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Abstract 

In eukaryotic translation, eukaryotic initiation factors (eIFs) are at least as important as the 

ribosome itself. Some of these factors play different roles throughout the entire process to 

ensure proper assembly of the preinitiation complex on mRNA, accurate selection of the 

initiation codon, errorless production of the encoded polypeptide and its proper termination. 

Perhaps, the most important factor integrating signals from others and coordinating their 

functions on the ribosome is eIF3. In Saccharomyces cerevisiae, eIF3 is formed by five 

subunits. All these subunits contain structural motifs responsible for contact with ribosomal 

proteins and RNAs. In addition to these highly structured parts, the rest of eIF3 is unstructured 

and very flexible. Therefore, despite the recent progress thanks to the use of a cryo-electron 

microscopy, a precise structure and position of eIF3 on the 40S ribosomal subunit are still not 

known. Also, the presence of eIF3 on 80S during early elongation and its role in reinitiation 

and readthrough are not fully understood. 

In order to crack mysteries of yeast eIF3, we used x-ray crystallography, chemical cross-

linking coupled to mass spectrometry, and various biochemical and genetic assays. 

We demonstrated that eIF3 is very compactly packed when free in solution. This finding 

is in sharp contrast with the situation when eIF3 interacts with the 40S and embrace it almost 

completely from both the mRNA entry and exit channels. Considering that eIF3 association 

with its major interacting partners, namely eIF1 and eIF5, do not seem to dramatically change 

the globular shape of ribosome-free eIF3, we conclude that it is most probably the initial contact 

of eIF3 with the 40S that triggers its dramatic structural rearrangement. Importantly, using the 

same approach we determined the so far unknown binding site of eIF5 on 40S. 

With the help of the newly developed pull-down assay, we also demonstrated that eIF3 

stays bound on ribosomes elongating and terminating on short upstream open reading frames 

and promotes reinitiation in both yeast and mammals. On top of that, we designed and verified 

an in vivo assay for the comprehensive study of translational readthrough. 

This thesis thus markedly extends the knowledge of yeast eIF3, its geometry, structural 

rearrangements provoked by its different binding partners, and its roles in reinitiation and 

readthrough. 

  



 

Abstrakt 

Eukaryotické iniciační faktory (eIF) jsou pro průběh eukaryotické translace minimálně stejně 

důležité jako ribosom. Některé tyto faktory mají rozdílné úlohy napříč celou translací v zajištění 

korektního složení preiniciačního komplexu na mRNA, přesném výběru iniciačního kodonu, 

bezchybné produkci příslušného polypeptidu a jejím řádném ukončení. Patrně nejdůležitějším 

z těchto faktorů je eIF3, který integruje signály od ostatních faktorů a koordinuje jejich funkci 

na ribosomu. V případě Saccharomyces cerevisiae je eIF3 tvořen pěti podjednotkami. Všechny 

tyto podjednotky obsahují strukturní motivy zodpovědné za kontakt s ribosomálními proteiny 

a molekulami RNA. Kromě těchto vysoce strukturovaných částí je zbytek eIF3 nestrukturovaný 

a velmi flexibilní. Z toho důvodu nejsou i přes současný pokrok v kryoelektronové mikroskopii 

doposud známy ani přesná struktura eIF3, ani jeho přesná poloha na ribosomální podjednotce 

40S. Rovněž přítomnost eIF3 na ribosomu 80S během časné elongace a role eIF3 v reiniciaci 

a pročítání stop kodonu nejsou zatím zcela prostudovány. 

K rozluštění těchto tajemství eIF3 jsme použili rentgenovou krystalografii, chemické 

zesítění spojené s hmotnostní spektrometrií a rozličné biochemické a genetické metody.  

Naše práce ukazuje, že je eIF3 velmi kompaktně sbalený, pokud se nachází volný 

v roztoku. Toto zjištění je v ostrém kontrastu se situací, kdy se eIF3 váže na 40S a téměř 

kompletně ji objímá od kanálu pro vstup mRNA až po kanál pro její výstup. Jelikož vazba eIF3 

s jeho hlavními interakčními partnery eIF1 a eIF5 zřejmě nemá zásadní vliv na jeho globulární 

tvar, usuzujeme, že až kontakt s  40S spouští jeho dramatickou strukturní přeměnu. Za použití 

stejného přístupu jsme též blíže určili dosud neznámé vazebné místo eIF5 na 40S. 

Rovněž jsme popsali, že eIF3 zůstává navázán na ribosom během elongace a terminace 

na krátkých otevřených čtecích rámcích a podporuje následnou reiniciaci shodně v kvasinkách 

i v savčích buňkách. 

Tato dizertační práce tak výrazně rozšiřuje dosavadní znalost kvasinkového eIF3, jeho 

uspořádání, strukturních změn navozených vazbou interakčních partnerů a jeho rolí v reiniciaci 

a pročítání stop kodonu. 
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1 Introduction 

Gene expression is a fundamental process during which the genetic information encoded in 

DNA is first transcribed into a messenger RNA and subsequently translated into a chain of 

amino acids, giving rise to a new protein molecule. This basic flow of genetic information was 

named as the central dogma of molecular biology by Francis Crick between years 1957 and 

1958 and re-stated in 1970 (Crick, 1958, 1970). Since then, different ways of information 

transfer were discovered thanks to studying viruses and chemical modifications of nucleic acids 

and proteins (reviewed in Koonin, 2012). 

Gene expression is regulated on multiple levels to limit energy wasting and ensure proper 

functioning of an organism. Since translation machinery uses existing mRNAs, regulation on 

translation level allows rapid changes in concentration of proteins. 

Despite the accepted theory that history of life on Earth begun as RNA world, the vast 

majority of functions in living cells are provided by proteins. Translation of the mRNA-encoded 

information into a protein is a multistep process consisting of initiation, elongation, termination, 

and ribosomal recycling as presented in Figure 1. Most of the regulation takes place during the 

initiation phase making it the most critical step of the whole translation process (reviewed in 

Hinnebusch, 2011; Aitken and Lorsch, 2012; Valášek, 2012; Dever et al., 2016). Translation 

initiation in eukaryotes requires participation of numerous proteins and protein complexes 

called eukaryotic initiation factors (eIFs). At least a dozen of those eIFs are required to assembly 

elongation-competent 80S ribosomes. This is in sharp contrast to bacteria, where only three 

main factors are necessary.  

The main aim of my postgraduate study was to gain more information about the structure 

of the protein complex eIF3 from the budding yeast Saccharomyces cerevisiae. After several 

attempts to obtain crystals suitable for x-ray crystallography have failed, I changed my approach 

and employed chemical cross-linking coupled to advanced mass spectrometry (XL-MS). This 

method gave me an exciting, yet limited understanding about the geometry of eIF3 in its 

different states. Besides that, together with my colleagues I collaborated on projects dealing 

with roles of eIF3 in reinitiation and stop codon readthrough. I provided them with my 

knowledge of protein biology and structural bioinformatics. Nevertheless, this thesis is almost 

exclusively focused on the yeast eIF3 structure and its role in translation initiation. 
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Figure 1: Schematics of the entire translation cycle with ‘detours’ for reinitiation, nonsense-mediated decay 
(NMD) pathway, and programmed stop codon readthrough. The role of eIF3 at individual steps is highlighted. 
For details, please see the main text. 
Adapted from (Valášek et al., 2017). 
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1.1 Eukaryotic translation initiation 

Translation cycle begins with initiation. During this step, mRNA is brought to the ribosome in 

a way that assures the proper identification of the start of the coding sequence (reviewed in 

Valášek, 2012; Hinnebusch, 2017). This is ensured by the initiator methionyl-tRNA 

(Met-tRNAi) whose CAU anticodon is complementary to the canonical initiation AUG codon. 

Ternary complex (TC) consisting of Met-tRNAi, eIF2, and GTP bound to the γ subunit of eIF2 

(Erickson and Hannig, 1996) binds to 40S together with other eIFs such as eIF1, 1A, 3, and 5 

(reviewed in Hinnebusch et al., 2007; Pestova et al., 2007). As a result of this step, the so-called 

43S pre-initiation complex (PIC) is formed. Factors eIF1, 1A, 3, and 5 subsequently prepare 

40S for mRNA docking by opening the mRNA binding channel. Importantly, mRNA is loaded 

to 40S pre-bound by eIF4F, eIF4B, and poly(A)-binding protein PABP1 (Mitchell et al., 2010) 

with the help of eIF3. The trimeric complex eIF4F includes the scaffold protein eIF4G, the 

helicase eIF4A, and eIF4E binding the 5′ 7-methylguanosine cap of mRNA. Binding of the 43S 

PIC to mRNA near its cap structure forms the 48S PIC. The 48S PIC subsequently starts to scan 

the sequence of nucleotides downstream of the cap in order to find the initiation codon in 

optimal context (Kozak, 1986). In order to ensure a smooth movement along the 5′ untranslated 

region (UTR) up to the start codon recognition, mRNA secondary structures have to be 

unwound. This task is performed by helicases such as eIF4A or Ded1, and in higher eukaryotes 

Dhx29 (Rogers et al., 1999; Iost et al., 1999; Pisareva et al., 2008). The AUG recognition causes 

conformational changes in the PIC. As a result, hydrolysed GTP is released from eIF2, 40S 

mRNA binding channel is closed, and most of the initiation factors are ejected from the 48S 

PIC (reviewed in Hinnebusch, 2014). GTP-bound eIF5B mediates 60S joining (Pestova et al., 

2000) and subsequently dissociates together with eIF1A producing an elongation-competent 

80S ribosome (Fringer et al., 2007).  

1.1.1 Comparison of translation initiation between S. cerevisiae and higher 

eukaryotes 

In general, translation initiation in S. cerevisiae is remarkably similar to translation initiation in 

mammals. This fact was demonstrated many times by substituting mammalian eIFs for their 

yeast homologues and vice versa (Altmann et al., 1989; Jaramillo et al., 1990; Schwelberger et 

al., 1993). However, there are still smaller or bigger sequential and/or structural differences 

among these homologues caused by additional regulatory roles of eIFs in higher eukaryotes. 

This phenomenon will be demonstrated by the case of eIF3 in chapter 1.2. 
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A stable multifactor complex (MFC) comprising eIF1, TC, eIF3, and eIF5 is formed in 

yeast in the absence of 40S both in vitro and in vivo stabilising the 43S PIC formation (Asano 

et al., 2000; Valášek et al., 2002; Singh et al., 2004). The same multifactor complexes were 

later described in plants and mammals as well (Dennis et al., 2009; Sokabe et al., 2012). 

In mammalian in vitro reconstituted systems, purified 40S, eIFs 1, 1A, and 3 were 

sufficient to promote scanning on unstructured 5′ UTRs and locate the initiation codon without 

any requirement for ATP. In contrast, the presence of even weak secondary structures in 

5′ UTRs required RNA helicases (eIF4F) and ATP (Pestova and Kolupaeva, 2002). In yeast, 

also eIF5 is necessary for this minimal PIC translation initiation, at least in vivo (Yamamoto et 

al., 2005; Cuchalová et al., 2010). 

1.2 The eIF3 complex 

Translation initiation factor 3 is the largest and most complex of all eIFs. In years after its 

discovery in the 1970s, it was shown that eIF3 is a multisubunit protein complex (Schreier and 

Staehelin, 1973; Freienstein and Blobel, 1975; Benne and Hershey, 1976). In S. cerevisiae, eIF3 

is composed of five subunits: a/Tif32, b/Prt1, c/Nip1, i/Tif34, and g/Tif35 (Figure 2A) (Asano 

et al., 1998). All these subunits have orthologues in the more complex mammalian eIF3, which 

contains 12 subunits (eIF3a-m; Figure 2B) (reviewed in Hinnebusch, 2006; Valášek, 2012). For 

many years, the yeast j/Hcr1 (Valášek et al., 1999) and its mammalian orthologue eIF3j (Block 

et al., 1998) were considered as the sixth and thirteenth subunit of eIF3, respectively. 

Nonetheless, recent evidence strongly indicates that they rather represent eIF3-associated 

factors having mostly eIF3-independent roles. Hcr1 was proposed to have a more important 

role in termination than in initiation (Beznosková et al., 2013), and eIF3j was found to block 

mRNA binding to 40S by interacting with ribosomal decoding centre and eIF1A (Fraser et al., 

2007), whereas eIF3 is one of key factors promoting mRNA recruitment to the 43S PIC. 

Thanks to the intensive research done mainly in budding yeast, eIF3 has been 

demonstrated to participate in nearly every step of translation initiation. Some domains of eIF3 

stimulate the TC and mRNA recruitment to the PIC and control the processivity of scanning 

and the fidelity of the start codon selection (Valášek et al., 2002, 2004; Nielsen et al., 2004; 

Jivotovskaya et al., 2006; ElAntak et al., 2010; Chiu et al., 2010; Cuchalová et al., 2010; 

Herrmannová et al., 2012; Karásková et al., 2012; Khoshnevis et al., 2014; Aitken et al., 2016; 

Obayashi et al., 2017); eIF3 also keeps both ribosomal subunits apart (Kolupaeva et al., 2005), 

but, as we also recently demonstrated, stays bound to the 80S even during early elongation stage 
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(Szamecz et al., 2008; Munzarová et al., 2011; Mohammad et al., 2017). In addition to these 

roles in the general translation initiation mechanism, eIF3 has roles in selective mRNA 

translation initiation as well. Distinct groups of human mRNAs were found to bind eIF3 with 

their 5' UTR specific structural elements. These mRNAs encoding proteins involved in the cell 

cycle, differentiation or apoptosis are thus involved in eIF3-specific, cap-dependent activation 

or inhibition of translation initiation (Lee et al., 2015). In two later studies, eIF3d itself and 

eIF3l as part of the entire eIF3 complex were shown to be able to bind directly to 5' cap (Kumar 

et al., 2016; Lee et al., 2016). These results suggest that eIF3 could interact with numerous 

mRNAs coding for regulatory factors in an unusual way involving 5' cap and/or 5' UTR 

secondary structures and mediates their loading to the 43S PIC. In fact, such a case has been 

reported recently and authors estimate that this alternate form of cap-dependent translation 

initiation mediated by eIF3d is responsible for translation of up to 20% of cellular mRNAs (de 

la Parra et al., 2018). Another special type of translation initiation is an internal ribosomal entry 

site (IRES)-mediated initiation. In case of the cellular mRNA encoding the X-linked inhibitor 

of apoptosis (XIAP), binding of eIF3 together with PABP was shown to help the 40S 

Figure 2: Schematic models depicting structural organization of the yeast and mammalian eIF3 complexes. 
(A, B) In S. cerevisiae, the eIF3 complex is formed by five subunits (A), whereas in mammals it consists of 12 
subunits (B). These schematics illustrate both similarities as well as differences between budding yeast and 
mammalian eIF3. One of the main structural domains shared by several eIF3 subunits – the PCI (for Proteasome, 
COP9, Initiation factor 3) domain – is shown in bold in both panels. (B) The so-called octamer with its 
anthropomorphic shape is highlighted in grey. 
Adopted from (Zeman et al., 2019) 
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recruitment to XIAP IRES and promote IRES-mediated translation (Thakor et al., 2017). In the 

case of many viral IRESs, it was believed for a long time that eIF3 also promotes IRES-

mediated translation (Otto and Puglisi, 2004). However, using cryo-EM, it was shown that 

Hepatitis C virus (HCV)-like IRESs actually displace eIF3 from its regular binding site on 40S 

and that eIF3 may in fact serve as an IRES-inhibitor (Hashem et al., 2013b), at least in this case. 

Due to the great diversity of so far identified IRESs, it is therefore conceivable that eIF3 have 

stimulatory effect on some classes but inhibitory on others. 

In contrast with its given name, eIF3 was shown to participate not only in initiation but 

in virtually every step of translation (Figure 1) including termination and ribosomal recycling 

(Pisarev et al., 2007, 2010), stop codon readthrough (Beznosková et al., 2013), reinitiation (Park 

et al., 2001; Szamecz et al., 2008; Roy et al., 2010; Cuchalová et al., 2010; Munzarová et al., 

2011; Mohammad et al., 2017), or nonsense-mediated decay (NMD) pathway (Morris et al., 

2007; Isken et al., 2008; Choe et al., 2012; Flury et al., 2014). Three studies shedding light on 

roles of eIF3 in reinitiation and stop codon readthrough are part of this thesis. 

This thesis is mainly focused on yeast eIF3, therefore only subunits of yeast eIF3 are 

described in details. Nevertheless, basic structural information about mammalian eIF3 is 

provided as well. 

1.2.1 The a/Tif32 subunit 

The largest subunit of yeast eIF3 is a/Tif32 with molecular weight of 110.3 kDa. Under the 

name Rpg1, it was originally characterized as a factor required for passage through the G1 

phase of the cell cycle (Kovarik et al., 1998). 

 The N-terminal domain (NTD; amino acids 1-321) is formed by several alpha helices 

and is followed by the so-called PCI domain (amino acids 321-496) (Khoshnevis et al., 2014). 

The PCI domain is a structural motif shared by proteasome, COP9 signalosome, and eIF3. In 

all these protein complexes, PCI domains serve as a scaffold enablingbinding to each other and 

to other proteins (Aravind and Ponting, 1998; Hofmann and Bucher, 1998; Scheel and 

Hofmann, 2005). The N-terminal part of a/Tif32 binds the C-terminal domain (CTD) of c/Nip1 

and ribosomal protein uS2 (Valášek et al., 2002; Kouba et al., 2012a; Khoshnevis et al., 2012). 

Truncation of the first 200 amino acid residues of a/Tif32 resulted in a reduction of MFC 

binding to 40S in vivo suggesting a very important role of a/Tif32-NTD in stabilizing the eIF3-

40S complex (Valášek et al., 2003). Later, it was proposed that the N-terminal part of a/Tif32 

bound to uS2 forms an extension of the mRNA exit channel since uS2 is located near this 
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channel (Munzarová et al., 2011). This is in agreement with the fact that both yeast a/Tif32 and 

mammalian eIF3a interact with mRNAs emerging from the mRNA exit channel (Pisarev et al., 

2008; Aitken et al., 2016), which is in specific cases highly important for a gene-specific 

regulatory mechanism called reinitiation (REI) (Szamecz et al., 2008; Munzarová et al., 2011). 

The C-terminal part of a/Tif32 contains the Hcr1-like domain (HLD, amino acids 625-

869) that shares 25 % sequence identity with Hcr1. HLD interacts with Hcr1, b/Prt1, and eIF1 

(Valášek et al., 2001, 2002). The very C-terminal end of a/Tif32 interacts with eIF2 (Valášek 

et al., 2002), ribosomal proteins uS3 and uS5 (Chiu et al., 2010), and helices 16-18 of the 18S 

rRNA (Valášek et al., 2003). These ribosomal proteins and helices form the mRNA entry 

channel, so it is not surprising that the a/Tif32-CTD was shown to promote mRNA recruitment, 

scanning, and influence the start codon selection (Chiu et al., 2010). 

1.2.2 The b/Prt1 subunit 

The third largest subunit of yeast eIF3 is b/Prt1, an 88.1 kDa protein. The DNA fragment 

containing PRT1 was isolated and cloned as a first gene required for the initiation of protein 

biosynthesis in Saccharomyces cerevisiae by complementation of the temperature-sensitive 

prtl-1 mutation (Keierleber et al., 1986). 

The N-terminal part of b/Prt1 contains an RNA recognition motif (RRM, amino acids 71-

166) that mediates interactions with a/Tif32-HLD, Hcr1-NTD, and 40S. The precise binding 

site on 40S is not known yet (Valášek et al., 2001; ElAntak et al., 2007, 2010; Chiu et al., 2010). 

The central part of b/Prt1 was originally believed to be composed of fourteen WD40 

repeats folded into two seven-bladed β-propellers (Marintchev and Wagner, 2004) until a 

crystal structure from Chaetomium thermophilum revealed that this propeller is unusually 

formed by nine WD40 repeats and this unique architecture is common to all eIF3b orthologues 

(Liu et al., 2014). Via its β-propeller domain, p/Prt1 binds to c/Nip1, ribosomal protein uS4, 

and the 18S rRNA helix h16 (Valášek et al., 2002; Liu et al., 2014). 

The C-terminal part folds into a long α-helix (amino acids 691-729) with unstructured C-

terminal tail and is required for binding of i/Tif34 and g/Tif35 (Asano et al., 1998; Herrmannová 

et al., 2012). Mutation of residues mediating the interaction with i/Tif34 eliminates also g/Tif35 

from MFC in vivo and leads to severe leaky scanning phenotype caused by the presence of 

aberrant PICs (Herrmannová et al., 2012).  
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1.2.3 The c/Nip1 subunit 

The second largest subunit of yeast eIF3 is c/Nip1 with molecular weight of 93.2 kDa. Since it 

was discovered during a study screening for temperature-sensitive mutants manifesting defects 

in nuclear import, it was named Nip1 which stands for Nuclear import 1 (Gu et al., 1992). 

The N-terminal part of c/Nip1 contains binding sites for eIF5 and eIF1 and thus regulates 

AUG recognition and serves as a nucleation centre for MFC assembly and 43S PIC formation 

(Greenberg et al., 1998; Asano et al., 2000; Valášek et al., 2002, 2003; Kouba et al., 2012b; 

Karásková et al., 2012; Obayashi et al., 2017). Mutations in the c/Nip1-NTD impairing its 

contact with eIF1 are causing the so-called Sui-
 phenotype (Sui, suppressor of initiation codon 

mutation) which allows selection of near-cognate codons instead of AUG as a start codon 

(Valášek et al., 2004), whereas mutations impairing binding of eIF5 lead to defects in TC 

recruitment (Karásková et al., 2012). The following part of c/Nip1 contains a binding site for 

the PCI domain of a/Tif32 (Valášek et al., 2002, 2003). 

The central part of c/Nip1 folds into several α-helices (amino acids 251-608) and contains 

a binding site for b/Prt1 (Valášek et al., 2002; Khoshnevis et al., 2012). 

Immediately after this helical region is located the C-terminal PCI domain (amino acids 

608-783). However, deletion of this PCI domain does not influence the integrity of eIF3 

(Khoshnevis et al., 2012). The c/Nip1-PCI binds non-specifically to RNA and blades 1-3 of 

ribosomal protein Rack1 (Kouba et al., 2012b).  

1.2.4 The i/Tif34 subunit 

With the molecular weight of 38.7 kDa, i/Tif34 is the second smallest subunit of yeast eIF3. It 

was identified as an important factor in translation initiation, cell cycle progression, and yeast 

mating (Naranda et al., 1997; Verlhac et al., 1997). It adopts a canonical seven-bladed 

β-propeller structure with a short C-terminal α-helix. Binding partners of i/Tif34 are b/Prt1 via 

blades 5 and 6 (Herrmannová et al., 2012) and g/Tif35-NTD via blades 1, 6, and 7 (Erzberger 

et al., 2014). Mutation in blade 6 causes a slow scanning phenotype but has no effect on eIF3 

integrity (Cuchalová et al., 2010). 

1.2.5 The g/Tif35 subunit 

The smallest subunit of yeast eIF3 is the 30.5 kDa protein g/Tif35. 

The N-terminal third of g/Tif35 contains a zinc finger domain and is responsible for 

interaction with i/Tif34 and b/Prt1 (Asano et al., 1998). Otherwise weak binding of b/Prt1 to 
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g/Tif35 is stabilised by the presence of i/Tif34 (Herrmannová et al., 2012; Khoshnevis et al., 

2012). 

The C-terminal third folds into the RRM (amino acids 183-273) which non-specifically 

binds both rRNA and mRNA, but was shown to be not essential (Hanachi et al., 1999). 

The structure of human eIF3g-RRM was originally solved by K. Tsuda et al. (unpublished data, 

PDB accession code 2CQ0), and because there is a high sequence homology with yeast g/Tif35-

RRM, it can be assumed that they share a common structure (Cuchalová et al., 2010). 

The interactions of g/Tif35 with ribosomal proteins uS3 and uS10 were described and 

since are these proteins located near the ribosomal mRNA entry channel, this interactions are 

associated with roles of g/Tif35 in promoting reinitiation and scanning through stable secondary 

structures on mRNAs (Cuchalová et al., 2010; Aitken et al., 2016). 

1.2.6 The loosely associated factor Hcr1 

Hcr1 is a 29.5 kDa protein originally isolated as a high copy suppressor of the temperature-

sensitive phenotype of the rpg1-1 allele of TIF32 (Valášek et al., 1999). 

The N-terminal part of Hcr1 interacts with the RRM domain of b/Prt1 and its deletion 

causes a leaky scanning phenotype which can be suppressed by eIF1A overexpression (ElAntak 

et al., 2010). The C-terminal part of Hcr1 interacts with ribosomal proteins uS5 and uS12 

located in the vicinity of the mRNA entry channel and with a/Tif32. Both parts of Hcr1 are 

required for binding to the a/Tif32-HLD (Chiu et al., 2010). 

As already mentioned, Hcr1 is not considered as a subunit of eIF3 anymore because of 

its different roles as a separate factor, especially in translation termination. It binds to Rli1, a 

protein critically promoting translation termination and ribosomal recycling (Khoshnevis et al., 

2010; Barthelme et al., 2011; Shoemaker and Green, 2011). In our laboratory, it was shown that 

deletion of HCR1 increased termination codon read-through which was suppressible by 

overexpression of RLI1. Also, RLI1 fully suppressed the slow growth phenotype of the hcr1Δ 

strains. Therefore, it was proposed that a defect in translation termination, and not initiation, is 

the major contributor to the slow growth phenotype of hcr1 deletion strains (Beznosková et al., 

2013). 
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1.3 Structure of free eIF3 

Despite the fact that eIF3 was discovered many years ago, its structure was shrouded in mystery 

for a long time and not even today is fully known. Originally, contacts among individual 

subunits of yeast eIF3 were very thoroughly studied using pull-down assays, analytical 

size-exclusion chromatography (SEC), and in vivo mutations, while methods like nuclear 

magnetic resonance (NMR) spectroscopy and x-ray crystallography were applied later (Asano 

et al., 1998, 2000; Phan et al., 2001; Valášek et al., 2001, 2002, 2003; ElAntak et al., 2010; 

Herrmannová et al., 2012; Kouba et al., 2012b; Khoshnevis et al., 2014). The overall geometry 

of yeast eIF3 was described very 

well, but structures of only 

individual domains were solved 

(Figures 3 and 4C), in many cases 

just thanks to their homology with 

already resolved mammalian 

counterparts. Otherwise, there 

were no successful attempts to 

crystalize neither yeast nor 

mammalian eIF3 and only low-

resolution single particle electron 

microscopy (EM) analyses of 

negatively stained samples were 

available (Figure 4A, B) (Behlke 

et al., 1986; Khoshnevis et al., 

2012). The causes of this failures 

were ascribed to the great 

flexibility of eIF3 which is needed 

for its rearrangement in different roles and situations throughout the translation cycle. This 

flexibility is mostly provided by unstructured parts of individual subunits and rearrangement of 

the whole complex. Hence, the original purpose of my project was to overcome these issues 

using different methods and modified complexes in order to shed more light on the structure of 

free yeast eIF3. 

The assembly of yeast eIF3 as well as more complex eIF3 of mammals and Neurospora 

crassa most likely starts with the creation of the eIF3 nucleation core formed by eIF3a and 

Figure 3: A 3D model of eIF3 and its associated eIFs in 
the multifactor complex (MFC) 
A schematic model of MFC originally published by Valášek 
et al. (2002) supplemented with real protein structures of 
individual domains. 
ntd, N-terminal domain; ctd, C-terminal domain; hld, HCR1-
like domain; rrm, RNA recognition motif; pci, PCI domain; 
TC, ternary complex; wd40, β-propeller domain. 

      



18 

eIF3b subunits. They interact with each other via the N-terminal RRM of eIF3b and C-terminal 

spectrin domain (HLD in yeast) of eIF3a (Valášek et al., 2001, 2002; Khoshnevis et al., 2012; 

Dong et al., 2013). The very C-terminal part of eIF3b then binds eIF3g and eIF3i. In yeast, their 

mutual interactions fortify the so-called eIF3b-g-i module (Asano et al., 1998). In the case of 

mammalian eIF3, the spectrin domain of eIF3a plays a similar role in stabilizing the eIF3b-i 

interaction (Dong et al., 2013). In yeast, N-terminal PCI domain of a/Tif32 and C-terminal 

domain of b/Prt1 bind c/Nip1 to complete the whole protein complex assembly (Figure 2A) 

(Phan et al., 2001; Valášek et al., 2002; Khoshnevis et al., 2014). In mammals and other higher 

eukaryotes, six subunits containing the PCI domain (a, c, e, k, l, m) and two subunits containing 

the MPN (Mpr1-Pad1 N-terminal) domain (f, h) bind together in a horseshoe shape to form the 

so-called octamer (Figure 2B). In vivo, the formation of the eIF3a-b nucleation core is probably 

a prerequisite for the human octamer assembly (Wagner et al., 2016). Based on the research of 

our group, it seems that the formation of the yeast-like core (YLC) consisting of eIF3a-b-g-i 

subcomplex precedes the nucleation of the octamer as YLC was also shown to exist free in the 

cytoplasm of human cells (Wagner et al., 2014, 2016). 

 

Figure 4: Structural information about free eIF3 complexes 
(A) Single particle EM analysis of negatively stained native (upper row) and in vitro reconstituted (lower row) 
eIF3 complexes. 
(B) Electron micrographs of negatively stained glutaraldehyde-fixed eIF3 from rat liver. 
(C) Yeast eIF3 interaction map. Subcomplexes that are stable according to the SEC analysis are depicted by dashed 
lines. The interaction of c/Nip1 with b/Prt1-i/Tif34-g/Tif35 subcomplex is represented by a solid line around this 
subcomplex. Binding of Nip1370-570 to Prt1CTD was observed by Valášek et al. (2002), while the binding of Tif35CTD 
to Prt1CTD was concluded from indirect observations. Therefore, hese two interactions are represented by the grey 
dashed lines. 
Adapted from (Behlke et al., 1986 (B); Khoshnevis et al., 2012 (A, C)) 
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1.4 Structure of eIF3 bound on 40S 

Shortly after its discovery, mammalian eIF3 was shown to bind to the platform of 40S 

(Figure 5) (Emanuilov et al., 1978). The first 3D reconstruction at the resolution of 48 Å 

confirmed that eIF3 binds to the solvent-exposed side of the 40S platform, but also showed that 

it reaches the 40S intersubunit side as well (Srivastava et al., 1992). It took more than 20 years 

to obtain structures of mammalian 43S PIC in a resolution high enough to predict the position 

of the YLC subunits (Hashem et al., 2013a) 

and to even assign densities to the individual 

subunits (Des Georges et al., 2015). Thanks 

to these and other structural and biochemical 

studies, nowadays it is already well 

established that mammalian eIF3 body binds 

to the 40S solvent-exposed side and projects 

some of its domains onto the ribosomal 

intersubunit side. Subunits eIF3a and eIF3c 

contact ribosomal proteins eS1 and eS26, 

and uS15 and eS27, respectively, occurring 

near the mRNA exit channel. Near the mRNA entry channel, electron densities corresponding 

to the eIF3b-i module were observed in contact with uS4 (Hashem et al., 2013a; Erzberger et 

al., 2014; Des Georges et al., 2015). In comparison with the octamer anchoring eIF3 on 40S, 

the eIF3b-g-i module is rather mobile thanks to the C-terminal part of eIF3a which serves as a 

mechanical arm. 

The integrative modelling of the yeast 40S-eIF1-eIF3 complex stabilised by cross-linking 

and the cryo-EM structure of also cross-linked yeast 40S-eIF1-eIF1A-eIF3-eIF3j complex 

showed that yeast eIF3 is embracing 40S in the same manner as the mammalian eIF3 does 

(Figure 6A-C) (Erzberger et al., 2014; Aylett et al., 2015). These results were confirmed by the 

structure of the uncross-linked partial yeast 48S PIC (Figure 6D) (Llácer et al., 2015). The 

eIF3a-eIF3c PCI heterodimer sits near the mRNA exit channel having the anchoring function. 

This structural information is in agreement with the already above mentioned biochemical 

experiments in yeast showing that eIF3a-NTD interacts with the ribosomal protein uS2 which 

is part of the mRNA exit channel (Valášek et al., 2003; Kouba et al., 2012a). The NTD of eIF3a 

also contacts specific mRNA elements that promote translation reinitiation and are located near 

the mRNA exit channel (Szamecz et al., 2008; Munzarová et al., 2011; Mohammad et al., 2017). 

Figure 5: First model of the mammalian eIF3-
40S complex 
Schematic representation of the eIF3-40S 
complex isolated from rabbit reticulocytes based 
on electron microscopy images of negatively 
stained samples. 
Adapted from (Emanuilov et al., 1978) 
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The eIF3b-i subcomplex represented by the RRM and both β-propellers was shown to be 

attached to the eIF3a-CTD with the eIF3g-NTD being sandwiched between the eIF3i 

β-propeller and the 40S body (Erzberger et al., 2014; Aylett et al., 2015). This position is in 

accord with a previous study identifying contacts between yeast g/Tif35 and uS3 and uS10 near 

or at the mRNA entry channel (Cuchalová et al., 2010). Identically to the mammalian eIF3 

complex, this position of the eIF3b-g-i module is allowed by the flexible eIF3a-CTD. Contacts 

between the eIF3a-CTD and uS5, uS3, and helices 16-18 of 18S rRNA were mapped before 

already (Valášek et al., 2003; Chiu et al., 2010). It was also demonstrated that in this 

conformation, the eIF3b-g-i module extends the mRNA entry channel, interacts with incoming 

mRNA, and module the rate and processivity of scanning (Nielsen et al., 2004; Nielsen and 

Valášek, 2006; ElAntak et al., 2010; Chiu et al., 2010; Cuchalová et al., 2010). The important 

role of eIF3 extending both mRNA entry and exit channels was shown in a biophysical study. 

Alterations to the a/Tif32-CTD and the eIF3b-g-i module significantly slowed mRNA 

recruitment, and mutations in the eIF3b-g-i module destabilised binding of TC to the PIC. 

Alterations to the a/Tif32-NTD destabilised mRNA interactions with the PIC at the exit channel 

(Aitken et al., 2016). 

The eIF3c-NTD was shown to mediate interactions with eIF1 and eIF5 in yeast (Phan et 

al., 1998; Asano et al., 2000; Valášek et al., 2004; Karásková et al., 2012) and proposed to 

coordinate AUG recognition via the contact with these eIFs (Valášek et al., 2003). Interactions 

between the eIF3c-NTD and eIF1, eIF2, and eIF5 within the PCI complex were proposed to 

enable rapid scanning arrest at the AUG codon by clearing eIF1 from the ribosomal P-site 

(Valášek et al., 2004; Karásková et al., 2012; Obayashi et al., 2017). This hypothesis seemed 

possible since eIF3 brings eIF1 to the PIC in form of MFC (Asano et al., 2000), but could only 

be true with the eIF3c-NTD stretching around the platform of 40S all the way to the 40S P-site. 

This mechanism was confirmed just recently by a cryo-EM study of yeast partial 43S and 48S 

PICs (Figure 7) (Llácer et al., 2018a, 2018b). During the formation of 43S PIC, TC binds in a 

metastable conformation (POUT) to the 40S. The head of 40S moves upwards upon mRNA 

recruitment and expands the mRNA entry channel. During this phase, the eIF3b-g-i module 

bound to the eIF3a-CTD relocates from its original position near the mRNA entry channel on 

the solvent side to the subunit interface, connecting eIF2γ and eIF1. Together with eIF2β 

contacting eIF1 and Met-tRNAi, this arrangement probably stabilises the open (scanning-

competent) conformation of the 48S PIC. After start codon recognition, the 40S head moves 

downward to secure mRNA in position, anticodon stem-loop of tRNA buries deeper in the P-

site (PIN state) and the contact between eIF2β, eIF1, and Met-tRNAi is lost. The N-terminal tail 
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(NTT) of eIF1A stabilises the AUG:anticodon duplex, and the D1 domain of eIF2α interacts 

with mRNA in the E-site. In addition, Met-tRNAi push eIF1 aside from its original binding site. 

Finally, the base pairing of the start codon with Met-tRNAi tilts Met-tRNAi towards the 40S 

body and weakens eIF1 binding to 40S causing eIF1 dissociation. Consequently, the eIF3b-g-i 

module was shown to relocate back to the solvent side of 40S and the eIF5-NTD binds at the 

side originally occupied by eIF1. Loop-1 and loop-2 residues of the eIF5-NTD then interact 

with the AUG:anticodon duplex and stabilise the conformation of Met-tRNAi.  

Moreover, mammalian eIF3 was proposed to interact also with eIF1A, eIF4B, and eIF4F 

via two binding sites on eIF4G (Méthot et al., 1996; Querol-Audi et al., 2013; Villa et al., 2013). 

This clearly shows how important eIF3 is during translation initiation and that its flexibility is 

essential to fulfil all these tasks. 

 

Figure 6: Models and cryo-EM structures of eIF3 bound on 40S 
(A, B) Models of 40S-eIF1-eIF3 complexes in yeast (A) and mammals (B) based on cross-links and known 
structures. 
(C) Structure of the budding yeast 40S-eIF1-eIF1A-eIF3-eIF3j complex viewed from the solvent side. 
(D) The partial yeast 48S PIC in a closed state viewed from the beak side (left) and the intersubunit side (right), 
respectively. 
Adapted from (Erzberger et al., 2014 (A,B); Aylett et al., 2015 (C); Llácer et al., 2015 (D)) 
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Figure 7: Schematic model of major conformational changes during initiation 
(A) Formation of the 43S PIC (40S, eIF1, eIF1A, TC, and eIF3). 
(B) Loading of mRNA, upward movement of the 40S head (black arrows), reposition of the eIF3b-g-i module 
connected to the eIF3-CTD to the subunit-interface (pink arrow). 
(C) Head movement after start codon recognition, displacement of eIF1 (black and blue arrows, respectively). 
(D) Base pairing of Met-tRNAi with the start codon tilts Met-tRNAi toward the 40S body (green arrow), relocation 
of the eIF3b-g-i module back to the solvent side of 40S (pink arrow), the eIF5-NTD binds at the site originally 
occupied by eIF1 (light cyan arrow). 
NTT – N-terminal tail. For details, please see the main text. 
Adapted from (Llácer et al., 2018b)  
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2 Aims of the study 

The ultimate goal of my study was to solve the structure of yeast eIF3 and its position on 40S. 

To achieve this challenging task, I deployed different methods and optimised them to provide 

better results. In addition, I collaborated with my colleagues in order to shed more light on 

different roles of eIF3 besides initiation. 

In particular, I aimed to: 

A. modify purification protocol of eIF3 subunits and in vitro assembly of yeast eIF3 to 

produce diffractable crystals of eIF3 alone as well as bound on 80S, 

B. optimize chemical cross-linking and preparation of samples for mass spectrometry in order 

to obtain structural data of free eIF3, 

C. describe more precisely binding sites of yeast eIF3 on 40S, 

D. explore the role of eIF1 and eIF5 in the structural rearrangement of yeast eIF3 preceding 

its binding to 40S, 

E. determine the degree of eIF3 persistence on 80S during early elongation phase, and 

F. elucidate the role of eIF3 in reinitiation and the effect of eIF3 and tRNAs in stop codon 

readthrough.  
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3 Materials and methods 

DNA sequences encoding yeast proteins were cloned into vectors and expressed in Escherichia 

coli strains. Studies on yeast were performed using different laboratory strains of 

Saccharomyces cerevisiae. 

3.1 List of methods 

Protein purification (immobilized metal affinity chromatography, affinity chromatography, 
size exclusion chromatography) 

Yeast and bacteria cultivation, transformation 

Molecular cloning and DNA modifications 

Ribosome purification 

Chemical cross-linking of protein complexes 

Mass spectrometry data analysis 

3D modelling 

Polyacrylamide gel electrophoresis 

Western blot and dot blot analysis 

Electrophoretic mobility shift assay 

Sucrose gradient and sucrose cushion sedimentation 

Pull-down assay 

In-vitro transcription and translation 

Structural bioinformatics and sequence analysis  
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4 Results 

List of publications in reverse-chronological order: 

Jakub Zeman, Yuzuru Itoh, Zdeněk Kukačka, Michal Rosůlek, Daniel Kavan, Tomáš Kouba, 
Myrte Jansen, Mahabub Pasha Mohammad, Petr Novák, Leoš Shivaya Valášek 
Binding of eIF3 in complex with eIF5 and eIF1 to the 40S ribosomal subunit is 
accompanied by dramatic structural changes 
Nucleic Acids Research 2019 
doi: 10.1093/nar/gkz570 
Contribution of the author: 80%; I purified all molecules, prepared samples for MS analysis, 
analysed MS data, and created 3D models. 

Petra Beznosková, Zuzana Pavlíková, Jakub Zeman, Colin Aitken, Leoš Valášek 
Yeast applied readthrough inducing system (YARIS): An in vivo assay for the 
comprehensive study of translational readthrough 
Nucleic Acids Research 2019 
doi: 10.1093/nar/gkz346 
Contribution of the author: 20%; I was involved in experimental design and bioinformatics 
analysis of ribosomal structures and tRNA sequences.  

Mahabub Pasha Mohammad, Vanda Munzarová Pondělíčková, Jakub Zeman, Stanislava 
Gunišová, Leoš Shivaya Valášek 
In vivo evidence that eIF3 stays bound to ribosomes elongating and terminating on short 
upstream ORFs to promote reinitiation 
Nucleic Acids Research 2017; 45 (5): 2658 2674. 
doi: 10.1093/nar/gkx049 
Contribution of the author: 15%; I contributed with sucrose cushion centrifugation and 
electrophoretic mobility shift assay experiments conducted as independent support for the 
results obtained by the newly developed and herein published pull-down assay. 

Leoš Shivaya Valášek, Jakub Zeman, Susan Wagner, Petra Beznosková, Zuzana Pavlíková, 
Mahabub Pasha Mohammad, Vladislava Hronová, Anna Herrmannová, Yaser Hashem, 
Stanislava Gunišová 
Embraced by eIF3: structural and functional insights into the roles of eIF3 across the 
translation cycle 
Nucleic Acids Research 2017; 45 (19): 10948–10968. 
doi: 10.1093/nar/gkx805 
Contribution of the author: 20%; I contributed to the manuscript preparation, especially to 
chapters about eIF3 structure and assembly. 
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Vladislava Hronová, Mahabub Pasha Mohammad, Susan Wagner, Josef Pánek, Stanislava 
Gunišová, Jakub Zeman, Kristýna Poncová & Leoš Shivaya Valášek 
Does eIF3 promote reinitiation after translation of short upstream ORFs also in 
mammalian cells? 
RNA Biology 2017, 14:12, 1660-1667. 
doi: 10.1080/15476286.2017.1353863 
Contribution of the author: 7.5%; I contributed to the manuscript preparation. 

I hereby confirm that the author of the thesis, Jakub Zeman, has substantially contributed to 
the publications listed above. In the case of his first-author publication, he performed the 
major part of experimental work and contributed to the manuscript preparation. 

 

 Mgr. Leoš Shivaya Valášek, PhD  
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4.1 Publication I 

Jakub Zeman, Yuzuru Itoh, Zdeněk Kukačka, Michal Rosůlek, Daniel Kavan, Tomáš Kouba, 
Myrte Jansen, Mahabub Pasha Mohammad, Petr Novák, Leoš Shivaya Valášek 
Binding of eIF3 in complex with eIF5 and eIF1 to the 40S ribosomal subunit is 
accompanied by dramatic structural changes 

In this study, we revealed an overall geometry of free yeast eIF3 and its structural changes 

during binding to 40S. To overcome known problems with forming crystals, we decided to use 

chemical cross-linking coupled to mass spectrometry. Using different cross-linkers, we were 

able to obtain information about distances between different parts of the eIF3 complex. We 

used these restraints to model free yeast eIF3. Applying the same methodology, we described 

the shape of eIF3 in complex with its binding partners, eIF1 and eIF5, and 40S. 

As opposed to the compactly packed eIF3 when free in solution, eIF3 bound on 40S is 

dramatically rearranged and embraces almost the whole 40S. These results are in agreement 

with recently published structures of partial 48S PIC obtained by cryo-EM. In order to 

determine the involvement of other eIFs in triggering structural changes of eIF3, we applied the 

cross-linking approach to the partial MFC containing eIF3, eIF1, and eIF5. Our data indicate 

that eIF3 in this partial MFC is even more compactly packed suggesting that the contact with 

40S is most probably coercing eIF3 to reorganization. 

We also tried to exploit our methodology for determining the binding of eIF5 on 40S 

since the exact position of this factor was not fully mapped yet. Our results are in agreement 

with predicted binding sites of both eIF5 domains, but in addition support the prevailing idea 

of eIF5 being very flexible and contacting different ribosomal proteins.  
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4.2 Publication II 

Petra Beznosková, Zuzana Pavlíková, Jakub Zeman, Colin Aitken, Leoš Valášek 
Yeast applied readthrough inducing system (YARIS): an in vivo assay for the 
comprehensive study of translational readthrough 

Based on observations of premature termination codons causing a plethora of human diseases, 

translation readthrough has emerged as a potential new therapeutic target. We identified and 

described a defined group of yeast tRNAs that, when overexpressed, induced translation 

readthrough in a stop codon tetranucleotide-specific manner. We refer to these tRNAs as 

readthrough-inducing tRNAs (rti-tRNAs). Rti-tRNAs are the keystones of herein established 

yeast applied readthrough inducing system (YARIS), a comprehensive reporter-based assay 

enabling simultaneous detection of readthrough levels at all twelve stop-codon tetranucleotides 

as a function of individual rti-tRNAs. 

We proved the applicability of YARIS for the systematic study of translation readthrough 

by employing it for the interrogation of the effects of natural modifications of rti-tRNA, as well 

as various readthrough-inducing drugs (RTIDs). We determined how increased levels of 

specific rti-tRNAs interact with RTIDs. While some rti-tRNAs are relatively insensitive to 

RTIDs, others can be specifically enhanced by RTIDs and their readthrough promoting ability 

increased several fold. These specific effects may be promising for custom-tailored treatments 

targeted at inducing readthrough of specific premature termination codons. This analysis 

identified a variety of genetic interactions demonstrating the power of YARIS to characterize 

existing and identify novel RTIDs.  
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4.3 Publication III 

Mahabub Pasha Mohammad, Vanda Munzarová Pondělíčková, Jakub Zeman, Stanislava 
Gunišová, Leoš Shivaya Valášek 
In vivo evidence that eIF3 stays bound to ribosomes elongating and terminating on short 
upstream ORFs to promote reinitiation 

Some uORFs are able to prevent recycling of the post-termination 40S in order to resume 

scanning and reinitiate downstream. It was shown that the time needed to translate an uORF is 

more critical than its length. This led to a hypothesis that some initiation factors needed for 

reinitiation are preserved on the 80S ribosome during early elongation. Here, we demonstrated 

that one of these factors is eIF3. 

We developed a novel in vivo pull-down assay utilizing formaldehyde RNA-protein 

crosslinking, specific RNase H cleavage, immobilized metal affinity chromatography resin, and 

RT-qPCR. As a model, we used the yeast GCN4 mRNA containing four short uORFs that is a 

textbook example of mRNA regulated by reinitiation. eIF3 but not eIF2 preferentially 

associated with RNA segments encompassing two GCN4 reinitiation permissive uORFs 

(uORF1 and uORF2), containing cis-acting 5′ reinitiation-promoting elements (RPEs). We 

showed that the preferred association of eIF3 with these uORFs is dependent on intact RPEs 

and the a/Tif32 subunit and sharply declines with the extended length of uORFs. Thus, our data 

imply that eIF3 travels with early elongating ribosomes and that the RPEs interact with eIF3 in 

order to stabilize the mRNA-eIF3-40S post-termination complex to stimulate efficient 

reinitiation downstream. 
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4.4 Publication IV 

Leoš Shivaya Valášek, Jakub Zeman, Susan Wagner, Petra Beznosková, Zuzana Pavlíková, 
Mahabub Pasha Mohammad, Vladislava Hronová, Anna Herrmannová, Yaser Hashem, 
Stanislava Gunišová 
Embraced by eIF3: structural and functional insights into the roles of eIF3 across the 
translation cycle 

In this comprehensive review, we provided an up-to-date knowledge about eIF3 from different 

perspectives. First, we described the structure of yeast and mammalian eIF3 complexes, their 

assembly, and binding sites on 40S. Then, we discussed all known roles of eIF3 in canonical 

and non-canonical translation initiation, translation termination, ribosomal recycling, stop 

codon readthrough, NMD pathway, and reinitiation. We also enlisted different human diseases 

including numerous types of cancer that are associated with deregulation or loss of functionality 

of eIF3. 

Taken all together, this review article is a very valuable source of information about eIF3 

from structural, functional, and medical points of view. 
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4.5 Publication V 

Vladislava Hronová, Mahabub Pasha Mohammad, Susan Wagner, Josef Pánek, Stanislava 
Gunišová, Jakub Zeman, Kristýna Poncová & Leoš Shivaya Valášek 
Does eIF3 promote reinitiation after translation of short upstream ORFs also in 
mammalian cells? 

In this publication, we unravelled the molecular mechanism of reinitiation in human cells using 

human ATF4 mRNA as a model. Atf4 is a functional homologue of yeast Gcn4, which we have 

previously used in our laboratory to understand the process of reinitiation in yeast cells. Both 

GCN4 and ATF4 mRNA molecules contain the REI-permissive uORF1. By targeted 

mutagenesis of the sequences flanking the ATF4 uORF1, we discovered that these sequences 

are, analogously to yeast, REI-promoting as their mutation decreased the reinitiation efficiency 

in our reporter assay. These sequences independently enhance the REI capability of this uORF. 

Thanks to experiments based on bioinformatics predictions, we showed that the 5′ sequence of 

the ATF4 uORF1 folds into an evolutionarily conserved structure necessary for its REI-

permissive potential. Moreover, we proved that similarly to the yeast GCN4 mRNA, eIF3 

contributes to the reinitiation on human ATF4 mRNA as well. Due to the higher complexity of 

the human eIF3, eIF3h and not a/Tif32 is responsible for this role. 

Taking together, we proposed that the basics of the molecular mechanism of the 

reinitiation is well conserved in both yeast and humans.  
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5 Discussion 

5.1 The modified yeast eIF3 purification and reconstitution 
protocol 

There are always two possible basic protocols for the purification of protein complexes: to add 

a purification tag to at least one subunit and purify the entire complex from the original 

organism, or to express and isolate individual subunits and reconstitute the complex in vitro. 

As an expression system, either the original organism or different heterologous systems can be 

used. For the production of eukaryotic proteins, one should always consider the selection of an 

appropriate expression system based on organismal codon usage, amount of protein needed for 

downstream application, as well as the requirements for the maintenance of post-translational 

modifications or disulphide bonds. The selection of optimal expression conditions is critical for 

proper folding of functional proteins and, at the same time, serves to avoid the potential cross-

species toxicity of produced molecules. The directly purified endogenous eIF3 has been usually 

contaminated with its binding partner or lacked the perfect stoichiometry of its subunits. (Asano 

et al., 1998; Phan et al., 1998; Sun et al., 2011). 

To obtain eIF3 in the highest possible purity and to enable the process of further subunit 

mutagenesis, we originally decided to deploy a published protocol in which the eIF3 subunits 

were first individually produced in E. coli expression strains and subsequently assembled 

together in vitro (Khoshnevis et al., 2012). The authors shoved that eIF3 reconstituted in vitro 

from subunits expressed in bacteria has the same molecular mass, overall shape, and translation 

activity in an in vitro translation assay as native yeast eIF3. However, the original protocol led 

to the production of a mixture of full-length (FL) and truncated proteins as well as stable dimers 

of some subunits.  

Our modifications described in Zeman et al. (2019) significantly improved the yields of 

eIF3 FL subunits, the ratios between FL proteins and partially cleaved subunits, and generally 

simplified the whole workflow. This protocol is now suitable for further eIF3 structural studies 

as well as different functional biochemical assays (Zeman et al., 2019).  
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5.2 Cross-linking versus high-resolution structural methods 

Structural flexibility is a fundamental property of eIF3. It is required especially during binding 

to the ribosome to change the eIF3 conformation adequately in order to enable and stabilise its 

contacts between eIF3 subunits and ribosomal proteins and other eIFs. Nevertheless, flexibility 

has always been the biggest concern of all structural biologists, especially crystallographers. 

For this reasons, only one single particle EM analysis of negatively stained sample is available 

for free yeast eIF3 (Khoshnevis et al., 2012). Every other scientific group working on the 

structure of eIF3 has rather chosen to stabilise eIF3 as much as possible by its binding to 40S. 

Our original intention was to obtain crystals of free eIF3 or of eIF3 in complex with 80S 

since, to our knowledge, eIF3 binds more strongly to 80S than to 40S (unpublished 

observations). We established a collaboration with the laboratory of Marat Yusupov (France) 

whose work on ribosomal structures is very well known. When our initial attempts with native 

complexes failed, I prepared modified eIF3 without flexible unstructured parts and eIF3 

complexes containing one subunit fused with specifically chosen protein to increase the 

efficiency of binding to 80S. We designed fusion proteins containing Stm1 protein sequence 

fused to the N-terminus of b/Prt1, i/Tif34, or j/Hcr1. Stm1 was shown to be a ribosome-

associated protein important for protein synthesis (Van Dyke et al., 2006). Therefore, we 

selected for modification those eIF3 subunits the presence of which was expected in the 

proximity of the binding site of Stm1 on 80S. The same idea led us to preparation of c/Nip1 

C-terminally fused with the ribosomal protein Rack1 as it is already well known that the very 

C-terminus of c/Nip1 locates in the proximity of Rack1 when eIF3 binds to the ribosome 

(Kouba et al., 2012b). We then mixed modified eIF3-Rack1 with 80S lacking Rack1 protein to 

form a more stable complex. In all cases, these modified complexes were successfully 

assembled and showed high stability during SEC (data not shown). Unfortunately, even despite 

many attempts and hard work, we were only able to obtain small or needle-shaped crystals not 

suitable for x-ray crystallography. 

As a next strategy, we decided to apply XL-MS. This method was previously succesfuly 

used to study macromolecular complexes like RNA polymerases I (Jennebach et al., 2012) 

and II (Chen et al., 2010), proteasome (Lasker et al., 2012; Karadzic et al., 2012; Kao et al., 

2012) or membrane proteins (Jacobsen et al., 2006). Cross-linking constraints could be even 

used for solving protein structures and molecular dynamics simulations (Kahraman et al., 2013; 

Belsom et al., 2016; Brodie et al., 2017). However, potential concerns exist whether chemical 

cross-linkers could produce an artificial conformational change or oligomerization. A recent 
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study showed that chemical cross-linking can indeed affect protein function, in this case 

enzymatic activity, but does not significantly affect protein structure at low cross-linker 

concentrations (Rozbeský et al., 2018). Having this in mind, we first optimised the protein 

concentration and molar excess of cross-linkers in our samples to obtain enough cross-links 

and, at the same time, to avoid any unwanted oligomerization having impact on the structure. 

However, with the increasing total amount of amino acid residues per sample (adding other 

factors or 40S into reactions), we were forced to increase the amount of cross-linker as well. 

Nevertheless, using sucrose gradient centrifugation and dot blot analysis, we were able to prove 

that our samples were not oligomerized. In samples containing 40S, we also have to deal with 

the impact of a high amount of rRNA on MS analysis. Therefore, incorporation of treatment 

with RNase I after cross-linking was necessary. After optimisation of these variables, we were 

able to obtain high confidence cross-links. 

We were also able to obtain good results using cleavable cross-linker DSBU 

(disuccinimidyl dibutyric urea), as characteristic patterns of the cross-linker as well as backbone 

fragments of the connected peptides are observable using collision-induced dissociation (CID)-

MS/MS workflow (Arlt et al., 2016). This helped us greatly to distinguish more precisely 

between true-positive and false-positive cross-links. On the other hand, otherwise widely used 

so-called StageTips (manually prepared pipette tips containing very small disks made of beads 

with reversed phase, cation-exchange, or anion-exchange surfaces embedded in a Teflon mesh) 

which are supposed to enrich the number of cross-links in cleaved samples (Rappsilber et al., 

2007) did not work in our hands (data not shown). 

 Our next effort was to use the obtained cross-links as constraints for modelling protein 

complexes using already known 3D structures of eIF3 subunits and domains with the help of 

Vojtěch Spiwok group (UCT, Prague). Unfortunately, due to high complexity and 

flexible/unstructured segments of eIF3 subunits, current protocols (Karaca et al., 2010; 

Kahraman et al., 2013; Van Zundert et al., 2016) were unable to give us any results. Because 

of that, we were compelled to use a general 3D modelling software to create simplified 

‘sausage’ models (Zeman et al., 2019). 

Some structural biologists consider XL-MS being not necessary and outdated in the age 

of x-ray crystallography and cryo-EM. But taken together, XL-MS is still a useful method for 

mapping protein complexes, their geometry, stoichiometry, and dynamics, and can be used in 

combination with other structural methods (reviewed in Urlaub, 2017). In addition, cross-

linkers alone are used for stabilisation of flexible proteins and complexes in cryo-EM samples 

as well (Aylett et al., 2015; Engel et al., 2016). 
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5.3 Structural and functional implications of yeast eIF3 
geometry 

First, it is necessary to perform a thought experiment on how amounts of free eIF3 and eIF3 in 

complex with its binding partners differ in a yeast cell. Based on a meta-analysis of 21 protein 

abundance analyses utilising MS, GFP-microscopy, and tandem affinity purification 

(TAP)-immunoblot, median values for S. cerevisiae eIF3 subunits abundance are between 

12 175 (Tif35) and 28 010 (Tif32) molecules per cell (Table 1). Values for eIF1 and eIF5 are 

17 154 and 30 676, respectively (Ho et al., 2018). In theory, there should be enough of eIF1 

and eIF5 molecules to saturate all eIF3 complexes in cell (assuming that the total number of 

eIF3 complexes is defined by the lowest abundant subunit) and those eIF3 not bound on 

ribosomes should probably exist in the form of (partial) MFC. In light of this these theoretical 

conclusions, our effort to obtain the 

structure of free eIF3 could be seen as 

futile, especially when the general 

flexibility of eIF3 and its contamination 

with other factors after purification directly 

from cells were already mentioned many 

times before. However, when this project 

started several years ago, almost nothing 

was known about the structure of neither 

free eIF3, MFC, nor the eIF3-40S complex. 

In that time, crystallisation of eIF3 or 

obtaining at least some structural 

information about free eIF3 was the 

ultimate goal of many groups. 

As our study as well as cryo-EM studies showed, there is a dramatic structural 

rearrangement when eIF3 binds to the 40S (Erzberger et al., 2014; Aylett et al., 2015; Llácer et 

al., 2015, 2018b; Zeman et al., 2019), but only small structural changes occur when eIF1 and 

eIF5 bind to eIF3 (Zeman et al., 2019). Because of the lack of indication of any steric clashes, 

there is apparently no need for a huge rearrangement of the eIF3 geometry prior to the binding 

of eIF1 and. In view of this fact, we concluded that the contact between eIF3 and 40S is the 

ultimate trigger of those dramatic structural changes. Moreover, our hypothesis that all 

important parts of eIF3 are in this conformation perfectly accessible for the initial contact with 

Table 1: The abundance of selected proteins in 
S. cerevisiae cells according to (Ho et al., 2018). 

Protein Mean 
molecules 
per cell 

Median 
molecules 
per cell 

3a/Tif32 30 782 28 010 

3b/Prt1 26 807 26 937 

3c/Nip1 29 536 27 447 

3i/Tif34 18 518 17 836 

3g/Tif35 13 037 12 175 

eIF1/Sui1 23 223 17 154 

eIF5/Tif5 31 136 30 676 
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ribosomal proteins corresponds with already proposed most probable mediators of this initial 

interactions (a/Tif32-NTD–uS2 and c/Nip1-CTD–RACK1) (Fraser et al., 2007; Mitchell et al., 

2010) as well as with a subset of our cross-links of the eIF3-40S complex (Zeman et al., 2019). 

Our models of eIF3 either free or in complex with eIF1 and eIF5 are in striking contrast 

with the structures of eIF3 embracing 40S published in recent years (Erzberger et al., 2014; 

Aylett et al., 2015; Llácer et al., 2015, 2018b). However, even from low-resolution EM images 

it is obvious that yeast eIF3 adopts roughly globular shape stretched in one plane (Khoshnevis 

et al., 2012). In order to further confirm this globular shape conformation, small-angle X-ray 

scattering (SAXS) or combination of size exclusion chromatography with multi-angle light 

scattering (SEC-MALS) analysis could be used. 

Besides this just described globular geometry of eIF3, there is another important result of 

our cross-linking study. Many years ago, Leoš Valášek proposed in his articles that there is 

another a/Tif32 binding site on c/Nip1 roughly between amino acid residues 157 and 370 

(Valášek et al., 2002, 2003) in addition to the PCI-PCI contact between these two subunits 

(Khoshnevis et al., 2012; Erzberger et al., 2014). This binding site was mapped using in vitro 

and in vivo pull-down assays with mutated variants of c/Nip1 subunit. Since then, structures of 

PCI-PCI heterodimers or whole eIF3 bound to 40S were published and all these studies only 

captured a/Tif32 binding to c/Nip1 via their PCI domains (Erzberger et al., 2014; Aylett et al., 

2015; Llácer et al., 2015). This is in perfect agreement with our results showing eIF3 

rearrangement after binding on 40S, however, our cross-links also support the existence of the 

second a/Tif32 binding site in the first third of c/Nip1. This binding site is most probably used 

in free eIF3 where three main subunits a/Tif32-b/Prt1-c/Nip1 forms a triangle and possibly for 

some regulatory reasons keep both PCI domains apart. We propose that the rearrangement of 

a/Tif32 and c/Nip1 subunits after the initial contact between eIF3 and 40S enables anchoring 

of eIF3 to 40S via the PCI-PCI heterodimer, movement of eIF3b-g-i module and binding and 

wrapping of c/Nip1-NTD around the 40S platform to reach the P-site. To test this hypothesis, 

methods like single-molecule fluorescence resonance energy transfer (smFRET) could be 

employed. 

5.4 Flexibility of yeast eIF3 bound on 40S 

As was already described in chapter 1.4, the eIF3b-g-i module moves dramatically during 

translation initiation thanks to the CTD of a/Tif32 (Llácer et al., 2018a, 2018b). However, the 

part of a/Tif32 between the end of the PCI domain towards the C-terminus (amino acid residue 
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496) and the α-helix that is in contact with the β-propeller of b/Prt1 (from amino acid residue 

814) was not visible in any structure to date. This problem is most probably caused by the 

movement of this a/Tif32 part on or above the surface of 40S. Using secondary structure 

prediction tools like PSIPRED (Figure 9) (Jones, 1999) or Jpred4 (data not shown) (Drozdetskiy 

et al., 2015), this whole part of a/Tif32 seems to be folded into individual α-helices. More 

interestingly, protein structure prediction tools Phyre2 (Kelley et al., 2015) and SWISS-

MODEL (Waterhouse et al., 2018) predict that these α-helices are folded together in a coiled 

coil structural motif (Figure 8) (reviewed in Mason and Arndt, 2004). This could possibly 

implicate that the a/Tif32-CTD is folded in the coiled coil motif in 40S-free eIF3 and just after 

the rearrangement during the contact 

with 40S, this whole domain’s fold is 

loosened to fulfil its role of a flexible 

mechanical arm. 

Similarly, the c/Nip1-NTD is 

usually not resolved in cryo-EM 

structures of PICs (Aylett et al., 2015; 

Llácer et al., 2015, 2018b) with some 

exceptions of the very N-terminus. 

According to our cross-linking data, 

this part of yeast eIF3 is also very 

flexible and can move all the way 

between the head and the right foot of 

40S. This could be in agreement with 

recently published structure, where the eIF3b-g-i module relocates in the 48S PIC to the area 

where the c/Nip1-NTD should otherwise bind (Llácer et al., 2018b). In theory, the c/Nip1-NTD 

could free the space for the eIF3b-g-i module, or is just possibly covered by the module. 

Figure 8: Predicted 3D structures of the a/Tif32-CTD 
(A, B) Predicted coiled coil helices using Phyre2 (A) and 
SWISS-MODEL (B) protein structure prediction tools. 
Amino acid residues are numbered according to the 
sequence of a/Tif32. 
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Figure 9: Secondary structure prediction of the a/Tif32-CTD 
Cartoon representing the result of PSIPRED prediction tool for the CTD of a/Tif32 from the amino acid residue 
D497 to residue R964 (C-terminus) of the sequence of a/Tif32. Colour coding according to the legend. 

5.5 The binding site of yeast eIF5 on 40S is still not fully 
known 

Roles of eIF5 as a GTPase-activating protein and as a GDP dissociation inhibitor to prevent 

recycling of eIF2 were described years ago (Asano et al., 2000; Das et al., 2001; Singh et al., 

2006) as well as structures of both of its domains (Conte et al., 2006; Wei et al., 2006). 
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However, its precise position on 40S remained a mystery for a long time and even nowadays is 

not completely known. Just recently, partial yeast 48S PIC cryo-EM maps containing clear 

density for eIF5-NTD were obtained (Llácer et al., 2018b) and to my best knowledge, structures 

containing also density for eIF5-CTD should be published soon. 

Our effort to describe the binding site of eIF5 on 40S using our cross-linking methodology 

has brought some partial success. Our data are in agreement with the only recently published 

study which placed the eIF5-NTD near the P-site where eIF1 binds in the open state (Llácer et 

al., 2018b). According to our results, the eIF5-CTD seems to reside near the E-site. However, 

since the existence of sole eIF5-40S complex was not observed in cells and eIF5 is very flexible 

and, we obtained more than one binding site for each domain (Zeman et al., 2019). This could 

be probably also caused by the absence of other eIFs since their presence on 40S may possibly 

limit the eIF5 flexibility and restrict its binding area on ribosome. 

5.6 The presence of eIF3 on 80S during early elongation 

Our novel in vivo Rap-NiP assay brought more direct evidence that yeast eIF3 stays bound on 

80S during first few elongation cycles after initiation on uORFs, as was already proposed earlier 

(Szamecz et al., 2008; Beznosková et al., 2013; Mohammad et al., 2017). Even before it was 

described that the cauliflower mosaic virus transactivator (TAV) is associated with polysomes 

on viral polycistronic RNA and recruits eIF3 to 80S to promote reinitiation on the downstream 

cistron (Park et al., 2001). 

From a structural point of view, both position and mechanism of action of eIF3 bound on 

80S during early elongation steps are very interesting. Because in the elongation ribosomes 60S 

is bound to the intersubunit side of 40S, the steric clashes between 60S and the very N-terminal 

parts of c/Nip1 and b/Prt1 (RRM) protruding into the interphase area might disrupt or at least 

weakens the interactions of these subunits with 40S as well as with other eIF3 subunits (possibly 

helical region of c/Nip1 and a/Tif32-NTD). This weakened interaction could then lead to 

gradual dissociation of eIF3 from the 80S during prolonged elongation, which was confirmed 

by our results using constructs with systematically extended coding regions of tested uORFs 

(Mohammad et al., 2017). However, because eIF3 was shown to stay bound on 80S during early 

elongation even without the presence of stabilising RPEs (Mohammad et al., 2017), this shortly 

persisting interaction could be possibly supported via its contact with other factor(s) present on 

early elongating 80S, possibly eIF4F or eIF4G that were previously reported to be required for 

efficient reinitiation (Pöyry et al., 2004). For a deeper look into behaviour of eIF3 on 80S, 
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methods like smFRET or cry-EM could be used. With the latter method, a proper way how to 

stabilise this complex would need to be found. 

5.7 Limitations and directions for the future research of eIF3 

In years after its discovery in the 1970s, eIF3 was shown to participate not only as a key player 

in translation initiation but also in termination, ribosomal recycling, stop codon readthrough, 

reinitiation and NMD pathway. Moreover, this list is most probably far from being complete, 

especially considering the potentially distinctive roles of individual eIF3 subunits or its 

subcomplexes in higher eukaryotes (reviewed in Valášek et al., 2017). Despite their importance, 

the structures of both yeast as well as mammalian eIF3 were for a long time a mystery. And 

even though the cryo-EM instrumentation and data analysis are improving rapidly, there is still 

a lot to learn about the structure of eIF3. Other methods like XL-MS, smFRET, pull-down 

assays, NMR, and x-ray crystallography also greatly helped with elucidating of particular steps 

of how eIF3 works. However, it will be for sure the cryo-EM that will further help us to 

understand the particular structures and mechanisms of eIF3 in different complexes and 

situations. Although we already know a lot about 43S and 48S PICs, there are still other equally 

important areas to explore: position of eIF4F on PIC during initiation and its possible contact 

with eIF3 or other factors, the structure of eIF3 on early elongating 80S, during reinitiation, as 

well as during readthrough, recycling etc. Nevertheless, all of those tasks are certainly highly 

challenging not only from the technical but also from the functional point of view – how to 

stabilise the required complex just in the right moment. 

In recent years, almost all the attention in the field of translation has been naturally drawn 

to structural biology almost constantly providing us with new and more detailed structures. 

Still, we have to be very careful with drawing any conclusions and every new case of structural 

study that tries to convince us about some new ways of molecule functioning has to be taken 

under thorough investigation with the ultimate effort for a deeper understanding of the biology 

hidden behind that process.  
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6 Conclusions 

This thesis brings novel information about yeast eIF3, its structural changes and its diverse roles 

not only in translation initiation. 

 We substantially optimised the yeast eIF3 purification and reconstitution protocol in 

order to produce higher yields of full-length proteins for further structural applications. 

Even despite many attempts and modifications, our effort to obtain some crystallographic 

data of yeast eIF3 or eIF3 bound on 80S was not successful. 

We succeeded in optimising the protocol for chemical cross-linking and sample 

preparation for mass spectrometry to acquire structural information about large protein 

complexes. We discovered that free yeast eIF3 adopts a globular architecture that is further 

compacted by the binding of eIF1 and eIF5. 

Our results show that eIF3 undergoes a dramatic structural rearrangement during its 

binding to 40S from the compactly packed globular geometry with separated PCI domains to 

the stretched form almost completely embracing 40S with PCI-PCI heterodimer serving as an 

anchor. 

Using to our newly developed in vivo assay, we demonstrated that eIF3 travels with early 

elongating ribosomes and that the RPEs interact with eIF3 in order to stabilize the mRNA-eIF3-

40S post-termination complex to stimulate efficient reinitiation. Comparing our knowledge of 

reinitiation on uORFs of yeast GCN4 mRNA with mammalian ATF4 mRNA, we concluded 

that the molecular mechanism of the reinitiation is well conserved both in yeast and in humans. 

Finally, we proved the applicability of the newly developed in vivo assay YARIS for the 

systematic study of translation readthrough. This process is specifically influenced by 

readthrough-inducing tRNAs and drugs. Further studies could identify new and more specific 

ways how to treat diseases caused by the presence of premature stop codons. 
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