fact illustrates the benefit
of using the higher order polynomial expansion.

In Figure 8.6, we compared expansion coefficients ûpq of the solution functions
in various elements. We used mesh M1 and the sixth polynomial order expansion.
In the top picture, we can see the expansion coefficients of the solution function
at the top of the airfoil. The second picture is related to the second layer at
the top of the profile. The last figure shows the solution on the side of the
profile. The elements, where the expansion coefficients are studied are displayed
in Figure 8.7. We observe, that coefficients for the element at the top of the airfoil
have the largest values, because of the largest gradients in the solution. On the
other hand, the coefficients for the element on the side of the profile are relatively
small.

Figure 8.3: Meshes used for inviscid flow: M1 (top left), M2 (top right), M3
(lower left), M4 (lower right)

8.3 Inviscid flow, M = 0.85
The second test case was the transonic inviscid flow with the Mach number M =
0.85 and no angle of attack. The occurrence of a shock wave and is typical for
the transonic flow. The shock waves are characterized by an abrupt change of the
conservative variables. Therefore, we refined the elements where the shock wave

33

p mesh DOF cd cl

1 M1 1680 -0.0004769 0.209294
1 M2 3672 -0.0051603 0.236006
1 M3 6160 0.03424510 0.238760
1 M4 11664 -0.0080630 0.240999
2 M1 3780 0.00092069 0.235886
2 M2 8262 0.00193734 0.245964
2 M3 13860 0.00200521 0.246749
2 M4 26244 0.00190760 0.247049
3 M1 6720 0.00179973 0.244322
3 M2 14688 0.00190379 0.247680
3 M3 24640 0.00191845 0.247503
3 M4 46656 0.00185410 0.247624
4 M1 10500 0.00195637 0.246686
4 M2 22950 0.00186030 0.247539
4 M3 38500 0.00185072 0.247406
4 M4 72900 0.00180892 0.247647
5 M1 15120 0.00192342 0.247357
5 M2 33048 0.00183330 0.247428
5 M3 55440 0.00184208 0.247337
5 M4 104976 0.00180748 0.247611
6 M1 20580 0.00189227 0.247484
6 M2 44982 0.00185158 0.247346
6 M3 75460 0.00178361 0.247278
6 M4 142884 0.00180395 0.247677

Table 8.1: cd and cl for different meshes and polynomial orders for inviscid flow
M = 0.5, α = 2◦

occurs. The mesh (see Figure 8.8) we used was compounded of 1378 elements and
we used the second degree polynomial expansion. We tried using a higher degree,
but the computational time was too high to obtain a steady solution. Because
the mesh at the area of the shock wave is very fine, we had to use a small time
step.

Further, we also used the shock capturing method (for details see Section 3.9)
and compared the solution with and without the shock capturing technique. In
formula (3.51), we introduced the sensor variable, which is useful to indicate the
occurrence of the shock wave. The values of the sensor variable are depicted in
Figure 8.11. The values of the artificial diffusion, also introduced in Section 3.9,
are displayed in Figure 8.12. We observe that the artificial diffusion occurs only
in the area of the shock wave. We studied the values of the Mach number and
the pressure coefficient on the boundary of the airfoil. The pressure coefficient is
defined as:

Cp = p− p∞
1
2ρ∞ |v∞|2

, (8.2)

where p∞ is the far-field pressure, ρ∞ is the far-field density and v∞ is the far-field
velocity. We implemented the computation of Cp in Nekar++ as a part of the
postprocessing. The results are depicted in Figure 8.10. In the top graph, the

34

123456
0.01

0.00

0.01

0.02

0.03
Dr

ag
 c

oe
ffi

cie
nt

M1
M2
M4
M3

123456
Degree of polynomial expansion

0.21

0.22

0.23

0.24

Lif
t c

oe
ffi

cie
nt

M1
M2
M4
M3

6 5 4 3
0.000

0.001

0.002

0.003

0.004

Dr
ag

 c
oe

ffi
cie

nt

M1
M2
M4
M3

6 5 4 3
Degree of polynomial expansion

0.240

0.242

0.244

0.246

0.248

0.250

Lif
t c

oe
ffi

cie
nt

M1
M2
M4
M3

Figure 8.4: Dependence of the lift and drag coefficients on the polynomial degree
for various meshes for inviscid flow M = 0.5, α = 2◦

results without the shock capturing technique are shown. We can see a substantial
oscillation of the Mach number and the pressure coefficient at the point of the
shock. This oscillation doesn’t represent a physically correct solution. In the

35

Figure 8.5: Isolines of the Mach number for mesh M1 and third polynomial order
(left), and M3 and first polynomial order (right) - inviscid flow M = 0.5, α = 2◦

lower graph, the results with the shock capturing technique are displayed and we
can see that the oscillations at the point of the shock are suppressed. The isolines
of the Mach number can be seen in Figure 8.9.

8.4 Viscous flow, M = 0.5, Re = 500, α = 2◦

The next test case was the viscous flow with Mach number M = 0.5, Reynolds
number Re = 500 and angle of attack α = 2◦. The viscous flow is characterized
by a presence of the boundary layer in order to satisfy the no slip boundary
condition. Therefore, we had to refine the elements on the boundary of the
profile. Considering Re = 500, the boundary layer is relatively thick, compared
to higher Reynolds numbers. We used three meshes, denoted as M5, M6, M7
with the number of elements equals N = 754, N = 1178, N = 1368 and the Roe
advection numerical flux (for details see Section 3.4.2).

Firstly, we studied the computation of the lift and drag coefficients. The
results are summarized in Table 8.2. The steady state was achieved using up to
the fourth degree of the polynomial expansion for mesh M5 and up to the third
degree for mesh M6 and M7. From the table, we observe that the coefficients
converge to the values:

cd ≈ 0.18,

cl ≈ 0.11.

In Figures 8.13, 8.15 we can see the isolines of the Mach number for mesh M5
and in Figures 8.14, 8.16 we can see the isolines of the Mach number for mesh
M6. We observe that the boundary layer is developed for both meshes and the
solution of the fourth order is very smooth.

Further we studied the simulation of the boundary layer. In Figure 8.17 we
can see the isolines of the Mach number corresponding to the boundary layer
and the mesh. The solution was obtained using first, second, third and fourth
polynomial degree (top left, top right, lower left, lower right, respectively). We
observe, that for the first degree, the boundary layer is not fully developed and
is the same size as the the first boundary element. We can see, that the result

36

p mesh DOF cd cl

1 M5 3016 0.1712074 0.11092685
1 M6 4712 0.1614234 0.10908513
1 M7 5472 0.1611628 0.11886311
2 M5 6786 0.1909813 0.10865095
2 M6 10600 0.1702229 0.11140273
2 M7 12312 0.1687561 0.11358470
3 M5 12064 0.1854102 0.11187565
3 M6 18840 0.1903322 0.11334308
3 M7 21888 0.1897796 0.11312697
4 M5 18850 0.1850332 0.11205576

Table 8.2: cd and cl for different meshes and polynomial orders for the viscous
flow, M = 0.5, Re = 500, α = 2◦

is much better even for the second degree. The thickness of the boundary layer
is smaller than the first boundary element, but fully developed boundary layer is
obtained for the third and fourth polynomial degree expansion. The fact that we
are able to obtain a thinner boundary layer than the first boundary element is an
another advantage of the high order methods. It allows us to use larger elements
to simulate the boundary layer. The mesh can be coarser and the time step can
be higher.

8.5 Viscous flow, M = 0.5, Re = 2000, α = 2◦

Using higher Reynolds number requires smaller elements near the airfoil because
the boundary layer is thinner. The mesh used for the computation is displayed in
Figure 8.18. We used HLLC Riemann solver for the computation of the advective
numerical flux and the first, second and third polynomial degree. The isolines
of the Mach number are displayed in Figure 8.19. The boundary layer is fully
developed and the solution is relatively smooth, for the third degree.

8.6 Unsteady flow
The last simulations concern with an unsteady flow. The first test case was
the simulation of the viscous flow with M = 0.5, Re = 5000 and the angle of
attack was α = 2◦. We used the mesh containing N = 806 elements and second
polynomial order expansion. In Figure 8.20 the values and isolines of the Mach
number are displayed.

The second test case was the viscous flow with M = 0.85, Re = 10000 and
no angle of attack. We used the mesh containing N = 1060 elements and second
polynomial order expansion. In Figure 8.21 we can see the results of the solution.
We note that we did not present the shock capturing method, because adding an
another diffusive term did not lead to better results.

37

0123456

0
1

2
3

4
5

6

10-7
10-6
10-5
10-4
10-3
10-2
10-1
100
101

exp	coeff
.	x-dir(p)

exp	coeff.	y-dir(q)

10-7
10-6
10-5
10-4
10-3
10-2
10-1
100
101

0123456

0
1

2
3

4
5

6

10-7
10-6
10-5
10-4
10-3
10-2
10-1
100
101

exp	coeff
.	x-dir(p)

exp	coeff.	y-dir(q)

10-7
10-6
10-5
10-4
10-3
10-2
10-1
100
101

0123456

0
1

2
3

4
5

6

10-7
10-6
10-5
10-4
10-3
10-2
10-1
100
101

exp	coeff
.	x-dir(p)

exp	coeff.	y-dir(q)

10-7
10-6
10-5
10-4
10-3
10-2
10-1
100
101

Figure 8.6: Polynomial expansion coefficients for the element from the first bound-
ary layer at the top of the airfoil (top), second boundary layer at the top of the
airfoil (middle) and boundary layer on the side of the airfoil (lower), for the
elements see 8.7

38

Figure 8.7: Elements, where the expansion coefficients are studied, see Figure 8.6.

Figure 8.8: The mesh used for the transonic inviscid flow

39

Figure 8.9: Isolines of the Mach number without the shock capturing using first
order (top left), second order (top right) and with the shock capturing using first
order (lower left) second order (lower right)

40

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5
M

0.0 0.2 0.4 0.6 0.8 1.0
x

1.0

0.5

0.0

0.5

1.0

Pr
es

su
re

 c
oe

ffi
cie

nt

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00

1.25

M

0.0 0.2 0.4 0.6 0.8 1.0
x

1.0

0.5

0.0

0.5

1.0

Pr
es

su
re

 c
oe

ffi
cie

nt

Figure 8.10: Dependence of the Mach number and the pressure coefficients on
distance x on the airfoil (top of the airfoil: x = 0) without the shock capturing
(top) and with the shock capturing method (lower)

41

Figure 8.11: The values of the sensor variable for the inviscid transonic flow

Figure 8.12: The values of the artificial viscosity for the inviscid transonic flow

42

Figure 8.13: Isolines of the Mach number for mesh M5 using first (top left), second
(top right), third (lower left) and fourth (lower right) degree for the viscous flow,
M = 0.5, Re = 500, α = 2◦

Figure 8.14: Isolines of the Mach number for mesh M6 using first (top left), second
(top right), third (lower left) and fourth (lower right) degree for the viscous flow,
M = 0.5, Re = 500, α = 2◦

43

Figure 8.15: Isolines of the Mach number for mesh M5 using first (top left), second
(top right), third (lower left) and fourth (lower right) degree for the viscous flow,
M = 0.5, Re = 500, α = 2◦

Figure 8.16: Isolines of the Mach number for mesh M6 using first (top left), second
(top right), third (lower left) and fourth (lower right) degree for the viscous flow,
M = 0.5, Re = 500, α = 2◦

44

Figure 8.17: Simulations of the boundary layer for M = 0.5, Re = 500, α = 2◦

for first (top left), second (top right), third (lower left) and fourth (lower right)
polynomial order expansion

Figure 8.18: The mesh for the viscous, M = 0.5, Re = 2000, α = 2◦

45

Figure 8.19: Isolines of the Mach number for M = 0.5 and Re = 2000, α = 2◦ for
first (top left), second (top right) and third (lower) polynomial degree

46

Figure 8.20: Mach number (top) and isolines of the Mach number (lower) for
M = 0.5, Re = 5000 and α = 2◦

47

Figure 8.21: Mach number (top) and isolines of the Mach number (lower) for
M = 0.85, Re = 10000

48

Conclusion
As we described above, high order methods provide a very powerful tool for
computational fluid dynamics and are considered as the methods with a very high
potential in the future, because of the computational efficiency. We mentioned,
that because of the hyperbolic character of the governing equations describing
the compressible flow, it is convenient to use the discontinuous projection. For
this purpose, we used the discontinuous Galerkin method, which is suitable as
the high order method.

In the work we used open-source framework Nektar++ which provides the
spectral element discretization using the discontinuous Galerkin method. The
goals of the thesis were the following: study and describe the discretization
schemes implemented in Nektar++ and test the abilities of the framework for
the various regimes of the compressible flow.

At first, we summarized the Euler and the Navier-Stokes equations, see Chap-
ter 2. Then, the discretization of the discontinuous Galerkin method for the com-
pressible Euler and the Navier-Stokes equations was summarized. We note, that
the official documentation for the software does not provide a sufficient insight
into the discretization of the equations and the description was not a trivial part
of the work. In order to find out all the important parts of the implementation
we had to examine the source code of Nektar++.

We introduced finite dimensional spaces Sp and Sp, and discussed the necessity
of defining the advection numerical flux. In Section 3.4, we presented one exact
and three approximated Riemann solvers. Then, we discussed the discretization
of the Navier-Stokes equations and the local discontinuous Galerkin method, with
diffusion numerical fluxes, see Section 3.5. In Section 3.7, we presented the imple-
mentation of boundary conditions using the weak boundary condition approach.
In Section 3.8 we defined the approximative solutions. Finally we discussed the
shock capturing method, see Section 3.9.

In Chapter 4, the expansion basis was discussed. Then, we introduced the
integration and differentiation operations on the reference and general elements.
In Chapter 5, we formulated the matrix form of the discretization. The time
integration methods were discussed in Chapter 6 using Runge-Kutta methods.

Before carrying out the numerical experiments, the high order meshes needed
to be created and converted into format suitable for Nektar++. The process is
described in Section 8.1, we implemented a part of this process in framework
Nektar++ using C++ programing language. We note that various simulations
required various meshes in order to remain precision and the computational effi-
ciency.

The first test case was the inviscid, subsonic flow, see Section 8.2. We com-
puted the solution for various meshes and polynomial orders up to the sixth
order. The computational time was too high for higher polynomial orders. We
implemented the computation of the lift and drag coefficients into Nektar++
and observed the results, see Table 8.1 and Graph 8.4. From Figure 8.5 we can
observe that it is more advantageous to use a higher polynomial expansion than
a finer mesh to obtain a smoother solution. We implemented the output of the
expansion coefficients from Nektar++ and displayed them in Figure 8.6.

49

Further, we studied the inviscid, transonic flow and observed the typical shock
wave in the solution, see Figure 8.9. In Graph 8.10, we demonstrated the usage
of the shock capturing method by suppressing the oscillations at the area of the
shock and obtained a smoother solution. For this purpose, we implemented the
computation of the pressure coefficient into Nektar++.

In the next test cases, we studied viscous flows. At first, the subsonic flow
was investigated. We computed the lift and drag coefficients for Re = 500 up
to the fourth polynomial order expansion, for results see Table 8.2, Figure 8.13
and Figure 8.14. Further, we studied the creation of the boundary layer. We
observed that for the first polynomial degree expansion the boundary layer was
the size of the first boundary element. We obtained thinner boundary layer, even
thinner than the first element for higher polynomial orders. This is not possible
to obtain using the finite volume scheme. Finally we studied the unsteady flow,
see Section 8.5.

In the work, we tested various compressible flows and confirmed the potential
of the high order methods. We demonstrated the computational efficiency. On
the other hand, high order methods require a good mesh with curved boundaries.
Otherwise, the solution diverged at the top or at the bottom of the profile. In the
work we unsuccessfully simulated the viscous subsonic flow past turbine cascade
SE 1050 using triangular meshes. The solution diverged near the trailing edge
of the turbines. However, the simulation were mostly successful for NACA0012
airfoil.

50

Bibliography
Nektar++: Spectral/hp element framework version 4.4.1 user guide, 2017. http:

//www.nektar.info/downloads/file/user-guide-pdf-3/.

C.D. Cantwell, D. Moxey, A. Comerford, A. Bolis, G. Rocco, G. Mengaldo, D. De
Grazia, S. Yakovlev, J.-E. Lombard, D. Ekelschot, B. Jordi, H. Xu, Y. Mo-
hamied, C. Eskilsson, B. Nelson, P. Vos, C. Biotto, R.M. Kirby, and S.J. Sher-
win. Nektar++: An open-source spectral/hp element framework. Computer
Physics Communications, 192:205 – 219, 2015.

Bernardo Cockburn and Chi-Wang Shu. The local discontinuous Galerkin method
for time-dependent convection-diffusion systems. SIAM Journal on Numerical
Analysis, 35(6):2440–2463, 1998.

Vı́t Doleǰśı and Miroslav Feistauer. Discontinuous Galerkin Method. Springer,
2015.

M. Feistauer, J. Felcman, and Z. Vlášek. E2D2 software, 1992.

Miroslav Feistauer, Jiri Felcman, and Ivan Straškraba. Mathematical and Com-
putational Methods for Compressible Flow. Oxford University Press, 2003.

George Karniadakis and Spencer Sherwin. Spectral/HP Element Methods for
Computational Fluid Dynamics. Oxford University Press, 2005.

Gianmarco Mengaldo, Daniele De Grazia, Joaquim Peiro, Antony Farrington,
Freddie Witherden, Peter Vincent, and Spencer Sherwin. A guide to the im-
plementation of boundary conditions in compact high-order methods for com-
pressible aerodynamics. AIAA AVIATION 2014 -7th AIAA Theoretical Fluid
Mechanics Conference, 2014.

Kroll Norbert, Bieler Heribert, Deconinck Herman, Couaillier Vincent, van
der Ven Harmen, and Sørensen Kaare. ADIGMA - A European Initiative on
the Development of Adaptive Higher-Order Variational Methods for Aerospace
Applications. Springer, 2010.

Per-Olof Persson and J Peraire. Sub-cell shock capturing for discontinuous
Galerkin methods. AIAA paper, 2, 2006.

Wm. H. Reed and T. R. Hill. Triangular mesh methods for the neutron transport
equation. (LA-UR–73-479), 1973.

Eleuterio Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics.
Springer, 2009. ISBN 978-3-540-25202-3.

51

http://www.nektar.info/downloads/file/user-guide-pdf-3/
http://www.nektar.info/downloads/file/user-guide-pdf-3/

List of Figures

3.1 A scheme of the Riemann problem for the Euler equations (see
Mengaldo et al. [2014]). 11

3.2 Possible wave patterns for the Riemann problem for the Euler
equations (see Mengaldo et al. [2014]). 11

4.1 Example of expansion basis in 1D for P = 5 (see Karniadakis and
Sherwin [2005]) . 20

4.2 The reference elements: (a) quadrilateral, (b) triangular, see Kar-
niadakis and Sherwin [2005]. 22

4.3 Example of an expansion basis on the reference quadrilateral ele-
ment, see Karniadakis and Sherwin [2005] 22

7.1 Nektar++, see Nek [2017] . 30

8.1 The creation of a high order mesh 31
8.2 A basic mesh (left), a mesh with a boundary layer (right) 32
8.3 Meshes used for inviscid flow: M1 (top left), M2 (top right), M3

(lower left), M4 (lower right) . 33
8.4 Dependence of the lift and drag coefficients on the polynomial de-

gree for various meshes for inviscid flow M = 0.5, α = 2◦ 35
8.5 Isolines of the Mach number for mesh M1 and third polynomial

order (left), and M3 and first polynomial order (right) - inviscid
flow M = 0.5, α = 2◦ . 36

8.6 Polynomial expansion coefficients for the element from the first
boundary layer at the top of the airfoil (top), second boundary
layer at the top of the airfoil (middle) and boundary layer on the
side of the airfoil (lower), for the elements see 8.7 38

8.7 Elements, where the expansion coefficients are studied, see Figure 8.6. 39
8.8 The mesh used for the transonic inviscid flow 39
8.9 Isolines of the Mach number without the shock capturing using

first order (top left), second order (top right) and with the shock
capturing using first order (lower left) second order (lower right) . 40

8.10 Dependence of the Mach number and the pressure coefficients on
distance x on the airfoil (top of the airfoil: x = 0) without the
shock capturing (top) and with the shock capturing method (lower) 41

8.11 The values of the sensor variable for the inviscid transonic flow . . 42
8.12 The values of the artificial viscosity for the inviscid transonic flow 42
8.13 Isolines of the Mach number for mesh M5 using first (top left),

second (top right), third (lower left) and fourth (lower right) degree
for the viscous flow, M = 0.5, Re = 500, α = 2◦ 43

8.14 Isolines of the Mach number for mesh M6 using first (top left),
second (top right), third (lower left) and fourth (lower right) degree
for the viscous flow, M = 0.5, Re = 500, α = 2◦ 43

8.15 Isolines of the Mach number for mesh M5 using first (top left),
second (top right), third (lower left) and fourth (lower right) degree
for the viscous flow, M = 0.5, Re = 500, α = 2◦ 44

52

8.16 Isolines of the Mach number for mesh M6 using first (top left),
second (top right), third (lower left) and fourth (lower right) degree
for the viscous flow, M = 0.5, Re = 500, α = 2◦ 44

8.17 Simulations of the boundary layer for M = 0.5, Re = 500, α = 2◦

for first (top left), second (top right), third (lower left) and fourth
(lower right) polynomial order expansion 45

8.18 The mesh for the viscous, M = 0.5, Re = 2000, α = 2◦ 45
8.19 Isolines of the Mach number for M = 0.5 and Re = 2000, α = 2◦

for first (top left), second (top right) and third (lower) polynomial
degree . 46

8.20 Mach number (top) and isolines of the Mach number (lower) for
M = 0.5, Re = 5000 and α = 2◦ 47

8.21 Mach number (top) and isolines of the Mach number (lower) for
M = 0.85, Re = 10000 . 48

53

List of Tables

8.1 cd and cl for different meshes and polynomial orders for inviscid
flow M = 0.5, α = 2◦ . 34

8.2 cd and cl for different meshes and polynomial orders for the viscous
flow, M = 0.5, Re = 500, α = 2◦ 37

54

A. Attachments

A.1 Jacobi polynomials
Jacobi polynomials are denoted by Pα,β

p (x) and represent a class of orthogonal
polynomials. These polynomials are defined as a solution to Sturm-Liouville
problem defined as:

d
dx

[
(1 − x)1+α(1 + x)(1 + β) d

dxup(x)
]

= λp(1 − x)α(1 + x)βup(x), (A.1)

for x ∈ [−1, 1], where
λp = −p(α + β + p+ 1), (A.2)

and up(x) represents the Jacobi polynomial: up(x) = Pα,β
p (x).

As we mentioned, an important property of Jacobi polynomial is the orthog-
onality given by the following condition:∫ 1

−1
(1 − x)α(1 + x)βPα,β

p (x)Pα,β
q (x)dx = Cδpq, (A.3)

where
C = 2α+β+1

2p+ α + β + 1
Γ(p+ α + 1)Γ(p+ β + 1)

p! Γ(p+ α + β + 1) . (A.4)

55

	Introduction
	Governing equations of the compressible flow
	Euler equations
	Mach number

	Navier-Stokes equations

	Discontinuous Galerkin
	Mesh partition
	Discontinuous finite element spaces
	Discretizaton of the Euler equations
	Advection numerical flux
	Exact Toro
	Roe flux
	HLL
	HLLC

	Discretization of the Navier Stokes eqautions
	Diffusion numerical flux
	Boundary conditions
	Far-field boundary conditions
	Full slip boundary conditions
	No slip boundary conditions

	Formulation of the approximative solution
	Shock capturing

	Expansion bases
	1D expansion basis
	Multidimensional expansion basis
	Local element operations
	Integration over a reference element
	Integration over a general element
	Differentiation in the reference element
	Differentiation in a general element

	Matrix formulation
	Basic notation and backward transformation
	Differentiation matrix
	Matrix form of the approximative solution

	Time integration
	Runge-Kutta method
	Application in the discretization

	Nektar++
	Numerical experiments
	High order mesh generation
	Inviscid flow, M = 0.5 α= 2∘
	Inviscid flow, M = 0.85
	Viscous flow, M = 0.5, Re = 500, α= 2∘
	Viscous flow, M = 0.5, Re = 2000, α= 2∘
	Unsteady flow

	Conclusion
	Bibliography
	List of Figures
	List of Tables
	Attachments
	Jacobi polynomials

