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Introduction
From time immemorial, people aimed to understand physical phenomena so they
could exploit it to they’r own benefit and further advance. To do so, physics
was slowly developed over the millennia, the sophisticated tool to predict the
future. As the understanding of nature prolonged, the complexity of our equation
grew. Nowadays, analytic solutions of current problems appears only rarely.
Fortunately, we live in an era of silicon, material, that is responsible for probably
the greatest advance of human spieces so far. The computing power of modern
machines opened a window to new branch of mathematics, the numerics.

The interest of this thesis is given to Maxwell’s equations, which is a system
of four partial differential vector equations. Even tho, there are some anylytic
solutions to simple problems, in most of the engineering problems, the numerical
simulation is inevitable. There are several approaches in this field: Transmit ma-
trix, for solving the thin layers problem, Finite element method, for field problem,
etc.

The method, described in this thesis, is called the Finite difference time do-
main method, (FDTD) for short. This method allows user to solve an evolution
problem. In typical situation, user models a device on discrete grid, called Yee
grid and defines the outer field. The algorithm compute the value of the field
on every single point on grid in each time step required. The advantage of using
this approach is, that it is simple - Maxwell’s equations are broken into evolution
equations, using the difference approximation, it is universal - It can be used in
many other problems, such as heat propagation, Schrodinger equation etc. It
is intuitive, because it solves Maxwell’s equations directly, while using only dif-
ference approximation. It is a great learning tool for electrodynamics, because
the output of the simulation can be converted into a video of the field. It is
scalable, the time required, while extending the calculation, grows linearly, while
with similar methods, it grows exponentially. It is easily parallelizable. It can be
simply modified to handle nonlinear behaviour. It is a well developed algorythm
and so it become robust and accurate. The downside of this algorithm is, that
it needs some additional layers around it’s problem space to be incorporated. It
provides only the information about field, so that other post processing methods
has to be used to extract desired information, such as frequency response. It’s
grid does not efficiently represents curved surfaces and it is very inefficient for
highly resonant devices.

The aim of this thesis is to explain the mechanism behind FDTD algorithm,
to develop code in two dimensions with emphasis on efficiency, to provide solution
for some of the flaws mentioned above, namely Perfectly matching layer, curved
surfaces, spectrum extraction and to provide some understanding about limits of
this computation method.
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(a) Monochromatic plane wave hitting the two slide barrier after 450
time steps.

(b) Monochromatic plane wave hitting the two slide barrier after 900
time steps.

Figure 1: An axample of the FDTD simulation.
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1. FDTD Method
FDTD stands for Finite-difference time-domain. It is a robust numerical tech-
nique, used to compute approximate solutions of Maxwell’s equations, using the
finite difference in spatial steps and time steps. This method is also called Yee’s
method after Chinese American applied mathematician Kane S. Yee.

1.1 Maxwell’s equations in 2D for FDTD
In order to write the FDTD algorythm, lets have a look at general Maxwell’s
equations:

rot H − ∂t D = j

div D = ρe

rot E + ∂t B = −M

div B = ρm

(1.1)

Here H stands for the magnetic field strength vector, D is the electric dis-
placement vector, j is the electric current density vector, ρe is the electric charge
density, E is the electric field strength vector, B is the magnetic flux density
vector, M is the magnetic current density vector and finally ρm is the magnetic
charge density. We chose this form of Maxwell’s equations, with M and ρm, be-
cause even tho these quantities does not represent anything in a real world, their
presence in Maxwell’s equations can simplify some engineering problems.

Maxwell’s equations alone can not fully describe the Electromagnetism in ma-
terials, beacue it is a set of 8 equations for 12 variables we need to add Constitutive
relations first. This means, that we can think about Maxwell’s equations as about
equations that describes fields production mechanism, and Constitutive relations:

D(t) = ε(t) ∗ E(t), (1.2)
B(t) = µ(t) ∗ H(t), (1.3)

as about equations, that describes, how fields interact with materials. Note, that
ε(t) and µ(t) are time-dependant tensors, but that is only the most general case.
In this thesis, we will focus primarily on linear materials constant in time.

Expanding curl Maxwell’s equations, we obtain:

∂Hz

∂y
− ∂Hy

∂z
− ∂Dx

∂t
= jx

∂Hx

∂z
− ∂Hz

∂x
− ∂Dy

∂t
= jy

∂Hy

∂x
− ∂Hx

∂y
− ∂Dz

∂t
= jz

(1.4)
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∂Ez

∂y
− ∂Ey

∂z
+ ∂Bx

∂t
= −Mx

∂Ex

∂z
− ∂Ez

∂x
+ ∂By

∂t
= −My

∂Ey

∂x
− ∂Ex

∂y
+ ∂Bz

∂t
= −Mz

(1.5)

In this thesis, we focun only on problems, that are homogenou in one dimen-
sion. This means, that fields does not change in this dmension and so we are
left with two-dimensional problem. Without loss of generality, we can assume
this direction to be the Z direction. Hence, we can substitute ∂

∂z
= 0 to sets of

equations above, receiving the following:

∂Hz

∂y
− ∂Dx

∂t
= jx

−∂Hz

∂x
− ∂Dy

∂t
= jy

∂Hy

∂x
− ∂Hx

∂y
− ∂Dz

∂t
= jz

(1.6)

∂Ez

∂y
+ ∂Bx

∂t
= −Mx

−∂Ez

∂x
+ ∂By

∂t
= −My

∂Ey

∂x
− ∂Ex

∂y
+ ∂Bz

∂t
= −Mz

(1.7)

Having a closer look at these equations, we can see, that these equations can
be split into two separate sets, called TM and TE modes respectively:

∂Dz

∂t
= ∂Hy

∂x
− ∂Hx

∂y
− jz

∂Bx

∂t
= −∂Ez

∂y
− Mx

∂By

∂t
= ∂Ez

∂x
− My

(1.8)

∂Bz

∂t
= ∂Ex

∂y
− ∂Ey

∂x
− Mz

∂Dx

∂t
= ∂Hz

∂y
− jx

∂Dy

∂t
= −∂Hz

∂x
− jy

(1.9)

Since these sets of equations are decoupled and does not contain any common
terms, we can focus on deriving updating equations from single mode, TM in our
case.
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Another step is to add some form of Constitutive relations (1.2, 1.3) to our
TM mode equations (1.8). We start with the simple case, where Constitutive
relations can be described by diagonal tensor:

ε =

⎡⎢⎣εx 0 0
0 εy 0
0 0 εz

⎤⎥⎦ (1.10)

µ =

⎡⎢⎣ µx 0 0
0 µy 0
0 0 µz

⎤⎥⎦ (1.11)

This way we can replace B with H and D with E. Terms j and M can
be written as a sum of conduction current density and impressed current density
The conduction current density can be expresed by using the Ohm’s law:

j = jc + ji = σeE + ji

M = Mc + Mi = σmH + Mi

(1.12)

Where σe (σm) is electric (magnetic) conductivity. Once again we expect
them in diagonal form:

σe =

⎡⎢⎣ σe
x 0 0

0 σe
y 0

0 0 σe
z

⎤⎥⎦ (1.13)

σm =

⎡⎢⎣ σm
x 0 0

0 σm
y 0

0 0 σm
z

⎤⎥⎦ (1.14)

These substitutions leaves us with following set of equations:

∂Ez

∂t
= 1

εz

(
∂Hy

∂x
− ∂Hx

∂y
− σe

zEz − jiz

)
∂Hx

∂t
= 1

µx

(
− ∂Ez

∂y
− σm

x Hx − Mix

)
∂Hy

∂t
= 1

µy

(
∂Ez

∂x
− σm

y Hy − Miy

) (1.15)

In the next step, we are going to move to discrete world of Yee’s grid. In order
to do so, we have to substitute partial derivatives with discrete differences.

1.2 Finite difference derivatives approximation
In FDTD we take a continuous function, sample it by defined sampling rate and
then replace our continuous operators with discrete operator. Choosing the right
sampling rate is a question of stability and will be discussed later. The essential
step is choosing the right discrete operators.
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Since we are using differential form of Maxwell’s equations, the most often
used operator is derivative (difference in discrete case). When we have a look at
the definition of derivation:

f ′(x) = lim
∆x→0

f(x + ∆x) − f(x)
∆x

. (1.16)

Having a ∆x small, but finite, the difference approximation, made from this
definition would be a forward difference:

f ′(x) ≈ f(x + ∆x) − f(x)
∆x

. (1.17)

This is usable, but to reduce numerical error, we can find even better approx-
imation, the central difference:

f ′(x) ≈ f(x + ∆x) − f(x − ∆x)
2∆x

. (1.18)

The error caused by this approximation is discussed in [1].
In this case, the function value in position, where the difference is calculated,

is not actually used, but points around are used instead. Also the interval ∆x is
double, which is actually not an issue, we will be able to take an advantage of it
later.

We could even use aproximations of higher order, which uses more points to
calculate the difference, but that would rapidly increase the computation time
and the benefit is not noticeable. Using smaller spatial and time steps is more
beneficial.

1.3 Updating equations
Acording to [1], page 14, taking the Central difference (1.18) and replacing both
spatial and time derivatives in (1.15), we obtain a discrete form of update equa-
tions. Filed components are now sampled at discrete position in time and space
and forms an orthogonal grid formed of rectangular cells called Yee cells. Having
a closer look at the position of field components in Yee cell, one can realize, that
electric field vector components are placed at the centers of the edges of the Yee
cells and are oriented parallel to these edges. Magnetic field vector components
however are place at the centers of the sides of these cells and are parallel to it’s
normals:

Ez(i, j) ⇒
[
i∆x, j∆y

]
Hx(i, j) ⇒

[
i∆x, (j + 0.5)∆y

]
Hy(i, j) ⇒

[
(i + 0.5)∆x, j∆y

]
.

(1.19)

If we divide the Yee cell into 8 sub-cells with each side half length of the
original, we end up with cells that have some field vector components on its
vertices, but only half of these vertices will be filled. This allows us to reduce
the memory usage of future code and use only half of the double step in (1.18)
approximation. With this step, we have to keep in mind, that now both electric
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and magnetic field lives on its own grid that is shifted to the other one by half of
the cell length in all directions. It is a thing that we are going to have to address
later when building an object in Yee grid.

From now, time (step) index is going to be written as an upper index so it is
easier distinguished from spatial indexes.

En+1
z (i, j) − En

z (i, j)
∆t

= 1
εz(i, j)

H
n+ 1

2
y (i, j) − H

n+ 1
2

y (i − 1, j)
∆x

− 1
εz(i, j)

H
n+ 1

2
x (i, j) − H

n+ 1
2

x (i, j − 1)
∆y

−σe
z(i, j)

εz(i, j) E
n+ 1

2
z (i, j) − j

n+ 1
2

iz (i, j)
εz(i, j)

(1.20)

H
n+ 1

2
x (i, j) − H

n− 1
2

x (i, j)
∆t

= − 1
µx(i, j)

En
z (i, j + 1) − En

z (i, j)
∆y

−σm
x (i, j)

µx(i, j) Hn
x (i, j) − Mn

ix(i, j)
µx(i, j)

(1.21)

H
n+ 1

2
y (i, j) − H

n− 1
2

y (i, j)
∆t

= 1
µy(i, j)

En
z (i + 1, j) − En

z (i, j)
∆x

−
σm

y (i, j)
µy(i, j) Hn

y (i, j) −
Mn

iy(i, j)
µy(i, j)

(1.22)

Since we want to write a computer code, dealing with half size indexes would
not be practical and so we also replaced interval (n − 1

2 , n + 1
2) with interval (0,

1) so the length stay the same and the spatial indexes become natural numbers.
The problem is that now we have Electric field vector component with half

size step index and full size step index. To fix this, assuming the field vector
component change in between time steps is small are going to approximate the
half step size index with full step size index:

E
n+ 1

2
z ≈ En

z + En+1
z

2 (1.23)

The same can be done for magnetic field vector component, but instead of
changing half size step index with full size step index, we change them in the
other way:

Hn
x ≈ H

n+ 1
2

x + H
n− 1

2
x

2

Hn
y ≈ H

n+ 1
2

y + H
n− 1

2
y

2

(1.24)
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Substituting (1.23) and (1.24) into (1.20), (1.21) and (1.22) and rearranging
terms so that the future time steps are on the left hand side of the equations,
while previous are on the right hand side, we recive following:

En+1
z (i, j)

( 1
∆t

+ σe
z(i, j)

2εz(i, j)

)
=

( 1
∆t

− σe
z(i, j)

2εz(i, j)

)
En

z (i, j)

+ 1
εz(i, j)

H
n+ 1

2
y (i, j) − H

n+ 1
2

y (i − 1, j)
∆x

− 1
εz(i, j)

H
n+ 1

2
x (i, j) − H

n+ 1
2

x (i, j − 1)
∆y

− j
n+ 1

2
iz (i, j)
εz(i, j)

(1.25)

H
n+ 1

2
x (i, j)

( 1
∆t

+ σm
x (i, j)

2µx(i, j)

)
=

( 1
∆t

− σm
x (i, j)

2µx(i, j)

)
H

n− 1
2

x (i, j)

− 1
µx(i, j)

En
z (i, j + 1) − En

z (i, j)
∆y

− Mn
ix(i, j)

µx(i, j)

(1.26)

H
n+ 1

2
y (i, j)

( 1
∆t

+
σm

y (i, j)
2µy(i, j)

)
=

( 1
∆t

−
σm

y (i, j)
2µy(i, j)

)
H

n− 1
2

y (i, j)

+ 1
µy(i, j)

En
z (i + 1, j) − En

z (i, j)
∆x

−
Mn

iy(i, j)
µy(i, j)

(1.27)

Now we are almost done with evolution equations. In last few steps we will
add a relationship between spatial and time steps and evaluate the n+1 or (n+ 1

2
vector component of the electric (magnetic) field, using the previous time steps.

The relation between time and space step we choose is so that it takes at least
two time steps to propagate trought one spatial cell:

∆x = 2 c0∆t,

∆y = 2
k

c0∆t,
(1.28)

where c0 is the speed of light in vacuum and k is the ratio between ∆x and ∆y:

c0 = 1
√

ε0µ0
, (1.29)

∆x = k∆y (1.30)
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we obtain evolution equations:

En+1
z (i, j) = 4ε0εrz(i, j)c0 − σe

z(i, j)∆x

4ε0εrz(i, j)c0 + σe
z(i, j)∆x

En
z (i, j)

+ 2
4ε0εrz(i, j)c0 + σe

z(i, j)∆x

[
H

n+ 1
2

y (i, j) − H
n+ 1

2
y (i − 1, j)

]
− 2k

4ε0εrz(i, j)c0 + σe
z(i, j)∆x

[
H

n+ 1
2

x (i, j) − H
n+ 1

2
x (i, j − 1)

]
− 2∆x

4ε0εrz(i, j)c0 + σe
z(i, j)∆x

j
n+ 1

2
iz (i, j)

(1.31)

H
n+ 1

2
x (i, j) = 4c0µ0µrx(i, j) − ∆xσm

x (i, j)
4c0µ0µrx(i, j) + ∆xσm

x (i, j)H
n− 1

2
x (i, j)

− 2k

4c0µ0µrx(i, j) + ∆xσm
x (i, j)

[
Ẽn

z (i, j + 1) − Ẽn
z (i, j)

]
− 2∆x

4c0µ0µrx(i, j) + ∆xσm
x (i, j)Mn

ix(i, j)

(1.32)

H
n+ 1

2
y (i, j) =

4c0µ0µry(i, j) − ∆xσm
y (i, j)

4c0µ0µr(i, j) + ∆xσm
y (i, j) H

n− 1
2

y (i, j)

+ 2
4c0µ0µry(i, j) + ∆xσm

y (i, j)
[
Ẽn

z (i + 1, j) − Ẽn
z (i, j)

]
− 2∆x

4c0µ0µry(, j) + ∆xσm
y (i, j)Mn

iy(i, j)

(1.33)

The last operation with these equations, we substitute time-independatn fac-
tors with constants:

Ẽn+1
z (i, j) = Cezez(i, j)Ẽn

z (i, j)

+ Cezhy(i, j)
[
H

n+ 1
2

y (i, j) − H
n+ 1

2
y (i − 1, j)

]
− Cezhx(i, j)

[
H

n+ 1
2

x (i, j) − H
n+ 1

2
x (i, j − 1)

]
− Cezjiz(i, j)jn+ 1

2
iz (i, j)

H
n+ 1

2
x (i, j) = Chxhx(i, j)Hn− 1

2
x (i, j)

− Chxez(i, j)
[
Ẽn

z (i, j + 1) − Ẽn
z (i, j)

]
− Chxmix(i, j)Mn

ix(i, j)

H
n+ 1

2
y (i, j) = Chyhy(i, j)Hn− 1

2
y (i, j)

+ Chyez(i, j)
[
Ẽn

z (i + 1, j) − Ẽn
z (i, j)

]
− Chymiy(i, j)Mn

iy(i, j)

(1.34)

As we can see, some of these coefficients differ only by factor k, which means
that in case, we are using equidistant grid in both directions (k = 1), we can
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(a) Gaussian pulse evolution at 500th time
step

(b) Gaussian pulse evolution at 700th time
step

Figure 1.1: Demonstration of reflection on boundary without using Absorbing
boundary condition. The source is a gaussian pulse, centered in the middle of
the grid. The grid represents a free space.

use fewer coefficients and save computer memory. This may not seem significant
in two dimensions, but these small facts quickly add up and moving into three
dimensions would become realy problematic.

Let’s briefly summarize this chapter. We took differential Maxwell’s equa-
tions, expanded by magnetic current density and magnetic charge density and
had detailed look at curl equations. We substituted Constitutive relations into
these equations and rewrote these vector equations into vector component equa-
tions. Assuming that our problem is homogeneous in z direction, we eliminated
partial derivatives along the z axis. We then separated these equations into
two independent modes, TM and TE. Simplifying our case to have only time-
independent linear material property, described by diagonal tensor permittivity
and permeability, we obtained our final analytical equations (1.15).

We then moved into discrete Yee’s grid where we approximated partial deriva-
tives with central differences, which is a second order error approximation.

In the last section of this chapter, we used numerous substitutions and grid
shifts, to simplify these equations for computer code as much as possible. We
ended up with formula to compute field strength vector component only from
previous time steps field strength vector components.

Problem with these formulas is that our grid size is finite and cells at the edges
of our grid has one neighbor missing and so the field, lying in them, can not be
properly computed. This means that wave, propagating towards the problem
boundary, would reflect back to our problem space and cause huge error. This
phenomena is demonstrated on figure 1.1. The profile of used gaussian pulse is
200 exp(−(t − 100)2/500), which reaches it’s maximum at 100th time step.

We can not fully avoid this problem in two dimensions, but we can minimalize
it by introducing fictitious material around our grid as an absorbing layer, so that
outgoing waves mostly die out. This method is called Absorbing boundary con-
dition (ABC), or in our case, more specifically, Perfectly matching layer (PML),
which is a subject of the next chapter.
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2. Boundary conditions
A goal of this chapter is to develop Absorbing layer around our problem space,
that does not cause any reflections and is loosy so that any wave, coming to
this layer, would die out before hitting it’s end. There are several approaches
available to solve this problem. The one, discussed in this chapter, is called
Perfectly Matched Layer.

The idea of this approach is to surround our grid with additional layer of
fictitious lossy material, that reduce the amplitude of outgoing wave by several
orders of magnitude and so the reflection, caused on the outer boundary of the
grid, would be less significant.

The amount of reflection on the interface of two materials A and B, caused
by a wave, propagating from medium A into medium B, is dictated by reflective
coefficient:

Γ = ηA − ηB

ηA + ηB

, (2.1)

where η is the impedance of respective medium:

η =
√

µ

ε
. (2.2)

We have to make that reflective coefficient between our problem space and
the PML layer to be equal to zero.

2.1 Perfectly matched layer
The first introduced approach is the PML, which is efficient in simple cases
and does not cause a drastic increase in computaton time. Since working with
anisotropic equations would be rather difficult, we are going to continue with
isotropic version of Maxwell’s equations without any magnetic charge or conduc-
tivity and move it to the frequency domain (these components can be added later
on):

jωDz = c0

(
∂Hy

∂
x − ∂Hx

∂y

)
Dz(ω) = εr(ω)Ez(ω)

jωHx = −c0
∂Ez

∂y

jωHy = c0
∂Ez

∂x

(2.3)

Note, that in these equations, we already substituted actual electric field with
rescaled electric field:

Ẽ =
√

ε0

µ0
E, (2.4)
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and we are going to note it E for simplification. Also time step was chosen based
on the cell size:

∆t = ∆x

2c0
(2.5)

We are going to introduce new fictitious complex dielectric constants and
permeabilities ε∗

F z, µ∗
F x and µ∗

F y, that are equal to 1 in our problem space, so
that evolution equations are changed only in the new layer:

jωDzε∗
F z(x)ε∗

F z(y) = c0

(
∂Hy

∂
x − ∂Hx

∂y

)
Dz(ω) = εr(ω)Ez(ω)

jωHxµ∗
F x(x)µ∗

F x(y) = −c0
∂Ez

∂y

jωHyµ∗
F y(x)µ∗

F y(y) = c0
∂Ez

∂x

(2.6)

[2] suggests form of these new variables to be:

ε∗
F m = εF m + σDm

jωε0

µ∗
F m = µF m + σHm

jωµ0

m = x or y

(2.7)

with conditions to ensure zero reflectivity:

εF m = µF m = 1
σDm

ε0
= σHm

µ0
= σD

ε0

ε∗
F x = 1

ε∗
F y

µ∗
F x = 1

µ∗
F y

(2.8)

Using this condition, we obtain zero reflection index, while going from problem
space into PML. Now we only need the complex part of (2.7) to be gradually
increasing, as it goes into the PML. In order to do this, σD has to be increasing.

Notice, that the new parameters, we added in (2.6), are dependant only on
1 coordinate. It is because in this form, we can simply decide, if we want to
implement the PML in both directions, or just on only one and use some other
form of boundary condition on the other one. (Periodic boundary condition for
modeling periodic structures can be an example).

To make the further calculation simpler, let’s focus on implementing PML
only in one direction, compute prefactors before field variables and then guess a

13



form of these prefactors in the other direction. In the x direction we obtain:

jω
(

1 + σD(x)
jωε0

)
Dz = c0

(
∂Hy

∂y
− ∂Hx

∂y

)
jω

(
1 + σD(x)

jωε0

)−1
Hx = −c0

∂Ez

∂y

jω
(

1 + σD(x)
jωε0

)
Hy = c0

∂Ez

∂x

(2.9)

The next step is to move back into the time domain and apply the difference
approximation. Doing so for the Dz and Hy we obtain:

Dn+1/2
z (i, j) = gij3(i) Dn−1/2

z (i, j) + gi2(i) 0.5
[
Hn

y (i + 1/2, j)

− Hn
y (i − 1/2, j − Hn

x (i, j + 1/2) − Hn
x (i, j − 1/2)

]
Hn+1

y (i + 1/2, j) = fi3(i + 1/2)Hn
y (i + 1/2, j)

+ fi2(i + 1/2) 0.5
[
En+1/2

z (i + 1, j) − En+1/2
z (i, j)

]
(2.10)

The equation, evolving Hx, is a bit different from previous equations. It
contains (jω)−1, which relates to integration in time domain. Since we work
with discretized entities, integration naturally becomes summation. To avoid
an increasing summation in every single time step, which is a time demanding
operation, we are going to define a new variable that holds the current value of
that summation and which is updated with each time step. This can be done by
implementing the following series of equations:

curle =
[
En+1/2

z (i, j) − En+1/2
z (i, j + 1)

]
I

n+1/2
Hx (i, j + 1/2) = I

n−1/2
Hx (i, j + 1/2) + curle

Hn+1
x (i, j + 1/2) = Hn

x (i, j + 1/2) + 0.5 curle + fi1(i) I
n+1/2
Hx (i, j + 1/2)

(2.11)

Before explicitly stating each coefficient, lets write down the whole set of
equations, with PML implemented in both directions and having the conductivity
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implemented:

Dz[i, j] = gi3 gj3[j] Dz[i, j]

+ gi2[i] gj2[j] 0.5
1 + σ[i, j]

(
Hy[i, j] − Hy[i − 1, j]

)
+ gi2[i] gj2[j] 1

2k

1
1 + σ[i, j]

Ez[i, j] = 1
εr[i, j] Dz[i, j]

curle[i, j] = Ez[i, j] − Ez[i, j + 1]
IHx[i, j] = IHx[i, j] + fi1[i] curle[i, j]

Hx[i, j] = fj3[j] Hx[i, j] + fj2[j] 1
2µr

(
curle[i, j] + 1

k
IHx[i, j]

)
curle[i, j] = Ez[i + 1, j] − Ez[i, j]

IHy[i, j] = IHy[i, j] + fi1[j] curle[i, j]

Hy[i, j] = fj3[i] Hy[i, j] + fj2[i] 1
2µr

(
curle[i, j] + IHy[i, j]

)

(2.12)

We did another simplification to the notation. Time steps are not noted
anymore, because each new step is calculated from the previous values and so the
left-hand side of the equation denotes the new time step and every component,
standing on the right-hand side, denotes previous steps. Since there are no half
indexes of array elements in the computer code, field indexes were shifted as well
to reflect the future code. Also, here σ[i, j] stands for actual conductivity, not
just the imaginary one, we defined inside PML coefficients.

Introduced parameters can be written as following:

fi1(i) = xn(i)

fi2(i) = 1
1 + xn(i)

fi3(i) = 1 − xn(i)
1 + xn(i)

gi2(i) = 1
1 + xn(i)

gi3(i) = 1 − xn(i)
1 + xn(i) ,

(2.13)

and the same goes for prefactors, depending on the j parameter. Parameter xn
can vary in the f and g sets of parameters. In [2], it takes a form of:

f : xn(i) = 1
3

( i

npml

)3

g : xn(i) = 1
4

( i

npml

)3
(2.14)

Important note is, that i starts at the edge of our problem space and grows
into the PML layer, so it’s value ranges between 0 and npml, where npml is
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(a) Propagation of source in free air with-
out PML around the boundary

(b) Propagation of source in free air with
10 PML layers around the boundary

Figure 2.1: Demonstration of reflection on boundary with additional 10 layers of
PML. The source is a sinusoidal pulse with profile 10 sin(n/10), centered in the
middle of the grid. The grid represents a free space.

the thickness of PML layers in cells. This ensures that newly added parameters
are equal to one in our problem space and so they cause no effect on original
equations there.

The implementation of this algorithm can be demonstrated on picture 2.1.
While there is still some reflection noticeable, it’s magnitude is way lower, then
any other field, existing inside our problem space. The amount of reflection can
be reduced even further by changing coefficients in equation (2.14), but that is
specific for every problem.

2.2 Complex Frequency-shifted PML
CPML should be more robust, while dealing with evanescent waves, but other
then that, it is a much more time demanding implementation of the boundary
conditions.

Following the procedure, described in [1], the first step is taking the (1.15)
to frequency domain by substituting the time derivative ∂

∂t
by jω, where j is the

imaginary unit and instead of using just Constitutive relations, we are going to
introduce Stretched coordinate metrics Sex, Sey, Smx and Smy:

jωεzEz + σe
zEz + jiz = 1

Sex

∂Hy

∂x
− 1

Sey

∂Hx

∂y

jωµxHx + σm
x Hx + Mix = − 1

Smy

∂Ez

∂y

jωµyHy + σm
y Hy + Miy = 1

Smx

∂Ez

∂x

(2.15)

We do not actually need to use impressed current density, because these equa-
tions describes the behaviour of CPML areas, which is outside of our problem
space, but we can also include them and set them to zero on the outside of the
problem space. This allows us to have just a single set of equations for whole grid
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with several parameters that holds only on certain areas. This may cause some
increase in complexity of our equations, but it simplifies the writing of the code,
since we would not have to check which set of equations, we are supposed to use.

The form of Stretched coordinate metrics is described in [3]:

Sei = κei + σpei

αei + jωε0

Smi = κmi + σpmi

αmi + jωε0

i = x, y

(2.16)

σpex, σpey, σpmx and σpmy are new fictious conductivities, κei, κmi, αei and αmi

are new CPML parameters.
Since we want to develop new evolution eqautions, we have to move back to

time domain. Using the inverse Laplace transform, we obtain:

εz
∂Ez

∂t

+ σe
zEz + jiz = ζex ∗ ∂Hy

∂x
− ζey ∗ ∂Hx

∂y

µx
∂Hx

∂t
+ σm

x Hx + Mix = −ζmy ∗ ∂Ez

∂y

µy
∂Hy

∂t
+ σm

y Hy + Miy = ζmx ∗ ∂Ez

∂x
,

(2.17)

where ζ is the inverse Laplace transform of 1
S

.

ζei(t) = δ(t)
κei

− σpei

ε0κ2
ei

e
−

(
σpei

ε0κei
+

σpei
ε0

)
t
u(t) = δ(t)

κei

+ ξei(t)

ζmi(t) = δ(t)
κmi

− σpmi

ε0κ2
mi

e
−

(
σpmi

ε0κmi
+

σpmi
ε0

)
t
u(t) = δ(t)

κmi

+ ξmi(t)
(2.18)

As we can see, multiplication become convolution. Before applying central
difference approximation (1.18), we have to have a look at discrete convolution
first. These time convolutions takes form of:

ξex ∗ ∂Hy

∂x
=

∫ τ=t

τ=0
ξex(τ)∂Hy(t − τ)

∂x
dτ

≈
m=n−1∑

m=0
Z0ex(m)

(
H

n−m+ 1
2

y (i, j) − H
n−m+ 1

2
y (i − 1, j)

)
,

(2.19)

where

Z0ex(m) = ρpex

∆x(ρpexκex + αexκ2
ex

[
e

−( ρpex
κex

+αpex) ∆t
ε0 − 1

]
e

−( ρpex
κex

+αpex) m∆t
ε0 (2.20)

In order to shorter our equations, lets use following substitution:

Ψn+ 1
2

ezx (i, j) =
m=n−1∑

m=0
Z0ex(m)

(
H

n−m+ 1
2

y (i, j) − H
n−m+ 1

2
y (i − 1, j)

)
(2.21)
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The subscript ezx means, that this term belongs to updating equation of Ez

and it contains derivation in x direction.
Examining the expression (2.19), we realize, that it is calculated from every

previous time step which means that we would have to keep every previous time
step stored, which would quickly overflow our available memory. However, the
time appears only in one exponential and in the sum of the deference terms, so
we can simplify the computation to use only the previous time step:

Ψn+ 1
2

ezx (i, j) = bexΨn− 1
2

ezx (i, j) + aex

(
H

n+ 1
2

y (i, j) − H
n+ 1

2
y (i − 1, j)

)
aex = σpex

∆x(σpexκex + αexκ2
ex)

[
bex − 1

]
bex = e

−( σpex
κex

+αex) ∆t
ε0

(2.22)

This is called The Recursive Convolution Method and it is derived in detail
in [1], page 235.

We can do the same for magnetic version of this term:

Ψn+ 1
2

mxy (i, j) = bmyΨn− 1
2

mxy (i, j) + amy

(
En+1

z (i, j) − En+1
z (i − 1, j)

)
amy = σpmy

∆x(σpmyκmy + αmyκ2
ex)

[
bmy − 1

]
bmy = e

−( σpmy
κmy

+αmy) ∆t
µ0

(2.23)

Using this technique and following the same procedure, as derived in the first
chapter, we obtain:

Ẽn+1
z (i, j) = Cezez(i, j)Ẽn

z (i, j) − Cezjiz(i, j)jn+ 1
2

iz (i, j)

+ 1
κex(i, j)Cezhy(i, j)

[
H

n+ 1
2

y (i, j) − H
n+ 1

2
y (i − 1, j)

]
− 1

κey(i, j)Cezhx(i, j)
[
H

n+ 1
2

x (i, j) − H
n+ 1

2
x (i, j − 1)

]
− ∆yCezhx(i, j)Ψn+ 1

2
ezy (i, j) + ∆xCezhy(i, j)Ψn+ 1

2
ezx (i, j)

H
n+ 1

2
x (i, j) = Chxhx(i, j)Hn− 1

2
x (i, j) − Chxmix(i, j)Mn

ix(i, j)

− 1
κmy(i, j)Chxez(i, j)

[
Ẽn

z (i, j + 1) − Ẽn
z (i, j)

]
− ∆yChxez(i, j)Ψmxy(i, j)

H
n+ 1

2
y (i, j) = Chyhy(i, j)Hn− 1

2
y (i, j) − Chymiy(i, j)Mn

iy(i, j)

+ 1
κmx(i, j)Chyez(i, j)

[
Ẽn

z (i + 1, j) − Ẽn
z (i, j)

]
+ ∆xChyezΨmyx(i, j)

(2.24)

These are our updating equations for our FDTD code with CPML imple-
mented. We defined a lot of new parameters in this chapter, but hadn’t discussed
it’s values yet.
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2.2.1 CPML parameters
The first set of parameters, we are going to have a look at, is the set of CPML
σ parameters. [1] suggests using polynomial scaling of σpei. Starting from 0 at
problem interface boundary and inside of the problem space, scaling to σmax at
the external boundary:

σpei(ρ) = σmax

(
ρ

δ

)npol

(2.25)

Where ρ is the distance from inner CPML boundary, δ is CPML thickness and
npol is the polynomial order used. [2] empirically found npol = 3 to be the most
effective stable variation, but [1] is not so scrict and accepts any value between 2
and 4. σmax is calculated as:

σmax = σsc
npol + 1

150π
√

εr∆i
(2.26)

Optimal value for σsc is between 0.7 and 1.5, ∆i means ∆x or ∆y, which
is a size of one cell in corresponding dimension. As we can see, σmax contains
information about material inside it. This is, where PML and CPML differs,
CPML is able to simulate objects, that are not fully contained in problem space.

Since we want to avoid reflections at grid-CPML interface, the following equa-
tion has to hold for our parameters:

σpei

ε0
= σpmi

µ0
(2.27)

To satisfy this condition, we simply chose our other paramter to be:

σpmi(ρ) = µ0

ε0
σmax

(
ρ

δ

)npol

(2.28)

Another parameter, we defined in this chapter, is κ. This parameter has to be
equal to 1 in our problem space, while scaling towards κmax in the CPML area.
We can once again use polynomial scaling:

κei(ρ) = 1 + (κmax − 1)
(

ρ

δ

)npol

(2.29)

κmi(ρ) = 1 + (κmax − 1)
(

ρ

δ

)npol

(2.30)

Difference between (2.29) and (2.30) is that electric and magnetic fields are
calculated in different positions, therefore ρ is not the same in these relations,
but rather shifted by half of the cell size. The recomanded value of κmax is in
range (5 − 11).

The last set of parameters, we defined, is the set of α parameters. These
parameters takes the maximum value at the inner domain-CPML interface and
scales linearly to minimum value at the outer edge:

αei(ρ) = αmin + (αmax − αmin)
(

1 − ρ

δ

)
(2.31)
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The magnetic version of α is once again rescaled by ε0 and µ0:

αmi(ρ) = µ0

ε0

(
αmin + (αmax − αmin)

(
1 − ρ

δ

))
(2.32)

The αmax should be chosen in range from 0 to 0.05.

2.3 Periodic boundary condition
In contrast to previously discussed boundary condition, periodic boundary con-
dition does not add any additional layers to our grid. It is used for modeling
periodic structures in a steady state.

Figure 2.2: Example of periodic boundary condition implementation. This pic-
ture is taken from [4]

Figure 2.3: Cylindrical wave with gausi-
ian profile propgating trought periodic
boundary condition

As shown on picture 2.2, periodic
boundary condition has to be imple-
mented in certain direction/s, not just
some side, as PML/CPML. Previous
boundary conditions had to be imple-
mented, because cells on the edge of
the grid were missing neighboring cells
to compute a new time step, which
caused reflection as shown on picture
(1.1). This time however, the miss-
ing cell is substituted by the cell on
the other side of the grid and no re-
flection is caused. Let us suppose we
have a grid as shown on picture (2.2)
and a wave, propagating towards the
left edge of the grid. Once it hits the
edge, it does not reflect, but it appears
on the right side of the grid instead:
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3. Writing the code in Python
We developed a way to compute Maxwell’s equations on a finite grid and a way
to deal with waves, propagating towards the edge of the grid. The task that
lies ahead is to write these obtained formulas in a form, that computer would
understand and could solve them as fast as possible.

As mentioned before, FDTD simulations can be really demanding on the
computation time and hardware used. As and example, imagine, we have a (400
x 400) grid of cells, where we want to compute 10000 time steps. Having a brief
look at (2.12) or (2.24), we realize, that we have to compute 5 or 7 parameters
in each cell during every single time step. This mean, that we face a problem of
computing roughly 8 − 10 · 109 variables, still in two dimensions.

Lets start this chapter with one of the flowchart of the code, we are supposed
to write:

Figure 3.1: Flowchart of FDTD main loop with CPML implementation

What is important on this flowchart, is the order of operations in main loop,
which is where the field computation together with border conditions is being
computed. Additional post processing, such as far field computation or Fourier
transformation, is computed as an post processing operation, so it does not in-
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terfere with the main loop except adding additional requirement on data saving.
Field coeffitients are precomputed before the main loop starts, so that the com-
putation can run as fast as possible.

3.1 Choosing Python as a programming
language

There are many examples of FDTD code, written predominantly in MATLAB
and C, but for this task, Python was chosen thanks to a wide range of external
advanced libraries and because an advanced code can be written in Python with
ease.

The largest advantage, of choosing Python for this task, is that it supports
Torch via PyTorch library. PyTorch is an open source deep learning platform,
developed by Facebook, with a powerhouse of functions for image processing.
PyTorch supports CUDA (Compute Unified Device Architecture), which allows
software to be processed by graphic card. Since we are dealing mostly with 2-
dimensional arrays, we can think about these arrays as about a bitmaps, that
has to be processed and so using a graphic card would significantly increase the
program performance. Another bonus is, that the parallelism between CUDA
cores is already pre-written in PyTorch functions, which simplify the code writing
significantly.

3.2 Update equation in optimal form
Having a closer look at equations (2.12) or (2.24), one quickly realize, that the
field at the following time step depends on neighboring cells of the current time
step. We can take an advantage of this and rewrite these operations, using
the convolution operator, which is deeply implemented in many programming
languages.

There is a part in our updating equations (2.24 that repeat itself in various
forms and so our program spends most of the time computing this formula:

C(i, j)
(
F (i, j) + F (i + 1, j)

)
(3.1)

Where C(i, j) stands for general constant, standing before additive bracket
and F (i, j) is some time dependant field element.

Instead of rewriting each cell of the grid individually, we can define an opera-
tion that proceeds the whole time step as a single variable. That operation would
be the discrete convolution. Term (3.1) can be written as:

C(i, j)
(
F ∗ K+i+

)
(i, j)

K+i+ =

⎡⎢⎣0 0 0
0 1 1
0 0 0

⎤⎥⎦ ,
(3.2)

where F is a field with elements F (i, j) and K+i+ is a convolution kernel. The
subscript of the kernel is written according to following rules: First symbol (+
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or -) means, that we add/subtract another element to/from the central element
respectively. Second symbol means, in which direction lies the other element. The
last symbol means, in which on which (+i+) means, that we realizing addition
of central and following element in i (x) direction.

Using this, we can rewrite update equations (2.24) into computer code.

Ẽz = Cez1(i, j)Ẽz − Cez2j
n+ 1

2
iz

+ Cez3
(
Hy ∗ K−i−

)
− Cez4

(
Hx ∗ K−j−

)
− Cez5Ψezy + Cez6Ψezx

Ψmxy = bmyΨmxy + amy

(
Ez ∗ K−j−

)
Ψmyx = bmxΨmyx + amx

(
Ez ∗ K−i−

)
Hx = Chx1(i, j)Hx − Chx2M

n
ix(i, j)

+ Chx3
(
Ẽz ∗ K−j+

)
− Chx4Ψmxy

Ψezy = beyΨezy + aey

(
Hx ∗ K−j−

)
Hy = Chy1Hy − Chy2M

n
iy

− Chy3
(
Ẽz ∗ K−i+

)
+ Chy4Ψmyx(i, j)

Ψezx = bexΨezx + aex

(
Hy ∗ K−i−

)
,

(3.3)

where constant parameters and kernels can be written by components:

K−i+ =

⎡⎢⎣0 0 0
0 1 −1
0 0 0

⎤⎥⎦

K−i− =

⎡⎢⎣ 0 0 0
−1 1 0
0 0 0

⎤⎥⎦

K−j+ =

⎡⎢⎣0 −1 0
0 1 0
0 0 0

⎤⎥⎦

K−j− =

⎡⎢⎣0 0 0
0 1 0
0 −1 0

⎤⎥⎦

(3.4)
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Cez1(i, j) = 4ε0εrz(i, j)c0 − σe
z(i, j)∆x

4ε0εrz(i, j)c0 + σe
z(i, j)∆x

Cez2(i, j) = 2∆x

4ε0εrz(i, j)c0 + σe
z(i, j)∆x

Cez3(i, j) = 2κ−1
ex (i, j)

4ε0εrz(i, j)c0 + σe
z(i, j)∆x

Cez4(i, j) =
2kκ−1

ey (i, j)
4ε0εrz(i, j)c0 + σe

z(i, j)∆x

Cez5(i, j) = 2∆x

4ε0εrz(i, j)c0 + σe
z(i, j)∆x

Cez6(i, j) = 2∆x

4ε0εrz(i, j)c0 + σe
z(i, j)∆x

Chx1(i, j) = 4c0µ0µrx(i, j) − ∆xσm
x (i, j)

4c0µ0µrx(i, j) + ∆xσm
x (i, j)

Chx2(i, j) = 2∆x

4c0µ0µrx(i, j) + ∆xσm
x (i, j)

Chx3(i, j) =
2kκ−1

my(i, j)
4c0µ0µrx(i, j) + ∆xσm

x (i, j)

Chx4(i, j) = 2∆x

4c0µ0µrx(i, j) + ∆xσm
x (i, j)

Chy1(i, j) =
4c0µ0µry(i, j) − ∆xσm

y (i, j)
4c0µ0µr(i, j) + ∆xσm

y (i, j)

Chy2(i, j) = 2∆x

4c0µ0µry(, j) + ∆xσm
y (i, j)

Chy3(i, j) = 2κ−1
mx(i, j)

4c0µ0µry(i, j) + ∆xσm
y (i, j)

Chy4(i, j) = 2∆x

4c0µ0µry(i, j) + ∆xσm
y (i, j)

(3.5)

Parameters a and b were already discussed in the second chapter. (2.22),
(2.23)

One can notice, that upper indexes, indicating time steps, disappeared at
parameters, that are not given. In fact, right hand side of the equations contains
the following time step, which is yet to be computed from the current ones,
standing on the right hand side of these equations. This means, that previous
time steps are being overwritten each time the new one is being computed. We
are allowed to do so, because equations are in such order, that once the new time
step is computed, the old one is no longer needed in the same step of the loop.
The advantage is, that we can save a lot of computer memory. Another change,
compared to equations (2.24) is, that we no longer use spatial indexes, because we
now have our variables on form of bitmaps and so we do not have to use element
operations, as we did before.

Another note is, that we can actually reduce the amount of coefficients because
in (3.5) we can see that Cez2 = Cez6. It is not much, but once again, it saves the
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memory used.

3.3 Parallelization
Parallelization is an important tool in numerical simulations. Since we live in an
era, when almost every commercial processor has more than one core, exploiting
it could potentially lead to huge increase in raw computation power.

This, however is easier said then done. There are generally two approaches
when it comes to parallelism in Python: Multithreading and Multiprocessing.
First problem with these is, that we are already exploiting external, well-written
libraries, written in C (NumPy, SciPy), because they offer a very effective solu-
tion when it comes to computing multidimensional convolution. Applying Mul-
tithreading or Multiprocessing to these would mean slicing our multidimensional
arrays into slices of one dimension lower. Only then we could slit the convolution
operator between multiple threads or processes, but then we would have to staple
the results. Adding these extra steps into our algorithm does not really healp,
because even if we do so, there is another problem with this approach: Global
interpreter lock (GIL). More information can be found in [5].

Even tho, there are some reasonable way to parallelize NumPy functions, we
decided not to do so, bceause instead of using CPU, we can move this problem
to GPU. For this reason we decided to use already parallelized library called
PyTorch, which can run on GPU using CUDA. We import this library using the
standart importing command:
import torch
import torch . nn . f unkc i ona l as F

In order to use the GPU, we have to add the device selecting command. Since
CUDA is not available on every device, we implement test for availability:
dev i ce = torch . dev i ce (” cuda : 0” i f

torch . cuda . i s a v a i l a b l e ( )
e l s e ”cpu ”)

In the cuda:0 command the number selects, which graphic card we want to
use. This allows us to fully exploit multi-GPU devices. For example, we could
compute TE mode on one GPU and TE mode on the other one.

Another step is to convert our variables into PyTorch data frame, which is
a tensor. Variables, that are not processed in the main loop, are created as
NumPy arrays. NumPy array a can be easyly converted into Torch tensor a by
the following instruction:
a = torch . a s t e n s o r ( a ) ,
however, we also have to fix the issue with dimensional compatibility. Since there
are some extra channels in Torch 2D convolution, which are not interested for our
use, our two dimensional Numpy array has to be converted into four dimensional
array. To do so, a function ”array to tensor()” is introduced within provided
library. The used data type is Float, but it can be converted into double. There
is also a function to inverse conversion called ”tensor to array()” because the post
processing is managed back on CPU and the Numpy array is more versatile from
the function point of view.
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Once we have our tensors properly converted, we have to specify, on which
device they should be processed. In order to move the tensor ”a” to the GPU,
the following command has to be used:
a = a . to ( dev i ce )

Having the tensors are moved to GPU, the actual computation of evolution
equation derived in the previous chapter is done by class called ”torch.nn.Conv2d”
which handles the convolution operation. When the main loop is finished, tensors
can be moved back to CPU and then back to Numpy arrays for further post
processing.

3.4 Computation speed
Moving the computation from CPU to GPU, using the torch tensors increases
the computation speed significantly. To measure how exactly, the testing was
performed on GPU Nvidia GTX 1050 Ti. The simulation used for this purpose
is a monochromatic plain wave propagating trough free space with PML around
computation grid. Since amount of operation during each simulation with fixed
grid size and amount of time steps is the same, we expect the a similar result for
more complex problems. The behavior of computation speed is shown on graph
3.2. One can clearly notice that this method prefer using larger grid size. This
has to do with GPU cores saturation. The maximum saturation was reached at
around grid size of 4000 · 4000 cells with computation speed of 120 milions cells
per second.

Figure 3.2: Graph of the calculation speed, using different size of grid. Grid size
already include PML layers.
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4. Preparing computation input
As described by the flowchart at the beginning of previous chapter (3.1), the
computation require Material data. In this chapter, we are going to discuss
how to select the right grid resolution, how to model a real world device on an
orthogonal Yee-grid, how to improve the convergence of our simulation and what
are the limits for the spatial and frequency resolution.

4.1 Grid parameters and resolution
In the first chapter, we established relation between spatial and time steps (1.28).
The time step can be properly determined by condition that electromagnetic
wave, propagating at maximum speed (speed of light), can propagate only trough
one cell per each time step. Slowing the propagation trough cell would lead to
more stable solution, but also to increase in length of the simulation and so a
reasonable solution is the following formula:

∆t ≤ ∆x

2c0
, (4.1)

which is where (1.28) came from.
Having the time step determined by the spatial step, the spatial step is the

only grid parameter we have yet to define. Within this task, we are supposed to
choose the right sampling of used wavelength. This sampling depends on many
factors, as discussed in [6] and [7], but it is known to use at least 10 steps per
wavelength is enough. It is important to remember that we have to take in
count that this has to be held in every cell of the Yee-grid. This means that we
have to take the shortest wavelength, we want to simulate and divide it by the
largest refractive index in our simulation. Then we can properly determine the
the adequate cell by ”divide by ten” rule.

Another parameter we have to discuss, is the length of the simulation. This
is important in case of frequency response of our device, because calculating the
Fourier transform of our output require infinite amount of time steps, which we
can not provide. An intuitive example is to look at this problem from the other
way around. Let us suppose that we have a source, described by itš spectrum.
We run a simulation of this source in our program and measure it to get the
output. In theory, if we calculate the Fourier transform of our output, we should
get the spectrum of the source we used, but that holds only if our simulation goes
to infinity, but since it does not, we get our source spectrum blurred.

As an example from [4], let H(ω) be our source spectrum:

Figure 4.1: Spectrum of the example source. This picture is taken from [4].
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The field, generated by this source, would be h(t):

Figure 4.2: Generated field vs measured field. This picture is taken from [4].

But since our simulation is finite, we do not measure the h(t) function, but
rather h(t) ·w(t), where w(t) is function, which is equal to 1 within our simulation
and zero otherwise. Having a look at spectrum based on this result, we obtain
blurred spectrum:

Hblurred(ω) = F
{
h(t) · w(t)

}
= F

{
h(t)

}
∗ F

{
w(t)

}
= H(ω) ∗ W (ω), (4.2)

where W (ω) is rescaled sinc function. Extending the simulation to infinity, the
sinc function W (ω) would limit to delta function.

This means, that our spectrum, calculated by the program, is going to be
blurred and the amount of blurring depends on the number of time steps, which
we are going to compute. Having a look at the Nyquist sampling theorem [[8]]:

fmax = 1
2∆t

, (4.3)

we have some relation between the maximal frequency, we are going to sim-
ulate and the time step. (Even tho that we are using factor 10 instead of 2,
but that is just because of numerical stability requirement. According to [4], the
relation between spectral resolution and the amount of steps is:

∆f = 2fmax

Nsteps

, (4.4)

where ∆f is the uncertainty in the spectrum and Nsteps is the amount of time
steps simulated.

Combining these two equations together, we obtain a criterion on Nsteps:

Nsteps ≥ 1
∆t∆f

(4.5)

4.2 Building an object on the Yee-grid
As mentioned before, we made a shift in the positions of vector field components
in our grid (1.19), but we did not adress this in terms of permittivity and perme-
ability tensor components. We could have say, that we keep all of our permittivity
and permeability tensor components on the same places, without shifting either
of them and then calculating the avarage value of naigboring components in order
to calculate the value for shifted fields, but that would lead to another operation
in our updating equations and since we want to run our simulation over extensive
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amount of time and hence time steps. This would lead to unnecesery increase in
machine-time computation.

For the reason above, we have to define each of the material tensor components
on different spatial position, matching the position of field they stands at.

Figure 4.3: Electric and magnetic field vector components spatial position in TM
mode. This picture is taken from [4].

In order to do so, in the provided program for building material input arrays,
the real world coordinate is shifted, after in input is given, by half on a cell size
in the direction, based on selected material parameter, that is being created.

4.3 Staircase smoothing
Another problem that rises from simulating an object on Yee-grid is that Yee-grid
is orthogonal and cells are finite so that when we want to model something, that
is not orthogonal, any curve has to be approximated by rectangles, causing the
staircase effect:

Figure 4.4: Staircase effect, caused by modeling a device on finite orthogonal
grid. This picture is taken from [4].

We could reduce this effect by decreasing the size of a cell, but that would
lead to large increase of cells that we have to use and since we made our time
step fixed, based on the size of an cell (1.28), we would have to compute much
more time steps in order to reach desired time.

There are several other options that we are going to discuss. First and the sim-
plest option is to blur the staircased device by convolving it with some smoothing
function. This would work, but only if we blur up to one pixel of distance. In
other words, the support of the smoothing function would have to be 3×3 matrix.
Another way could be modeling the device on grid with much higher resolution
and then mapping that detailed grid into lower resolution grid by calculating cells
in the lover resolution grid as an average of cells in the high resolution grid. It is
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stated in [4], that in order to reach the fastest convergence, the object has to be
built on the higher resolution grid, then smoothed by convolving with one pixel of
lover resolution grid, built on higher resolution grid so that sum of each subpixel
is equal to one, and then calculating the lover resolution pixel value as a value of
a central subpixel on the higher resloution grid:

Figure 4.5: Smoothing procedure, using the detailed grid technique and convolu-
tion. This picture is taken from [4].

The result of this procedure is demonstrated on picture 4.6, where a dielectric
circle with εr = 10, is iluminated by sinusoidal wavefront.

The following flowchart represents the procedure connection in Material cre-
ating file. It provides an option to ether create a new, or edit an existing mate-
rial file. Right now, since the simulation only handles two-dimensional problem,
there is an option to create only two-dimensional material files, but can be eas-
ily expanded for other cases. Once the dimensions and sampling parameters are
selected, the high resolution grid is created. Into this grid, there are options for
adding new shapes with various material parameters. Once all shapes are added,
the high resolution grid is convolved with a lower resolution pixel of normalized
value. The central point of each low resolution pixel in the high resolution grid
is then selected to represent the value on the lover resolution grid. There is an
option to visually check the material file created and to edit it further. Once the
user is satisfied with the result, the file is saved in form of NumPy array and
PNG image.

Picture 4.6 shows, how does the grid detail and smoothing procedure influence
the shape of wavefront. The comparasion was made on delicate grid, because the
shape error is always under the size of grid cell.
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(a) Plane wave hitting the staircased di-
electric circle.

(b) Plane wave hitting the smoothed di-
electric circle.

Figure 4.6: Demonstration of the difference between rawly constructed round
object on the Yee grid versus an object, constructed on more delicate one that
was smoothed by the described procedure.

4.4 Source generation
Another important topic for FDTD simulation is the way, how is the source
implemented. There are two types of sources - hard and soft. Hard source is
a source that overwrites data on a specified point of the grid, while soft source
only adds defined value to that point. Using hard sources is not recommended
because they work as an edge of the grid and causes unwanted reflections.

Electric field is chosen to be the source field in this simulation and the way it is
added is, that before the main loop is engaged, values of the source are computed
on a slice of the grid at every given time step for the duration of simulation.
This way, we do not add another evaluation into main loop and addition of the
precomputed slice is the only new operation. We only need to know the source
field on one slice because the solution is in fact Causchy’s problem.

If we want to use only sources, which’s wave vectors are parallel with one of
the axes, we can improve the source generation by using the Total/Scattered field
formulation, TFSF for short, described in [2], page 58, which splits the field to the
incoming field, generated by source and scattered field, generated by scattering
on the modeled device. The advantage of this approach is, that we can subtract
the source field, before it hits the edge of the grid and so the load on PML is
reduced. The source also behaves as set of one dimensional waves and so there is
no divergence of the beam.

However, if we want to use wave with with oblique wavevector, TFTS method
is no longer usable. For this reason, there is a new function in the function
library provided, that computes the source field on three edges of the grid before
the modeled device. Reason, why there are three slices is, because the wave added
diverges at it’s edges and so correcting values has to be computed and included.
Demonstration of this function is shown on picture 4.8. On the picture, the plain
wave is generated on the left edges of the left half-plain, before the dielectric
slab. Irregularities of the wavefront on the edges are caused by absorption of the
wave in the PML. Once the wave passes the dielectric slab, which works as a new
source for the right half-plain, there are no correction walues of the field on the
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Figure 4.7: Flowchart of material Material making program

edge and so the wavefront is being deformed. This effect is clearly vissible on the
pictue (b).
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(a) Simulation after 350 time steps

(b) Simulation after 680 time steps.

Figure 4.8: Harmonical plain wave hitting dielectric slab of relative permittivity
of 5
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5. Post processing
While the algorithm we produced so far computes the electric and magnetic field
vectors at every point of the grid, the raw information we obtain this way is not
that much useful itself. To address that, the aim of this chapter is to provide
some methods, how to extract the information we need from the result of our
simulation.

5.1 Fourier Transform
The first information, that could be obtained, is the frequency respond of the
simulated object by using the Fourier transform. If we were interested in broad
band of frequency, we could simply illuminate our object by a monochromatic
plane wave, compute the Fourier transform, make the same simulation without
the object and then divide the results. This would have to be repeated for every
single frequency, which would be impractical. Using the signal theory however,
we could use a pulse, which contains every frequency, run our FDTD algorithm
and store the time-domain result in every point of interest. Gaussian pulse is a
suitable candidate. Then we could calculate the Fourier transform in our points
of interest so that we know the amplitude of the E field, that would result from
illuminating the object by each single wavelength. In linear materials, we can
calculate the Fourier transform of our source to calculate the transmitance and
reflectance for lossless objects.

In case, when we want to compute the Fourier transform only in few discrete
positions, we can simply use standard Fourier transform, but in case, when we
want to compute it on larger area, the memory requirement could become a
problem. Fortunately, we can implement the computation into our main loop,
where it takes only two additional scalar buffers for every point of interest.

The standard Fourier Transform can be written in form:

E(fk, xint) =
∫ tmax

0
E(t, xint)e−2πifktdt (5.1)

where the E(fk, xint) is the amplitude of the harmonic wave of frequency fk,
calculated in the point of interest xint, tmax is the time length of the calculation.
Notice, that the integration starts at 0 and ends at tmax. It is because FDTD
assume, that there are no incident fields other then these that we described by
our sources. We also assume, that the steady state occurs in a finite time tmax.

In a finite difference domain, this equation can be written as:

E(fk, xint) =
tmax∑
n=0

E(n∆t, xint)e−2πifkn∆t

=
tmax∑
n=0

E(n∆t, xint) cos(2πkn∆t)

− i
tmax∑
n=0

E(n∆t, xint) sin(2πkn∆t)

(5.2)
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These equations can be solved in the post-processing procedure or directly in
the main FDTD loop. To solve them inside the main loop, we have to split the
sum into partial summations of each individual time step:
re [ f , x]= re [ f , x]+ ez [ x ]∗ math . cos (2∗math . p i ∗mf . f r e q ( f )∗ dt∗n)
im [ f , x]=im [ f , x]+ ez [ x ]∗ math . s i n (2∗math . p i ∗mf . f r e q ( f )∗ dt∗n)

Parameter f determines the frequency, x chooses the position and n counts
time steps.

Once these values are computed, the amplitude and phase can be calculated
as:

Figure 5.1: Demonstartion of spectral convergence with length of the simulation.

The picture 5.1 shows, how does the recorded spectrum converge, when the
length of the simulation is increased. The source used is a sinusoidal waveform
with frequency equal to 1. The reason, why we observe two peaks, while using
only one wavelength as a source, is that the Fourier transformation of a real
function is a symetric function and the electric field, we use for computing the
fourier transform is a real function.

5.2 Near-field to Far-field Transformation
So far, we developed mechanism to calculate electromagnetic field, within finite
space. The problem is, that this grid method allows us to compute electromag-
netic fields only in small space in reasonable time. However we often need to know
the radiation pattern further from the scattering object, where is our grid located.
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In this subchapter, we are going to solve this problem by introducing the Near-
field to Far-field Transformation which computes the far electromagnetic fields
from near electromagnetic date, computed by our FDTD algorithm.

The first thing we need to define, is what does, and what does not, counts as
a far field. A good approximation to use is the following:

2πR

λ
≫ 1 (5.3)

R stands for distance of the observed point of interest, where we want to
compute the Far-field and λ is the wavelength used.

The key part of Near-field to Far-field Transformation is the Surface Equiva-
lence Theorem

5.2.1 Surface Equivalence Theorem
Surface Equivalence Theorem is a theorem, by which real sources of electromag-
netic waves, are replaced by equivalent sources. It is said that a field in a free
space, created by a source in closed region, is equivalent as if it was created by
tangential currents on surface, making a border around the real source.

This means that if we have our source and scattering device in a free space, we
can simply surround the scattering device and the source by imaginary surface,
box or rectangular in two dimensions more specifically, calculate tangential cur-
rents on this surface and then calculate the field in our point of interest without
increasing a size of our grid. ([9])

This Theorem was introduced by Schelkunoff in 1936 and it is said to be more
rigorous formulation od Huygens’s principle which state that ”each point on a
primary wavefront can be considered to be a new source of a secondary spherical
wave and that a secondary wavefront can be considered as the envelope of these
secondary spherical waves.” ([9])

5.2.2 Surface Currents
Once we select our surface box, defined by two points (S1x, S1y) and (S2x, S2y),
we can start computing surface currents:

jS = n × H

MS = −n × E,
(5.4)

where n is the normal vector to the surface.
It is worth to remind that in our calculations, E and H are not calculated in

same spots, but rather shifted and so in order to simplify further calculations, we
compute all currents in the center of Yee cell by averaging currents in vertices of
the cell.
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5.2.3 Far-field expression
Since we expect our point of interest to be in a free space, we need to compute
only one filed, because we can simply calculate the other from the first one:

Hfar(r, t) = er × Efar(r, t)
Z0

, (5.5)

Where er is a radial unity vector, r is the spatial position vector and Z0 is the
vacuum impedance.

The formula for Electric Far-field is derived in ([10]):

Efar(ρ, t) = − 1
2π

√
2|ρ|

∫
La

dl′

×
∫ u− ddist

c

−∞

(
∂Ms(ρ′, t′)

∂t
× eρ + Z0

∂Js(ρ′, t′)
∂t

)
dt′√

c(u − t′) − ddist

(5.6)

ρ is a projection of r to plane (z = 0) and r is the position of the calculated
far-field. ρ′ is a projection of r to the same plane (z = 0), which is a position of
the current on the imaginary surface. La is a contour of the transversal section
of the imaginary surface and l′ is the integrated variable along La.

37



6. Surface plasmons
Surface plasmons are by definiton quanta of surface-charge-density oscilation,
however, a same term is commonly used for collective oscilations in the electron
density at the surface of a metal. There is a condition for interface mode of
surface plasmon, derived in [11]. It states, that if we have an interface between
two media, one of which can be described by real dielectric function ε1 and the
other one by complex dielectric function ε2, following condition has to be fulfilled:

ε1(ω) · ε2(ω) < 0,

ε1(ω) + ε2(ω) < 0
(6.1)

6.1 Dielectric model of noble metals
The mechanism behind Surface Plasmons is hidden inside dielectric model of
noble metals. Noble metals, such as gold, or silver, has strong negative real part
of dielectric constant and positive imaginary part for optical frequencyes.

6.1.1 Drude–Sommerfeld theory
In order to describe dielectric function of metals, let’s consider only the effect
of free electrons. Writing down the equation of motion for free electrons with
applied field on the right hand side, we obtain:

me
∂2r

∂t2 + meξ
∂r

∂t
= E0e

−iωt, (6.2)

where me is the effective mass of the electron, ξ is the damping term, which is
proportional to Fermi velocity over the electron mean free path between scattering
events. E0 is the amplitude of incident field and ω is it’s angular frequency. There
is no restoring force term, because the electrons we consider, are free electrons.
This equation is solved in [11] as:

εDrude(ω) = 1 −
ω2

p

ω2 + ξ2 + i
ξω2

p

ω(ω2 + ξ2) , (6.3)

where
ωp =

√
ne2

meε0
(6.4)

is the plasma frequency.
This model can describe metals quite accurately in infrared part of the spec-

trum, however, it differs from reality significantly, as we approach optical part of
the spectrum. In order to get more accurate results, it has to be supplemented
with bound electrons.
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6.1.2 Interband transitions
At optical frequencies, photons has energy to promote electrons from the lower
energy bands into conduction band. Bound electrons can be described by equation
of motion:

mbe
∂2r

∂t2 + mbeγ
∂r

∂t
+ αr = eE0e

−iωt (6.5)

Here mbe is the effective mass of the bound electron, which can be different
from the effective mass of the free electron due to the effect of periodic potential.
γ is the damping constant and α is the spring constant of the potential felt by
bound electrons. Once again, the solution an be found in [11]:

εInterband(ω) = 1 +
ω̃2

p(ω2
0 − ω2)

(ω2
0 − ω2)2 + γ2ω2 + i

γω̃2
pω

(ω2
0 − ω2)2 + γ2ω2 (6.6)

Visualising this function 6.6 on picture 6.1, we can clearly see resonant behav-
ior of imaginary part and dispersive behavior of real part. This brings us closer
to the actual permittivity of gold for optical wavelengths, however in order to
increase the precision, we would have to include interband absorbtion, which is
further discussed and modeled in [12], where the model they use, can describe
the dielectric function from 450 nm into infrared.

Figure 6.1: Permitivity contribution caused by bound electrons in gold.

At wavelenght 633 nm, we obtain ε2 = −11.6+1.2i, which fulfills the condition
6.1, if we use as the other material some weak dielectricum, such as air.

6.2 Simulation of plasmon
Unfortunately, simulation of surface plasmon was not successfull, because an un-
known source of numerical error occurred, which led to diverge of field amplitude
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and supersaturation of the simulation. The simulation is displayed on picture
6.2.

Several attempts were made to fix this issue. The complex permittivity was
split into real part ε′(ω) and imaginary part ε′′(ω), which were interpreted as:

ε(ω) = ε′(ω) + iε′′(ω) = ε′(ω) + i
σ(ω)

ω
, (6.7)

where σ is conductivity. Other approach was used by avoiding splitting permit-
tivity into real and imaginary parts compleatl by moving the whole simulation to
complex numbers, but that was not helpful either with similar result as displayed
on picture 6.2.

Figure 6.2: Supersaturated simulation of surface plasmon on thnin golden wire
excited by sinusoidal plain wave. Units are normalized.

However, FDTD is effective an widely used in plasmonics. An example sim-
ulations can be found in [13] or [14]. There is mentioned in [13], that on of
the problems could be, that avaragig the permittivity at the interface in order
to model the shape of device more acuratly, could cause problems, because sur-
face plasmons are very sensitive on values of permittivity used and smoothing
the edge means to blur the interface and so the theory, described in [11] can no
longer be applyed. To solve this, there is an alternative approach introduced,
called Effective Permittivity.
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Conclusion
At the beginning of this thesis, we started from the differential form of Maxwell’s
equations. We added Constitutive relations and expanded curl vector equations
into vector component equations. The problem was then reduced into two dimen-
sions which led to docoupling the system of equations to two separate subsystems.
Applying the finite difference approximations to spatial and time derivations, to-
gether with half cell shifts, we obtained evolution equations. We then established
relation between spatial step and time step, to insure computation stability and
rearranged terms to final form of evolution equations.

Since this algorithm works only on finite grid and some waves eventually hits
the edge of the grid, we introduced several versions of extra layers of artificial
material around the grid to ensure that the wave die out, before hitting the edge.
The first introduced method was PML, which is relatively simple to implement
and light on computation demands, but can not deal properly with evanescent
waves and works only if whole simulated object is in the Yee grid. To improve this,
we introduced more sophisticated method, called CPML, which deals with these
flaws of previous method, but is much more demanding on computation resources.
Since there are no simulations, that would require use of CPML, we sticked with
lighter version - PML for the rest of this thesis. For periodic structures, we briefly
mentioned an existence of periodic boundary conditions, that are used in special
cases.

In the following chapter, we examined evolution equations even further and
replaced often repeating summations of neighboring elements with convolution
operator so that each filed in a given time step can be processed as a single
variable and so computation performance increased. In early versions of the
code, scipy.signal.convolve2d was used to execute the convolution operation how-
ever, current versions use torch.nn.functional.conv2d which runs on GPU which
is about ten to fifteen times faster. To move the computation to GPU, we had to
move every variable, going into computation, to GPU and every multidimensional
Numpy array had to be converted into torch tensor. The performance behavior of
the computation for one specific GPU shown on graph 3.2 which tends to increase
for larger grids.

Having the simulation optimized, we moved to the stability and precision
discussion, where we derived, how many time steps we have to use and what
grid density we have to use. Building of oblique and curved devices is being
discussed with use of subcell averaging and bluring approximation. Combination
of these two methods gives the best results. A simple script is provided, called
Material Create 2.2a.py to generate material data for simulation.

In the post processing section, we introduced Fourier transform, that can be
implemented directly in the main loop to save memory requirements, or as a
post processing, so that the core of the simulation is not slowed down. There is
also a brief introduction to far field problematics and how to get the data from
simulation results.

In the last chapter, we had a look at noble metal dielectric model and tried
to simulate a surface plasmon, however this simulation was not successfull. The
validity of the algorithm was tested by comparing result with examples in litera-
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ture, especially in [2] and other then difference in values in PML area, caused by
using different constants, the simulations were accurate.
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